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ABSTRACT

To ascertain the simultaneous thermal and electrical performance of a thermoelectric (TE) unicouple with
interconnectors, a thermal-electric coupled iterative mathematical model is introduced. The non-linear
constitutive equations describing TE phenomena within the unicouple are linked to a thermal resistance
network describing the interconnectors’ behavior. Thereupon, the thermal resistance of the interconnectors,
and Joule heat generated within, are considered. Temperature dependent material properties are handled by
integral-averaging techniques and an iterative solution methodology. Model form uncertainty is quantified
by evaluating four unique analytic models. The first, the Implicit Thomson Model (ITM), considers the
Thomson effect via integral averaging of the Seebeck coefficient. The second, the Explicit Thomson Model
(ETM), decouples the Thomson effect from the Peltier effect; Thomson heat is explicitly solved using the
Thomson coefficient. The third, the zT model, uses the figure of merit to describe the optimum efficiency-
maximizing load resistance, and quantify device efficiency under maximum power scenarios. The last, the
Differential Equation Model, does not assume distributions of Joule and Thomson heats to the cold- and hot-
side interfaces as do the ITM, ETM and zT model. The predictive ability of each analytic model used within
the unicouple-level model is compared to high-fidelity numeric results obtained from a three-dimensional,
thermal-electric coupled model implemented in ANSYS CFX. Considering a range of hot-side unicouple
temperatures, each analytic model exhibits agreement with one another, and with the numeric model. With
increasing load resistance values, model form uncertainty and disagreement between analytic and numeric
predictions decreases to a couple of percent at optimum operating points.

KEY WORDS: thermoelectric generator, thermal-electric coupled modeling, analytic and numeric modeling

1. INTRODUCTION

Thermoelectric devices (TEDs) are composed of specialized semiconductor materials and can convert a
temperature gradient across said materials into an electrical potential; the inverse can also occur.
Thermoelectric generators (TEGs) are comprised of multiple TEDs connected electrically in series, and are
used to generate electrical power via the Seebeck effect [1]. While thermal conversion efficiency of TEGs is
low, typically ranging between 4-8% [2], TEGs are advantageous in many design aspects that make them
desirable energy conversion devices. Namely, they are small in size, have no moving parts, and have long
operational lifetimes. Such properties make TEGs suitable for waste heat recovery in terrestrial applications
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[3–6]. TEGs are ideal for space systems such that electrical energy production can be achieved [7–11].

To design and evaluate the electrical and thermal performance of TEGs, various numerical models have been
developed. Antonova and Looman [12] developed a thermal-electric finite element method model in ANSYS
Workbench to predict the performance of TEDs by considering pertinent thermoelectric phenomena
including the Seebeck, Peltier, and Thomson effects, as well as Joule heating. Chen et al. [13] developed a
thermal-electric coupled numeric model in ANSYS Fluent using User Defined Functions to define the Joule,
Peltier, and Thomson effects. These effects were applied to the energy equation as source terms, and the
model’s predictions were found to be in reasonable agreement with experimental data and results predicted
by ANSYS. Björn et al. [14] developed a similar model in OpenFOAM and found the numeric results to
match those predicted via a model in COMSOL, and the results of the model loosely matched values
obtained via experimentation. Ledesma et al. [15] developed a fully-coupled thermal-electric finite volume
method model in ANSYS CFX which included not only Joule heating and the Seebeck, Peltier, and
Thomson effects, but also the Bridgman effect. The Bridgman effect is often neglected in numerical
modeling of TEGs, but its inclusion reduced global energy imbalances by 47% at the the maximal hot-side
temperature of the TEG. Though numerical models have been used to evaluate the performance of
thermoelectric generators in lieu of experimental data, they are computationally intensive and there is
variability of predicted results based on the inclusion and treatment of thermoelectric phenomena. Thus,
robust analytic models are desirable for the rapid and accurate design and optimization of TEGs, such as in
trade studies [16], where any compromise in fidelity is far out-weighed by reduced computational cost.

To understand the accuracy of various analytical modeling methods to predict the simultaneous thermal and
electric behavior of a TED, it is important to understand the dependence of TEG performance on the material
properties of the semiconducting materials. Semiconducting materials with a high Seebeck coefficient, low
electrical resistivity, and low thermal conductivity are desirable due to their increased power densities and
conversion efficiencies [17, 18]. Due to the temperature dependence of the aforementioned material
properties, the accuracy of analytic modeling of TEGs is largely dependent on the method used to evaluate
the material properties. Ioffe [19] suggested a constant properties model in which the material properties of
semiconducting materials are assumed to be independent of temperature, and material properties are
evaluated only at the average temperature across the TEG. Large error is associated with this method, in part
due to neglecting of the Thomson effect under such assumptions. The Thomson effect is a manifestation of
the temperature-dependence of the Seebeck effect, and is non-negligible when a moderate to large
temperature difference occurs across the junctions. To more accurately model material properties, an integral
average of the material properties can be used such that the temperature dependence of material properties is
considered over a given temperature range [20]. Ponnusamy et al. [21] compared various averaging
techniques to account for the temperature dependence of material properties, and found that a combination of
integral averaging and spatial averaging of material properties was most physically appropriate, leading to an
error of 1.5% in comparison to results found using a finite element method model implemented in ANSYS.
Using integral-averaged material properties, various analytic models can be constructed to model the thermal
and electrical behavior of these devices.

There exist four well-established analytic modeling methods. The first will be referred to as the Implicit
Thomson Method (ITM), where the Thomson effect is implicitly incorporated into the formulation of heat
input and output by using the integral-averaged Seebeck coefficient [22–24]. The second will be referred to
as the Explicit Thomson Method (ETM), where the Thomson effect is explicitly defined in the formulation of
heat input and output by separating the Thomson effect from the Peltier effect [25, 26]. The third is the figure
of merit approach, which is predicated on maximizing the figure of merit of a material in order to maximize
performance [22, 23]. The last model is derived from the thermoelectric general energy equation [27], and
is referred to as the Differential Equation Model (DEM). The contribution of Joule heat is not assumed to
be equally divided between the hot- and cold-junctions as is done in the ITM, ETM and zT model, nor is
such an assumption made about the Thomson heat as done in the ETM. The DEM is re-derived in this work
considering a TED functioning as a TEG with temperature-dependent material properties.
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The existence of four unique analytic models, all with differing formative assumptions, causes uncertainty
when constructing mathematical models of TEGs. The impetus of this work is to address the uncertainty
associated with the selection of an analytic model. To this end, each analytic thermoelectric model is
incorporated into a thermal-electric coupled mathematical model of a unicouple with interconnectors.
Through the incorporation of interconnectors, the effect of their inherent thermal and electrical resistances,
as well as the Joule heat generated, are considered when modeling the behavior of the thermoelectric
materials. Each analytic model is evaluated over a range of thermal and electrical boundary conditions, and
the unicouple performance is compared to a high-fidelity numeric results. It is demonstrated each analytic
model is more than capable of predicting the simultaneous thermal-electric performance of the unicouple
when incorporated into the novel mathematical model. It is also shown that model form uncertainty can be
quantified when coincidently considering the predictions of all analytic models, and that the numeric results
lie within the uncertainty of analytic predictions, indicating agreement between the modeling techniques.

2. MATHEMATICAL MODEL

Within the following, the DEM is derived for a TEG considering temperature dependent material properties,
and all pertinent thermal-electric System Response Quantities (SRQs) are defined for the ITM, ETM, DEM
and zT model. Following is the implementation of the analytic equations into a thermal-electric-coupled
solution algorithm. To begin, a generic unicouple, as shown in Fig. 1 a), is the basis for the implementation
of the novel mathematical model. The n- and p-type thermoelectric elements have a length of 10 [mm], and a
cross-sectional area of 25 [mm2]. The hot-side interconnector (HSI) has a length of 15 [mm], a thickness of
1 [mm] and a width of 5 [mm]. Each cold-side interconnector (CSI 1 and CSI 2) have a length of 7.5 [mm],
a thickness of 1 [mm], and a width of 5 [mm]. The geometry of the unicouple used in the evaluation of the
numeric and analytic models is not reflective of any proprietary, flight-qualified or proposed designs used by
The National Aeronautics and Space Administration’s (NASA) Jet Propulsion Laboratory (JPL) and/or their
contractors. Rather, the geometry is generalized for demonstration of the models.
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Fig. 1 Schematics of a) geometry of unicouple, b) interfacial temperatures, heat input and output and thermal
resistances, and c) electrical boundary conditions, depiction of current and electrical resistances.
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2.1 Differential Equation Model

Domenicali [28] outlined the phenomena occurring within thermoelectric materials, namely Joule, Peltier,
Thomson, and Bridgman heating. These terms are cast into a general form which is expressed as

∇ · (κ∇T ) + ρJ2 − TJ ·
(
∇α
∣∣
T

+

(
∂α

∂T

)
∇T
)
− αT∇J = 0. (1)

In order of appearance, the terms represent conduction, Joule, Peltier, Thomson, and Bridgman heat. To
construct an analytic model, the general energy equation is considered in one-dimension: the axial, or
x-direction. The Bridgman heat is neglected, for the current density vector J in one dimension is represented
as a scalar value. The magnitude of J is expressed as the scalar value of current, I , per the cross-sectional
area of the thermoelectric element leg, A. The Peltier effect is not included in the derivation of the
one-dimensional representation of the general energy equation, for it occurs only at the interface of the
thermoelectric material and interconnectors. The Peltier effect will be included when determining the heat
into and out of the thermoelectric materials. To construct the DEM for a TEG, the general energy equation
describing a thermoelectric element will be reduced to a solvable form. Thus, Eqn. 1, once multiplied by the
cross-sectional area A, is represented in the axial direction as

∂

∂x

(
κA

(
∂T

∂x

))
+

ρI2

A
− TI

(
∂α

∂T

)
∂T

∂x
= 0. (2)

It is noted, to simplify the analysis, specifically the third term of Eqn. 2, the Thomson coefficient, τ, is
introduced, and is defined as

τ =

(
∂α

∂T

)
T. (3)

To handle temperature-dependence of material properties, an integral-averaging technique is employed. The
integral-averaged thermal conductivity, κ̃, electrical resistivity, ρ̃, Thomson coefficient, τ̃, and Seebeck
coefficient, α̃, are defined as

κ̃ =
1

(Th − Tc)

∫ Th

Tc

κ(T ) dT, (4)

ρ̃ =
1

(Th − Tc)

∫ Th

Tc

ρ(T ) dT, (5)

τ̃ =
1

(Th − Tc)

∫ Th

Tc

τ(T ) dT, (6)

and

α̃ =
1

(Th − Tc)

∫ Th

Tc

α(T ) dT. (7)

Within Eqns. 4 through 7, Th and Tc correspond to the hot- and cold-junction temperatures, as depicted in
Fig. 1 b). The temperature-dependent properties of the n- and p-type materials are expressed as polynomials
given in Tab. 2. It is noted that in Tab. 2, the materials used for the n- and p-type materials exist within
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literature, and are not reflective of proprietary, flight-qualified or proposed materials used by NASA JPL
and/or their contractors.

To solve Eqn. 2, it is recognized the solution T (x) is a function of the summation of the homogeneous TH(x)
and particular TP (x) solutions. To find the homogeneous solution, the right hand side of Eqn. 2 remains
invariant. Thus, Eqn. 2 becomes a second-order, linear, ordinary differential equation. The solution to this
equation is in the form TH(x)=eλx, where λ represents the eigenvalue. Taking the first and second derivative
of the assumed homogeneous solution yields

∂TH

∂x
= λexp(λx), (8)

and

∂2TH

∂x2
= λ2exp(λx). (9)

Substituting Eqns. 8 and 9 into the homogeneous form of Eqn. 2 results in

exp(λx)

(
λ2 − τ̃

κ̃

(
I

A

)
λ

)
= 0. (10)

The quantity exp(λx) cannot equal zero, so the quantity within the parentheses must be equal to zero. The two
solutions to λ are then

λ1,2 =


0,

τ̃I

κ̃A
.

(11)

The homogeneous solution then takes the form

TH(x) = c1exp(λ1x) + c2exp(λ2x) = c1 + c2exp
(
τ̃Ix

κ̃A

)
. (12)

To find the particular solution, the method of undetermined coefficients is used, where the solution TP (x)
is assumed to have the form c3x. By substituting the first and second derivatives of TP (x) into Eqn. 2, the
following results:

− τ̃I

κ̃A
c3 = − ρ̃

κ̃

(
I

A

)2

. (13)

The particular solution is then in the form

TP (x) =
Ixρ̃

τ̃A
. (14)

Combining the homogeneous solution, Eqn. 12, and the particular solution, Eqn. 14, the complete expression
for the one-dimensional temperature distribution with a thermoelectric element with constant cross-sectional
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area with the inclusion of Joule heat and the Thomson effect is expressed as

T (x) = c1 + c2exp
(
τ̃I

κ̃A
x

)
+

Ixρ̃

τ̃A
. (15)

Upon applying the aforementioned boundary conditions of T (x = 0) = Th and T (x = L) = Tc, as depicted
in Fig. 1 a), the temperature profile within the leg can be expressed as

T (x) = Th +

Tc − Th −
ILρ̃

τ̃A

exp
(
τ̃IL

κ̃A

)
− 1

(exp
(
τ̃Ix

κ̃A

)
− 1

)
+

Ixρ̃

τ̃A
. (16)

To determine the heat into and out of the hot- and cold-side junctions, the derivative of the expression for
the temperature distribution must be obtained and evaluated at the appropriate boundaries. Evaluating the
derivative of temperature with respect to the spatial position x at the hot-side yields:

dT

dx

∣∣∣∣
x=L

=

Tc − Th −
ILρ̃

τ̃A

exp
(
IτL

κ̃A

)
− 1

( I τ̃

κ̃A

)
exp
(
I τ̃L

κ̃A

)
+

Iρ̃

τ̃A
. (17)

Similarly, evaluating the derivative of temperature with respect to the spatial position x at the cold-side yields
the following:

dT

dx

∣∣∣∣
x=0

=

Tc − Th −
ILρ̃

τ̃A

exp
(
I τ̃L

κ̃A

)
− 1

( I τ̃

κ̃A

)
+

Iρ̃

τ̃A
. (18)

The heat into the hot-side junction for a thermoelectric element, for all four analytic models, is expressed as:

Qh =



α̃ITh −
I2R̃el

2
+ K̃(Th − Tc) ITM and zT

α
∣∣
Th
ITh + K̃(Th − Tc)−

I

2

(
IR̃el + τ̃(Th − Tc)

)
ETM

α
∣∣
Th
ITh −Aκ̃

dT

dx

∣∣∣∣
x=0

DEM.

(19)

The heat exiting from the cold-side junction of a thermoelectric element, considering all four analytic models,
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is given as:

Qc =



α̃ITc +
I2R̃el

2
+ K̃(Th − Tc) ITM and zT

α
∣∣
Tc
ITc + K̃(Th − Tc) +

I

2

(
IR̃el + τ̃(Th − Tc)

)
ETM

α
∣∣
Tc
ITc −Aκ̃

dT

dx

∣∣∣∣
x=L

DEM.

(20)

In Eqns. 19 and 20, is it noted the Seebeck coefficient α is not integral-averaged when considering the ETM
and DEM, but evaluated at the respective interfacial temperature. It is further noted that previous authors [26]
have taken a similar approach to constructing an expression for heat input and output of a thermoelectric
element by resolving the thermoelectric general energy equation, however, their solution considered the
integral-averaged Seebeck coefficient in addition to an explicit Thomson heating contribution. To solve
Eqns. 19 and 20, the electric current I must be resolved. The electric current is expressed as:

I =


Voc

Rint + Rload
ITM, ETM, DEM and zT max(Pout)

Voc

Rint(mopt + 1)
zT max(η).

(21)

Within Eqn. 21, Voc is the open-circuit voltage, commonly referred to as the Seebeck voltage when an
external electrical load is applied, Rint is the internal resistance of the unicouple, considering not only the
thermoelectric materials, but interconnectors, and Rload is the externally applied load resistance. The
Seebeck voltage is calculated via the summation of the integral-averaged Seebeck coefficients of the n- and
p-type materials evaluated between the hot- and cold-side boundary junction temperatures such that

Voc = α̃n(Tn,h − Tn,c) + α̃p(Tp,h − Tp,c). (22)

The internal electrical resistance is calculated via the summation of the electrical resistances of the n- and
p-type materials, plus that of the interconnectors, evaluated in the direction of the flow of current as shown in
Fig. 1 c), such that

Rint = R̃el,n + R̃el,p + R̃el,HSI + R̃el,CSI 1 + R̃el,CSI 2. (23)

Within Eqn. 23, the n- and p-type electrical resistances, as well as that of the hot- and cold-side
interconnectors, are generally expressed as

R̃el =
ρ̃L

A(Th − Tc)
=

L

A(Th − Tc)

∫ Th

Tc

ρ(T ) dT (24)

where L is the length and A is the cross-sectional area of the element that the current travels along and
through, respectively, and ρ̃ is the integral-averaged electrical resistivity. The load resistance, Rload in Eqn. 21
is a varied to determine the point of maximum power and point of maximum efficiency. The variable mopt

in Eqn. 21 is a multiplier applied to the internal resistance that maximizes efficiency when considering the
zT model, such that Rload = Rintmopt can be used in the first expression of Eqn. 21, or used in second
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expression of Eqn. 21 as is, and can be defined as

mopt = (1 + zTavg)
1/2. (25)

Within Eqn. 25, z is the figure of merit of the thermoelectric materials, which is defined as

z =
(|α̃n|+ |α̃p|)2

((ρ̃nλ̃n)1/2 + (ρ̃pλ̃p)1/2)2
, (26)

where Tavg is the arithmetic average temperature of the hot- and cold-side junction temperature. With the
definition of Eqns. 22 through 26, and the specification of Rload, Eqn. 21 can be resolved, and the heat into
and out of the junctions can be determined, for each of the four analytic models. Only one term remains for
the determination of the main SRQs of interest, namely power output and conversion efficiency. That term
is the electric potential developed across the terminals of the unicouple, expressed through the non-Ohmic
voltage-current relation [29]. The output voltage is expressed as

Vout = Voc − IRint. (27)

The electrical power output is then defined as

Pout = I2Rload = Qh −Qc = IVout. (28)

Within Eqn. 28, the second term is the electrical power output as described by the Maximum Power Transfer
Theorem [30], the third is the thermodynamic definition of power for a heat engine, and the fourth being the
definition electrical power. Given the electrical power output and heat input, the thermal conversion efficiency
is defined as

η =


Pout

Qh
ITM, ETM, DEM and zT max(η)

z(Th − Tc)

4
− Th − Tc

2Th
+ 2 zT max(Pout).

(29)

2.2 Thermal Resistance Network

To include Joule heating within the HSI and CSIs, as well as determine the n- and p-type hot- and cold-
side interfacial temperatures, the aforementioned constitutive analytic models were integrated into a thermal
resistance network, as depicted in Fig. 1 b). The heat entering the unicouple, Qh, is expressed as

Qh =
T∞,h − Th

Rth,HSI
, (30)

where the thermal resistance of the HSI is expressed as

Rth,HSI =
tHSI

κHSIAHSI
. (31)
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Within Eqn. 31, tHSI is the thickness of the HSI, κHSI is the thermal conductivity of the HSI, and AHSI is the
cross-sectional flow area of heat for the HSI. By employing an energy balance to the HSI, the heat entering the
unicouple must be equal to the heat generated by Joule heating (I2Rel,HSI) in the HSI plus the heat entering
both the n- and p-type materials, denoted as Qn,h and Qp,h respectively, as described by Eqn. 19. Similarly,
by employing an energy balance to the CSIs, the heat existing the n- and p-type materials, denoted as Qn,c and
Qp,c respectively and as describe by Eqn. 20, summed with the that generated by Joule heating in each CSI
(I2Rel,CSI 1 and I2Rel,CSI 2), must be equal to the heat exiting the unicouple. The heat exiting the unicouple is
denoted as Qc and is expressed as

Qc =
Tc − T∞,c

Rth,CSI
, (32)

where the thermal resistance of the CSI is expressed as

Rth,CSI =
tCSI

κCSIACSI
. (33)

Within Eqn. 33, tCSI is the thickness of the CSI, κCSI is the thermal conductivity of the CSI, and ACSI is the
cross-sectional flow area of heat for the CSI. With the specification of Dirichlet boundary conditions, namely
T∞,h and T∞,c, the interfacial temperatures Th and Tc, which provide bounds to the heat equations (Eqn. 19
and Eqn. 20), can be resolved. Additionally, quantification of heat into and out of the unicouple as expressed
by Eqns. 30 and 32, can be determined.

2.3 Solution Methodology

A fully-coupled thermal-electric iterative solution algorithm was implemented to simultaneously resolve the
thermal and electric behavior of a unicouple. To do such, Eqns. 19, 20, 30 and 32 were cast in terms of the
interfacial temperatures Tn,h and Tp,h (i.e. Th), and Tn,c and Tp,c (i.e. Tc). Given an initial value of current,
initialized temperature values, and a specified load resistance, all material properties defined by Eqns. 4-7 were
defined. With updated material properties, all values for electrical resistance of the n- and p-type materials,
as well as the HSI and CSIs as defined by Eqn. 24, were populated. This allowed for the calculation of the
total device electrical resistance as defined by Eqn. 23. The simultaneous system of equations for temperature
was then resolved. Based upon newly updated temperatures, the electrical response quantities, namely Voc

and I defined by Eqns. 22 and 21 respectively, were defined. Additionally, the heat entering the unicouple as
defined by Eqn. 30, that into the n- and p-type materials as defined by Eqn. 19, that out of the n- and p-type
materials as defined by Eqns. 20, and that leaving the unicouple as defined by Eqn. 32, were evaluated. This
process was repeated, using the newly solved for values of I and interfacial temperatures as initial values to
the aforementioned system of equations, until convergence was reached.

The criteria for convergence is as follows. The maximum absolute error between successive iterations for all
SRQs was set to a value of 1E-10. These SRQs include interfacial temperatures, heats, Seebeck and Ohmic
voltages, total unicouple electrical resistance and current. Additionally, from the continuity of heat equations
describing the heat entering and exiting the hot- and cold-side junctions were cast such that a residual, or
imbalance of heats, was defined. The residual criteria for the conservation equations was set to a value of
1E-12. Convergence was achieved when both the error and residual criteria were met.

2.4 Model Validation

To determine the validity of the proposed mathematical model, an implicit, fully-coupled, three-dimensional
finite volume method model was implemented in ANSYS CFX. All pertinent thermoelectric phenomena were
coupled to the energy equation via volumetric or surface source terms expressed using CFX’s Expression
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Language. Using the Electromagnetics model, which allowed the application of the Electric Field model, the
electric field and current density vector were resolved, allowing for the resolution of the Bridgman heat. Joule
heating was intrinsically accounted for with the resolution of the electric current density. Details of the model
construction and implementation can be found in [31]. It is noted the ANSYS CFX model used herein was
dually validated to ANSYS Thermal-Electric [12] and ANSYS Fluent [13] within the work of Wielgosz et
al. [31], and exhibited excellent agreement in thermal and electrical predictions. Furthermore, it is reiterated
that ANSYS Thermal-Electric and ANSYS Fluent have both been demonstrated to yield agreement with
experimental data.

3. RESULTS AND DISCUSSION

Within the following sections, a rigorous comparison of the mathematical model results to those predicted
by a fully-coupled thermal-electric finite volume method model are presented. After it is established that the
analytic models are faithfully able to predict the thermal and electric performance at conditions of maximum
power and maximum thermal conversion efficiency, the effect of hot-side temperature and load resistance
are independently studied. The ability of the proposed analytic model, as well as existing analytic models,
implemented within a unicouple-level mathematical model is evaluated for these varying conditions. As will
be seen, the proposed DEM model yields performance predictions comparable to the ITM, ETM and zT
models. With the introduction of the DEM model, a more robust average analytic value can be obtained
considering all aforementioned models, and a better-defined confidence interval can be generated around the
average analytic result.

3.1 Model Comparison to Numeric

Before a sweep of hot-side temperatures and load resistances was conducted, the ability of each analytic model
integrated within the unicouple-level mathematical model to predict not only the electrical, but also thermal
behavior, was determined. Each model was compared to the results generated by ANSYS CFX for the highest
hot-side temperature and under two situations of load resistance; one in which power output was maximized
(Rload = Rint for ITM, ETM, DEM and where zT was maximizing power output), and one in which thermal
efficiency was maximized. The comparison between the models are shown in Tab. 1.

Table 1 Comparison of mathematical models to ANSYS CFX with T∞,c = 300 K, T∞,h = 650 K, solving for
maximum power output and maximum efficiency, with the average value of the all four mathematical models
and the model form uncertainty [32] reported. Percent differences taken with respect to numeric results.

Maximum Power
SRQ CFX ITM |% Diff.| ETM |% Diff.| DEM |% Diff.| zT |% Diff.| Avg. U [%]

Qh [W] 3.82207 3.79373 0.74 3.87660 1.42 3.89165 1.80 3.79373 0.74 3.83893 2.68
Qc [W] 3.50157 3.46939 0.92 3.55228 1.44 3.56732 1.86 3.46939 0.92 3.51460 2.93
Voc [dV] 1.12027 1.12480 0.40 1.12478 0.40 1.12478 0.40 1.12480 0.40 1.12479 2.01e-3

Rint [mΩ] 9.77717 9.85103 0.75 9.85102 0.75 9.85101 0.75 9.85103 0.75 9.85102 1.90e-4
I [A] 5.72902 5.70905 0.35 5.70898 0.35 5.70896 0.35 5.70905 0.35 5.70901 1.61e-3

Pout [dW] 3.20494 3.21077 0.18 3.21069 0.18 3.21067 0.18 3.21077 0.18 3.21073 3.21e-3
η [%] 8.38535 8.46337 0.93 8.28221 1.24 8.25016 1.63 8.57711 2.26 8.39321 3.61

Maximum Efficiency
SRQ CFX ITM |% Diff.| ETM |% Diff.| DEM |% Diff.| zT |% Diff.| Avg. U [%]

Qh [W] 3.71209 3.69137 0.56 3.75571 1.17 3.76216 1.34 3.68280 0.79 3.72301 2.20
Qc [W] 3.39129 3.37191 0.57 3.43701 1.34 3.44385 1.54 3.36411 0.80 3.40422 2.42
Voc [dV] 1.12081 1.12482 0.36 1.12481 0.36 1.12481 0.36 1.12482 0.36 1.12482 1.01e-3

Rint [mΩ] 9.73032 9.85105 1.23 9.85104 1.23 9.85104 1.23 9.85105 1.23 9.85105 1.15e-4
I [A] 5.02164 5.05726 0.71 5.00532 0.33 4.97941 0.84 5.00380 0.36 5.01145 1.28

Pout [dW] 3.17462 3.16901 0.18 3.16201 0.40 3.15835 0.51 3.16187 0.40 3.16281 0.28
η [%] 8.55211 8.65420 1.19 8.48593 0.78 8.46096 1.07 8.65351 1.18 8.56365 2.40
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As seen within Tab. 1, all analytic models incorporated into a unicouple-level mathematical model are able
to accurately predict not only the thermal performance, namely heat input and output, but also the electrical
performance for situations of maximum power and maximum efficiency. The ITM and zT model consistently
have more accurate predictions of heat input and output under both load resistance situations considered, but
the predictions are less than those obtained via CFX. These models provide a more conservative estimate
of performance. The ETM and DEM both over-predict heat into and out of the unicouple for situations of
maximum power and maximum efficiency. It is further seen that the numeric result falls within the 95%
confidence interval around the average value of the the mathematical models.

All analytic models are able to accurately predict the electrical performance of the unicouple. Considering the
Seebeck voltage predictions, the maximum percent difference is less than half a percent for situations where
power output and thermal conversion efficiency are maximized. Similarly the analytic models accurately
predict the generated current under situations where power output is maximized, with the ETM and zT model
having the lowest difference in comparison to numeric when the thermal conversion efficiency is maximized.
All analytic model predictions of generated electric current have percent differences below one percent, in
part due to the low percent differences of calculated Seebeck voltage and internal resistances. The analytic
models predict power output with percent differences at or below 0.51% considering both operating points.

The ITM, followed by the ETM, DEM and zT model exhibit the closest agreement with CFX when predicting
thermal conversion efficiency when maximizing power output, with percent differences increasing from less
than 1% to over 2.20%. When considering maximum efficiency, the ETM followed by the DEM, zT model and
then ITM had the closest predictions, with all percent differences below 1.2%. Although there are situations
where the percent differences are perceived to be large in comparison to the numeric data, it is noted the
obtained values for most SRQs via the high-fidelity numeric model lie within the 95% confidence interval
around the average value of the four unique mathematical models. The slight discrepancies in Voc, I , Rint

and Pout are attributed to the localized Bridgman heating at the interior corners of the hot-side junction and
exterior corners of the cold-side junctions; regions where the gradient of the current density is highest. With
this localized heating, the average interfacial temperatures will show some disagreement with the simplified
mathematical model. Nevertheless, the percent differences associated with the aforementioned SRQ values
are universally less than one and a quarter percent.

3.2 Temperature Sweep

The thermal and electrical performance of all analytic models, i.e. the pre-existing ITM, ETM, and zT analytic
model, as well as the DEM presented herein, were evaluated for hot-side temperatures ranging from 350 to
650 [K] in 50 [K] increments with an invariant cold-side temperature of 300 [K]. Models were evaluated at a
maximum power configuration. Thermal and electrical performance of each analytical model was compared
to numeric results. In terms of thermal performance, it is seen in Figs. 2 a) and b) that the ETM and DEM
overestimate both heat input and heat output at increased values of hot-side temperature in comparison to
the ITM, zT model and CFX’s predictions. As seen in Tab. 1, the percent differences between the ETM and
DEM models for heat input and output on the order of 1-2%. Conversely, the ITM and zT model produce
conservative estimates of heat input and output as hot-side temperature increases. It is noted the heat input
near-linearly increases with hot-side temperature, whereas heat output exhibits a slight monotonic decrement
with increasing hot-side temperature.

In addition to thermal performance predictions, it is necessary to compare electrical performance predictions.
It is seen in Figs. 3 a) and b) that all analytic models result in current and voltage output predictions that
remain in close agreement with numeric results, and one another, over the range of hot-side temperatures. The
ITM, ETM, DEM and and zT model all have percent differences of 0.35% for current and output voltage
predictions in comparison to CFX. Additionally, the ETM, ITM, DEM and zT model all accurately predict
power output as seen in Fig. 4 a). While the ETM and DEM slightly overestimate heat input and output,
they provide conservative estimates of thermal efficiency, as seen in Fig. 4 b). Both the ITM and zT model
over-predict efficiency.
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Fig. 2 a) Heat input and b) heat output over a range of hot-side temperatures for all models.
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Fig. 3 a) Current and b) output voltage via each analytic model over a range of hot-side temperatures in
comparison to numeric.

3.3 Load Resistance Sweep

The thermal and electrical performance of each analytic model implemented into the unicouple-level
mathematical model, as well as the numeric model, was additionally evaluated over a range of load
resistances. The cold- and hot-side temperatures was kept invariant at 300 [K] and 650 [K], respectively,
while load resistance varied between 1E-5 and 1E3 [Ω]. As opposed to the previously described hot-side
temperature sweep, where analytic models were individually compared to each other and to the numeric
model, the results will be presented as follows—using the unique mathematical models, the average and
standard deviation of every SRQ of interest is quantified at each value of load resistance such that the model
form uncertainty can be quantified in terms of a 95% confidence interval around the average analytic result.

As seen in Fig. 5 a), mathematical modeling methods over-predict current and have highest uncertainty at low
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Fig. 4 a) Power output and b) efficiency over a range of hot-side temperatures for all models.
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Fig. 5 a) Current and output voltage, and b) power out and efficiency predictions of the averaged-results of
the analytic models in comparison to predictions via ANSYS CFX over a range of load resistance values.

values of load resistance. This is attributed to the omission of the Bridgman heat within analytic models, which
is non-trivial at low load resistance to internal resistance ratios [31]. The over-prediction of current is not of
concern because the point of maximum power output and thermal efficiency occur at approximately 9.8E-3
and 11.8E-3 [Ω], respectively, as shown in Fig. 5 b). At these power output and efficiency maximizing values
of load resistance, where TEGs are typically designed to operate, current predicted by analytic modeling
methods remains in close agreement with numeric results. Although the analytic models on average over-
predict current at low load resistance values, the predicted output voltage is in agreement with the numeric
model. It can also be seen in Fig. 5 b) that power output and thermal efficiency are accurately predicted by
mathematical modeling methods in comparison to numeric results. With increasing load resistance values,
produced electric current tends to zero whereas the output voltage increases to a maximum; there is also great
agreement with mathematical and numeric predictions.
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Fig. 6 Heat input and output predictions of the
averaged-results of the analytic models in comparison
to predictions via ANSYS CFX over a range of load
resistance values.

As shown in Fig. 6, mathematical modeling methods
over-predict heat input and output and have the
highest uncertainty at decreased values of load
resistance. Once again, the TEG would not operate
at such low values of load resistance, where
neither efficiency nor power is maximized, and
thus although the numeric predictions are within
the confidence interval of the analytic predictions,
it would be inadvisable to design around these
operating points. This over-prediction of heat input
and output at low load resistances is attributed to the
high current values. At high current density values,
the Bridgman heat is non-negligible, and the analytic
models are unable to quantify this phenomena.
The omission of Bridgman heat results in an
order of magnitude increase in the global energy
imbalance when compared to models incorporating
the Bridgman heat [31], thus a discrepancy between
numeric and mathematical models is expected in this
region. As the load resistance increases from the
minimum to values where the device is operating
at maximum power and maximum efficiency, the
average heat input and output predictions of the
mathematical models match the numeric predictions.
With a further increase in load resistance, all analytic and numeric values converge, for the produced electric
current tends to zero, and conduction dominates behavior.

From Figs. 5 and 6, it is seen that mathematical modeling methods are able to accurately predict the thermal
and electric behavior of a unicouple over the range of desired operating points. The temperature-dependent
DEM is able to accurately predict the power output and thermal conversion efficiency at points of maximum
power and maximum thermal conversion efficiency, with the same level of accuracy as the existing ITM,
ETM and zT models. At low load resistance values, on the order of 3e-3 [Ω] , the mathematical models’
predictions of the produced electrical current (Fig. 5 a)), and subsequent heat input and output (Fig. 6)
deviate from the high-fidelity numeric results. But, as seen from Fig. 5 b), the power output and efficiency
values are sub-optimal at or below the low resistance where marked deviation is witnessed, and the device
should not be operated under said conditions. Additionally, it can be seen that the iterative mathematical
models are as capable as the three-dimensional finite volume method model in predicting both the
simultaneous electrical and thermal performance of a TEG. Thus, with proper consideration of material
properties and modeling approaches, the aforementioned mathematical models are sufficient for device
design and optimization, and can be used independently of numeric models. The use of either the ITM,
ETM, DEM or zT model is incontrovertible. The construction and use of numeric models still serve a
purpose of validating analytic models, but are not required to resolve the thermal-electric behavior of a TEG.

4. CONCLUSION

Four unique constitutive analytic models describing the behaviour of thermoelectric elements—the Implicit
Thomson Model (ITM), Explicit Thomson Model (ETM), Differential Equation Model (DEM), and zT
model—were integrated into mathematical model of a thermoelectric unicouple. Using a thermal resistance
network and an iterative solution methodology, the effect of the interconnectors and the use of
temperature-dependent materials was able to be considered and handled, respectively. In doing such, a
thermal-electric coupled, unicouple-level mathematical model was created. Each of the constitutive analytic
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models incorporated into the mathematical model were evaluated at conditions that maximized power output
and thermal conversion efficiency, and were shown to be in good agreement with results generated via a
high-fidelity, three-dimensional thermal-electric coupled model implemented in ANSYS CFX. This was
evidenced by low percent differences between the mathematical and numerical results. It was found the ITM,
ETM, DEM and zT model are all capable of accurately predicting device performance at conditions of
maximum power output and maximum thermal conversion efficiency. The mathematical model, separately
considering all four constitutive equations, was then evaluated over a range of hot-side temperatures when
considering a situation of maximum power output, and was shown to be in good agreement with numeric
results. The ETM and DEM over-predict heat input, and consequently under-predict thermal conversion
efficiency. The opposite is seen with the ITM and zT model. All models had accurate predictions of
electrical behaviour, namely open-circuit voltage, current and power output.

In addition to providing accurate performance predictions of a TEG, the introduction of the novel
mathematical model, considering all four analytic formulations of the thermoelectric effects within, allows
for robust model form uncertainty quantification. As the load resistance was varied, agreement and
disagreement between the mathematical and numerical models was observed. In regions of low load
resistance values, the greatest deviation between mathematical and numerical results was seen; the
mathematical model’s average value had an over-prediction of current and heat input and output. With
increasing load resistance values nearing the region where power output and thermal conversion efficiency
were maximized, agreement between modeling techniques was observed. Furthermore, the numeric values
lied within the confidence interval around the mathematical model’s average value for power output and
thermal conversion efficiency, indicating further agreement between the two techniques. Thus, all
aforementioned constitutive models, when integrated into a unicouple-level mathematical model, are able to
accurately quantify the simultaneous thermal-electric performance of a thermoelectric generator.
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Table 2 Polynomial expressions for temperature dependent thermoelectric and interconnector properties.

n-type Bi2Te1.9Se1.1 [33] p-type Ge0.7Pb0.13Te+3% Bi2Te3 [34]
αN = (-3.202118465009907e-19)T 6 +

(9.203585371307136e-16)T 5 +
(-1.073152310161369e-12)T 4 +
(6.493910899794523e-10)T 3 +
(-2.15109875689092e-7)T 2 +
(3.646981516744837e-5)T +
(-0.002561458547361978)

αP = (-1.500813826446285e-19)T 6 +
(4.293338680148655e-16)T 5 +
(-5.014714714245148e-13)T 4 +
(3.042590912073281e-10)T 3 +
(-1.010501330398025e-7)T 2 +
(1.822883155906853e-5)T +
(-0.001365897370156843)

κN = (3.634218867237926e-15)T 6 +
(-1.119227631273517e-11)T 5 +
(1.410461035072385e-8)T 4 +
(-9.307231318913803e-6)T 3 +
(0.003396895991439032)T 2 +

(-0.6552982139209359)T +
(54.70633936832369)

κP = (5.238086549608868e-17)T 6 +
(-2.927636770231909e-13)T 5 +
(5.844390241944433e-10)T 4 +
(-5.642804450717544e-7)T 3 +
(0.0002909446395983974)T 2 +

(-0.08063418038142083)T +
(11.00293123390308)

σN = (-3.253703447464733e-8)T 5 +
(8.721294302777075e-5)T 4 +
(-0.09344706416614766)T 3 +

(50.97626108178136)T 2 +
(-14667.25239632805)T +

(1892814.656277739)

σP = (1.319288092705862e-10)T 6 +
(-3.85669843140294e-7)T 5 +

(0.0004638862454473422)T 4 +
(-0.297110247163325)T 3 +
(109.4552349385509)T 2 +
(-22997.10238999909)T +

(2309068.907784006)
Interconnectors - Copper

κint = 401
σint = 6E7
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NOMENCLATURE

Variables

A area (m2)
I current (A)
J current density vector (Am−2)
K thermal conductance (WK−1)
m ratio of resistances (-)
L Length (m)
N n-type (-)
P p-type (-)

Po power output (W)
Q heat (W)
R resistance, electrical or thermal (Ω or KW−1)
T thickness (m)
T temperature (K)
U uncertainty (%)
V voltage (V)
zT dimensionless figure of merit (-)

Subscripts and Superscripts

c cold-side
el electrical
h hot-side
int internal
∞ free-stream
load load

N n-type
oc Seebeck
opt optimum
out output
P p-type
th thermal

Greek Letters

α Seebeck coefficient (VK−1)
η thermal conversion efficiency (-)
κ thermal conductivity (Wm−1K−1)
λ eigenvalue (-)

ρ electrical resistivity (Ωm)
σ electrical conductivity (Sm−1)
τ Thomson coefficient (VK−1)

Acronyms

CSI cold-side interconnector
DEM Differential Equation Model
ETM Explicit Thomson Model
FVM finite volume method
GEQ general energy equation
HSI hot-side interconnector

ITM Implict Thomson Model
SRQ system response quantity
TE Thermoelectric
TED thermoelectric device
TEG thermoelectric generator
TRN thermal resistance network
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