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Although the equilibrium composition of many alloy surfaces is understood, the rate of

transient surface segregation during annealing or oxidation is not known despite their crucial

effects on alloy corrosion and catalytic reactions which occur on overlapping timescales. This

thesis focuses on computational studies of the surface segregation of CuNi alloys, with meth-

ods and analyses generally applicable to all other bimetals. The text summarizes results for

the CuNi(100) surface facet primarily in vacuum, with new interatomic potentials introduced

to model interactions with oxygen optimized via evolutionary algorithm and deep learning.

We first introduce the CuNi alloy, including its thermodynamically expected behavior

in vacuum and oxygen environments. Molecular dynamics (MD) are used to simulate the

dominant mechanisms which facilitate surface segregation of the binary alloy system. These

preliminary findings are validated using first-principles and Monte Carlo annealing with the

embedded-atom method (EAM) to find the equilibrium composition profile versus surface

depth, a measurement that provides a defined endpoint for later transient simulations.

Then, three accelerated methods are utilized to transiently evolve the system towards

equilibrium: parallel trajectory splicing (ParSplice), adaptive kinetic Monte Carlo (AKMC),

and kinetic Monte Carlo (KMC) from cluster expansion. From nanosecond to second

timescales, this hierarchy of multiscale approaches can observe stochastic events not typically

seen with standard MD, closing the gap between computational and experimental timescales

for surface segregation and providing a timescale for vacuum segregation to occur.

The final chapter presents two novel interatomic potentials for the Cu-Ni-O system which

can be used within our hierarchy of multi-timescale methods to furnish realistic simulations

of alloy oxidation: one reactive forcefield (ReaxFF) developed utilizing an evolutionary al-

gorithm, and a larger set of parameters trained with deep learning tools available in the

DeepMD kit. We assess the performance of both forcefields through comparison to DFT
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results for the Cu, Ni, CuO, NiO, and CuNiO bulk and surface-terminated systems.

Keywords: Molecular dynamics, accelerated dynamics, interatomic potentials, evolution-

ary algorithms, deep learning, alloys, phase separation, surface segregation, oxidation,

thin films.
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1.0 Introduction

The study of alloy surface transformations bridges the fields of materials science and

chemical engineering. As the system size for surface chemistry approaches the atomic and

nanoscale where experimental resolution becomes an issue, computational tools prove essen-

tial in examinations of dynamical processes, revealing the atomic mechanisms and kinetics

underlying more macroscopic behavior like surface segregation. In this process, tension

caused by dangling atomic bonds on the exposed area will thermodynamically drive one

constituent metal towards sites with low coordination near vacuum, segregating the other

metal towards fully-coordinated sites within the bulk[10, 14, 28]. This phenomenon is a con-

tributory effect to corrosion at the nanoscale, substantially altering the alloy composition

in the topmost atomic layers relative to the overall, bulk composition. Alloy surfaces are

typically enriched with one particular metal due to that element’s lower surface energy in

the pure state compared to other elements in the mixture[14, 93].

Because it is driven by a difference in surface tension, surface de-mixing occurs even in

inert gas or vacuum, inadvertently altering the useful properties gained from homogeneously

alloying pure metals together before the material’s service life even begins. Alloy surface

segregation and ordering has been measured experimentally both in vacuum and gas envi-

ronments, with differences in the equilibrium alloy composition induced near the exposed

top layers for many bimetallic alloys[10, 14, 28, 48, 57, 118]. Consequently, studies of alloy

surface transformations are influenced by prior phase separation in vacuum during thermal

pre-treatment. A decoupling of the experimental environment from the pre-treatment an-

nealing environment is required to understand the transient effect on non-equilibrium surface

composition, since nanoscale elemental mapping is not feasible on relatively short microsec-

ond (µs) timescales even using electron and X-ray diffraction [16, 74]. There is limited

understanding of the degree to which oxidation and vacuum segregation can compete, or if

they even occur at the same timescales.

This thesis addresses these issues with a novel hierarchy of computational dynamics

and developed interatomic potentials, filling the spatiotemporal gap between experimental
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and computational approaches. Some of the mechanisms underlying surface transformations

occur early in the non-equilibrium dynamics, and can be sampled with short (ns) molecular

dynamics (MD) simulations; the identified transitions can be validated with first-principles

theory. Earlier studies in the literature guide the search for mechanisms of binary alloy

segregation. Thermodynamic trends for CuNi surface segregation are presented in the results

section of Chapter 2 and compared with existing findings. Behavior on short timescales and

equilibrium timescales informs intermediate and long timescale, with results published in the

Journal of Chemical Theory and Computation [35].

Figure 1: Spatiotemporal gap spanned by accelerated dynamics (ParSplice, KMC) between

conventional computational methods and relevant experimental techniques

Accelerated methods explore greater timescales, while early timescale simulations are

carried out with standard MD and equilibrium states are found using Monte Carlo (MC)

annealing (Chapter 2). The studies reported in Chapter 3 utilize a variety of multi-timescale

simulation methods to perform accelerated atomistic dynamics for the CuNi binary alloy,

sampling the early transient, intermediate, and equilibrium states of alloy surfaces during

the segregation process. This study generated milliseconds and even multiple seconds of
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alloy segregation, directly comparable to experimental observations.

The third chapter describes the application of accelerated MD methods to binary alloys,

which rely on developments in transition state theory (TST) to fill the remaining time gap

between conventional MD and experiments (µs to s). TST was first pioneered by French

mathematician René Marcelin in 1915 [70], who used it to describe products and reactants

as separated by a “dividing surface” in phase space across which reaction rates could be

determined from fluxes. The theory was later reinvigorated by Henry Eyring, Meredith

Gwynne Evans, and Michael Polanyi in 1935 [30] who simultaneously co-developed the Eyring

equation. Vast improvements to TST using variational approaches in the latter half of the

20th century revealed deep connections between the mathematics of stochastic processes

and those governing semi-classical dynamics like conventional MD[60]. These fundamental

connections will be detailed in chapter three within the context of MD acceleration up to

realistic timescales.

These dynamical simulations utilize semi-empirical potentials, or force fields, trained

to reproduce the behavior of first-principles DFT and experimental measurements. The

fourth chapter deals primarily with the development of force fields from first-principles data.

Because there is no pre-existing interatomic potential to describe oxygen interactions with

CuNi alloy, we optimize force field parameters between these nuclei. The first optimization

begins from separate reactive forcefield (ReaxFF) parameters in the literature for CuO and

NiO, combining the two sets into a single CuNi alloy oxidation potential using an evolutionary

particle swarm method, with my code provided at github.com/15garzab/pso_rff. Then,

deep learning is applied to create a much larger parameter set that is able to achieve lower

overall error. The second optimization utilizes a Python/C++ package, DeepMD, with the

same input structures as before to develop a neural network potential (DeepPot) which

describes the oxidation of CuNi surface more closely, with code provided by the developers

at github.com/deepmodeling/deepmd-kit.

The CuNi alloy is of interest for different applications with extreme environmental condi-

tions, including marine settings due to its resistance to corrosion by seawater[49, 99] and for

its utility in thermal catalysis of CO2-to-syngas-to-fuels reactions[8, 68, 115, 97]. Typically,

the “cupronickel” alloy exhibits surface segregation at elevated temperatures in vacuum, en-
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riching with Cu near the surface and Ni in the bulk[43, 108]. In all orientations, the top three

monolayers experience significant decrease in Ni solute concentration, which approaches its

value in the bulk at a depth of four or five atomic layers below the vacuum[37, 34, 98]. This

alters its performance for any future heterogeneous catalysis, in which the available surface

concentration of Nickel must be well-tuned[84, 113, 115].

However, alloy segregation and timescales related to the bimetallic dynamics are not

well understood in nanoscale thin films, as these require larger systems (>100 atoms) and

non-equilibrium dynamics to accurately simulate the region between bulk and exposed sur-

face. These larger, periodic systems can approximate the semi-infinite boundary for dopant

concentration present in thin films, which could differ from that of nanoparticle (NP) sys-

tems at least for relatively small examples[47, 109]. In addition to varying finite-size effects

between NPs of different sizes, NPs also exhibit strain responses from overall lower surface

coordination near edges and vertices compared to pristine, periodic films without these edges.

Further, strain effects result in core-shell structures for CuNi NPs that do not appear in

thin films[8, 106]. A recent KMC study investigated the dynamics in bulk NiFe solid solution,

reporting that the vacancy migration barrier is highly influenced by the local composition, be-

havior that the authors predict will influence the rate of microscale phase transformations[32].

Previously, only the dependence of activation energy on overall alloy composition could be

predicted or measured with any accuracy[39]. The failure of these global models for con-

centrated solid solutions is known, though they may be corrected by sampling transition

energies in differing chemical environments[79]. We do this later in Chapter 3 using adaptive

KMC (AKMC).

In place of DFT, it is common in the field of molecular simulation to derive model

Hamiltonians from physical intuition (Ising model, Lennard-Jones potential, etc.), statisti-

cal mechanics, and/or semi-empirical models[36, 57, 59, 85, 98]. These interatomic potentials

aim to reproduce physical behavior from both experiments and ab initio theory. In the cur-

rent work, we take advantage of the embedded-atom method (EAM) to model the system

energy of CuNi binary alloys, a modified pair potential that also accounts for local electron

density effects[33, 76, 78]. Novel potentials describing interactions with oxygen are presented

in Chapter 4, which are in preparation for journal submission.
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This thesis contains material first reported in the following publication:

R.B. Garza, J. Lee, M. H. Nguyen, A. Garmon, D. Perez, M. Li, J.C. Yang, G. Henkelman,

andW.A. Saidi, J. Chem. Theory Comput. 2022, 18, 7, 4447–4455, doi:10.1021/acs.jctc.2c00303

Primary contributions to the research, results, data analysis, text, and figures were provided

by the University of Pittsburgh (Garza, Li, Yang, and Saidi), including all data collection

and simulations involving DFT, MC, MD, and ParSplice (Garza). Part of this work has been

reprinted in the present thesis according to the American Chemical Society (ACS) Journal

Publishing Agreement and scholarly sharing policies. Initial guidance for running ParSplice

with application to binary alloy segregation was provided by Los Alamos National Labora-

tories (Garmon, Perez), though all simulation and data collection was performed at Pitt

(Garza). Data collection with KMC-based methods was performed by collaborators at the

University of Texas at Austin (Lee, Nguyen, and Henkelman), who provided Figure 7 which

was then refined by Pitt (Garza). All other figures were created at Pitt (Garza).

Further work was conducted to develop novel interatomic potentials for the Cu-Ni-O system,

with specific application to the nanoscale surface oxidation of CuNi alloy. Parameters from

the literature for Ni-O [122] were improved to better match first-principles data (Garza)

after creation of a particle swarm optimization approach which yields more accurate force

fields than the standard Gaussian perturbation (Garza, Curnan, and Saidi). The method

was then applied to re-scale pre-existing Cu-O parameters [121] alongside the improved Ni-O

parameters to create a novel Cu-Ni-O force field from a set of structures relaxed with DFT

(Garza). A separate deep learning method (DeepMD) was applied to ab initio MD trajectories

created from the previously mentioned training structures to train a more accurate potential

with exclusive application to CuNi surface oxidation (Saidi) with less general applications

than the ReaxFF potential. A series of benchmarks were created for all developed potentials

(Garza).
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2.0 Early and Equilibrium States of CuNi(100)

This chapter contains material adapted from the following publication:

R.B. Garza, J. Lee, M. H. Nguyen, A. Garmon, D. Perez, M. Li, J.C. Yang, G. Henkelman,

andW.A. Saidi, J. Chem. Theory Comput. 2022, 18, 7, 4447–4455, doi:10.1021/acs.jctc.2c00303

MD can generally resolve atomic transitions on the picosecond (ps) to nanosecond (ns)

timescales. While these short timescale dynamics can be easily investigated using energetic

models based on either classical force fields or first-principles methods, longer timescales

that are often more relevant experimentally are challenging to realize with conventional

resources and techniques[104, 73, 75]. This chapter details these conventional techniques:

first-principles density functional theory (DFT), MD, and the MC algorithm, including pre-

vious literature findings regarding CuNi segregation that we replicate.

2.1 CuNi Surface Segregation from First-Principles

For solid phase diffusion, extended systems that repeat periodically in all directions in

multiples of the box length are suitable to describe large surfaces with many layers of depth,

representing the semi-infinite boundary within the interior of an alloy relative to its surface.

To generate a surface slab geometry with vacuum above and below the slab, the command-

line tool atomsk by Pierre Hirel[45] is ideal for removing atoms to create a symmetric slab

with mirrored areas exposed to the same vacuum. The following command generates a

Cu(100) slab with NCu = 90 and ∼ 9 Å of vacuum between either side:

atomsk --create fcc 3.62 Cu orient [100] [010] [001] -dup 3 3 5 -cut above 9 z POSCAR

The file type is determined by the final argument i.e. “POSCAR” outputs the resulting
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structure as a POSCAR file for VASP (DFT) input. This contains the simulation box

geometry, including void space for the vacuum and atom positions relative to the box origin.

This void is wide enough to avoid spurious interactions between the two surfaces.

2.1.1 Limits of Simulating Realistic Vacancy Concentration

It is known that the rate of metallic phase separation depends on the defect density in the

lattice, which would naturally facilitate atomic migration at low vacancy concentration, and

larger dislocation junctions at high vacancy concentration[56, 79, 13]. The latter scenario is

unlikely except in the event of neutron/alpha particle bombardment in radioactive settings.

However, the availability of surface and subsurface vacancies on exposed metals is highly

influential for surface vacuum segregation [48, 61, 63], reduction[20] and oxidation[65, 19,

120, 121, 119, 69]. For a single metal, the equilibrium vacancy concentration at a temperature

T can be approximated using the vacancy formation energy for the pure metal, the law of

mass action, and assuming that the activities of pure solids are unity:

xi,eqvac =
KeqNvac

N
= A exp (−∆Gf ) ∼ exp(−∆Hf ) exp (T∆Sf ) = exp

(
−
Evac

f,i

kT

)
(2.1)

Applying this to available vacancy formation energies in literature[26, 27, 15] listed in

the previous validation of the EAM potential (2.4), one can find xCu,eq
vac ∼ 10-13 and xNi,eq

vac ∼

10-18. The values found with the EAM potential and (A.17) yield xCu,eq
vac ∼10-14 and xNi,eq

vac ∼

10-16. However, simulations involving 1013 atoms (> 1 trillion) are infeasible for even the

largest computers.

2.2 Molecular Dynamics of Vacancy Migration

Molecular dynamics seeks to evolve the trajectories of particles bound in either periodic

or molecular systems under realistic thermodynamic constraints (constant energy, constant

volume, constant temperature, etc.). It operates with the assumption that forces on atoms
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can be easily computed from a pre-determined energetic potential using Equation (A.1), ide-

ally one that is computationally inexpensive. Newton’s 2nd Law for any particle’s dynamics

is

Fi = miai = mi
d2ri
dt2

= mi
dvi

dt
(2.2)

The relationship between force, particle mass, and displacement in time allows the kine-

matic equations to be numerically integrated via approximations to these derivatives. It is

important to select a small enough timestep such that the dynamics are stable: numerical

integration of the equations of motion requires a timestep less than the period of the fastest

vibrational frequency[4]. This algorithm is implemented in LAMMPS alongside structural

optimization and Monte Carlo annealing. The influence of temperature and pressure on the

particle velocities must also be taken into account through some method of velocity rescaling,

which will be described in the following section regarding thermostats.

Vacancy detection using OVITO is performed using the standalone Python package,

part of the code repository for trajectory analysis presented later in 2.6 and available at

github.com/15garzab/trajectory-analysis-redux.

2.2.1 Embedded-Atom Method (EAM) Interatomic Potential

Energetic potentials provide an interatomic relationship approximating the less tractable

quantum Hamiltonian, allowing the atomic centers to be propagated forward in space and

time to evolve true molecular dynamics at minimal computational cost. These models typi-

cally contain a pair-wise component, such as the interatomic distance used in the Lennard-

Jones potential. The embedded-atom method (EAM) involves a second moment approxima-

tion to the electron density, created to amend the errors of the simple pair potential, which

mispredicts the cohesive energy and vacancy formation energy for crystalline solids[21]. Al-

though the Cauchy relations for elasticity theory (C12 = C44) and the relation Ef
v = Ecoh

may hold true for the LJ potential and some noble gases in the solid state, the coordination-

dependent properties of bulk, ordered metals show significant deviation from the 1:1 scaling

of lattice-bound ideal gases[22].

8



To address this difference, EAM considers the embedding electron gas as a background

potential on which atomic dynamics take place; the “electron sea” of alloys becomes a kind

of solvent. In a lattice, the background electron density can be approximated as a linear

superposition of the bound electrons from the atoms in the alloy determined by atom type

and local composition:

Etot =
∑
i

F [ρi] +
1

2

∑
i,jϵi̸=j

ϕ(Rij) (2.3)

ρi =
∑
i

ρai (2.4)

Where F is the embedding functional depending on the local electronic coordination envi-

ronment provided by neighboring atoms ρi and ϕ is the pair-potential between atoms within

a certain cut-off distance. Equation (2.4) describes the local electron density as the sum of

contributions from nearby atoms i.e. a linear superposition.

All studies in this thesis except those in Chapter 4 involve use of the same EAM potential

for the CuNi alloy system from Fischer, Schmitz, and Eich, which was developed to model

grain boundaries and the effects of surface tension at the nanoscale[33]. In 2.4, we show that

this force field replicates the expected behaviors from first-principles theory.

2.2.2 LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator

Simulation methods are made widely available through various implementations: for

materials science, one of the most commonly used programs is LAMMPS, which contains

algorithms for structural relaxation, MD, nudged elastic band calculations (described in

3.1.1.1), and Monte Carlo annealing (described in the next section). The underlying code,

written in C++, assembles neighbor lists (or Verlet lists) of the atoms in the system, allowing

for interatomic distances to easily be stored in arrays for quick matrix algebra involving the

thermostat and the provided model Hamiltonian. Input scripting takes advantage of these

methods and tools within LAMMPS. For example, a structural relaxation following the con-

jugate gradient method for optimization could be performed with the following commands:

min_style cg
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minimize 1e-8 1e-6 100 1000

Where the additional parameters for the “minimize” command are, in order, the energy

tolerance, force tolerance, number of force iterations per optimizer step, and number of

energy iterations before convergence. These parameters set the minimum change in energy

and forces before the optimizer finishes relaxation of the chemical structure.

Static calculations such as this are much less time-intensive than MD simulations. One

of the primary benefits of LAMMPS for MD is its parallelization in the spatial domain: a

simulation volume is split into separate domains, each of which contains atoms that mostly

do not interact with atoms in distant domains. Spatial domain decomposition allows each

portion of the simulation volume to be time-integrated by a single processor, receiving in-

puts from neighboring regions with their own respective processors. Although the task is

distributed among the processors, the computation of neighbor lists for all atoms remains

the most expensive part of the Verlet algorithm, since each domain must still account for

atomic interactions from neighboring domains.

To omit calculating many zero interactions with distant atoms in the system–or spurious

interactions in the case of hard sphere overlap–options can be added to modify the neighbor

lists. The frequency of neighbor list updates can also be changed. The neighbor and

neigh_modify commands can be used to alter these settings in LAMMPS:

neighbor 2 bin

neigh_modify every 10 delay 0 check no

The binning method will be used to determine neighbor lists, and the “skin distance”

is set to 2 Å. This distance is an additional length added to the force cutoff. The second

command sets the frequency of neighbor list updates to every 10 steps without delay steps

and without checking for an noticeable change in distances (more than half the skin distance).

The following commands set the units of energy to eV (“metal” units), create periodic

boundaries to mirror atoms to the opposite side of the simulation cell (when atoms leave the

cell), and read input data:

units metal

boundary p p p

read_data data.lmp
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Thermodynamic constraints can be exerted on the particles in the simulation using vari-

ous “fixes” to set up modifications to the Verlet algorithm described in A.2. The Nosé-Hoover

(NH) thermostat (NVT ensemble) can be applied to the dynamics with the following fix:

fix 1 all nvt temp $temp $temp $(100*dt)

Where the temperature variable “temp” is used to set the initial and final temperatures

(no ramping when Tfinal = Tinitial), and the damping constant is 100 times the timestep size

“dt”. The 100:1 ratio of damping constant to timestep for integration is commonly employed

to generate stable NH dynamics.

Langevin dynamics at constant NVT can be established with a different fix:

fix 1 all langevin $temp $temp $(10*dt) 1234

fix NVE all nve

There is an internal requirement that the “NVE” fix also be used with the “langevin” fix

in order for the forces to be properly calculated during time integration of particle momenta.

More details of these commands and the broader specifics of LAMMPS input scripting can

be found in the documentation and user manuals.

2.3 Monte Carlo Annealing to Equilibrium

To identify equilibrium configurations of atoms in the topmost layers of CuNi alloy,

it is critical to minimize the overall energy of the system. In practice, this means that

many atomic configurations must be tested to find the arrangement with lowest energy. As

previously cited, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy

(AES) experiments for the CuNi alloy on the microscale demonstrate clear segregation of

Ni to the bulk after exposure to elevated temperatures in vacuum[107, 14, 105, 108]. To

computationally identify the same equilibrated state, a probabilistic state space search

algorithm termed the “Monte Carlo” method has been used for many decades to per-

form simulated annealing, identifying equilibrium atomic configurations for both slabs and

nanoparticles[34, 37, 95, 25, 31, 88, 87, 43, 38].

The Metropolis-Hastings algorithm was first published by Nicholas Metropolis and others
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from LANL in 1953, though it was in use at least a year earlier for research involving the first

hydrogen bombs[72, 86]. It uses a search heuristic, the Metropolis criterion, which weights

the probability of the next possible explored configuration Pi+1 based upon its energetic

difference with the current configuration Pi:

Pi+1

Pi

=
exp [−βUi+1(r)]

exp [−βUi(r)]
= exp [−β(Ui+1(r)− Ui(r)] (2.5)

At each step, the potential is used to give a likelihood estimate for an exchange of two

atoms of different type relative to the energy lost during this transition. The acceptance

criterion depends on a pseudo-random number generated between 0 and 1, which should be

less than the likelihood threshold for a move to be accepted (RNG < Pi→i+1):

Pi→i+1 = min
[
1, exp [−β(Ui+1 − Ui)]

]
(2.6)

Conversely, the exchange is rejected if RNG > Pi→i+1. The procedure of sampling the

more thermodynamically “acceptable” moves is called importance sampling. The exponen-

tial Boltzmann factor used to weight the state by its energy is a familiar term from the

partition function of statistical mechanics.

For this series of atomic jumps in the alloy lattice to be considered a Markov process,

each transition should be microscopically reversible, that is, each atomic migration can likely

be reversible. Trajectories escaping from a local basin on the potential energy surface (PES),

from one topologically distinguishable state to another, should necessarily have re-crossings

unless the reaction is truly irreversible. In a metallic alloy system with two very similar

metals (Cu and Ni), migration events are almost guaranteed to be reversible, although the

non-equilibrium dynamics near the surface are of critical interest because they should cause

an irreversible macroscale change through many stochastic, rare steps. Thus the degree

of reversibility should differ in the mechanisms underlying CuNi segregation dynamics and

mediate the time it takes for equilibrium to be realized during annealing.

Unfortunately, in most applications of the MC method, it is practical and often necessary

to accelerate the annealing by exchanging atoms unphysical distances (beyond the nearest-

neighbor distances) away from their starting positions. Thus, large energy drops can be
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sampled in few iterations via the acceptance criterion. Although the equilibrium state is

discovered more quickly and the transitions obey detailed balance, the timescale for the atom

exchange is unknown. Accelerated dynamics methods introduced in Chapter 3 carry out

trajectories composed of realistic, atomic migrations, each with a measurable time duration

for varying mechanisms.

2.4 Results: Cu and CuNi Surface Energies

The surface energies of doped Cu surfaces up to 2.7at%Ni were computed using DFT and

the EAM potential of focus in this work: this was done not only to validate the forcefield’s

application in the study of surface segregation, but also to examine the process with ab initio

accuracy[33]. We used the Vienna Ab Initio Package (VASP)[53, 54, 55, 12] in conjunction

with the Perdew-Burke-Ernzerhof (PBE)[82] exchange-correlation functional and an energy

cutoff of 500 eV to expand the wavefunction. We used a 3 x 3 x 1 k-point mesh generated

with a Monkhorst-Pack routine to sample the Brillouin zone for (100), (110), and (111)

slab models composed of 100 atoms. All calculations are spin polarized. We used a slab

approach to model the surfaces and included 10 Å of vacuum between exposed surfaces to

mitigate spurious interactions in the non-periodic direction. One of the host lattice atoms in

the system (Cu) were replaced with Ni at both surface (1st layer) and subsurface (2nd layer)

positions. The surface energy of a pure Cu slab model with (hkl) orientation including Natoms

is calculated relative to the bulk energy per atom ECu and the total exposed area 2A:

Esurf
hkl =

Epure
f −NatomsE

bulk
Cu

2A
(2.7)

The equation for surface energy of structures containing one dopant atom is very similar to

(A.7), and requires the bulk energy per atom of the dopant (Ni in this study):

Esurf
hkl =

Edoped
f − (Natoms − 1)Ebulk

Cu − Ebulk
Ni

2A
(2.8)

The pure Cu surface energies for orientations with low Miller index (h2 + k2 + l2 ≤

3) are shown in Table 1, which were calculated with DFT and EAM. As is known from
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previous calculations and measurements of surface energy for pure Cu, (111) surfaces are

most thermodynamically stable, followed by (100) and (110) surfaces. The validation with

pure Cu surfaces finds 2.6% average relative error between the EAM potential and first-

principles. We then replaced one atom in these structures with Ni to study the effect of

doping at different surface depths.

Table 1: Surface Energies of pure Cu from DFT and the EAM potential of Fischer et al[33]

DFT (J/m2) EAM (J/m2)

Cu(100) 1.412 1.357

Cu(110) 1.477 1.488

Cu(111) 1.208 1.246

Table 2: Surface Energies of Cu with 1x Ni dopant atom included on the surface, subsurface,

or interior (1st, 2nd, or 3rd layer) to illustrate segregation trends from DFT and EAM

CuNi(100) CuNi(110) CuNi(111)

Layer # DFT (J/m2) EAM (J/m2) DFT EAM DFT EAM

1st Layer 1.387 1.371 1.457 1.512 1.165 1.264

2nd Layer 1.360 1.365 1.430 1.505 1.150 1.256

3rd Layer 1.364 1.362 1.429 1.501 1.152 1.247

Oriented slabs along (100), (110), and (111) planes exhibit segregation trends as a func-

tion of crystallographic direction in the FCC system for Ni, evident in Table 1-2. EAM

calculations of Cu surface energy with an included Ni dopant at various locations have only

4.7% average relative error compared to DFT results. Additionally, the difference in mini-

mized energies between structures with Ni on the exposed surface or beneath it (subsurface)

is 0.38-0.39 eV for (100) and <111> Cu surfaces, yet this gap is only 0.17 eV for doped (111)

Cu surface. The same trend was found to cause the equilibrium segregation profiles from

previous MC studies of CuNi surface separation, agreeing with the calculated energetics in
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our own validation step[43, 37, 34, 25, 31]. Overall, the trend indicates that Ni will segregate

towards subsurface sites to relax the local surface tension.

Additionally, the monovacancy migration energies for pure Cu and pure Ni are approxi-

mately 1.29 eV and 1.57 eV, respectively, as calculated with Equation (A.17) from Appendix

A.4. These negligibly differ from literature values for Cu (1.28 eV) [26] and Ni (1.79 eV)

[27].

2.5 Results: Monte Carlo Composition Profiles vs. Depth

We employed slab models of the (100) surface termination that are composed of 216 and

384 atoms by randomly substituting Cu with Ni. These slabs were 12 monolayers in thickness

with 3x3 and 4x4 surface periodicity; nearly doubling the vacancy concentration (1:216 vs.

1:384 atoms) did not affect our observed mechanisms or energetics. Thus, systems of smaller

surface periodicity (3x3, 216 atoms) were simulated to realize the longest timescales for

higher fidelity time-averaging and activation energy histograms. MC simulations across the

composition range of 2.7 – 16at% Ni, and temperature range of 300 – 700 K showed no

detectable variation in the amount of Ni segregated. For this reason, we chose to exclusively

simulate systems with 16at% Ni at 500 K with the accelerated MD methods later in Chapter

3.

Because the low temperature (500 K) used in the work negligibly alters the alloy lattice

spacing, the structures do not require NPT equilibration of the system and slab volumes.

Our simulation approach fixes the slab volume (NVT ensemble) during the equilibration and

production phases by maintaining a constant surface area for both sides of the slab.

The simulated annealing attempted 106 MC swaps of Cu and Ni atoms with subsequent

minimization between exchanges. The equilibrium composition profiles obtained with MC

(Figure 2) exhibit Ni migration out of the top three surface layers, while the concentration

of the fourth and fifth layers approach the bulk value. This trend did not quantifiably vary

with changes in system temperature or Ni concentration. The near-surface Ni concentration

observed with the EAM potential agrees with the profiles derived from previous MC simu-
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lations [43, 37, 34, 98, 80] as well as experiments [10, 108, 14, 28].

Figure 2: Ni composition profiles of Cu-16at%Ni (100) surface as a function of layer depth

after MC annealing at 500 K. The slab has 12 layers with layers 1 and 12 exposed to the

vacuum. Composition is normalized by 18, the number of atoms in a pristine FCC <100>

layer, resulting in a mismatch between the bulk composition of layer 6 (∼22at% Ni) and the

overall composition (16at% Ni).

Importantly, each step in the MC annealing is correlated with its neighboring steps,

although this correlation vanishes as incremental steps cause more changes in the system

configuration (nsteps → ∞). Similarly, in molecular dynamics, the correlation coefficient

between states should vanish as their separation time increases (t → ∞). To compute

the error bars in Figure 2, the correlation between sequential measured compositions was

calculated first. The correlation coefficient allows an estimate of the true error from the

underestimate obtained from naive comparison of two correlated measurements, a procedure

described in Appendix A.3.
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2.6 Interparticle Trajectory Correlation Analysis

The correlation decay as a function of time can be measured directly from the position

coordinates of atoms during key transitions, allowing spatiotemporal relationships between

atoms and vacancies to be developed. This is a novel method for characterizing reaction

mechanisms that, to my knowledge, has not been applied to molecular dynamics trajectories.

Coordinated movement of particles within a single reaction mechanism can be summarized

using the cross-correlation coefficient of their cartesian coordinates. For two particles A

and B with trajectories evolved for n timesteps, let the n × 3 matrices A = [ax, ay, az]

and B = [bx,by,bz] consist of column vectors [ai, aj, ak] representing a time series for each

coordinate axis. Because alloy segregation occurs in the z-direction, normal to the surface,

we can focus first on the vertical component of interparticle cross-correlation:

ρAB
z (t1, t2, τ) =

∫ t2

t1

az(t− τ)bz(t)dt (2.9)

where the cross-correlation will necessarily change based upon the two points in time cho-

sen during the particle trajectories. Convolution over a set of offsets or lag times τ ∈

[−τmax, τmax] reveals leader-follower relationships between the two particles[92]. There will

be a noticeable maximum/minimum in correlation during particle exchange with a vacancy

in the lattice, which can be visibly confirmed using chemical visualization software like

OVITO[94]. By dividing the total timesteps n into bins or “epochs”, one can produce a

heatmap of the interparticle correlation coefficient as a function of time and τ similar to the

example shown in Figure 3. The left vertical axis represents time in this diagram, while the

horizontal axis represents the set of τ supplied to Equation (2.9). The slightly darker blue

patch at τ ≈ 25 between Epochs 196-210 implies that the incoming vacancy determines the

dynamics by approaching the Ni atom from beneath, segregating it towards the bulk during

exchange.

This method of measuring time series correlation is used in finance to predict asset

pricing trends relative to one another[92]. I have repurposed the technique in the context of

molecular dynamics with the goal of detecting unique spatial relationships evolving in time
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Figure 3: Rolling window cross-correlation heatmap comparing the z-coordinates over 40 ns

for a segregating Ni atom (negative offset) and a counter-migrating vacancy (positive offset).

Time is binned in epochs on the vertical axis while time offset τ is on the horizontal axis.

Solid red bands denote a numerical error filled with the default value(ρ = 1).

during interparticle exchange. The method characterizes not only the simple monovacancy

exchange but also a more complex divacancy mechanism. The activation energies for both

these processes are described in section 3.2.3. The code is written in Python, utilizing

the OVITO package to detect vacancies with Wigner-Seitz analysis: a self-made tracking

algorithm propagates the positions from frame to frame. Finally, a matrix of windowed cross-

correlations is computed with NumPy, which provides the fastest implementation. The open-

source code is available publicly at github.com/15garzab/trajectory-analysis-redux.

It should be noted that long periods of low correlation may result in numerical errors

in calculating cross-correlation coefficient due to division by zero(’NaN’): a fill color corre-

sponding to an unphysical maximum of ρ = 1 was selected to provide high contrast in the

correlation heatmaps and localize numerical errors with a distinct bright red. An unnatu-

rally high value of ρ = 1 was selected since this never appeared in any calculations with real

trajectory data. It is unclear whether the numerical instability results from inadequate bin

size or the long time required for the vacancy to approach the particle of interest during its

18



random walk.

A combination of the two issues is likely, since no numerical errors resulted from cor-

relation measurements of systems with high vacancy concentration (Nvacancies > 2). This

concentration, though unphysical, causes rapid point defect alignment into known FCC dis-

locations, leading to dopant segregation with simultaneous glide near the junction locks.

Small or large bin sizes did not induce numerical errors for this system’s dynamics, which

are highly deterministic due to junctions. These dynamics result in a more clear signal char-

acterized by the cross-correlation heatmap in Figure 4, which compares a single segregating

Ni with one vacancy in a group of counter-migrating point defects, which arrive at the sur-

face simultaneously via dislocation glide.

Figure 4: Rolling window cross-correlation heatmap comparing the z-coordinates over 5 ns

for a segregating Ni atom (negative offset) and a counter-migrating vacancy (positive offset).

Time is binned in epochs on the vertical axis while time offset τ is on the horizontal axis.

Solid red bands denote a numerical error filled with the default value(ρ = 1).

Leader-follower dynamics are much more obvious in the case of high vacancy concentra-

tion (large pre-peak at τ = 50), since the position and orientation of a dislocation uniquely

determines which Ni atoms have available pathways for segregation in the defective Cu ma-
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trix. Spatiotemporal details of reaction mechanisms are quickly deduced by this method.

This chapter has detailed the first-principles, MD, and MC simulations of CuNi alloy

segregation, finding that Ni segregates into the bulk even on small timescales, but especially

as annealing is carried out on experimental timescales of seconds and minutes to equilibrium.

Additionally, a novel particle trajectory analysis method was described in which the cross-

correlation of atom and vacancy coordinates can be computed to identify particle exchange

during migration and segregation. This approach spatiotemporally localizes events hidden

within the FCC structure of the alloy to allow for more nuanced representations of the

process to be visualized with a heatmap of vertical, radial, and angular coordinate frames.

This method will be applied to great effect in Chapter 3.

In future, cross-correlation heatmaps can be used to analyze heterogeneous surface re-

actions like oxidation, since diffusing gases in vacuum have much faster dynamics relative

to the solid substrate even after adsorption. These events and surface diffusion of adsorbed

atoms will be easy to detect because multiple degrees of translational freedom are lost upon

surface adsorption. A relatively stationary metal substrate provides a consistent backdrop

for correlation with rapid heterogeneous reactions. In other words, metallic diffusion occurs

much more slowly than gas diffusion, providing a strong difference in cross-correlation signals

before and after surface reactions.

However, because surface defects are the primary site for gas adsorption, the annihilation

of vacancies with adsorbed oxygen and metals diffusing into formed oxides will complicate

heatmap characterization of vacancies. This represents a new problem for vacancy tracking

using Wigner-Seitz analysis. Furthermore, before oxide growth is developed, the initial stages

of oxide formation are not characterized by a well-defined lattice, exacerbating detection

of the underlying Bravais lattice until the oxide is already more than a few layers thick.

Vacancies may disappear and reappear as the local lattice geometry is redefined while atoms

move into regions that were previously considered defects or voids.

Initial work has already been performed using the force fields in Chapter 4 for Cu-

Ni-O interactions using hybrid MD/MC in NVT and grand canonical ensembles. These

simulations are in preparation for submission to journals alongside the force field benchmarks

in our results: at equilibrium, the expected trend of Ni segregation is inverted. Ni atoms are
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pushed to the surface to form nickel oxides above 0.125 fractional monolayer (ML) coverage

i.e. NiO is formed preferentially at equilibrium when θO > 0.125.
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3.0 Intermediate States of CuNi(100) from Accelerated Dynamics

For vacuum segregation of binary alloys, the critical vacancy migration events occur near

the surface of the alloy, enriching the surface with the metal of lowest surface energy. For

the CuNi alloy, it is thermodynamically unfavorable for a vacancy to re-enter the sub-surface

(Emigration
surf→subsurf ≈ 0.8 - 0.9 eV), a result found later in section 3.1.1.1. This differs significantly

from the vacancy percolation back to the surface (Emigration
subsurf→surf ≈ 0.4 - 0.6 eV), a fast process

occurring typically within nanoseconds across several atomic layers of depth. The latter

can be sampled with conventional MD but the former requires more advanced methods of

molecular simulation.

Rare events like vacancy re-entry cause alloy re-ordering on the nanoscale: in our systems,

the vacancy cyclically visiting the surface and leaving represents the lowest energy pathway

for segregation to occur. Stochasticity during this process implies that there is a degree of

rarity for some transitions based on physical availability from the current state (i.e. frequency

factor) and the activation barrier. The flux of Ni to the bulk can be monitored directly with

MD but not to completion due to the long time required between events, which depend on

the random walk of the vacancy through the lattice. Accelerated methods bridge this gap.

Transition state theory (TST) is essential to measure the rates of slow processes like

vacancy re-entry, which occur rarely in the dynamics but are essential to inducing larger

nanoscale phase transitions. Yet, to date, the transient dynamics of segregation in CuNi

have not been investigated. Previous studies have employed Monte Carlo (MC) to describe

the systems in equilibrium, but they do not give a timescale for the segregation process.

In contrast, MD can provide a timescale for the non-equilibrium dynamics, but it has not

been utilized before to study transient dynamics of segregation. Limited investigations of

dislocation slip under applied stress (work hardening) or melting in CuNi [80, 110] have

been carried out using MD because these processes occur over ns timescales, yet the impact

on larger scale reordering on experimental timescales was not explored in those studies.

Thus, the mechanism, as well as the timescale, for transformation from a randomly mixed

to ordered alloy on the nano- and microscales remains unclear.
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Accelerated methods can provide insight on longer timescales into atomistic mechanisms

of surface segregation phenomena. Previously, AKMC investigations of the segregation ki-

netics of PdAu nanoparticles showed greater kinetic stability due to reduced strain in the

mixed-phase[63]. In that work, the authors also utilized parallel replica dynamics to enhance

MD acceleration, combining multiple acceleration methods. In the present work, we probe

segregation dynamics in planar, (100) CuNi surfaces, employing conventional MD and three

accelerated dynamics methods: parallel trajectory splicing (ParSplice), AKMC, and KMC

with kinetic barriers derived from a cluster expansion. ParSplice affords accurate system

evolution up to ∼10 µs, while AKMC and KMC simulate longer timescales up to ms and

seconds, respectively. The methods employed in our multiscale hierarchy are described in

the following sections in order of accessible timescale.

3.1 Transition State Theory (TST) and State Space Exploration

Dynamical corrections to the TST rate constant were identified as necessary by Marcelin

in 1915 when first describing the theory, although he could not evaluate the resultant integrals

in his time. In the 1960s, James Keck was the first to use MD to statistically correct the rates

of collision from kinetic theory, which are often only variational upper bounds for the true

reaction rate[52]. This error is caused by re-crossings of the dividing surface between states

in phase space resulting in no net reaction and a smaller frequency factor than expected[103].

A formal derivation of the dynamical correction was originally made for two-states (trans-

gauche conformations of a polymer chain) by David Chandler by redefining the current state

populations in time relative to the equilibrium populations[17, 3].

ṄA = −kA→BNA + kB→ANB

ṄB = kA→BNA − kB→ANB

(3.1)

Fluctuations away from the equilibrium values for state occupancy ÑA and ÑB can be defined

as
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δNA = NA − ÑA

δNB = NB − ÑB

(3.2)

As always, the two-state system obeys detailed balance (δNA + δNB = 0). Combining this

fact with equations (3.1) and (3.2) yields the first order rate law for the fluctuation, which

depends on an effective reaction rate:

δṄA(t) = −keffδNA(t)

where keff = kA→B + kB→A

(3.3)

The effective reaction rate is not an elementary rate like kA→B and kB→A. Using perturbation

theory, the above form yields the fluctuation-fluctuation autocorrelation function:

keff =

〈
δṄA(0)δNA(t)

〉〈
δNA(0)δNA(t)

〉 (3.4)

where the angular brackets represent the canonical ensemble average. Next, a simple as-

sumption can be stated by recognizing the denominator is a much slower varying function

of time than the numerator, admitting the following approximation:

〈
δNA(0)δNA(t)

〉
≈
〈
δNA(0)δNA(0)

〉
(3.5)

We will return to this assumption at the end of the section, since it plays a key role in

parallel replica dynamics. The right side is simply the standard deviation of the fluctuation

at t = 0: 〈
δNA(0)δNA(0)

〉
= ÑA − Ñ2

A (3.6)

Detailed balance also provides the following relationship for the ratio of equilibrium state

populations and their escape rates:

kA→B

kB→B

=
ÑB

ÑA

(3.7)

So that keff equation (3.3) becomes

24



keff = kA→B

(
1 +

ÑA

ÑB

)
(3.8)

Thus, the transition rate depends on the correlation between on the correlation between the

current escape flux from reactant state A and the population of the product state B at time

t:

kA→B =
−
〈
δṄA(0)δNB(t)

〉
ÑA

(3.9)

This powerful result for the transition rate constant also holds true in the many-dimensional

case. The multi-state version originally from Adams and Doll[3], then refined by Voter[103],

provides the same result for a generalized state

keli→j =
−
〈
δṄi(0)δNj(t)

〉
Ñi

(3.10)

where keli→j is the elementary rate constant of any transition from i to j. The choice of t

in the two-state ((3.9)) and multi-state equations for the transition rate constant is highly

influential on the calculated rate. This is because re-crossings of the dividing surface between

states i and j are highly correlated with one another up to a certain “correlation time”

τcorr, after which the system will have thermalized with noise from the remaining degrees of

freedom[103]. Counting the reactive events across all timescales proves to be difficult, since

state i can be revisited later in the future. The system may still transition from j back to i,

but this latter transition would be uncorrelated with the former unless they are within τcorr

of one another.

To surmount this challenge, parallel trajectory splicing relies on small simulation times:

if every particle that crosses the dividing surface out of state i irreversibly remains outside of

state i, the uncorrected transition rate constant kTST
i→ is recovered. The dynamical correction

factor fd must be the ratio of the true rate to this idealized, irreversible rate:

fd(t) =
keli→j

kTST
i→

(3.11)

where 1 > fd > 0 for times τcorr < tp ≪ τrxn where the correction should decay exponentially

to zero as t → τrxn. By restricting tp to be much lower than the reaction time τrxn, we can
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easily validate the previous assumption made in (3.5).

The equality kTST
i→j = keli→ only holds when fd = 1 and t = 0. By evolving many replicas

from the same state, the first escape time (smallest time) can be discovered among the

available trajectories close to t = 0. The trajectory segments are then spliced together,

each elapsing at least τcorr. Selecting only times on the order of τcorr provides a series of

reactive transitions that likely has no missed re-crossings in between. Thus, the parallel

replica method can capture nearly all reactive events without significant errors in over or

under counting state transitions, obeying detailed balance.

The expressions in Equations (3.9) and (3.10) refer to the flux of particles from one state

to another. Thus, a similar expression can be derived in terms of the velocity normal vi

through the dividing surface around state i:

kTST
i→ =

〈
|vi(0)|δi(0)

〉
2Ñi

(3.12)

keli→j = 2

〈
vi(0)δi(0)θj(t)

〉〈
|vi(0)|δi(0)

〉 kTST
i→ (3.13)

where θj(t) is a function of the fluctuation from the equilibrium population of state j

δNj(t) = θj(t)− Ñj (3.14)

KMC methods find the elementary reaction rate as a function of the velocity correlation

shown in (3.12) and (3.13). In practice, the activation energy Ea from the ground state to

the transition state is used to approximate this transition rate. The nudged elastic band

(NEB) method is used to identify the transition saddle point on the PES, later shown in

equation (3.16) in 3.1.1.1. In the view of KMC (section 3.1.2), the time is not restricted,

allowing for very stochastic processes to be described by a slow velocity over the dividing

surface. This family of approaches results in a series of transitions with a variable timestep

separating them, in contrast with the constant timestep of conventional MD and ParSplice.
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3.1.1 ParSplice: Parallel Trajectory Splicing

Parallel trajectory splicing, or ParSplice[83], is an accelerated molecular dynamics method

that generates accurate state-to-state evolution by simulating many replicas of a system in

parallel, then splicing together trajectory segments by matching their graph topologies. A

running database of segments prevents wasteful, repetitive computations and allows for even

greater speedup. Using fewer than 224 cores and a week of compute time, we can simulate

a trajectory for a system of several hundred atoms, reaching tenths of a microsecond, far

beyond the timescales accessible with conventional molecular dynamics.

The method is derived from the earlier parallel replica (ParRep) dynamics of Voter,

Montalenti, and Germann, who developed a robust method to calculate expectation values

for escape rates from distinct states in phase space[104]. As demonstrated in 3.1, Voter

and colleagues’ applications of transition state theory have been highly influential for the

improvement of basin-hopping algorithms in recent decades. In their treatment, the prob-

ability distribution for time of next escape from an arbitrary State A is assumed to obey

first-order kinetics after a certain correlation time has elapsed (i.e. higher order rates will

decay to a negligible amount once the system is sufficiently de-correlated)[102], and such a

process can be expressed as

p(t) = k exp (−kt), (3.15)

where k is the rate constant for the escape process, regardless of the favored reaction

pathway(s) out of this state. The rate constant changes for each new state visited during the

dynamics. The first-order behavior is a natural outcome of any ergodic, chaotic exploration

within an energy basin. A dynamical correction factor can be analytically calculated, which

depends on the chosen correlation time for the basin-hopping algorithm[103]. We can ap-

proximate the random walk of a lone-vacancy in any bulk, solid-state material as an ergodic

process obeying Liouville’s theorem: in other words, the material derivative (convective time

derivative) of the continuum flow is zero. Since equation (3.15) applies to escape from a sin-

gle basin, we can consider the problem of multi-state basin hopping to be locally ergodic

within each basin on the PES.
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In this view, each trajectory segment with duration greater than τcorr has no memory of

the previous trajectory segments because enough time has elapsed. Rather than sample the

average time for all escapes from a basin, which would consist of many uncorrelated revisits

and exits, a sampling is made of the first escape time from the basin to form the probability

distribution in equation (3.15).

Using the parallel replica approach with M processors and N atoms, each processor can

explore phase space independently (after a brief de-phasing period using randomized veloci-

ties to avoid correlated trajectories) while covering M-times more states within the energetic

basin than the serial approach. ParRep and ParSplice replicas can utilize spatial decomposi-

tion across a group of assigned child processors with distributed, spatially-parallelized codes

like LAMMPS. That is, ParSplice has LAMMPS as a dependency to provide spatial decom-

position, and the overarching replica scheduling algorithm provides temporal parallelization.

This potent combination of state-space exploration heuristics provides a measurable

speedup: almost 3x more Ni dopant atoms are observed segregating to the interior of CuNi

surfaces. These events significantly change the local composition at the surface layer in Fig-

ure 3.1.1.

Many instances of LAMMPS were then orchestrated by the EXAALT/ParSplice code to

carry out long-time ParSplice simulations. Direct MD realized ns of simulated time using the

velocity Verlet algorithm and modest resources (4 processors). ParSplice accelerated these

dynamics up to µs timescales using 224 processors. Both standard MD and ParSplice were

carried out in the same way: after initializing particle velocities according to a Boltzmann

distribution representing the target temperature, the systems were equilibrated with a 2 fs

timestep and a 1 ps temperature relaxation time for 200 ps. Multiple random number seeds

are used by ParSplice to initialize system velocity many times during replica dynamics, al-

lowing exploration of the local state space to identify new segments[102]. The first segment

identified escaping to a new state is appended to the end of the parallel trajectory. After

the equilibration phase of MD, a further 400 ns were simulated to constitute the production

phase, while ParSplice was employed to accelerate this simulation time up to 35 µs. Mini-

mization was done with the conjugate gradient algorithm using convergence criteria of 10-8

eV and 10-3 eV/Å for the energy and forces[91], respectively. These quenching parameters
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Figure 5: High variance z-coordinates of Ni atoms from 500 K ParSplice trajectory of Cu-

16at%Ni symmetric surface alloy within simulation cell containing top surface near 19 Å

and bottom surface around 6 Å. Segregation of Ni to the interior marked in blue, pink, and

brown.

are also used by ParSplice to identify state transitions and properly terminate each parallel

MD replica.

3.1.1.1 Nudged Elastic Band Method

In contrast to the fixed point energies used to obtain structural relaxation/optimization in

both VASP (DFT) and LAMMPS (classical MD) which are subsequently utilized in cohesive

energy calculations, activation energies are important to differentiate varying elementary

mechanisms and rates of binary alloy segregation. NEB barriers determine the rates of

transition. Each mechanism of atomic migration within the alloy lattice has an identifying

reaction rate each associated with an activation energy. A spectrum of activation energies

is sampled over all the available pathways through state space during adaptive KMC, which

finds reaction rates on the fly (section 3.1.2). In an alloy, these transitions will primarily

involve vacancy counter-migrations to allow metal atoms to diffuse within the crystalline
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bimetallic system.

To reach experimentally relevant time scales in simulations with greater acceleration than

ParSplice, an approach which directly calculates reaction rates is required. For solid systems

and for reactions at surfaces, the activated reaction rates are dominated by smooth energy

barriers between states. This allows use of the simple harmonic form for the transition rate

constant:

k = A exp
[−Ea

kT

]
(3.16)

which is essentially the Arrhenius equation. The difficult part of NEB is identifying the

saddle point on the PES which joins reactant and product.

The vacancy migration energy can be found using the nudged-elastic band method, which

creates images along a proposed reaction coordinate. These images are structures with

various atomic displacements following the chosen mechanism. One of these images will be

near the apex of the system energy during this transition, uniquely identifying the peak of

the activation energy curve. The approach is dubbed climbing image NEB (CI-NEB)[42, 91].

CI-NEB allows for trajectory discovery during simulation, exploring mechanisms on-the-

fly, or adaptively. In lieu of pre-calculating the reaction rates before simulation begins,

as was done in the past with lattice KMC [114, 32, 5], the modernized KMC approach

instead executes saddle searches to adaptively discover new and possibly unknown reaction

mechanisms. For this reason, the simulation method is called adaptive KMC (AKMC).

3.1.2 AKMC: Adaptive Kinetic Monte Carlo

KMC-based methods do not have a fixed timestep; instead, they find the time elapsed

for the first escape from one state to another, allowing for large periods of vibrational motion

in the atomic system to be bypassed[63, 112]. These escape times correspond to reaction

rates, which are calculated adaptively or “on the fly” to construct an AKMC state model:

nothing in the output event table is predefined or assumed from prior knowledge[112, 63, 41].

AKMC uses minimum-mode following searches or high-temperature MD to construct this

event table: the transition state energies (activation barrier heights) are found using single-

ended saddle point finding algorithms such as the dimer method[44, 50, 40].
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In contrast to ParSplice and MD, the AKMC and KMC models use a non-constant

timestep, which varies to match the timescale of the first escape time from a given state. Over

longer timescales, up to many seconds, KMC-based acceleration approaches the segregation

found with MC[41, 112]. KMC methods simulate the time evolution of the system, requiring

a predetermined event table in which the kinetic rate of each event is approximated through

the Arrhenius relation to the pre-calculated activation energy. At each step, a random event

i is selected from the table in the order from 1 to i with the condition

i−1∑
1

ri−1 < p1

N∑
1

rN ≤
i∑
1

ri (3.17)

where
∑i

1 ri is the sum of the rate from event 1 to event i,
∑i−1

1 ri−1 is the sum of the rate

from event 1 to event i-1, p1 is a random number between 0 and 1, and
∑N

1 rN is the total

rate of the event table. Time is then incremented by

− ln p2∑N
1 rN

(3.18)

where a random number p2 is drawn between 0 and 1. AKMC allows the system to find

all potential events without need of a predetermined event table [41]. In order to search for

events, AKMC uses high-temperature MD and CI-NEB to identify and calculate saddles for

the new states using the EON software[41, 112, 40].

3.1.3 KMC from Cluster Expansion

To achieve further acceleration while maintaining as much accuracy as possible, in the

present study, we use off-lattice dynamics from AKMC to fit a more approximate, lattice-

based KMC model, which functionally depends on the Ni-coordination via a cluster expan-

sion.

An energy estimation based on the local environment of the vacancy was generated by a

cluster expansion. The energy was predicted to be dependent on the concentration of Ni and

Cu located in the first nearest neighbor shell of the vacancy. In the FCC CuNi alloy, there

are eight nearest neighbors for the vacancy on the surface and twelve nearest neighbors for

the vacancy in the subsurface. Sequentially, the energy-fitting model was used to determine
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the barrier and rate of the events in the event table based upon the trajectory data from our

AKMC simulations. More information about the cluster expansion method is provided in

appendix section A.5. Further, we found satisfactory agreement between AKMC and KMC

by carrying out the dynamics up to 300 µs, further validating the KMC model (34).

3.1.3.1 Equilibration Rate for KMC-CE

Finally, the concept of an equilibrium rate is introduced to further accelerate the timescale

accessible by KMC. In this approximation, no rate is allowed to be larger than the spec-

ified equilibrium rate with the assumption that all states connected by rates faster than

equilibrium rate should already be in equilibrium. In the case of CuNi segregation, the

planar diffusion of a vacancy on the exposed surface is rapid, equilibrating on much shorter

timescales than for defect re-entry to the subsurface to occur even once. Ultimately, the

effect of an artificial equilibrium rate in KMC simulations is that these key transitions can

be sampled more effectively instead of the many horizontal transitions that do not alter the

composition with respect to surface depth.

In both AKMC and KMC simulations, the temperature was set to 500 K and the prefactor

for the rates was fixed at 5×1012 s-1. The optimizer used in AKMC was L-BFGS, with a

convergence criterion of 0.01 eV/Å[91]. System evolution from AKMC reached ms timescales

running for a week on 24 cores. The following KMC timings are the average of five separate

runs in both cases: KMC realized seconds of simulation time running on a single processor

for 2 hours with the added equilibration rate. KMC without the equilibrium rate was only

simulated up to 10 ms, since only one minute of wall clock time was necessary before the

surface vacancy trapping described above halted Ni segregation in the system.
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3.2 Results: Comparison of Multi-timescale Methods

This section contains material adapted from the following publication:

R.B. Garza, J. Lee, M. H. Nguyen, A. Garmon, D. Perez, M. Li, J.C. Yang, G. Henkelman,

andW.A. Saidi, J. Chem. Theory Comput. 2022, 18, 7, 4447–4455, doi:10.1021/acs.jctc.2c00303

Primary contributions to the research, results, data analysis, text, and figures were provided

by the University of Pittsburgh (Garza, Li, Yang, and Saidi), including all data collection

and simulations involving MC, MD, and ParSplice (Garza). Initial guidance for running

ParSplice with application to binary alloy segregation was provided by Los Alamos National

Laboratories (Garmon, Perez), though all simulation and data collection was performed at

Pitt (Garza). Data collection with KMC-based methods was performed by collaborators at

the University of Texas at Austin (Lee, Nguyen, and Henkelman), who provided Figure 7

which was then refined by Pitt (Garza). All other figures were created at Pitt (Garza).

In this study, we probed the segregation dynamics using MD, ParSplice, AKMC, and

KMC starting from the same initial configuration of the random alloy. Lattice vacancies

are the primary defect responsible for alloy segregation: the only other mechanism, self-

interstitial migration of metal atoms to octahedral or tetrahedral sites, is destabilized by

greater formation and migration energies than those for the point defect (vacancy)[56].

Hence, our simulations included a single vacancy to facilitate surface segregation since this

the lowest concentration feasible in the system. Decreasing the system size from 384 to 216

atoms had no appreciable effect on transition energies or state occupancy.

Importantly, the formation and migration energies of a di-vacancy are even lower than

for the monovacancy[71]. Although it represents a significant, unphysical increase in the

vacancy concentration, we found that introducing two vacancies to the system activated an

alternate, lower energy mechanism for segregation that merits some discussion.

Rapid diffusion of a vacancy through the slab is resolved by all four methods in tens

of ns. Stochastic re-entry of vacancies into the subsurface, however, is only seen on the
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microsecond timescale in the two KMC methods. Kinetic vacancy trapping on the surface

and its effect on the segregation rate are discussed. The equilibrium composition profile of

CuNi after segregation during annealing is estimated to occur on a timescale of seconds as

determined by KMC, a result directly comparable to nanoscale experiments.

Although the effect of local composition on activation energies (vacancy migration ener-

gies) reported from AKMC is low, the influence of vacancy separation is notably influential

on the rate of defect migration and percolation towards the surface. Trajectory analysis

Figure 6 shows the composition over time within the top layer of our Cu-16at%Ni (100)

slab model for a single simulation of each type within our methodology. The concentration

of Ni atoms in the top surface layer decreases over time as it transitions from a uniform dis-

tribution to that of equilibrium, as shown by the MC simulations in Figure 2. The accessible

simulation time increases sequentially for each method (MD, ParSplice, AKMC and KMC).

In MD (Figure 6a), the vacancy diffuses to the surface at 0.3 µs, displacing a Ni atom to

the subsurface; up to the total time of 0.4 µs the vacancy remains trapped on the surface so

that the Ni concentration does not change. With over thirty different MD simulations, we

observed that the time for vacancy percolation to the surface was consistently less than 1

µs, resulting in similar degrees of segregation as shown in Figure 6a.

ParSplice (Figure 6b) shows similar dynamics as in standard MD, with vacancy migration

to the surface in a fraction of a µs. Throughout the simulation, the ParSplice trajectory

visited 8,278 topologically unique states while making 37,458 transitions, the vast majority

of which occurred after the vacancy had reached the surface. The parallel acceleration of

ParSplice increased the timescale from the standard MD simulation by a factor of ∼100 up

to 35 µs, but even at this longer timescale the vacancy remained trapped on the surface and

no additional Ni segregation was observed. As expected, ParSplice is consistent with MD on

timescales where they overlap (0.4 µs) not only in terms of bulk vacancy diffusion but also

the timescale at which the vacancy diffuses to the surface. I have repeated the ParSplice

simulations dozens of times with different random seeds observing early vacancy diffusion to

the surface (before 1 µs) in nearly all trials, just as with MD.

With AKMC, we increased the simulation timescale by another order of magnitude (Fig-

ure 6c): a total of 144,597 transitions evolved the system through 32,369 unique states (a
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Figure 6: Ni content in the top layer of Cu-16at%Ni(100) with a vacancy for (a) standard

MD, (b) ParSplice, (c) AKMC, (d) KMC, and (e) KMC with applied equilibrium rate.

Composition is normalized as in Figure 2
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similar ratio of transitions to new states found as in ParSplice). Note that our AKMC

approach uses coarse-graining following the MC with absorbing Markov chains (MCACM)

method, allowing many more transitions to be considered via an analytic solution to the

rate equations[77]. From the AKMC dynamics, we can observe events in which the vacancy

moves from the surface to the subsurface at a timescale of roughly 50 µs. Percolation to

the surface occur multipel times at 20, 105, 140, 160, and 200 µs (yellow dots in Figure 6c).

Although the vacancy arrives at the surface multiple times, it does not cause Ni segregation

until the third percolation, resulting in some differences with the MD and ParSplice results,

though this is only a consequence of the stochasticity of the studied system. Over the simu-

lation time of 300 µs, these five percolation events resulted in 3 Cu atoms and two Ni atoms

migrating from the surface to the subsurface.

With our KMC model (Figure 6d), we executed 4.7 million transitions generating 10 ms

of simulated time. Over these timescales, the system appears to approach equilibrium, with

fluctuations in the surface concentration between 0 and 5% Ni. However, what is not obvious

from these plots is that the vacancy spends all of its time in the first and second layer, so

that Ni segregation only occurs between the surface and subsurface layers. This behavior

originates from a disparity in barrier heights that embodies the “low-barrier problem”, more

aptly referred to as the “heterogeneous barrier” problem. Dynamics with a mix of low and

high activation barriers are inherently more difficult to accelerate since groups of states

interconnected by low barriers will always dominate the trajectory during naive state space

exploration[73, 83]. The barrier for vacancy surface diffusion is 0.4-0.5 eV, whereas the

barrier for the vacancy to go subsurface is 0.8-0.9 eV. Thus, we are simulating on the order

of a million KMC steps with the vacancy mostly diffusing on the surface for one subsurface

diffusion event, offering a low chance for segregation to occur. Even factoring in the small

cost of each KMC step, this makes it impossible to simulate an equilibrium distribution of

Ni in the top three layers.
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3.2.1 Heterogeneous Barrier Problem

To further accelerate the dynamics and mitigate the “heterogeneous barrier” problem, in

our final simulation (Figure 6e), we perform KMC with the equilibrium rate approximation

described in the methods section, realizing 160 million transitions to reach a simulated time

of 1 s. Here, the idea is that the vacancy will quickly reach local equilibrium diffusing in

the top layer, and no new states of interest are explored until subsurface diffusion occurs.

Since vacancy surface diffusion occurs on a timescale of ns, and diffusion of the vacancy to

the subsurface occurs on a timescale of µs, we chose an equilibrium rate of 40/µs to slow

the surface diffusion and accelerate the diffusion of the vacancy to the subsurface and below.

Figure 6e shows that on a timescale of seconds, the surface Ni concentration fluctuates

around equilibrium after 0.4 seconds until the end of our simulation lasting 1 s.

In order to more accurately estimate the timescale required to obtain the equilibrium pro-

file, we performed five individual KMC simulations with the same equilibrium rate (40/µs),

extending the total time to 2.5 seconds corresponding to about 400 million transitions. Al-

though we utilize the per-layer final compositions previously shown in Figure 2 from MC

annealing as a predictor for the local equilibrium composition, the moving average for local

concentration from KMC may continue to fluctuate after this target composition is first

realized. Figure 7 shows the moving average of Ni composition obtained from these KMC

simulations in the bottom three layers (referred as layer 1, 2 and 3) and the top three layers

(referred as layer 12, 11, and 10) in bold lines compared with the corresponding, non-moving

average equilibrium layer compositions obtained by MC (data from Figure 2) in dashed lines.

From Figure 7a, we can see that layer 1 reached the MC value in less than 0.1 second and

even approached zero Ni concentration at 1.5 seconds, although this does not occur in MC

annealing on average, during which a single Ni atom remained on the surface for most of the

equilibrium samples (Figure 2). Layer 2 exhibits more dramatic changes. The local com-

position started from 30% Ni, dropped to the MC composition of 10at% 1.75 seconds, and

remained near the estimated value from MC profiles until the end of the simulation. While

the MC simulation left 16% Ni in layer 3, our KMC model shows more Ni segregations,

leaving 10% Ni in the layer. This might explain the higher Ni composition profiles of the top
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two sublayers (layer 11 and 10) in Figure 7b. While layer 12 shows similar behavior as layer

1, layer 11 did not reach the MC profile until 2.5 seconds when its composition started to

move toward MC composition, and layer 10 first reaches the MC profile at 0.6 s before the

composition increased again. The overall profile, nonetheless, clearly shows an increase in

the number of Ni atoms in bulk layers, indicating thermodynamic tendency for this dopant

to remain in the bulk rather than on the surface. The state space exploration from KMC is

inherently much greater than that of MC, which is not a dynamical method and can only

follow an unphysical trajectory towards the lowest system energy.
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Figure 7: Ni composition averaged over five KMC simulations for the (a) bottom three

layers and (b) top three layers over 2.5 seconds with an equilibrium rate of 40/µs. The bold

line represents the 0.5-second-average calculated from the lighter single-frame datapoints,

and the dashed line corresponds to the average concentration of Ni by MC calculation with

EAM potential at each layer when the system moves toward equilibrium. Composition is

normalized as in Figure 2
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3.2.2 Monovacancy Activation Energy and State Residence

Apart from surface effects, the local chemical environment around a vacancy is expected

to influence the system energetics and the rate of Ni composition change. To investigate

this, we tracked the number of Ni atoms within a 5 Å radius of the vacancy. The number of

Ni atoms in the local environment ranges from 0 to 12, with three distinct “bins” of equal

width formed for low, mixed, and high Ni-content environments.

The spectrum of barriers calculated during AKMC for all vacancy migration events within

this trajectory is presented as a histogram in Figure 8a, which shows the lowest transition

state energies for vacancy migration in Ni-rich regions of the alloy. Additionally, because

the system has lower Ni content than Cu, the integrated peak area is smaller for transitions

into/within Ni-rich regions than for those with mixed and Cu-rich compositions. Vacancy

migration energies are shifted closer to 0.4 eV in the Ni-rich regions than for migration in

Cu-rich regions according to Figure 8a. We can deduce that vacancy migration is favored in

the Ni-rich regions, contributing to the lower dwell time near Ni as the vacancy more rapidly

diffuses towards and away from this dopant. Vacancies must slowly explore the Cu-rich

regions of the host lattice before returning to possibly segregate the Ni atoms away from the

surface. The order of integrated peak areas in Figure 8a also supports this conclusion.

The overall time spent in low Ni, mixed, and high Ni content environments is also shown

with respect to time in Figure 8b-d using a cumulative measure of residence time for MD,

ParSplice, and AKMC and re-scaling this measure by the prevalence of each environment in

the system. The number of Ni atoms in the vicinity of the vacancy modulates these timescales

substantially but in similar fashion for all methods. Further, the logarithmic trendlines

and their orders of magnitude agree across overlapping timescales for MD/ParSplice (ns)

and ParSplice/AKMC (µs): this supports the hierarchy of methods utilized herein as a

theoretical foundation to connect correlated observations evolving across many timescales

for the same process. The cumulative dwell time and thermodynamic trends match for all of

the simulation methods in the order of integrated peak areas (Figure 8a) and residence times

(Figure 8b-d): ttotalCu−rich > ttotalmixed > ttotalNi−rich. Though this agreement does not hold at very
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Figure 8: (a) Histogram of vacancy migration energy barriers obtained from a 319 µs AKMC

simulation. (b-d) Total residence time for the vacancy in different chemical environments for

(b) MD, (c) ParSplice, and (d) AKMC. Cumulative times are normalized by the prevalence

of each composition type in the system rendering them unphysical.

early (ps) simulation times with low cumulative sums, particularly for MD which is noisier

as compared to accelerated methods, the trend becomes evident in the ergodic limit.

The residence times of vacancy chemical environment presented in Figure 8b-d confirm

that the local composition is an effective determinant of where a vacancy spends most of

its time during annealing and segregation. Specifically, the position of Ni in the lattice is a
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minor determinant of the dynamics, since the dopant slightly biases the vacancy’s random

walk by ∼0.1 eV. This effect has also been documented in Ni-Fe surfaces annealed at 1100

K using KMC, where the local composition and the identity of the atoms exchanging during

segregation (solute vs. solvent) significantly influenced the vacancy migration energy and

the measured tracer diffusion coefficient[32].

3.2.3 Divacancy Activation Energy and State Residence

It is known that this combination of two vacancies is more stable than two point defects

in isolation: the predicted stability of the divacancy decreases in order of 1st NN > 2nd NN

> 3rd NN according to previous calculations and our own[6, 71]. Accordingly, we created

an alloy with a known initial divacancy location and separation (3rd and 5th layers, 3rd

NN separation distance) and binned the distance between two vacancies within the periodic

simulation cell into 1st, 2nd, 3rd, 4th and ≥5th NN groups (2.56, 3.62, 4.43, 5.12, and all

distances ≥5.72 Å, respectively) to characterize the divacancy state. We used Wigner-Seitz

analysis to track the divacancy separation distance throughout conventional and accelerated

trajectories shown in Figure 9.

The mono- and divacancy are respectively distinguished as red and blue peaks within the

overall spectrum of barriers for an entire AKMC simulation in Figure 9a. This histogram

represents 400 µs of annealing with vacancies mostly trapped on the surface for the duration

(only ∼6 at% change in local composition occurs in the top layer). Using the divacancy NN

separation distance, we can easily differentiate the largest peaks in the activation barrier

spectrum as the migration of a single point defect (0.52 eV) or the rotation of the point de-

fect about the center of a coupled divacancy (low-energy peak, 0.22 eV). These two energies

represent energy distributions of mono- and divacancy migration in our structures charac-

terized by the 4th/5th and 1st NN distances between the divacancy, respectively. The peak

around 0.52 eV in Figure 9a for independent migration of distant monovacancies resembles

the distribution shown in Figure 8a, which shows the thermodynamics for a system with one

vacancy.

The peak areas for each NN separation distance of the divacancy also correspond to the
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Figure 9: (a) Histogram of divacancy migration energy barriers obtained from a 400 s AKMC

simulation. (b-d) Total residence time for each divacancy separation distance for (b) MD,

(c) ParSplice, and (d) AKMC. Cumulative times are normalized by the prevalence of each

composition type in the system rendering them unphysical.

values of trendlines in Figure 9b-d as well, agreeing on the expected order of dwell times

in each of the five divacancy separation states. The most visited states—the 1st and 4th

NN separation distances—are energetically similar because the divacancy formation energy

is only slightly (∼0.1 eV) smaller than that required to form two isolated vacancies in both

Cu and Ni crystals[71, 116]. Accordingly, the 2nd and 5th NN distances are also revisited at

similar rates in accelerated MD (Figures 8b and 3c), but since these states adjoin the 1st or 4th

NN states, respectively representing a destabilized divacancy or two isolated monovacancies,
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they occur with less overall probability. Fast planar clustering on the order of 101-102 ns

brings the vacancies together such that the 3rd NN divacancy separation, though initially

introduced at this distance, is not measurably revisited in the dynamics. Higher resolution

simulations with ps and fs frames printed to our data pipeline showed the same result, so

we conclude that the absence of transitions into the 3rd NN state (Figure 9a) or revisiting

in cumulative timescale plots (Figure 9b-d) is not an artifact of our methodology.

The competition between divacancy formation and vertical migration to the surface for

individual vacancies biases the random walks of point defects in proximity to one another in

the lattice. In our alloy systems with two atoms deleted (2 vacancies introduced), a rapid

clustering of the vacancies into a single void consistently occurred in less than 20 ns for nearly

all simulations. Because of the favorable clustering of monovacancies into divacancies, planar

defect diffusion is not random but instead biased towards formation of grouped defects

(see Appendix A.4)[6, 71, 81]. We expect to see stochasticity from the random walks of

isolated vacancies to cause lasting separation of some pairs, since we simulated fifty different

trajectories in total with the methods (except KMC, due to its applied equilibrium rate and

inability to model the divacancy). Despite this, only three trajectories with a divacancy did

not contain the clustered divacancy on a single surface after 400 ns.

Particularly, from the analysis of the trajectory, we can see that the divacancy rotates

and rapidly ascends to the exposed surface of the alloy, since its migration energy is much

lower than that of a single vacancy (Figure 9a)[6, 71, 81]. Rotation of the divacancy by 60°

within close-packed <111> planes has been previously confirmed with first-principles and

EAM NEB calculations for both Cu and Ni, though the rotation path is slightly out of plane

in the case of pure Ni[6, 71]. We also observed this mechanism through analysis of vacancy

coordinates from Wigner-Seitz analysis, a finding that reinforces our earlier statement: the

position of Ni in the lattice is a minor determinant of the dynamics, since the dopant slightly

biases the vacancy’s random walk by ∼0.1 eV.
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3.3 Cross-Correlation Heatmaps for Divacancy Segregation Mechanism

As discussed in Section 2.6, trajectory correlation analysis can be performed to compare

the path of a vacancy with a counter-migrating Ni atom during a segregation event. We have

shown that the divacancy mechanism should dominate the dynamics based on its formation

and migration energies relative to those for the monovacancy(Section 3.2.3 and Appendix

A.4). In previous literature, a 60◦ divacancy rotation within 111 planes has been shown to

occur in both Cu and Ni using DFT and EAM to calculate activation barriers previously [6],

though the rotation path is slightly out-of-plane in the case of pure Ni[71]. To confirm this

mechanism occurs similarly during divacancy segregation in our own simulations, I carried

out windowed cross-correlation analysis between one of the vacancies in the pair and the

counter-migrating Ni atom of interest. The resulting heatmaps in Figure 10 were developed

from trajectories made by conventional MD (a), ParSplice (b), and AKMC (c). The timing

of divacancy exchange is very different between each simulation method, since AKMC does

not have a constant timestep (the bins in the third row do not represent equal time, nor

does the offset τ). ParSplice has a constant time step, bin size, and offset, but covers a much

greater timespan than standard MD can. Thus, the short pattern in row 1 (MD) reoccurs

as a fractal within the longer ParSplice trajectory containing multiple segregation events.

In summary, the multiscale acceleration framework of MD, ParSplice, AKMC, and

KMC with added equilibration rate have increased the segregation trajectory timescale from

nanoseconds to full seconds, allowing for direct comparison with experimental data captured

during annealing. The latter two simulation methods are highly scaleable, with the primary

computation bottleneck occurring in ParSplice, since many replicas are required to be sim-

ulated at once with only small gains from topology matching for the spherically asymmetric

slab. In future, KMC-based methods in combination with novel potentials will allow for

comparison of oxidation experiments with computational simulation, revealing the initia-

tion and growth of oxides on realistic timescales by closing the gap between experiment and

theory.

The trajectory analysis method of cross-correlation heatmapping allows for multiple seg-

regation mechanisms to be identified which depend on the local density of defects i.e. mono-
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Figure 10: Rolling window cross-correlation heatmap comparing cylindrical coordinates z

(first column), r (second column), and θ (third column) for a segregating Ni atom (negative

offset) and a counter-migrating vacancy (positive offset). Trajectories from conventional MD

(a), ParSplice (b), and AKMC (c) are shown. Time is binned in epochs on the vertical axis

while time offset τ is on the horizontal axis. Solid red bands denote a numerical error filled

with the default value(ρ = 1).
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vacancy vs. divacancy segregation. The divacancy segregation mechanism entails a rotation

through 111 planes which occurs much more rapidly than the simpler monovacancy migra-

tion in [100] direction. There is a small influence of chemical environment on the vacancy

migration rate as well, with Cu-rich regions showing slower vacancy diffusion than those

with high Ni content. In the future, the effect of local composition on vacancy migration

should be explored more in stoichiometric alloys which are both disordered and ordered

to observe expected influences on monovacancy random walk. Similarly, cross-correlation

analysis should be applied to simulations of oxide nucleation and growth to detect novel

mechanisms of formation on the alloy substrate, particularly in the presence of roughened

surfaces with defects present since oxygen adsorption is more likely in these regions.
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4.0 Cu-Ni-O Forcefield Development

It is also important to simulate the effect of oxidation on the alloy segregation, since it

is known from experiments that the competition between NiO and Cu2O will induce phase

separation trends that can invert the trend expected from vacuum surface tension. Key

intermediates in the alloy surface oxidation consist of surface reconstructions under varying

oxygen surface coverages. These stable surface arrangements of adsorbed oxygen create

rows of adatoms on the (100) surface, creating corrugated rows similar to those seen on

(110)[64, 62]. This surface roughening increases the number of hollow sites available for

oxygen adsorption, which we determined to be the most favorable adsorption site based on a

series of DFT surface energy calculations comparing the position of oxygen on CuNi surfaces.

After identifying important trends in oxide formation and nucleation on the reconstructed

surfaces for pure Ni and alloyed CuNi with this first-principles data, the same values were

used as training data for reactive force field (ReaxFF) optimization. In addition to the

formation and surface energies presented in the following section (4.1), relative energy dif-

ferences, per-atom forces, and interatomic distances were also incorporated into the training

data from the available DFT calculations, expanding the number of training samples to 310.

4.1 Results: Surface Alloy Oxide Stability from First-Principles

The formation energy of surface oxides can also be compared for various oxygen coverages

θO to evaluate the thermodynamic stability of differing surface reconstructions and oxides.

The following formula can be used to find the formation energy of Ni(1-x)Ox on the top layer

of a Ni(100) substrate:

Eform(x) = ENi,s+Ni(1−x)Ox − ENi,s − (1− x)NMSENi −
xNOSEO2

2
(4.1)

where ENi,s+Ni(1−x)Ox is the energy of the relaxed substrate with formed oxide layer on top,

ENi,s is the relaxed substrate energy with the top, reconstructed layer removed, ENi is the
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per-atom reference energy for bulk Ni, EO2 , NMS is the number of metal sites per layer (4-8

depending on periodicity), and NOS is the number of available hollow sites on the surface

for oxygen adsorption.

For a set of pristine Ni(100) surfaces with adsorbed oxygen and also reconstructed (100)

surfaces with an oxygen coverage 0 < θO < 1, I calculated the formation energies of the

surface oxides relative to the bare (100) substrate, presenting them as a convex hull in

Figure 11. The most stable surface reconstruction is characterized by a c(2 x 2) surface

arrangement. Because formation energies increase beyond this critical coverage θO = 0.5,

it is clear that oxide nucleation and growth atop the c(2 x 2) reconstruction will initiate

as more oxygen adsorbs at the surface. This behavior occurs in lieu of forming a complete

oxygen monolayer (θO = 1). Importantly, the formation energy for θO = 1 represents one

layer of stoichiometric NiO, and does not follow the trend line. This is because developed

oxide formation is preferred accompanied by surface roughening: the unaltered surface in

the structure of θO = 1 represents a lattice spacing closer to that of pure Ni (a = 3.52 Å)

rather than NiO (a = 4.25 Å), so it remains less stable than the c(2 x 2) reconstruction

which maintains a spacing closer to the oxide’s equilibrium value.

I constructed a similar convex hull for the various alloy surface oxides Cu(1-x)NixOy atop

the pristine Cu(100) substrate. The necessary equation is similar to (4.1):

Eform(x, y) = ECuNi,s+CuxNi(1−x)Oy−ECuNi,s−xNMSECu−(1−x)NMSENi−
xNOSEO2

2
(4.2)

The formation energies of surface oxides for both pure and alloyed cases can be compared

in this manner, not only revealing the highest coverage θO beyond which oxide nucleation

occurs, but also the influence of oxygen on metallic surface segregation. Figure 12 shows the

convex hull for a variety of formed alloy oxides Cu(1-x)NixOy which I use in the training for

ReaxFF and my advisor, Saidi, used in the training for DeepPot.

The formation energies are presented as a function of Ni content (x) as well as the oxygen

content (y). Clearly, low oxygen content around θO = 0.125 is thermodynamically preferred
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Figure 11: Convex hull of surface Ni(1-x)Ox formed on the pristine Ni(100) substrate for both

monolayers and reconstructed surfaces.

above all other values for θO, indicating that the initiation of oxide growth proceeds be-

fore further adsorption of oxygen. As θO approaches 1 (a full monolayer), some stability is

gained, since this creates a thin, developed oxide along the top layer. Additionally, surface

oxides with Ni in the subsurface rather than the exposed surface tend to be more stable, as

expected from the known influence of surface tension (dashed lines in Figure 12 highlight

this behavior).

Surface reconstruction roughens the surface, providing more sites for oxygen adsorption

at the lower coordination edges, kinks, and vertices. A variety of defective structures which

do not contain a pristine (100) surface were also relaxed with adsorbed oxygen using DFT,

allowing θO to reach 1.25 ML, since the defective surfaces contain more adsorption sites

than are normally available on their pristine counterparts. Another set of convex hulls

for 0.125 < θO < 1.25 is plotted for the full dataset in Figure 13, including defective,

reconstructed surfaces which differ significantly from (100).
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Figure 12: Convex hull of surface Cu(1-x)NixOy formed on the pristine Cu(1-x)Nix(100) sub-

strate for monolayers and some reconstructed surfaces. Dashed lines highlight differences in

formation energy for equivalent values of x caused by Ni positioned in the surface (above the

line) or subsurface (below the line).

Interestingly, for defective surfaces, the metallic segregation trend inverts: Ni prefers to

be on the surface, part of the formed oxide. This is likely due to the structural inability

to reduce surface tension in the presence of defects. Nearly all surfaces with defects have

Eform > 0, falling outside the convex hull relative to the pristine (100) surface. Importantly,

defective surfaces with θO = 1.25 are all found to be more stable than the unoxidized,

pristine surface (Eform < 0). This is because the oxide formation energy is greater than the

segregation energy, which only relaxes surface tension rather than forming new bonds. In

other words, the formation of nickel oxide is so favorable it overwhelms the thermodynamic
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Figure 13: Convex hull of surface Cu(1-x)NixOy formed on the pristine Cu(1-x)Nix(100) sub-

strate for monolayers and some reconstructed surfaces. Dashed lines highlight differences in

formation energy for equivalent values of x caused by Ni positioned in the surface (above the

line) or subsurface (below the line).

tendency for Ni to be in the bulk.

The case with high surface defect density is likely to represent the realistic CuNi surface

as it transiently oxidizes, since it is known that surface defects present favorable adsorption

sites for oxygen gas. The inversion of expected surface segregation trends as oxygen roughens

the surface explains the competitive oxidation of CuNi at the atomic and nanoscales. Locally,

NiO can form before Cu2O in the presence of roughened surfaces and inhomogeneous alloy

composition caused by pre-annealing.
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4.2 ReaxFF: Reactive Forcefields

The ReaxFF model is based on a bond order formalism, but also uses bond distance to

determine further effects such as Coulomb and van der Waals forces[100]. Updates to bond

order and distance allow for bonds to be dynamically formed and broken during simulation,

and distinct atom types include lone pairs and more electronic effects such as shielding. All

of these effects are handled at once by the embedding function of EAM, making it a less per-

formative model than ReaxFF. For instance, EAM requires significant alterations to describe

interactions with oxygen, which behaves fundamentally different than the metallic nuclei. To

date, there is no applicable force field of any model which describes molecular oxygen and

its reactions with solid, alloyed CuNi surfaces. For this reason, I developed a novel reactive

potential for Cu-Ni-O using the ReaxFF formalism and an evolutionary algorithm, particle

swarm optimization, from my own first-principles database describing the surface oxidation

of CuNi.

Figure 14: Diagram of energetic contributions to the total system energy from each atom,

reproduced from [90]

There are atomic, two-body, three-body, and four-body interaction terms as well as off-

diagonal two-body interaction terms within the ReaxFF model. To minimize alteration

of pre-existing forcefields, we only re-optimized the two-body and three-body interaction
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terms. Specifically, the bond dissociation energy (Edis1 ), σ and π bond order pre-factors

(pbe1 and pbe2 ) and their related exponents (pbo1, pbo2, pbo3, pbo5, and pbo6 ) were varied.

Off-diagonal terms (Ediss, Ro, gamma, and rsigma) were also varied to further improve per-

formance. The free parameters include the self-interactions for Ni-Ni and O-O, which were

both re-optimized to improve the existing Ni-O potential from van Duin et al[122]. In total,

44 two-body interaction parameters were allowed to vary during the Cu-Ni-O forcefield op-

timization, although 32 of these were optimized separately to create the Ni-O potential first.

The three-body parameters for Cu-O interactions were held constant while 20 parameters

were relaxed for the Ni-O three-body interactions. We benefit from a previously optimized

Cu-O potential developed within our own lab group[121], necessitating only minor rescaling

of two-body interactions with our improved Ni-O parameters to realize a viable Cu-Ni-O

potential.

4.2.1 Particle Swarm Optimization

The algorithm used for development of ReaxFF potentials in this work is particle swarm

optimization (PSO), an evolutionary or genetic method which explores multiple candidate

potentials at once. It is publicly available at github.com/tisimst/pyswarm Information is

shared between the candidate “particles” or force fields in the group, or “swarm”. Infor-

mation passing is a key feature of all evolutionary methods. PSO improves the force field

parameters of each particle using the best performing parameter set: the current best force

field Pbest(t) pulls the other candidates’ parametersPi(t) closer to its own parameters through

a velocity update, creating a new swarm P(t+1):

Vi(t+ 1) = ωVi(t) + c1r1(Pbest −Pi(t))

Pi(t+ 1) = Pi(t) +Vi(t+ 1)
(4.3)

whereVi is the velocity vector for parameters belonging to candidate i. The weights c1 and r1

are selected by the user to determine the level of information passing from the best candidate

to all others. Larger values indicate a bias towards exploitation of the best parameters in

lieu of exploration for new potential candidates. This tunable approach allows for many

more candidates to be tested than the typical Gaussian perturbation, which has been used

54



in the literature for decades to create new ReaxFF parameter sets without exploring as

many possibilities in parameter space. The moduler (object-oriented) code I developed for

this study is publicly available at github.com/15garzab/pso_rff, building on a previous,

functional optimization code driven by Gaussian perturbation written by Matt Curnan[121].

4.3 Results: ReaxFF for Ni and Ni-O

In order to better model surface nickel oxides, we first improved the performance of a

pre-existing Ni-O ReaxFF potential available in the literature and trained using the same

density functional ground-truth as in our own optimization[122]. These parameters were

originally developed to describe bulk oxides rather than oxides formed on the exposed sur-

face, justifying further improvement with PSO. Figure 15 shows the performance of the

original potential for a variety of surface oxygen coverages of the Ni(100) surface as well as

bulk Ni and NiO in face-centered cubic (FCC) and hexagonal close-packed (HCP) lattices.

This potential shows significant deviation from ground-truth data for the surface oxides

and bulk oxides. It is expected for surface oxide species to be poorly modeled by this

potential because our training structures were not used in its development, which focused

on bulk properties.

However, the performance for bulk oxides is also poor even though the lattice parameter

is correctly predicted, a fact which is obvious when examining the binding energy curves

(Figures 16 and 17) for bulk NiO, which have root mean squared error (RMSE) greater

than 5 eV. These plots document the lattice formation energy as a function of deviation

(expansion/compression) away from the expected lattice parameter(a = c = 4.2 Å).

Our re-optimization using PSO closes the gap between DFT and previous RFF perfor-

mance, reducing the overall RMSE across the data for nickel and its oxides from 4.57 eV to

3.60 eV. The parity plot for the improved Ni-O forcefield and all relevant data is shown in

Figure 18.

The majority of this performance enhancement comes from the bulk and surface nickel
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Figure 15: Parity plot comparing surface, bulk formation, and binding energies of Ni and

NiO from the original Ni-O RFF [122] with their ground-truth DFT values

oxide binding energies, as shown in Figures 19 and 20. The improved potential not only

predicts the correct lattice parameter (a = c = 4.2 Å), but also matches the functional

dependence of formation energy on lattice expansion and compression. RMSE for bulk,

FCC NiO binding energies dropped from 6-8 eV (planar vs. vertical binding) for the original

parameters to 1-2 eV.
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Figure 16: Binding energy as a function of planar lattice parameter (a) for FCC NiO calcu-

lated with outputs from the original Ni-O RFF parameters[122]

Figure 17: Binding energy as a function of vertical lattice parameter (c) for FCC NiO

calculated with outputs from the original Ni-O RFF parameters[122]
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Figure 18: Parity plot comparing surface, bulk formation, and binding energies of Ni and

NiO from the improved Ni-O RFF with their ground-truth DFT values

Figure 19: Binding energy as a function of planar lattice parameter (a) for FCC NiO calcu-

lated with outputs from the improved Ni-O RFF parameters
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Figure 20: Binding energy as a function of planar lattice parameter (c) for FCC NiO calcu-

lated with outputs from the improved Ni-O RFF parameters
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4.4 Results: ReaxFF for Cu-Ni-O Surfaces

After Ni-O parameters were improved beyond their previous performance, we re-scaled

the Cu-O parameters alongside those for Ni-O to create the new Cu-Ni-O ReaxFF potential,

the first of its kind to the best of our knowledge. The overall performance of the Cu-Ni-O

RFF potential is shown in Figure 21: RMSE is below 7 eV for the full training set, exhibiting

excellent performance for oxides on pure metal and alloyed surfaces.

Figure 21: Parity plot comparing surface, bulk formation, and binding energies of Cu, Ni,

CuO, NiO, CuNi, and surface alloy oxides from the final ReaxFF Cu-Ni-O potential with

ground-truth DFT values

Inserting oxygen at octahedral and tetrahedral interstitial sites results in excited states

(oxygen flow through the lattice preferentially follows along dislocations and lattice defects

rather than the much smaller interstices), so benchmark structures for bulk alloys with

oxygen inserted at interstitial positions are difficult to relax using not only DFT but any

developed potentials. It is likely that four-body interactions will need to be re-optimized

to account for the high degree of oxygen coordination at interstitial positions in the bulk

lattice. Such development is beyond the scope of this work, which is focused primarily on
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surface and subsurface oxygen interactions.

Figure 22: Surface energies from final ReaxFF Cu-Ni-O potential and first-principles ground

truth for pure Cu surfaces

Close matches with first-principles binding energy curves for the pure metals Cu and

Ni and are also provided by the final Cu-Ni-O potential for both FCC and HCP lattices.

Average RMSE for these values is below 1 eV as shown in the binding energy curves provided

in Appendix A.7.1 and A.7.2. Additionally, the ReaxFF potential replicates the order of

surface energies from DFT for pure Cu (Figure 22) and Ni-doped Cu surfaces (Appendix

section A.7.4) with low Miller index i.e. Esurf
Cu(111) < Esurf

Cu(100) < Esurf
Cu(110). Further, the same

behavior is exhibited for pure Ni and alloyed surfaces. Energy differences between structures

with Ni on the surface, subsurface (2nd), and interior (3rd)in the surface were included in

the training to account for vacuum surface segregation previously described in 2. Trends for

each of these cases are shown in Appendix section A.7.4.

Various oxygen coverages 0 < θO < 1 on the (100) surface were used as training structures

with Ni doping in the surface, subsurface, and interior layers. As previously noted in 4.1,

some of these structures are oxides formed on pristine (100) surfaces. Figure 23 displays good

performance of the ReaxFF potential developed with PSO for surface alloy oxides without
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Figure 23: Parity plot comparing surface energies of pristine surface alloy oxides from the

final ReaxFF Cu-Ni-O potential with ground-truth DFT values

defects (RMSE < 7 eV).

Further, the potential also performs well for reconstructed surfaces containing corrugated

rows and other defects deviating from the pristine (100) surfaces of Figure 23. RMSE < 8

eV is shown in Figure 24 for these reconstructed surface oxides.

In the future, it will be essential to retrain this model with (110) and (111) surface recon-

structions, although these reconstructions are not as well characterized in the literature[67,

66, 58]. Relaxing further structures with DFT which were not included in our data will be

necessary. Such optimization will provide further confidence in the force field’s application

towards CuNi oxidation studies.
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Figure 24: Parity plot comparing surface energies of pristine surface alloy oxides from the

final ReaxFF Cu-Ni-O potential with ground-truth DFT values

4.5 DeepMD/DeepPot: Deep Learning of Atomistic Potentials

Although the ReaxFF model is derived from physical intuition and established chemical

theories (bond order formalism, VSEPR theory, etc.) and it can appropriately model more

than one chemical environment (surface vs. bulk), it is not highly accurate for any particular

subsystem except the bulk (RMSE < 2 eV). The trade-off between model parsimony–having

few parameters with high transferability–and model accuracy is important to balance. To

address the inaccuracies of the developed PSO-RFF model, we also trained a neural network

potential with thousands of parameters more than are used in ReaxFF.

DeepMD is a package written in Python and C++ that provides quick access to data

loaders and model construction scripts to train a deep learned interatomic potential from

energies, forces, and virials sampled from ab initio MD. It relies on Tensorflow for graph em-

bedding of atomic environments in each frame of the dynamics. The output from DeepMD

is a DeepPot-Smooth Edition (DeepPot-SE) model which replaces an older, discontinuous

potential with appropriately smooth tapering near the cutoffs[117]. DeepPot-SE is extensive
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and preserves symmetry-invariant properties necessary to model dynamical and mechanical

properties of interest in alloy systems via a set of adaptive environmental tensor embeddings

and a family of loss functions for the user to select from[117]. After converting the coordinates

of the particles into graph representations for more efficient processing, the environmental

tensors of each atom within a cutoff radius are created. These local atomic environment

tensors are then mapped to an embedded feature space which preserves the translational,

rotational, and permutational symmetries of the target system. A final fitting network con-

sists of a fully-connected set of feed-forward layers with skip connections, taking the feature

embeddings to atomic energies which are summed to yield the total system energy[117]. Full

code for the DeepMD kit is available at github.com/deepmodeling/deepmd-kit.

The training data used in the development of DeepPot-SE force fields for Cu-Ni-O in-

teractions are a subset of my PSO-RFF training data, which my advisor (Saidi) selected,

omitting Ni and NiO structures. Specifically, we evolved alloy oxide structures in time using

ab initio MD to create thousands of samples of atomic forces, virials, and positions. Because

only Cu-rich alloys were of interest to my advisor, there was minimal sampling of Ni and

NiO trajectories for the input data. Thus, it is expected for the output model to perform

poorly on pure Ni and NiO structures. I created all training structures and MD samples; the

optimization and training of the neural network was carried out by my advisor, Saidi, one

of the developers of the DeepMD kit. I performed all benchmarks and tests of this potential

presented in the following section.

4.6 Results: DeepPot for Cu-Ni-O Surfaces

The following plots show the performance of the output DeepPot model for Cu-Ni-O. In

particular, there is excellent agreement between DFT and DeepPot for alloy and alloy oxide

structures. Overal RMSE is below 12 eV for the entire dataset: this number is inflated since

the Ni and NiO bulk expansion/compression structures were not included in the training

data. Without these data included in the assessment, RMSE falls to 3 eV26.

Focusing on alloy oxides with pristine, unreconstructed surfaces reveals excellent perfor-
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Figure 25: Parity plot comparing surface, bulk formation, and binding energies of Cu, Ni,

CuO, NiO, CuNi, and surface alloy oxides from the final DeepPot Cu-Ni-O potential with

ground-truth DFT values

mance of the DeepPot force field, with RMSE < 2 eV. A small systematic error for alloy

surfaces without oxygen is noticeable: this is because the per-atom energy for Ni is manu-

ally set to -5.13 eV for the purpose of formation energy calculations instead of the output

from the DeepPot model itself. Because Ni structures were not used in the training, this

reference energy is calculated incorrectly by the model. Using this reference energy instead

of an internally calculated Ni bulk formation energy drives a systematic displacement from

the DFT parity line for metallic structures, particularly those including many Ni atoms.

Additionally, the per-atom reference energy for oxygen–equal to half of the formation energy

of diatomic oxygen–is also manually set to -2.55 eV. Because diatomic oxygen samples were

used to train the model, there is a smaller difference between the reference energy from the

model ( -2 eV) and that selected for benchmarking (-2.55 eV).

Despite usage of reference energies from outside the model, systematic deviations from

parity are a degree of magnitude smaller than the random errors of the ReaxFF model for
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Figure 26: Parity plot comparing surface, bulk formation, and binding energies of Cu, CuO,

CuNi, and surface alloy oxides from the final DeepPot Cu-Ni-O potential with ground-truth

DFT values

the same system.

The performance of the DeepPot force field for roughened, reconstructed surfaces also

closely matches that expected from DFT, with RMSE < 2 eV as well. Fortunately, there are

no systematic errors in this subset of the data. Full binding energy curves with comparisons

to the first-principles dataset are provided in the Appendix for FCC and HCP Cu (A.8.1)

and Ni (A.8.3) as well as FCC CuO A.8.2. Performance on bulk FCC NiO is poor since those

structures were not included in the training. This binding curve has been omitted from the

presented results for lack of relevance to the CuNi surface oxide system. However, the use of

reference energies external to the model explains the systematic error for pure Ni as well as

NiO. In the future, further training with pure Ni and NiO bulk structures will be necessary

to avoid reliance on exogenous reference energies from the literature. Ideally, the model will

replicate these references through learning on those systems.
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Figure 27: Parity plot comparing surface energies of pristine surface alloy oxides from the

final DeepPot Cu-Ni-O potential with ground-truth DFT values

Figure 28: Parity plot comparing surface energies of pristine surface alloy oxides from the

final DeepPot Cu-Ni-O potential with ground-truth DFT values
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5.0 Conclusions

The work in this thesis describes multiple improvements to simulation of CuNi surface

segregation and oxidation. Namely, the acceleration of the molecular dynamics of binary

alloy segregation was achieved using a hierarchy of multiscale tools, including ParSplice and

KMC-based methods. Novel trajectory analysis tools are presented in this work to effectively

harness the data from these simulations. Additionally, two separate optimizations of Cu-

Ni-O interatomic potentials using an evolutionary algorithm and a deep learning approach

were carried out using the same dataset of structures relaxed with first-principles methods.

This database provides a set of oxide formation energies that estimate the cutoff for surface

oxygen fractional coverage before oxide nucleation begins.

The thermodynamic knowledge within this database is first described in chapter two,

which focuses on the preference for Ni to segregate into the bulk of CuNi binary alloy during

annealing. This chapter also introduced small timescale and equilibrium simulations of CuNi

segregation using MD and MC to probe the initial and final stages of alloy segregation. To de-

scribe vacancy migration and its inherent relation to metallic segregation, a novel trajectory

analysis was proposed, with code at github.com/15garzab/trajectory-analysis-redux.

In this approach, the cross-correlation between particle coordinates from molecular dynam-

ics is calculated via convolutions in time with a range of lag times, determining not only

lead-lag dynamics between two particles, but also spatiotemporally localizing critical events

responsible for metallic phase separation on the atomic and nanoscale.

In the third chapter, accelerated dynamics methods revealed the rate of segregation in

CuNi alloy from nanosecond to second timescales, reaching 2 seconds of simulation time

and the equilibrium composition with KMC, the most approximate of the methods. The

resultant composition profile shows no Ni on the top surface monolayer, with less than 15at%

Ni in the 2nd layer compared to 22at% Ni in the bulk on a per layer basis, in agreement with

MC predictions. Though most of our accelerated methods were used to simulate up to the µs

timescale, only modified KMC dynamics could reach the equilibrium profile obtained from

MC and previous experimental observations. Our model estimates that the timescale for
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segregation in the top layer to reach equilibrium is on the order of 0.1 ms, while equilibrium

segregation does not penetrate to the 3rd layer until timescales on the order of 100 ms. The

equilibrium timescales for surface segregation of any FCC bimetal can be determined with

a combination of AKMC and KMC. However, KMC-based methods require assumptions

regarding transition state theory, and they do not resolve fast atomic exchange processes as

well as ParSplice and MD. Our study shows that a model for the relationship between solvent

distribution, activation energy, and large-scale phenomena like segregation may be developed

from further simulations of bimetallics on experimental timescales. Our methodology is

general, and can be applied in the future using other interatomic potentials, including those

derived from machine learning[117, 7]. Further, the trajectory analysis method of cross-

correlation heatmapping allowed for unique mechanisms to be identified and differentiated

based upon the local vacancy concentration in the presence of segregating alloy components.

In the fourth chapter, we presented multiple novel interatomic potentials for the simula-

tion of CuNi surface oxidation from first adsorption to oxide nucleation. The first-principles

data used in this optimization contain thermodynamic insights meriting their own discus-

sion: the oxygen surface coverage θO which inverts the expected surface segregation trend

(θO > 0.125) also depends on the density of surface defects after reconstruction. Calculations

of formation energies for surface oxides identified the onset of oxide nucleation as a function

of oxygen coverage.

The first force field presented in Chapter 4 was a reactive forcefield (ReaxFF) based

on bond-order and VSEPR theories, resulting in an accurate description of alloyed surface

oxides for a variety of oxygen coverages and surface reconstructions. Further, the pure metals

and their oxides are also well-described by this potential, which was created by combining

two previous potentials for CuO and NiO, then refining with a particle swarm optimization

algorithm (PSO). The developed potentials replicate a variety of DFT calculations for both

static oxidized structures and dynamic oxidation processes. Our new reactive force field

exhibits improved performance for bulk and surface NiO structures compared to previous

Ni-O interaction parameters. The ReaxFF parameters for the Cu-Ni-O system also exhibit

good fit with ab initio formation energies for all metals and oxides occurring in the bulk

and on the surface of the alloy, except those resulting from insertion of oxygen at interstitial

69



positions, an excited state not expected to occur in the real system. The code I wrote for

this ReaxFF development is available at github.com/15garzab/pso_rff.

The database of DFT-relaxed structures I created was used by my advisor (Saidi) to train

a second Cu-Ni-O interaction model with thousands of parameters and greater accuracy for

surface alloy oxides and Cu-rich metal oxide systems, a deep learned, neural network model

(DeepMD). Though he omitted pure Ni and NiO structures from the training, there is

excellent performance on the Cu, Cu-O, and Cu-Ni-O training data including alloyed and

oxidized structures in the bulk and on both pristine and defective (100) surfaces.

This thesis has established multiple new tools which can be used in concert to advance

the study of nanoscale surface science beyond what is currently possible in environmental

microscopy. Before this work, metal oxide formation could only be partially resolved with

state-of-the-art electron microscopy on much longer timescales than are covered by acceler-

ated dynamics (Chapter 3).

In future, canonical and grand canonical dynamics from these potentials will be carried

out to reveal the nature of transient, competitive surface oxidation on cupronickel using MD

acceleration. Progression from diatomic adsorption and disassociation of oxygen to surface

reconstruction can be followed all the way through oxide initiation and growth using acceler-

ated techniques. The order and timing of duplex oxide formation under various temperatures

and oxygen pressures can be tested using accelerated dynamics in combination with the de-

veloped interatomic potentials from this work. These timescales are expected to be an order

of magnitude greater (minutes) than those for vacuum segregation (seconds). To deduce var-

ious mechanisms taking place during reconstruction and oxide nucleation, cross-correlation

trajectory analysis can be applied to output data from these simulations (Chapter 2 and

Chapter 3). Cross-correlation analysis could be adapted for application to TEM images

as well, since the appearance/disappearance of atomic columns in space constitutes a time

series evolving as oxidation proceeds. Application of this method to TEM imagery will be

complicated by the difficulty in tracking individual point defects using TEM alone, though

their positions may be inferred by the rate of disappearance or lightening of atomic columns.

Any new interatomic potentials needed for other alloy systems can be quickly trained using

the particle swarm method described in Chapter 4. MD acceleration, force field optimiza-
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tion, and trajectory analysis together comprise a complete toolbox to boost the efficiency

and scientific impact of molecular simulation at the atomic and nanoscales.

71



Appendix

A.1 Density Functional Theory (DFT)

The largest assumption underlying ab initio approaches lies in the Born-Oppenheimer

approximation, which presumes that electronic equilibration occurs much faster than nuclear

equilibration. Essentially, the nuclear coordinates R can be held constant while the elec-

tronic positions r are first optimized in phase space, since the nuclei are much more massive

than the electrons. The many-body problem of electron repulsion remains unsolved in the

original Schrödinger representation but is addressed by Hartree-Fock (HF) and Kohn-Sham

(KS) theories, the latter of which is termed density functional theory (DFT). Forces on atoms

will depend on the electron density field (bonding and coordination environment), coulom-

bic internuclear repulsion/attraction, van der Waals forces, and some amount of shielding.

During structural relaxation, the electronic component is optimized before nuclear positions

can be iterated using the force:

F = −∇E(R) (A.1)

Electronic relaxation steps (fixed-point calculations) must be taken between ionic relax-

ations. To solve the many-body problem for electrons, one can consider the adjacent problem

of finding the electron density: the electron positions are reduced to a scalar density which

depends on 3 position variables instead of 3N position variables for N particles in the origi-

nal problem. We seek the density functional ρ(r) , that is, the relationship between system

energy and the position-dependent electron density can be expressed as a variational upper

bound to the energetic eigenvalues of the electronic Schrödinger equation:

EDFT [ρ(r)] ≥ Eactual (A.2)

In order to accomplish this, for each state in phase space, there must be a unique 1:1

relationship between a single spatial function of electron density ρ(r) and a set of energies

E. Fortunately, the Hohenberg-Kohn theorem [9, 46, 51] provides the necessary proof of
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this fact for the ground-state, and extensions by subsequent theorists proved the same for

excited states.

Statistical ensemble effects must be taken into account as well, since electrons are indistin-

guishable and can be exchanged to yield the same energy. The so-called exchange-correlation

energy is a quantum mechanical effect that results in the Pauli exclusion principle, the filling

of orbitals with paired electrons of opposite spin. Hartree-Fock theory provides analytical

forms for the exchange integral yet only approximates the many-body problem with a system

of one-electron wavefunctions interacting with an approximate electron cloud. Unfortunately,

the approach fails to account for correlation in the electron ensemble.

The density functional can be used instead to approximates both exchange and correla-

tion, since it provides a description of the electron gas as a function of only 3 coordinates.

Re-contextualizing the problem in terms of a single density for all the electrons eliminates the

summations over all coulombic attractions and repulsions from the second and third terms.

DFT does not yield results for the kinetic energy (first term) or the exchange-correlation

energy EXC directly in terms of ρ(r): the former is obtained using a pseudo-velocity based

on Kohn-Sham (KS) wavefunctions which do not represent physical electrons. Briefly, the

KS equations can be written as:[
−1

2
∇2 + VZ(r) + VH [ρ](r) + VXC [ρ](r)

]
ψi = ϵiψi (A.3)

where the first two terms represent kinetic energies of the electrons and their coulomb in-

teractions with the fixed ionic potential VZ . The potential VH is for the Hartree energy

resulting from the electrostatic potential formed by the electron density, and VXC is the

exchange-correlation energy depending only on the density functional. The wavefunctions of

KS theory are unphysical, merely interacting with the ions and approximated electron gas

to yield an expectation value for kinetic energy which is not tied to a true particle veloc-

ity. Although it is not the focus of further discussion in this text, there are many resources

available which discuss the details of Kohn-Sham theory[11, 1, 24].

The exchange energy can be obtained directly from Hartree-Fock (HF) theory or through

a variety of approximation and tabulation methods. The coupling of exchange and correlation
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is more difficult to account for, but the simplest way is to vary this energy directly with the

local density approximation (LDA) for a homogeneous electron gas [23, 82]:

ELDA
XC [ρ] =

∫
ρϵunifXC (ρ↑, ρ↓) = C

∫
ρ4/3(r)dr (A.4)

which obeys detailed balance for the spin density (ρ = ρ↑ + ρ↓). Many methods have

been developed to account for exchange and correlation including using the gradient of the

electron density (e.g. GGA methods); these various approximations constitute the namesake

functionals of density functional theory. Hybrid functionals are constructed with a weighted

sum of the exact HF exchange energy and the approximate LDA/GGA result in addition to

some derived or empirical contribution. In the present work, the hybrid functional PBE0[2]–

derived from the original PBE functional of Perdew, Burke, and Enzerhof [82]–is used, where

exchange contributions are denoted with the subscript ‘X‘ and correlation terms with ‘C‘:

EPBE0
XC =

1

4
EHF

X +
3

4
EPBE0

X + EPBE
C (A.5)

The periodicity of the simulation cell created in 2.1 must be taken into account, therefore

all basis functions within Kohn-Sham DFT should be periodic as well. The non-physical

wavefunction must now exhibit translational invariance over the box length:

ψnk(r+R) = ψnk(r)e
ikR

ψnk(r) = unk(r)e
ikr

unk(r+R) = unk(r)

(A.6)

where k is the Bloch vector and n is the band index. The Bloch vector k = [kx, ky, kz] is

constrained to the first Brillouin zone ki ∈ [0, π
a
] where a is the primitive cell length for a

cubic system. This zone represents a constant energy surface for electron kinetic energies

in reciprocal space, or k-space. The form of each component in k differs for other Bravais

lattices.

The cell-periodic wavefunctions have a set of basis functions to allow for a large expansion

to be made and truncated at a desired cutoff for the kinetic energies: 1
2
|G + k|2 < Ecutoff

where a large cutoff is chosen to model the more tightly held and energetic core electrons.

ψnk(r) =
1

Ω
1
2

∑
G

CGnke
i(G+k)r (A.7)

74



A plane wave basis set composed of CGnk band occupancies yields the orbital occupancies

Crnk with straightforward Fast Fourier transform. The volume of the primitive cell depends

on its lattice parameters i.e. Ω = a1 · a2 × a3.

In summary, the KS wavefunctions are optimized along a mesh of k-points distributed

in reciprocal space, then FFT is used to recover the real-space representation. The Brillouin

zones of k-space are analogous to Wigner-Seitz cells, which represent the primitive cell in

direct space and a unique Bravais lattice. The concept of Wigner-Seitz cells formed from

Voronoi tesselation in real space is important for the detection of vacancies in the FCC CuNi

alloy, since cells with zero atomic occupancy must have a local defect in the lattice.

The Wigner-Seitz analysis available through OVITO is used in this work to detect point

defects and their dynamics, forming pseudo-particle trajectories evolving in time alongside

the real Cu and Ni atoms[94]. The absence of mass in the lattice breaks local coordination

shells and provides a low energy pathway for migration through the defect site such that

vacancies become the primary predictor of both segregation mechanism and timescale.

A.2 Velocity-Verlet Algorithm

A Taylor series can be used to approximate the N x 3 matrix of particle positions at

the next timestep r(t + ∆t) from the current positions r given knowledge of its derivatives

with respect to time. The original Verlet algorithm [101] utilizes the central difference

approximation for the first derivative of position, equivalent to finding the velocity:

ri(t+∆t) = ri(t) +
dri
dt

∆t+
1

2

d2ri
dt2

∆t2 + ...

= ri(t) + vi(t)∆(t) +
1

2

fi(t)

m
∆t2

(A.8)

As shown, Newton’s 2nd Law can be inserted in this equation with f(t) as a per-atom force.

A similar expression can be made for r(t−∆t), then added to (A.8) to solve for the velocity.

Truncating at second order results in the central difference approximation to the velocity:

vi(t) =
ri(t+∆t)− ri(t−∆t)

2∆t
(A.9)
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A more efficient version of the algorithm, the velocity-Verlet algorithm[96], instead ac-

quires the next timestep’s velocities using r(t+∆t) already known from (A.8). Because the

force depends only on the position in the potential field, the value of f(t+∆t) is also known

and can be used to directly compute the next set of velocities:

v(t+∆t) = v(t) +
f(t) + f(t+∆t)

2

∆t2

m
(A.10)

This implementation is most common in modern simulation software like LAMMPS since

it is faster and involves fewer computations as well as less memory overhead. Per-atom forces

f(t + ∆t) are convenient to compute and store as they will be used for propagation in the

next timestep too.

Non-equilibrium dynamics should have a varying total energy with fluctuating kinetic

energy around a constant, target value tied to a certain temperature. Thus, many rescaling

schemes have been developed for the velocities, keeping the system at equilibrium with a

thermal bath to achieve the canonical NVT ensemble. For example, the Nosé-Hoover (NH)

thermostat uses a momentum rescaling procedure to impart “friction” to the system, biasing

velocities towards that of a desired temperature[29]. This fictitious friction force ζ is added

to the force balance from Newton’s 2nd Law to make new equations of motion.

Stochastic dynamics within a surrounding solvent–or, on a longer timescale, an alloy with

de-localized electrons–were not accounted for by the earlier Brownian dynamics, although

the properties of its underlying random walk are still desirable to describe mass diffusion[18].

The Langevin equations for molecular dynamics are similar to those for NH dynamics, but

the friction force is sampled from a probability distribution to resemble random thermal

noise. The Gaussian width for this friction force sampling is chosen to satisfy the fluctuation-

dissipation theorem for the non-equilibrium Langevin process held in thermal equilibrium

with an external bath[89, 18].
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A.3 Composition Profile Estimation from MC Data

Each step of the simulated annealing to equilibrium is dependent on the previous con-

figuration (serial correlation), so the observed samples for calculating the estimated mean

composition have a biased standard error that is overestimated by a näıve error calculation.

To correct this, autocorrelation of subsequent frames in the MC process was estimated by

assuming samples are generated by a first order autoregressive process (AR(1)):

Xt = c+ ρXt−1 + ϵunbiased (A.11)

where Xt is the estimated value at time t by the AR(1) model, c is an optional shifting

constant (typically zero), and ϵ the corrected error we wish to estimate. The process has

an analytically known correction to find the unbiased, standard error of the estimated mean

from n measurements and depends on ρ to calculate the measurement error for each layer[92].

σunbiased = σbiased

√√√√ 1 + 2δ
n

1− 2δ
n(n−1)

(A.12)

A custom Perl script was used to analyze the output data from MC, finding the compo-

sition in each layer and tracking it over all the annealed samples. These measurements were

exported to a Python script which estimated values of ρ for the data using the ‘statsmod-

els’ module, and the above equations estimated accurate errors for plots of the equilibrium

composition profiles.

A.4 Vacancy and Divacancy Formation Energies

The formation energy is similar to the expression used in 2.4 for surface energy without

any areal normalization. A factor of N − 1 must be included to account for the removed

atom from a bulk reference structure:

Eformation
1vac = Edefective

f − N − 1

N
Ebulk

Cu (A.13)
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The divacancy formation energies are also critical for predicting the stability of mono-

vacancy pairs discussed in section 3.2.3. The formation energy of divacancies in the bulk of

Cu can be computed

Eformation
2vac = Edefective

f − N − 2

N
Ebulk

Cu (A.14)

where the defective structure relaxed to find Edefective
f was created at varying separation

distances using manual particle deletion in atomsk [45]. The formation energies for the diva-

cancy in bulk Cu are shown below in Figure 29.

Figure 29: Divacancy formation energies and percent change in formation energy relative to

that of the clustered divacancy at 1st NN separation distance

A.5 Cluster Expansion Model for Kinetic Monte Carlo (KMC) Simulation

The reaction coordinate between two states is identified and analyzed using high-temperature

sampling and climbing image nudged elastic band (CI-NEB) in AKMC. Contrastingly, our

KMC model approximates these transition energies using an equation parametrized from
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Figure 30: Parabolic construction showing energy diagram of a system. The blue curve is

the initial state, the green curve is the final state with the same energy as the blue curve

while the red curve is the final state with lower energy than the blue curve (Recreation)[111].

barriers already known from AKMC: in Figure 3-1, the energy of the red curve is lower than

the green curve due to a change in local environment of the vacancy. As a result, the barrier

is lower and the rate can be calculated analytically as[111]

Ea =
(4Ea0 +∆E)2

16Ea0

rate = Ae
−Ea
kT

(A.15)

where Ea is the barrier from one state to a lower-energy state (blue and red), Ea0 is the

barrier between two isoenergetic states (blue and green) also known as the intrinsic barrier,

∆E is the energy difference between the initial and the final state, A is the pre-factor in s-1,
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k is the Boltzmann constant 8.617 eV*K-1, and T is temperature in K. The intrinsic barrier

Ea0 obtained from AKMC data in 3.

Table 3: Intrinsic barrier of a vacancy migration event taken from AKMC data

Vacancy Location Surface Subsurface

Moving atom Cu Ni Cu Ni

Intrinsic Barrier Ea0 (eV) 0.453 0.487 0.635 0.681

To acquire ∆E, the energy of each state is needed for the equation

∆E = Ev,i − Ev,j (A.16)

where Ev,i is the total energy of the configuration with the vacancy at location i (final)

and Ev,j is the total energy of the configuration with the vcancy at location j (initial).

Vacancy formation energy is calculated by

Ef = Ev − E0 + µa (A.17)

where Ef is the vacancy formation energy, Ev is the total energy of the configuration with

the vacancy, E0 is the total energy of the configuration without the vacancy (initial configu-

ration) and µa is the chemical potential of the atom removed from the initial configuration

to make the vacancy.

The vacancy formation energy can then be used to determine ∆E:

∆E = (Ef,i + E0 − µa)− (Ef,j + E0 − µa) = Ef,i − Ef, j (A.18)

Vacancy formation energy is predicted by the cluster expansion method, which samples

multiple alloy structures uniformly at random vacancies with different local environments.

The energies of these structures were calculated and used to parameterize the model shown

in Figure 31.

While the cluster expansion model for KMC works for surface-surface and subsurface-

subsurface diffusion, it fails to illustrate correct surface-subsurface migrations (Figure 31b)
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Figure 31: Average and standard deviation values of vacancy formation energy at (a) surface

and (b) subsurface. Cluster expansion fitting model for the vacancy formation energy at (c)

surface and (d) subsurface.

since the identity of the migrating atom (counter to the vacancy movement) is not included

in this model: Ni requires higher barriers (∼0.95-1.0 eV) than Cu (∼0.8-0.9 eV) to move from

surface to subsurface according to AKMC data. To fix this significant qualitative limitation

of the cluster expansion model, a new definition for the barriers of a vacancy migration from

surface to subsurface is proposed based on the AKMC data:

Ea,surf→sub = ∆E + Ea,sub→surf (A.19)

The AKMC data shows that the barriers of a vacancy migration from surface to subsur-
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face are very similar to the energy difference of final and initial states (∆E in the equation

above), and values of , Ea,sub→surf are very small (0.049 eV for moving Cu atom and 0.067

eV for moving Ni atom) regardless of local environment. Figure 32 depicts an interpretation

to calculate the barriers of a vacancy migration from surface to subsurface by adding the

difference in energy, ∆E, between two states to Ea,sub→surf .

Figure 32: An illustration to determine the barrier of vacancy migration from surface to

subsurface using the existed barrier of vacancy migration from subsurface to surface.

By the new definition, the barrier difference between Ni and Cu originates from the energy

difference of two states ∆E, and its correction is significant to obtain correct dynamics. To

include this information, ∆E was calculated from EON, where AKMC runs, then compared

with the numerically calculated ∆E from cluster expansion. This discrepancy is illustrated

in Figure 33: the errors are approximately 0.09 eV for Cu and 0.24 eV for Ni, so these

correction values were chosen to improve the cluster expansion model.
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Figure 33: A plot showing the discrepancy between ∆E from EON and from cluster expan-

sion.

A.6 Comparison of AKMC and KMC Results

Figure 34 presents the energy profiles obtained from AKMC and KMC simulations that

reach a timescale of 300 µs, realizing 144,597 and 124,650 transition states respectively. Both

methods show two Ni segregation events away from the surface at ∼100 - 125 µs and ∼170 -

200 µs, which correspond to the energy drops in Figure 34. This comparison supports that

our KMC model can simulate the similar behaviors that were observed in AKMC.
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Figure 34: Energetic profiles of AKMC (blue) and KMC (red) simulations with respect to

the total time of 300 µs.
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A.7 ReaxFF Performance Benchmarks

A.7.1 Pure Ni: FCC and HCP Binding Energy Curves

Figure 35: Binding energy as a function of planar lattice parameter (a) for FCC Ni calculated

with outputs from the improved Ni-O RFF parameters
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Figure 36: Binding energy as a function of vertical lattice parameter (c) for FCC Ni calculated

with outputs from the improved Ni-O RFF parameters

Figure 37: Binding energy as a function of planar lattice parameter (a) for HCP Ni calculated

with outputs from the improved Ni-O RFF parameters
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Figure 38: Binding energy as a function of vertical lattice parameter (c) for HCP Ni calcu-

lated with outputs from the improved Ni-O RFF parameters
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A.7.2 Pure Cu: FCC and HCP Binding Energy Curves

Figure 39: Binding energy as a function of planar lattice parameter (a) for FCC Cu calculated

with outputs from the improved Cu-Ni-O RFF parameters
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Figure 40: Binding energy as a function of vertical lattice parameter (c) for FCC Cu calcu-

lated with outputs from the improved Cu-Ni-O RFF parameters

Figure 41: Binding energy as a function of planar lattice parameter (a) for HCP Cu calculated

with outputs from the improved Cu-Ni-O RFF parameters
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Figure 42: Binding energy as a function of vertical lattice parameter (c) for HCP Cu calcu-

lated with outputs from the improved Cu-Ni-O RFF parameters
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A.7.3 CuO: FCC Binding Energy Curves

Figure 43: Binding energy as a function of planar lattice parameter (a) for FCC CuO

calculated with outputs from the improved Cu-Ni-O RFF parameters
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Figure 44: Binding energy as a function of vertical lattice parameter (c) for FCC CuO

calculated with outputs from the improved Cu-Ni-O RFF parameters

A.7.4 Surface Energy Trends for Pure Cu, Pure Ni, and Ni-Doped Cu Surfaces

The surface energies from first-principles and ReaxFF are compared in the following

figures for (100), (110), and (111) orientations. These slab models contain 90, 84, and 80

atoms, respectively. Figures 22 (pure Cu) and 46 (pure Ni) compare the calculated surface

energies from ReaxFF and first-principles. Small variations in surface energy present when

replacing a Cu atom in the pure slab with 1x Ni atom at varying depth. Energy differences

between structures with Ni on the surface, subsurface (2nd), and interior (3rd)in the surface

were included in the training to account for surface segregation trends previously described

in 2.
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Figure 45: Surface energies from developed Cu-Ni-O ReaxFF potential and first-principles

ground truth for pure Ni surfaces

Figure 46: Surface energies from developed Cu-Ni-O ReaxFF potential and first-principles

ground truth for Cu surfaces with 1x Ni atom on the surface
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A.8 DeepPot Performance Benchmarks

A.8.1 Pure Cu: FCC and HCP Binding Energy Curves

Figure 47: Binding energy as a function of planar lattice parameter (a) for FCC Cu calculated

with outputs from the Cu-Ni-O DeepPot model
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Figure 48: Binding energy as a function of vertical lattice parameter (c) for FCC Cu calcu-

lated with outputs from the Cu-Ni-O DeepPot model

Figure 49: Binding energy as a function of planar lattice parameter (a) for HCP Cu calculated

with outputs from the Cu-Ni-O DeepPot model
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Figure 50: Binding energy as a function of vertical lattice parameter (c) for HCP Cu calcu-

lated with outputs from the Cu-Ni-O DeepPot model
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A.8.2 CuO: Binding Energy Curves

Figure 51: Binding energy as a function of planar lattice parameter (a) for FCC CuO

calculated with outputs from the Cu-Ni-O DeepPot model
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Figure 52: Binding energy as a function of vertical lattice parameter (c) for FCC CuO

calculated with outputs from the Cu-Ni-O DeepPot model
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A.8.3 Pure Ni: FCC and HCP Binding Energy Curves

Figure 53: Binding energy as a function of planar lattice parameter (a) for FCC Ni calculated

with outputs from the Cu-Ni-O DeepPot model
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Figure 54: Binding energy as a function of vertical lattice parameter (c) for FCC Ni calculated

with outputs from the Cu-Ni-O DeepPot model

Figure 55: Binding energy as a function of planar lattice parameter (a) for HCP Ni calculated

with outputs from the Cu-Ni-O DeepPot model
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Figure 56: Binding energy as a function of vertical lattice parameter (c) for HCP Ni calcu-

lated with outputs from the Cu-Ni-O DeepPot model
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