
Exploiting Structure and Relaxations in Reinforcement Learning and

Stochastic Optimal Control

by

Ibrahim El Shar

M.S. of Industrial Engineering, American University of Beirut, 2016

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Ibrahim El Shar

It was defended on

October 28th 2022

and approved by

Daniel Jiang, Ph.D, Assistant Professor, Department of Industrial Engineering

Lisa Maillart, Ph.D, Professor & Department Chair, Department of Industrial Engineering

Jayant Rajgopal, Ph.D, Professor, Department of Industrial Engineering

Bo Zeng, Ph.D, Associate Professor, Department of Industrial Engineering

Masoud Barati, Ph.D, Asssistant Professor, Department of Electrical and Computer

Engineering

Dissertation Director: Daniel Jiang, Ph.D, Assistant Professor, Department of Industrial

Engineering

ii

Copyright © by Ibrahim El Shar

2022

iii

Exploiting Structure and Relaxations in Reinforcement Learning and

Stochastic Optimal Control

Ibrahim El Shar, PhD

University of Pittsburgh, 2022

Stochastic optimal control studies the problem of sequential decision making under un-

certainty. Dynamic programming (DP) offers a principled approach to solving stochastic

optimal control problems. A major drawback of DP methods, however, is that they become

quickly intractable in large-scale problems. In this thesis, we show how structural results

and various relaxation techniques can be used to obtain good approximations and accelerate

learning. First, we propose a new provably convergent variant of Q-learning that leverages

upper and lower bounds derived using information relaxation techniques to improve per-

formance in the tabular setting. Second, we study weakly coupled DPs which are a broad

class of stochastic sequential decision problems comprised of multiple subproblems coupled

by some linking constraints but are otherwise independent. We propose another Q-learning

based algorithm that makes use of Lagrangian relaxation to generate upper bounds and im-

prove performance. We also extend our algorithm to the function approximation case using

Deep Q-Networks. Finally, we study the problem of spatial dynamic pricing for a fixed num-

ber of shared resources that circulate in a network. For the general network, we show that

the optimal value function is concave and for a network composed of two locations, we show

that the optimal policy enjoys certain monotonicity and bounded sensitivity properties. We

use these results to propose a novel heuristic algorithm which we compare against several

baselines.

Keywords: Markov decision processes; Approximate dynamic programming; Reinforce-

ment learning.

iv

Table of Contents

1.0 Introduction . 1

1.1 Lookahead-bounded Q-learning . 2

1.2 Weakly Coupled Deep Q-Networks . 3

1.3 Spatial Dynamic Pricing for Shared Resources Systems 3

2.0 Lookahead-Bounded Q-learning . 4

2.1 Related Literature . 6

2.2 Background . 7

2.2.1 MDP Model . 7

2.2.2 Information Relaxation Duality . 8

2.2.3 Absorption Time Formulation . 10

2.2.4 Lower Bounds using IR . 11

2.3 QL with Lookahead Bounds . 12

2.3.1 An Idealized Algorithm . 12

2.3.2 Analysis of Convergence . 16

2.3.3 LBQL with Experience Replay . 18

2.3.4 Convergence of LBQL with Experience Replay 19

2.4 Numerical Experiments . 20

2.5 Conclusion . 23

3.0 Weakly Coupled Deep Q-Networks . 26

3.1 Related Literature . 28

3.2 Preliminaries . 30

3.2.1 Weakly Coupled MDPs . 30

3.2.2 Q-learning and DQN . 32

3.2.3 Lagrangian Relaxation . 33

3.3 Weakly Coupled Q-learning . 34

3.3.1 Convergence Analysis . 37

v

3.4 Weakly Coupled DQN . 38

3.4.1 Lagrangian DQN . 40

3.5 Numerical Experiments . 40

3.6 Limitations and Future Work . 44

3.7 Conclusion . 45

4.0 Spatial Dynamic Pricing for Shared-Resource Systems 46

4.1 Literature Review . 47

4.2 Preliminaries . 49

4.3 Problem Formulation . 50

4.4 Dynamic Pricing and Rationing in Two Locations 53

4.5 The Infinite Horizon Setting . 54

4.6 Leave-One-Out Aggregation Heuristic . 55

4.7 Computational Experiments . 57

4.8 Conclusion . 61

5.0 Conclusions and Future Work . 63

Appendix A. 65

A.1 Proofs for Chapter 2 . 65

A.1.1 Proof of Proposition 2.3.1 . 65

A.1.2 Proof of Proposition 2.3.2 . 69

A.1.3 Proof of Lemma 2.3.1 . 74

A.1.4 Proof of Theorem 2.3.1 . 74

A.1.5 Proof of Lemma 2.3.2 . 79

A.1.6 Proof of Theorem 2.3.2 . 81

A.2 LBQL with Experience Replay Algorithm 82

A.3 Implementation Details of LBQL with Experience Replay 83

A.4 Numerical Experiments Details . 85

A.4.1 Gridworld Examples . 86

A.4.2 Car-sharing Benchmark Examples 87

A.4.2.1 Repositioning Benchmark for Car-sharing 87

A.4.2.2 Pricing Benchmark for Car-sharing 88

vi

A.4.3 Sensitivity Analysis . 92

Appendix B. 99

B.1 Proofs for Chapter 4 . 99

B.1.1 Proof of Proposition 3.2.1 . 99

B.1.2 Proof of Theorem 3.3.1 . 101

B.2 Weakly Coupled Q-learning Algorithm . 103

B.3 Lagrangian DQN Algorithm . 104

B.4 Numerical Experiments Details . 104

B.4.1 EV Charging with Exogenous Electricity Cost 105

B.4.2 Multi-product Inventory Control with an Exogenous Production Rate106

B.4.3 Online Stochastic Ad. Matching . 107

Appendix C. 109

C.1 Proofs for Chapter 3 . 109

C.1.1 Proof of Proposition 4.3.2 . 109

C.1.2 Proof of Theorem 4.4.1 . 111

Bibliography . 116

vii

List of Tables

1 Numerical Results . 58

2 LBQL parameters. 86

3 Computational results for different exploration & learning rate parame-

ters. Bold numbers indicate the best performing algorithm. 94

4 Multi-product inventory environment parameters 107

viii

List of Figures

1 Illustration of LBQL Algorithm at iteration n. 13

2 A simple stochastic MDP. 15

3 An illustration of LBQL iterates for Example 1. 15

4 Illustration of LBQL Upper and Lower Bounds. 21

5 Results from the Gridworld Experiments. 24

6 Results from the CS Experiments. 25

7 Our WCMDP RL Approach. 27

8 Illustration of WCQL Algorithm. 37

9 Numerical results: plots showing the bounds behaviour (a), the total

rewards and 95% confidence bounds of WCQL and other tabular algo-

rithms (b), and their relative error (c) on the EV charging problem. Plots

(d) and (e) show the total rewards for WCDQN and other algorithms on

the multi-product inventory control and online stochastic ad matching

problems, respectively. 43

10 Plots showing the three location problem origin-destination expected de-

mand functions of the price (a) and the resulting expected demand func-

tions after aggregation (b). 60

11 Individual LOOA value functions for Problem 1, γ = 0.9. 60

12 Individual LOOA policies for Problem 1, γ = 0.9. 61

13 LOOA’s demand and allocation policies at location 1 for Problem 1,

γ = 0.9. 62

14 Illustrations of the repositioning and pricing car-sharing problems. . . . 91

15 Plots showing the effect of tuning the parameters m and K of LBQL

algorithm. 93

ix

1.0 Introduction

Sequential decision-making problems are often modeled as Markov decision processes

(MDPs). In this setting actions influence not only immediate rewards but also the future

states and consequently the future rewards. The goal is to find an optimal policy that maps

states to actions which maximizes the total sum of rewards. DP based approaches such as

policy iteration and value iteration are classical methods for solving infinite horizon MDPs.

These methods however are only suitable for MDPs with small finite state spaces. In addition,

they require the knowledge of the reward function and transition dynamics. In many of the

problems to which we wish to find a good policy the state space is huge and combinatorial,

and the model may not be available to us. In such cases, the best we can hope for is finding

an approximate solution using finite computational resources. Various relaxation techniques

and different types of problem specific structures can be used to obtain good approximations

and make learning more efficient. In this thesis, we show how reinforcement learning and

optimal control can benefit from these techniques through the following contributions:

1. In Chapter 2, we study sequential decision making problems that are stochastic due

to exogenous random variables that affects the problem dynamics and rewards. Often

case, little is known about the support and distribution of these exogenous variables

but the way they affect our problem dynamics is partially known. This is the case in

many real-world problems. For example, inventory control problems where the next

inventory state is given by a well-specified function of the demand. Other examples

include vehicle routing, energy operations, portfolio optimization and dynamic pricing in

car-sharing problems. We exploit this partial knowledge of the dynamics by proposing a

new Q-learning variant that makes use of information relaxation to learn and solve these

problems efficiently.

2. In Chapter 3, we study a broad class of sequential decision making problems called weakly

coupled DPs. These problem consist of multiple subproblems that are independent except

for a linking constraint on the action space. These problems are hard to solve since

they become exponentially larger with the number of subproblems. We propose a Q-

1

learning algorithm that exploits the weakly coupled DP structure by using Lagrangian

relaxation to generate upper bounds that are in turn used to accelerate learning and

improve performance. We then extend our algorithm to the function approximation case

by utilizing Deep Q-Networks.

3. Finally, we study problems where our actions have indirect influence on resources that

circulate in a network structure. These type of problems arise in shared resource systems

with a fixed number of resources where a decision maker needs to take actions that

influence the distribution of the resources over the network in such away that is appealing

from both revenue and logistic perspectives. We analyze the structure of the value

function and the policy in these problems and propose an effective heuristic that exploits

this structure.

1.1 Lookahead-bounded Q-learning

We introduce the lookahead-bounded Q-learning (LBQL) algorithm, a new, provably con-

vergent variant of Q-learning that seeks to improve the performance of standard Q-learning

(QL) in stochastic environments through the use of “lookahead” upper and lower bounds.

To do this, LBQL employs previously collected experience and each iteration’s state-action

values as dual feasible penalties to construct a sequence of sampled information relaxation

problems. The solutions to these problems provide estimated upper and lower bounds on the

optimal value, which we track via stochastic approximation. These quantities are then used

to constrain the iterates to stay within the bounds at every iteration. Numerical experiments

on benchmark problems show that LBQL exhibits faster convergence and more robustness

to hyperparameters when compared to standard Q-learning and several related techniques.

Our approach is particularly appealing in problems that require expensive simulations or

real-world interactions.

2

1.2 Weakly Coupled Deep Q-Networks

We introduce Weakly Coupled Deep Q-Networks (WCDQN), a novel deep reinforcement

learning algorithm that improves the performance of the standard Deep Q-Networks (DQN)

algorithm and its sister methods on a broad class of structured problems. WCDQN employs

multiple simultaneous DQN agents such that each runs on a separate easier subproblem and

when combined they form an upper bound on the action value of the original problem. The

upper bound is then used to constrain and guide DQN on the full problem towards optimality.

Theoretically, we show that the tabular version of our algorithm called Weakly Coupled Q-

learning (WCQL) converges almost surely to the optimal action-value function. Numerical

experiments on benchmark problems show that our algorithm exhibits faster convergence

when compared to DQN/QL and several related techniques.

1.3 Spatial Dynamic Pricing for Shared Resources Systems

Inspired by the growing popularity of shared transport systems, we then study dynamic

pricing of a fixed number of rental units to serve price sensitive customers over a network of

locations, in Chapter 4. One of the main challenges faced by these systems is dealing with

imbalanced rental units resulting from spatially imbalanced demand. A dynamic pricing

framework offers a natural approach to modulate the demand. We formulate the problem

as a stochastic dynamic program and analyze the structure of the optimal value and policy

functions. For the general problem, we show that the value function is concave in the state.

For the specific case, where we only have two locations, we show that the value function

enjoys a certain type of discrete convexity and the optimal policy has monotonicity and

bounded sensitivity properties. We then propose a heuristic called leave-one-out aggregation

that exploits the structure of the optimal policy for the two-locations network. The heuristic

decompose an N -location problem into N two-location problem and solve each of them

separately to obtain a policy for the full problem.

3

2.0 Lookahead-Bounded Q-learning

Since its introduction by Watkins in 1989 [74], Q-learning has become one of the most

widely-used reinforcement learning (RL) algorithms [63], due to its conceptual simplicity,

ease of implementation, and convergence guarantees [33, 68, 9]. However, practical, real-

world applications of Q-learning are difficult due to the often high cost of obtaining data

and experience from real environments, along with other issues such as overestimation bias

[64, 26, 45].

In this chapter, we address these challenges for a specific class of problems with partially

known transition models. We write the system dynamics as st+1 = f(st, at, wt+1), where st

and at are the current state and action, st+1 is the next state, wt+1 is random noise, and f

is the transition function. We focus on problems where f is known, but the noise wt+1 can

only be observed through interactions with the environment. This type of model is the norm

in the control [9] and operations research [53] communities. In this work, we propose and

analyze a new RL algorithm called lookahead-bounded Q-learning (LBQL), which exploits

knowledge of the transition function f to improve the efficiency of Q-learning and address

overestimation bias. It does so by making better use of the observed data through estimating

upper and lower bounds using a technique called information relaxation (IR) [14].

Indeed, there are abundant real-world examples that fall into this subclass of problems,

as we now illustrate with a few examples. In inventory control, the transition from one

inventory state to the next is a well-specified function f given knowledge of a stochastic

demand wt+1 [42]. For vehicle routing, f is often simply the routing decision itself, while wt+1

are exogenous demands that require observation [59]. In energy operations, a typical setting

is to optimize storage that behaves through linear transitions f together with unpredictable

renewable supply, wt+1 [38]. In portfolio optimization, f is the next portfolio, and wt+1

represents random prices [55]. In Section 2.4 of this work, we discuss in detail another

application domain that follows this paradigm: repositioning and spatial dynamic pricing

for car sharing [31, 12].

Although we specialize to problems with partially known transition dynamics, this should

4

not be considered restrictive: in fact, our proposed algorithm can be integrated with the

framework of model-based RL to handle the standard model-free RL setting, where f is

constantly being learned. We leave this extension to future work.

Main Contributions. We make the following methodological and empirical contribu-

tions in this section.

1. We propose a novel algorithm that takes advantage of IR theory and Q-learning to gener-

ate upper and lower bounds on the optimal value. This allows our algorithm to mitigate

the effects of maximization bias, while making better use of the collected experience and

the transition function f . A variant of the algorithm based on experience replay is also

given.

2. We prove that our method converges almost surely to the optimal action-value function.

The proof requires a careful analysis of several interrelated stochastic processes (upper

bounds, lower bounds, and the Q-factors themselves).

3. Numerical experiments on five test problems show superior empirical performance of

LBQL compared to Q-learning and other widely-used variants. Moreover, sensitivity

analysis shows that LBQL is more robust to learning rate and exploration parameters.

The rest of the chapter is organized as follows. In the next section, we review the related

literature. In Section 2.2, we introduce the notation and review the basic theory of IR. In

Section 2.3, we present our algorithm along with its theoretical results. In Section 2.4, we

show the numerical results where LBQL is compared to other Q-learning variants. Finally,

we state conclusions and future work in Section 2.5.

5

2.1 Related Literature

Upper and lower bounds on the optimal value have recently been used by optimism-

based algorithms, e.g., [22] and [77]. These papers focus on finite horizon problems, while

we consider the infinite horizon case. Their primary use of the lower and upper bounds is to

achieve better exploration, while our work is focused on improving the action-value estimates

by mitigating overestimation and enabling data re-use.

In the context of real-time dynamic programming (RTDP) [8], Bounded RTDP [46],

Bayesian RTDP [56] and Focused RTDP [61] propose extensions of RTDP where a lower

bound heuristic and an upper bound are maintained on the value function. These papers

largely use heuristic approaches to obtain bounds, while we use the principled idea of IR

duality.

More closely related to this work is the work of He et al. [30], which exploits multistep re-

turns to construct bounds on the optimal action-value function, before utilizing constrained

optimization to enforce those bounds. However, unlike our work, no theoretical guaran-

tees are provided. To the best of our knowledge, we provide the first asymptotic proof of

convergence to the general approach of enforcing dynamically computed (noisy) bounds.

There are also two papers that utilize IR bounds in the related setting of finite horizon

dynamic programming. Jiang et al. [34] use IR dual bounds in a tree search algorithm in

order to ignore parts of the tree. Recent work by Chen et al. [17] uses IR duality in a

duality-based dynamic programming algorithm that converges monotonically to the optimal

value function through a series of “subsolutions” under more restrictive assumptions (e.g.,

knowledge of probability distributions).

6

2.2 Background

In this section, we first introduce some definitions and concepts from Markov decision

process theory. Then, we describe the basic theory of information relaxations and duality,

which is the main tool used in our LBQL approach.

2.2.1 MDP Model

Consider a discounted, infinite horizon MDP with a finite state space S, and a finite

action space A, and a disturbance space W . Let {wt} be a sequence of independent and

identically distributed (i.i.d.) random variables defined on a probability space (Ω,F ,P),

where each wt is supported on the set W . Let st ∈ S be the state of the system at time

t. We also define a state transition function f : S × A ×W → S, such that if action at is

taken at time t, then the next state is governed by st+1 = f(st, at, wt+1). This “transition

function” model of the MDP is more convenient for our purposes, but we note that it can

easily be converted to the standard model used in RL, where the transition probabilities,

p(st+1 | st, at), are modeled directly. For simplicity and ease of notation, we assume that w is

independent1 from (s, a). Let r(st, at) be the expected reward when taking action at ∈ A in

state st ∈ S. We assume that the rewards r(st, at) are uniformly bounded by Rmax and for

simplicity in notation, that the feasible action set A does not depend on the current state.

As usual, a deterministic Markov policy π ∈ Π is a mapping from states to actions, such that

at = π(st) whenever we are following policy π. We let Π be the set of all possible policies

(or the set of all “admissible” policies).

Given a discount factor γ ∈ (0, 1) and a policy π ∈ Π, the value and the action-value

functions are denoted respectively by

V π(s) = E

[
∞∑
t=0

γtr(st, at)
∣∣∣ π, s0 = s

]
and Qπ(s, a) = E

[
∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, a0 = a, π

]
,

where the notation of “conditioning on π” refers to actions at selected by π(st). The ex-

pectation E, here and throughout this section, is taken with respect to P. Our objective is

1However, we can also allow for (s, a)-dependent w with essentially no fundamental changes to our
approach.

7

to find a policy π ∈ Π such that from any initial state s, it achieves the optimal expected

discounted cumulative reward. The value of an optimal policy π∗ for a state s is called

the optimal value function and is denoted by V ∗(s) = maxπ V
π(s). Specifically, it is well-

known that an optimal policy selects actions according to π∗(s) = argmaxa∈AQ
∗(s, a), where

Q∗(s, a) = maxπQ
π(s, a) is the optimal action-value function [54]. The Bellman optimality

equation gives the following recursion:

Q∗(st, at) = r(st, at) + γE
[
max
at+1

Q∗(st+1, at+1)
]
.

The goal in many RL algorithms, including Q-learning [74], is to approximate Q∗.

2.2.2 Information Relaxation Duality

Now let us give a brief review of the theory behind information relaxation duality from

Brown et al. [14], which is a way of computing an upper bound on the value and action-value

functions. This generalizes work by Rogers [55], Haugh and Kogan [28], and Andersen and

Broadie [3] on pricing American options. Note that any feasible policy provides a lower

bound on the optimal value, but computing an upper bound is less straightforward. The

information relaxation approach proposes to relax the “non-anticipativity” constraints on

policies, i.e., it allows them to depend on realizations of future uncertainties when making

decisions. Naturally, optimizing in the class of policies that can “see the future” provides an

upper bound on the best admissible policy. We focus on the special case of perfect information

relaxation, where full knowledge of the future uncertainties, i.e., the sample path (w1, w2, . . .),

is used to create upper bounds. The naive version of the perfect information bound is simply

given by

V ∗(s0) ≤ E

[
max

a

{
∞∑
t=0

γtr(st, at)

}]
,

which, in essence, is an interchange of the expectation and max operators; the interpretation

here is that an agent who is allowed to adjust her actions after the uncertainties are realized

achieves higher reward than an agent who acts sequentially. As one might expect, perfect

information can provide upper bounds that are quite loose.

8

The central idea of the information relaxation approach to strengthen these upper bounds

is to simultaneously (1) allow the use of future information but (2) also penalize the agent

for doing so by assessing a penalty on the reward function in each period. A penalty function

is said to be dual feasible if it does not penalize any admissible policy π ∈ Π in expectation.

Let st+1 = f(st, at, wt+1) be the next state, φ : S × A → R be a bounded function, and w

have the same distribution as wt+1. Then, penalties involving terms of the form

zπt (st, at, wt+1 |φ) := γt+1
(
φ(st+1, π(st+1))− E

[
φ
(
f(st, at, w), π(f(st, at, w))

)])
(2.1)

are dual feasible because

E

[
∞∑
t=0

zπt (st, at, wt+1 |φ)

]
= 0.

This is a variant of the types of penalties introduced in Brown and Haugh [13], extended to

the case of action-value functions. Intuitively, if φ is understood to be an estimate of the

optimal action-value function Q∗ and π an estimate of the optimal policy π∗, then zπt can be

thought of as the one-step value of future information (i.e., knowing wt+1 versus taking an

expectation over its distribution).

These terms, however, may have negative expected value for policies that violate non-

anticipativity constraints. Let πφ be the policy that is greedy with respect to the bounded

function φ (considered to be an approximate action-value function). Consider the problem

constructed by subtracting the penalty term from the reward in each period and relaxing

non-anticipativity constraints by interchanging maximization and expectation:

QU(s0, a0) = E
[
max

a

{ ∞∑
t=0

(
γtr(st, at)− z

πφ

t (st, at, wt+1 |φ)
)}]

, (2.2)

where a := (a0, a1, . . .) is an infinite sequence of actions. Brown and Haugh [13] shows that

the objective value of this problem, QU(s0, a0), is an upper bound on Q∗(s0, a0). Our new

approach to Q-learning will take advantage of this idea, with φ and π being continuously

updated. Notice that in principle, it is possible to estimate the problem in (2.2) using Monte

Carlo simulation. To do this, we generate infinitely long sample paths of the form w =

(w1, w2, . . .), and for each fixed w, we solve the inner deterministic dynamic programming

(DP) problem. Averaging over the results produces an estimate of the upper bound of

QU(s0, a0).

9

2.2.3 Absorption Time Formulation

In practice, however, we cannot simulate infinitely long sample paths w. One solution is

to use an equivalent formulation with a finite, but random, horizon (see for e.g. Proposition

5.3.1 of [54]), where instead of discounting, a new absorbing state s̃ with zero reward is added

to the state space S. This new state s̃ can be reached from every state and for any feasible

action with probability 1− γ. We define a new state transition function h, which transitions

to s̃ with probability 1 − γ from every (s, a), but conditioned on not absorbing (i.e., with

probability γ), h is identical to f . We refer to this as the absorption time formulation, where

the horizon length τ := min{t : st = s̃} has a geometric distribution with parameter 1 − γ

and the state transitions are governed by the state transition function h instead of f . Let

Q be the set of bounded functions φ such that φ(s̃, a) = 0 for all a ∈ A. The penalty terms

for the absorption time formulation are defined in a similar way as (2.1), except we now

consider φ ∈ Q:

ζπt (st, at, wt+1 |φ) := φ(st+1, π(st+1))− E
[
φ
(
h(st, at, w), π(h(st, at, w))

)]
, (2.3)

where st+1 = h(st, at, wt+1). We now state a proposition that summarizes the information

relaxation duality results, which is a slight variant of results in Proposition 2.2 of [13].

Proposition 2.2.1 (Duality Results, Proposition 2.2 in [13]). The following duality results

are stated for the absorption time formulation of the problem.

(i) Weak Duality: For any π ∈ Π and φ ∈ Q,

Qπ(s0, a0) ≤ E
[
max

a

τ−1∑
t=0

(
r(st, at)− ζ

πφ

t (st, at, wt+1 |φ)
)]

(2.4)

(ii) Strong Duality: It holds that

Q∗(s0, a0) = inf
φ∈Q

E
[
max

a

τ−1∑
t=0

(
r(st, at)− ζ

πφ

t (st, at, wt+1 |φ)
)]
, (2.5)

with the infimum attained at φ = Q∗.

10

The DP inside the expectation of the right hand side of (2.4) is called the inner DP

problem. Weak duality tells us that by using a dual feasible penalty, we can get an estimated

upper bound on the optimal action-value function Q∗(s0, a0) by simulating multiple sample

paths and averaging the optimal value of the resulting inner problems. Strong duality sug-

gests that the information gained from accessing the future is perfectly cancelled out by the

optimal dual feasible penalty.

For a given sample path w = (w1, w2, . . . , wτ), each of the inner DP problems can be

solved via the backward recursion

QU
t (st, at) = r(st, at)− ζ

πφ

t (st, at, wt+1 |φ) + max
a
QU

t+1(st+1, a), (2.6)

for t = τ − 1, τ − 2, . . . , 0 with st+1 = h(st, at, wt+1) and Q
U
τ ≡ 0 (as there is no additional

reward after entering the absorbing state s̃). The optimal value of the inner problem is given

by QU
0 (s0, a0).

2.2.4 Lower Bounds using IR

The penalty function approach also allows for using a feasible policy to estimate a lower

bound on the optimal value, such that when using a common sample path, this lower bound

is guaranteed to be less than the corresponding estimated upper bound, a crucial aspect of

our theoretical analysis. Specifically, given a sample path (w1, w2, . . . , wτ), the inner problem

used to evaluate a feasible policy π ∈ Π is given by

QL
t (st, at) = r(st, at)− ζπt (st, at, wt+1 |φ) +QL

t+1(st+1, π(st+1)), (2.7)

for t = 0, . . . , τ − 1, with st+1 = h(st, at, wt+1) and Q
L
τ ≡ 0. It follows that E

[
QL

0 (s0, a0)
]
=

Qπ(s0, a0), as the penalty terms ζπt (st, at, wt+1 |φ) have zero mean.

11

2.3 QL with Lookahead Bounds

We now introduce our proposed approach, which integrates the machinery of IR duality

with Q-learning in a unique way. An outline of the essential steps is given below.

1. On a given iteration, we first experience a realization of the exogenous information wt+1

and make a standard Q-learning update.

2. We then set φ to be the newly updated Q-iterate and compute noisy upper and lower

bounds on the true Q∗, which are then tracked and averaged using a stochastic approxi-

mation step.

3. Finally, we project the Q-iterate so that it satisfies the averaged upper and lower bounds

and return to Step 1.

Figure 1 shows an illustration of each of these steps at a given iteration of the algorithm.

Since we are setting φ to be the current Q-iterate at every iteration, the information re-

laxation bounds are computed using a dynamic sequence of penalty functions and averaged

together using stochastic approximation. The idea is that as our approximation of Q∗ im-

proves, our upper and lower bounds also improve. As the upper and lower bounds improve,

the projection step further improves the Q-iterates. It is this back-and-forth feedback be-

tween the two processes that has the potential to yield rapid convergence toward the optimal

Q∗.

The primary drawback of our approach is that in the computation of the information

relaxation dual bounds, expectations need to be computed. We first show an idealized version

of the algorithm where these expectations are estimated using unbiased samples of wt+1 from

a black-box simulator. Later, we relax the need for a black-box simulator and show how our

algorithm can be implemented with a replay-buffer. Both versions are analyzed theoretically

and convergence results are provided.

2.3.1 An Idealized Algorithm

Let {w1
t+1, w

2
t+1, . . . , w

K
t+1} be a batch (as opposed to a sample path) of K samples from

the distribution of the exogenous information wt+1 (i.e., from a black-box simulator). An

12

Q′
n Qn+1

Un+1

Ln+1

Π[Ln+1,Un+1][Qn+1]

Projection

Q′
n+1

Lookahead samples +

φ = Qn+1

Q-learning

Figure 1: Illustration of LBQL Algorithm at iteration n.

empirical version of (2.3) is simply given by:

ζ̂πt (st, at, wt+1 |φ) := φ(st+1, π(st+1))−
1

K

K∑
k=1

φ
(
h(st, at, w

k
t+1), π(h(st, at, w

k
t+1))

)
, (2.8)

where st+1 = h(st, at, wt+1). Given a sample path w = (w1, w2, . . . , wτ) of the absorption

time formulation of the problem, analogues to (2.6) and (2.7) using ζ̂πt , where in (2.7) we

set π = πφ (i.e., the lower bound on the optimal value is constructed by approximately

evaluating the feasible policy πφ) are given by

Q̂U
t (st, at) = r(st, at)− ζ̂

πφ

t (st, at, wt+1 |φ) + max
a
Q̂U

t+1(st+1, a) (2.9)

Q̂L
t (st, at) = r(st, at)− ζ̂

πφ

t (st, at, wt+1 |φ) + Q̂L
t+1(st+1, πφ(st+1)) (2.10)

for t = 0, 1, . . . , τ − 1, where st+1 = h(st, at, wt+1), Q̂
U
τ ≡ Q̂L

τ ≡ 0, and we assume that each

call to ζ̂πt uses a fresh batch of K samples.

Proposition 2.3.1. The valid upper and lower bound properties continue to hold in the

empirical case:

E[Q̂L
0 (s, a)] ≤ Q∗(s, a) ≤ E[Q̂U

0 (s, a)],

for any state-action pair (s, a).

13

We include the proof in Appendix A.1.1. The proof is similar to that of Proposition

2.3(iv) of [14], except extended to the infinite horizon setting with the absorption time

formulation. A detailed description of the LBQL algorithm is given in Algorithm 1, where

we use ‘n’ for the iteration index in order to avoid confusion with the ‘t’ used in the inner DP

problems. We use Π[a,b][x] to denote x projected onto [a, b], i.e., Π[a,b][x] = max{min{x, b}, a},

where either a or b could be ∞. Let ρ = Rmax/(1 − γ), the initial lower and upper bounds

estimates are set such that L0(s, a) = −ρ and U0(s, a) = ρ for all (s, a) ∈ S ×A. The initial

action-valueQ0 is set arbitrarily such that L0(s, a) ≤ Q0(s, a) ≤ U0(s, a) for all (s, a) ∈ S×A.

Algorithm 1: Lookahead-Bounded Q-Learning

Input: Initial estimates L0 ≤ Q0 ≤ U0, batch size K, and stepsize rules αn(s, a),

βn(s, a).

Output: Approximations {Ln}, {Q′
n}, and {Un}.

Set Q′
0 = Q0 and choose an initial state s0.

for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g., ϵ-greedy). Observe wn+1. Let

Qn+1(sn, an) = Q′
n(sn, an) + αn(sn, an)

[
rn(sn, an) + γmax

a
Q′

n(sn+1, a)−Q′
n(sn, an)

]
.

Set φ = Qn+1. Using a sample path w, compute Q̂U
0 (sn, an) and Q̂

L
0 (sn, an) using (2.9)

& (2.10).

Update and enforce upper and lower bounds:

Un+1(sn, an) = Π[−ρ,∞]

[
Un(sn, an) + βn(sn, an)

[
Q̂U

0 (sn, an)− Un(sn, an)
]]
, (2.11)

Ln+1(sn, an) = Π[∞, ρ]

[
Ln(sn, an) + βn(sn, an)

[
Q̂L

0 (sn, an)− Ln(sn, an)
]]
, (2.12)

Q′
n+1(sn, an) = Π[Ln+1(sn,an), Un+1(sn,an)] [Qn+1(sn, an)] . (2.13)

end for

14

L
A

R

L

B
R−1, 0.5

−1, 0.5 −1, 0.5
1, 0.5

−1, 1

1, 0.5

−1, 0.5

Figure 2: A simple stochastic MDP.

Example 2.1. We demonstrate the idealized LBQL algorithm using the simple MDP

shown in Figure 2. The MDP has two non-terminal states A and B. Each episode starts in

state A, with a choice of two actions: right and left denoted by R and L respectively. The

rewards and transition probabilities of taking an action in each state are shown on the edges

in the figure. Assume that the transitions are governed by the outcome of a fair coin. If the

outcome is Head then we transition in the direction of our chosen action and in the opposite

direction for a Tail outcome. For a discount factor γ = 0.95, the optimal policy is to go

right at both A and B. The optimal action-values are given by Q∗(A,R) = Q∗(B,R) = 0,

Q∗(A,L) = Q∗(B,L) = −1. Consider applying the idealized version of LBQL described in

Algorithm 1.

AEpisode 1:

L R
Qn :
Ln :
Q′

n :
Un :

0
−20

0
20

−0.1
−18.9
−0.1
19.3

B

L R
0

−20
0
20

−0.1
−18.98
−0.1

−19.02

AEpisode 58 :

L R
−1.05
−5.56
−1.05
4.08

0.15
−0.12
0.07
0.07

B

L R
−0.87
−8.29
−0.87
4.98

−0.12
−0.08
−0.08
0.05

next iter. next iter.

Figure 3: An illustration of LBQL iterates for Example 1.

We let αn = 0.1, βn = 0.05 for all n. Figure 3 illustrates two iterations from the first

and the 58th episodes. Initially Q0(s, a) = 0 and ρ = 20. After one episode the bounds are

still loose, so we have Q1(A,R) = Q′
1(A,R) = −0.1. At episode 58 (281 iterations): learning

15

has occurred for the lower and upper bounds values for the right action at A and B. We see

that the bounds are effective already in keeping the Q-iterate close to Q∗. Interestingly, the

upper bound is enforced at A, while the lower bound is enforced at B. Note that these are the

results of a real simulation.

2.3.2 Analysis of Convergence

In this section, we analyze the convergence of the idealized version of the LBQL algorithm

to the optimal action-value function Q∗. We start by summarizing and developing some

important technical results that will be used in our analysis. All proofs are presented in

Appendix A.1.

The following proposition establishes the boundedness of the action-value iterates and

asymptotic bounds on the Ln and Un iterates of Algorithm 1, which are needed in our proof

of convergence. The proof of this proposition is presented in Section A.1.2 in the Appendix.

Proposition 2.3.2 (Boundedness). For all (s, a) ∈ S ×A, we have the following:

(i) The iterates Qn(s, a) and Q
′
n(s, a), remains bounded for all (s, a) ∈ S ×A and for all n.

(ii) For every η > 0, and with probability one, there exists some finite iteration index n0 such

that

Ln(s, a) ≤ Q∗(s, a) + η and Q∗(s, a)− η ≤ Un(s, a),

for all iterations n ≥ n0.

Proposition 2.3.2(i) ensures that at each iteration n the action-value iterates Qn and Q′
n

are bounded. This allows us to set φ = Qn+1 at each iteration of Algorithm 1 and is required

to establish convergence in general. The proof is based on showing an inductive relationship

that connects Qn and Q′
n to the previous lower and upper bound iterates. Specifically,

we show that both action-value iterates are bounded below by the preceding upper bound

iterates and above by the preceding lower bound iterates. Proposition 2.3.2(ii) ensures that

there exists a finite iteration after which the lower and upper bound iterates Ln and Un are

lower and upper bounds on the optimal action-value function Q∗ with an error margin of at

16

most an arbitrary amount η > 0. In the proof of Proposition 2.3.2(ii), we bound the lower

and upper bound iterates by a noise process and another sequence that converges to Q∗.

We show that the noise process possesses some properties that help to eliminate the effect

of the noise asymptotically. With the effects of the noise terms vanishing, the boundedness

of the lower and upper bound iterates by Q∗ is achieved. Examining the update equations

(2.11) and (2.12) for Un+1 and Ln+1 in Algorithm 1, we remark that they are not “standard”

stochastic approximation or stochastic gradient updates because Q̂U
0 and Q̂L

0 are computed

with iteration-dependent penalty functions generated by φ = Qn+1. In other words, the

noiseless function itself is changing over time. The proof of Proposition 2.3.2(ii) essentially

uses the fact that even though these updates are being performed with respect to different

underlying functions, as long as we can apply Proposition 2.3.1 in every case, then after the

noise is accounted for, the averaged values Un+1 and Ln+1 are eventually bounded below and

above by Q∗, respectively. The following lemma derives some guarantees on the lower and

upper bound iterates of Algorithm 1, whose proof appears in Section A.1.3 of the Appendix.

Lemma 2.3.1 (Consistency of Bounds). If L0(s, a) ≤ U0(s, a), then Ln(s, a) ≤ Un(s, a) for

all iterations n and for all (s, a) ∈ S ×A.

In particular, Lemma 2.3.1 shows that the upper and lower bound iterates do not in-

terchange roles and become inconsistent. This is an important property; otherwise, the

projection step of Algorithm 1 loses its meaning and would require additional logic to han-

dle inconsistent bounds. The results of Lemma 2.3.1 follows mainly by the fact that we

are using the same sample path to solve the upper and lower bound inner problems, (2.9)

and (2.10), respectively. Before stating our convergence results, we first state a typical

assumption on the stepsizes and the state visits.

Assumption 2.3.1. We assume that:

(i)
∑∞

n=0 αn(s, a) = ∞,
∑∞

n=0 α
2
n(s, a) <∞,

∑∞
n=0 βn(s, a) = ∞,

∑∞
n=0 β

2
n(s, a) <∞,

(ii) Each state s ∈ S is visited infinitely often with probability one.

We now state one of our main theoretical results.

17

Theorem 2.3.1 (Convergence of LBQL). Under Assumption 2.3.1, the following hold with

probability 1:

(i) Q′
n(s, a) in Algorithm 1 converges to the optimal action-value function Q∗(s, a) for

all state-action pairs (s, a).

(ii) If the penalty terms are computed exactly, i.e. as per (2.3), then the iterates Ln(s, a),

Q′
n(s, a), Un(s, a) in Algorithm 1 converge to the optimal action-value function Q∗(s, a)

for all state-action pairs (s, a).

Due to the interdependent feedback between Q, U , and L, it is not immediately obvious

that the proposed scheme does not diverge. The primary challenge in the analysis for this

theorem is to handle this unique aspect of the algorithm.

2.3.3 LBQL with Experience Replay

We now introduce a more practical version of LBQL that uses experience replay in lieu

of a black-box simulator. Here, we use a noise buffer B to record the unique noise values w

that are observed at every iteration. We further assume that the noise space W is finite, a

reasonable assumption for a finite MDP. The buffer B is used in two ways: (1) to generate

the sample path w and (2) to estimate the expectation in the penalty function. Here, we

track and update the distribution of the noise w after every iteration and directly compute

the expectation under this distribution instead of sampling a batch of size K, as we did

previously. To illustrate how this can be done, suppose W = {wa, wb, wc, wd} and that at

iteration n we observe wn+1 = wa. Let pa denote the probability of observing wa, and Nn(wa)

the number of times wa is observed in the first n iterations, then the empirical estimate of

pa is given by p̂n(wa) = Nn(wa)/n.
2 We denote by Ên[.] the expectation computed using

the empirical distribution p̂n. To differentiate the penalty and the action-values (solutions

to the inner problems) that are computed from the buffer from those defined in the idealized

version of the algorithm, we define:

ζ̃πt (st, at,w |φ) := φ(st+1, π(st+1))− Ên[φ
(
h(st, at, w), π(h(st, at, w))

)
], (2.14)

2Note that LBQL could, in principle, be adapted to the case of of continuous noise (i.e., where w is
continuous random variable) using methods like kernel density estimation (KDE).

18

and given a sample path w = (w1, w2, . . . , wτ) the inner problems analogous to (2.9) and

(2.10) are given by

Q̃U
t (st, at) = r(st, at)− ζ̃

πφ

t (st, at, wt+1 |φ) + max
a
Q̃U

t+1(st+1, a) (2.15)

Q̃L
t (st, at) = r(st, at)− ζ̃

πφ

t (st, at, wt+1 |φ) + Q̃L
t+1(st+1, πφ(st+1)) (2.16)

for t = 0, 1, . . . , τ − 1, where st+1 = h(st, at, wt+1) and Q̃
U
τ ≡ Q̃L

τ ≡ 0. The pseudo-code of

LBQL with experience replay is shown in Algorithm 4 in Appendix A.2.

2.3.4 Convergence of LBQL with Experience Replay

In this section, we prove that the version of LBQL with experience replay also converges

to the optimal action-value function. We start by stating a lemma that confirms Proposition

2.3.2 and Lemma 2.3.1 still hold when the penalty terms are computed using (2.14).

Lemma 2.3.2. If at any iteration n, the penalty terms are computed using the estimated

distribution p̂n, i.e., as per (2.14), then Proposition 2.3.2 and Lemma 2.3.1 still hold.

Theorem 2.3.2 (Convergence of LBQL with experience replay). Under Assumption 2.3.1,

the following hold with probability 1:

(i) Q′
n(s, a) in Algorithm 4 converges to the optimal action-value function Q∗(s, a) for

all state-action pairs (s, a).

(ii) The iterates Ln(s, a), Q
′
n(s, a), Un(s, a) in Algorithm 4 converge to the optimal action-

value function Q∗(s, a) for all state-action pairs (s, a).

The proof is similar to that of Theorem 2.3.1, but using the observations collected in

the buffer naturally results in an additional bias term in our analysis. The proof of Lemma

2.3.2 shows that as we learn the distribution of the noise, this bias term goes to zero and

our original analysis in the unbiased case continues to hold.

Notice that the results in part (ii) of the theorem are, in a sense, stronger than that

of Theorem 2.3.1(ii). While both achieve asymptotic convergence of the lower and upper

bounds to the optimal action-value function, Theorem 2.3.2(ii) does not require computing

the penalty with the true distribution, i.e., using (2.3). This is because in the experience

replay version, the distribution of the noise random variables is also learned.

19

2.4 Numerical Experiments

In our numerical experiments we make slight modifications to Algorithm 4, which help

to reduce its computational requirements. A detailed description of all changes is included

in Appendix A.3. We also open-source a Python package3 for LBQL that reproduces

all experiments and figures presented in this section. We compare LBQL with experience

replay with several algorithms: Q-learning (QL), double Q-learning (Double-QL), speedy

Q-learning (SQL), and bias-corrected Q-learning (BCQL) [70, 5, 45]. The environments that

we consider are summarized below. Detailed description of the environments, the parameters

used for the five algorithms, and sensitivity analysis are deferred to Appendix A.4.

Windy Gridworld (WG). This is a well-known variant of the standard gridworld problem

discussed in [63]. There is an upward wind with a random intensity. The agent moves extra

steps in the wind direction whenever it reaches an affected square. The reward is −1 until

the goal state is reached, and the reward is 0 thereafter.

Stormy Gridworld (SG). We then consider a new domain that adds the additional com-

plexity of rain and multi-directional wind to windy gridworld. The location of the rain is

random and when it occurs, puddles that provide negative rewards are created. The reward

is similar to that of WG, except that puddle states provide a reward of −10.

Repositioning in Two-Location Car-sharing (2-CS-R). Our next benchmark is a syn-

thetic problem of balancing an inventory of cars by repositioning them in a car-sharing

platform with two stations [31]. The actions are to decide on the number of cars to be

repositioned from one station to the other before random demand is realized. All rentals are

one-way (i.e., rentals from station A end up at B, and vice-versa). The goal is to maximize

revenue for a fixed rental price subject to lost sales and repositioning costs.

Pricing in Two-Location Car-sharing (2-CS). Here, we consider the benchmark prob-

lem of spatial dynamic pricing on a car-sharing platform with two stations, motivated par-

tially by [12]. The actions are to set a price at each station, which influence the station’s

(stochastic) demand for rentals. Rentals are one-way and the goal is to maximize revenue

3https://github.com/ibrahim-elshar/LBQL ICML2020.

20

https://github.com/ibrahim-elshar/LBQL_ICML2020

(a) WG (b) SG (c) 2-CS-R

(d) 2-CS (e) 4-CS

Figure 4: Illustration of LBQL Upper and Lower Bounds.

21

under lost sales cost.

Pricing in Four-Location Car-sharing (4-CS). The final benchmark that we consider

is a variant of the above pricing problem with four stations. Now, however, we consider both

one way and return trips at each station. In this case, we have two sources of randomness:

the noise due to stochastic demand and the noise due to the random distribution of fulfilled

rentals between the stations.

First, we illustrate conceptually in Figure 4 how the upper and lower bounds of LBQL can

“squeeze” the Q-learning results toward the optimal value (the plots show a particular state-

action pair (s, a) for illustrative reasons). For example, in Figure 4a, we observe that the

LBQL iterates (orange) match the Q-learning iterates (solid black) initially, but as the upper

bound (green) becomes better estimated, the LBQL iterates are pushed toward the optimal

value (dotted black). We see that even though the same hyperparameters are used between

LBQL and QL, the new approach is able to quickly converge. In the 4-CS example, Figure

4e, Q∗ is not shown since it is computationally difficult to obtain, but the gap between the

upper and lower bounds, along with Theorem 2.3.2(ii), suggest that LBQL is converging

faster than standard Q-learning.

The full results (with 95% confidence intervals) of the numerical experiments are shown

in Figures 5 and 6. LBQL drastically outperforms the other algorithms in terms of the

performance curve on the gridworld domains, but for the car-sharing problems, double Q-

learning is superior in the first 20,000 steps. Afterwards, LBQL catches up and remains the

best performing algorithm. From the relative error plots (which measure the percent error,

in l2-norm, of the approximate value function with the true optimal value function, i.e.,

∥Vn − V ∗∥2/∥V ∗∥2), we see that LBQL has the steepest initial decline. In windy gridworld

and car-sharing, LBQL outperforms other algorithms in terms of relative error, but BCQL

and SQL achieve slightly lower relative error than LBQL for stormy gridworld.

We also conducted a set of sensitivity analysis experiments, where we varied the learning

rate and exploration hyperparameters across all algorithms (results are given in Appendix

A.4.3). We examine the number of iterations and CPU time needed to reach 50%, 20%,

5%, and 1% relative error. The results show that LBQL outperforms BCQL, SQL, and

22

QL in terms of both iterations and CPU time in reaching 20%, 5%, and 1% relative error

across all 15 hyperparameter settings that we tested. For the case of 50% relative error,

BCQL outperforms LBQL in five out of 15 cases. This indicates that LBQL is significantly

more robust to hyperparameter settings than the other algorithms. Roughly speaking, this

robustness might be attributed to the “approximate planning” aspect of the algorithm, where

lower and upper bounds are computed.

2.5 Conclusion

In this chapter, we present the LBQL algorithm and prove its almost sure convergence to

the optimal action-value function. We also propose a practical extension of the algorithm that

uses an experience replay buffer. Numerical results illustrate the rapid convergence of our

algorithm empirically when compared to a number of well-known variants of Q-learning on

five test problems. LBQL is shown to have superior performance, robustness against learning

rate and exploration strategies, and an ability to mitigate maximization bias. Interesting

future work is the extension of our new framework to the model-based RL setting, where the

transition function f is learned while the policy is optimized. Other interesting future work

includes looking beyond the tabular case and adapting our algorithm to the setting of value

function approximations, such as DQN [47].

23

(a) Performance (WG) (b) Relative Error (WG)

(c) Performance (SG) (d) Relative Error (SG)

Figure 5: Results from the Gridworld Experiments.

24

(a) Performance (2-CS-R) (b) Relative Error (2-CS-R)

(c) Performance (2-CS) (d) Relative Error (2-CS)

(e) Performance (4-CS)

Figure 6: Results from the CS Experiments.

25

3.0 Weakly Coupled Deep Q-Networks

Sequential decision-making is a core topic in machine learning, which involves learning

how to act in an uncertain environment so as to maximize a numerical reward signal. Re-

inforcement learning (RL) formalizes this problem by considering an artificial agent that

interacts with an environment, gathering experience in form of next states and reward sig-

nals, and aims to learn a mapping from states to actions that maximizes the discounted sum

of rewards [9, 63]. Notably, the agent’s actions have both immediate and future consequences

on the reward signals.

Due to its conceptual simplicity, ease of implementation and convergence guarantees, Q-

learning by Watkins [74], is one of the most widely-used RL algorithms [33, 68, 9]. Inspired by

the success of deep learning in computer vision and natural language processing [44, 41], the

deep Q-networks (DQN) algorithm of Mnih et al. [47] extends the fundamental ideas behind

Q-learning to the case where Q-functions are approximated using deep neural networks.

The effectiveness of DQN was famously demonstrated on a set of Atari games, and achieved

“human-level” performance. Several extensions of DQN has been proposed in the literature

including Double DQN [71] and Dueling DQN [72].

One drawback of both Q-learning and DQN is that scaling to large action spaces can

be challenging and often require complex modifications [24, 69], hindering the potential of

RL for practical implementations on real-world problems. More generally, Q-learning and

DQN typically require a large number of samples, which can be costly to obtain in real

environments.

In this chapter, we focus our attention on a class of stochastic sequential decision making

problems called weakly coupled MDPs and show how, for these problems, one can leverage

their inherent structure to alleviate the challenges mentioned above. Weakly coupled MDPs

refers to a broad class of stochastic sequential decision-making problems that consist of mul-

tiple subproblems that are independent of each other except for a coupling constraint on

the action space [29]. This type of problem structure is fairly general, with many practical

examples exhibiting this structure, including supply chain management, multiclass queueing

26

Figure 7: Our WCMDP RL Approach.

networks, auctions, stochastic job scheduling, disaster relief scheduling and a wide variety

of bandit-type problems [29, 1]. Such MDPs are computationally challenging to solve us-

ing naive techniques, given that their state and action spaces grow exponentially with the

number of subproblems [48].

Main contributions. We make the following methodological and empirical contribu-

tions in this chapter.

1. We propose a novel RL algorithm called weakly coupled deep Q-networks (WCDQN),

that exploits weakly coupled structure by employing multiple subproblem λ-agents to

improve the performance of DQN, Figure 7. Our algorithm makes better use of the

collected experience by dynamically estimating upper (and lower) bounds via Lagrangian

relaxation, and integrates them into a constrained optimization approach when fitting

the Q-networks. We also propose Lagrangian DQN which is a lighter version of our

algorithm that does not require computing bounds and still performs well in practice.

Neither approach uses any knowledge of the environment dynamics nor do they require

restrictive assumptions on the weakly coupled problem such as indexibility [75, 15].

2. We also propose and analyze a tabular version of our algorithm called weakly coupled

Q-learning (WCQL), which serves to conceptually motivate WCDQN. We show that

WCQL converges almost surely to the optimal action-value function.

27

3. We show numerical experiments on a suite of realistic problems, including electric vehicle

charging station operation, multi-product inventory control with a production constraint,

and online stochastic ad matching. The results show that our proposed algorithms out-

perform baselines by a relatively large margin.

In the next section, we review some of the related techniques in the literature and compare

it to our work.

3.1 Related Literature

There are a number of papers in the literature that attempt to enhance the learning,

stability, and convergence of the DQN algorithm as it was first proposed by Mnih et al. [47].

For example, to overcome the estimation problem and improve stability, Van Hasselt et al.

[71] proposes double DQN, which adapts the tabular approach of double Q-learning from

Van Hasselt [70] to the deep RL setting. The main idea is to use a different network for the

action selection and evaluation steps. Schaul et al. [57] modifies the experience replay buffer

sampling to prioritize certain tuples, and Wang et al. [72] adds a “dueling architecture”

to double DQN that combines two components, an estimator for the state value function

and an estimator for the state-dependent action advantage function. Another example is

bootstrapped DQN proposed by Osband et al. [49], which extends standard DQN to learn a

distribution over Q-values, allowing the agent to perform temporally-extended exploration

by executing a policy based on a sample of the Q-function. The amortized Q-learning algo-

rithm of Van de Wiele et al. [69] integrates a learned state-dependent proposal distribution

over actions into DQN to avoid the step of maximizing over a large action space.

Our approach, WCDQN (and WCQL), differs from the above works in the sense that

while these papers focus on improvements made to certain components of the DQN algo-

rithm (e.g., network architecture, experience replay buffer, exploration strategy), we focus

on exploiting the structure of a class of important problems.

More closely related to our work is He et al. [30], which uses a similar constrained opti-

mization approach to enforce upper and lower bounds on the optimal action value function

28

in the DQN algorithm. Their bounds, however, are derived by exploiting multistep returns

in contrast to the dynamically-computed Lagrangian relaxation bounds that we propose in

this work. He et al. [30] also does not provide any convergence guarantees for their approach.

In addition, El Shar and Jiang [25] proposed a convergent variant of Q-learning that lever-

ages upper and lower bounds derived using the information relaxation technique of Brown et

al. [14] to improve performance of tabular Q-learning. Although our work shares the high-

level idea of bounding Q-learning iterates, El Shar and Jiang [25] focused on problems with

partially known transition models (which are necessary for information relaxation) and the

approach did not readily extend to the function approximation setting (i.e., DQN). Besides

focusing on a different set of problems (weakly coupled MDPs), our proposed approach is

model-free and naturally integrates with DQN.

There are two major ways to decompose weakly coupled DPs: mathematical program-

ming and Lagrangian relaxation. The mathematical programming approach formulates the

Bellman equation as a linear program where the value function is approximated as the sum

of the subproblem value functions. This approach is due to Schweitzer and Seidmann [58]

and was extended to the function approximation case using basis functions by De Farias

and Van Roy [23]. Lagrangian relaxation, on the other hand, involves relaxing the link-

ing constraints on the action space by penalizing the objective. This approach was used

to generate heuristic index policies for restless bandits by Whittle [75] and further studied

by Hawkins [29] and Adelman and Mersereau [1] for weakly coupled DPs. The latter show

various results that compare these two relaxations to each other. Lagrangian relaxation has

been used by Bertsimas and Mersereau [10] in interactive marketing problems and by Talluri

and Van Ryzin [65] and Topaloglu [66] for revenue management. Recent work that involves

Lagrangian relaxation includes the work of Nadarajah and Cire [48] and Brown and Zhang

[16]. Nadarajah and Cire [48] present a class of network relaxations that embed an exact

network encoding of the linking constraints into a linear programming flow model. They

develop a procedure to obtain self-adapting relaxations that automatically adjusts to the

structure of the linking constraints. Brown and Zhang [16] extends Adelman and Mersereau

[1] to provide theoretical justification on the closeness of the bounds obtained by the math-

ematical programming approach and Lagrangian relaxation and provide conditions under

29

which the gap between the two relaxations is zero.

Finally, Killian et al. [36] studies restless, multi-armed bandits (RMAB) and propose

two Q-learning approaches: the first is based on the Whittle index policy which requires

indexibility and restrictive assumptions on the bandit’s actions, while the second seeks an

upper bound on the value function by minimizing the Lagrangian value function. Follow-up

work in Killian et al. [37] focuses on a robust variant of RMAB and a double oracle algorithm

that utilizes policy optimization to minimize minimax regret. Our work differs from these

papers in several essential ways: first, we study the more general case of weakly coupled

MDPs; second, we do not require any restrictive assumptions on our model; and lastly, our

methods target the optimal value and policy (with the help of Lagrangian relaxation) rather

than setting the Lagrangian value function as the end goal.

3.2 Preliminaries

3.2.1 Weakly Coupled MDPs

We study an infinite horizon weakly coupled DP with finite state space S := X ×W and

finite action space A, where X is the endogenous part and W is the exogenous part of the

full state space. We use the general setup of weakly coupled MDPs from [16]. Suppose that

the problem can be decomposed into N subproblems. The state space of subproblem i is

denoted by Si := Xi ×W and the action space is denoted by Ai, such that

X = ⊗N
i=1Xi and A = ⊗N

i=1Ai.

In each period, the decision maker observes an exogenously and independently evolving state

w ∈ W , along with the endogenous states x = (x1, x2, . . . , xN) of the N subproblems. Note

that w is shared by all of the subproblems, and this is reflected in the notation we use

throughout the paper, where s = (x, w) ∈ S represents the full state and si = (xi, w) is the

state of subproblem i.

30

The linking constraints, which operate across the subproblems, take the form
∑N

i=1 di(si, ai) ≤

b(w), where b(w) ∈ Rd and di(si, ai) ∈ Rd is associated with subproblem i. We also denote

by d(s, a) = {di(si, ai)}Ni=1. The set of feasible actions for state s is given by

A(s) =

{
a ∈ A :

N∑
i=1

di(si, ai) ≤ b(w)

}
.

After observing state s = (x, w), the decision maker selects a feasible action a ∈ A(s).

The transition probabilities for the endogenous component is denoted p(x′ |x, a) and

we assume that transitions are conditionally independent across subproblems: p(x′ |x, a) =

ΠN
i=1 pi(x

′
i |xi, ai), where we denote the transition probabilities for subproblem i by pi(x

′
i |xi, ai).

The exogenous state transitions according to q(w′ |w). Finally, let ri(si, ai) be the reward of

subproblem i and let r(s, a) = {ri(si, ai)}Ni=1. The reward of the overall system is additive:

r(s, a) =
∑N

i=1 ri(si, ai).

Given a discount factor γ ∈ [0, 1) and a feasible policy π : S → A that maps each

state s to a feasible action A(s), the value (cumulative discounted reward) of following π

when starting in state s and taking a first action a is given by the action-value function

Qπ(s, a) = E
[∑∞

t=0 γ
tr(st, at) |π, s0 = s, a0 = a

]
. Our goal is to find an optimal policy

π∗, i.e., one that maximizes V π(s) := Qπ(s, π(s)). We let Q∗(s, a) = maxπQ
π(s, a) and

V ∗(s) = maxπ V
π(s) be the optimal action-value and value functions, respectively. It is well-

known that the optimal policy selects actions in accordance to π∗(s) = argmaxaQ
∗(s, a)

and that the Bellman recursion holds:

Q∗(s, a) = r(s, a) + γE
[
maxa′∈A(s′)Q

∗(s′, a′)
]
, (3.1)

where s′ = (x′, w′) is specified by p(· |x, a) and q(· |w).

31

3.2.2 Q-learning and DQN

The Q-learning algorithm of Watkins [74] is a tabular approach that attempts to learn the

optimal action-value function Q∗ using stochastic approximation on (3.1). Using a learning

rate αn, the update of the approximation Qn from iteration n to n+ 1 is:

Qn+1(sn, an) = Qn(sn, an) + αn(s, a)
[
yn −Qn(sn, an)

]
,

where yn = rn+γmaxa′ Qn(sn+1, a
′) is the target value, computed using the observed reward

rn at (sn, an), the transition to sn+1, and the current Qn.

The DQN approach of Mnih et al. [47] approximates Q∗ via a neural network Q(s, a; θ)

with network weights θ. The loss function used to learn θ is directly based on minimizing

the discrepancy between the two sides of (3.1):

l(θ) = Es,a∼ρ

[(
y −Q(s, a; θ)

)2]
,

where y = r(s, a) + γE
[
maxa′ Q(s′, a′; θ−)

]
, θ− are frozen network weights from a previous

iteration, and ρ is a behavioral distribution [47]. In practice, we sample experience tuples

(sn, an, rn, sn+1) from a replay buffer and perform a stochastic gradient update:

θn+1 = θn + αn

[
yn −Q(sn, an; θ)

]
∇θQ(sn, an; θ),

with yn = rn + γmaxa′ Q(sn+1, a
′; θ−). Note the resemblance of this update to that of

Q-learning.

32

3.2.3 Lagrangian Relaxation

The Lagrangian relaxation approach decomposes weakly coupled DPs by relaxing the

linking constraints to obtain separate, easier-to-solve subproblems [1]. The main idea is to

dualize the linking constraints
∑N

i=1 di(si, ai) ≤ b(w) using a penalty vector λ ∈ Rd
+ and

optimize an augmented objective consisting of the original objective plus additional terms

that penalize constraint violations. The resulting Bellman equation of the relaxed DP in

(3.1) is given by:

Qλ(s, a) = r(s, a) + λT
[
b(w)−

N∑
i=1

di(si, ai)
]
+ γE

[
max
a′∈A

Qλ(s′, a′)
]
. (3.2)

Next, we define the following recursion for each subproblem i, when it is considered inde-

pendently:

Qλ
i (si, ai) = ri(si, ai)− λTdi(si, ai) + γE

[
max
a′i∈Ai

Qλ
i (s

′
i, a

′
i)
]
. (3.3)

It is well-known from classical results that any penalty vector λ ≥ 0 produces an MDP whose

optimal value function is an upper bound on the V ∗(s) [29, 1]. The upcoming proposition is

a small extension of these results to the case of action-value functions, which is necessarily

for Q-learning.

Proposition 3.2.1. For any λ ≥ 0 and s ∈ S, it holds that:

(a) Q∗(s, a) ≤ Qλ(s, a) for any a ∈ A(s);

(b) The Lagrangian action-value function of (3.2) satisfies

Qλ(s, a) = λTB(w) +
N∑
i=1

Qλ
i (si, ai) (3.4)

where Qλ
i (si, ai) is as defined in (3.3) and and B(w) satisfies the recursion

B(w) = b(w) + γE
[
B(w′)

]
, (3.5)

where w′ follows q(w′ |w).

Proof. See Appendix B.1.

33

Part (a) is often referred to as weak duality and part (b) shows how the Lagrangian

relaxation can be solved by decomposing it across subproblems, dramatically reducing the

computational burden. The tightest upper bound1 is the solution of the Lagrangian dual

problem, Qλ∗
(s, a) = minλQ

λ(s, a), where λ∗ is minimizer.

Note that solving the Lagrangian approximation still requires solving a dynamic program,

so knowledge of the underlying model (i.e., environment dynamics and reward functions) is

required. This is restrictive for applicability in many real-world problems. There exist

approximate dynamic programming approaches for solving general weakly coupled MDPs,

such as the ones discussed in [1], [48], and [16], but none of them naturally accomodate the

model-free setting.

3.3 Weakly Coupled Q-learning

We first introduce the tabular version of our RL algorithm, called weakly coupled Q-

learning (WCQL) and show that our algorithm converges to the optimal action value func-

tion. The algorithm is completely model-free and does not require any knowledge of the

problem dynamics. In this section, we go introduce the main steps of WCQL, with an illus-

tration summarizing the idea in Figure 8. The full pseudo-code of the WCQL algorithm is

available in Appendix B.2.

To approximate the Lagrangian dual problem, we replace the minimization over all λ ≥ 0

by optimization over a finite set Λ, which we consider as an input to our algorithm. Consider

an experience tuple τ = (s, a,d, r,b, s′) and suppose we are at iteration n + 1. Also, we

let τi = (si, ai,di, ri, s
′
i) be the experience relevant to subproblem i; see (3.3). Note that b

is excluded from τi because it does not enter subproblem Bellman recursion. The WCQL

algorithm can be decomposed into three main steps.

Subproblems and λ-agents. First, for each subproblem i ∈ {1, 2, . . . , N} and every

λ ∈ Λ, we attempt to learn an approximation of Qλ
i (si, ai) from (3.3), which are the Q-values

1This optimal Lagrangian action-value function can be used to generate a heuristic policy called the La-
grangian policy that performs well in practice, but is not guaranteed to be optimal unless further assumptions
are made [75].

34

of the unconstrained subproblem associated with λ. We do this by running an instance of

Q-learning with learning rate βn. Letting Q
λ
i,n be the current iterate, the update is given by:

Qλ
i,n+1(si, ai) = Qλ

i,n(si, ai) + βn(si, ai)
[
yλi,n −Qλ

i,n(si, ai)
]
,

where the target value yλi,n is given by

yλi,n = ri(si, ai)− λTdi(si, ai) + γmaxa′i Q
λ
i,n(s

′
i, a

′
i).

Note that although we are running several learning “instances”, they all make use of a

common experience tuple τ . Each instance operates on a subproblem that is dramatically

simpler than the full MDP (since subproblem i has state and action spaces Si and Ai). We

can think of each subproblem i and each penalty λ ∈ Λ as being associated an agent, which

we refer to generically as a λ-agent, that tries to learn the value of Qλ
i .

Learning the Lagrangian bounds. Next, we combine the approximations of Qλ
i,n+1 to

form an estimate of the Lagrangian action-value function Qλ, as defined in (3.4). However,

note that we need to learn an estimate of the resource value B(w) for w ∈ W . This can be

done using a stochastic approximation step with a learning rate ηn, as follows:

Bn+1(w) = Bn(w) + ηn(w)
[
b(w) + γBn(w

′)−Bn(w)
]
, (3.6)

where we recall that w and w′ come from s and s′. Now, using Proposition 3.2.1 (b), we

approximate the value of Lagrangian action-value function Qλ(s, a) for each λ ∈ Λ,

Qλ
n+1(s, a) = λTBn+1(w) +

N∑
i=1

Qλ
i,n+1(si, ai). (3.7)

Subsequently, we obtain an upper bound on Q∗ via

Qλ∗

n+1(s, a) = min
λ∈Λ

Qλ
n+1(s, a). (3.8)

There is empirical evidence that the Lagrangian policy πλ∗
, i.e., policy greedy with respect

to the Lagrangian action-value function Qλ∗
, can attain good performance [16, 67]. There-

fore, since we have access to the approximation Qλ∗

n+1, we can approximately evaluate the

35

Lagrangian policy and use it as an estimate of lower bound on Q∗. To do so, we use the

following update:

Ln+1(s, a) = Ln(s, a) + ζn(s, a)
[
r(s, a) + γLn(s

′, aλ∗

n+1)− Ln(s, a)
]
,

where ζn is a learning rate function and aλ∗

n+1 = argmaxaQ
λ∗

n+1(s
′, a).

Q-learning guided by Lagrangian bounds. Finally, we have Q-learning on the full

problem. Denote the estimate of Q∗ at iteration n by Q′
n. We first make a standard update

to an intermediate value Qn+1 using learning rate αn:

Qn+1(s, a) = Q′
n(s, a) + αn(s, a)

[
yn −Q′

n(s, a)
]
. (3.9)

where yn = r(s, a) + γmaxa′ Q′
n(s

′, a′). To incorporate the bounds that we previously esti-

mated, we then project Qn+1(s, a) to satisfy the estimated upper and lower bounds:

Q′
n+1(s, a) = Π[Ln+1, Qλ∗

n+1]
[Qn+1(s, a)], (3.10)

where Π[a,b][x] = max{min{x, b}, a}. The agent now takes an action in the environment

using a behavioral policy, such as the ϵ-greedy policy on Q′
n+1(s, a).

The motivation behind the projection is that since the subproblems are much smaller in

terms of state and action spaces than the main problem, the λ-agents for the subproblems

are expected to converge faster than the full problem Q-learning agent. As a result, our lower

bound and upper estimates will get better, improving thus the action-value estimate of the

main Q-learning agent through the projection step. We note that, especially in settings where

the limiting factor is the ability to collect enough experience, these bounds come nearly for

free in that they only require computing a few additional quantities and importantly, they

do not require additional experience. Figure 8 provides a visual summary of WCQL.

36

Lagrangian Relaxation

(s, a,d, r,b, s′)

Qn+1

(s1, a1,d1, r1, s
′
1)

(s2, a2,d2, r2, s
′
2)

...

(sN , aN ,dN , rN , s
′
N)

Qλ
1,n+1

Qλ
2,n+1
...

Qλ
N,n+1

Qλ∗
n+1

Ln+1Π[Ln+1,Qλ∗
n+1]

[Qn+1]

Q′
n+1

Figure 8: Illustration of WCQL Algorithm.

3.3.1 Convergence Analysis

In this section, we show that WCQL converges to Q∗ with probability one (w.p.1). First,

we state a standard assumption on learning rates and state visitation.

Assumption 3.3.1. We assume the following:

(i) For all (s, a) ∈ S, the sequence {αn(s, a)}n satisfies

∞∑
n=0

αn(s, a) = ∞,
∞∑
n=0

α2
n(s, a) <∞.

(ii) Analogous statements to (i) hold for {βn(si, ai)}n, {ηn(w)}n, and {ζn(s, a)}n.

(iii) The behavioral policy is such that all state-action pairs (s, a) are visited infinitely

often w.p.1.

We now state our main theoretical results.

Theorem 3.3.1. Under Assumption 3.3.1, the following hold w.p.1.

(i) For each subproblem i, λ ∈ Λ, and (s, a) ∈ S ×A:

lim
n→∞

Qλ
i,n(si, ai) = Qλ

i (si, ai),

lim
n→∞

Qλ
n(s, a) ≥ Q∗(s, a).

37

(ii) For all state-action pairs (s, a),

lim
n→∞

Q′
n(s, a) = Q∗(s, a).

Proof. The proof of Theorem 3.3.1 is given in Appendix B.1.

Theorem 3.3.1 ensures that the λ-agents for the subproblems converge to the optimal

value for any λ ∈ Λ. Furthermore, it shows that asymptotically, the Lagrangian action-value

function given by (3.7) will be an upper bound on the optimal action-value function Q∗ of

the full problem and that our algorithm will converge to Q∗.

3.4 Weakly Coupled DQN

In this section, we propose our main algorithm weakly coupled DQN (WCDQN), which

integrates the main idea of WCQL into a function approximation setting. WCDQN guides

DQN using Lagrangian relaxation bounds, integrated through a constrained optimization

approach.

Networks. Analogous to the WCQL, WCDQN has a main network Q′(s, a; θ) that

learns the action value of the full problem. In addition to the main network, WCDQN uses

a Qλ
i (si, ai; θU) network to learn the subproblem action-value functions Qλ

i . The inputs to

this network are (i,λ, si, ai), meaning that we can use a single network to learn the action-

value function for all subproblems and λ ∈ Λ simultaneously. Lastly, WCDQN tracks the

parameters of a network L(s, a; θL), which aims to learn the value of the Lagrangian policy.

The Lagrangian state-action value function is then given by

Qλ(s, a; θU) = λTB(w) +
N∑
i=1

Qλ
i (si, ai; θU). (3.11)

Loss functions. Before diving into the training process, we describe the loss functions

used to train each network, as they are instructive. Consider a behavioral distribution ρ for

state-action pairs and a distribution µ over Λ.

lU(θU) = Es,a∼ρ,λ∼µ

[∑N
i=1

(
yλi −Qλ

i (si, ai; θU)
)2]

, (3.12)

38

where the target value is

yλi = ri(si,ai)− λTdi(si, ai) + γE
[
maxa′i Q

λ
i (s

′
i, a

′
i; θ

−
U)

]
, (3.13)

and θ−U are weights frozen from a previous iteration, as is done in DQN [47]. Denote by

(.)+ = max(., 0), the second loss function is for θL, where we use a soft constraint to encourage

L(s, a; θL) to stay below the upper bound.

lL(θL) = Es,a∼ρ,λ∼µ

[(
yL − L(s, a; θL)

)2
+ κU

(
L(s, a; θL)− yU

)2
+

]
(3.14)

where κU is a penalty coefficient for the soft constraint and

yL = r(s, a) + γE
[
L(s′, aλ∗

; θ−L)
]
, (3.15)

yU = r(s, a) + γE
[
maxa′ minλ∈ΛQ

λ(s′, a′; θ−U)
]
, (3.16)

with aλ∗
= argmaxa minλ∈ΛQ

λ
n(sj+1, a; θU). For the main network, we propose a loss func-

tion that soft penalizes both upper and lower bounds:

l(θ) = Es,a∼ρ,λ∼µ

[(
y −Q′(s, a; θ)

)2
+ κL

(
yL −Q′(s, a; θ)

)2
+

+ κU
(
Q′(s, a; θ)− yU

)2
+

]
,

(3.17)

where κL is a penalty coefficient similar to κU and

y = r(s, a) + γE
[
maxaQ

′(s′, a; θ−)
]
. (3.18)

The penalties softly ensures that learned network satisfies the bounds obtained from the

Lagrangian relaxation.

Training process. The training process resembles DQN, with a few modifications. At

any iteration, we first take an action using an ϵ-greedy policy using the main network, store

the obtained transition experience τ = (s, a,d, r,b, s′) in the buffer, and update the resource

value B(w) following (3.6). Each network is then updated by taking a stochastic gradient

descent step on its associated loss function, where the expectations are approximated by

sampling minibatches of experience tuples τ and λ. Note that, since the λs are decoupled

from the transitions, we can increase the sample efficiency by using a similar scheme to

39

Hindsight Experience Replay [4]. Note that the penalty coefficients κL and κU can be held

constant to a positive value or annealed using a schedule throughout the training. The full

details are shown in Algorithm 2.

3.4.1 Lagrangian DQN

We also propose a variant of WCDQN, termed Lagrangian DQN, that does not require

the bounding, making it easier to implement and achieves reasonable performance in practice.

The details of Lagrangian DQN are shown in Algorithm 7 in Appendix B.3. This algorithm

has only one network, the subproblem Qλ
i -network. Here, however, the first step is to

compute the Lagrangian Q-value using (3.11), and compute Qλ∗
following (3.8).

3.5 Numerical Experiments

In this section, we evaluate our algorithms on three different weakly coupled MDPs.

First, we evaluate WCQL on an electric vehicle (EV) deadline scheduling problem with mul-

tiple charging spots and compare its performance with several other tabular algorithms: Q-

learning (QL), Double Q-learning (Double-QL), speedy Q-learning (SQL), and bias-corrected

Q-learning (BCQL) [70, 5, 45]. Next, we evaluate Lagrangian-DQN and WCDQN on two

problems, multi-product inventory control and online stochastic ad matching, and compare

against the standard DQN and Double-DQN algorithms. We defer the details of the envi-

ronments and the algorithmic parameters to Appendix B.4.

EV charging deadline scheduling [76]. In this problem, a decision maker (DM) is

responsible for charging electric vehicles (EV) at a charging service center (SC) that consists

of N = 3 charging spots. An EV enters the system when a charging spot is available and

announces the amount of electricity it needs to be charged, denoted Bt, along with the time

that it will leave the system, denoted Dt. The DM also faces exogenous, random Markovian

processing costs ct, that affect the SC’s ability to process simultaneous charging jobs. At each

period, the DM needs to choose which EVs to charge in accordance with the period’s capacity

40

Algorithm 2: Weakly Coupled DQN

Input: Initialized replay buffer D, Lagrangian multipliers set Λ, Q-network weights θ &

θ− = θ, subproblems Qλ
i -network θU & θ−U = θU , Lagrangian policy L-network weights θL

& θ−L = θL, and κL & κU

Output: Approximation {Qn}

for n = 0, 1, 2, . . . do

Choose an action an ∼ ϵ-greedy(Qn)), update Bn+1(wn) and store transition τ n in D

Sample a transitions minibatch τ from D along with random λ

Update subproblems network:

for i= 1, . . . , N do

Compute targets yλi according (3.13)

Perform a gradient descent step on (3.12)

end for

Find the best upper bound:

For λ ∈ Λ and a ∈ A(sn) find Q
λ
n(s, a) per (3.11)

Set Qλ∗

n (s, a) = minλ∈ΛQ
λ
n(sn, a)

Compute target yU as per (3.16)

Update lower bound network:

Set aλ∗
= argmaxaQ

λ∗

n (sj+1, a)

Compute target yL as per (3.15)

Perform a gradient descent step on (3.14)

Update main network:

Compute target y as per (3.18)

Perform a gradient step on (3.17)

end for

41

constraint. For each unit of power provided to an EV, the service center receives a reward

1− ct. However, if the EV leaves the system with an unfulfilled charge of I units, the service

center will incur a penalty of F (I). The goal is to maximize the revenue under penalty costs.

Multi-product inventory control with an exogenous production rate [32]. Con-

sider the problem of resource allocation for a facility that manufactures K = 5 products.

Each product has an independent exogenous demand given by Dk, k = 1, . . . , K. To meet

these demands, the products are made to stock. Limited storage Nk is available for each

product, and holding a unit of inventory per period incurs a cost hk. Unmet demand are

backordered at a cost bk if the number of backorders is less than the maximum number of al-

lowable backordersMk. Otherwise, it is lost with a penalty cost lk. The DM needs to allocate

a resource level ak ∈ {0, 1, . . . , U} for product k from a finite resource quantity in response to

changes in the stock of level of each product denoted by xk ∈ Xk = {−Mk,−Mk+1, . . . , Nk}.

A negative stock level corresponds to the number of backorders. Allocating a resource level

ak yields a production rate given by the function ρk(ak, pk) where pk is an exogenous random

Markovian noise that affects the production rate.

The goal is to minimize the total cost, which consists of holding, back-ordering, and lost

sales costs.

Online stochastic ad matching [27]. We study the problem of matching N = 6

advertisers (subproblems) to arriving impressions. In each period, an impression of type et

arrives according to a Markov chain. An action at,i ∈ {0, 1} assigns impression et to advertiser

i, with a constraint that exactly one advertiser is selected:
∑N

i=1 at,i = 1. Advertiser states

represent the number of remaining ads to display and evolves according to st+1,i = st,i− at,i.

The objective is to maximize the discounted sum of expected rewards for all advertisers.

The results of our numerical experiments are shown in Figure 9. We see that in both the

tabular and the function approximation cases, our algorithms outperformed the baselines,

with WCQL and WCDQN achieving the best average episode total rewards amongst all

problems. In Figure 9a, for a given state-action pair in the EV charging problem, we plot

the evolution of the upper bound (blue) and lower bounds (red), WCQL Q-value (orange line

with ‘x’ marks indicating the points projected by the bounds), standard Q-learning (green)

and the optimal action-value (purple). Notice at the last marker, the bound moved the Q-

42

(a) (b) (c)

(d) (e)

Figure 9: Numerical results: plots showing the bounds behaviour (a), the total rewards and

95% confidence bounds of WCQL and other tabular algorithms (b), and their relative error

(c) on the EV charging problem. Plots (d) and (e) show the total rewards for WCDQN and

other algorithms on the multi-product inventory control and online stochastic ad matching

problems, respectively.

43

value in orange to a “good” value, relatively nearby the optimal value. WCQL then Q-value

evolves on its own and eventually converges. On the other hand, standard QL (green), which

follows the same behavior policy as WCQL, is still far from optimal. We also compute the

relative error (measures the percent error, in l2-norm, of the approximate value function

with respect to the true optimal value function, i.e., ∥Vn−V ∗∥2/∥V ∗∥2), see Figure 9c. This

figure shows that WCQL has the steepest decline compared to the other algorithms. BCQL

and SQL come second and third respectively after WCQL. Note that in Lagrangian QL the

upper-bound value is estimated from the Q-values of the subproblems so there is no Q-value

for this algorithm to compare to V ∗.

From Figure 9b we see that the difference between the performance of Lagrangian QL

and WCQL was similar by the end of training. This is not the case however in the general

case, where we see a stark difference in the performance of WCDQN and Lagrangian DQN

starting from 3000 episodes until the end of training. Moreover, we see that WCQL has

a much lower variance compared to Lagrangian QL, which exhibits a high variance in the

first 4000 steps of training. We attribute this to the guidance provided by the Lagrangian

bounds.

Figure 9d shows a case where DQN and Double DQN initially outperform Lagrangian

DQN and WCDQN, but then fall behind by a large margin. Also, we remark that compared

to our algorithms, both DQN and Double DQN have a very noisy performance in the multi-

product inventory problem. In the online stochastic ad matching problem, WCDQN have

outperform the other algorithms while Lagrangian DQN had a comparable performance to

DQN and Double-DQN algorithms.

3.6 Limitations and Future Work

A limitation of our work, which can be improved upon, is the requirement to input a finite

set of Lagrangian multipliers Λ. Note that although we get an upper bound for any value of

λ ∈ Λ, we could potentially get tighter bounds by optimizing over λ directly, for example

via subgradient descent [29]. While we believe this can bring an important improvement, we

44

leave it for future work.

3.7 Conclusion

In this study, we propose WCQL algorithm for learning in weakly coupled problems and

we show that our algorithm converges to the optimal action-value function. We then propose

WCDQN which extends the idea behind the WCQL algorithm to the function approximation

case. Our algorithms are model-free and learn upper and lower bounds using a combination

of a Lagrangian relaxations and Q-learning. These bounds are used in a constrained opti-

mization approach to improve performance and make learning more efficient. Our approaches

significantly outperformed competing approaches on our benchmark environments.

45

4.0 Spatial Dynamic Pricing for Shared-Resource Systems

The recent years have seen an increase in the popularity of shared transport platforms.

This led to an increase in the study of complex control systems where resources circulate

inside a network. In this work, we study dynamic pricing for a system where a fixed number

of resources supply incoming price-sensitive demand at different locations in a network.

The crux of such systems is that serving a demand unit at one location causes a supply

unit to relocate from the origin to the destination. Dynamic pricing offers a natural approach

to modulate demand and help managing the the distribution of resources in the network.

At the beginning of each period, the service provider selects a price as well as a supply level

for each origin-destination pair in the network. Demand for each origin-destination pair is

fulfilled in accordance to the selected supply levels. Otherwise, unfulfilled demands are lost.

Both price and supply level decisions, may depend on the overall distribution of resources in

the system. Supplied requests reach their destinations by the end of the time period. Note

that demands can be non-stationary and depends on the geographical location.

The research question we are trying to answer is how to design a dynamic pricing and

allocation strategy that maximizes the expected revenue of the system. This problem is

challenging due to demand variability over space and time and in large networks is very

difficult to solve because the pricing policy depends on the number of resources in each

location.

To address this research question, we model the system as a network and formulate the

problem as a stochastic dynamic program (SDP). The demand modeling approach we use

allows for bulk demand arrivals with different origins and destinations. Each origin and

destination pair represents a different demand class. The limited number of resources in

the system necessitates using inventory rationing decisions as a control lever in addition

to pricing in order to allocate demand classes to resources. This work contributes to the

growing body of literature on sharing economy with reusable resources by incorporating

inventory rationing decisions in addition to dynamic pricing. The pricing and rationing

decisions depend not only on the origin but also on the destination of the trips, permitting

46

price adjustment flexibility and capturing the spatial granularity of the network.

Theoretically, we analyze the structure of the optimal revenue function in a N -location

network and show that it is concave in the number of resources available at each location. In

addition, we use the concept of L♮-concavity to perform structural analysis for the two-region

system, which allows for both continuous and discrete decision variables and thus provides

a unified approach for continuous and discrete demand. We prove that the optimal policy

for pricing and rationing is monotone in the available resources with bounded sensitivity.

For a large number of locations, the stochastic dynamic program is intractable due the

“curse of dimensionality” associated with the problem. To overcome this issue, we propose a

leave-one-out aggregation (LOOA) algorithm that makes use of the structural properties of

the optimal policy for the two-region problem. Finally, we conduct numerical experiments

to evaluate the performance of our proposed policy. We also compare the performance of

our pricing policy with myopic and static based pricing policies.

4.1 Literature Review

Academic research on sharing economy has increased in the recent years due to the

growing popularity of shared vehicle systems such as ride-sharing platforms, car-sharing,

and bike-sharing platforms. The majority of the literature study repositioning, matching

and pricing as control levers to manage the resources that flow over a network of locations.

A body of literature use closed-queueing networks and model the steady state equilibrium

of the system dynamics to study the impact of state-independent pricing on the flow of

resources in ride sharing systems while optimizing for various objectives such as revenue,

throughput, or welfare [73, 7, 50, 11, 12]. Some of these papers use fluid relaxations to get

upper bounds on the optimal pricing policy performance which are then used to propose

static pricing policies [73, 7].

Papers that study state-dependent pricing in a network include [6], [35], and [18]. Balseiro

et al. [6] study a constrained dynamic programming model for dynamic pricing in a star

network (also known as hub-and-spoke network) with a fixed number of resources and infinite

47

horizon. The authors use a Lagrangian relaxation approach and show that their proposed

heuristic is asymptotically optimal in terms of the long-run average cost when the number

of demands nodes in the network is large. Travel time between nodes is ignored in their

theoretical results but later develop a tractable approach to incorporate relocation times

into their policies.

Kanoria and Qian [35] consider joint state-dependent control for ride-hailing platform

which besides pricing includes admission and matching decisions. Their algorithm does

not require knowledge of the demand arrival rates information with transient performance

guarantees and asymptotically optimal as well in the large supply regime. Instantaneous

relocation times is assumed.

Chen et al. [18] focus on real-time spatial-intertemporal dynamic pricing for ride-hailing

platforms with stochastic non-stationary demand over a finite horizon assuming resources re-

location travel times are deterministic. The authors propose static and dynamic (node-based

and arc-based) pricing heuristics which are all asymptotically optimal but with different op-

timality gaps in the setting where the demand and supply is large.

All of these papers make the assumption that the time periods are short enough such that

for each period there is at most one potential customer, which contradicts the instantaneous

arrival assumption. While we assume that trips arrive to their destinations at the end of

the period, our demand model does not require short time periods. On the contrary, our

bulk demand model allows us to assume that the time periods are large enough such that all

relocations are made before the end of the period. The modeling of the events is also different.

While the majority of these works assume that customers arrive according to a specific arrival

process, e.g., Poisson process, with customers having a private value according to which the

demand is either fulfilled or not, we use a more direct approach that links the demand to the

price and does not require us to explicitly make assumptions on the arrival process. We also

introduce inventory rationing decisions in our model in addition to pricing. Our theoretical

analysis is different in that it tackles the properties of the main stochastic dynamic program

formulation of the problem rather than alternative relaxations. Our proposed algorithms are

novel and makes use of the SDP properties.

48

4.2 Preliminaries

Let R denote the real numbers and R+ the nonnegative reals, Z+ the set of nonnegative

integers and Z++ the set of strictly positive integers. We also define R = R ∩ {∞}. For

any x, y ∈ Rn, let x ∧ y = min{x, y}, x ∨ y = max{x, y} and x+ = max{x, 0}, where all

operations are taken component-wise. In addition, for any n ∈ Z++, we let [n] = {1, . . . , n}.

Finally, denote by e ∈ Rn a vector whose all components are all ones and by ei ∈ Rn a vector

whose i-th component is one and all the other elements being zero. A set S of Rn is called a

convex set if for any x, y ∈ S, 0 ≤ α ≤ 1, we have αx+ (1− α)y ∈ S. Moreover, S is called

a sublattice of Rn if x∧ y, x∨ y ∈ S for all x, y ∈ S. A function f defined on a convex set S

of Rn is said to be convex if f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all 0 ≤ α ≤ 1, and

x, y ∈ S and f is supermodular if S is a sublattice and f(x)+ f(y) ≤ f(x∧ y)+ f(x∨ y) for

all x, y ∈ S. A function f is concave (submodular) if −f is convex (supermodular). We now

introduce the concept of L♮-convexity which can be defined for both integer and continuous

variables. We use F to denote either the real numbers R or the set of nonnegative integers

Z+ and the notation F+ to denote the nonnegative elements in F .

Definition 4.2.1 (L♮-convexity). A function f : F n → R is L♮- convex if for any x,y ∈ F ,

α ∈ F+

f(x) + f(y) ≥ f((x+ αe) ∧ y) + f(x ∨ (y − αe)).

Note that if f(x) = +∞ or f(y) = +∞ then the inequality is assume to hold automat-

ically. If a function f is L♮-convex then −f is L♮-concave. A set V is L♮-convex if for all

x,y ∈ V and for all α ∈ F+, (x+αe)∧y ∈ V and x∨ (y−αe) ∈ V . The effective domain

of an L♮-convex function f , denoted by dom(f) = {x ∈ F n|f(x) < +∞} is an L♮-convex

set.

A function f is said to be L♮-convex on a set V ⊆ F n if V is a L♮-convex set and the

extension of f to the whole space F n by defining f(x) = +∞ for x /∈ V is L♮-convex. One

can also show that an L♮-convex function restricted to an L♮-convex set is also L♮-convex.

Equivalently, a function f : F n → R is L♮-convex if and only if g(x, ε) := f(x − εe)

is submodular on (x, ε) ∈ F n × S , where S is the intersection of F and any unbounded

49

interval in R. In addition, the Hessian of an L♮-convex function is diagonally dominant.

4.3 Problem Formulation

Consider a firm that is responsible for pricing and inventory rationing decisions of a

fixed number of resources m, that circulate in a network over either a finite planning horizon

consisting of T decision periods or an infinite horizon with discount factor γ. The time

periods are denoted by t ∈ N, with t = 1 being the first period in the planning horizon. The

network is represented by a directed graph consisting of N nodes indexed by i = 1, . . . , N

that represent the location of the resources. A trip from location i to location j is represented

by an arc i → j. Demand requests can be return or one-way trips, where the origin and

destination are the same for return trips and different for one-way. We assume that the price

for return trips, at each location, are fixed to a nominal price pii,t ∈ Pii,t and we are interested

in setting the price for one-way trips pij,t ∈ Pij,t to maximize the expected revenue and ensure

that the resources are well distributed over the network. At the beginning of each period,

the firm needs to set the price pij,t ∈ Pij,t for the one-way demand from region i to j and

the quantity θij,t ∈ Θij,t of this demand to accept. Demands are nonnegative, independent

and depends on the price according to a stochastic non-stationary demand function

Dij,t(pij,t, ϵij,t) := κij,t(pij,t) + ϵij,t,

whereDij,t(pij,t, ϵij,t) is the demand in period t, ϵij,t are random perturbations with zero mean

that are revealed at the beginning of period t + 1 and κij,t(pij,t) is a deterministic demand

function of the price pij,t. The random variables ϵij,t are independent, identically distributed

over time, with a bounded support ϵ ≤ 0 ≤ ϵ̄ such that Dij,t(p̄ij,t, ϵij,t) ≥ 0 for all i, j ∈ [N].

We denote by Fij(.) the distribution function of ϵij,t and we let F̄ij(.) = 1− Fij(.).

Furthermore, we assume that the expected demand E[Dij,t(pij,t, ϵij,t)] = κij,t(pij,t) <∞ is

strictly decreasing in the price pij,t which is restricted to Pij,t := [p
ij,t
, pij,t], where pij,t and pij,t

are the minimum and the maximum prices, respectively. This assumption implies a one-to-

one correspondence between the price pij,t and the expected demand dij,t ∈ Dij,t := [dij,t, dij,t]

50

for all pij,t ∈ Pij,t where dij,t = κij,t(pij,t) and dij,t = κij,t(pij,t). Denote by Pij,t(.) the inverse

of the expected demand function, κij,t(.). For convenience, we equivalently use the expected

demands dij,t instead of the prices pij,t as the decision variables in our analysis and charge

the price Pij,t(dij,t). For a given expected demand level dij,t and inventory rationing quantity

θij,t between locations i, j, we let R(dij,t, θij,t) = Pij,t(dij,t)E[min(dij,t + ϵij,t, θij,t)] be the

one-period expected revenue function. We make the following assumption on the revenue

function.

Assumption 4.3.1. R(dij, θij) is continuous and L
♮-concave in (dij, θij) ∈ Dij ×Θij.

Assumption 4.3.1, implies that the marginal value of the expected revenue is decreasing

in both the demand level and the rationing quantity. Moreover, the demand and rationing

quantity are complementary to each other in the sense that increasing the rationing quantity

will increase the marginal revenue of increasing the demand level [21]. Next, we state the

conditions used by [51] that ensure that Assumption 4.3.1 is satisfied. Specifically, these

conditions are,

(C1) P ′′
ij(dij)dij + P ′

ij(dij) ≤ 0 for all dij ∈ Dij and

(C2) ϱt(dij, θij) ≥ 1 for all dij ∈ Dij and θij ≥ 0,

where

ϱ(dij, θij) = dij
−Pij(dij)

dijP ′
ij(dij)

F ′(θij − dij)

F̄ (θij − dij)
,

is the lost-sales rate elasticity that measures the relative sensitivity of lost sales probabil-

ity. i.e., P (dij + ϵij > θij) = F̄ (θij − dij) with respect to rationing quantity and the price.

Condition (C1) is satisfied by many common demand models (see Table 1 in [21]). Con-

dition (C2) was first introduced by [40] and it requires the price elasticity of the demand

−Pij(dij)/dijP
′
ij(dij) and the random shock hazard rate F ′(θij − dij)/F̄ (θij − dij) be suffi-

ciently large for any dij ∈ Dij. These conditions insure that the expected revenue function

is concave and supermodular in (dij, θij).

Proposition 4.3.1 (Proposition 3 in [21]). Suppose (C1) and (C2) hold, then R(dij, θij) is

L♮-concave in (dij, θij).

The problem can be formulated as a Markov decision process (MDP) with state x =

(xi)i∈[N], which is a vector whose components represent the number of available resources at

51

each location. The state space is X =
{
x = (xi)i∈[N] ∈ RN :

∑
i∈[N] xi = m

}
where m is the

maximum number of resources in the network. We penalize unmet demands by a lost sales

unit cost ρij,t which is always larger than the price of trips. The decision vector is yt ∈ Yt(xt),

where Yt(xt) =
{
dt = (dij,t ∈ Dij,t)ij∈[N], θt = (θij,t)ij∈[N] :

∑
j∈[N] θij,t = xi,t, ∀ i ∈ [N]

}
. Let

V ∗
t (xt) be the revenue-to-go function with number of available resources xt and let VT+1(xT+1) =

0. For t = 1, . . . , T , we have the Bellman recursion:

Vt(xt) = max
yt∈Yt(xt)

 ∑
ij∈[N]

R(dij,t, θij,t) + E [Jt(xt,dt,θt, ϵt)]


Jt(xt,dt,θt, ϵt) = Vt+1(xt+1)−

∑
ij∈[N]

ρij,t

(
dij,t + ϵij,t − wij,t

)
s.t. wij,t = min (dij,t + ϵij,t, θij,t) ∀ i, j ∈ [N],

xi,t+1 = xi,t −
∑
j∈[N]

wij,t +
∑
k∈[N]

wki,t, ∀ i ∈ [N].

(4.1)

The quantity wij,t represents the total fulfilled requests from region i to region j at time t.

The following proposition characterizes the structure of the optimal value function. The

proofs of all results are included in Appendix C.1.

Proposition 4.3.2 (Concavity of The Value Function). For t = 1, . . . , T + 1,

Jt(xt,dt,θt, ϵt) = max
wt

Vt+1(xt+1)−
∑
ij∈[N]

ρij,t

(
dij,t + ϵij,t − wij,t

)
s.t. wij,t ≤ min (dij,t + ϵij,t, θij,t) ∀ i, j ∈ [N],

xi,t+1 = xi,t −
∑
j∈[N]

wij,t +
∑
k∈[N]

wki,t, ∀ i ∈ [N].

(4.2)

and Vt(xt) is concave in xt.

Due to the high dimensionality involved in the state, action, and noise spaces, solving

(4.1) is computationally challenging even though the value function is concave in the state.

In the next section, we study the case where there is only two locations and we analyze the

structure of the optimal value function and optimal policy.

52

4.4 Dynamic Pricing and Rationing in Two Locations

In this section, we consider a two-location system consisting of regions 1 and 2. We

denote the state of the system at period t by xt which is equal to the number of resources

at location 1, i.e., xt = x1,t. Since the number of resources m is fixed, we have x2,t = m−xt.

The number of resources available for return trips are then given by θ11,t = xt − θ12,t, and

θ22,t = m − xt − θ21,t at regions 1 and 2, respectively. The decision vector is given by

yt = (d12,t, d21,t, θ12,t, θ21,t) ∈ Y(xt) where the feasible set Y(xt) is given by:

Y(xt) =
{
y : d12,t ∈ [d12,t, d12,t], d21,t ∈ [d21,t, d21,t], θ12,t ≤ xt, θ21,t ≤ m− xt

}
.

The next result characterizes the structure of the value function and the optimal policy.

Theorem 4.4.1. For the two-locations pricing and rationing problem, we have

Vt(xt) = max
yt∈Y(xt)

{ ∑
ij∈{1,2}

Pij,t(dij,t)E[min(dij,t + ϵij,t, θij,t)] + E[Jt(xt,dt,θt, ϵt)]
}

Jt(xt,dt,θt, ϵt) = max
wt

{
Vt+1(xt+1)−

∑
ij∈{1,2}

ρij,t(dij,t + ϵij,t − wij,t)
}

xt+1 = xt + w21,t − w12,t

wij,t ≤ min (dij,t + ϵij,t, θij,t) ∀ ij ∈ {1, 2}

(4.3)

and for t = 1, . . . , T , the functions Vt(xt) and Jt(xt,dt,θt, ϵt) are L♮-concave in xt and

(xt,dt,θt) respectively. Let (d∗12,t(xt), d
∗
21,t(xt), θ

∗
12,t(xt), θ

∗
21,t(xt)) be the optimal policy at pe-

riod t as a function of the state xt. Then d∗12,t(xt), θ
∗
12,t(xt) and d∗21,t(xt), θ

∗
21,t(xt) are non-

decreasing, non-increasing respectively in xt, i.e., the optimal prices p∗12,t(xt) and p
∗
21,t(xt) are

non-increasing, non-decreasing respectively in xt and for any δ > 0, d∗12,t(x+δ) ≤ d∗12,t(x)+δ,

d∗21,t(x+ δ) ≥ d∗21,t(x)− δ, θ∗12,t(x+ δ) ≤ θ∗12,t(x) + δ , θ∗21,t(x+ δ) ≥ θ∗21,t(x)− δ.

This result means that to find the optimal policy via dynamic programming, we do not

need to exhaustively evaluate all the actions for a given state. Instead, one can use the

optimal action found for state xt to derive the optimal action at state xt+1. This limits the

number of actions yt that we need to evaluate to 8 actions at most.

53

4.5 The Infinite Horizon Setting

In this section, we show that the concavity of the value function continue to hold for the

stationary problem with infinite periods. It is well known that a stationary policy π that

uses the same decision rule in each period is optimal for this setting. We denote by γ ∈ (0, 1)

the discount factor and denote the values of ρij,t and κij,t by ρij and κij, respectively. We

first write the Bellman equation of the optimization problem in the infinite horizon setting

as follows:

V (x) = max
y∈Y(x)

 ∑
ij∈[N]

R(dij, θij) + E [J(x,d,θ, ϵ)]


Jt(x,d,θ, ϵ) = V (f(x,y, ϵ))−

∑
ij∈[N]

ρij

(
dij + ϵij − wij

)
s.t. w = min (d+ ϵ,θ)

f(x,y, ϵ) = x−we+wTe.

(4.4)

Theorem 4.5.1 (Infinite Horizon: Preservation of the Structural Results). If Assumption

4.3.1 holds then the results in Proposition 4.3.2 and Theorem 4.4.1 continue to hold for

infinite horizon setting.

Proof. We follow the general approach outlined in [52]. The main idea is based on iterating

the structural properties of the one-stage problem. We show that the results for Proposition

4.3.2. The results of Theorem 4.4.1 for the two-location problem follows in a similar way.

Denote by V∗ the space of continuous, concave and bounded functions over X . We have that

the revenue function is concave (by Proposition 4.3.1) and the lost sales cost is linear so the

one-step profit is concave. Moreover, by the induction argument in the proof of Proposition

4.3.2, we have that the one-step structure preservation property holds, that is the next period

value function is in V∗, which means that the optimal value function of the next period is

also in V∗ [52]. This property and the fact that the set V∗ with the sup-norm is a metric

space allows us to apply Corollary 1 of [52] which allows us to conclude that V ∈ V∗ (other

conditions are easy to verify).

54

4.6 Leave-One-Out Aggregation Heuristic

Although we characterize the concave structure of the value function of the N locations

problem in Proposition 4.3.2, we still cannot directly use convex optimization to solve for

the value function or to obtain good policies because of the difficulty involved in the high

dimensional state and action spaces. In this section, we propose our heuristic approach

that simplifies the N -location problem into a two-location problem using a leave-one-out

aggregation (LOOA) strategy. The main idea involves approximating theN -location problem

by N two-location problems. The leave-one-out aggregation at location i ∈ [N], involves

approximating the remaining N − 1 locations into a single location denoted by ϕi such that

in the new two-location problem the price pij = piϕi
for all j ̸= i. The demand functions in

the two-location problem are given by Dkℓ(pkℓ, ϵkℓ) = κkℓ(pkℓ) + ϵkℓ for k, ℓ ∈ {i, ϕi}, where

κkℓ(pkℓ) =



κii(pii) for k = i, ℓ = i, pii ∈ [p
ii
, pii];∑N

j=1:j ̸=i κij(piϕi
) for k = i, ℓ = ϕi, piϕi

∈ [p
iϕi
, piϕi

];∑N
j=1:j ̸=i κji(pϕi,i) for k = ϕi, ℓ = i, pϕii ∈ [p

ϕii
, pϕii

];∑
r,j:r ̸=i,j ̸=i κrj(pϕiϕi

) for k = ϕi, ℓ = ϕi, pϕiϕi
∈ [p

ϕiϕi
, pϕiϕi

].

(4.5)

Denote by Pkℓ(.) the inverse function of κkℓ(.), we then have p
kℓ

= Pkℓ(dkℓ) and pkℓ =

Pkℓ(dkℓ) where diϕi
=

∑
j ̸=i dij, dϕii =

∑
j ̸=i dji, dϕii

=
∑

j ̸=i dji, dϕii =
∑

j ̸=i dji, and dϕiϕi
=∑

r,j:r ̸=i,j ̸=i drj, dϕiϕi
=

∑
r,j:r ̸=i,j ̸=i drj.

Let dLOOA and θLOOA be the LOOA policies for the demand and resource allocation,

respectively, for the full problem. We solve the resulting two-location DP problems, {i, ϕi}

for i ∈ [N], by dynamic programming (4.3) using the monotonicity and bounded sensitivity

results (Theorem 4.4.1).

The optimal demand/pricing and resource allocation policies obtained for each location

i, denoted by d∗iϕi
(xi) and θ

∗
iϕ(xi) in the two-location problems are then disaggregated using

the following mechanism to generate a policy for the N -locations problem,

dLOOA(x)ij = Π[dij, dij]
[
d̃∗iϕi

(xi)
αij∑
k αik

]
, (4.6)

θLOOA(x)ij = θ∗iϕi
(xi)

αij∑
k αik

, (4.7)

55

where αij =
d∗ij
xj

with d∗ij =

d
∗
iϕi
(xi), if i ̸= j

dfixedii , otherwise.

and Π[a,b][x] = max{min{x, b}, a}.

This means that the demand and resources allocated to location j from location i, are

proportional to the expected demand proportion from i to j and inversely proportional to

the number of resources at location j. This ensures that locations with fewer resources will

have higher demand proportion and resources allocated to them. We summarize the steps

involved in the leave-one-out heuristic in Algorithm 3.

Algorithm 3: Leave-One-Out Aggregation

Input: demand models between locations Dkℓ, min and max prices [p
ij
, pij], number of

locations N , number of resources m.

Output: pricing and allocation policies: dLOOA(x) and θLOOA(x)

for i = 1, 2, . . ., N do

Aggregate locations {1,. . . ,N}/{i}:

Compute the demand function at location i and the aggregated location ϕi, κkℓ(pkℓ),

k, ℓ ∈ {i, ϕi} using (4.5).

Solve the resulting two-location problem via DP and record the optimal polices d∗iϕi
(xi)

and θ∗iϕ(xi)

end for

Use the resulting optimal policies for each location to obtain dLOOA(x) and θLOOA(x)

following equations (4.6) and (4.7).

56

4.7 Computational Experiments

In this section, we report the results of a series of computational experiments to in-

vestigate the performance of the leave-one-out aggregation heuristic for the infinite horizon

problem. We compare the quality of LOOA policy against the myopic policy that maximizes

the revenue of each location separately and the best fixed node and arc based pricing policies.

The allocation decisions for these baseline policies are made according to θij(xi) = xi
αij∑
k αik

,

where αij is as defined in Section 4.6. Our simulation study includes five sets of random

problems, summarized in Table 1. We assume a linear demand function of the price,

κij(pij) = aij − b pij,

where the parameters, aij and bij are generated randomly from uniform distributions U [7, 15]

and U [1, 4], respectively. The random noise ϵij are sampled from U [−3, 3] for i, j ∈ {1, . . . , N}.

The minimum price p
ij
is set to 1 for all i, j ∈ {1, . . . , N}. On the other hand, the maximum

price is set to
aij−ϵij

bij
such that κij(pij) + ϵij ≥ 0 for all i, j ∈ {1, . . . , N}. The return trips

price at each of the location is pii = p
ii
. The lost sales cost for all experiments was set such

that ρij = pij for all i ̸= j and to pii otherwise.

For each test problem, we compute the following quantities:

ZNode
Fixed: Estimated expected value obtained through simulation of the best fixed node

based pricing strategy. To evaluate the fixed pricing policy we run a simulation to obtain

the value of the discounted sum of rewards. Each run is approximated by truncating the

infinite summation of discounted rewards such that the terms after t periods are ignored,

where γt < 10−3.

ZArc
Fixed: Estimated expected value of the best fixed arc based pricing strategy obtained

using a differential evolution algorithm [62]. The algorithm is implemented in Python’s

scipy library. We use a population size of 10N , a differential weight of 0.8, and a crossover

probability of 0.7. The solution of the fixed node pricing is used as one of the initial solutions.

ZMyopic: Estimated expected value of the myopic policy that maximizes the revenue at

each location.

57

Table 1: Numerical Results

Problem set
(N, m) γ ZNode

Fixed ZArc
Fixed ZMyopic ZLOOA

Problem 1 0.2 10.05 13.17 14.91 38.06
(3, 25) 0.5 15.98 17.15 23.68 60.16

0.9 72.37 79.45 105.59 272.8
0.95 143.28 146.17 204.82 546.88
0.99 714.05 721.14 995.99 2592.85

Problem 2 0.2 21.94 24.82 31.91 69.21
(4, 40) 0.5 33.68 39.82 46.75 97.38

0.9 191.48 194.31 240.76 487.97
0.95 379.47 384.8 481.22 979
0.99 1880.54 1898.37 2450.31 4905.68

Problem 3 0.2 142.59 149.89 153.5 182.34
(5, 80) 0.5 240.05 242.19 246.8 291

0.9 1188.28 1203.38 1233.11 1441.56
0.95 2354.07 2355.23 2453.36 2877.13
0.99 11766.49 11769.25 12264.52 14336.1

Problem 4 0.2 171.35 177.11 180 230.55
(6, 100) 0.5 275 276.5 286.97 364.34

0.9 1381.97 1384.18 1452.92 1805.05
0.95 2769.32 2781.27 2884.88 3606.10
0.99 13615.04 13718.61 14391.05 18035.44

Problem 5 0.2 278.11 281.44 287.38 331.7
(7, 140) 0.5 442.37 448.83 451.04 525.95

0.9 2147.46 2152.12 2202.53 2587.42
0.95 4278.13 4291.85 4467.17 5170.71
0.99 21703.39 21736.16 22527.42 25834

58

ZLOOA: Simulated expected value of the LOOA policy. The aggregated two-location

problems are solved by Q-iteration [63].

The expected value of each heuristic is approximated using the average over 100 runs. The

heuristics and the simulation experiments were implemented in Python. All the experiments

were performed on a shared memory cluster with dual 12-core Skylake CPU (Intel Xeon

Gold 6126 2.60 GHz) and 192 GB RAM/node.

Table 1 shows five sets of problems with increasing complexity in terms of number of

locations and resources and various values of the discount factor γ. Compared with the other

heuristics, LOOA yielded a significantly higher revenue (p < 0.05) on all problems. Problems

1 and 2 involve 3 and 4 locations with 25 and 40 cars, respectively. In these problems, LOOA

outperformed the myopic policy which in turn outperformed the fixed pricing policies.

As expected, the performance of the myopic heuristic becomes worse as the discount

factor increase, since in this case the long-term impact of the current decision becomes more

important. LOOA consistently outperformed the other heuristics on the larger problems as

well (Problems 3, 4, and 5). Compared to the best baseline heuristic LOOA achieves up to

18%, 30% , and 16% improvement on Problems 3, 4, and 5, respectively. On average over

all problems achieves LOOA 65% improvement, with a max improvement of 167% percent

on Problem 1 (γ = 0.95).

Note that the solution of the myopic policy took significantly more time than the other

heuristic for the larger problems. This is because as the number of locations increase the

number actions becomes exponentially huge. For example for the 5 locations problem the

total number of demand actions is in the order of 1.3 trillion.

The separate and the aggregated expected demand functions for each origin-destination

pair of the three location problem, are shown in figures 10a and 10b, respectively.

Figures 11 and 12 show the plots of the value functions and policies obtained from running

LOOA algorithm on Problem 1 with γ = 0.9. The plots show the concavity property of the

value function in addition to the monotonocity and bounded sensitivity property of the

pricing and allocation polices for each of the leave-one-out problems.

Finally, figure 13 shows a representation of the resulting LOOA’s demand and pricing

policy at location 1. Notice how the demand and allocation levels changes with the state.

59

(a) (b)

Figure 10: Plots showing the three location problem origin-destination expected demand

functions of the price (a) and the resulting expected demand functions after aggregation (b).

(a) (b) (c)

Figure 11: Individual LOOA value functions for Problem 1, γ = 0.9.

60

(a) (b) (c)

Figure 12: Individual LOOA policies for Problem 1, γ = 0.9.

For example, in figures 13a and 13b, as the number of cars increase at location 1, LOOA’s

demand levels from location 1 to 2 and 1 to 3 increase as well to hopefully re-balance the

resources across all locations.

4.8 Conclusion

In this chapter, we studied the structural properties of value function and policy for

a dynamic pricing and allocation problem of price sensitive resources that are shared in

a network of locations. We showed that the value function is concave in the state and

for the special case where the network consists of two locations, we showed that the value

function is L♮-concave and the policy has monotonicity and bounded sensitivity properties.

We developed an efficient heuristic that divides the problem into smaller problems and

exploits that theoretical structural results to obtain a good approximate solution to the full

problem. Our heuristic consistently outperformed the baselines heuristic by a large margin

on a set of test problems.

61

(a) (b)

(c) (d)

Figure 13: LOOA’s demand and allocation policies at location 1 for Problem 1, γ = 0.9.

62

5.0 Conclusions and Future Work

In this thesis, we exploit various relaxation techniques and inherent structural properties

to efficiently learn and solve sequential decision-making problems. We first study stochastic

infinite horizon MDPs where partial knowledge about the environment dynamics is available

and the randomness is due to exogenous information that is often observable but otherwise

unknown. These problems appear in many optimal control and logistics problems. Examples

include inventory management, vehicle routing, dynamic pricing, energy operations, and

many more. We develop an algorithm that leverages information relaxation to generate

upper and lower bounds on the optimal value to improve the performance of the celebrated Q-

learning algorithm. The partial knowledge of the transition function along with the observed

outcomes of the exogenous information is used to create and solve relaxed finite-horizon

deterministic DP problems. The solutions of these deterministic DPs can be used to obtain

a loose upper bound on the optimal value function. To get tighter bounds, we use the idea

of information relaxation where a penalty function is used to penalize the usage of future

information. Our algorithm takes the current Q-learning Q-value to construct a penalty

function and generate the lower and upper bounds. These bounds are then used to improve

the current action-value function estimate using a projection step that projects the Q-value

between the bounds. The projected values goes through a Q-learning step before it is used

again as in the penalty function for bounds generation. We propose two versions of our

algorithm that differs in how the samples and sample paths of the exogenous information are

obtained to generate the bounds. The first version assumes access to a black-box simulator to

generate the exogenous information samples while the other one makes use of a replay-buffer

to record the exogenous information obtained from interacting with the environment. In

both cases, we show that our algorithm along with the lower and upper bounds converge to

the optimal action-value function. One possible extension of our algorithm includes learning

the transition function from the experience obtained from interacting with the environment.

Another extension would be to extend the algorithm to the function approximation case.

We then study a broad class of problems that have a weakly coupled structure. These

63

problems consist of multiple subproblems that are independent except for a linking constraint

on the action space. We use a Lagrangian relaxation technique to obtain an upper bound

on the optimal value. We also learn the value of the Lagrangian policy which serves as a

lower bound on Q∗. Unlike the information relaxation approach we developed in Chapter

1, this approach do not require any knowledge of the information dynamics and it is also

extendable to the function approximation case which we implement using Deep Q-Networks.

The latter works through a soft constrained optimization approach that replaces the hard

projection step in the tabular version. We also propose a simpler version of our algorithm

that directly learn the Lagrangian policy and does not require computing the bounds. An

interesting future work includes learning optimal Lagrangian multipliers through adaptive

ways, e.g., using subgradient descent.

Finally, we study the problem of pricing and allocation decisions for a finite number of

resources that circulates a network. This problem is inspired from the growing popularity

of car-sharing and bike-sharing systems. For the general problem that consists of N > 2,

we show that the optimal value function is concave in the state and for the two-location

problem, we show that value function enjoys a discrete convexity property and that the

policy in monotone and has a bounded sensitivity property. We then propose an efficient

heuristic that utilizes the structural properties of the two-location problem. It does so by

transforming the problem into N two-location problems. The two-location problems consist

of one location that is kept unchanged and a single a aggregated location that approximates

the remaining N − 1 locations in the network. The structural properties of the policy allows

us to solve these problems efficiently. The resulting policies at each location is then used

to generate a single policy for the whole problem. Our heuristic outperforms our baseline

heuristics on a different set of problems. Future work includes deriving bounds on the

performance of the heuristic and extending our approach to the function approximation case

where one could use convex neural networks [2] for example to model the structure of the

value function.

64

Appendix A

A.1 Proofs for Chapter 2

A.1.1 Proof of Proposition 2.3.1

Proof. We provide a proof that is similar to that of Proposition 2.3 (iv) of [14] but for the

case of the absorption time formulation of an infinite horizon problem. Here, we define a

policy π := {πt}t≥0 as a sequence of functions, that maps from {wt}t≥1 to feasible actions. We

may also use stationary policies where πt is the same for all t and only depends on the current

state st. Let G = {Gt}t≥0 be the perfect information relaxation of the natural filtration

F = {Ft}t≥0. Under G, we have Gt = F , i.e., we have access to the entire future uncertainties

at each t. Define by ΠG the set of policies that includes the policies that have access to future

uncertainties in addition to nonanticipative policies. Let Ĝ be a relaxation of G such that

in addition to what is known under G the estimate penalty terms ζ̂
πφ

t (st, at, wt+1 |φ) are

revealed at time t.

65

We first prove E[Q̂L
0 (s, a)] ≤ Q∗(s, a). For an admissible policy π, we have

E[Q̂L
0 (s, a)]

(a)
= E

[
τ−1∑
t=0

r(st, π(st))− ζ̂πt (st, at, wt+1 |φ) | s0 = s, a0 = a

]
(b)
= E

[
τ−1∑
t=0

(r(st, π(st))− ζ̂πt (st, at, wt+1 |φ))1{τ<∞} | s0 = s, a0 = a

]
(c)
=

∞∑
τ ′=1

E

[
τ ′−1∑
t=0

(r(st, π(st))− ζ̂πt (st, at, wt+1 |φ))1{τ=τ ′} | s0 = s, a0 = a

]
(d)
=

∞∑
τ ′=1

E

[
τ ′−1∑
t=0

(r(st, π(st))− E[ζ̂πt (st, at, wt+1 |φ) | Gt])1{τ=τ ′} | s0 = s, a0 = a

]
(e)
=

∞∑
τ ′=1

E

[
τ ′−1∑
t=0

(r(st, π(st))− ζπt (st, at, wt+1 |φ))1{τ=τ ′} | s0 = s, a0 = a

]
(f)
= E

[
τ−1∑
t=0

(r(st, π(st))− ζπt (st, at, wt+1 |φ))1{τ<∞} | s0 = s, a0 = a

]
(g)
= E

[
τ−1∑
t=0

(r(st, π(st))− ζπt (st, at, wt+1 |φ)) | s0 = s, a0 = a

]
≤ Q∗(s, a)

Equality (a) follows from the definition of Q̂0(s, a) and equality (b) follows since τ has finite

mean and r and φ are uniformly bounded. Equalities (c) and (d) follow from the law of total

expectations. Equality (e) follows from Lemma A.1 in [14] and from the estimated penalty

terms being unbiased, i.e., E[ζ̂
π∗
G

t (st, at, wt+1 |φ) | Gt] = ζ
π∗
G

t (st, at, wt+1 |φ). Equalities (f)

and (g) follow by the law of total expectation and τ being almost surely finite stopping

time, respectively. The inequality follows since the expected value of the penalty terms for a

feasible policy is zero and the action-value function of a feasible policy, Qπ(s, a), is less than

Q∗(s, a).

Now, we prove Q∗(s, a) ≤ E[Q̂U
0 (s, a)]. Let π∗

G be the optimal solution for the dual

problem,

max
πG∈ΠG

E

[
τ−1∑
t=0

(r(st, πG)− ζπG
t (st, at, wt+1 |φ)) | s0 = s, a0 = a

]
. (A.1)

66

We have,

E[Q̂U
0 (s, a)]

(a)
= E

[
max

a

{
τ−1∑
t=0

r(st, at)− ζ̂
πφ

t (st, at, wt+1 |φ)

}
| s0 = s, a0 = a

]
(b)
= max

πG∈ΠĜ

E

[
τ−1∑
t=0

(r(st, πG)− ζ̂πG
t (st, at, wt+1 |φ)) | s0 = s, a0 = a

]

≥ E

[
τ−1∑
t=0

(r(st, π
∗
G)− ζ̂

π∗
G

t (st, at, wt+1 |φ)) | s0 = s, a0 = a

]
(c)
= E

[
τ−1∑
t=0

(r(st, π
∗
G)− ζ̂

π∗
G

t (st, at, wt+1 |φ))1{τ<∞} | s0 = s, a0 = a

]
(d)
=

∞∑
τ ′=1

E

[
τ ′−1∑
t=0

(r(st, π
∗
G)− ζ̂

π∗
G

t (st, at, wt+1 |φ))1{τ=τ ′} | s0 = s, a0 = a

]
(e)
=

∞∑
τ ′=1

E

[
τ ′−1∑
t=0

(r(st, π
∗
G)− E[ζ̂

π∗
G

t (st, at, wt+1 |φ) | Gt])1{τ=τ ′} | s0 = s, a0 = a

]
(f)
=

∞∑
τ ′=1

E

[
τ ′−1∑
t=0

(r(st, π
∗
G)− ζ

π∗
G

t (st, at, wt+1 |φ))1{τ=τ ′} | s0 = s, a0 = a

]
(g)
= E

[
τ−1∑
t=0

(r(st, π
∗
G)− ζ

π∗
G

t (st, at, wt+1 |φ))1{τ<∞} | s0 = s, a0 = a

]
(h)
= E

[
τ−1∑
t=0

(r(st, π
∗
G)− ζ

π∗
G

t (st, at, wt+1 |φ)) | s0 = s, a0 = a

]
(i)
= max

πG∈ΠG
E

[
τ−1∑
t=0

(r(st, πG)− ζπG
t (st, at, wt+1 |φ)) | s0 = s, a0 = a

]
≥ Q∗(s, a).

Equality (a) and (b) follow from the definition of Q̂U
0 (s, a) and since Ĝ is a relaxation of

the perfect information relaxation G, which allows us to interchange the maximum and

the expectation. The first inequality follows because π∗
G ∈ ΠĜ since ΠG ⊆ ΠĜ. Equality

(c) follows since r and φ are uniformly bounded and τ has finite mean. Equalities (d)

and (e) follow from the law of total expectations. Equality (f) follows from Lemma A.1 in

[14] and from the estimated penalty terms being unbiased, i.e., E[ζ̂
π∗
G

t (st, at, wt+1 |φ) | Gt] =

ζ
π∗
G

t (st, at, wt+1 |φ). Equalities (g) and (h) follow by the law of total expectation and τ being

almost surely finite stopping time, respectively. Equality (i) follows since by definition π∗
G

67

is the optimal solution of (A.1). The last inequality follows by weak duality (Proposition

2.2.1(i)).

First, we state a technical lemma that is used in the proof of Proposition 2.3.2 and

Lemma 2.3.1.

Lemma A.1.1. For all n = 1, 2, . . ., if Ln−1(s, a) ≤ Un−1(s, a) and Q′
n−1 ∈ Q then

Ln(s, a) ≤ Un(s, a) for all (s, a) ∈ S ×A.

Proof. Fix an (s, a) ∈ S × A. Note that the optimal values of the inner problems in (2.9)

and (2.10), Q̂U
0 (s, a) and Q̂

L
0 (s, a) respectively, are computed using the same sample path w

and for each period within the inner DP, the same batch of samples is used for estimating

the expectation in both the upper and lower bound problems. For clarity, let us denote

the values of Q̂L
0 (s, a) and Q̂U

0 (s, a) at iteration n = 1, 2, . . . by Q̂L
n,0(s, a) and Q̂U

n,0(s, a),

respectively. Assume αn(s, a) ≤ 1 for all n. We provide a proof by induction. For n = 1, we

have:

Q1(s0, a0) = Q′
0(s0, a0) + α0(s0, a0)

[
r(s0, a0) + γmax

a
Q′

0(s1, a)−Q′
0(s0, a0)

]
.

Since the rewards r(s, a) are uniformly bounded, 0 < γ < 1 and |Q′
0(s, a)| ≤ ρ then Q1 is

bounded. Set φ = Q1, since the actions selected by the policy πQ1 are feasible in (2.9), we

have

Q̂U
1,0(s, a)− Q̂L

1,0(s, a) ≥ 0,

and with L0(s, a) ≤ U0(s, a), it follows that L1(s, a) ≤ U1(s, a). A similar proof can be used

to show the inductive case also holds at iteration n,

Qn(sn−1, an−1) = Q′
n−1(sn−1, an−1)

+ αn−1(sn−1, an−1)
[
r(sn−1, an−1) + γmax

a
Q′

n−1(sn, a)−Q′
n−1(sn−1, an−1)

]
.

By the inductive hypothesis, we have Q′
n−1 ∈ Q and Ln−1(s, a) ≤ Un−1(s, a). Then, similar to

the base case, we have Qn ∈ Q and Q̂U
n,0(s, a)−Q̂L

n,0(s, a) ≥ 0. Therefore, Ln(s, a) ≤ Un(s, a).

Since our choice of (s, a) was arbitrary then the result follows for all (s, a) ∈ S ×A.

68

A.1.2 Proof of Proposition 2.3.2

Proof. Part (i): First, note that by (2.11) and (2.12) the upper and lower bound estimates

Un(s, a) and Ln(s, a) are bounded below and above by ρ and −ρ respectively for all (s, a) ∈

S × A and for all n, where ρ = Rmax/(1 − γ). We assume in this proof that αn(s, a) ≤ 1

for all n. Let L̃n = max(s,a) Ln(s, a) and Ũn = max(s,a) Un(s, a). We claim that for every

iteration n, we have that for all (s, a),

L̄n ≤ Qn(s, a) ≤ Ūn and L̄′
n ≤ Q′

n(s, a) ≤ Ū ′
n (A.2)

where

L̄n = min
{
Ũn−1(1 + γ), . . . , Ũ1

∑n−1
i=0 γ

i,−M
∑n

i=0 γ
i
}

(A.3)

Ūn = max
{
L̃n−1(1 + γ), . . . , L̃1

∑n−1
i=0 γ

i,M
∑n

i=0 γ
i
}
, (A.4)

L̄′
n = min

{
Ũn, Ũn−1(1 + γ), . . . , Ũ1

∑n−1
i=0 γ

i,−M
∑n

i=0 γ
i
}
, (A.5)

Ū ′
n = max

{
L̃n, L̃n−1(1 + γ), . . . , L̃1

∑n−1
i=0 γ

i,M
∑n

i=0 γ
i
}
, (A.6)

and M is a finite positive scalar defined as M = max
{
Rmax, max(s,a)Q0(s, a)

}
.

The result follows from the claim in (A.2). To see this note that at any iteration n, L̄n

and L̄′
n are bounded below by −ρ

∑n
i=0 γ

i since each term inside the minimum of (A.3) and

(A.5) is bounded below by −ρ
∑n

i=0 γ
i. As n→ ∞, we have

−ρ
1− γ

≤ lim inf
n→∞

L̄n and
−ρ
1− γ

≤ lim inf
n→∞

L̄′
n. (A.7)

An analogous argument yields

lim sup
n→∞

Ūn ≤ ρ

1− γ
and lim sup

n→∞
Ū ′
n ≤ ρ

1− γ
. (A.8)

Boundedness of Qn(s, a) and Q
′
n(s, a) for all (s, a) ∈ S × A follows from (A.2), (A.7) and

(A.8).

Now, we prove our claim in (A.2) by induction. Since Algorithm 1 is asynchronous, at the

nth iteration, the updates for the action-value iterates for (s, a), Qn+1(s, a) and Q
′
n+1(s, a),

are either according to (5) and (2.13) (case 1) or set equal toQn(s, a) andQ
′
n(s, a) respectively

(case 2).

69

We first focus on Q′
n(s, a) ≤ Ūn part of (A.2), since L̄′

n ≤ Q′
n(s, a) and L̄n ≤ Qn(s, a) ≤

Ūn proceed in an analogous manner. For n = 1, we have Q′
0(s, a) = Q0(s, a), so if the update

is carried out as in case 1,

Q1(s, a) = (1− α0(s, a))Q
′
0(s, a) + α0(s, a) [r(s, a) + γmaxaQ

′
0(s

′, a)]

≤ (1− α0(s, a))M + α0(s, a)M + α0(s, a)γM

≤M(1 + γ)

soQ′
1(s, a) ≤ max{L1(s, a),min{U1(s, a),M(1+γ)}}. Now consider the case where U1(s, a) ≤

M(1+ γ). Since Q0 is bounded by ρ and L0(s, a) ≤ U0(s, a) then by Lemma A.1.1, we have

L1(s, a) ≤ U1(s, a), so

Q′
1(s, a) ≤ U1(s, a) ≤M(1 + γ). (A.9)

Otherwise, if U1(s, a) ≥M(1 + γ), we then have

Q′
1(s, a) ≤ max{L1(s, a),M(1 + γ)}. (A.10)

From (A.9) and (A.10), we have

Q′
1(s, a) ≤ max{L1(s, a),M(1 + γ)}

≤ max{L̃1,M(1 + γ)}.
(A.11)

If the update is carried out as in case 2, we have,

Q′
1(s, a) = Q′

0(s, a)

≤M

< M(1 + γ)

≤ max{L̃1,M(1 + γ)}.

Thus Ū ′
n(s, a) part of (A.2) is true for n = 1. Suppose that it is true for n = 1, 2, . . . , k.

We will show it for n = k + 1. Consider first the instance where the update is carried out

according to case 1. We do casework on the inequality

Q′
k(s, a) ≤ max

{
L̃k, L̃k−1(1 + γ), . . . , L̃1

∑k−1
i=0 γ

i,M
∑k

i=0 γ
i
}
, (A.12)

70

which holds for all (s, a). First, let us consider the case where the right-hand-side of (A.12)

is equal to L̃k′
∑k−k′

i=0 γi for some k′ such that 1 ≤ k′ ≤ k. Then, we have

Qk+1(s, a) = (1− αk(s, a))Q
′
k(s, a) + αk(s, a)[r(s, a) + γmaxaQ

′
k(s

′, a)]

≤ (1− αk(s, a))L̃k′
∑k−k′

i=0 γi + αk(s, a)M + αk(s, a)γL̃k′
∑k−k′

i=0 γi

≤ (1− αk(s, a))L̃k′
∑k−k′

i=0 γi + αk(s, a)L̃k′ + αk(s, a)L̃k′
∑k−k′+1

i=1 γi

= (1− αk(s, a))L̃k′
∑k−k′

i=0 γi + αk(s, a)L̃k′
∑k−k′

i=0 γi + αk(s, a)L̃k′γ
k−k′+1

≤ L̃k′
∑k−k′

i=0 γi + L̃k′γ
k−k′+1

= L̃k′
∑k−k′+1

i=0 γi

(A.13)

The first inequality holds by the induction assumption (A.12). The second inequality holds

since in this case we have the right-hand-side of (A.12) is equal to L̃k′(1 + γ + . . .+ γk−k′).

It follows that

L̃k′(1 + γ + . . .+ γk−k′) ≥M(1 + γ + . . .+ γk),

which implies that L̃k′ ≥ M . Finally, the third inequality holds by the assumption that

αn(s, a) ≤ 1 for all n. We have

Q′
k+1(s, a) = max{Lk+1(s, a),min{Uk+1(s, a), Qk+1(s, a)}}

≤ max{Lk+1(s, a),min{Uk+1(s, a), L̃k′(1 + γ + . . .+ γk−k′+1)}}.

Now, consider the case where Uk+1(s, a) ≤ L̃k′(1 + γ + . . . + γk−k′+1). By the induction

assumption, Q′
n(s, a) is bounded below by −ρ

∑n
i=0 γ

i and above by ρ
∑n

i=0 γ
i for all (s, a) ∈

S × A and all n = 1, 2, . . . , k. Since L0(s, a) ≤ U0(s, a), Lemma A.1.1 can be applied

iteratively on n = 1, . . . , k + 1 to obtain that LK+1(s, a) ≤ Uk+1(s, a) for all (s, a) ∈ S × A.

Thus, we have

Q′
k+1(s, a) ≤ Uk+1(s, a) ≤ L̃k′(1 + γ + . . .+ γk−k′+1). (A.14)

Otherwise, if Uk+1(s, a) ≥ L̃k′(1 + γ + . . .+ γk−k′+1), we have

Q′
k+1(s, a) ≤ max{Lk+1(s, a), L̃k′(1 + γ + . . .+ γk−k′+1)}

≤ max{L̃k+1, L̃k′(1 + γ + . . .+ γk−k′+1)}. (A.15)

71

Moving on to the case where the right-hand-side of (A.12) is equal to M(1+ γ+ . . .+ γk):

Qk+1(s, a) = (1− αk(s, a))Q
′
k(s, a) + αk(s, a) [r(s, a) + γmax

a
Q′

k(s
′, a)]

≤ (1− αk(s, a))M
∑k

i=0 γ
i + αk(s, a)M + αk(s, a)γM

∑k
i=0 γ

i

= (1− αk(s, a))M
∑k

i=0 γ
i + αk(s, a)M + αk(s, a)M

∑k+1
i=1 γ

i

≤M
∑k

i=0 γ
i − αk(s, a)M

∑k
i=0 γ

i + αk(s, a)M
∑k

i=0 γ
i +Mγk+1

=M(1 + γ + . . .+ γk+1).

(A.16)

We have

Q′
k+1(s, a) = max{Lk+1(s, a),min(Uk+1(s, a), Qk+1(s, a))}

≤ max{Lk+1(s, a),min(Uk+1(s, a),M(1 + γ + . . .+ γk+1)}}.

Now if Uk+1(s, a) ≤M(1 + γ + . . .+ γk+1), then by applying Lemma A.1.1 as before,

Q′
k+1(s, a) ≤ Uk+1(s, a) ≤M(1 + γ + . . .+ γk+1). (A.17)

Otherwise, if Uk+1(s, a) ≥M(1 + γ + . . .+ γk+1), we have

Q′
k+1(s, a) ≤ max{Lk+1(s, a),M(1 + γ + . . .+ γk+1)}

≤ max{L̃k+1,M(1 + γ + . . .+ γk+1)}. (A.18)

Now, if the update is carried out according to case 2,

Q′
k+1(s, a) = Q′

K(s, a)

≤ max{L̃k, L̃k−1(1 + γ), . . . , L̃1

∑k−1
i=0 γ

i,M
∑k

i=0 γ
i}

≤ max{L̃k+1, (1 + γ)L̃k, . . . , L̃1

∑k
i=0 γ

i,M
∑k+1

i=0 γ
i}.

(A.19)

By (A.14), (A.15), (A.17), (A.18) and (A.19), we have Q′
k+1(s, a) ≤ Ū ′

k+1. A similar

argument can be made to show L̄n ≤ Q′
n(s, a) and L̄n ≤ Qn(s, a) ≤ Ūn, which completes the

inductive proof.

72

Proof. Part (ii): Fix an (s, a) ∈ S × A. By part (i) we have the action-value iterates Qn

and Q′
n are bounded for all n. We denote the “sampling noise” term using

ξLn (s, a) = Q̂L
n,0(s, a)− E[Q̂L

n,0(s, a)].

We also define an accumulated noise process started at iteration ν by WL
ν,ν(s, a) = 0, and

WL
n+1,ν(s, a) = (1− αn(s, a))W

L
n,ν(s, a) + αn(s, a) ξ

L
n+1(s, a) ∀ n ≥ ν,

which averages noise terms together across iterations. Note that τ is an almost surely finite

stopping time, the rewards r(s, a) are uniformly bounded, and Qn+1 is also bounded (by part

(i)). Then, Q̂L
n,0 is bounded by some random variable and so is the conditional variance of

ξLn (s, a). Hence, Corollary 4.1 in [9] applies and it follows that

lim
n→∞

WL
n,ν(s, a) = 0 ∀ ν ≥ 0.

Let ν̃ be large enough so that αn(s, a) ≤ 1 for all n ≥ ν̃. We also define

Y L
ν̃ (s, a) = ρ,

Y L
n+1(s, a) = (1− αn(s, a))Y

L
n (s, a) + αn(s, a)Q

∗(s, a), ∀n ≥ ν̃.

It is easy to see that the sequence Y L
n (s, a) → Q∗(s, a). We claim that for all iterations

n ≥ ν̃, it holds that

Ln(s, a) ≤ min{ρ, Y L
n (s, a) +WL

n,ν̃(s, a)}.

To prove this claim, we proceed by induction on n. For n = ν̃, we have

Y L
ν̃ (s, a) = ρ and WL

ν̃,ν̃(s, a) = 0,

so it is clear that the statement is true for the base case. We now show that it is true for

n+ 1 given that it holds at n:

Ln+1(s, a) = min{ρ, (1− αn(s, a))Ln(s, a) + αn(s, a) (Q̂
L
n,0(s, a)− E[Q̂L

n,0(s, a)] + E[Q̂L
n,0(s, a)])}

= min{ρ, (1− αn(s, a))Ln(s, a) + αn(s, a) ξ
L
n (s, a) + αn(s, a)E[Q̂

L
n,0(s, a)]}

≤ min{ρ, (1− αn(s, a)) (Y
L
n (s, a) +WL

n,νk
(s, a)) + αn(s, a) ξ

L
n (s, a) + αn(s, a)Q

∗(s, a)}

≤ min{ρ, Y L
n+1(s, a) +WL

n+1,ν̃(s, a)},

73

where the first inequality follows by the induction hypothesis and E[Q̂L
n,0(s, a)] ≤ Q∗(s, a)

follows by Proposition 2.3.1. Next, since Y L
n (s, a) → Q∗(s, a),WL

n,νk
(s, a) → 0 and Q∗(s, a) ≤

ρ, we have

lim sup
n→∞

Ln(s, a) ≤ Q∗(s, a).

Therefore, since our choice of (s, a) was arbitrary, it follows that for every η > 0, there exists

some time n′ such that Ln(s, a) ≤ Q∗(s, a) + η for all (s, a) ∈ S ×A and n ≥ n′.

Using Proposition 2.3.1, Q∗(s, a) ≤ E[Q̂U
n,0(s, a)], a similar argument as the above can

be used to establish that

Q∗(s, a) ≤ lim inf
n→∞

Un(s, a).

Hence, there exists some time n′′ such that Q∗(s, a)− η ≤ Un(s, a) for all (s, a) and n ≥ n′′.

Take n0 to be some time greater than n′ and n′′ and the result follows.

A.1.3 Proof of Lemma 2.3.1

Proof. We use induction on n. Since for all (s, a) ∈ S × A, L0(s, a) ≤ U0(s, a) and −ρ ≤

Q′
0(s, a) ≤ ρ then L1(s, a) ≤ U1(s, a) by Lemma A.1.1. Suppose that Ln(s, a) ≤ Un(s, a)

holds for all (s, a) for all n = 1, . . . , k. For all (s, a) ∈ S × A, we have Q′
k(s, a) is bounded

since by Proposition 2.3.2(i) Q′
n(s, a) is bounded for all n. We also have Lk(s, a) ≤ Uk(s, a)

for all (s, a) by the induction assumption. Applying Lemma A.1.1 again at n = k+1 yields

Lk+1(s, a) ≤ Uk+1(s, a) and the inductive proof is complete.

A.1.4 Proof of Theorem 2.3.1

Proof. We first prove part (i). We start by writing Algorithm 1 using DP operator notation.

Define a mapping H such that

(HQ′)(s, a) = r(s, a) + γE [maxa′ Q
′(s′, a′)] ,

where s′ = f(s, a, w). It is well-known that the mappingH is a γ-contraction in the maximum

norm. We also define a random noise term

ξn(s, a) = γmaxa′ Q
′
n(s

′, a′)− γE [maxa′ Q
′
n(s

′, a′)] . (A.20)

74

The main update rules of Algorithm 1 can then be written as

Qn+1(s, a) = (1− αn(s, a))Q
′
n(s, a) + αn(s, a) [(HQ

′
n)(s, a) + ξn+1(s, a)] ,

Un+1(s, a) = Π[−ρ,∞]

[
(1− βn(s, a))Un(s, a) + βn(s, a) Q̂

U
0 (s, a)

]
,

Ln+1(s, a) = Π[∞, ρ]

[
(1− βn(s, a))Ln(s, a) + βn(s, a) Q̂

L
0 (s, a)}

]
,

Q′
n+1(s, a) = Π[Ln+1(s,a), Un+1(s,a)] [Qn+1(s, a)] . (A.21)

Assume without loss of generality that Q∗(s, a) = 0 for all state-action pairs (s, a). This can

be established by shifting the origin of the coordinate system. Note that by (A.21) at any

iteration n and for all (s, a), we have Ln(s, a) ≤ Q′
n(s, a) ≤ Un(s, a).

We proceed via induction. First, note that by Propostion 2.3.2(i) the iterates of Al-

gorithm 1 Q′
n(s, a) are bounded in the sense that there exists a constant D0 such that

|Q′
n(s, a)| ≤ D0 for all (s, a) and iterations n. Define the sequence Dk+1 = (γ + ϵ)Dk, such

that γ + ϵ < 1 and ϵ > 0. Clearly, Dk → 0. Suppose that there exists some time nk such

that for all (s, a),

max{−Dk, Ln(s, a)} ≤ Q′
n(s, a) ≤ min{Dk, Un(s, a)}, ∀n ≥ nk.

We will show that this implies the existence of some time nk+1 such that

max{−Dk+1, Ln(s, a)} ≤ Q′
n(s, a) ≤ min{Dk+1, Un(s, a)} ∀ (s, a), n ≥ nk+1.

This implies that Q′
n(s, a) converges to Q∗(s, a) = 0 for all (s, a). We also assume that

αn(s, a) ≤ 1 for all (s, a) and n. Define an accumulated noise process started at nk by

Wnk,nk
(s, a) = 0, and

Wn+1,nk
(s, a) = (1− αn(s, a))Wn,nk

(s, a) + αn(s, a) ξn+1(s, a), ∀n ≥ nk, (A.22)

where ξn(s, a) is as defined in (A.20). We now use Corollary 4.1 in [9] which states that

under the assumptions of Theorem 2.3.1 on the step size αn(s, a), and if E[ξn(s, a) | Fn] = 0

and E[ξ2n(s, a) | Fn] ≤ An, where the random variable An is bounded with probability 1, the

75

sequence Wn+1,nk
(s, a) defined in (A.22) converges to zero, with probability 1. From our

definition of the stochastic approximation noise ξn(s, a) in (A.20), we have

E[ξn(s, a) | Fn] = 0 and E[ξ2n(s, a) | Fn] ≤ C(1 + maxs′,a′ Q
′2
n (s

′, a′)),

where C is a constant. Then, it follows that

lim
n→∞

Wn,nk
(s, a) = 0 ∀ (s, a), nk.

Now, for the sake of completeness, we restate a lemma from [9] below, which we will use to

bound the accumulated noise.

Lemma A.1.2 (Lemma 4.2 in [9]). For every δ > 0, and with probability one, there exists

some n′ such that |Wn,n′(s, a)| ≤ δ, for all n ≥ n′.

Using the above lemma, let nk′ ≥ nk such that, for all n ≥ nk′ we have

|Wn,nk′
(s, a)| ≤ γϵDk < γDk.

Furthermore, by Proposition 2.3.2(ii) let νk ≥ nk′ such that, for all n ≥ νk we have

Ln(s, a) ≤ γDk − γϵDk and γϵDk − γDk ≤ Un(s, a).

Define another sequence Yn that starts at iteration νk.

Yνk(s, a) = Dk and Yn+1(s, a) = (1− αn(s, a))Yn(s, a) + αn(s, a) γ Dk (A.23)

Note that it is easy to show that the sequence Yn(s, a) in (A.23) is decreasing, bounded

below by γDk, and converges to γDk as n→ ∞. Now we state the following lemma.

Lemma A.1.3. For all state-action pairs (s, a) and iterations n ≥ νk, it holds that:

(1) Q′
n(s, a) ≤ min{Un(s, a), Yn(s, a) +Wn,νk(s, a)},

(2) max{Ln(s, a),−Yn(s, a) +Wn,νk(s, a)} ≤ Q′
n(s, a).

76

Proof. We focus on part (1). For the base case n = νk, the statement holds because

Yνk(s, a) = Dk and Wνk,νk(s, a) = 0. We assume it is true for n and show that it continues

to hold for n+ 1:

Qn+1(s, a) = (1− αn(s, a))Q
′
n(s, a) + αn(s, a) [(HQ

′
n)(s, a) + ξn+1(s, a)]

≤ (1− αn(s, a))min{Un(s, a), Yn(s, a) +Wn,νk(s, a)}

+ αn(s, a) (HQ
′
n)(s, a) + αn(s, a) ξn+1(s, a)

≤ (1− αn(s, a)) (Yn(s, a) +Wn,νk(s, a)) + αn(s, a) γDk + αn(s, a) ξn+1(s, a)

≤ Yn+1(s, a) +Wn+1,νk(s, a),

where we used (HQ′
n) ≤ γ∥Q′

n∥ ≤ γDk. Now, we have

Q′
n+1(s, a) = Π[Ln+1(s,a), Un+1(s,a)] [Qn+1(s, a)]

≤ Π[Ln+1(s,a), Un+1(s,a)] [Yn+1(s, a) +Wn+1,νk(s, a)]

≤ min{Un+1(s, a), Yn+1(s, a) +Wn+1,νk(s, a)}.

The first inequality holds because

Qn+1(s, a) ≤ Yn+1(s, a) +Wn+1,νk(s, a).

The second inequality holds because Yn+1(s, a) +Wn+1,νk(s, a) ≥ γDk − γϵDk, Ln(s, a) ≤

γDk − γϵDk, and Ln(s, a) ≤ Un(s, a) by Lemma 2.3.1. Symmetrically, it can be shown that

max{Ln+1(s, a),−Yn+1(s, a) +Wn+1,νk(s, a)} ≤ Q′
n+1(s, a),

which completes the proof.

77

Since Yn(s, a) → γDk and Wn,νk(s, a) → 0, we have

lim supn→∞∥Q′
n∥ ≤ γDk < Dk+1.

Therefore, there exists some time nk+1 such that

max{−Dk+1, Ln(s, a)} ≤ Q′
n(s, a) ≤ min{Dk+1, Un(s, a)} ∀ (s, a), n ≥ nk+1,

completing thus the induction.

For part (ii) of the theorem: we fix (s, a) and focus on the convergence analysis of Un(s, a)

to Q∗(s, a). A similar analysis can be done to show Ln(s, a) → Q∗(s, a) almost surely. First

note that we can write (2.11) the update equation of Un(s, a) as:

Un+1(sn, an) = Π[−ρ,∞]

[
Un(sn, an) + βn(sn, an)

[
ψn(Un(sn, an), Qn+1(sn, an))

]]
where ψn(Un(sn, an), Qn+1(sn, an)) is the stochastic gradient and in this case is equal to

Q̂U
0 (sn, an)− Un(sn, an). We define the noise terms

ϵ̄n+1(sn, an) = ψn(Un(sn, an), Q
∗(sn, an))− E[ψn(Un(sn, an), Q

∗(sn, an))] (A.24)

ε̄n+1(sn, an) = ψn(Un(sn, an), Qn+1(sn, an))− ψn(Un(sn, an), Q
∗(sn, an)). (A.25)

Note here that ϵ̄n+1(sn, an) represents the error that the sample gradient deviates from its

mean when computed using the optimal action-value Q∗ and ε̄n+1(sn, an) is the error between

the two evaluations of ψn due only to the difference between Qn+1(sn, an) and Q∗(sn, an).

Thus, we have

ψn(Un(sn, an), Qn+1(sn, an)) = E[ψn(Un(sn, an), Q
∗(sn, an))] + ϵ̄n+1(sn, an) + ε̄n+1(sn, an).

Since Qn → Q∗ by part (i) of the Theorem, then ε̄n(sn, an) → 0 almost surely. It is now

convenient to view Un(s, a) as a stochastic process in n, adapted to the filtration {Fn}n≥0.

By definition of ϵ̄n+1(s, a), we have that

E[ϵ̄n+1(s, a)|Fn] = 0 a.s.

Since ϵ̄n+1(s, a) is unbiased and ε̄n+1(s, a) converges to zero, we can apply Theorem 2.4 of

[43], a standard stochastic approximation convergence result, to conclude that Un(s, a) →

Q∗(s, a) almost surely. Since our choice of (s, a) was arbitrary, this convergence holds for all

(s, a) ∈ S ×A.

78

A.1.5 Proof of Lemma 2.3.2

Proof. First note that Lemma A.1.1 still holds in this case. To see this, note that if the

requirements of the lemma are satisfied (i.e., if we are at iteration n = 1, 2, . . . , and in the

previous iteration, we had Ln−1(s, a) ≤ Un−1(s, a) for all (s, a) and Q
′
n−1 ∈ Q), then Qn is

bounded using the same argument as before. Since the rewards r(s, a) are uniformly bounded

and τ is an almost surely finite stopping time, then Q̃L
n,0 and Q̃

U
n,0 are finite. Moreover, since

Q̃L
n,0 and Q̃U

n,0 are computed using the same sample path w, it follows that

Q̃U
n,0(s, a)− Q̃L

n,0(s, a) ≥ 0, for all (s, a) ∈ S ×A.

This can be easily seen if we subtract (2.16) from (2.15). Notice that the reward and the

penalty will both cancel out and we have Q̃U
n,t − Q̃L

n,t ≥ 0 for all t = 0, 1, . . . , τ − 1. With

Ln−1(s, a) ≤ Un−1(s, a) and Q̃
U
n,0(s, a) ≥ Q̃L

n,0(s, a) it follows that Ln(s, a) ≤ Un(s, a) for all

(s, a).

Now, we prove Proposition 2.3.2 again for the experience replay buffer case.

For part (i): our original proof still holds since Lemma A.1.1 still holds.

For part (ii): first note that since the experience replay buffer is updated with a new

observation of the noise at every iteration, then by Borel’s law of large numbers, we have

our probability estimate p̂(w) for the noise converges to the true noise distribution p(w) as

n→ ∞, i.e.,

lim
n→∞

p̂n(w) = p(w) for all w ∈ W . (A.26)

Fix an (s, a) ∈ S ×A. By part (i) we have the action-value iterates Qn and Q′
n are bounded

for all n. Now we write the iterate Q̃L
n,0(s, a) in terms of a noise term and a bias term as

follows,

Q̃L
n,0(s, a) = Q̃L

n,0(s, a)− E[Q̃L
n,0(s, a)]︸ ︷︷ ︸

noise

+E[Q̃L
n,0(s, a)]− E[QL

n,0(s, a)]︸ ︷︷ ︸
bias

+E[QL
n,0(s, a)].

Now, we define the noise term using

ξLn (s, a) = Q̃L
n,0(s, a)− E[Q̃L

n,0(s, a)].

79

Also, similar to the original proof we define an accumulated noise process started at iteration

ν by WL
ν,ν(s, a) = 0, and

WL
n+1,ν(s, a) = (1− αn(s, a))W

L
n,ν(s, a) + αn(s, a) ξ

L
n+1(s, a) ∀ n ≥ ν,

which averages noise terms together across iterations. We haveE[Q̃L
n,0(s, a)−E[Q̃L

n,0(s, a)]|Fn] =

0, so Corollary 4.1 applies and it follows that

lim
n→∞

WL
n,ν(s, a) = 0 ∀ ν ≥ 0.

Let ν̃ be large enough so that αn(s, a) ≤ 1 for all n ≥ ν̃. We denote the bias term by

χn(s, a) = E[Q̃L
n,0(s, a)]− E[QL

n,0(s, a)].

Since as n→ ∞, we have p̂n(w) → p(w), the bias due to sampling from the experience buffer

χn(s, a) → 0. Let η > 0 and ν̄ ≥ ν̃ be such that |χ(s, a)| ≤ η
2
for all n ≥ ν̄ and all (s, a). We

also define

Y L
ν̃ (s, a) = ρ,

Y L
n+1(s, a) = (1− αn(s, a))Y

L
n (s, a) + αn(s, a)Q

∗(s, a) + αn(s, a)
η

2
, ∀n ≥ ν̄.

It is easy to see that the sequence Y L
n (s, a) → Q∗(s, a) + η

2
. Now we show that the

following claim holds. Claim: for all iterations n ≥ ν̄, it holds that

Ln(s, a) ≤ min{ρ, Y L
n (s, a) +WL

n,ν̄(s, a)}.

To prove this claim, we proceed by induction on n. For n = ν̄, we have

Y L
ν̄ (s, a) = ρ and WL

ν̄,ν̄(s, a) = 0,

80

so the statement is true for the base case. We now show that it is true for n+ 1 given that

it holds at n:

Ln+1(s, a) = min{ρ, (1− αn(s, a))Ln(s, a) + αn(s, a) (Q̃
L
n,0(s, a)− E[Q̃L

n,0(s, a)]

+ E[Q̃L
n,0(s, a)]− E[QL

n,0(s, a)] + E[QL
n,0(s, a)])}

= min{ρ, (1− αn(s, a))Ln(s, a) + αn(s, a) ξ
L
n (s, a) + αn(s, a)χn(s, a)

+ αn(s, a)E[Q
L
n,0(s, a)]}

≤ min{ρ, (1− αn(s, a)) (Y
L
n (s, a) +WL

n,νk
(s, a)) + αn(s, a) ξ

L
n (s, a)

+ αn(s, a)
η

2
+ αn(s, a)Q

∗(s, a)}

≤ min{ρ, Y L
n+1(s, a) +WL

n+1,ν̃(s, a)},

where the first inequality follows by the induction hypothesis and E[QL
n,0(s, a)] ≤ Q∗(s, a).

Next, since Y L
n (s, a) → Q∗(s, a) + η

2
, WL

n,νk
(s, a) → 0, then if Q∗(s, a) + η

2
≤ ρ, we have

lim sup
n→∞

Ln(s, a) ≤ Q∗(s, a) +
η

2
.

Otherwise, if ρ < Q∗(s, a) + η
2
, then

lim sup
n→∞

Ln(s, a) ≤ ρ < Q∗(s, a) +
η

2
.

Therefore, since our choice of (s, a) was arbitrary, it follows that for every η > 0, there exists

some time n′ such that Ln(s, a) ≤ Q∗(s, a) + η for all (s, a) ∈ S ×A and n ≥ n′.

Using Proposition 2.2.1(i), Q∗(s, a) ≤ E[QU
n,0(s, a)], a similar argument as the above can

be used to establish that

Q∗(s, a)− η

2
≤ lim inf

n→∞
Un(s, a).

Hence, there exists some time n′′ such that Q∗(s, a)− η ≤ Un(s, a) for all (s, a) and n ≥ n′′.

Take n0 to be some time greater than n′ and n′′ and the result follows.

The proof of Lemma 2.3.1 when using an experience buffer is similar to that given in

appendix A.1.3 so it is omitted.

A.1.6 Proof of Theorem 2.3.2

Proof. The proof of both parts (i) and (ii) are similar to that of Theorem 2.3.1, so we omit

them.

81

A.2 LBQL with Experience Replay Algorithm

Algorithm 4: LBQL with Experience Replay

Input: Initial estimates L0 ≤ Q0 ≤ U0, batch size K, stepsize rules αn(s, a), βn(s, a),

and noise buffer B.

Output:Approximations {Ln}, {Q′
n}, and {Un}.

Set Q′
0 = Q0 and choose an initial state s0.

for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g., ϵ-greedy). Observe wn+1.

Store wn+1 in B and update p̂n(wn+1).

Perform a standard Q-learning update:

Qn+1(sn, an) = Q′
n(sn, an) + αn(sn, an)

[
rn(sn, an) + γmax

a
Q′

n(sn+1, a)−Q′
n(sn, an)

]
.

Sample randomly a sample path w = (w1, w2, . . . , wτ) from B, where τ ∼ Geom(1− γ).

Set φ = Qn+1. Using w and the current p̂n compute Q̃U
0 (sn, an) and Q̃

L
0 (sn, an), using

(2.15) and (2.16), respectively.;

Update and enforce upper and lower bounds:

Un+1(sn, an) = Π[−ρ,∞]

[
Un(sn, an) + βn(sn, an)

[
Q̃U

0 (sn, an)− Un(sn, an)
]]
,

Ln+1(sn, an) = Π[∞, ρ]

[
Ln(sn, an) + βn(sn, an)

[
Q̃L

0 (sn, an)− Ln(sn, an)
]]
,

Q′
n+1(sn, an) = Π[Ln+1(sn,an), Un+1(sn,an)] [Qn+1(sn, an)]

end for

82

A.3 Implementation Details of LBQL with Experience Replay

We use a noise buffer B of size κ to record the noise values w that have been previ-

ously observed. The buffer B is used to generate the sample path w and the batch sample

{w1, . . . , wK} used to estimate the expectation in the penalty function. Here, it is not neces-

sary that the noise space W is finite. This is also convenient in problems with a large noise

support such as the car-sharing problem with four stations where we have two sources of

noise. Specifically, the noise due to the distribution of the rentals among the stations has a

very large support.

In order to reduce the computational requirements of LBQL, the lower and upper bounds

updates are done every m steps and only if the difference between the current values of the

bounds is greater than some threshold δ.

Since we can easily obtain inner DP results for all (s, a) each time the DP is solved, we

perform the upper and lower bound updates for all (s, a) whenever an update is performed

(as opposed to just at the current state-action pair). However, only the action-value of the

current (s, a) is projected between the lower and upper bounds, so the algorithm is still

asynchronous. The pseudo-code of LBQL with experience replay with these changes, is

shown in Algorithm 5.

83

Algorithm 5: LBQL with Experience Replay (Full Details)

Input:Initial estimates L0 ≤ Q0 ≤ U0, batch size K, stepsize rules αn(s, a), βn(s, a),

noise buffer B of size κ, number of steps between bound updates m, and threshold δ.

Output:Approximations {Ln}, {Q′
n}, and {Un}.

Set Q′
0 = Q0 and choose an initial state s0.;

for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g., ϵ-greedy). Observe wn+1.;

Store wn+1 in B.;

Perform a standard Q-learning update:

Qn+1(sn, an) = Q′
n(sn, an)

+ αn(sn, an)
[
rn(sn, an) + γmax

a
Q′

n(sn+1, a)−Q′
n(sn, an)

]
.

;
if n ≥ κ and n mod m = 0 and |Un(sn, an)− L(sn, an)| > δ then

Sample randomly a batch D = {w1, w2, . . . , wK} and a sample path

w = {w1, w2, . . . , wτ} from B, where τ ∼ Geom(1− γ).;

Set φ = Qn+1. Using w and D, compute Q̂U
0 (s, a) and Q̂

L
0 (s, a) for all (s, a) ∈ S ×A,

using (2.9) and (2.10), respectively.;

For all (s, a) ∈ S ×A, update upper and lower bounds:

Un+1(sn, an) = Π[−ρ,∞]

[
Un(sn, an) + βn(sn, an)

[
Q̂U

0 (sn, an)− Un(sn, an)
]]
,

Ln+1(sn, an) = Π[∞, ρ]

[
Ln(sn, an) + βn(sn, an)

[
Q̂L

0 (sn, an)− Ln(sn, an)
]]
,

end if

Enforce upper and lower bounds:

Q′
n+1(sn, an) = Π[Ln+1(sn,an), Un+1(sn,an)] [Qn+1(sn, an)]

end for

84

A.4 Numerical Experiments Details

Let ν(s, a) and ν(s) be the number of times state-action pair (s, a) and state s, have been

visited, respectively. For all algorithms, a polynomial learning rate αn(s, a) = 1/νn(s, a)
r is

used, where r = 0.5. Polynomial learning rates have been shown to have a better performance

than linear learning rates [70].

We use a discount factor of γ = 0.95 for the pricing car-sharing/stormy gridworld prob-

lems, γ = 0.9 for the windy gridworld problem and γ = 0.99 for the repositioning problem.

Moreover, we use an ϵ-greedy exploration strategy such that ϵ(s) = 1/ν(s)e, where e is 0.4

for the four-stations pricing car-sharing problem and 0.5 for all the other problems. For the

car-sharing/windy gridworld problems, the initial state-action values are chosen randomly

such that L0(s, a) ≤ Q0(s, a) ≤ U0(s, a) where

L0(s, a) = −Rmax/(1− γ) and U0(s, a) = Rmax/(1− γ)

for all (s, a). For the stormy gridworld problem, we set the initial state-action values to

zero (we find that a random initialization caused all algorithms except LBQL to perform

extremely poorly).

We report LBQL parameters used in our numerical experiments in Table 2. Note that

for a fair comparison, the parameter K of bias-corrected Q-learning algorithm is taken equal

to K of LBQL in all experiments. In addition, the κ steps used to create the buffer for LBQL

are included in the total number of steps taken. Results of the gridworld and car-sharing

problems are averaged over 50 and 10 runs, respectively. All experiments were run on a 3.5

GHz Intel Xeon processor with 32 GB of RAM workstation.

85

Table 2: LBQL parameters.

Parameter

Problem β κ K m δ

2-CS-R 0.01 40 20 10 0.01

2-CS 0.01 40 20 15 0.01

4-CS 0.01 1000 20 200 0.01

WG 0.2 100 10 10 0.01

SG 0.2 500 20 20 0.05

A detailed description of the environments is given in the next two sections.

A.4.1 Gridworld Examples

First we consider, windy gridworld, a well-known variant of the standard gridworld prob-

lem discussed in [63]. Then we introduce, stormy gridworld, a new environment that is more

complicated than windy gridworld. The environments are summarized below.

Windy Gridworld. The environment is a 10 × 7 gridworld, with a cross wind point-

ing upward, [63]. The default wind values corresponding to each of the 10 columns are

{0, 0, 0, 1, 1, 1, 2, 2, 1, 0}. Allowable actions are {up, right, down, left}. If the agent happens

to be in a column whose wind value is different from zero, the resulting next states are

shifted upward by the “wind” whose intensity is stochastic, varying from the given values

in each column by {−1, 0, 1} with equal probability. Actions that corresponds to directions

that takes the agent off the grid leave the location of the agent unchanged. The start and

goal states are (3, 1) and (3, 8), respectively. The reward is −1 until the goal state is reached,

where the reward is 0 thereafter.

Stormy Gridworld. Consider the stochastic windy gridworld environment. Now, how-

ever, we allow the wind to blow half the time as before and the other half it can blow from

any of the three other directions. The horizontal wind values corresponding to each row

86

from top to bottom are given by {0, 0, 1, 1, 1, 1, 0}. Also, it can randomly rain with equal

probability in any of the central states that are more than two states away from the edges of

the grid. The start and goal states are (3, 1) and (3, 10) respectively. Rain creates a puddle

which affects the state itself and all of its neighboring states. The reward is as before except

when the agent enters a puddle state the reward is −10.

A.4.2 Car-sharing Benchmark Examples

In this section, we give the detailed formulations of the two variants of the car-sharing

benchmark, repositioning and pricing. The essential difference is that in the pricing version,

the decision maker “repositions” by setting prices to induce directional demand (but does

not have full control since this demand is random).

A.4.2.1 Repositioning Benchmark for Car-sharing

We consider the problem of repositioning cars for a two stations car-sharing platform,

[31]. The action is the number of cars to be repositioned from one station to the other,

before random demand is realized. Since repositioning in both directions is never optimal,

we use r > 0 to denote the repositioned vehicles from station 1 to 2 and r < 0 to denote

repositioning from station 2 to 1. The stochastic demands at time t are D1,t and D2,t for

stations 1 and 2 respectively, are i.i.d., discrete uniform, each supported on {3, . . . , 9}. The

rental prices are p1 = 3.5 and p2 = 4 for stations 1 and 2, respectively. All rentals are one-

way (i.e., rentals from station 1 end up at station 2, and vice-versa). The goal is to maximize

profit, where unmet demands are charged a lost sales cost ρ1 = ρ2 = 2 and repositioning

cost c1 = 1 for cars reposition from station 1 to 2 and c2 = 1.5 for cars repositioned from

station 2 to 1. We assume a total of s̄ = 12 cars in the system and formulate the problem as

an MDP, with state st ∈ S = {0, 1, . . . , 12} representing the number of cars at station 1 at

beginning of period t. We denote by V ∗(st) the optimal value function starting from state

87

st. The Bellman recursion is:

V ∗(st) = max
st−s̄≤rt≤st

E

[∑
i∈{1,2}

pi ωit(Di,t+1)−
∑

i∈{1,2}

ρi

(
Di,t+1 − ωit(Di,t+1)

)
− c1max(rt, 0) + c2min(rt, 0) + γV ∗(st+1)

]
,

ω1t(D1,t+1) = min(D1,t+1, st − rt),

ω2t(D2,t+1) = min(D2,t+1, s̄− st + rt),

st+1 = st − rt + ω2t(D2,t+1)− ω1t(D1,t+1),

(A.27)

where γ ∈ (0, 1) is a discount factor. The repositioning problem for two stations is illustrated

in Figure 14a. The nodes represent stations, solid arcs represent fulfilled demands, and

dashed arcs represent repositioned vehicles.

A.4.2.2 Pricing Benchmark for Car-sharing

Suppose that a vehicle sharing manager is responsible for setting the rental price for the

vehicles at the beginning of each period in an infinite planning horizon. We model a car

sharing system with N stations. The goal is to optimize the prices to set for renting a car at

each of the N stations; let the price at station i and time t be pit for i ∈ [N] := {1, 2, . . . , N}.

Demands are nonnegative, independent and depends on the vehicle renting price according

to a stochastic demand function

Dit(pit, ϵi,t+1) := κi(pit) + ϵi,t+1,

where Dit(pit, ϵi,t+1) is the demand in period t, ϵi,t+1 are random perturbations that are

revealed at time t + 1 and κi(pit) is a deterministic demand function of the price pit that

is set at the beginning of period t at station i ∈ [N]. The random variables ϵi,t+1 are

independent with E[ϵi,t+1] = 0 without loss of generality. Furthermore, we assume that the

expected demand E[Dit(pit, ϵi,t+1)] = κi(pit) <∞ is strictly decreasing in the rental price pit

which is restricted to a set of feasible price levels [p
i
, pi] for all i ∈ [N], where p

i
, pi are the

minimum and the maximum prices that can be set at station i, respectively. This assumption

88

implies a one-to-one correspondence between the rental price pit and the expected demand

dit ∈ D := [di, di] for all pit ∈ [p
i
, pi] where di = κi(pi) and di = κi(pi).

The problem can be formulated as an MDP with state st, which is a vector whose

components represent the number of available cars at each of the N stations at beginning of

period t. The state space is SN−1 with S = {0, 1, . . . , s̄} and s̄ is the maximum number of

cars in the vehicle sharing system. We assume that a customer at station i goes to station j

with probability ϕij for all i, j ∈ [N]. Let Yik,t+1 be a random variable taking values in [N]

that represents the random destination of customer k at station i, which is only observed

at the beginning of period t + 1. We have Yik,t+1 = j with probability ϕij, so Yik,t+1 are

i.i.d. for each customer k. Denote by lij the distance from station i to j, for all i, j ∈ [N].

We penalize unmet demands by a lost sales unit cost ρi, i ∈ [N]. The decision vector is

pt = {pit ∈ [p
i
, pi], ∀i ∈ [N]

}
. Let V ∗(st) be the revenue-to-go function with number of

available vehicles st. Thus, we have the Bellman recursion

V ∗(st) = max
pt

E

[∑
i∈[N]

pit
∑
j∈[N]

lij ωijt(ϵi,t+1)−
∑
i∈[N]

ρi

(
κi(pit) + ϵi,t+1 − ωit(ϵi,t+1)

)
+ γV ∗(st+1)

]
ωit(ϵi,t+1) = min (κi(pit) + ϵi,t+1, sit) ∀ i ∈ [N],

ωijt(ϵi,t+1) =

ωit(ϵi,t+1)∑
k=1

1{Yik,t+1=j} ∀ i, j ∈ [N],

si,t+1 = sit +
∑
j∈[N]

ωjit(ϵi,t+1)− ωit(ϵi,t+1), ∀ i ∈ [N],

(A.28)

where γ ∈ (0, 1) is a discount factor. Note that the MDP in (A.28) can be reformulated

using the action-value function Q(st, pt) instead of V (st). The quantity ωit(ϵi,t+1) represents

the total fulfilled customer trips from station i at time t for a given realization of the noise

ϵi,t+1. Notice that in (A.28) there are two sources of randomness: the noise due to stochastic

demand represented by ϵi, for all i ∈ [N] and the noise due to the random distribution of

fulfilled rentals between the stations, i.e., due to the random variables Yi1, . . . , Yiωit(ϵi,t+1) for

all i ∈ [N]. Due to the high dimensionality involved in the state, action, and noise spaces,

solving (A.28) is computationally challenging.

89

Spatial Pricing in Two-Location Car-sharing. We first consider the pricing problem

on two stations and 12 cars in total. The state space is S = {0, 1, . . . , 12} representing the

number of cars at station 1. All rentals are one-way. The prices, at each period t, are

restricted to p1t ∈ [1, 6] and p2t ∈ [1, 7]. The stochastic demand functions at period t are

given by: D1t(p1t, ϵ1,t+1) := 9−p1t+ϵ1,t+1 and D2t(p2t, ϵ2,t+1) := 10−p2t+ϵ2,t+1 for stations 1

and 2 respectively. The random variables ϵ1,t+1 and ϵ2,t+1 are independent, discrete uniform,

each supported on {−3,−2, . . . , 3}. We use the discretized expected demands, as our actions:

d1t ∈ {3, . . . , 8} and d2t ∈ {3, . . . , 9}. The lost sales cost is 2 at both stations.

Spatial Pricing in Four-Location Car-sharing. Consider the car-sharing problem

for four stations with s̄ = 20 cars and dit ∈ {3, 4} for each station. In total there are 1771

states and 16 actions. The random variables ϵi,t+1 are independent, discrete uniform, each

supported on {−3,−2, . . . , 3}. We consider both one way and return trips at each station.

Figure 14b shows an illustration of the stations (nodes) and the rentals between the stations

(arcs). The probabilities ϕij = 0.25 for all i, j ∈ {1, 2, 3, 4} and the lost sales costs (ρi) are

1.7, 1.2, 1.5, 2 at stations 1, 2, 3, 4, respectively. The distance between the stations are taken

such that lij = 1 if i = j, and the other distances being symmetrical, meaning lij = lji with

l12 = 1.8, l13 = 1.5, l14 = 1.4, l23 = 1.6, l24 = 1.1, and l34 = 1.2.

90

1 2

r > 0

r < 0
ω1

ω2

(a) Repositioning problem with 2 sta-
tions.

3 4

1

2

(b) Pricing problem with 4 stations.

Figure 14: Illustrations of the repositioning and pricing car-sharing problems.

91

A.4.3 Sensitivity Analysis

We also perform sensitivity analysis on the five algorithms with respect to the learning

rate and exploration parameters r and e for the car-sharing problem with two stations. Here,

r controls the polynomial learning rate defined by, αn(s, a) = 1/νn(s, a)
r and e controls the

ϵ-greedy exploration strategy, where ϵ is annealed according to ϵ(s) = 1/ν(s)e. We use

ν(s, a) and ν(s) to denote the number of times a state-action pair (s, a) and state s, have

been visited, respectively. We report our results in Table 3. These results show the average

number of iterations and CPU time until each algorithm first reach 50%, 20%, 5%, 1%

relative error for each case of the parameters e and r while keeping all other parameters

as before. The “-” indicates that the corresponding % relative error for the corresponding

case was not achieved during the course of training. The values in the table are obtained

by averaging five independent runs for each case. Except for the few cases where BCQL

performs slightly better, LBQL once again drastically outperforms the other algorithms

and exhibits robustness against the learning rate and exploration parameters, an important

practical property that the other algorithms seem to lack.

The effect of varying parametersm andK of LBQL is presented in Figure 15. These plots

are obtained by tuning parameters m ∈ {1, 10, 50, 150, 200} and K ∈ {1, 5, 10, 100, 1000} of

LBQL algorithm in the car-sharing problem with two stations. All other parameters are kept

the same as before. Figures 15a and 15c show the mean total reward with a 95% CI. Figures

15b and 15d show the mean and 95% CI of the relative error given by: ∥Vn − V ∗∥2/∥V ∗∥2.

The results are obtained from 10 independent runs. Using larger values of m reduces the

strength of LBQL in both the performance and relative error metrics, as shown in Figures

15a and 15b. This is expected since the effect of the bounds fades as we update the bounds

less frequently. Interestingly, we can see from the performance plot that m = 10 strikes a

good balance between how often to do the bounds and Q-learning updates and achieves a

performance that is slightly better and more stable than that ofm = 1 after about half of the

training process (50,000 steps). In terms of the sample size K, Figures 15c and 15d clearly

show that larger values of K improve the performance of LBQL in terms of performance

and relative error measures. This is not unexpected because a larger sample yields a better

92

approximation of the penalty.

(a) Performance (2-CS) (b) Relative Error (2-CS)

(c) Performance (2-CS)
(d) Relative Error (2-CS)

Figure 15: Plots showing the effect of tuning the parameters m and K of LBQL algorithm.

93

Table 3: Computational results for different exploration & learning rate parameters. Bold

numbers indicate the best performing algorithm.

% Relative error

e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)

L
B
Q
L

0.4 0.5 3,672.6 1.9 9,323.6 4.6 18,456.6 8.9 33,054.0 15.7

0.6 3,632.0 1.7 9,147.4 4.4 18,270.0 8.6 39,624.8 18.6

0.7 3,725.2 1.8 9,087.4 4.3 18,217.8 8.6 41,941.2 19.7

0.8 3,698.2 1.8 9,321.8 4.4 20,860.0 9.9 53,752.6 25.6

0.9 3,992.2 1.9 10,119.2 4.9 23,070.2 11.0 80,252.8 38.4

0.5 0.5 3,316.0 1.6 8,040.2 3.8 15,050.2 7.2 27,912.8 13.2

0.6 3,514.4 1.7 8,529.4 4.0 16,595.6 7.9 36,100.2 17.0

0.7 3,531.8 1.7 8,712.8 4.1 17,835.6 8.6 46,010.0 21.9

0.8 3,449.2 1.6 8,571.8 4.0 18,152.6 8.5 65,007.6 30.4

0.9 3,398.4 1.6 8,346.4 3.9 18,844.8 8.8 99,820.2 46.6

0.6 0.5 2,877.4 1.3 7,129.0 3.3 13,046.0 6.2 23,822.0 11.2

0.6 3,182.8 1.5 8,066.0 3.8 15,421.4 7.3 33,286.0 15.6

0.7 2,979.4 1.4 7,625.6 3.6 15,414.6 7.2 34,238.0 15.9

0.8 3,272.6 1.6 8,431.0 4.1 17,809.2 8.5 114,032.8 54.2

0.9 3,185.6 1.5 8,480.0 4.1 19,242.4 9.2 123,331.2 58.8

B
C
Q
L

0.4 0.5 3,200.8 1.0 22,455.0 7.0 65,329.0 20.3 107,785.6 33.7

0.6 4,618.2 1.5 43,724.6 13.6 159,662.6 49.6 292,421.0 34.9

(continued on next page)

94

Table 3: (continued)

% Relative error

e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)

0.7 8,059.4 2.5 123,484.2 38.4 - - - -

0.8 17,287.0 5.3 - - - - - -

0.9 67,162.2 20.9 - - - - - -

0.5 0.5 2,209.6 0.7 15,604.0 4.9 48,715.6 15.3 80,317.4 25.2

0.6 3,274.2 1.0 31,422.8 9.8 124,319.6 38.7 243,101.4 75.6

0.7 5,619.6 1.8 89,857.0 27.8 - - - -

0.8 11,417.0 3.6 - - - - - -

0.9 42,605.4 13.1 - - - - - -

0.6 0.5 1,830.4 0.6 11,639.6 3.6 35,763.0 11.1 61,249.0 19.0

0.6 2,612.4 0.8 23,571.6 7.4 92,101.4 28.8 177,127.6 55.5

0.7 4,371.2 1.3 66,526.0 20.5 - - - -

0.8 9,028.2 2.8 297,368.6 17.9 - - - -

0.9 31,673.6 9.8 - - - - - -

S
Q
L

0.4 0.5 7,750.6 1.9 37,889.8 9.1 93,820.0 22.5 141,171.0 33.8

0.6 11,329.4 2.8 75,364.0 18.3 233,422.0 56.4 - -

0.7 20,131.4 4.8 212,767.0 51.0 - - - -

0.8 46,986.8 11.3 - - - - - -

0.9 182,890.0 43.8 - - - - - -

(continued on next page)

95

Table 3: (continued)

% Relative error

e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)

0.5 0.5 6,122.2 1.5 30,944.8 7.4 79,167.4 19.0 120,527.8 29.0

0.6 9,166.6 2.2 62,540.6 14.9 201,822.4 48.2 - -

0.7 15,835.6 3.8 174,233.6 42.0 - - - -

0.8 36,548.8 8.7 - - - - - -

0.9 157,029.0 37.7 - - - - - -

0.6 0.5 4,984.0 1.2 24,989.0 6.0 64,605.4 15.4 98,554.6 23.6

0.6 7,396.2 1.8 50,282.4 12.0 165,574.2 39.8 - -

0.7 13,018.8 3.1 143,142.6 34.1 - - - -

0.8 29,201.0 6.9 - - - - - -

0.9 122,335.6 29.2 - - - - - -

Q
L

0.4 0.5 7,743.0 1.7 38,114.2 8.2 93,303.4 20.2 136,851.4 29.6

0.6 11,644.0 2.5 76,625.0 16.6 232,679.4 50.9 - -

0.7 20,181.6 4.4 212,401.4 46.3 - - - -

0.8 45,987.2 10.1 - - - - - -

0.9 191,442.2 41.9 - - - - - -

0.5 0.5 6,143.6 1.3 30,996.2 6.8 78,131.8 16.9 116,361.2 25.3

0.6 9,331.6 2.0 63,998.2 13.9 204,593.6 44.6 - -

(continued on next page)

96

Table 3: (continued)

% Relative error

e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)

0.7 16,247.0 3.5 178,842.8 38.4 - - - -

0.8 38,297.0 8.2 - - - - - -

0.9 165,835.8 35.7 - - - - - -

0.6 0.5 5,005.2 1.1 24,877.2 5.4 63,777.8 13.7 96,402.0 20.8

0.6 7,547.0 1.9 51,369.4 13.1 166,179.2 42.3 289,882.8 46.1

0.7 13,288.2 3.1 144,318.2 33.1 - - - -

0.8 30,172.6 6.5 - - - - - -

0.9 139,952.6 30.3 - - - - - -

D
o
u
b
l
e
-
Q
L

0.4 0.5 224,490.2 51.2 - - - - - -

0.6 - - - - - - - -

0.7 - - - - - - - -

0.8 - - - - - - - -

0.9 - - - - - - - -

0.5 0.5 - - - - - - - -

0.6 - - - - - - - -

0.7 - - - - - - - -

0.8 - - - - - - - -

0.9 - - - - - - - -

(continued on next page)

97

Table 3: (continued)

% Relative error

e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)

0.6 0.5 - - - - - - - -

0.6 - - - - - - - -

0.7 - - - - - - - -

0.8 - - - - - - - -

0.9 - - - - - - - -

98

Appendix B

B.1 Proofs for Chapter 4

B.1.1 Proof of Proposition 3.2.1

Proof. We prove part (a) by induction. First, define

Q∗
0(s, a) = r(s, a) and Qλ

0 (s, a) = r(s, a) + λT
[
b(w)−

∑N
i=1 di(si, ai)

]
,

and suppose we run value iteration for both systems:

Q∗
t+1(s, a) = r(s, a) + γE

[
maxa′∈A(s′)Q

∗
t (s

′, a′)
]
,

Qλ
t+1(s, a) = r(s, a) + λT

[
b(w)−

∑N
i=1 di(si, ai)

]
+ γE

[
maxa′∈AQ

λ
t (s

′, a′)
]
.

It is well-known that, by the value iteration algorithm’s convergence,

Q∗(s, a) = lim
t→∞

Q∗
t (s, a) and Qλ(s, a) = lim

t→∞
Qλ

t (s, a).

Consider a state s ∈ S and a feasible action a ∈ A(s). We have,

Qλ
0 (s, a) = r(s, a) + λT

[
b(w)−

∑N
i=1 di(si, ai)

]
≥ r(s, a) = Q∗

0(s, a).

Suppose Qλ
t (s, a) ≥ Q∗

t (s, a) holds for all s ∈ S and a ∈ A(s) for some t > 0 (induction

hypothesis). Then,

Qλ
t+1(s, a) = r(s, a) + λT

[
b(w)−

∑N
i=1 di(si, ai)

]
+ γE

[
maxa′∈AQ

λ
t (s

′, a′)
]

≥ r(s, a) + λT
[
b(w)−

∑N
i=1 di(si, ai)

]
+ γE

[
maxa′∈A(s′)Q

∗
t (s

′, a′)
]

≥ r(s, a) + γE
[
maxa′∈A(s′)Q

∗
t (s

′, a′)
]
= Q∗

t+1(s, a).

Thus, it follows that Qλ(s, a) ≥ Q∗(s, a).

For the proof of part (b), define

B0(w) = b(w) and Bt+1(w) = b(w) + γ E
[
Bt(w

′)
]
.

99

We use an induction proof. We have for all (s, a) ∈ S ×A,

Qλ
0 (s, a) = r(s, a) + λT

[
b(w)−

N∑
i=1

di(si, ai)

]

=
N∑
i=1

[
ri(si, ai)− λTdi(si, ai)

]
+ λTb(w) =

N∑
i=1

Qλ
0,i(si, ai) + λTB0(w),

where Qλ
0,i(si, ai) = ri(si, ai)− λTdi(si, ai). Similarly, for all (s, a) ∈ S ×A,

Qλ
1 (s, a) = r(s, a) + λT

[
b(w)−

N∑
i=1

di(si, ai)

]
+ γE

[
maxa′∈AQ

λ
0 (s

′, a′)
]

=
N∑
i=1

[
ri(si, ai)− λTdi(si, ai)

]
+ λTb(w) + γE

[
max
a′∈A

{
N∑
i=1

Qλ
0,i(s

′
i, a

′
i) + λTB0(w

′)

}]

=
N∑
i=1

[
ri(si, ai)− λTdi(si, ai) + γE

[
maxa′i∈Ai

Qλ
0,i(s

′
i, a

′
i)
]]

+ λT
(
b(w) + γE

[
B0(w

′)
])

=
N∑
i=1

Qλ
1,i(si, ai) + λTB1(w).

If we continue in this manner, we arrive at Qλ
t (s, a) =

∑N
i=1Q

λ
t,i(si, ai) + λTBt(w). Finally,

we have

Qλ(s, a) = lim
t→∞

Qλ
t (s, a)

= lim
t→∞

N∑
i=1

Qλ
t,i(si, ai) + λTBt(w) =

N∑
i=1

Qλ
i (si, ai) + λTB(w),

which follows by the convergence of value iteration.

100

B.1.2 Proof of Theorem 3.3.1

Proof. We first prove part (i). For a fixed λ, we can define a new MDP with a reward

function given by ri(si, ai) − λTdi(si, ai). It follows that the Q-learning algorithm on this

new MDP converges almost surely to the optimal action value function Qλ,∗, see for example

[9].

We now prove the second result: limn→∞Qλ
n(s, a) ≥ Q∗(s, a). Recall that

Qλ
n(s, a) = λTBn(w) +

N∑
i=1

Qλ
i,n(si, ai).

By part (i), we have that Qλ
i,n(si, ai) → Qλ,∗

i (si, ai) as n → ∞. Also by standard stochas-

tic approximation theory, we have limn→∞ Bn(w) = B(w) for all w [43]. Thus, we have

limn→∞Qλ
n(s, a) = Qλ(s, a) for all (s, a). The result follows by Proposition 3.2.1(a) which

states that Q∗(s, a) ≤ Qλ(s, a) for any λ ∈ Λ.

For part (ii), we provide a sketch of the proof. The idea is similar to the proof of Theorem

1 of [25]. Assume without loss of generality that Q∗(s, a) = 0 for all state-action pairs (s, a).

First, note that the iterates Q′
n(s, a) are bounded in the sense that there exists a constant

D0 = Rmax/(1 − γ), Rmax = max(s,a) |r(s, a)|, such that |Q′
n(s, a)| ≤ D0 for all (s, a) and

iterations n [26]. Next, define the sequence Dk+1 = (γ+ϵ)Dk, such that γ+ϵ < 1 and ϵ > 0.

Clearly, Dk → 0.

We then proceed by induction. The goal is now to show that there exists some time nk

such that for all (s, a),

max{−Dk, Ln(s, a)} ≤ Q′
n(s, a) ≤ min{Dk, Q

λ∗

n (s, a)}, ∀n ≥ nk. (B.1)

This would impliy that Q′
n(s, a) converges to Q

∗(s, a) = 0 for all (s, a).

To show inequality (B.1), we have that as n → ∞, the L-iterate will converge to

the Lagrangian policy’s action-value function, which gives a lower bound on Q∗. Also,

Q∗(s, a) ≤ Qλ,∗(s, a) by part (i). Thus by construction of Q′
n (projection step), we can

establish that there exist some n′
k, such that for all n ≥ n′

k we have

Ln(s, a) ≤ Q′
n(s, a) ≤ Qλ∗

n (s, a).

101

Finally, given the above inequality, and combined with standard theory (see [9]), we can

establish that there must be some nk for which (B.1) holds for all n ≥ nk.

102

B.2 Weakly Coupled Q-learning Algorithm

Algorithm 6: Weekly Coupled Q-learning

Input: Initial estimates L0, Q0, and Qi,0, and stepsize rules αn, βn, ηn, and ζn.

Output: Approximations {Ln}, {Q′
n}, and {Qi,n}.

Set Q′
0 = Q0 and choose an initial state s0.

for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g., ϵ-greedy). Let

Qn+1(sn, an) = Q′
n(sn, an) + αn

[
rn(sn, an) + γmax

a
Q′

n(sn+1, a)−Q′
n(sn, an)

]
.

Run a separate Q-learning for each λ ∈ Λ, for each subproblem i ∈ {1, . . . , N}

Qλ
i,n+1(si,n, ai,n) = Qλ

i,n(si,n, ai,n) + βn

[
ri(si,n, ai,n)− λTdi(si,n, ai,n)

+ γmax
a′i

Qλ
i,n(si,n+1, a

′
i)−Qλ

n(si,n, ai,n)
]
.

Update Bn+1(wn) according to equation (3.6).

Find the best upper bound:

For λ ∈ Λ and a ∈ A(sn) compute Qλ
n+1(sn, a) using (3.7).

Set Qλ∗

n+1(sn, a) = minλ∈ΛQ
λ
n+1(sn, a)

Update lower bound:

Set aλ∗

n+1 = argminaQ
λ∗

n+1(sn+1, a)

Ln+1(sn, an) = Ln(sn, an) + ζn

[
rn(sn, an) + γLn(sn+1, a

λ∗

n+1)− Ln(sn, an)
]
.

Project to satisfy the bounds using (2.13).

end for

103

B.3 Lagrangian DQN Algorithm

Algorithm 7: Lagrangian DQN

Input: Initialized replay buffer D, Lagrangian multipliers set Λ, subproblems

Qλ
i -network θU & θ−U = θU

Output: Approximation {Qλ
n}

for n = 0, 1, 2, . . . do

Find the best upper bound:

For λ ∈ Λ and a ∈ A(sn) find Q
λ
n(sn, a) per (3.11).

Choose an action an via some behavior policy (e.g., ϵ-greedy(Qλ∗

n)), observe the

transition experience and store (sn, an,dn, rn,bn, sn+1) in D.

Update Bn+1(w) according to equation (3.6).

Update subproblems network:

Sample a minibatch of transitions τ from D along with random λ.

for i= 1, . . . , N do

Compute targets yi as per (3.13).

Perform a gradient descent step on (3.12).

end for

end for

B.4 Numerical Experiments Details

A discount factor of 0.9 is used for the EV charging problem and 0.99 for the multi-

product inventory and online stochastic ad matching problems. In the tabular setting, we

use a polynomial learning rate that depends on the state-action pairs visitation given by

αn(s, a) = 1/νn(s, a)
r, where νn(s, a) represent the number of times (s, a) has been visited

up to iteration n, and r = 0.4. We also use an ϵ-greedy exploration policy given by ϵ(s) =

1/ν(s)e, where ν(s) is the number of time the state (s) has been visited and e = 0.4. In

the function approximation setting, we an ϵ-greedy policy that decays ϵ from 1 to 0.05 after

104

200, 000 steps. All state-action value functions are initialized randomly. Experiments were

ran on a shared memory cluster with dual 12-core Skylake CPU (Intel Xeon Gold 6126 2.60

GHz) and 192 GB RAM/node.

B.4.1 EV Charging with Exogenous Electricity Cost

In this problem, there are in total three charging spots N = 3. Each spot represents a

subproblem with state (ct, Bi,t, Di,t), where ct ∈ {0.2, 0.5, 0.8} is the exogenous electric cost,

Bi,t ≤ 2 is the amount of charge required and Di,t ≤ 4 is the remaining time until the EV

leaves the system. The state space size is 36 for each subproblem. At a given period t, the

action of each subproblem is whether to charge an EV occupying the charging spot ai,t = 1

or not ai,t = 0. A feasible action is given by
∑N

i=1 ai,t ≤ b(ct), where b(0.2) = 3, b(0.5) = 2,

and b(0.8) = 1. The reward of each subproblem is given by the reward function,

ri((ct, Bi,t, Di,t), ai,t) =


(1− ct)ai,t if Bi,t > 0, Di,t > 1,

(1− ct)ai,t − F (Bi,t − ai,t) if Bi,t > 0, Di,t = 1,

0, otherwise,

where F (Bi,t−ai,t) = 0.2(Bi,t−ai,t)2 is a penalty function for failing to complete the charging

of the EV before the deadline. The endogenous state of each subproblem evolves such that

(Bi,t+1, Di,t+1) = (Bi,t−ai,t, Di,t−1) if Di,t > 1, and (Bi,t+1, Di,t+1) = (B,D) with probability

q(D,B) if Dt ≤ 1, where q(0, 0) = 0.3 and q(B,D) = 0.7/11 for all B > 0 and D > 0. On

the other hand, the exogenous state ct evolves following the transition probabilities given by:

P (ct+1|ct) =


0.4 0.3 0.3

0.2 0.5 0.3

0.6 0.2 0.2

 .

105

B.4.2 Multi-product Inventory Control with an Exogenous Production Rate

We consider manufacturing K = 5 products. The exogenous demand Dk for each prod-

uct k ∈ {1, 2, . . . , 5} follows a Poisson distribution with mean value µk. The maximum

storage capacity and the maximum number of allowable backorders (after which lost sales

incur) for product k are given by Nk and Mk, respectively. The state for subproblem k

is given by (pk, xk), where xk ∈ Xk = {−Mk,−Mk + 1, . . . , Nk} is the continuous inven-

tory level for product k, and pk is an exogenous random Markovian noise with support

{0.8, 0.85, 0.9, 0.95, 1., 1.05, 1.1, 1.15, 1.2}. A negative stock level corresponds to the number

of backorders. For subproblem k, the action ak is the number of resources allocated to the

product k. The maximum number of resources available for all products is U = 4 so a

feasible action is such that
∑

k ak ≤ 4. Allocating a resource level ak yields a production

rate ρk(ak, pk) = pk(10 ak)/(5.971 + ak). The cost function for product k, ck(pk, xk, ak), is

the sum of the holding, backorders, and lost sales costs. We let hk, bk, and lk denote the

holding, backorder, and lost sale costs per unit respectively. The cost function ck(pk, xk, ak)

is given by,

ck(pk, xk, ak) = hk(xk + ρk(ak, pk))+ + bk(−xk − ρk(ak, pk))+

+ lk((Dk − xk − ρk(ak, pk))+ −Mk)+,

where (.)+ = max(., 0). We summarize the cost parameters and the mean demand for each

product in Table 4. Finally, the transition function for subproblem k is given by

f(pt, xk,t, ak,t) = (pt+1,max(min(xk,t + ρk(ak,t, pt)−Dk,t, Nk,t),−Mk,t)),

where the exogenous noise pt evolves according to a transition matrix sampled from a Dirich-

let distribution whose parameters are each sampled from a uniform U(1, 20) distribution.

106

Table 4: Multi-product inventory environment parameters

Product k 1 2 3 4 5

Storage capacity Nk 10 11 16 20 25

Maximum backorders Mk 5 10 7 15 12

Mean demand µk 1.3 1.2 1.4 1.5 1.6

Holding cost hk 1.3 1.2 1.1 1.4 5

Backorders cost bk 6 5 15 12 8

Lost sales cost lk 12 11 25 30 10

B.4.3 Online Stochastic Ad. Matching

In this problem, a DM needs to match N = 6 advertisers to arriving impressions [27].

An impression et ∈ E := {1, 2, . . . , 5} arrives according to a discrete time Markov chain

with transition probabilities given by PE(et+1|et), where each row of the transition matrix

PE is sampled from a Dirichlet distribution whose parameters are sampled from a uniform

distribution U(1, 20). The action at,i ∈ {0, 1} is whether to assign impression et to advertiser

i or not. The DM can assign an impression to at most one advertiser,
∑N

i=1 ai,t = 1. The

state of advertiser i, xi,t gives the number of remaining ads to display and evolves according

to xi,t+1 = si,t−ai,t. The initial state is x0 = (10, 11, 12, 10, 14, 9). The reward obtained from

advertiser i in state si,t = (et, xi,t) is ri(et, xi,t, ai,t) = li,et min(xi,t, ai,t), where the parameters

li,et ∼ U(1, 4).

Training settings. We train the algorithms for 6000 episodes on the EV charging

and the multi-product inventory control problems and for 10000 episodes on the online

stochastic ad matching problem. Each episode consists of 50 time steps except for the online

ad stochastic ad matching problem which consists of 80 steps. The result of each algorithm

is averaged over 5 runs. We use a neural network architecture that consists of two hidden

layers, with 64 and 32 hidden units respectively, for all algorithms. A rectified linear unit

107

(ReLU) is used as the activation function for each hidden layer. All algorithms were trained

using Adam with a learning rate of 0.0001 [39]. For Lagrangian DQN and WCDQN, we use

a Lagrangian multiplier λ ∈ [0, 10], with a 0.1 discretization. We also used an experience

buffer of size 500,000 and initialized it with 100,000 experience tuples that were obtained

using a random policy. For the WCDQN algorithm, we set the penalty coefficients τL and

τU to 1 and 10, respectively.

108

Appendix C

C.1 Proofs for Chapter 3

C.1.1 Proof of Proposition 4.3.2

Proof. Let ft(wt) = Vt+1(xt+1)−
∑

ij∈[N] ρij,t(dij,t + ϵij,t −wij,t) for a given ϵt, t = 1, . . . , T .

We first show that the solution w∗
ij,t = min (dij,t + ϵij,t, θij, t) for all i, j ∈ [N], is optimal

for the maximization problem in (4.2) confirming thus that Jt(xt,dt,θt, ϵt) = ft(w
∗
t), for

t = 1, . . . , T .

Suppose, on the contrary, for some t, there exist an optimal solution w′
kl,t < min (dkl,t +

ϵkl,t, θkl,t) for some k, l ∈ [N], w.l.o.g. Denote by x′
t+1 the state in period t + 1 under w′

t.

Let ε = min (dkl,t + ϵkl,t, θkl,t) − w′
kl,t > 0, then the solution constructed by wkl,t = w′

kl,t + ε

and wij,t = w′
ij,t for any ij ̸= kl is still feasible solution to (4.2) and

ft(wt) = Vt+1(xt+1)−
∑
ij∈[N]

ρij,t(dij,t + ϵij,t − wij,t)

= Vt+1(xt+1)−
∑
ij∈[N]

ρij,t(dij,t + ϵij,t − w′
ij,t) + ρkl,tε.

(C.1)

Note here if k = l then x′
t+1 = xt+1, i.e., Vt+1(xt+1) = Vt+1(x

′
t+1) therefore ft(wt) ≥

ft(w
′
t). We claim that ft(wt) ≥ ft(w

′
t) still holds for the case when k ̸= l, for all t = 1, . . . , T .

We give a proof by induction. At time T , we have

fT (wT) = VT+1(xT+1)−
∑
ij∈[N]

ρij,T (dij,T + ϵij,T − w′
ij,T) + ρkl,T εT

= −
∑
ij∈[N]

ρij,T (dij,T + ϵij,T − w′
ij,T) + ρkl,T εT

= fT (w
′
T) + ρkl,T εT

≥ fT (w
′
T).

109

Thus, our claim is true at time T . Suppose it is true at time t + 1, i.e., ft+1(wt+1) ≥

ft+1(w
′
t+1). Then, at time t, we have

ft(wt) = Vt+1(xt+1)−
∑
ij∈[N]

ρij,t(dij,t + ϵij,t − w′
ij,t) + ρkl,tεt

= max
yt+1∈Y(xt+1)

 ∑
ij∈[N]

Pij,t+1(dij,t+1)E[(wt+1)ij] + E[ft+1(wt+1)]


−

∑
ij∈[N]

ρij,t+1(dij,t+1 + ϵij,t − w′
ij,t) + ρkl,tεt

≥ max
yt+1∈Y(xt+1)

 ∑
ij∈[N]

Pij,t+1(dij,t+1)E[(w
′
t+1)ij] + E[ft+1(w

′
t+1)]


−

∑
ij∈[N]

ρij,t+1(dij,t+1 + ϵij,t − w′
ij,t) + ρkl,tεt

= Vt+1(x
′
t+1)−

∑
ij∈[N]

ρij,t+1(dij,t+1 + ϵij,t − w′
ij,t) + ρkl,tεt

= ft(w
′
t) + ρkl,tεt

≥ ft(w
′
t),

where the second equality follows by definition of Vt+1(xt+1),wt+1 and ft+1(wt+1). The

first inequality follows because wt+1 ≥ w′
t+1 and ft+1(wt+1) ≥ ft+1(w

′
t+1) by the induction

hypothesis and because expectation is a linear operator. Accordingly, wt is optimal, for

t = 1, . . . , T .

We now turn to prove the concavity of the value function. Clearly, VT+1(xT+1) is concave.

Suppose that Vt+1(xt+1) is concave for some t < T . We have the objective in (4.2) is jointly

concave in xt,dt,θt and wt. Since the constraint set is convex, then for any ϵt, we have

Jt(xt,dt,θt, ϵt) is jointly concave in xt,dt, and θt by Proposition 2.1.15 in [60]. By the

linearity of the expectation, we have E[Jt(xt,dt,θt, ϵt)] is jointly concave in xt,dt, and θt.

Since the rest of the terms in the objective of (4.1) is concave and the constraint set is again

a convex set, we have Vt(xt) is concave in xt.

110

C.1.2 Proof of Theorem 4.4.1

Proof. The proof that w∗
ij,t = min (dij,t + ϵij,t, θij, t)∀ ij ∈ {1, 2}, is optimal for the maxi-

mization problem in (4.3) is similar to the one given in Proposition 4.3.2.

For the second part of the theorem, we will first do the following variable transformation

to (4.3):

Let d̂12,t = xt − d12,t, d̃21,t = −d21,t, ŵ12,t = xt − w12,t, w̃21,t = −w21,t, θ̃21,t = −θ21,t, θ̂12,t =

xt − θ12,t, and let ḋt, θ̇t and ẏt = (d̂12,t, d̃21,t, θ̂12,t, θ̃21,t) ∈ Ẏ(xt) denote the transformed

decision vectors where the transformed feasible set Ẏ(xt) is given by:

Ẏ(xt) =
{
ẏ : d̂12,t−xt ≤ −d12,t, xt−d̂12,t ≤ d̄12,t, d̃21,t ≤ −d21,t, d̃21,t ≥ −d̄21,t, θ̂12,t ≥ 0, θ̃21,t ≥ xt−x̄

}
.

Equivalently, we can write (4.3) as,

V ∗
t (xt) = max

ẏt∈Ẏ(xt)

{
P11,t(d11,t)E[min(d11,t + ϵ11,t, θ̂12,t)]

+ P22,t(d22,t)E[min(d22,t + ϵ22,t, x̄− xt + θ̃21,t)]

+ P12,t(xt − d̂12,t)E[min(xt − d̂12,t + ϵ12,t, xt − θ̂12,t)]

+ P21,t(−d̃21,t)E[min(−d̃21,t + ϵ21,t,−θ̃21,t)]

+ E[Jt(xt, ḋt, θ̇t, ϵt)]
}

Jt(xt, ḋt, θ̇t, ϵt) = max
ŵ12,t,w̃21,t∈Ẇt

{
Vt+1(ŵ12,t − w̃21,t)−

∑
ij∈{1,2},i=j

ρij,t+1(dij,t+1 + ϵij,t − wij,t)

− ρ12,t(−d̂12,t + ϵ12,t + ŵ12,t)− ρ21,t(−d̃21,t + ϵ21,t + w̃21,t)
}

where,

Ẇt = {ẇ : θ̂12,t − ŵ12,t ≤ 0, d̂12,t − ŵ12,t ≤ ϵ12,t, d̃21,t − w̃21,t ≤ ϵ21,t, θ̃21,t − w̃21,t ≤ 0,

w11,t − d11,t ≤ ϵ11,t, w22,t − d22,t ≤ ϵ22,t}

(C.2)

We now show by induction that L♮-concavity is preserved in the dynamic program recursion.

Clearly VT+1(xt+1) is L
♮-concave. Assume that it holds for t+1, then using Lemma 1 in [21]

Vt+1(ŵ12,t − w̃21,t) is L♮-concave in (xt, θ̂12,t, θ̃21,t, d̂12,t, d̃21,t, ŵ21,t, w̃21,t) for t ≤ T . The L♮-

concavity of the rest of terms is straight-forward to verify. By Proposition 1. part (f) in [19]

111

the constraint set in Ẇ is L♮-convex then by Lemma 2 in [21] Jt(xt, ḋt, θ̇t, ϵt) is L
♮-concave

in (xt, θ̂12,t, θ̃21,t, d̂12,t, d̃21,t, ŵ21,t, w̃21,t). Since L♮-concavity is preserved by expectation and

the rest of the terms in the objective of (C.2) are L♮-concave, (see Proposition C.1.1), then

the objective function is also L♮-concave in (xt, θ̂12,t, θ̃21,t, d̂12,t, d̃21). By Proposition 1. part

(f) in [19] the constraint set Ẏ is L♮-convex. Finally, by Lemma 2 in [21] we have Vt(xt) is

L♮-concave in xt. By Proposition 1. of [20], the optimal solution θ̂∗12,t(xt), d̂
∗
12,t(xt), θ̃

∗
21,t(xt),

and d̃∗21,t(xt) are all nondecreasing in xt and for any ω > 0, the following inequalities hold,

d̂∗12,t(x+ω) ≤ d̂∗12,t(x)+ω , d̃∗21,t(x+ω) ≤ d̃∗21,t(x)+ω, θ̂
∗
12,t(x+ω) ≤ θ̂∗12,t(x)+ω , θ̃∗21,t(x+ω) ≤

θ̃∗21,t(x) + ω. Since we have d̂12,t = xt − d12,t, d̃21,t = −d21,t, θ̃21,t = −θ21,t, θ̂12,t = xt − θ12,t,

it follows that θ∗12,t(xt), d
∗
12,t(xt) and θ∗21(xt), d

∗
21,t(xt) are nondecreasing and nonincreasing

respectively in xt. Moreover, for any ω > 0, the following inequalities hold. d∗12,t(x + ω) ≤

d∗12,t(x)+ω, d∗21,t(x+ω) ≥ d∗21,t(x)−ω, θ∗12,t(x+ω) ≤ θ∗12,t(x)+ω, θ∗21,t(x+ω) ≥ θ∗21,t(x)−ω.

Q.E.D.

Proposition C.1.1. Under conditions (C1) and (C2), R11(θ̂12) = P11(d11)E[min(d11 +

ϵ11, θ̂12)],

R22(x, θ̃21) = P22(d22)E[min(d22+ ϵ22, x0−x+ θ̃21)], R12(d̂12, x, θ̂12) = P12(x− d̂12)E[min(x−

d̂12 + ϵ12, x − θ̂12)] and R21(d̃21, θ̃21) = P21(−d̃21)E[min(−d̃21 + ϵ21,−θ̃21)] are L♮-concave in

their respective variables.

Proof. First we start by showing that R11(θ̂12) = P11(d11)E[min(d11+ϵ11, θ̂12)] is L
♮-concave

in θ̂12. Note that since we fix d11 then we only need to show that R11 is L♮-concave in θ̂12.

It is enough to show that R11(θ̂12 − ζ) is supermodular in (θ̂12, ζ) for ζ ∈ {ζ : 0 ≤ ζ ≤ θ̂12}.

Note that we can write R11(θ̂12 − ζ) as P11(d11)d11 + P11(d11)E[min(ϵ11, θ̂12 − ζ − d11)].

∂2R11

∂θ̂12∂ζ
= P11(d11)F

′(θ̂12 − ζ − d11)

≥ −P ′
11(d11)F̄ (θ̂12 − ζ − d11)

≥ 0

Where the first inequality follows from (C2) and the second inequality follow from P ′
11 ≤ 0.

112

Similarly, we fix d22 and study the L♮-concavity of R22(x, θ̃21) = P22(d22)E[min(d22 +

ϵ22, x0 − x + θ̃21)]. We need to show that R22(x − ζ, θ̃21 − ζ) is supermodular in (x, θ̃21, ζ).

But R22(x− ζ, θ̃21− ζ)= R22(x, θ̃21), so it is enough to show that R22(x, θ̃21) is supermodular

in (x, θ̃12).

Note that we can write R22(x, θ̃21) as P22(d22)d22 + P22(d22)E[min(ϵ22, x0 − d22 − x+ θ̃21)].

∂2R22

∂x∂θ̃21
= P22(d22)F

′(x0 − d22 − x+ θ̃21)

≥ −P ′
22(d22)F̄ (x0 − d22 − x+ θ̃21)

≥ 0.

Where the first inequality follows from condition (C2) and the second inequality follow from

P ′
22 ≤ 0.

To show that R12(d̂12, x, θ̂12) = P12(x − d̂12)E[min(x − d̂12 + ϵ12, x − θ̂12)] is L
♮-concave

in (d̂12, x, θ̂12), it is enough to show that R12(d̂12 − ζ, x − ζ, θ̂12 − ζ) is supermodular in

(d̂12, x, ζ). But R12(d̂12 − ζ, x− ζ, θ̂12 − ζ) = R12(d̂12, x, θ̂12), so we show that R12(d̂12, x, θ̂12)

is supermodular in (d̂12, x, θ̂12). Note that we can write R12(d̂12, x, θ̂12) as P12(x − d̂12)(x −

d̂12) + P12(x− d̂12)E[min(ϵ12, d̂12 − θ̂12)].

∂2R12

∂d̂12∂x
= −2P ′

12(x− d̂12)− P ′′
12(x− d̂12)(x− d̂12)− P ′′

12(x− d̂12)E[min(ϵ12, d̂12 − θ̂12)]

+ P ′
12(x− d̂12)F̄ (d̂12 − θ̂12)

If P ′′
12(d) ≤ 0 then,

∂2R12

∂d̂12∂x
= −2P ′

12(x− d̂12)− P ′′
12(x− d̂12)E[min(x− d̂12 + ϵ12, x− θ̂12)]

+ P ′
12(x− d̂12)F̄ (d̂12 − θ̂12)

≥ −2P ′
12(x− d̂12) + P ′

12(x− d̂12)F̄ (d̂12 − θ̂12)

≥ 0

Where the first inequality follows since E[min(x − d̂12 + ϵ12, x − θ̂12)] ≥ 0 and the second

inequality follow from P ′
12 ≤ 0.

113

If P ′′
12(d) > 0 then,

∂2R12

∂d̂12∂x
= −2P ′

12(x− d̂12)− P ′′
12(x− d̂12)(x− d̂12)− P ′′

12(x− d̂12)E[min(ϵ12, d̂12 − θ̂12)]

+ P ′
12(x− d̂12)F̄ (d̂12 − θ̂12)

≥ −2P ′
12(x− d̂12)− P ′′

12(x− d̂12)(x− d̂12) + P ′
12(x− d̂12)F̄ (d̂12 − θ̂12)

≥ −(P ′
12(x− d̂12) + P ′′AB(x− d̂12)(x− d̂12))

≥ 0

The first inequality follows from E[min(ϵ12, d̂12 − θ̂12)] ≤ E[ϵ12] = 0. The second inequality

follows since −P ′
12(x− d̂12) + P ′

12(x− d̂12)F̄ (d̂12 − θ̂12) = −P ′
12(x− d̂12)F (d̂12 − θ̂12) ≥ 0 and

the last inequality follows from condition (C1).

Deriving with respect to d̂12 and θ̂12,

∂2R12

∂d̂12∂θ̂12
= P ′

12(x− d̂12)F̄ (d̂12 − θ̂12) + P12(x− d̂12)F
′(d̂12 − θ̂12)

= −P ′
12(x− d̂12)F̄ (d̂12 − θ̂12)[−1 + ϱ(x− d̂12, x− θ̂12)]

≥ 0

Where the last inequality follows from condition (C2).

Deriving with respect to θ̂12 and x,

∂2R12

∂θ̂12∂x
= −P ′

12(x− d̂12)F̄ (d̂12 − θ̂12)

≥ 0

Finally, we prove the L♮-concavity of R21(d̃21, θ̃21) = P21(−d̃21)E[min(−d̃21 + ϵ21,−θ̃21)] in

(d̃21, θ̃21). We do that by showing R21(d̃21 − ζ, θ̃21 − ζ) is supermodular in (d̃21, θ̃21, ζ) for

ζ ∈ {ζ : 0 ≤ ζ ≤ θ̂21}.

Note that we can write R21(d̃21 − ζ, θ̃21 − ζ) as P21(−d̃21 + ζ)(−d̃21 + ζ) + P21(−d̃21 +

ζ)E[min(ϵ21,−θ̃21 + d̃21)].

∂2R21

∂d̃21∂ζ
= −2P ′

21(ζ − d̃21)− P ′′
21(ζ − d̃21)(ζ − d̃21)− P ′′

21(ζ − d̃21)E[min(ϵ21, d̃21 − θ̃21)]

+ P ′
21(ζ − d̃21)F̄ (d̃21 − θ̃21)

114

If P ′′
21(d) ≤ 0 then,

∂2R21

∂d̃21∂ζ
= −2P ′

21(ζ − d̃21)− P ′′
21(ζ − d̃21)E[min(ζ − d̃21 + ϵ21, ζ − θ̃21)]

+ P ′
21(ζ − d̃21)F̄ (d̃21 − θ̃21)

≥ −2P ′
21(ζ − d̃21) + P ′

21(ζ − d̃21)F̄ (d̃21 − θ̃21)

≥ 0

Where the first inequality follows since E[min(ζ − d̃21 + ϵ21, ζ − θ̃21)] ≥ 0 and the second

inequality follow from P ′
21 ≤ 0.

If P ′′
21(d) > 0 then,

∂2R21

∂d̃21∂ζ
= −2P ′

21(ζ − d̃21)− P ′′
21(ζ − d̃21)(ζ − d̃21)− P ′′

21(ζ − d̃21)E[min(ϵ21, d̃21 − θ̃21)]

+ P ′
21(ζ − d̃21)F̄ (d̃21 − θ̃21)

≥ −2P ′
21(ζ − d̃21)− P ′′

21(ζ − d̃21)(ζ − d̃21) + P ′
21(ζ − d̃21)F̄ (d̃21 − θ̃21)

≥ −(P ′
21(ζ − d̃21) + P ′′BA(ζ − d̃21)(ζ − d̃21))

≥ 0

The first inequality follows from E[min(ϵ21, d̃21 − θ̃21)] ≤ E[ϵ21] = 0. The second inequality

follows since −P ′
21(ζ − d̃21) + P ′

21(ζ − d̃21)F̄ (d̃21 − θ̃21) = −P ′
21(ζ − d̃21)F (d̃21 − θ̃21) ≥ 0 and

the last inequality follows from condition (C1).

Deriving with respect to d̃21 and θ̃21,

∂2R21

∂d̃21∂θ̂21
= P ′

21(ζ − d̃21)F̄ (d̃21 − θ̃21) + P21(ζ − d̃21)F
′(d̃21 − θ̃21)

= −P ′
21(ζ − d̃21)F̄ (d̃21 − θ̃21)[−1 + ϱ(ζ − d̃21, ζ − θ̃21)]

≥ 0

Where the last inequality follows from condition (C2).

Deriving with respect to θ̃21 and ζ,

∂2R21

∂θ̃21∂ζ
= −P ′

21(ζ − d̃21)F̄ (d̃21 − θ̃21)

≥ 0

115

Bibliography

[1] Daniel Adelman and Adam J Mersereau. Relaxations of weakly coupled stochastic
dynamic programs. Operations Research, 56(3):712–727, 2008.

[2] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In Inter-
national Conference on Machine Learning, pages 146–155. PMLR, 2017.

[3] L. Andersen and M. Broadie. Primal-dual simulation algorithm for pricing multidi-
mensional American options. Management Science, 50(9):1222–1234, 2004.

[4] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. Advances in neural information processing systems, 30,
2017.

[5] M. G. Azar, R. Munos, M. Ghavamzadaeh, and H. J. Kappen. Speedy Q-learning. In
Advances in Neural Information Processing Systems 24, 2011.

[6] Santiago R. Balseiro, David B. Brown, and Chen Chen. Dynamic Pricing of Relocating
Resources in Large Networks. Management Science, page mnsc.2020.3735, 2020.

[7] Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. Pricing and opti-
mization in shared vehicle systems: An approximation framework. arXiv preprint
arXiv:1608.06819, 2016.

[8] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time dynamic
programming. Artificial intelligence, 72(1-2):81–138, 1995.

[9] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming, volume 5. Athena
Scientific Belmont, MA, 1996.

[10] Dimitris Bertsimas and Adam J Mersereau. A learning approach for interactive mar-
keting to a customer segment. Operations Research, 55(6):1120–1135, 2007.

[11] Omar Besbes, Francisco Castro, and Ilan Lobel. Surge pricing and its spatial supply
response. Management Science, 67(3):1350–1367, 2021.

116

[12] K. Bimpikis, O. Candogan, and D. Saban. Spatial pricing in ride-sharing networks.
Operations Research, 2019.

[13] D. B. Brown and M. B. Haugh. Information relaxation bounds for infinite horizon
markov decision processes. Operations Research, 65(5):1355–1379, 2017.

[14] D. B. Brown, J. E. Smith, and P. Sun. Information relaxations and duality in stochas-
tic dynamic programs. Operations Research, 58(4-part-1):785–801, 2010.

[15] David B Brown and James E Smith. Index policies and performance bounds for
dynamic selection problems. Management Science, 66(7):3029–3050, 2020.

[16] David B Brown and Jingwei Zhang. On the strength of relaxations of weakly coupled
stochastic dynamic programs. Operations Research, 2022.

[17] N. Chen, X. Ma, Y. Liu, and W. Yu. Information relaxation and a duality-driven
algorithm for stochastic dynamic programs. arXiv preprint arXiv:2007.14295, 2020.

[18] Qi (George) Chen, Yanzhe (Murray) Lei, and Stefanus Jasin. Real-Time Spatial-
Intertemporal Dynamic Pricing for Balancing Supply and Demand in a Ride-Hailing
Network. SSRN Scholarly Paper ID 3610517, Social Science Research Network,
Rochester, NY, 2020.

[19] Xin Chen, Xiangyu Gao, and Zhenyu Hu. A new approach to two-location joint
inventory and transshipment control via l-convexity. Operations Research Letters,
43(1):65–68, 2015.

[20] Xin Chen, Xiangyu Gao, and Zhan Pang. Preservation of structural properties in
optimization with decisions truncated by random variables and its applications. Op-
erations Research, 66(2):340–357, 2018.

[21] Xin Chen, Zhan Pang, and Limeng Pan. Coordinating inventory control and pricing
strategies for perishable products. Operations Research, 62(2):284–300, 2014.

[22] C. Dann, L. Li, W. Wei, and E. Brunskill. Policy certificates: Towards accountable
reinforcement learning. arXiv preprint arXiv:1811.03056, 2018.

[23] Daniela Pucci De Farias and Benjamin Van Roy. The linear programming approach
to approximate dynamic programming. Operations research, 51(6):850–865, 2003.

117

[24] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. Deep reinforcement learning in large discrete action spaces. arXiv
preprint arXiv:1512.07679, 2015.

[25] Ibrahim El Shar and Daniel Jiang. Lookahead-bounded q-learning. In International
Conference on Machine Learning, pages 8665–8675. PMLR, 2020.

[26] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine
Learning Research, 5(Dec):1–25, 2003.

[27] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. Online
stochastic matching: Beating 1-1/e. In 2009 50th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 117–126. IEEE, 2009.

[28] M. B. Haugh and L. Kogan. Pricing American options: a duality approach. Operations
Research, 52(2):258–270, 2004.

[29] Jeffrey Thomas Hawkins. A Langrangian decomposition approach to weakly coupled
dynamic optimization problems and its applications. PhD thesis, Massachusetts Insti-
tute of Technology, 2003.

[30] F. S. He, Y. Liu, A. G. Schwing, and J. Peng. Learning to play in a day: Faster deep
reinforcement learning by optimality tightening. arXiv preprint arXiv:1611.01606,
2016.

[31] Long He, Zhenyu Hu, and Meilin Zhang. Robust repositioning for vehicle sharing.
Manufacturing & Service Operations Management, 2019.

[32] David J Hodge and Kevin D Glazebrook. Dynamic resource allocation in a multi-
product make-to-stock production system. Queueing Systems, 67(4):333–364, 2011.

[33] T. Jaakkola, M. I. Jordan, and S. P. Singh. Convergence of stochastic iterative dy-
namic programming algorithms. In Advances in Neural Information Processing Sys-
tems, pages 703–710, 1994.

[34] D. R. Jiang, L. Al-Kanj, and W. B. Powell. Optimistic Monte Carlo tree search
with sampled information relaxation dual bounds. Operations Research (forthcoming),
2020.

118

[35] Yash Kanoria and Pengyu Qian. Blind Dynamic Resource Allocation in Closed Net-
works via Mirror Backpressure. arXiv:1903.02764 [math], 2020.

[36] Jackson A Killian, Arpita Biswas, Sanket Shah, and Milind Tambe. Q-learning la-
grange policies for multi-action restless bandits. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages 871–881, 2021.

[37] Jackson A Killian, Lily Xu, Arpita Biswas, and Milind Tambe. Robust restless ban-
dits: Tackling interval uncertainty with deep reinforcement learning. arXiv preprint
arXiv:2107.01689, 2021.

[38] Jae Ho Kim and Warren B Powell. Optimal energy commitments with storage and
intermittent supply. Operations Research, 59(6):1347–1360, 2011.

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[40] Ayşe Kocabıyıkoğlu and Ioana Popescu. An elasticity approach to the newsvendor
with price-sensitive demand. Operations research, 59(2):301–312, 2011.

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25:1097–1105, 2012.

[42] Sumit Kunnumkal and Huseyin Topaloglu. Using stochastic approximation meth-
ods to compute optimal base-stock levels in inventory control problems. Operations
Research, 56(3):646–664, 2008.

[43] H. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and
applications, volume 35. Springer Science & Business Media, 2003.

[44] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[45] D. Lee and W. B. Powell. Bias-corrected Q-learning with multistate extension. IEEE
Transactions on Automatic Control, 2019.

[46] H. B. McMahan, M. Likhachev, and G. J. Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In

119

Proceedings of the 22nd international conference on Machine learning, pages 569–576.
ACM, 2005.

[47] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[48] Selvaprabu Nadarajah and Andre Augusto Cire. Self-adapting network relaxations
for weakly coupled markov decision processes. Available at SSRN, 2021.

[49] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep
exploration via bootstrapped dqn. Advances in neural information processing systems,
29, 2016.

[50] Erhun Özkan. Joint pricing and matching in ride-sharing systems. European Journal
of Operational Research, 287(3):1149–1160, 2020.

[51] Zhan Pang. Optimal dynamic pricing and inventory control with stock deterioration
and partial backordering. Operations Research Letters, 39(5):375–379, 2011.

[52] Evan L Porteus. On the optimality of structured policies in countable stage decision
processes. Management Science, 22(2):148–157, 1975.

[53] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimen-
sionality, volume 703. John Wiley & Sons, 2007.

[54] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, 2014.

[55] L. C. G. Rogers. Monte Carlo valuation of American options. Mathematical Finance,
12(3):271–286, 2002.

[56] S. Sanner, R. Goetschalckx, K. Driessens, and G. Shani. Bayesian real-time dynamic
programming. In Twenty-First International Joint Conference on Artificial Intelli-
gence, 2009.

[57] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

120

[58] Paul J Schweitzer and Abraham Seidmann. Generalized polynomial approximations
in markovian decision processes. Journal of mathematical analysis and applications,
110(2):568–582, 1985.

[59] Nicola Secomandi. A rollout policy for the vehicle routing problem with stochastic
demands. Operations Research, 49(5):796–802, 2001.

[60] David Simchi-Levi, Xin Chen, and Julien Bramel. The Logic of Logistics. Springer
Series in Operations Research and Financial Engineering. Springer New York, New
York, NY, 2014.

[61] T. Smith and R. Simmons. Focused real-time dynamic programming for mdps:
Squeezing more out of a heuristic. In AAAI, pages 1227–1232, 2006.

[62] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of global optimization,
11(4):341–359, 1997.

[63] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press,
2018.

[64] C. Szepesvári. The asymptotic convergence-rate of Q-learning. In Advances in Neural
Information Processing Systems, pages 1064–1070, 1998.

[65] Kalyan Talluri and Garrett Van Ryzin. An analysis of bid-price controls for network
revenue management. Management science, 44(11-part-1):1577–1593, 1998.

[66] Huseyin Topaloglu. Using lagrangian relaxation to compute capacity-dependent bid
prices in network revenue management. Operations Research, 57(3):637–649, 2009.

[67] Huseyin Topaloglu and Sumit Kunnumkal. Approximate dynamic programming meth-
ods for an inventory allocation problem under uncertainty. Naval Research Logistics
(NRL), 53(8):822–841, 2006.

[68] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine
Learning, 16(3):185–202, 1994.

121

[69] Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr Mnih. Q-
learning in enormous action spaces via amortized approximate maximization. arXiv
preprint arXiv:2001.08116, 2020.

[70] H. van Hasselt. Double Q-learning. In Advances in Neural Information Processing
Systems, pages 2613–2621, 2010.

[71] H. van Hasselt, A. R. Guez, and D. Silver. Deep reinforcement learning with double
Q-learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[72] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Fre-
itas. Dueling network architectures for deep reinforcement learning. In International
conference on machine learning, pages 1995–2003. PMLR, 2016.

[73] Ariel Waserhole and Vincent Jost. Pricing in vehicle sharing systems: Optimization in
queuing networks with product forms. EURO Journal on Transportation and Logistics,
5(3):293–320, 2016.

[74] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, UK, 1989.

[75] Peter Whittle. Restless bandits: Activity allocation in a changing world. Journal of
applied probability, 25(A):287–298, 1988.

[76] Zhe Yu, Yunjian Xu, and Lang Tong. Deadline scheduling as restless bandits. IEEE
Transactions on Automatic Control, 63(8):2343–2358, 2018.

[77] A. Zanette and E. Brunskill. Tighter problem-dependent regret bounds in reinforce-
ment learning without domain knowledge using value function bounds. arXiv preprint
arXiv:1901.00210, 2019.

122

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1 Numerical Results
	2 LBQL parameters.
	3 Computational results for different exploration & learning rate parameters. Bold numbers indicate the best performing algorithm.
	4 Multi-product inventory environment parameters

	List of Figures
	1 Illustration of LBQL Algorithm at iteration n.
	2 A simple stochastic MDP.
	3 An illustration of LBQL iterates for Example 1.
	4 Illustration of LBQL Upper and Lower Bounds.
	5 Results from the Gridworld Experiments.
	6 Results from the CS Experiments.
	7 Our WCMDP RL Approach.
	8 Illustration of WCQL Algorithm.
	9 Numerical results: plots showing the bounds behaviour (a), the total rewards and 95% confidence bounds of WCQL and other tabular algorithms (b), and their relative error (c) on the EV charging problem. Plots (d) and (e) show the total rewards for WCDQN and other algorithms on the multi-product inventory control and online stochastic ad matching problems, respectively.
	10 Plots showing the three location problem origin-destination expected demand functions of the price (a) and the resulting expected demand functions after aggregation (b).
	11 Individual LOOA value functions for Problem 1, =0.9.
	12 Individual LOOA policies for Problem 1, =0.9.
	13 LOOA's demand and allocation policies at location 1 for Problem 1, =0.9.
	14 Illustrations of the repositioning and pricing car-sharing problems.
	15 Plots showing the effect of tuning the parameters m and K of LBQL algorithm.

	1.0 Introduction
	1.1 Lookahead-bounded Q-learning
	1.2 Weakly Coupled Deep Q-Networks
	1.3 Spatial Dynamic Pricing for Shared Resources Systems

	2.0 Lookahead-Bounded Q-learning
	2.1 Related Literature
	2.2 Background
	2.2.1 MDP Model
	2.2.2 Information Relaxation Duality
	2.2.3 Absorption Time Formulation
	2.2.4 Lower Bounds using IR

	2.3 QL with Lookahead Bounds
	2.3.1 An Idealized Algorithm
	2.3.2 Analysis of Convergence
	2.3.3 LBQL with Experience Replay
	2.3.4 Convergence of LBQL with Experience Replay

	2.4 Numerical Experiments
	2.5 Conclusion

	3.0 Weakly Coupled Deep Q-Networks
	3.1 Related Literature
	3.2 Preliminaries
	3.2.1 Weakly Coupled MDPs
	3.2.2 Q-learning and DQN
	3.2.3 Lagrangian Relaxation

	3.3 Weakly Coupled Q-learning
	3.3.1 Convergence Analysis

	3.4 Weakly Coupled DQN
	3.4.1 Lagrangian DQN

	3.5 Numerical Experiments
	3.6 Limitations and Future Work
	3.7 Conclusion

	4.0 Spatial Dynamic Pricing for Shared-Resource Systems
	4.1 Literature Review
	4.2 Preliminaries
	4.3 Problem Formulation
	4.4 Dynamic Pricing and Rationing in Two Locations
	4.5 The Infinite Horizon Setting
	4.6 Leave-One-Out Aggregation Heuristic
	4.7 Computational Experiments
	4.8 Conclusion

	5.0 Conclusions and Future Work
	Appendix A.
	 A.1 Proofs for Chapter 2
	 A.1.1 Proof of Proposition 2.3.1
	 A.1.2 Proof of Proposition 2.3.2
	 A.1.3 Proof of Lemma 2.3.1
	 A.1.4 Proof of Theorem 2.3.1
	 A.1.5 Proof of Lemma 2.3.2
	 A.1.6 Proof of Theorem 2.3.2

	 A.2 LBQL with Experience Replay Algorithm
	 A.3 Implementation Details of LBQL with Experience Replay
	 A.4 Numerical Experiments Details
	 A.4.1 Gridworld Examples
	 A.4.2 Car-sharing Benchmark Examples
	 A.4.2.1 Repositioning Benchmark for Car-sharing
	 A.4.2.2 Pricing Benchmark for Car-sharing

	 A.4.3 Sensitivity Analysis

	Appendix B.
	 B.1 Proofs for Chapter 4
	 B.1.1 Proof of Proposition 3.2.1
	 B.1.2 Proof of Theorem 3.3.1

	 B.2 Weakly Coupled Q-learning Algorithm
	 B.3 Lagrangian DQN Algorithm
	 B.4 Numerical Experiments Details
	 B.4.1 EV Charging with Exogenous Electricity Cost
	 B.4.2 Multi-product Inventory Control with an Exogenous Production Rate
	 B.4.3 Online Stochastic Ad. Matching

	Appendix C.
	 C.1 Proofs for Chapter 3
	 C.1.1 Proof of Proposition 4.3.2
	 C.1.2 Proof of Theorem 4.4.1

	Bibliography

