

Title Page

Chapters on Reliability

by

Subbarao Venkata Majety

B.Tech, Jawaharlal Nehru Technological University, India 1985

M.A.Sc, University of Windsor, Canada, 1993

Submitted to the Graduate Faculty of the

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022

 ii

Committee Membership Page

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Subbarao Venkata Majety

It was defended on

September 2, 2022

and approved by

Prakash Mirchandani, PhD, Professor, Katz Graduate School of Business

Lisa Maillart, PhD, Professor, Department of Industrial Engineering

Hoda Bidkhori, PhD, Assistant Professor, Department of Industrial Engineering

Dissertation Director: Jayant Rajgopal, PhD, Professor, Department of Industrial Engineering

 iii

Copyright © by Subbarao Venkata Majety

2022

 iv

Abstract

Chapters on Reliability

Subbarao Venkata Majety, PhD

University of Pittsburgh, 2022

In this research two problems related to system reliability are addressed: the first is

commonly referred to as the reliability allocation problem, and the second problem is the

development of a class of optimum test plans for demonstrating system reliability.

The reliability allocation problem addressed in this research is for discrete cost-reliability data sets.

Integer programming formulations are presented and solutions are developed based on three

approaches: (i) integer programming, (ii) simulated annealing, and (iii) evolutionary algorithms.

Except for simple series and simple parallel systems, the integer programs formulated are non-

linear. Specifically, Series-Parallel (SP) and Parallel-Series (PS) systems are discussed in detail in

this research. With the integer programming approach, linear relaxations are developed for the

systems and an iterative procedure is developed to solve the problems. In this iterative procedure

a single infeasible solution is eliminated at each iteration until a feasible optimal solution is

achieved. With the simulated annealing approach, a nested algorithm is developed, where an inner

process focuses on optimality while an outer one focuses on feasibility. With the evolutionary

algorithm, a dynamic penalty approach is used to accelerate the convergence of the algorithm to a

good solution.

The second topic addresses test plans for systems and components. In the development of

any system, testing is very important to ensure that a good system is accepted while a bad system

is rejected. In this research, we address a series system with the possibility of interface failures.

For these systems our research evaluates when the less expensive approach of testing only

 v

components is good enough, when it is necessary to test the whole system, and when a combination

of component and system tests might be best.

 vi

Table of Contents

Acknowledgements .. xiii

1.0 Introduction ... 1

1.1 Reliability Allocation .. 1

 Problem Background ...1

 Some Applications ..4

 Problem Formulation...6

 Redundancy Allocation And Redundancy Design Problems7

 Prior Solution Strategies And Their Limitations ..7

1.2 Test Plans For Systems And Components .. 10

 Introduction ..10

 Problem Formulation...12

 Difficulties Associated With The Optimization Problem14

1.3 Research Objectives ... 16

1.4 Organization Of This Document ... 17

2.0 Literature Review ... 18

2.1 Reliability Allocation .. 18

 Introduction ..18

 The Reliability Allocation Problem ..19

 Redundancy Allocation ..20

 Redundancy Allocation In A Design Context ..21

 Reliability Allocation In The Context Of Assembly22

 vii

 Motivation For Our Research ...24

 Integer Programming ..27

 Simulated Annealing ..28

 Evolutionary Strategy Approach ..29

2.2 Optimum Test Plans ... 30

 Testing Of Series Systems ..32

 Testing Of Parallel Systems...35

2.3 Review Of Literature That Followed The Research Presented In This Document 37

 Similar Formulations With Other Solution Approaches38

2.3.1.1 Grey Wolf Optimization .. 39

2.3.1.2 Particle Swarm Optimization ... 39

2.3.1.3 Neural Network Approach.. 40

 Different Formulations With Similar Goals ..41

 Different Formulations With Different Goals ...42

3.0 Integer Programming Approach ... 45

3.1 Introduction And Notation .. 45

3.2 Problem Formulations ... 47

 Simple Series Systems ..52

 Simple Parallel Systems ...53

 Series-Parallel (SP) Systems ..53

 Parallel -Series (PS) Systems ...54

 K-out-of-N Systems ...55

3.3 Linear Relaxations To NLIP Formulations ... 56

 viii

 Problem SP0 ..56

 Problem PS0 ..59

 Problem T0 ..61

3.4 An Algorithm To Solve For Optimal Solutions ... 62

3.5 Examples And Observations ... 64

3.6 Strength of SP0 and PS0 ... 66

3.7 Acceleration Schemes For The Algorithm ... 69

 Additional Disjunctive Inequalities To Strengthen LP Relaxation SP070

 Valid Inequalities For SP From A Disjunctive System72

 Additional Disjunctive Inequalities To Strengthen LP Relaxation PS073

4.0 Heuristic Approaches To Solving The Reliability Allocation Problem 77

4.1 Introduction .. 77

4.2 A Nested Simulated Annealing Algorithm ... 78

 Initial Feasible Solution ...81

 Neighboring Solution ...82

 Examples And Results ...83

 Example 1 ..83

 Example 2 ..84

4.3 An Evolutionary Algorithm ... 86

 Penalty Function ..87

 Evolution Strategy ..88

 Encoding ...90

 Recombination ..90

 ix

 Mutation ..91

 Structure Of Penalty For The Reliability Allocation Problem92

 Examples And Results ...93

4.4 Conclusions ... 97

5.0 Optimum Test Plans ... 100

5.1 Introduction .. 100

5.2 Notation ... 101

5.3 Problem Formulation ... 103

 Case 1: No Prior Information Available On Interface Reliability104

 Case 2: Using Prior Information On Interface Reliability109

5.3.2.1 Scenario 1 ... 111

5.3.2.2 Scenario 2 ... 111

5.3.2.3 Scenario 3 ... 112

 Estimating Maximum Type 1 And Type 2 Error Probabilities115

5.4 Example Problems .. 116

 Example 1 ..116

 Example 2 ..118

 Example 3 ..120

5.5 Some Comments ... 121

5.6 Conclusions ... 123

6.0 Conclusions .. 125

6.1 Reliability Allocation Problem .. 125

 Conclusions And Future Research Directions: Integer Programming126

 x

 Conclusions And Future Research Directions: Metaheuristics127

 Reliability Decay Functions ...128

6.1.3.1 Definitions ... 128

6.1.3.2 Future Work Using Decay Functions .. 130

6.2 Optimal Test Plans ... 130

Appendix .. 132

Bibliography .. 135

 xi

List of Tables

Table 1: Reliability data matrix {pijk} .. 64

Table 2: Cost data matrix {cijk} for example problems ... 65

Table 3: Reliability Data Matrix {pijk} .. 68

Table 4: Cost data matrix { 𝒄𝒊𝒋𝒌} for example problems.. 68

Table 5: Optimum configuration for Series-Parallel system for RS = 0.99 69

Table 6: Cost and reliability data for Example 1 { cijk } .. 85

Table 7: Cost data for additional components in Example 2: { cijk } 86

Table 8: Summary of results for Examples 1 and 2 with nested SA over 30 runs of each ... 86

Table 9: Reliability – Cost data for examples .. 94

Table 10: Maximum Type 1 and Type 2 error probabilities for various δ 120

 xii

List of Figures

Figure 1: System configurations .. 3

Figure 2: Cost vs. Reliability relationships for components ... 9

Figure 3: An Example of a system and the derived SP, PS systems 49

Figure 4: Feasible Regions for SP and SP0 ... 59

Figure 5: Feasible regions for PS and PS0 .. 61

Figure 6: The gap between (a) SP0 and SP (b) PS0 & PS ... 67

Figure 7 : Disjunctive systems for reliability constraint for SP.. 71

Figure 8: Disjunctive systems for reliability constraint for PS... 74

Figure 9: Penalty function .. 92

Figure 10: (a) SP system (b) PS system ... 93

Figure 11: Convergence of ES for SP with option-1 .. 95

Figure 12: Convergence of ES for SP with option-2 .. 96

Figure 13: Convergence of ES for PS with option-2 .. 97

Figure 14: Minimum test costs corresponding to different values of m............................... 115

Figure 15: Minimum total test cost as a function of system test costs 118

Figure 16: Minimum total test cost as a function of δ ... 119

Figure 17: Φm (β) Values – Part 1 ... 132

Figure 18: Φm (β) Values – Part 2 .. 133

Figure 19: Φm (β) Values – Part 3 .. 134

 xiii

Acknowledgements

I would like to acknowledge my sincere gratitude to Dr. Jayant Rajgopal, my advisor, and

Dr. Mainak Mazumdar for incredible guidance, advice and knowledge imparted to me during my

entire stay at the University of Pittsburgh. I would like to acknowledge my sincere gratitude to Dr.

Larry Shuman who graciously allowed for the defense of my research. I would like to offer my

sincere gratitude to the committee members Dr. Prakash Mirchandani, Dr. Lisa Maillart and Dr.

Hoda Bidkhori for graciously agreeing to serve on my thesis dissertation committee. I would like

to acknowledge my sincere gratitude to Dr. Egon Balas and Dr. Alice Smith, whose courses have

given me immense knowledge, which contributed significantly to this research. I would like to

extend my sincere gratitude to Dr. Milind Dawande for his friendship during my years in

Pittsburgh.

I would also like to acknowledge my sincere gratitude to my wife Raji, and my daughters

Saveda and Anushka, who patiently waited for the day of my graduation. My late brother Dr.

Venkata Majeti had dreamed that I would graduate. I offer my sincere prayers to him for his

blessings from above.

I would also like to thank all the staff and faculty of the Industrial Engineering department

at Pitt, past and present, for their contribution in shaping me. I would like to thank my current

institution, Purdue Northwest University, Dean Dietmar Rempfer, and Professsor Chenn Zhou for

graciously allowing me to work towards completing my degree.

 1

1.0 Introduction

In this research we address two distinct problems associated with system reliability. Both

problems are focused on the design stage. First, it is important to select each component in the

system (along with its associated reliability) so as to ensure that the system reliability exceeds

some minimum desired level. At the same time, the reliability of each component comes with a

cost associated with it. Hence it is important that simultaneously the overall cost of the system is

also kept at a minimum. Second, once reliability allocation of the system has been addressed at the

design stage, tests are needed to ensure that the system meets reliability requirements prior to it

being deployed in the field. These tests may be at the system level where the whole system is

assembled and tested, at the component level where only the components are tested and an

inference on system reliability is made, or a combination of the two. These tests are often costly

and hence it is critical that they be optimally designed. This dissertation addresses these two

problems of reliability allocation and testing for reliability demonstration. In the following

sections, we elaborate on both problems.

1.1 Reliability Allocation

 Problem Background

In reliability allocation problem, one wishes to determine the desired reliability levels for

the components that make up a system, given the overall system configuration and possible side

 2

constraints. Most nontrivial systems that consist of many components tend to be expensive, and it

is important that these systems sustain their operations for a long time. In this regard, the reliability

of each component plays a very significant role in determining the overall reliability of the system.

The reliability level of each component in turn, comes with a cost, and the specific choices for

each of the components results in a system of a certain reliability with an associated cost. The

reliability allocation problem thus assumes great importance where the cost of the system has to

be minimized while guaranteeing high reliability for the system, or conversely, where the most

reliable system has to be built given a certain budget.

There are two major thrusts to this research on reliability allocation. First, it will consider

discrete data sets for cost and reliability of components and address the reliability allocation

problem in a system design context. This is distinct from prior research which has focused more

on functional relationship between reliability and cost. Second, new integer programming (IP)

formulations are developed for the problem. These formulations are nonlinear (except in the case

of a simple Series system or a simple Parallel system) primarily due to the complex expressions

for reliability. Linear relaxations are developed, and solution procedures are developed based on

(a) integer programming, (b) simulated annealing and (c) evolutionary algorithms. Since the

problem formulations are integer in nature, an attempt is made to find optimal solutions based on

integer programming. However, the problem formulations are nonlinear in nature, which makes it

very challenging to develop optimum-seeking methods. Thus, even though for some specific

systems, an integer programming approach will work, for more general systems, heuristic

approaches are more suitable. The heuristic approaches developed in this research are more

broadly applicable to many variety of problems. The computing time for a heuristic solution is

also a significant factor in choosing these methods.

 3

A system typically represents an end product designed for use by a customer. Sometimes it

may also represent a unit which becomes an integral part of a larger system. A configuration for

the system is defined based on the functionality of the components within it. For example, a system

is known as a Series System if it fails when any one of its components fails. Similarly, a system is

called a Parallel System if it fails only when all of its components fail. A system with a series

connection of parallel subsystems is called a Series-Parallel (SP) system. Similarly, a system with

a parallel connection of series subsystems is called a Parallel-Series (PS) system. A K-out-of-N

system is one which will function if at least K out of a given N components function.

Configurations for some common systems are shown in Figure 1. In the case of 2-out-of-3 system

depicted in Figure 1, the component numbered 1 in both subsystems represent same component.

In the case of Series-Parallel system and Parallel-Series system shown in the Figure 1, the

components numbered same (for example component numbered 1) in different subsystems

represent different components.

Figure 1: System configurations

 4

For a given system configuration, an allocation problem is typically defined as determining

the reliability values of all of its components while optimizing some objective such as the cost or

system reliability and satisfying any specified structural or functional constraints (such as

weight/volume restrictions, minimum required reliability value for the system, and/or specified

limits on the available budget).

 Some Applications

System designers are required to consider the reliability of the system as one of the main

factors during the design process. In the competition for higher quality, reliability considerations

at the early design stages acquire new dimensions of importance, but these must also be traded off

against cost. As an example, consider a missile development program. Such programs are usually

very expensive, and a very high reliability of the end product is required for strategic reasons. One

must thus determine a highly reliable design but one that is also cost effective. As another example,

consider the design of a long-distance gas supply line (for example, from Texas to New England).

Since gas cannot be transported for long distances via pipe lines based on simple gradients, motor

pumps are used at regular intervals to lift and pump gas into a continuing pipeline. These motor

pumps are expensive, and their placement within the transportation network needs to be designed

appropriately to ensure a highly reliable system, but one that is also a minimum-cost one. As a

final example, most large commercial and governmental organizations have several supply chain

partners supplying key elements of their products. Since the products are designed and eventually

assembled by the organizations while having to stay within some budget, they need to specify

reliability requirements to the suppliers in order to receive high quality components at competitive

 5

prices. Hence, it is important for these organizations to do reliability allocation calculations early

in the design stage. In short, when quality control measures are incorporated into designing a

system (or end product), we require reliability target values to be specified for its components in

order to provide an assurance that the system/end product will have some guaranteed minimum

reliability. Furthermore, we will almost always have other considerations (most typically cost, but

possibly, other technological constraints) that must also be considered during this design process.

Following are a few selected examples from the literature. Abed et al. [2019] address the

reliability of a Reduction Oxygen Supply System (ROSS) for a spacecraft. This is a complex

system where the allocation of component reliabilities was determined based on the minimization

of the total cost of the system. The authors used a genetic algorithm approach to solve the reliability

allocation problem. As another example, Hu et al. [2018] address optimal reliability allocation of

±800 kV Ultra HVDC transmission systems. The system architecture comprises several

subsystems in series. Some of these series subsystems are connected in parallel to each other, while

others are connected in series to the system of parallel-connected series subsystems. The

estimation of system reliability is itself a very complex process with many components involved.

The authors use different methods to estimate system reliability and then adopt a genetic algorithm

to optimize the allocation of reliability to components such that cost is minimized.

In summary, reliability allocation within complex multi-component systems lead to

challenging problem formulations with many real-world applications. These have existed for a

long time and will continue to exist in the future.

 6

 Problem Formulation

A generic formulation of the reliability allocation problem follows one of the following two

forms:

Problem A1

 Minimize C

 subject to

 𝑅 ≥ 𝑅𝑆

𝑔𝑖
(.) ≥ 𝑏𝑖, ∀𝑖 ∈ 𝐼

Problem A2

 Maximize R

 subject to

 𝐶 ≤ 𝐶𝑆

𝑔𝑖
(.) ≥ 𝑏𝑖, ∀𝑖 ∈ 𝐼

Here R and C denote the system reliability and system cost respectively, while RS and CS

denote the minimum system reliability requirement and maximum budget respectively.

Constraints 𝑔𝑖
(.) ≥ 𝑏𝑖 represent other design considerations (e.g., volume/weight) that might be

important and are problem specific.

Problem A1 can be viewed as a customer-induced problem since the reliability constraint

originates from customer expectations. Thus, it minimizes the producer’s cost while meeting

customer requirements. On the other hand, Problem A2 can be viewed as a producer’s model in

that it maximizes the system reliability while meeting the producer’s budget constraints. Customer

 7

driven policies are generally more common and we will focus on Problem A1 in this work. The

following sections discuss variants or generalizations of reliability allocation problems, viz.

redundancy allocation and redundancy design.

 Redundancy Allocation And Redundancy Design Problems

The redundancy allocation problem is a special case of the reliability allocation problem.

For a given system configuration with known component reliability values, the system reliability

may be readily computed in most cases. If this computed value is not satisfactory, then it can be

increased by the addition of redundant components. Clearly component level redundancy is better

than system level redundancy. Thus, for each component, additional redundant units (with the

same reliability value) are added. In such a case, the problem becomes one of finding the optimum

number of redundant units required for each component so that total cost is minimized while some

minimum system reliability level is guaranteed (or reliability is maximized while some budget

limit is not exceeded). The redundancy design problem is similar to the redundancy allocation

problem, but in this case the reliability value for each component level is also a variable to be

determined. This problem may be considered as a further generalization.

 Prior Solution Strategies And Their Limitations

It is a known fact that any system can be represented either as a Series-Parallel (SP) system

based on minimal cut sets, or as a Parallel-Series (PS) system based on minimal path sets (Leemis

[1995]). Thus, it is not surprising to see that SP and PS systems have attracted the most attention

 8

from researchers working on reliability allocation. Most of the previous work in this area can be

divided into two broad categories. One emphasizes multiple choices for components, where each

choice comes with known reliability and cost (and sometimes weight, volume, or other features).

The problems, in general, are addressed via integer programming or dynamic programming.

However, from a design point of view the specific problem addressed in most of these formulations

has been the simpler case of redundancy allocation rather than reliability allocation. As is common

in redundancy problems, most of these formulations assume that the reliability of every component

in a subsystem is the same. This restriction is not useful from a design perspective. Nor does it

give rise to any significantly easier solution procedures. The resulting integer programming

formulations are usually nonlinear in nature (primarily due to the reliability expression) and the

commonly recommended solution procedures do not guarantee optimal solutions.

The second category constitutes nonlinear (often, integer nonlinear) formulations where

some functional form is assumed for the relationship between a component’s reliability and its

cost. It is generally true that a component’s cost is an increasing function of its reliability; most

researchers to date adopt exponentially increasing, closed-form functions to relate cost and

reliability. However, in practice such functions are often unknown or difficult to construct. While

such an assumption tends to make the optimization procedures easier, there is no compelling

reason put forth as to why such a relationship is appropriate. On the contrary, Figure 2 shows, the

cost of a component can be a nonconvex and sometimes discontinuous function of its reliability.

 9

Figure 2: Cost vs. Reliability relationships for components

From a manufacturer’s perspective, it is much more reasonable to provide a cost for some

specified reliability of a component, as opposed to providing a precise (and typically, continuous)

cost-reliability relationship. For instance, it might be possible to manufacture the component

(which might be a small subsystem by itself) using different grades of materials, different part

qualities, different configurations, different designs, or different levels of built-in redundancies.

For each of these options, it would be much easier for the manufacturer to specify a reliability

level and quote a price that depends on this level, rather than having to provide a precise

mathematical expression for the cost of the component as a function of its reliability. Indeed, such

a function may well be impossible to determine, especially since the different levels of reliability

that are realizable for the component may be discrete or finite in number. Given this difficulty in

deriving precise mathematical expressions for the cost-reliability curves, an alternative and more

practical/realistic option is to consider discrete cost-reliability data sets for components. In this

research we focus on such data and develop appropriate problem formulations.

The solution procedures to be considered as part of this research are (a) an optimum seeking

approach, namely integer programming (IP), and (b) heuristics, namely (i) nested simulated

 10

annealing (NSA) and (ii) evolutionary algorithms (EA). As part of the IP approach, problem

specific valid inequalities are generated iteratively to arrive at the optimal solution. Such an

approach guarantees an optimal solution but is usually very time consuming. Heuristics on the

other hand yield “good-enough” solutions that are feasible but not necessarily being optimal.

However, they do so much more quickly and with much lesser computational effort than with IP.

1.2 Test Plans For Systems And Components

 Introduction

Every system must go through some testing process that assesses its competence before it is

eventually deployed. The typical goal of the testing program is to demonstrate that the system will

perform at an acceptable level of reliability for the mission for which it was designed. Reliability

is typically expressed as a mean time to failure or as the probability of no failures over some

specified mission time such as a warranty period or a deployment interval. System testing can be

conducted in many ways, for example, (i) only components are tested and inferences on system

reliability are made from that information and how the components are configured to form the

system, (ii) the complete system is assembled and tested and inferences are then made on its

reliability, (iii) some component testing as well as some system testing is done separately, and

inferences on system reliability are then made from the combined results of these tests. It is worth

noting that system-level tests are typically much more expensive than component tests because the

entire system must be assembled before it is tested. They also tend to be more technologically

complex and more difficult to instrument.

 11

In addition to cost and complexity. component tests have other advantages such as (i) they

take a shorter time to schedule, (ii) they can be done at individual locations by different teams, and

(iii) a system need not be assembled until there is a minimum guarantee that it will perform well,

based on component testing. The interested reader is referred to Rajgopal and Mazumdar [2001]

for more details.

It is also worth mentioning that in addition to the advantages given above, system-based

component tests are also useful in other situations. One example is systems that mix old and new

components. Sometimes a system is an improvement over a previous version of the same system.

Such systems are designed by combining new components and/or new subsystems together with

others that have been successfully used before in earlier designs. In such situations, component

testing to demonstrate a system reliability requirement is particularly effective. A component or a

subsystem that has been used previously requires little or no additional testing and only the new

components require additional testing. The same is true for systems which are evolving

continuously. Also, for complex systems that have several subsystems assembled in different parts

of the world, it makes sense to test individual subsystems to make an inference on overall system

reliability. Once there is a guarantee of overall system reliability, the whole system can then be

assembled.

Much work has been done on expressing the reliability of a system as a function of the

reliabilities of its components, and on using knowledge on the component reliabilities individually

to draw inferences on system reliability. There is abundant literature (e.g., Mann et al. [1974]) on

interval estimates of system reliability based on component test data. However, the same cannot

be said about the proper design of statistically sound, mathematically tractable and economically

desirable component tests designed specifically for drawing inferences on system reliability.

 12

Research that has directly addressed this aspect of test design will be discussed in the next chapter

on literature review.

One must note that component testing does not necessarily preclude system testing

altogether. There will be instances where system testing is necessary and warranted. Examples

of such situations would be (i) if component failures are not independent, (ii) if interfaces between

components that make up a system are unreliable, or (iii) even if a system designer is simply

uncomfortable with not doing any system testing. However, even in such situations it might be

possible to reduce the amount of (more expensive) system-level testing by combining it with the

results of some (less expensive) component testing.

 Problem Formulation

A general formulation for the component-test design problem is now provided (Rajgopal

and Mazumdar [2001]). Suppose a parameter set 𝜽𝒋 is associated with each component 𝑗 of the

system. This parameter set determines the reliability of the component. For example, suppose the

component life time is exponentially distributed. Then the single parameter 𝑗 representing the

failure rate for that component measures its reliability. In such a case 𝜽𝒋𝑗. The system reliability

𝑅𝑆 may then be expressed as a function of 𝜽𝟏, 𝜽𝟐, etc. To be precise let 𝑅𝑆 = 𝑓(𝜽) where 𝜽 =

[𝜽𝟏, 𝜽𝟐, … , 𝜽𝒏] is a vector of parameters, and the exact form of the function 𝑓 depends on the

system configuration (series, parallel, serial connection of parallel systems, etc.). Let 𝐶𝑗 be the cost

of testing component 𝑗; again, 𝐶𝑗 will depend on the format of the test plan. Let us consider two

sets:

 13

𝑆1 = {𝜽|𝑅𝑆 = 𝑓(𝜽) ≥ 𝑅1}

1.1

𝑆0 = {𝜽|𝑅𝑆 = 𝑓(𝜽) ≤ 𝑅0}

1.2

Here 𝑅0 is some specified value below which a system would definitely be considered

unreliable, while 𝑅1 (>𝑅0) is some minimal level of desired system reliability (the interval (𝑅0, 𝑅1)

is sometimes referred to as a zone of indifference). It may be noted that 𝑆1 is the set of all

combinations of values for the component reliability parameters that lead to a system with a

definitely acceptable reliability, while 𝑆0 is the set of all combinations of values that lead to a

system with a definitely unacceptable reliability. Then the problem of minimizing total test costs

subject to constraints on Type 1 and Type 2 error probabilities is stated as follows.

Problem P: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝐶𝑗𝑗

 s.t. 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝜽∈𝑆1
{𝑃𝑟𝑜𝑏(Accept the system)} ≥ 1 − 𝛼

 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝜽∈𝑆0
{𝑃𝑟𝑜𝑏(Accept the system)} ≤ 𝛽

 0 < 𝛼, 𝛽 < 1

The values of 𝑅0, 𝑅1, 𝛼 𝑎𝑛𝑑 𝛽 are typically specified for specific applications. The constants

𝛼 and 𝛽 are suitably low, pre-assigned values representing bounds on Type 1 and Type 2 error

probabilities, respectively. These probability requirements are similar to the ones encountered in

many conventional testing plans; for example, those listed in the Department of the Navy

document MIL-HDBK-781D (1987).

For a given system configuration, Problem P above is a two-stage optimization problem. In

the “inner” stage, assume that we are given a vector of test times t. The probability of accepting

 14

the system will, in general, be some function of (i) the vector t, and (ii) the reliability parameters

of the components of the system (as represented by the vector 𝜽). Now, there may be many

different vectors 𝜽 in the set 𝑆1 (each representing some combination of component reliabilities)

that lead to an acceptable system. Hence, for a given t, the probability of system acceptance should

be at least (1-) for all 𝜽 ∈ 𝑆1. Equivalently, the minimum probability of acceptance across all 𝜽 ∈

𝑆1 should be at least (1-). This is the first constraint. Similarly, the second constraint imposes a

restriction on the maximum probability of accepting an unacceptable system. Thus, given t, the

LHS of these two constraints lead to two optimization sub-problems (in 𝜽) over the sets 𝑆1 and 𝑆0

respectively. If the optimum values of these two subproblems are respectively (1-) and

then the corresponding vector of test times t is feasible. The “outer” stage optimization problem

aims to find among all such feasible t, the vector that also minimizes the objective function.

 Difficulties Associated With The Optimization Problem

Problem P represents the optimization problem in its most general form. The parameters, the

reliability expression, the costs for testing, the sets of parameters leading to definite acceptance or

rejection, and the mathematical representation of the two constraints in the optimization problem

are all determined by not just the system configuration and the failure time distributions but also

by the test format adopted. These formats might be quite different. For instance, a life test format

could be where each component type is tested with replacement for some fixed length of time and

the number of failures observed. Another format could be that a fixed number of components may

be tested to failure and the times to failure observed. A third format could be a binomial type test

where a fixed number of components of each type are subject to a pass-or-fail type test, and the

 15

number of successful trials observed. In each case, the values observed at the component level

must be combined into some test statistic, and then translated into a decision rule for system

acceptance or rejection. The choice of the best test statistic and the corresponding decision rule are

both open research issues. Realistically, the rules must be (i) analytically tractable, and (ii)

plausible for the specific system being considered. The test costs will also depend on the test

format. The cost structure could be defined in terms of cost per unit time on test, or in terms of

cost per unit tested, depending on the format of the test.

The preceding discussion points to the complexity of the problem. There are two distinct

considerations here: statistical and optimization. Statistical considerations pose numerous

challenging issues such as identifying the underlying failure time distributions, establishing the

relationship between component and system reliabilities, selecting an appropriate test statistic and

developing an appropriate acceptance rule. The optimization considerations include how we

formulate the optimization problem in terms of the component failure time distribution and test

parameters, developing algorithms to solve these optimization problems, deriving suitable

approximations when the problem is intractable, and incorporating problem specific information

into the solution methodology.

Prior knowledge is another important factor. One could sometimes have reliable estimates

for the component failure rates based on prior experience, while at other times one may have no

such knowledge at all. When prior estimates are available, the optimization procedure could

possibly exploit such prior knowledge to develop a plan that will be less costly. Another common

situation is that the interfaces that enable components to be assembled into a system might not be

perfect. In the absence of perfect interfaces, one might be required to perform at least some system

level testing and there is a need to investigate conditions where such system level testing is

 16

necessary. In this research we will address optimum test plans for a series system where interfaces

are not perfect.

1.3 Research Objectives

The principal objectives of this research are:

(i) For the reliability allocation problem:

• Develop new integer programming formulations for SP and PS systems.

• Develop linear relaxations for the problem formulations addressed.

• Evaluate the strength of the linear relaxations.

• Develop problem-specific, iterative solution procedures by identifying valid

inequalities.

• Develop heuristic solution procedures that can be adopted for most generic

problems.

• Summarize the findings and evaluate the degree of usefulness of the solution

procedures developed in this research.

(ii) For optimum test plans:

• Develop problem formulations for a series system with imperfect interfaces.

• Consider interface reliabilities when deriving solutions

• Summarize the findings and evaluate the usefulness of the solutions obtained.

 17

1.4 Organization Of This Document

In this research we address (a) the reliability allocation problem and (b) the reliability

demonstration problem The reminder of the document is organized as follows.

Chapter 2 comprises two parts. In the first part the research literature pertinent to the

reliability allocation problem and solution procedures is discussed. The second part contains

research literature pertinent to optimum test plans for reliability demonstration.

Chapter 3 discusses the reliability allocation problem formulations and solution procedures.

The integer programming approach and valid inequalities for the problem are also described in

this chapter.

Chapter 4 discusses solutions to the reliability allocation problem based on two heuristic

approaches viz., (i) simulated annealing and (ii) evolutionary algorithm. A novel nested simulated

annealing algorithm is developed for this problem. Such nested simulated annealing algorithms

can be generalized and may be used for a variety of other problems. A solution to the reliability

allocation problem based on an evolutionary algorithm considers a special penalty function that

accelerates the solution procedure and yields quick solutions.

Chapter 5 discusses the optimum test plans for systems and components. In this, a

formulation of the problem is presented that considers Type 1 error as well as Type 2 error

simultaneously. Interface reliabilities are also taken into account and solutions are obtained for

various conditions encountered.

Chapter 6 summarizes the research with a final analysis of all solution approaches adopted

in this research.

 18

2.0 Literature Review

In this chapter, a literature review on the two problems addressed is presented. The literature

review focuses mostly on the problems addressed in this research, various formulations used to

address these problems in earlier research along with any limitations, and solution procedures

adopted. We also review the relevant literature associated with the specific heuristic methodologies

used in this research to solve the problems.

2.1 Reliability Allocation

 Introduction

Reliability allocation is a very old problem but still generates a lot of interest within the

research community. The problem and the formulation evolved over many years and still continues

to evolve. For example, Elegbede et al. [2003] address the reliability allocation problem in their

work. Malaiya [2008] has also studied the reliability allocation problem to apply it to a software

reliability application. His work is clearly inspired by the formulations used in this research.

Yalaoui et al. [2005] have used the Tillman functions for cost-reliability relationships and derived

solution procedures for a system that is a parallel connection of many series systems. An overview

of optimal reliability allocation may be found in the paper by Kuo and Wan [2007]. They stated

that “Optimal reliability design has attracted many researchers who have produced hundreds of

publications since 1960. Due to the increasing complexity of practical engineering systems and

 19

the critical importance of reliability in these complex systems, this still seems to be a very fruitful

area for future research.” Cruz [2016] has noted in his report that applying reliability allocation

techniques without understanding their limitations and assumptions can produce unrealistic

results. More recently, Si et al. [2019] propose a generalized Birnbaum importance measure

(GBIM) to quantify the contribution of individual components to system reliability improvement

by considering reliability range, manufacturing complexity, and technology feasibility. GBIM

possesses several unique features in terms of guiding system reliability optimization. The authors

develop a GBIM-based genetic algorithm to solve a type of optimal reliability allocation problem.

All of this work clearly indicates that the long-standing reliability allocation problem remains an

important one that continues to attract the attention of researchers in the field.

 The Reliability Allocation Problem

As stated in Chapter I, the generic formulation of the reliability allocation problem follows

in one of the following two forms:

Problem A1

Minimize C

 subject to

𝑅 ≥ 𝑅𝑆

𝑔𝑖
(.) ≥ 𝑏𝑖, ∀𝑖 ∈ 𝐼

Problem A2

 Maximize R

 subject to

𝐶 ≤ 𝐶𝑆

 20

𝑔𝑖
(.) ≥ 𝑏𝑖, ∀𝑖 ∈ 𝐼

Here R and C denote system reliability and system cost respectively, while RS and CS denote

the minimum system reliability requirement and maximum budget respectively. Constraints

𝑔𝑖
(.) ≥ 𝑏𝑖 represent other design specifications (such as volume/weight) which are problem

specific. In the following subsections we discuss several variants of the above models that have

been addressed by prior work and contrast the proposed research with respect to these variants.

 Redundancy Allocation

Redundancy allocation is a classical problem that was first comprehensively discussed by

Tillman et al. [1980] and more recently by Kuo and Wan [2007]. The primary goal of this model

is to achieve reliability goals by using redundancy at the component level. The initial model was

presented by Tillman and Littschwager [1967] and was subsequently adopted by Tillman et al.

[1968], Sharma and Venkateswaran [1971] and many others (refer to the second chapter of Tillman

et al. [1980]). In this model they assumed that the reliability of each component is known and the

decision to be made is the number of redundant units to be placed for each component. Their

formulation for this model expressed the reliability expression for a series system with L different

unit types (or stages) connected in series as 𝑅 = ∏ (1 − (1 − 𝑅𝑗)𝑥𝑗),𝐿
𝑗=1 where 𝑥𝑗 represents the

number of redundant units to be placed at stage j. In this representation the reliability of each unit

in a stage j is assumed to be the same and is equal to a known quantity Rj. In addition, the cost

function with respect to the number of redundant units is presented as 𝐶 = ∑ 𝑐𝑗(𝑥𝑗 + 𝑒(
𝑥𝑗

4
))𝐿

𝑗=1 .

 21

The first drawback of this model is that there is no compelling reason presented for the

assumption that all redundant units in a stage should have the same reliability. A perfect example

to contradict this assumption would be where a primary power station with high capacity is used

for power supply, while a secondary power station with relatively low capacity (and perhaps lower

reliability) is used as a redundant unit to boost the reliability of the system. Thus, in a design

context, where we wish to determine the reliability level for each component, this model is not

applicable. More importantly, no explanation is given for the cost expression for the system that

is presented. From the expression it appears that it is used as some sort of heuristic approximation.

The first term in the cost, 𝑐𝑗𝑥𝑗, represents the cost directly proportional to the number of redundant

units. However, the second term, 𝑐𝑗𝑒(
𝑥𝑗

4
)
, which is interpreted as the cost of interconnecting parallel

elements, represents an exponential increase in the cost due to more redundant units. This gives

the impression that it is used to discourage solutions where a large number of redundant units

would be adopted in a single stage. Such a cost expression may be applicable for certain cases and

may not be applicable to others. However, with such a cost structure the generality of the model is

lost.

 Redundancy Allocation In A Design Context

In order to make the earlier model work from a design point of view, Tillman et al. [1968]

proposed a second model. In this model, the decision to be made is still with respect to the number

of redundant units in each stage in a series system, but the reliability level of each component also

has to be determined. The reliability expression for a series stage is the same as earlier, i.e., 𝑅 =

 ∏ (1 − (1 − 𝑅𝑗)𝑥𝑗)𝐿
𝑗=1 but in this expression both 𝑅𝑗 and 𝑥𝑗 are both unknown. However, the

 22

reliabilities for all units in the same stage are still assumed equal. In this model the cost expression

used was the same as earlier, i.e., 𝐶 = ∑ 𝑐𝑗(𝑥𝑗 + 𝑒(
𝑥𝑗

4
))𝐿

𝑗=1 , where cj is cost per component at the

jth stage which is a function of 𝑅𝑗. This cost 𝑐𝑗(𝑅𝑗) is expressed as a decreasing function of the

component failure rate, i.e., 𝑐𝑗(𝑅𝑗) = 𝛼𝑗 {
−𝑡

ln 𝑅𝑗
}

𝛽𝑗

where 𝛼𝑗 and 𝛽𝑗 are constants representing

characteristics of components at the jth stage, while 𝑡 represents the operating time during which

the component at stage 𝑗 does not fail.

The main drawbacks of this model are similar to those mentioned for the earlier model, since

the models are essentially identical except that the 𝑅𝑗 are assumed to be unknown in the second

model. In addition, the authors fail to provide any specific reason or justification for the complex

cost versus reliability relationship assumed in this model. As discussed in Chapter I, it is an

accepted notion that cost is an increasing function of reliability; however, there is no compelling

reason for it to be a convex function. More importantly, from a practical point of view such closed

form functions are not easy to obtain. It may be possible that a particular functional form can be

constructed for a particular application, but the use of the functional form would then be limited

only to that application (or perhaps very similar ones).

 Reliability Allocation In The Context Of Assembly

This problem is different from the one addressed by the earlier models. Here the goal is to

place components into known positions within a system configuration. The reliability values for

all components are known; however, the system reliability is dependent on the positioning of

components in the system. Hence the model has an objective of maximizing the system reliability

while placing components in their respective positions. In certain systems all components are

 23

functionally similar and thus any component can be placed in any position of the system

configuration. This problem for various systems is addressed by Kontoleon [1979], Malon [1984],

El-Neweihi et al. [1986, 1987, 1988], Papastavridis and Sfakianakis [1991], Zuo and Shen [1992]

among others. El-Neweihi et al. used the theory of majorization and Schur convex functions to

obtain optimal allocations for several systems including Series-Parallel and Parallel-Series

systems. Other researchers approach a similar problem for other systems using heuristic

approaches based on concepts of reliability importance, where the importance of a component is

defined as a partial derivative of the system reliability with respect to the component’s reliability.

The problem addressed with this model is applicable in situations where all components are

functionally similar and it is assumed that their placement within the system configuration has no

bearing on cost. A more general version of this problem would be one where there is a cost

associated with the assignment of a particular component to a particular position. If cost is

considered in this model, the problem would become a more traditional optimization problem and

the concepts of reliability importance and majorization theory offer little assistance in solving the

problem. The following example will justify the need to consider cost.

Consider the example of the design of a long-distance gas supply line (such as from Texas

to New England) mentioned in Chapter I. In this example the motor pumps are functionally similar

and thus each pump can be placed at any of the fixed locations. However, they might come from

different manufacturers and might be associated with different reliability and cost values. All

motor pumps would require a proper foundation and a platform to place them, which in turn might

be dependent on the location. Hence the cost of fixing a motor pump would directly depend on the

location. Hence it is important that cost considerations be taken into account in these models.

 24

 Motivation For Our Research

The inadequacies of earlier models stem from two factors: (1) the problems associated with

complex system reliability expressions in terms of the decision variables and (2) the inability to

handle the wide range of problems that are concerned with reliability allocation as a part of the

design. In this research we attempt to address these issues. To be more specific, with respect to

earlier research the solution procedures suggested are mostly heuristics since the formulations are

very complex and none of the available integer programming procedures suit these formulations.

In fact, Kececioglu [1991] describes existing allocation methods with respect to redundancy as

“poor approximations at best”. For example, Sharma and Venkateswaran [1971] suggested a

heuristic solution to the redundancy allocation problem based on incrementing redundant

components in the most unreliable stage at each successive iteration until the reliability

requirement is met or a constraint is violated. Agarwal et al. [1975] proposed a variant of the same

approach where they propose a different solution procedure for selection of a stage where a

redundant component is added. Several other heuristics are listed in detail by Tillman et al. [1980].

Dynamic Programming was used for solving the redundancy allocation problem by Katelle

[1967], Woodhouse [1972], and others (refer to Tillman et al. [1980] for a summary of dynamic

programming in redundancy allocation). A common criticism leveled against dynamic

programming is that when multiple constraints are present the dimensionality of the problem

increases. Hence most of the dynamic programming applications to reliability allocation are

limited to single constraint problems and unfortunately, most system design problems have many

functional constraints in addition to reliability requirements. Scores of other approaches from the

literature are recorded and summarized by Tillman et al. [1980] for redundancy problems. It is

surprising to see that almost all of them are heuristic solutions and are applied to only simple

 25

systems such as a series system. For the redundancy design problem, the formulation is even more

complex given the fact that both 𝑅𝑗 and 𝑥𝑗 are variables (with 𝑥𝑗 also being required to be integer)

and optimization algorithms become very difficult to develop. This is reflected by the fact that

numerous heuristic solution procedures have been proposed (e.g., Agarwal et al. [1975], Nakagawa

and Nakashima [1977], Tillman et al. [1977], Cateanu et al. [1986], Coit and Smith [1996],

Jacobson and Arora [1996]). No attempt has been made to look at alternative formulations where

better solution procedures can be developed so that the model and solution procedures become

widely applicable for more general systems. While the development of heuristic solution

procedures is a logical approach given the complexity of the problem, the formulations themselves

need some attention. Since these formulations are difficult to solve optimally even for a simple

series system (where redundancy is sought for stages that are in series), extending them to more

complex systems offer little hope. In this regard, the approach taken by Bulfin and Liu [1985]

offers interesting insights and in some sense inspires the approach proposed in this research.

Instead of considering the number of redundant components as a variable (i.e., 𝑥𝑗), they discretize

this into binary variables and formulate a 0-1 integer programming problem. This research uses an

analogous approach by assuming discrete cost vs. reliability relationships, which is often a more

reasonable approach than assuming a closed form functional relationship.

Consider system design problems such as transportation problems, supply-chain problems

or network design problems. Most of these problems are addressed either by network-based

solutions or integer programming-based solution procedures. However, when reliability

considerations are considered for these problems, they become much harder to approach. The

earlier reliability models offer little assistance with regard to such design problems where the

reliability requirements are desired. There is no effort by any researchers to the best of our

 26

knowledge to consider reliability requirements for these problems thus far. This may be partly

attributed to the fact that the computation of reliability for a system given the reliability for each

component is itself a very hard problem and no known polynomial algorithms are available for

general systems. However, many systems of practical significance (viz. series-parallel, parallel-

series and systems known as series-parallel-reducible-networks) have polynomial algorithms to

derive reliability of the system from given component reliability values. The solution procedures

developed in this research can be readily applied to any design problem for such systems that

require reliability considerations.

The model proposed in this research is based on discrete data sets for reliability and cost. It

is a generally accepted notion that a component’s cost is an increasing function of its reliability.

Discrete data has been used in the past although the term “discrete data” was not in use at that

time. Fyffe et al. [1968] used a slightly different formulation for redundancy allocation where they

have alternative choices for a component in a stage. Once a choice is made, the problem is then to

determine the number of redundant components of that choice. The problem with this model is

that every component in a stage would have same reliability/weight/cost; in other words, duplicate

copies of the same component are added as redundant. If they had allowed the freedom for all

redundant components in a stage to have their own characteristics (such as reliability/weight/cost

etc.), the model would have much more general appeal. For example, in the power plant example

from the previous chapter, a redundant plant would be of less capacity with relatively less

reliability.

In this research, our model exploits this fact and allows for each component to have its own

characteristics so that the most suitable alternative is chosen via the optimization procedure. For

example, in the electronic industry, components are manufactured in advance and are available

 27

from a variety of sources. Thus, one can choose a particular component from a finite number of

sources with known reliability and cost values. The model based on discrete data can be used for

all of the redundancy problems mentioned above and in addition, the solution procedures

recommended in this research easily accommodate additional constraints such as functional

requirements based on the nature of the system under consideration. When only discrete data is

available, this model can be used directly. However, it can still be used when a functional

relationship is available for cost and reliability, because we can always draw discrete datasets from

the relationship.

We next provide some background on the methodologies we develop here for solving the

reliability allocation problem.

 Integer Programming

In this research work, we formulate the reliability allocation problem as a 0-1 integer

Programming problem. For complex systems, the problem formulation is nonlinear in nature. For

specific systems we tried to identify linear relaxations of the formulations. Once a linear relaxation

is identified, an iterative procedure is recommended to eliminate infeasible solutions resulting from

solutions to the relaxation. Some of these results are given by Majety et al. [1999]. Even 0-1 linear

integer programming problems for simple Series Systems (or Simple Parallel systems) are NP-

hard Knapsack problems. The iterative procedure, developed in this research by solving ILP

relaxations at each iteration, is very time consuming and computationally very taxing. However,

the solution procedure is presented in the hope that better solutions will follow in future. More

details are given in Chapter 3.

 28

From a practical perspective, these hard problems can be addressed using various heuristic

approaches such as Simulated Annealing, Genetic Algorithms, Evolutionary Algorithms or Tabu

Search etc. We will explore two of these approaches viz., Simulated Annealing (SA) and

Evolutionary Algorithms (EA), in this research.

 Simulated Annealing

Many heuristic procedures such as SA (Brusco and Jacobs [1993], Kirkpatrick et al. [1983]),

Genetic Algorithms (Bean and Hadj-Alouane [1992], and Tabu Search (Glover [1989a, 1989b])

have been proposed for difficult combinatorial optimization problems. SA is a heuristic algorithm

for obtaining good, although not necessarily optimal solutions, to optimization problems. Brusco

and Jacobs [1993] list many combinatorial problems for which SA has been successfully applied.

Those include school time-tabling, multilevel lot sizing and cyclic staff- scheduling. Kanagaraj

and Jawahar [2009] are inspired by our research on nested simulated annealing (Majety and Smith

[1996]) and develop a simulated annealing algorithm for their optimal supplier selection problem

using the reliability-based total cost of ownership model, which is also a nonlinear integer

programming formulation.

In a traditional SA approach, one starts with a feasible solution and identifies a feasible

neighboring solution. If this new solution improves the objective function, it is immediately

accepted, and a move is made to that solution. If not, the new solution is accepted probabilistically

based on some annealing schedule. Eglese [1990] mentions that the efficiency of an SA algorithm

depends on the definition of the feasible neighborhood of the current solution. However, instead

of defining a feasible neighborhood, if the problem has a difficult-to-satisfy constraint set, the

addition of an exterior penalty function to the objective function may be used. In this research, we

 29

used a nested SA algorithm instead of a penalty function. In principle it is quite similar to the

penalty function approach, but the difference is that the penalty is applied to the acceptance

probability for an infeasible solution rather than to objective function, as is done normally. Our

initial experiments with the nested SA always resulted in feasible final solutions (not always

achieved with penalty functions) and thus we adopted the nested SA instead of a regular penalty

function approach. More details are presented in Chapter 4.

 Evolutionary Strategy Approach

Evolution strategy [ES] refers to an algorithm that tries to simulate the evolution process. A

detailed description of the method may be found in Back et al. [1991]. Briefly, in the simulation

of an evolution process one tries to find links between the characteristics of an offspring and its

parents. The usual procedure adopted is as follows: the problem is encoded in terms of its variables

(viz. characteristics). An objective is defined as a fitness function value based on these variables.

For the problem, an initial set of solutions is generated, and they are treated as parents. A new set

of offspring is then generated from these parents. Now, from the set of offspring solutions and

parent solutions, a fixed number of fittest solutions are accepted and set as the new set of parents

for the next generation. This process of creation and selection continues until a stopping criterion

is met. A more detailed description of this method and how it is adopted for the reliability

allocation problems of this research are given in Chapter 5.

 30

2.2 Optimum Test Plans

Gal [1974] was the first to address the area of system based component testing. His initial

work considered an arbitrary coherent system composed of n different component types with

independent failures, and his plan called for each component type j to be tested for 𝑡𝑗 time units,

with the system being labeled acceptable if no failures were observed during the prescribed testing

period for each component type. He formulated the problem as

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑡) = ∑ 𝑐𝑗𝑡𝑗

𝑛

𝑗=1

s.t. Pr{accept system when 𝑅𝑆 ≤ 𝑅0} ≤ 𝛽

2.1

where

𝑐𝑗 is the cost of testing component j per unit time,

𝑅𝑆 is the system reliability for a unit time period,

𝑅0 is a value such that any system with reliability lower than this value would be deemed

as definitely unacceptable, and

𝛽 is a suitably low pre-assigned probability.

Under the assumption of exponentially distributed component lifetimes, he derived a general

procedure for obtaining the optimum test times. He also provided specific examples for a few

common system configurations. In Gal’s work, the acceptance rule was very demanding and it

could result in a good system being unnecessarily rejected. This issue was addressed by Mazumdar

[1977], who considered a formulation identical to that considered by Gal, but with another

probability constraint in keeping with the standard statistical practice for determining the sample

size. This constraint is:

 31

Pr{accept system when 𝑅𝑆 ≥ 𝑅1} ≥ 1 − 𝛼

2.2

where

𝑅1 (>𝑅0) is a value such that any system with reliability greater than this value would be

deemed as definitely acceptable, and

 is some suitably low pre-assigned probability.

Mazumdar [1977] assumed that component testing took place with replacement. Let 𝑋𝑗

denote the number of failures of component 𝑗 that occur when it is tested for 𝑡𝑗 time units. He then

proposed the following alternative to Gal’s acceptance criterion, which he referred to as the sum

rule: "accept the system if ∑ 𝑋𝑗𝑗 ≤ 𝑚," where 𝑚 is an integer-valued decision variable. He then

showed that with this rule the optimum component test times are the same for each component

irrespective of the testing costs. In his original work, Mazumdar [1977] did not explicitly prove

that a feasible m was guaranteed to exist. It was subsequently shown by Rajgopal et al. [1994] that

when this criterion is used, there exists an m* such that both (2.1) and (2.2) will be satisfied for all

values of 𝑚 ≥ 𝑚∗, as long as 𝛼 + 𝛽 < 1.

In the following subsection we review research on this topic of system-based component

testing that specifically addresses series systems, since that is the focus of the work in this

dissertation. Subsequently, in Section 1.1.2 we also briefly overview other research related to this

topic.

 32

 Testing Of Series Systems

In a series system, every component must work for the system to work. Yan and Mazumdar

[1986] were the first to address series systems and studied three different test procedures based

upon (1) the total number of failures across all component types, (2) the number of failures for

each component type and (3) the maximum likelihood estimator of system reliability. They

showed that the first and third procedure led to identical results. They also concluded that for

similar levels of protection from Type I and Type II errors, these procedures were generally

superior to the second case from the point of view of costs. More interestingly, they showed that

in an optimum policy, all component types need to be tested for the same length of time regardless

of the test costs. This is intuitive because a series system is only as good as its weakest component

and in the absence of any prior knowledge, we would need to treat each component equally.

Easterling et al. [1991] address a series system where the individual component failures

follow a binomial distribution. More importantly, this work presented a detailed discussion of the

need for system-based component test plans by demonstrating the drawbacks associated with the

ones customarily used in practice, where it is common to “allocate” the required reliability for a

system among its individual components and then independently require each component to show

this level of reliability with some specified level of confidence. Using system O.C. curves, the

authors show how this could lead to probabilities of Type 1 and Type 2 error that could be vastly

different from the advertised values. They also presented a justification for the use of the so-called

sum rule with binomial failure data, that Mazumdar [1977] had introduced earlier. Several years

later, Mazumdar and Rajgopal [2000] set up the mathematical program for computing the

maximum likelihood estimator for system reliability, and derived the Karush-Kuhn-Tucker

 33

conditions for the optimum. These conditions yield expressions that involve the sum of the number

of failures observed. The results also indicated that for a series system with binomial failure data,

the sample sizes for each component type should be the same (just as with exponentially distributed

failure times).

The result of equal test times can be intuitively unappealing because designers often have

some idea about how reliable a component is, e.g., they might know based on prior experience that

component X is likely to be more reliable than component Y, or that component Z is known to

have some minimal reliability level. The next major extension for series systems addressed this

scenario, where it was assumed that a priori information of some kind is available on the failure

rates of the individual components (Altinel [1992], Altinel [1994], Rajgopal and Mazumdar

[1995]). Specifically, it was assumed that each component failure rate 𝜆𝑗 had a known upper bound

𝑢𝑗 . Interestingly, with a priori knowledge the optimal test plan need not require all components to

be tested equally, but rather, for times that depend on the magnitude of the upper bound 𝑢𝑗 as well

as the unit test cost 𝑐𝑗. Thus, a component 𝑗 with a smaller value of 𝑢𝑗 and a higher value of 𝑐𝑗

will require less testing than one with a larger 𝑢𝑗 a smaller 𝑐𝑗. A detailed discussion of an algorithm

along with computational results may be found in Rajgopal and Mazumdar [1995]. Soon after,

Raghavachari [1998] proposed a simpler procedure to solve the same problem. This method was

based on results from linear programming duality; and the same numerical results were obtained

but with far less computational effort.

Rajgopal and Mazumdar [1995] also provided the formulation and a solution procedure for

the case where each component’s failure time follows a gamma distribution with a common,

known shape parameter and unknown scale parameter. Once again, they considered both bounded

and unbounded failure rates. For the latter case, they developed exact procedures which as

 34

expected, yielded equal test times for all components. The former case is much more complex and

the authors used a Normal approximation to formulate a nonlinear optimization problem along

with a cutting plane strategy where a sequence of nonlinear programs were solved at each iteration.

The same authors (Rajgopal and Mazumdar [1997]) also studied the series system with component

failure times that follow a Weibull distribution. Once again, they used a Normal approximation to

develop a solution procedure for the resulting formulation. The results for both the gamma and

Weibull distributions were consistent with those for the exponential distribution.

Rajgopal and Mazumdar [1997] were also the first to introduce the notion of imperfect

interfaces between the components of the system. All of the prior research had assumed that

interfaces were perfect and when the system failed it was only because a component had failed.

In practice, systems often fail at an interface (e.g., a weld or a connecting wire); in fact, this is one

reason why many practitioners tend to use system test as opposed to just relying on component

tests. The research presented in Chapter 5 (Rajgopal et al. [1999]) addresses this issue by

combining component and system testing.

In other related work on series systems, Sankar and Vellaisamy [2000] develop a two-stage

test plan for a series system, similar to double sampling plans that are commonly used in

acceptance sampling. The objective is to try and reduce testing effort while still providing

protection from Type I and Type II errors. The approach has two parameters 𝑚1 and 𝑚2. In the

first stage, each component 𝑗 is tested for 𝑡1𝑗 units of time and the number of failures 𝑋1𝑗 observed.

If ∑ 𝑋1𝑗𝑗 ≤ 𝑚1 the system is immediately accepted, and if ∑ 𝑋1𝑗𝑗 > 𝑚2 the system is immediately

rejected. If 𝑚1 ≤ ∑ 𝑋1𝑗𝑗 ≤ 𝑚2 further testing is conducted. In this second stage, each component

𝑗 is tested further for 𝑡2𝑗 units of time and; suppose the number of failures at this stage is 𝑋2𝑗. The

system is finally accepted if ∑ 𝑋1𝑗 + 𝑋2𝑗𝑗 < 𝑚2 and rejected otherwise. Note that the total test

 35

cost is not deterministic anymore; the authors therefore minimize an expression for the maximum

expected cost subject to the usual constraints. They also address both cases with and without prior

information on failure rates. For the latter case, they adapt the approach proposed by Raghavachari

[1998], and for the former case, they use a meta-heuristic genetic algorithm to solve the

optimization problem. The authors show that the maximum average cost is lower than the

minimum cost for the single stage plan (Rajgopal and Mazumdar [1995]) by a little over 10%.

 Testing Of Parallel Systems

We now briefly discuss work in this area beyond series systems. Parallel systems (where at

least one component should work for the system to work) are generally more complicated than

series systems because of how system reliability must be expressed as a function of component

reliabilities. Thus, work in this area has exclusively addressed parallel systems with exponentially

distributed failure times. Yan and Mazumdar (1987a) were the first to examine such systems where

they compared several plans using Type I censoring. They examined a system of 𝑛 components

in parallel where the 𝑗𝑡ℎ component had an exponentially distributed time to failure with parameter

𝜆𝑗 and failures are independent. They also made the assumption that each 𝜆𝑗 was “much smaller”

than 1, i.e., that the system was “highly reliable.” This allowed them to approximate the system

reliability expression as

𝑅𝑆 = 1 − ∏ [1 − 𝑒𝑥𝑝(−𝜆𝑗)]
𝑗

≈ 1 − ∏ 𝜆𝑗
𝑗

2.3

This simplification allows the optimization problem to become tractable. Yan and

Mazumdar [1987b] also looked at a parallel system with Type II censoring. Once again it was

 36

assumed that component failure times are independent and exponentially distributed, and that unit

test costs for each component type are different. Rajgopal and Mazumdar [1988] present a slightly

different acceptance criterion for the same design problem, based on the sum of the logarithms of

the test times. This vastly simplifies the process of computing the critical value for the test statistic.

The authors also provided several approximate procedures for this computation. With respect to

other system configurations Mazumdar [1980] studied a serial connection of parallel subsystems.

Units in subsystem 𝑗 are assumed to be identical with independent, exponentially distributed failure

times with parameter 𝜆𝑗. The usual sum-rule is used for deciding on whether the system should

be accepted or not. The results indicate that the optimal test times are independent of the unit test

costs.

Altinel and Ozekici [1997] consider the situation where component failure rates might not

stay fixed over time. For example, it might be that the failure rate is small during the early stages

of deployment but the component degrades with use. The authors formulate the optimization

problem as a semi-infinite linear program and use essentially the same cutting-plane algorithm

presented by Altinel [1994] to solve the problem. They also provide an example of a serial

connection of two subsystems working in three different fixed environments. Altinel and Ozekici

[1998]) extend these ideas and consider a model where component failures are stochastically

dependent.

An interesting extension of system-based component testing is to the area of software

reliability. Cheung [1980] developed a Markovian model for the transfer of control between

various modules in a software system. This allows the system reliability to be expressed as a

polynomial function of the component reliabilities. Poore et al. [1993] suggested following the

standard practice of allocating the system reliability goal among its modules, and as discussed

 37

earlier, this could be erroneous. Rajgopal et al. [2001] suggest a system-based component test

procedure. Only bounds on Type 2 error probability are considered and an optimization problem

is formulated where the objective is to minimize the total number of test instances across all

modules subject to this constraint. The sum rule is used again and the authors present solutions to

several problems in the literature. Finally, Jin and Coit [1999] address the use of component test

plans to minimize the variance of the system reliability estimate for a series-parallel system with

binomial failure data.

2.3 Review Of Literature That Followed The Research Presented In This Document

In this section we present the literature that followed the publication of research work

presented in this document. For the reliability allocation problem, the main thrust of the research

presented in this document is to consider discrete cost-reliability data sets. This is validated and

such discrete data is adopted by several researchers including Jin et al [2003], Nimah [2015], Aneja

et al [2004], Moreb [2007], Negi et al [2021], Yeh et al [2010], Pant et al [2017].

Gupta and Agarwal [2006] have used a genetic search algorithm in their redundancy optimization

problem of multi-state series-parallel power system. They adopted a dynamic penalty function

approach on some difficult to satisfy constraints based on the distance (some degree of violation

of the constraints). This penalty approach is clearly inspired by the dynamic penalty function used

in this research (Chapter 4).

Heydari et al [2014] have addressed optimal allocation of testing resources in reliability

growth in the design of a system. They are clearly inspired by and used the simulated annealing

strategy presented in this research (Chapter 4).

 38

The literature that followed our research is divided into following categories: (i) Similar

formulations but other solution approaches (ii) Different formulations with similar goals and, (iii)

Different formulations with different goals.

 Similar Formulations With Other Solution Approaches

Several researchers have formulated the problem similar to the combinatorial optimization

problem formulations presented in this research. However, the solution procedures adopted vary.

Aneja et al [2004] have adopted dynamic programming approach to address the same problem that

is presented in this research. They extended their solutions to k-out-of-N:G and k-out-of-N:G-

reducible systems with some success. NG and Sancho [2001] have developed a hybrid dynamic

programming-depth first search algorithm with an application to redundancy allocation.

Yeh [2007] used an interactive augmented max-min MCS-RSM method to address a multi-

objective network reliability problem. Here MCS stands for monte carlo simulation which is used

to estimate the network reliability. RSM stands for the response surface methodology. RSM is

used to derive an approximate function for the reliability of the network there by reducing the

errors in the MCS using regression techniques. They addressed maximization of reliability along

with minimization of cost.

There are many heuristic algorithms developed in recent years to address difficult to solve

combinatorial optimization problems such as (1) Grey wolf optimization, (2) Particle Swarm

optimization,

 39

2.3.1.1 Grey Wolf Optimization

Grey wolf optimization simulates the chasing, hunting by grey wolves. In grey wolf

optimization, some initial solution vectors are generated. The best solution is termed as alpha.

Second best solution is termed as beta and the third best solution is termed as delta. The remaining

solutions vectors are termed omega. The omega vectors in each iteration are updated based on their

distance from alpha, beta, delta vectors. Thus in each iteration new vectors are generated by

altering current omega vectors based on the distance from leader vectors alpha, beta and delta.

After generating new vectors, all the vectors are evaluated to select new alpha, beta and delta

vectors. Thus the selection process continues for a set number of iterations.

Kumar et al [2017] adopted Grey Wolf optimizer algorithm to solve a system reliability

optimization problem. They report that this algorithm has given very satisfactory results.

2.3.1.2 Particle Swarm Optimization

Particle Swarm Optimization simulates food searching by a flock of birds. In Particle Swarm

Optimization, each particle has its own location and velocity, which determine the flying direction

and distance, respectively. In this approach, an initial set of solutions, called particles, are

generated along with some randomly generated velocities for each. Each particle is associated with

a position vector and a velocity vector. The position vector and velocity vector of each particle

(solution) is then changed using some acceleration coefficients in each iteration. These

acceleration coefficients are then updated in each iteration as well. By carefully altering

accelerations and velocities in each iteration, search process is guided towards global optimum as

the iterations progress.

Pant et al [2017] have adopted a Particle Swarm Approach to reliability optimization

problem. They report that the results are very encouraging. Yeh et al [2010} have used a particle

 40

swarm approach combined with Monte Carlo simulation to solve reliability optimization problem.

Monte Carlo simulation helps in estimating the reliability of the system while PSO guides the

solution towards optimum. They are able to apply this approach to more complex network

reliability optimization problems. Negi et al [2021] have used a hybrid PSO and GWO-algorithm

to complex system reliability optimization problem. They concluded that such hybrid meta

heuristic performed better than previous heuristic solutions.

There are several other Nature-inspired algorithms that are being used by several researchers.

Some of the other algorithms are (a) Ant colony optimization (b) Flower pollination algorithm (c)

Cuckoo search algorithm. Interested readers may easily search and read literature on these topics.

All these algorithms along with PSO and GWO are all population-based algorithms. In these

algorithms, an initial population is generated and these populations are modified to generate new

populations from iteration to iteration so that best solution is continuously improved through

iterations. The evolutionary algorithm presented in this research is also one such population-based

algorithm which performed satisfactorily. The most common criticism for such heuristic

algorithms is that many parameters are required to guide the search through iterations. Setting of

such parameters is problem specific and there are very few guidelines to set these parameters.

2.3.1.3 Neural Network Approach

Some researchers have adopted artificial neural networks to maximize reliability on some

network problems. Yeh et al [2007] combine artificial neural network with Monte Carlo simulation

to predict reliability of a network. They selected a multilayer feed forward network with non-

polynomial activation functions as it approximated any continuous function in any degree of

accuracy. They used back propagation to train this feed forward neural network. By using the

neural network, they claimed good results.

 41

Kaushik et al [2013] (in two articles of the same year) have demonstrated by using an

adaptive gradient descent neural network approach with high learning rate and variable

convergence rate. They used a back propagation training algorithm for their neural network. The

input provided for the neural network is (1) the minimal cut sets of network problem for which

reliability is desired, (2) link reliabilities for fixed and variable links of the network and, (3) the

network reliability lower and upper bound obtained from minimal cut set added with neural

network lower and upper bound. They have compared their results with simulation-based

analytical methods and showed that their results are an improvement.

 Different Formulations With Similar Goals

Moreb [2007] addressed repairable systems reliability allocation problem. They used

optimum selection based on mean time to failure and mean time to repair. Wang and Li [2015]

have addressed redundancy allocation for reliability design of engineering systems with failure

interactions. They proposed an analytical model that describes the failure rates with failure

interactions. This is followed by a modified analytical hierarchy process to solve redundancy

allocation problem with failure interactions.

Kapur et al [2003] addresses the problem of optimal selection of components for a modular

software system. Such a software is supposedly built by (i) assembling a set of off-the-shelf

components that are available commercially and/or, (ii) In-built independent programs. It is

assumed that more than one alternative is available for each module, they all come with associated

cost. Redundant components are added to enhance fault tolerance. The objective is to maximize

the reliability while subjected to budgetary constraints. In a separate model, they account for

compatibility of alternatives available for different modules.

 42

 Different Formulations With Different Goals

Several researchers have developed different goals with variety of formulations while still

addressing some kind of allocation problems. For example, Anzanello [2009] considered reliability

evaluation of systems composed of non-identical multi-state components. When components have

different magnitudes of failure probabilities, then behavior of reliability of system is difficult to

understand. Anzanello address this problem for series and parallel systems that have non-identical

three-state components. They attempted to allocate non-identical components with budgetary

constraints. Their model comprised of nonlinear programming which is aimed at optimizing

allocation of component under restrictions and solved for series system.

Goel et al [2004] have considered the problem of retrofit design of a multiproduct batch

plant with a consideration of inherent reliability and maintainability of existing as well as new

equipment. In their optimization problem, they sought optimal size, optimal operating mode and

optimal allocation of inherent availability for new equipment during the retrofit stage. The

production capacity is defined by the three decision parameters of (i) batch size, (ii) limiting cycle

time and, (iii) overall plant availability. The availability is an indication of overall reliability of the

plant here. Their formulation of the problem is a mixed integer nonlinear program. They also used

discrete data sets in their formulations.

Keebom et al [2010] have developed decision support models for valuing improvements in

component reliability and maintenance. Providing minimum life cycle cost and maximizing

system availability is the main goal of their research. They considered (i) cost to repair (ii) cost to

hold in inventory in the overall cost function. They used discrete data to formulate their problem.

Salmasnia et al [2017] have also used total cost of the system life cycle in their approach to

address the system design. They have tried to design a multi-state degraded system while

 43

optimizing maintenance, repair costs and mean system availability. Their estimation of

maintenance costs of system is based on Poisson distribution for failures. They used categories

such as minor maintenance and major maintenance. A minor maintenance restores system to

previous better state where as a major maintenance restores system to the ‘as good as new’ state.

They suggested an integrated optimization scheme and an aggregation method such that both

objectives, (i) total cost (ii) mean availability of system, fall into the decision maker’s acceptable

region.

Dinesh Kumar et al [2007] have emphasized on considering total cost of ownership at the

time of design itself as opposed to unit cost alone which is adopted by many system designers.

According to them the total cost must include upstream unit cost as well as downstream operations,

maintenance and support costs. They proposed a non-linear mathematical model that allocates

system-level reliability and minimizes the total cost for a series-parallel system.

Kanagaraj and Jawahar [2009] have used a simulated annealing algorithm for optimal

supplier selection using the reliability-based total cost of ownership model. They also emphasize

the consideration of total cost of ownership which includes procurement, maintenance and

downtime costs. They also included weight limitations as constraints in their optimization problem

which minimizes the total cost while maintaining the required reliability level of the system. The

formulations are nonlinear integer programs and their solution approach is simulated annealing

algorithm which is clearly inspired by the nested simulated annealing algorithm given in this

document (Chapter 4).

The above researchers are pointing in the right direction of considering the overall cost of

the system during its life cycle. However, there is no consistency and firm theoretical approach in

 44

estimating the costs associated. Each derive cost expressions based on different factors. There must

be a consistent approach that should guide the estimation of overall cost.

 45

3.0 Integer Programming Approach

Note: Portions of the work in this chapter were published in Operations Research (Majety,

Dawande and Rajgopal [1999]).

3.1 Introduction And Notation

We formulate the reliability allocation problem as a 0-1 mixed integer programming

problem. In the formulation, each binary variable either represents (a) a specific cost-reliability

datum (when such data are purely discrete), or (b) a prespecified point on the cost-reliability curve

of a component (when such a curve is available). We emphasize that in the latter instance, no

assumption is made regarding the specific function describing the curve.

As will be seen in the following sections, except for simple series and simple parallel

systems, the system reliability is a nonlinear function of these binary variables. Careful, and often

painful, expansions of the expression for system reliability contain terms that are products of

binary variables. While standard procedures could be adopted to linearize these terms, such

product terms increase exponentially as the complexity of the system increases. Thus, this

approach becomes impractical from a computational standpoint for anything other than small

systems. In the following sections, we study the reliability expression for each system

independently and identify linear relaxations of otherwise nonlinear constraints. Three common

system configurations are analyzed: (1) Series-Parallel Systems, (2) Parallel-Series Systems, and

 46

(3) K-out-of-N Systems. For each of these, the structure of the reliability expression is

independently examined and an algorithm for exact solution is presented.

To generalize the formulations, we will consider any system as being comprised of

subsystems that are assembled and configured with each other in a suitable fashion. Each

subsystem in turn, is made up of components that are assembled and configured with each other

in a suitable fashion. For each such component we have a discrete set of options from which we

must make a selection. The following notation will be used:

𝑖 Index for the subsystems comprising the system; 𝑖 ∈ {1,2, … , 𝐿}

𝐿 No. of subsystems

𝑛𝑖 No. of components in subsystem 𝑖

𝑗 Index for component in subsystem 𝑖; 𝑗 ∈ {1,2, … , 𝑛𝑖}

𝐾𝑖𝑗 No. of discrete cost-reliability data elements for component 𝑗 in subsystem 𝑖

𝑝𝑖𝑗𝑘, 𝑐𝑖𝑗𝑘 Reliability and cost associated with option 𝑘 of the cost-reliability data set for

component 𝑗 in subsystem 𝑖; 𝑘 ∈ {1,2, … , 𝐾𝑖𝑗}

𝑥𝑖𝑗𝑘 Binary variable that is 1 if option 𝑘 of cost-reliability data set for component 𝑗

in subsystem 𝑖 is selected, 0 otherwise

𝑟𝑖𝑗 Reliability of component 𝑗 in subsystem 𝑖

𝑓𝑖 Reliability of subsystem 𝑖

𝑅 Reliability of the system

𝑅𝑆 Minimum required system reliability

 47

Note that 𝑝𝑖𝑗𝑘 and 𝑐𝑖𝑗𝑘 are given constants representing (respectively) the reliability and

cost associated with a specific choice for a specific component in a specific subsystem, while

• 𝑟𝑖𝑗 is a function of {𝑥
𝑖𝑗𝑘

}; ∀𝑘 ∈ {1,2, … , 𝐾𝑖𝑗}, i.e., of the specific data point selected

• 𝑓
𝑖
 is a function of {𝑟

𝑖𝑗
}; ∀𝑗 ∈ {1,2, … , 𝑛𝑖}, i.e., reliability of components in

subsystem i

• R is a function of {𝑓
𝑖
}; ∀𝑖 ∈ {1,2, … , 𝐿}, i.e., reliability of the subsystems

Thus, the system reliability is ultimately a function of the binary variables {𝑥𝑖𝑗𝑘}, while 𝑓
𝑖

and 𝑟𝑖𝑗 are intermediate quantities that are used as a matter of notational convenience. Note that

the only true decision variables are the 𝑥𝑖𝑗𝑘.

3.2 Problem Formulations

A formulation of the reliability allocation problem A(G) for an arbitrary system G where the

system cost is to be minimized subject to some minimum requirement on the system reliability, is

as follows:

PROGRAM A(G):

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘

𝐾𝑖𝑗

𝑘=1

𝑛𝑖

𝑗=1

𝐿

𝑖=1

3.1

𝑠. 𝑡. 𝑅𝐺 = 𝑔(𝑟𝑖𝑗) ≥ 𝑅𝑆

3.2

 48

𝑥𝑖𝑗𝑘 ∈ 𝑋

where

 𝑅𝐺 is the reliability of the system

𝑋 = {𝑥𝑖𝑗𝑘| 𝑥𝑖𝑗𝑘 ∈ {0,1} ∀(𝑖, 𝑗, 𝑘); ∑ 𝑥𝑖𝑗𝑘 = 1 ∀

𝐾𝑖𝑗

𝑘=1

(𝑖, 𝑗)}

3.3

𝑟𝑖𝑗 = ∑ 𝑥𝑖𝑗𝑘𝑝𝑖𝑗𝑘 ∀(𝑖, 𝑗);

𝐾𝑖𝑗

𝑘=1

3.4

and 𝑔(.) is a function that depends on the specific system configuration.

Note that in (3.2) the system reliability 𝑅𝐺 is expressed as a function of the reliability of its

components 𝑟𝑖𝑗 via the function 𝑔(𝑟𝑖𝑗). The specific form of this function will depend on how the

components are configured. The set X is defined in (3.3) as all 0-1 vectors that correspond to

exactly one of the 𝐾𝑖𝑗 different options being selected for the jth component of the ith subsystem.

The expression for 𝑟𝑖𝑗 in (3.4) simply assigns to it the value equal to the reliability of this selected

component. Note that the definitions of the 𝑟𝑖𝑗 and the set 𝑋 are identical for any configuration and

are therefore not repeated when the formulations are stated; the reader is requested to refer back

to the above definitions.

In this research we mainly concentrate on formulations for Series-Parallel and Parallel-

Series system configurations. It is important to justify the selection of these. The following

proposition will provide the link between any arbitrary system G and the Series-Parallel (or

Parallel-Series) system derived from minimal cutsets (or minimal pathsets). A minimal cutset is

defined as a minimal set of components such that when they fail together, the system fails.

 49

Similarly, a minimal pathset is defined as a minimal set of components such that when they work

together, the system works. A system may have multiple minimal cutsets as well as multiple

minimal pathsets. Figure 3 gives an example of a particular system along with its minimal pathsets

and minimal cutsets.

Figure 3: An Example of a system and the derived SP, PS systems

Consider a general system G in which all components are statistically independent. The

collection of all minimal cutsets for system G is given by 𝒞 = {𝐶1, … , 𝐶|𝒞|} and the collection of

 50

all minimal pathsets for system G is given by 𝒫 = {𝑃1, … , 𝑃|𝒫|}. Then the system G can be

represented as a series connection of subsystems 𝐶1, … , 𝐶|𝒞| and it can also be represented as a

parallel connection of subsystems 𝑃1, … , 𝑃|𝒫|. Consider a component of G that belongs to

𝐶𝑞1
, … , 𝐶𝑞𝑠

, where {𝑞1, … , 𝑞𝑠} ⊆ {1, … , |𝒞|}. Since the same component appears in multiple cutsets,

all these cutsets are statistically dependent on each other. Now assume that the (same) components

appearing in 𝐶𝑞1
, … , 𝐶𝑞𝑠

 are identical but statistically independent components. Assuming the same

for every component that is repeated in multiple cutsets, the resulting cutsets are statistically

independent. Let these cutsets be 𝐶𝑟1
′ , … , 𝐶|𝒞|

′ . We denote the system GSP as series connection of

𝐶𝑟1
′ , … , 𝐶|𝒞|

′ . For example, consider Figure 3. The system in Figure 3 has the cutsets 𝐶1 = {1,2},

𝐶2= {4,5}, 𝐶3 = {1,3,5} and, 𝐶4 = {2,3,4}. Here component 1 is common to both 𝐶1 and 𝐶3.

Suppose we label the component 1 in 𝐶1 as 1(a) and it is statistically independent of the component

in 𝐶3 which is denoted as 1(b). This is the same as duplicating component 1 for 𝐶3. If we do the

same for all components, then the resulting cutsets form a System GSP as shown in Figure 3.

Similarly, now consider a component of G that belongs to 𝑃𝑞1
, … , 𝑃𝑞𝑠

 where {𝑞1, … , 𝑞𝑠} ⊆

{1, … , |𝒫|. Since the same component appears in multiple pathsets, all these pathsets are

statistically dependent on each other. Assume once again that the (same) components appearing in

𝑃𝑞1
, … , 𝑃𝑞𝑠

 are identical but statistically independent components. Assuming the same for every

component that is repeated in multiple pathsets, the resulting pathsets are statistically independent.

Let these pathsets be 𝑃𝑟1
′ , … , 𝑃|𝒫|

′ . We denote the system GPS as a parallel connection of 𝑃𝑟1
′ , … , 𝑃|𝒫|

′ .

For example, consider Figure 3. The system in Figure 3 has the pathsets 𝑃1 = {1,4}, 𝑃2 = {2,5},

𝑃3= {1,3,5} and, 𝑃4 = {2,3,4}. The component 1 is common to both 𝑃1 and 𝑃3. If we assume that

component 1 in 𝑃1 as 1(a) and that it is statistically independent of component 1 in 𝑃3 which is

 51

denoted as 1(b), then this is the same as duplicating component 1 for 𝑃3. If we do the same for all

components, then resulting pathsets form a System GPS as shown in Figure 3.

Proposition 1: Suppose 𝒁𝑮
∗ , 𝒁𝑺𝑷

∗ , 𝒁𝑷𝑺
∗ are optimal solutions for Program A(G), Program A(GSP)

and Program A(GPS) respectively; refer to Section 3.2 for the description of Program A(.). Then

𝒁𝑺𝑷
∗ ≤ 𝒁𝑮

∗ ≤ 𝒁𝑷𝑺
∗ .

Proof: Programs A(G), A(GSP) and A(GPS) differ only in the reliability constraint which may be

written for each (respectively) as

𝑅𝐺 ≥ 𝑅𝑆 for A(G)

(i)

𝑅𝑆𝑃 ≥ 𝑅𝑆 for A(GSP)

(ii)

𝑅𝑃𝑆 ≥ 𝑅𝑆 for A(GPS)

(iii)

It is a well-known fact that 𝑅𝑃𝑆 ≥ 𝑅𝐺 ≥ 𝑅𝑆𝑃 (Leemis [1995]). Thus, it is clear that (ii) ⟹(i)

and (i) ⟹(iii). Let XPS, XSP and XG represent the set of all feasible solutions of A(G), A(GSP) and

A(GPS) respectively. Then it is clear that XSP ⸦ XG ⸦ XPS. Hence the proof.

The utility of this proposition is that it gives us an outline for a solution approach to any

arbitrary system G. If we solve for GSP, it will provide a feasible solution with an upper bound for

the optimal cost for G. The formulation for G is not guaranteed to be linear but the formulation for

GPS serves as a relaxation (although nonlinear) for G. Any linear relaxation for GPS will be an

automatic linear relaxation for G. Hence it can be seen that the forthcoming Algorithm 1 (in

Section 3.4) will also be useful to solve for arbitrary systems; however, more iterations will be

needed than what would be required to solve for the optimum solution to GPS.

 52

In the foregoing analysis, one should note that for an arbitrary system, the number of minimal

cutsets (or minimal pathsets) can be exponentially large and at times very difficult to obtain;

clearly, this can be a major issue. However, the solution procedures given in this research will be

useful for developing good solutions for any arbitrary systems. In the following sections,

formulations for Series, Parallel, Series-Parallel, Parallel-Series, and K-out-of-N systems are

developed and discussed. In all the models that follow 𝑋 and 𝑟𝑖𝑗 are given by (3) & (4) respectively,

and these expressions are therefore not repeated.

 Simple Series Systems

For a simple Series system each component constitutes a “subsystem”, so that ni = 1 and 𝑗

 {1}; ∀𝑖. The formulation is then as follows:

𝑀𝑖𝑛 ∑ ∑ 𝑐𝑖1𝑘𝑥𝑖1𝑘

𝐾𝑖1

𝑘=1

𝐿

𝑖=1

3.5

𝑠. 𝑡. 𝑅𝐺 = ∏ 𝑟𝑖1

𝐿

𝑖=1

≥ 𝑅𝑆

3.6

𝑥𝑖1𝑘 ∈ 𝑋

Note that the nonlinear system reliability constraint is readily linearized by taking logarithms

and using the equivalence 𝑟𝑖1 ∈ {𝑝𝑖1𝑘} ≡ ln (𝑟
𝑖1

) ∈ {ln (𝑝
𝑖1𝑘

)}. Then ∑ ∑ 𝑥𝑖1𝑘 ln(𝐾𝑖1
𝑘=1

𝐿
𝑖=1 𝑝𝑖1𝑘) ≥

ln(𝑅𝑆) replaces constraint (3.6), and the problem reduces to a 0-1 integer linear programming

problem in the variables {𝑥𝑖1𝑘}.

 53

 Simple Parallel Systems

For a simple Parallel system, we have a single “subsystem”, so that L= 1 and 𝑖 = 1 and we

use 𝑛1 to represent the number of components in parallel. The formulation is then as follows:

𝑀𝑖𝑛 ∑ ∑ 𝑐1𝑗𝑘𝑥1𝑗𝑘
𝐾1𝑗

𝑘=1
𝑛1
𝑗=1

3.7

𝑠. 𝑡. 𝑅𝐺 = 1 − ∏ (1 − 𝑟1𝑗)
𝑛1
𝑗=1 ≥ 𝑅𝑆

3.8

𝑥1𝑗𝑘 ∈ 𝑋

Similar to the series system, the nonlinear system reliability constraint is easily linearized

by taking logarithms and using the equivalence 𝑟1𝑗 ∈ {𝑝1𝑗𝑘} ≡ ln (1 − 𝑟
1𝑗

) ∈ {ln (1 − 𝑝
1𝑗𝑘

)}. The

constraint 𝑅𝐺 = 1 − ∏ (1 − 𝑟
1𝑗

)𝑛1
𝑗=1 ≥ 𝑅𝑆 i.e.; ∏ (1 − 𝑟

1𝑗
)𝑛1

𝑗=1 ≤ 1 − 𝑅𝑆 can thus be replaced by

∑ ∑ 𝑥1𝑗𝑘 ln(
𝐾1𝑗

𝑘=1
𝑛1
𝑗=1 1 − 𝑝1𝑗𝑘) ≤ ln(1 − 𝑅𝑆). Thus, for a simple parallel system the problem is once

again a 0-1 integer linear programming problem in {𝑥1𝑗𝑘}. The next three subsections introduce

more complex systems.

 Series-Parallel (SP) Systems

For a Series-Parallel system, the formulation is as follows:

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1

𝐿
𝑖=1

3.9

 54

[SP]: 𝑠. 𝑡. ∏ 𝑓𝑖
𝐿
𝑖=1 ≥ 𝑅𝑆

3.10

𝑓
𝑖

= 1 − ∏(1 − 𝑟
𝑖𝑗

)

𝑛𝑖

𝑗=1

 ; ∀𝑖

3.11

𝑥𝑖𝑗𝑘 ∈ 𝑋

Note that 𝑓
𝑖
 is the reliability of the ith parallel subsystem. Unlike with simple series or simple

parallel systems, there is no ready transformation whereby this program can be replaced by a linear

equivalent.

 Parallel -Series (PS) Systems

For a Parallel-Series system, the formulation is as follows:

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1

𝐿
𝑖=1

3.12

[PS]: 𝑠. 𝑡. 1 − ∏ (1 − 𝑓𝑖)𝐿
𝑖=1 ≥ 𝑅𝑆

3.13

𝑓
𝑖

= ∏ 𝑟𝑖𝑗

𝑛𝑖

𝑗=1

 ; ∀𝑖

3.14

𝑥𝑖𝑗𝑘 ∈ 𝑋

Note that 𝑓
𝑖
 is the reliability of the ith series subsystem. Once again, unlike with simple series

or simple parallel systems, there is no ready transformation whereby this program can be replaced

by a linear equivalent.

 55

 K-out-of-N Systems

In a K-out-of-N system, the system works if at least K components out of a total of N

components work. See Figure 1 in Chapter I for an example of a 2-out-of-3 system. Note that

unlike in the case of an SP or a PS system, for a K-out-of-N system we do not have distinct

subsystems. Hence, for convenience of notation, all components are assumed to belong to the same

subsystem (i {1} for all components). Now define e as some arbitrary set of K components out

of the N components and define Ee as the event that all of the components in the set e work. Then

P{𝐸𝑒} = ∏ 𝑟1𝑗𝑗∈𝑒 . Since the system works as long as the event Ee occurs and there are a total of (𝑁
𝐾)

different possible events of this kind, the system reliability can be expressed as 𝑅 = ∑ Pr {𝐸𝑒}𝑒 −

∆, where Δ is a positive quantity involving joint probabilities and is a function of {𝑟𝑖𝑗}. The

formulation of the allocation problem for this system is as follows:

𝑀𝑖𝑛 ∑ ∑ 𝑐1𝑗𝑘𝑥1𝑗𝑘
𝐾1𝑗

𝑘=1
𝑁
𝑗=1

3.15

[T]: 𝑠. 𝑡. ∑ (∏ 𝑟1𝑗)𝑗∈𝑒∀𝑒 − ∆ ≥ 𝑅𝑆

3.16

 𝑥1𝑗𝑘 ∈ 𝑋

As with the PS and SP systems, there is no ready way to linearize (3.16).

Much of the discussion that follows is common to all three problem formulations (SP, PS,

T) and we use the notation SP/PS/T to refer to the problem formulations described above. Once

again, it is important to note that linearization of the system reliability constraint in SP/PS/T is not

 56

possible as in the case of simple Series and simple Parallel systems. As such, the above problems

are 0-1 integer nonlinear programming problems which are hard to solve directly; this calls for

other approaches.

3.3 Linear Relaxations To NLIP Formulations

The primary difficulty in solving SP/PS/T stems from the fact that the reliability constraint

is nonlinear. In order to solve SP/PS/T, we introduce three new integer linear programs

SP0/PS0/T0. Each of these will be shown to be a relaxation of the original problem.

 Problem SP0

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1

𝐿
𝑖=1

3.17

[SP0]: 𝑠. 𝑡. ∏ (1 − 𝑓𝑖)
𝐿
𝑖=1 ≤ (1 − 𝑅𝑆

1

𝐿)𝐿

3.18

𝑓
𝑖

≥ 𝑅𝑆 ; ∀𝑖

3.19

 57

𝑓
𝑖

= 1 − ∏ (1 − 𝑟
𝑖𝑗

)𝑛𝑖
𝑗=1 ; ∀𝑖

3.20

𝑥𝑖𝑗𝑘 ∈ 𝑋

Proposition 2: SP0 is a 0-1 linear program.

Proof: First from (3.20),

ln(1 − 𝑓
𝑖
) = ∑ ln (1 − 𝑟

𝑖𝑗
)𝑛𝑖

𝑗=1 = ∑ ∑ (𝑥
𝑖𝑗𝑘

 ln (1 − 𝑝𝑖𝑗𝑘))
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1 ; ∀𝑖

3.21

where the last inequality follows from the equivalence 𝑟𝑖𝑗 ∈ {𝑝𝑖𝑗𝑘} ≡ ln (1 − 𝑟
𝑖𝑗

) ∈ {ln (𝑝
𝑖𝑗𝑘

)}.

Hence constraint (3.19), 𝑓𝑖 ≥ 𝑅𝑆 ⇒ (1 − 𝑓𝑖) ≤ (1 − 𝑅𝑆)

⇒ ln(1 − 𝑓
𝑖
) ≤ ln(1 − 𝑅

𝑆
)

 ⇒ ∑ ∑ (𝑥𝑖𝑗𝑘 ln (1 − 𝑝𝑖𝑗𝑘))
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1 ≤ ln(1 − 𝑅𝑆); ∀𝑖,

where the last clause follows from (3.21). These are all linear constraints in {𝑥
𝑖𝑗𝑘

}.

Looking at constraint (3.18),

 ∏ (1 − 𝑓𝑖)𝐿
𝑖=1 ≤ (1 − 𝑅𝑆

1

𝐿)𝐿 ⇒ ∑ ln(1 − 𝑓𝑖)𝐿
𝑖=1 ≤ 𝐿 ln(1 − 𝑅𝑆

1

𝐿)

⇒ ∑ ∑ ∑ (𝑥
𝑖𝑗𝑘

 ln (1 − 𝑝𝑖𝑗𝑘))
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1

𝐿
𝑖=1 ≤ 𝐿 ln(1 − 𝑅𝑆

1

𝐿),

which follows from (3.21). Once again, this is linear in {𝑥𝑖𝑗𝑘}. Thus, all constraints are linear in

{𝑥𝑖𝑗𝑘}.

Proposition 3: Every feasible solution for SP is feasible in SP0.

 58

Proof: Consider a feasible solution to SP. First note that SP and SP0 differ only in the system

reliability constraints with (3.18) & (3.19) replacing (10), namely ∏ 𝑓𝑖
𝐿
𝑖=1 ≥ 𝑅𝑆. This clearly

implies that 𝑓
𝑖

≥ 𝑅𝑆; ∀𝑖 since 0 ≤ 𝑓𝑖 ≤ 1 ; ∀𝑖 which is (19).

Now the constraint ∏ 𝑓𝑖
𝐿
𝑖=1 ≥ 𝑅𝑆 ⇒ (∏ 𝑓𝑖

𝐿
𝑖=1)1/𝐿 ≥ 𝑅𝑆

1/𝐿

(a)

Since the Arithmetic Mean (AM) of a set of nonnegative numbers is at least as large as their

Geometric Mean (GM), it follows that
∑ 𝑓𝑖

𝐿
𝑖=1

𝐿
≥ (∏ 𝑓

𝑖
𝐿
𝑖=1)

1/𝐿
 . Therefore, from (a)

∑ 𝑓
𝑖

𝐿

𝑖=1

≥ 𝐿 𝑅𝑆

1
𝐿 ⇒ ∑(1 − 𝑓

𝑖
)

𝐿

𝑖=1

≤ 𝐿 (1 − 𝑅𝑆

1
𝐿)

(b)

Once again by the AM-GM inequality 𝐿(∏ (1 − 𝑓𝑖)𝐿
𝑖=1)

1

𝐿 ≤ ∑ (1 − 𝑓𝑖)𝐿
𝑖=1

(c)

From (b) and (c) it follows that ∏ (1 − 𝑓
𝑖)

𝐿
𝑖=1 ≤ (1 − 𝑅𝑆

1

𝐿)𝐿
; which is the constraint (3.19) in

SP0. Hence the result.

 59

Figure 4: Feasible Regions for SP and SP0

The feasible region for SP is thus contained entirely within that of SP0. Figure 4 depicts the

same for an example of two subsystems. In summary, Propositions 2 and 3 thus show that SP0 is

a linear relaxation of SP.

 Problem PS0

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1

𝐿
𝑖=1

3.22

[PS0]: 𝑠. 𝑡. 𝑓𝑖 ≥ 𝑒−𝑀𝑧𝑖(1 − (1 − 𝑅𝑆)
1

𝐿) ; ∀𝑖

3.23

∑ 𝑧𝑖
𝐿
𝑖=1 ≤ 𝐿 − 1

3.24

 60

𝑓
𝑖

= ∏ 𝑟𝑖𝑗

𝑛𝑖

𝑗=1

 ; ∀𝑖

3.25

𝑥𝑖𝑗𝑘 ∈ 𝑋, 𝑧𝑖 ∈ {0,1}; ∀𝑖

Here M is a sufficiently large positive constant. Notice that PS0 is also a 0-1 integer linear

program in the variables {𝑥𝑖𝑗𝑘} and {𝑧𝑖}; this follows from (25), (23) and the equivalence 𝑟𝑖𝑗 ∈

{𝑝𝑖𝑗𝑘} ≡ ln (𝑟
𝑖𝑗

) ∈ {ln (𝑝
𝑖𝑗𝑘

)}, which yields ln(𝑓
𝑖) = ∑ ln (𝑟𝑖𝑗)

𝑛𝑖
𝑗=1 = ∑ ∑ 𝑥𝑖𝑗𝑘ln (𝑝𝑖𝑗𝑘)

𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1 ≥

 −𝑀𝑧𝑖 + ln (1 − (1 − 𝑅𝑆)
1

𝐿), which is linear in variables {𝑥𝑖𝑗𝑘} and {𝑧𝑖}.

Proposition 4: Every feasible solution to PS is feasible in PS0.

Proof: Once again, PS and PS0 differ only in the system reliability constraint, with (3.23) and

(3.24) replacing (3.13). The new constraints in PS0 in place of the reliability constraint of PS are:

𝑓
𝑖

≥ 𝑒−𝑀𝑧𝑖(1 − (1 − 𝑅𝑆)
1

𝐿) ; ∀𝑖 and ∑ 𝑧𝑖
𝐿
𝑖=1 ≤ 𝐿 − 1

Consider a solution to PS where (3.13) holds. Note that from (3.24), 𝑧𝑟 = 0 for some r, so

that the first constraint indicates that 𝑓
𝑟

≥ (1 − (1 − 𝑅𝑆)
1

𝐿) ; ∀𝑟. For the case where 𝑧𝑟 = 1 for

some r, a sufficiently large value of M reduces the first constraint to 𝑓
𝑟

≥ 0 which is always

satisfied. Hence it is sufficient to prove that the original constraint (3.13) in PS, namely 1 −

∏ (1 − 𝑓𝑖)𝐿
𝑖=1 ≥ 𝑅𝑆 implies that 𝑓

𝑖
≥ (1 − (1 − 𝑅𝑆)

1

𝐿) for at least one 𝑖 ∈ {1,2, … , 𝐿}.

To prove this, suppose that this constraint in PS holds and 𝑓
𝑖

< (1 − (1 − 𝑅𝑆)
1

𝐿); ∀𝑖.

 61

Then (1 − 𝑓
𝑖
) > (1 − 𝑅𝑆)

1

𝐿; ∀𝑖 ⇒ ∏ (1 − 𝑓
𝑖
)𝐿

𝑖=1 > (1 − 𝑅𝑆) ⇔ 1 − ∏ (1 − 𝑓
𝑖
)𝐿

𝑖=1 < 𝑅𝑆, which

contradicts (3.13). Hence the proof.

Once again, from Proposition 4, it may be seen that PS0 is a linear relaxation of PS and

contains the feasible region of the latter entirely within its own. The same is shown in Figure 5 for

an example with two subsystems.

Figure 5: Feasible regions for PS and PS0

 Problem T0

𝑀𝑖𝑛 ∑ ∑ 𝑐1𝑗𝑘𝑥1𝑗𝑘

𝐾1𝑗

𝑘=1

𝑁

𝑗=1

3.26

[T0]: 𝑠. 𝑡. ∑ 𝑟1𝑗
𝑁
𝑗=1 ≥ (𝑅𝑆(𝐾!))1/𝐾

3.27

 62

𝑥1𝑗𝑘 ∈ 𝑋

Again, note that T0 is an integer linear program because

 ∑ 𝑟1𝑗
𝑁
𝑗=1 ≥ (𝑅𝑆(𝐾!))

1

𝐾 ⇒ ∑ ∑ 𝑥1𝑗𝑘𝑝1𝑗𝑘

𝐾1𝑗

𝑘=1
𝑁
𝑗=1 ≥ (𝑅𝑆(𝐾!))

1

𝐾

which is clearly linear in {𝑥
1𝑗𝑘

}

Proposition 5: Every feasible solution to T is feasible to T0.

Proof: T and T0 differ only in the system reliability constraint with (3.27) replacing (3.16). First

consider (3.16): ∑ (∏ 𝑟1𝑗)𝑗∈𝑒∀𝑒 − ∆ ≥ 𝑅𝑆 ⇒ ∑ (∏ 𝑟1𝑗𝑗∈𝑒)∀𝑒 ≥ 𝑅𝑆. Now note that the coefficient of

∏ 𝑟1𝑗𝑗∈𝑒 in the expansion of (∑ 𝑟1𝑗
𝑁
𝑗=1)𝐾 is exactly K! and that each such product term appears in

this expansion. Furthermore, the expansion of (∑ 𝑟1𝑗
𝑁
𝑗=1)𝐾 contains additional positive terms, e.g.,

𝑟11
𝐾 , … , 𝑟1𝑁

𝐾 . Thus, it follows that

(∑ 𝑟1𝑗
𝑁
𝑗=1)𝐾 ≥ ∑ (𝐾! (∏ 𝑟1𝑗𝑗∈𝑒))∀𝑒 ⇒ (∑ 𝑟1𝑗

𝑁
𝑗=1)𝐾 ≥ (𝐾!)𝑅𝑆.

The last expression clearly implies (3.27) and thus T0 is once again a linear relaxation of T.

Hence the result.

3.4 An Algorithm To Solve For Optimal Solutions

Before outlining a cutting plane algorithm that can be used to solve SP/PS/T via the

relaxations SP0/PS0/T0 we state the following proposition that holds for all three of these

formulations and forms the basis for the cutting planes introduced by the algorithm.

 63

Proposition 6: Let 𝒙∗ be an optimal solution vector to SP0/PS0/T0. Define 𝐼∗ = {{𝑖, 𝑗, 𝑘}|𝑥𝑖𝑗𝑘
∗ = 1},

with cardinality |𝐼∗|=n1+n2+…nL. If 𝒙∗ is not feasible for SP/PS/T then the inequality

∑ 𝑥𝑖𝑗𝑘∀{𝑖,𝑗,𝑘}∈𝐼∗ ≤ |𝐼∗| − 1 eliminates 𝒙∗ from the feasible set of SP0/PS0/T0 and is valid for

SP/PS/T.

Proof: Clearly, the vector 𝒙∗ does not satisfy the proposed inequality and is therefore eliminated.

Moreover 𝒙∗ is the only point that is eliminated from the feasible set of SP0/PS0/T0 since it is the

only 0-1 point that does not satisfy the inequality. At every other point at least one of the 𝑥𝑖𝑗𝑘 = 1

when 𝑥𝑖𝑗𝑘
∗ = 0. Since the feasible region for SP/PS/T is contained entirely within that of

SP0/PS0/T0, the inequality thus does not eliminate any feasible points for SP/PS/T and hence it is

a valid inequality for the latter.

We now present an iterative algorithm for solving SP/PS/T to optimality.

Algorithm 1

1. Set p = 0 and solve SP0/PS0/T0.

2. If an integer solution vector |𝒙𝒑∗| to SP0/PS0/T0 is feasible to SP/PS/T, stop;

otherwise go to step 3.

3. Define 𝐼𝑝 = {{𝑖, 𝑗, 𝑘}|𝑥𝑖𝑗𝑘
𝑝∗ = 1}.

4. Add the inequality ∑ 𝑥𝑖𝑗𝑘∀{𝑖,𝑗,𝑘}∈𝐼𝑝 ≤ |𝐼𝑝| − 1 to SP0/PS0/T0. Note that the vector

𝒙𝒑∗ is now infeasible in SP0/PS0/T0.

5. Set p = p + 1. Solve SP0/PS0/T0 and return to Step 2.

Proposition 7: Algorithm 1 is finite and finds the optimal solution to SP/PS/T.

Proof: By proposition 3/4/5, the feasible set of SP/PS/T is contained in the feasible set of

SP0/PS0/T0. Hence, if the optimal solution to SP0/PS0/T0 at the pth iteration (𝒙𝒑∗) is feasible for

 64

SP/PS/T, then it is also optimal for SP/PS/T. Otherwise, the constraint added in Step 4 eliminates

exactly one point, namely 𝒙𝒑∗ from the feasible set of SP0/PS0/T0 and nothing from that of

SP/PS/T. Since there are only a finite number of points which are feasible for SP0/PS0/T0 but

infeasible for SP/PS/T and each iteration removes one such point, the algorithm is finite.

3.5 Examples And Observations

Algorithm 1 is illustrated via data sets in Table 1 and Table 2 for the three systems addressed

in the earlier sections. Four reliability levels (0.85, 0.90, 0.95 and 0.99) are selected and four

components considered. Costs for each component were randomly generated corresponding to

these four reliability levels, while ensuring that these costs increased with reliability. The data are

shown in Table 1 and Table 2. Note that an additional cost and reliability datum is added for each

component (𝑘=1), with 𝑐𝑖𝑗1 assumed to be zero and 𝑝𝑖𝑗1 assumed to be equal to a sufficiently small

value ε. This is for the following reason: if 𝑥𝑖𝑗1 = 1 at the optimum for some 𝑖, 𝑗 then this component

j of subsystem 𝑖 can be interpreted as being irrelevant and can therefore be removed from the

system. The integer linear programs treated by the algorithm were solved using CPLEX-4.0

callable library.

Table 1: Reliability data matrix {pijk}

k 1 2 3 4 5

pijk 0.0 0.85 0.90 0.95 0.99

 65

Table 2: Cost data matrix {cijk} for example problems

Component No

i

j

K

1 2 3 4 5

1 1 1 0.00 251.05 339.80 440.45 597.70

2 1 2 0.00 354.00 449.50 572.75 703.30

3 2 1 0.00 248.55 347.90 463.75 609.40

4 2 2 0.00 276.70 370.20 495.15 628.50

Example 1: Series-Parallel system

We choose a Series-Parallel system with two subsystems. Components 1 & 2 are in parallel

for the first subsystem, and Components 3 & 4 are in parallel for the second subsystem. We choose

RS = 0.97. Initially SP0 is formulated and solved. The optimal solution (𝑥115 = 𝑥121 = 𝑥215 =

𝑥222 = 1) yields a value of 0.9677 for the system reliability, which violates the reliability constraint

of SP. Hence, the inequality 𝑥115 + 𝑥121 + 𝑥215 + 𝑥222 ≤ 3 is added as per Proposition 5 and SP0

is reoptimized. The new optimal solution (𝑥115 = 𝑥121 = 𝑥215 = 𝑥221 = 1) yields a system

reliability of 0.9801, which satisfies the reliability constraint of SP and provides the optimum to

SP. The optimal cost is 1207.10

Example 2: Parallel-Series system

We choose a Parallel-Series system with two subsystems. Components 1 & 2 are in series

for the first subsystem, and Components 3 & 4 are in series for the second subsystem. We choose

RS = 0.97. PS0 is formulated and solved. The resulting optimal solution (𝑥111 = 𝑥121 = 𝑥214 =

𝑥223 = 1) yields a system reliability of 0.855, which violates the reliability constraint of PS. Hence,

the inequality 𝑥111 + 𝑥121 + 𝑥214 + 𝑥223 ≤ 3 is added as per Proposition 5 and PS0 is reoptimized.

After nine such iterations, we get an optimal solution (𝑥111 = 𝑥121 = 𝑥215 = 𝑥225 = 1) with a

 66

system reliability of 0.9801 which satisfies the reliability constraint of PS at an optimal cost of

1237.9

Example 3: K-out-of-N system

We consider a 2-out-of-3 system with components 1,3,4 from Table 2. For this system, we

choose RS = 0.95. Initially T0 is formulated and solved. The optimal solution (𝑥112 = 𝑥132 = 𝑥141 =

1) yields a system reliability of 0.7225, which violates the system reliability constraint of T. Hence

the inequality 𝑥112 + 𝑥132 + 𝑥141 ≤ 2 is added and T0 is re-solved. After seven such iterations, we

get the optimal solution (𝑥113 = 𝑥132 = 𝑥142 = 1) that gives a system reliability of 0.952 and

satisfies the reliability constraint of T. The optimal cost is 865.05

3.6 Strength of SP0 and PS0

Algorithm 1 presented earlier (Section 3.4) is guaranteed to solve the reliability allocation

problems addressed. However, when the number of components is large, this algorithm may

require a very large number of iterations. Let us use the term “gap” to denote the portion of the

feasible space of the linear relaxation that does not intersect with the feasible space of the original

nonlinear formulation with the integrality constraints ignored. At each iteration, the algorithm

eliminates one infeasible integer solution from this gap. If the problem size is large, one could

expect a large number of such infeasible integer solutions in the gap. Also, for the problems of SP

and PS, the size of this gap also depends on the value of 𝑅𝑆. For the case of SP consider two

problem instances for the same system with identical cost-reliability data but with 𝑅𝑆
1 and 𝑅𝑆

2 as

reliability target values where 𝑅𝑆
1 > 𝑅𝑆

2 > 0.5. Then the gap (see Figure 6) for the problem instance

with 𝑅𝑆
1 as the specification will be smaller compared to that for the problem instance specified

 67

with 𝑅𝑆
2. On the other hand, for PS, the size of gap for the instance with 𝑅𝑆

1 will be larger compared

to that of the problem instance with 𝑅𝑆
2 (see Figure 6).

Figure 6: The gap between (a) SP0 and SP (b) PS0 & PS

Also note that the feasible solutions are discrete, and the number of such solutions in the gap

(see Figure 6) also depends upon the discrete datasets. A larger gap does not necessarily mean

more infeasible integer solutions in that gap, and a larger gap does not necessarily mean more

iterations in the algorithm. A general comment is that the computational time of the algorithm

depends on the number of infeasible solutions (in the order of increasing reliability) in the gap,

which in turn depends upon two factors: (i) the number of components and number of discrete data

points, and (ii) the target value of 𝑅𝑆.

Consider a twenty-component example (see Table 3 and Table 4 below) for SP and PS

systems. First, we choose a Series-Parallel system with four subsystems. Each subsystem has five

components in parallel. For 𝑅𝑆 = 0.99, the optimal solution to the problem was obtained after 33

iterations of the algorithm described earlier (see Table 5 below and recall that 𝑥𝑖𝑗𝑘 = 1 implies that

the kth choice is made for the jth component in subsystem i). This configuration resulted in an

overall system reliability of 0.990525 at a cost of 1139.05 units. However, when we tried to solve

the same problem with RS = 0.98; we could not do so. This point emphasizes the sensitivity of the

 68

proposed algorithm to the problem parameters and thus the need to develop a solution procedure

which is more robust. This issue can be expected to be even more pronounced as the size of our

problem and the size of the cost-reliability data set (in terms of the number of options available)

increases.

Table 3: Reliability Data Matrix {pijk}

Table 4: Cost data matrix { 𝒄𝒊𝒋𝒌} for example problems

Component No. i j K

1 2 3 4 5

1 1 1 0.00 64.35 280.65 427.35 511.15

2 1 2 0.00 120.75 160.25 419.45 650.25

3 1 3 0.00 88.85 291.75 479.15 731.35

4 1 4 0.00 117.45 238.85 388.75 710.55

5 1 5 0.00 121.55 277.35 379.85 703.85

6 2 1 0.00 104.25 172.15 446.55 515.35

7 2 2 0.00 98.35 195.35 304.35 651.45

8 2 3 0.00 148.15 203.65 498.95 671.15

9 2 4 0.00 115.95 173.95 494.65 734.55

10 2 5 0.00 148.65 159.25 321.15 682.95

11 3 1 0.00 94.45 207.45 430.25 525.35

12 3 2 0.00 138.25 230.75 482.85 623.75

13 3 3 0.00 101.75 189.15 474.15 562.45

14 3 4 0.00 75.15 154.35 451.25 680.35

15 3 5 0.00 50.45 271.85 329.35 568.85

16 4 1 0.00 79.65 190.35 430.75 691.25

17 4 2 0.00 52.15 215.95 394.15 657.55

18 4 3 0.00 129.85 268.65 452.95 622.85

k 1 2 3 4 5

𝑝𝑖𝑗𝑘 0.001 0.85 0.90 0.95 0.99

 69

19 4 4 0.00 123.95 279.25 400.85 745.95

20 4 5 0.00 53.45 239.45 464.55 718.55

Table 5: Optimum configuration for Series-Parallel system for RS = 0.99

Subsystem No. Component Choices

1 𝑥112 = 𝑥123 = 𝑥132 = 𝑥141 = 𝑥151 = 1

2 𝑥212 = 𝑥222 = 𝑥231 = 𝑥242 = 𝑥251 = 1

3 𝑥312 = 𝑥321 = 𝑥332 = 𝑥342 = 𝑥352 = 1

4 𝑥412 = 𝑥422 = 𝑥431 = 𝑥441 = 𝑥452 = 1

Unlike the Series-Parallel system, the problem formulation for the Parallel-Series system

leads to a structure that is much more difficult to solve. While the algorithm described in Section

3.4 works well for relatively small systems, computational times start to increase rapidly as the

problems grow in size. For a problem with the same data set from Table 3 and Table 4, i.e., four

subsystems (all connected in a parallel setting) with five components each connected in series, and

with the same value of RS = 0.99, the algorithm was completely impractical. Hence, in order to

solve problems of practical size (say 20 components); improved solution procedures are necessary.

3.7 Acceleration Schemes For The Algorithm

While we have provided an algorithm to solve the general IP formulations developed in this

chapter, the algorithm is not capable of efficiently solving more large-scale problems that model

general systems. Thus we have the option of either exploring enhancements to the algorithm that

will accelerate its convergence to a solution, or to develop efficient heuristic procedures for larger

 70

systems. We will explore the former option in the following sections of this chapter and then look

at heuristic options in the next chapter.

The computational limitations of the algorithm described in Section 3.4 arise primarily out

of the fact that we only eliminate a single infeasible integer point at each iteration. Hence any

better solution procedure for large systems, should be aimed at either (i) eliminating more integer

points at each iteration from the region within the relaxation that is infeasible for the original

problem, or (ii) eliminating an entire section of this region rather than a single point or a set of

integer points. Ideally, this elimination procedure should involve additional linear inequalities that

can be easily handled. In the following sections, we identify a class of additional disjunctive

systems for SP and PS. For SP, these disjunctive systems can yield additional valid inequalities

which strengthen the linear relaxation by eliminating a region from the gap. For PS, the disjunctive

systems might be used as part of a better branching scheme with a branch-and-bound procedure.

 Additional Disjunctive Inequalities To Strengthen LP Relaxation SP0

Consider the reliability constraint in SP:

∏ 𝑓
𝑖

𝐿
𝑖=1 = ∏ {1 − ∏ (1 − 𝑟

𝑖𝑗
)𝑛𝑖

𝑗=1 }𝐿
𝑖=1 ≥ 𝑅𝑆

Clearly, this nonlinear constraint cannot be readily linearized. However, if we ignore the

integrality of the binary variables, it is possible to define the feasible region of this constraint by

means of a conjunction of finitely many disjunctive systems of linear inequalities. Furthermore,

from the theory of disjunctive programming (Balas [1979]), it is possible to generate all valid

inequalities for each such disjunctive system. We will show that the conjunction of these

disjunctive systems defines the feasible region of the nonlinear reliability constraint of SP

(ignoring integrality). To see how such disjunctive systems are represented, consider an example

 71

with two subsystems. Define 0 < 𝑠1, 𝑠2 < 1 such that 𝑠1𝑠2 = 𝑅𝑆. Now consider the SP system

with reliability requirement 𝑓
1
𝑓

2
≥ 𝑅𝑆 = 𝑠1𝑠2. Then clearly all 𝑓

1
, 𝑓

2
 satisfying this will also

satisfy at least one of 𝑓
1

≥ 𝑠1, 𝑓
2

≥ 𝑠2. That is, the disjunction {(𝑓
1

≥ 𝑠1)V(𝑓
2

≥ 𝑠2)} is valid for

system SP. This may now be generalized as follows:

Let, 0 < 𝑠1, 𝑠2, … , 𝑠𝐿 < 1 such that ∏ 𝑠𝑖
𝐿
𝑖=1 = 𝑅𝑆. Then the disjunctive system

𝐷(𝒔): ⋁ {𝑓𝑖 ≥ 𝑠𝑖}
𝐿
𝑖=1 for any such 𝒔 = [𝑠1, 𝑠2, … , 𝑠𝐿] is valid for SP. Notice that each element {𝑓𝑖 ≥

𝑠𝑖} of such a system of disjunctions can be rewritten as ∑ ln (1 − 𝑟𝑖𝑗𝑘)
𝑛𝑖
𝑗=1 ≤ ln(1 − 𝑠

𝑖
), which in

turn reduces to ∑ ∑ (𝑥
𝑖𝑗𝑘

 ln (1 − 𝑝𝑖𝑗𝑘))
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1 ≤ ln(1 − 𝑠

𝑖
), a linear inequality constraint in 𝒙. The

nature of these disjunctive systems with respect to the reliability constraint can be readily

appreciated when we look at an instance with two subsystems (i.e., with L=2).

Figure 7 : Disjunctive systems for reliability constraint for SP

Referring to Figure 7(i) above, notice that disjunctive system 𝐷(𝒔) = {(𝑓1 ≥ 𝑠1)V(𝑓2 ≥ 𝑠2)}

is a relaxation of the reliability constraint 𝑓
1
𝑓

2
≥ 𝑅𝑆, but it contains additional points that violate

𝑓
1
𝑓

2
≥ 𝑅𝑆, as depicted by the dark shaded area in Figure 7(i). However, consider when a second

disjunctive system 𝐷(𝒔′) = {(𝑓1 ≥ 𝑠1
′)V(𝑓2 ≥ 𝑠2

′)} is added to 𝐷(𝑠). Together, they contain less

 72

infeasible region (that is shaded dark) in Figure 7(ii). Intuitively, it should be clear that if we have

the collection of all such disjunctive systems, then they should have, in conjunction, the same

feasible region as the reliability constraint. The following proposition proves this for the more

general case.

Proposition 8: Let D be the set of all disjunctive systems 𝐷(𝒔) such that 𝑠1, 𝑠2, … , 𝑠𝐿 ∈ (0,1)

and ∏ 𝑠𝑖 = 𝑅𝑆
𝐿
𝑖=1 . Then, the conjunction of the elements of the set D is equivalent to the reliability

constraint of SP.

Proof: Since each disjunctive system 𝐷(𝒔) is valid for SP, the collection D clearly represents a

relaxation of the reliability constraint of SP. Now, to prove that they both are equivalent, it would

suffice for us to show that for any point infeasible in the reliability constraint there exists a

disjunctive system in D that is violated. Suppose {𝑓𝑖 = 𝑏𝑖; 𝑖 = {1,2, … , 𝐿}} is infeasible in the

reliability constraint, so that ∏ 𝑏𝑖
𝐿
𝑖=1 < 𝑅𝑆. Now consider the following set of vectors

{𝒂 ∈ 𝑅𝐿 : ∏ 𝑎𝑖 = 𝑅𝑆; 𝑏𝑖 ≤ 𝑎𝑖 ≤
𝑅𝑆𝑏𝑖

∏ 𝑏𝑘
𝐿
𝑘=1

; ∀𝑖𝐿
𝑖=1 }. Clearly a disjunctive system 𝐷(𝒂) exists in D for

each member 𝒂 in the above set. Consider the subset of these elements 𝐴 = {𝒂 ∈

𝑅𝐿 : ∏ 𝑎𝑖 = 𝑅𝑆; 𝑏𝑖 < 𝑎𝑖 <
𝑅𝑆𝑏𝑖

∏ 𝑏𝑘
𝐿
𝑘=1

; ∀𝑖𝐿
𝑖=1 }. Clearly 𝐴 is a non-empty set and {𝑓𝑖 = 𝑏𝑖; ∀𝑖} violates

all the disjunctive systems {𝐷(𝒂)|𝒂 ∈ 𝐴}. Hence the proof.

 Valid Inequalities For SP From A Disjunctive System

Given a disjunctive system 𝐷(𝒔): ⋁ {𝑓𝑖 ≥ 𝑠𝑖}
𝐿
𝑖=1 which is valid for SP, the valid inequality

as a consequence of 𝐷(𝒔) is derived as follows:

 73

⋁{𝑓𝑖 ≥ 𝑠𝑖}

𝐿

𝑖=1

≡ ⋁ {∑ ∑(𝑥𝑖𝑗𝑘 ln (1 − 𝑝𝑖𝑗𝑘))

𝐾𝑖𝑗

𝑘=1

𝑛𝑖

𝑗=1

≤ ln(1 − 𝑠𝑖); 𝑥𝑖𝑗𝑘 ≥ 0; ∀(𝑖, 𝑗, 𝑘); }

𝐿

𝑖=1

≡ ⋁ {∑ ∑ (𝑥𝑖𝑗𝑘 (
ln (1 − 𝑝𝑖𝑗𝑘)

ln(1 − 𝑠𝑖)
))

𝐾𝑖𝑗

𝑘=1

𝑛𝑖

𝑗=1

≥ 1; 𝑥𝑖𝑗𝑘 ≥ 0; ∀(𝑖, 𝑗, 𝑘); }

𝐿

𝑖=1

Using the theorem of Balas [1972], the valid inequality corresponding to the above system of

disjunctions can be written as:

∑ ∑ ∑ (𝑥𝑖𝑗𝑘 (
ln (1 − 𝑝𝑖𝑗𝑘)

ln(1 − 𝑠
𝑖
)

))

𝐾𝑖𝑗

𝑘=1

𝑛𝑖

𝑗=1

𝐿

𝑖=1

≥ 1

Proposition 9: Let (𝑞1, 𝑞2, … , 𝑞𝐿) be a permutation of the numbers (1,2, …, L) and ∏ 𝑠𝑖
𝐿
𝑖=1 = 𝑅𝑆.

Then for every such permutation the inequality

∑ ∑ ∑ (𝑥𝑖𝑗𝑘 (
ln (1 − 𝑝𝑖𝑗𝑘)

ln(1 − 𝑠
𝑞𝑖

)
))

𝐾𝑖𝑗

𝑘=1

𝑛𝑖

𝑗=1

𝐿

𝑖=1

≥ 1

is valid for SP.

Proof: Notice that ∏ 𝑠𝑖
𝐿
𝑖=1 = ∏ 𝑠𝑞𝑖

𝐿
𝑖=1 = 𝑅𝑆. Thus, the stated inequality is a consequence of

disjunctive system ⋁ {𝑓𝑖 ≥ 𝑠𝑞𝑖
}𝐿

𝑖=1 and it must be valid for SP. Hence the proof.

 Additional Disjunctive Inequalities To Strengthen LP Relaxation PS0

Similar to SP, PS can also be described by a collection of disjunctive systems in place of its

nonlinear reliability constraint. We now show that the conjunction of these disjunctive systems

defines the feasible region of the nonlinear reliability constraint of PS. To develop these

disjunctive systems, consider an example with two subsystems. Define 0 < 𝑠1, 𝑠2 < 1 such that

 74

(1 − 𝑠1)(1 − 𝑠2) = (1 − 𝑅𝑆). Now consider a PS system with reliability requirement (1 − 𝑓1)(1 −

𝑓2) ≤ (1 − 𝑅𝑆) = (1 − 𝑠1)(1 − 𝑠2). Then clearly for all feasible 𝑓
1

, 𝑓
2 we must have at least one

of (1 − 𝑓1) ≤ (1 − 𝑠1) or (1 − 𝑓2) ≤ (1 − 𝑠2). That is, the disjunction {(𝑓
1

≥ 𝑠1) V(𝑓
2

≥ 𝑠2)} is

valid for system PS. This may now be generalized as follows:

Let 0 < 𝑠1, 𝑠2, … , 𝑠𝐿 < 1 such that ∏ (1 − 𝑠𝑖)
𝐿
𝑖=1 = (1 − 𝑅𝑆).Then, the following

disjunctive system 𝐷(𝒔) = ⋁ {𝑓𝑖 ≥ 𝑠𝑖}𝐿
𝑖=1 for any such 𝒔 = [𝑠1, 𝑠2, … , 𝑠𝐿], is valid for PS. Notice

that similar to what we saw in the Section 3.7.1 each element {𝑓𝑖 ≥ 𝑠𝑖} of such a system can be

written as a linear inequality ∑ ∑ (𝑥
𝑖𝑗𝑘

ln 𝑝𝑖𝑗𝑘)
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1 ≥ ln 𝑠𝑖. Once again, the nature of these

disjunctive systems with respect to the reliability constraint can be readily appreciated when we

look at an instance with two subsystems (L=2) similar to the case of SP.

Figure 8: Disjunctive systems for reliability constraint for PS

Referring to Figure 8(i) above, notice that disjunctive system 𝐷(𝒔) = {(𝑓
1

≥ 𝑠1)V(𝑓
2

≥ 𝑠2)}

is a relaxation of reliability constraint (1 − 𝑓
1)(1 − 𝑓

2) ≤ (1 − 𝑅𝑆), but it contains additional

points that are infeasible; this region is indicated by the shaded area (dark) in Figure 8(i). However,

consider when a second disjunctive system 𝐷(𝒔′) = {(𝑓
1

≥ 𝑠1
′)V(𝑓

2
≥ 𝑠2

′)} is added to 𝐷(𝒔).

 75

Together, they contain less infeasible region (shaded dark) in Figure 8(ii). Intuitively, if we have

the collection of all such disjunctive systems, then they should define, in conjunction, the same

feasible region as the reliability constraint. The following proposition proves this for the more

general case.

Proposition: Let D be the set of all disjunctive systems 𝐷(𝑠) such that 𝑠1, 𝑠2, … , 𝑠𝐿 ∈ (0,1) and

∏ (1 − 𝑠𝑖) = (1 − 𝑅𝑆)𝐿
𝑖=1 . Then, the conjunction of the elements of the set D is equivalent to the

reliability constraint of PS.

Proof: Since each disjunctive system 𝐷(𝒔) is valid for PS, the collection D clearly represents a

relaxation of the reliability constraint of PS. Now to prove that they both are equivalent, it would

suffice for us to show that for every infeasible solution to the reliability constraint there exists a

disjunctive system in D which is violated. Suppose {𝑓𝑖 = 𝑏𝑖; ∀𝑖 = {1,2, … , 𝐿}} is an infeasible

solution to the reliability constraint, so that ∏ (1 − 𝑏𝑖)
𝐿
𝑖=1 > (1 − 𝑅𝑆). Now consider the following

set of points {𝒂 ∈ 𝑅𝐿 : ∏ (1 − 𝑎𝑖) = (1 − 𝑅𝑆); 𝑏𝑖 ≤ 𝑎𝑖 ≤ 1 −
(1−𝑅𝑆)(1−𝑏𝑖)

∏ (1−𝑏𝑘)𝐿
𝑘=1

; ∀𝑖𝐿
𝑖=1 }. Clearly a

disjunctive system 𝐷(𝒂) exists in D for each point a in the above set. Consider the subset of these

points 𝐴 = {𝒂 ∈ 𝑅𝐿 : ∏ (1 − 𝑎𝑖) = (1 − 𝑅𝑆); 𝑏𝑖 < 𝑎𝑖 < 1 −
(1−𝑅𝑆)(1−𝑏𝑖)

∏ (1−𝑏𝑘)𝐿
𝑘=1

; ∀𝑖𝐿
𝑖=1 }. Clearly 𝐴 is a

non-empty set and the infeasible solution {𝑓𝑖 = 𝑏𝑖; ∀𝑖} violates all the disjunctive systems

{𝐷(𝒂)|𝒂 ∈ 𝐴}. Hence the proof.

Proposition: Let (𝑞1, 𝑞2, … , 𝑞𝐿) be a permutation of the numbers (1, 2, …, L) and ∏ (1 − 𝑠𝑖)𝐿
𝑖=1 =

(1-Rs). Then for every such permutation the disjunctive system

 ⋁ (∑ ∑ (𝑥𝑖𝑗𝑘 (
ln 𝑝𝑖𝑗𝑘

ln 𝑠𝑞𝑖

))
𝐾𝑖𝑗

𝑘=1
𝑛𝑖
𝑗=1 ≤ 1)𝐿

𝑖=1 is valid for PS.

 76

Proof: Notice that ∏ (1 − 𝑠𝑖)
𝐿
𝑖=1 = ∏ (1 − 𝑠𝑞𝑖

)𝐿
𝑖=1 = (1 − 𝑅𝑆). Thus, the stated disjunction is a

consequence of disjunctive system ⋁ {𝑓𝑖 ≥ 𝑠𝑞𝑖
}𝐿

𝑖=1 and it must be valid for PS. Hence the proof.

It should be noted that a single inequality cannot be readily written for the above disjunctive

system. However, a branch and bound algorithm could be developed by using the above

disjunction as part of a branching strategy.

In conclusion, we have provided an outline of possible acceleration strategies for an

algorithm that seeks to solve the IP formulation exactly. In the next chapter we will explore the

second alternative of developing appropriate heuristics to solve the problem.

 77

4.0 Heuristic Approaches To Solving The Reliability Allocation Problem

Note: The work in this chapter was published in Proceedings of the 5th Annual IE Research

Conference (Majety, Venkatasubramanian and Smith [1996]), and Proceedings of the 6th Annual

IE Research Conference (Majety and Rajgopal [1997])

4.1 Introduction

Metaheuristics such as simulated annealing, tabu search, and evolutionary algorithms have

been commonly adopted by researchers to solve many difficult problems, especially in

combinatorial optimization. In this chapter we develop novel variants of two popular

metaheuristic approaches to solve our reliability allocation problem.

Once again, we adopt 0-1 integer programming formulations where each binary variable

corresponds to either a data point on the cost-reliability curve of a component, or a discrete option

that is available to us, and our objective is to find the minimum-cost system that meets a minimum

prespecified system level reliability. In general, the system reliability is a nonlinear function of

all these variables. However, the primary goal of the methods described in this chapter is to find

good solutions to the problem in a reasonable amount of time, even if they are not guaranteed to

be optimal. It can be easily shown that the problem is NP hard by considering a particular case of

SP system, viz. a series system. Hence, heuristic approaches make useful contributions to problems

of this nature.

 78

4.2 A Nested Simulated Annealing Algorithm

The first metaheuristic we develop is a variation of simulated annealing that we term “nested”

simulated annealing (NSA). While we describe our algorithm in the context of a series-parallel

(SP) system, the approach is readily generalized to other configurations. In traditional simulated

annealing (SA), one starts with a feasible solution and identifies a feasible neighboring solution.

If this new solution improves the objective function, it is immediately accepted, and a move is

made to that solution. If not, the new solution is accepted (even though we are moving to an

inferior solution) probabilistically based on some “annealing schedule.” The latter term arises

from an analogy with the annealing process for metals where the metal is heated to a certain

temperature and then it is reduced gradually to a lower temperature. This temperature reduction

may take place as a geometric progression, arithmetic progression or in some other appropriate

way. Similarly in simulated annealing algorithms, for inferior solutions that are being considered

for acceptance a probability of acceptance is defined based on the objective function value, and

this probability is reduced gradually (like the temperature) in some systematic fashion as the

algorithm progresses.

The efficiency of an SA algorithm depends on the definition of the feasible neighborhood of

the current solution (Eglese, 1990). Unfortunately, in the context of our problem, it is not so easy

to define a feasible neighborhood solution because the system reliability has to be explicitly

computed for any point in order to verify whether it is feasible or not. We get around this by

employing a novel approach where rather than restricting ourselves to only feasible solutions like

a traditional SA algorithm, we also consider moves to infeasible solutions. For this we use two

SA procedures nested within the same algorithm. The first SA focuses only on feasibility and

 79

applies the principle of probabilistic acceptance with feasibility as the criterion, i.e., it is designed

to screen solutions generated and allows us to probabilistically further consider any solution,

whether feasible or infeasible. The second SA then focuses on cost and allows us to

probabilistically accept a candidate solution advanced by the first SA, even if its cost is more than

that of the previous solution. As the algorithm proceeds, it becomes increasingly difficult to

accept infeasible solutions within the first SA, and it also becomes increasingly difficult to accept

a solution that is not an improvement within the second SA; this is similar to a generic simulated

annealing method.

The approach we use is based on the idea that when the problem has a difficult-to-satisfy

constraint set, then rather than defining a feasible neighborhood, we could consider adding an

exterior penalty function to the objective function. The notion of a penalty function is similar to

what is used in the typical class of such methods for nonlinear optimization. However, we use a

Nested SA algorithm instead of a penalty function. In principle, is quite similar to the penalty

function approach. In a regular penalty function method, a penalty is applied by increasing the

value of the objective function (assuming minimization) based on the degree of infeasibility. The

rate of this penalty is increased as iterations progress so that algorithm will not move towards

infeasible solutions because they become more expensive due to the penalty. In our approach, we

have two nested SA algorithms. There is an acceptance probability in each SA. This probability

is progressively reduced to make acceptance of infeasible solutions in the outer SA and acceptance

of non-improving feasible solutions in the inner SA harder as the algorithm progresses through

iterations. It is also worth noting that in our experiments with the Nested SA, we always obtained

feasible final solutions (which is typically not the case with exterior penalty function methods

where we typically have a final “refinement” step to obtain the optimum).

 80

Before describing our nested SA algorithm, we define the “cooling” parameters 0 < 𝛼𝑅 , 𝛼𝑍 <

1 and the “temperature” parameters 𝑇𝑅, 𝑇𝑍. The temperature parameter plays the role of defining

a probability with which a move is accepted while the cooling parameter plays the role of altering

the probability from one iteration to next iteration. Eventually the algorithm needs to stop with a

well-defined stopping criterion. Examples of stopping criteria could be a fixed total number of

iterations, if the improvement in the objective function in successive iterations falls below some

threshold value, or a combination of both; other appropriate criteria might also be possible. The

algorithm may now be specified is as follows:

STEP 0: Generate an initial feasible solution 𝑋 with reliability 𝑅 and cost 𝑍. Define initial

values for TR, TZ, and define an appropriate stopping criterion;

Set accept = no

STEP 1: If stopping criterion is met, STOP.

STEP 2: Generate a neighboring solution 𝑋′ of 𝑋 with reliability 𝑅′ and cost 𝑍′

i. If 𝑅′ ≥ 𝑅𝑆, then set accept = yes. If 𝑅′< 𝑅𝑆, then set accept = yes with probability

𝑒−(𝑅𝑆−𝑅′)/𝑇𝑅;

ii. If accept = yes and 𝑍′ ≤ 𝑍, then set 𝑋 = 𝑋′. If accept = yes and 𝑍′ > 𝑍 , then set 𝑋 =

𝑋′ with probability 𝑒−(𝑍′− 𝑍)/𝑇𝑍;

iii. Set 𝑇𝑅 = 𝛼𝑅 𝑇𝑅; 𝑇𝑍 = 𝛼𝑍 𝑇𝑍.

STEP 3: Set accept = no. Return to STEP 1.

Notice that the values of 𝑇𝑅, 𝑇𝑍 values are reduced through the iterations since 0< 𝛼𝑅, 𝛼𝑍 <

1. Due to this, the acceptance probabilities are also correspondingly reduced. This is analogous to

temperature reduction in an annealing process. The probability of acceptance for an infeasible

 81

neighboring solution is equal to 𝑝1 × 𝑝2, where 𝑝1 = 𝑒−(𝑅𝑆−𝑅′)/𝑇𝑅 and either 𝑝2 = 𝑒−(𝑍′− 𝑍)/𝑇𝑍 or

𝑝2 = 1. In other words, the acceptance of a candidate solution is guaranteed if the solution is

feasible and of lower cost than the previous solution. However, when one or both of these

conditions are not true, we accept the solution probabilistically depending on the degree of

infeasibility, the difference in cost, and the point on the cooling schedule at which the search

currently resides. Probabilistic acceptance for violation of either condition becomes harder as the

search proceeds.

 Initial Feasible Solution

While an initial feasible solution might be generated in several different ways, we adopt the

following approach:

i. Assume all 𝑓𝑖 are equal for all subsystems i; compute 𝑓𝑖 = (𝑅𝑆)1/𝐿.

ii. Assume all 𝑟𝑖𝑗 are equal for all components j in each subsystem i; compute 𝑟𝑖𝑗 = 𝑓𝑖
1/𝑛𝑖.

iii. Assign component j in subsystem i the value of 𝑝𝑖𝑗𝑘 that satisfies 𝑝𝑖𝑗(𝑘−1) < 𝑟𝑖𝑗 < 𝑝𝑖𝑗𝑘 , and

assign it the corresponding cost 𝑐𝑖𝑗𝑘. If such a 𝑘 does not exist, then a 𝑝𝑖𝑗𝑘 value can be

inserted into the data at an artificially high cost 𝑐𝑖𝑗𝑘 so that this data point will never appear

in the optimal solution.

This is a simple approach that guarantees that the resulting solution is feasible because the

system with reliabilities of {𝑟𝑖𝑗} is already feasible (with 𝑅 = 𝑅𝑆) and each chosen component

reliability is greater than or equal to 𝑟𝑖𝑗 thus 𝑅 ≥ 𝑅𝑆.

 82

 Neighboring Solution

It is difficult to arrive at a precise and comprehensive definition of a neighborhood for our

problem; this can often be the case with some combinatorial problems. One approach might be to

first fix the reliability of each subsystem at some value and then compute the individual component

reliabilities. Another approach might be to arbitrarily pick some component (or components) and

randomly increase or decrease the current reliability value to the next higher or next lower value

in their reliability sets. Other options are also possible. While the neighborhood definition is

complicated in and of itself, assuring feasibility (i.e., meeting the minimum system reliability

level) for the neighboring solution further adds to this complexity. The feasibility of a neighboring

solution can be ensured but not without considerable computational effort, which could be

cumbersome. Furthermore, restricting the search to just the feasible region of a constrained

problem also often results in inefficient convergence and suboptimal final solutions. Therefore,

we are willing to accept an infeasible neighboring solution, but with some probability as described

in the algorithm. The Nested SA process makes the acceptance of such infeasible solutions more

unlikely as the search progresses.

We define our “neighborhood” as follows:

i. Define 𝑘𝑖𝑛𝑑𝑒𝑥(𝑖, 𝑗) = {𝑘 ∈ (1,2, … , 𝐾𝑖𝑗|𝑟𝑖𝑗 = 𝑝𝑖𝑗𝑘} Note that the {𝑝𝑖𝑗𝑘} are assumed to be

ordered by k.

ii. Randomly select some (not necessarily the same number each time) components in the

subsystem defined by (𝑖, 𝑗) and randomly increase or decrease 𝑘𝑖𝑛𝑑𝑒𝑥(𝑖, 𝑗) by 1 for these

components only. If 𝑘𝑖𝑛𝑑𝑒𝑥(𝑖, 𝑗) corresponds to the lowest (highest) value for a selected

component then we only increase (decrease) its value.

 83

The neighboring solution obtained in this fashion might be infeasible. However, it is easily seen

that every solution can be reached from a given solution (feasible or infeasible) eventually with

such selection of a neighboring solution. Hence the convergence to feasible solution is guaranteed

in the outer SA eventually, while convergence to better solutions is guaranteed in the inner SA.

 Examples And Results

We illustrate the algorithm with two example problems. We adopted the standard geometric

cooling schedule for both the outer SA that considers feasibility and the inner SA that considers

the objective. We use 𝛼𝑅 = 𝛼𝑍 = 0.99 for both examples, 𝑇𝑅 = 1000 for Example 1, 𝑇𝑅 = 5,000 for

Example 2; and 𝑇𝑍 = 10,000 for Example 1, 𝑇𝑍 = 25,000 for Example 2. The stopping criterion

used was the total number of solutions considered, which was set to 20,000 for Example 1 and

30,000 for Example 2. The results are summarized below.

 Example 1

We chose an SP system with nine components for Example 1. As a matter of convenience,

we used the same reliability level options for all components in our data set. For each component,

we assigned randomly generated cost values for each reliability level in the data set as shown in

Table 6. We ensured an increasing trend of cost w.r.t. reliability while assigning costs. However,

we did not assume any kind of a functional relationship (and in particular, any convex functional

relationship); in fact, this is guaranteed due to our random generation of costs. We also account

for the situation where a component might be irrelevant to the system reliability. To address this

situation, for option 𝑘 = 1, we specify a very low reliability (0.001) and zero cost. If a component

 84

𝑗 in subsystem 𝑖 is assigned the option 𝑘 = 1 in the optimal solution, then that component is clearly

redundant and hence can be removed from the system, that is, it is a ‘blank.’ The components are

then randomly assigned to three subsystems of an SP system, with 𝐿𝑖 equal to 3, 4 and 2

components for subsystems 𝑖 = 1,2, and 3, respectively. The solution search space thus has a total

of 129 candidate points.

From our experience in experimenting with the Nested SA, the best final solutions are

obtained when the algorithm visits mostly infeasible solutions. We speculate that this might be

because there are many more infeasible solutions in the search space than feasible ones and the

optimal solution is likely “surrounded” by many of these infeasible solutions; thus allowing a

wider search is better. For example, (see Table 8) for the best solution observed across 30

independent runs; the ratio of infeasible to feasible solutions (IFR) is 6.52. When we restricted

this ratio to values under 1.5 in the algorithm, the best feasible solution cost from these runs was

quite suboptimal (above 600 as compared to the optimum cost of 500.60). The Nested SA was run

with no restrictions on IFR, and statistics are presented in Table 8 for 30 different independent

runs. The best solution across all runs is within 6.65% of the global optimum solution (which we

obtained by enumeration for the purpose of comparison). The search space considered by the SA

(20,000 solutions) was a minuscule fraction of the total of 129 (0.0004% approx.).

 Example 2

We chose Example 2 to demonstrate that the model suggested in this research addresses the

redundancy issue as well. For this purpose, we added two more components to the above system

in subsystem 1 (see Table 7), thus enlarging the search space to 1211 points, but without altering

the optimal solution (with a value of 500.60). However, for these additional components (j=4, 5

 85

for i=1) we intentionally generated higher costs for the option available at each “real” reliability

levels (i.e., other than for k=1, which has a cost of 0). As in Example 1, the best solutions are

obtained when the algorithm visited mostly infeasible solutions. For the best solution observed

across 30 independent runs of the algorithm, the ratio of infeasible to feasible (IFR) solutions is

10.11. The Nested SA was run again with no restrictions, and statistics are presented in Table 8

for 30 different independent runs. This time the best solution across all runs is within 7.82% of

global solution with the SA again considering only a tiny fraction of the search space (30,000

points of 1211). It is interesting to note that in all the 30 different runs; the best solution always

selected k=1 (cost of zero and reliability of almost zero) for the two additional components with

only high-cost options available. Thus, the algorithm clearly indicated that these components are

not necessary to the system and are ‘blanks.’ Or in other words, the optimal configuration of the

system does not need these two components. This demonstrates that the problem formulation

developed in this work also clearly address redundancy design.

Table 6: Cost and reliability data for Example 1 { cijk }

i j

RELIABILITY VALUES

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12

0.001 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99

1 1 0 4.05 16.3 40.4 67.4 95.7 135.8 186.05 251.1 339.8 440.5 597.7

1 2 0 3.65 17.8 36 59.4 78.5 169.6 224.45 303.8 392 505.3 654.5

1 3 0 9.1 22.4 44.5 71.6 105.1 148.9 198.1 276.8 374.3 496.8 633.7

2 1 0 4.35 14.1 29.2 50.5 78.2 117.6 170.9 248.6 347.9 463.8 609.4

2 2 0 3.15 10.8 32 52 183.3 222.1 278.8 350.3 434.2 539.3 699.2

2 3 0 7.8 22.9 43.9 70.8 101.5 143.7 202.05 276.7 370.2 495.2 628.5

2 4 0 8.75 18.8 42.8 72.1 106.3 151.2 210.95 290 370 482.8 636.6

3 1 0 5.45 16.5 36.5 60.7 191.2 230.8 282 354 449.5 572.8 703.3

3 2 0 2.05 7.67 23.9 102 128.8 164.4 207 271.3 362.8 481 623.4

 86

Table 7: Cost data for additional components in Example 2: { cijk }

 RELIABILITY VALUES

i j
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12

0.001 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99

1 4 0 231.7 272.8 456 689.4 821 989.6 1354.5 2043.8 3492 4605 6754.5

1 5 0 219.1 232.4 364.5 591.6 735 978.9 1148.1 1676.8 2474.3 3697 5733.7

Table 8: Summary of results for Examples 1 and 2 with nested SA over 30 runs of each

 Max.

Cost

Mean

Cost

Min.

Cost

No. of

Iterations

Feasible

Solutions
Best Configuration

Best

Reliability

CPU time

(sec/run)

Ex 1 662.1 572.7 534 20000 2660 4-5-4 2-5-3-4 5-8 0.85027 2.54

Ex 2 726.2 599.5 541 30000 2699 7-4-3-1-1 2-4-3-3 5-8 0.85092 5.70

Optimal (via enumeration) 501 - - 3-6-5 4-3-2-3 5-8 0.85017 ~6 hrs.

4.3 An Evolutionary Algorithm

The second heuristic approach we develop is an evolutionary algorithm. A common

approach to dealing with problems that are explicitly constrained is the use of traditional penalty

functions which penalize infeasible solutions found by the algorithm. Here, we generalize this

penalty concept by also penalizing solutions that are not necessarily infeasible, but clearly

undesirable. The rationale behind this approach is that for many problems, the general vicinity of

the optimal solution is known. For example, in any optimization problem with a linear objective

function, the optimal solution is known to be near the boundary of feasible region, and thus feasible

solutions far from the boundary may be classified as undesirable. Here, we develop an evolutionary

algorithm and demonstrate that penalizing undesirable feasible solutions (in addition to infeasible

solutions) yields much better results and accelerated convergence.

Consider a penalty function approach to the following general optimization problem:

 87

min 𝑧(𝒙)

 s.t. 𝒙 ∈ 𝑋(𝐸), 𝒙 ∈ 𝑋(𝐷)

where, 𝑋(𝐸) defines a part of the feasible region determined by constraints that are “easy” while

𝑋(𝐷) defines the region determined by the “hard” constraints. Penalizing the hard constraints, the

modified problem is:

min 𝑧(𝒙) + 𝜑[𝒙, 𝑑(𝐷)]

 s.t. 𝒙 ∈ 𝑋(𝐸)

where 𝑑(𝐷) is a measure of the degree of infeasibility for the constraint set defining 𝑋(𝐷), and

𝜑[𝒙, 𝑑(𝐷)] is a penalty function appended to the objective function. For example, the Lagrangian

relaxation approach uses Lagrange multipliers to bring the difficult constraints into the objective

function. In heuristic optimization methods most researchers (e.g., Coit et al. [1996], Bean and

Hadj-Alouane [1992]) commonly adopt a penalty function based on the degree of infeasibility so

as to discourage infeasible solutions from being selected. While the use of such a penalty drives

solutions to feasibility it does not necessarily guarantee speedy convergence to the neighborhood

of the optimum. We now define a different penalty function.

 Penalty Function

We first introduce some notation: suppose N is some feasible neighborhood of the optimum

solution. Then we term any point outside N as an “undesirable” solution. It should be noted that

an undesirable solution might be feasible or infeasible. Clearly, the complement of N is a union of

two disjoint regions (i) I: the infeasible region, and (ii) F\N: the feasible region excluding N. The

modified problem may then be stated as:

 88

min 𝑧(𝒙) + 𝜑[𝒙 ∈ 𝐼, 𝑑(𝐷)] + 𝜑[𝒙 ∈ 𝐹\𝑁, 𝑑(𝑁)]

 s.t.

 𝒙 ∈ 𝑋(𝐸)

where, 𝜑[𝒙 ∈ 𝐼, 𝑑(𝐷)] is the usual penalty function applied to infeasible solutions, while 𝑑(𝑁) is

a metric to measure the distance of the solution from the boundary of the feasible region (𝑑(𝑁) =0

if 𝒙 ∈ 𝑁) and 𝜑[𝒙 ∈ 𝐹\𝑁, 𝑑(𝑁)] is a penalty function for feasible solutions that are not in N.

Our approach is predicated on the fact that for many difficult combinatorial problems the

neighborhood of the optimal solution can be predicted. As an example, for an integer program with

a linear objective, it is known that the optimum solution is in the vicinity of the boundary of the

feasible region. For such problems the neighborhood N can be defined as all feasible solution

within some distance of the boundary. The distance parameter is usually problem specific. It

should be big enough so that the neighborhood defined by it contains the optimal solution; yet

small enough that the penalty is applied to most feasible solutions that are undesirable. The

selection of such a parameter can in general be quite difficult in most generic problem instances.

We therefore suggest a dynamic procedure. In the initial stages, the distance parameter is large so

that most feasible solutions escape this penalty and look more attractive than infeasible solutions.

As the algorithm continues, the distance parameter is progressively reduced so that undesirable

feasible solutions become increasingly unattractive, and the search focuses on finding the

optimum. Our procedure is now described in detail and illustrated.

 Evolution Strategy

Evolution strategy (ES) refers to an algorithm that tries to simulate the evolution process. A

detailed description of the method may be found in Back et al. [1991]. Briefly, in the simulation

 89

of an evolution process one tries to find links between the characteristics of an offspring and its

parents. The usual procedure adopted is as follows: the problem is encoded in terms of an n-

dimensional vector x, and the objective is to find a vector that a minimizes a fitness function f(x).

Initially, a population of parent vectors {x} is generated randomly. Several offspring vectors {o}

are generated from one, two or more parents by means of recombination and/or mutation strategies.

These strategies constitute the heart of any evolutionary process, where recombination refers to

the specific process used to generate offspring from the parent vectors and mutation refers to

specific process used to produce random small changes in one or more characteristics of the

offspring vectors. The specifics of these strategies could vary depending on the particular

algorithm in use and particular application in question.

After the generation of the offspring vectors a selection process is conducted based on fitness

function values. Depending on the algorithm in use, this selection could either be restricted to just

the offspring set, or it could be from a combined set of offspring and parent vectors. The selected

vectors are then given parent status and the procedure is repeated until a desired degree of

convergence is achieved.

In this work, we adapt a (,)-ES (Back et al. [1991]). In this variant an initial population of

 vectors is generated, and from these parents, an offspring population of vectors is created by

means of recombination and/or mutation. Then from the offspring population the best vectors

are selected as the parent population for the next generation. Based upon extensive preliminary

experimentation, a value of 7 was adopted in this work for the ratio /. The following sections

describe in more detail the steps adopted for the reliability optimization problems at hand.

 90

 Encoding

As in the previous section we define 𝑘𝑖𝑛𝑑𝑒𝑥(𝑖, 𝑗) = {𝑘 ∈ (1,2, … , 𝐾𝑖𝑗|𝑟𝑖𝑗 = 𝑝𝑖𝑗𝑘}. By defining

n0 =0, the vector x is then defined such that the entries (ni + 1) to (ni + ni+1) correspond to

𝑘𝑖𝑛𝑑𝑒𝑥(𝑖 + 1,1) to 𝑘𝑖𝑛𝑑𝑒𝑥(𝑖 + 1, 𝑛𝑖 + 1). For example, consider a system with three subsystems; the

first subsystem has 𝑛1 = 3 components, the second subsystem has 𝑛2= 4 components, and the third

subsystem has 𝑛3= 2 components. Then the encoding {2,3,4, 4,5,6,7, 5,8} indicates that the three

components in subsystem 1 take on the reliability values 𝑝112, 𝑝123, 𝑝134, respectively, the four

components in subsystem 2 take on the reliability values 𝑝214, 𝑝225, 𝑝236, 𝑝247, respectively and the

two components in subsystem 3 take on the reliability values 𝑝315, 𝑝328, respectively. Each of the

components with a reliability of 𝑝𝑖𝑗𝑘 assumes a cost of 𝑐𝑖𝑗𝑘. Given the values for 𝑐𝑖𝑗𝑘 and 𝑝𝑖𝑗𝑘, the

cost and the reliability of the system may be obtained for the encoding.

 Recombination

Back et al. [1991] describe two different recombination techniques that may be adopted for

a problem: (i) discrete recombination and (ii) global recombination. In discrete recombination two

parents are selected randomly and the offspring is created from these two parents. In global

recombination two parents are selected randomly but with replacement to create each offspring

vector. Within each recombination (discrete or global) the creation of an entry in the offspring

vector is done in two ways: (i) discrete selection where the offspring entry is selected randomly

from one of the two parent entries, and (ii) intermediate selection where the offspring entry is

selected randomly as an intermediate value between the two parent entries. Thus, we have four

 91

recombination procedures in all. In this work we consider only global intermediate recombination

(GI) since it appeared to consistently produce the best results based on numerical experimentation.

 Mutation

Mutation is induced by means of a vector of standard deviations (initially randomly

generated). Each of the entries in the mutated offspring 𝒐 follows a normal distribution with mean

equal to the value of the offspring entry before mutation (=𝑜𝑖), and standard deviation equal to 𝜎𝑜𝑖
.

The offspring vector obtained from recombination may undergo mutation as defined by the

following equation:

𝑜𝑖 ≡ 𝑜𝑖 + 𝑖𝑛𝑡 (𝜎𝑜𝑖
∗ 𝑁(0,1)) ; ∀𝑖

To understand the process, say that a mutation leads to an improved solution. Such a

mutation is termed “successful.” We adopt the 1/5-success rule as a method for controlling the

mutations (Back et al. [1991]): if the ratio of successful mutations to all mutations is greater than

1/5 then the standard deviations of all entries in the offspring vector are increased by a factor 1/b,

while if the ratio is less than 1/5 then all standard deviations are decreased by a factor of b. We use

a value of b=0.82 based on trial and error. This ratio is measured for every 10n trials and then a

multiplicative factor of 𝑁(0,1) is applied, where N (0,1) is a standard normal variable.

Note that when the standard deviation is increased, the resulting offspring entry tends to be

farther away from the original entry. If the successful mutation ratio is higher (more than 1/5), then

mutation is encouraged with a mutated offspring entry that is relatively far away from the original

value before mutation. On the other hand, if the successful mutation ratio is smaller, then mutation

 92

is not encouraged because of the smaller standard deviation, and the resulting mutated offspring is

likelier to resemble the original offspring more closely.

 Structure Of Penalty For The Reliability Allocation Problem

We adopt a simple distance-based penalty function for infeasible solutions. This is defined

as 𝜑[𝒙 ∈ 𝐼, 𝑑(𝐷)] = 𝐶(𝑅𝑆 − 𝑅(𝒙)); where 𝑅(𝒙) is the reliability of the system corresponding to

𝒙, and 𝐶 is a constant whose value is suitably selected for a given problem. In addition to the

penalty for infeasible solutions we also impose an additional dynamic penalty for undesirable

feasible solutions. This is defined as 𝜑[𝒙 ∈ 𝐹\𝑁, 𝑑(𝑁)] = 𝐶′(𝑅(𝒙) − 𝑅𝑆 − ∆). Here ∆ is defined

as the distance of the acceptance zone from the boundary of the feasible region into its interior (see

Figure 9).

Figure 9: Penalty function

In general, the cost of a system increases as the desired system reliability increases. It is thus

intuitively clear that the optimal solution will try to meet the reliability requirement exactly, or

more likely (because of the discrete nature of the choices), exceed it by a minimal amount. Initially

 93

a large value is assigned to ∆ and its value is progressively reduced as the algorithm proceeds. We

adopt a geometric reduction of ∆ with a coefficient of > 0.9. It is important to assign an

appropriate value for so that the distance between the boundary of the feasible region and the

feasible penalty region decreases neither too quickly nor too slowly. The effect of this dynamic

penalty on the undesired feasible region is now studied and the results contrasted with a traditional

penalty function approach where none of the feasible solutions are penalized.

 Examples And Results

Example-1: SP system:

We choose a system with nine components and three subsystems with 3, 4 and 2 components

in each of these, respectively (Figure 10(a)).

Figure 10: (a) SP system (b) PS system

 94

Table 9: Reliability – Cost data for examples

i

j

Reliability Values

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12

0.001 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99

1 1 0 4.05 16.30 40.40 67.35 95.70 135.75 186.05 251.05 339.80 440.45 597.70

1 2 0 3.65 17.75 36.00 59.35 78.50 169.60 224.45 303.80 391.95 505.30 654.45

1 3 0 9.10 22.35 44.45 71.55 105.1 148.85 198.10 276.75 374.25 496.80 633.65

2 1 0 4.35 14.10 29.15 50.45 78.20 117.55 170.90 248.55 347.90 463.75 609.40

2 2 0 3.15 10.80 31.95 52.00 183.25 222.10 278.80 350.30 434.15 539.30 699.15

2 3 0 7.80 22.85 43.85 70.80 101.45 143.70 202.05 276.70 370.20 495.15 628.50

2 4 0 8.75 18.80 42.80 72.05 106.25 151.20 210.95 289.95 370.00 482.75 636.60

3 1 0 5.45 16.45 36.45 60.70 191.20 230.75 282.00 354.00 449.50 572.75 703.30

3 2 0 2.05 7.67 23.87 101.90 128.81 164.35 207.00 271.25 362.80 480.95 623.40

Global Optimal Assignment for SP-system Example-1 = 3-6-5—4-3-2-3—5-8 with R = 0.8502 and Cost = 500.60

Global Optimal Assignment for PS-system Example-2 = 3-3-3—2-2-2-2—10-10 with R = 0.8515 and Cost = 892.75

For ease of exposition, we assume that reliability level options available for each component

are the same, but with varying costs depending upon the component in question. For each

component, we once again assign randomly generated cost values to the corresponding reliability

values in the data set, while ensuring an increasing trend of cost vs. reliability. However, no other

relationship is assumed. This data is given in Table 9. Notice that for k = 1 in the optimal solution,

all components have very low reliability and zero cost. If any component (i,j) is assigned k = 1 in

the optimal solution that component is deemed redundant and can therefore be removed from the

system. Choices from the available option are randomly assigned to each component in the three

subsystems in order to generate the initial population.

 95

Option-1: Penalty for infeasible solutions only

For the example, the best parameter values based on experimentation were =60, =420 and

C = 7500. The stopping criterion was 50 generations. Thus, we perform a total of 60 + 420×50 =

21060 fitness function evaluations, which corresponds to just 4.1×10-4 percent of the total

combinatorial search space (=129). The algorithm converged to the same final solution (bottom of

Table 9) in each of 10 different runs – irrespective of the random seed used – and showed

convergence as displayed in Figure 11.

Figure 11: Convergence of ES for SP with option-1

However, the algorithm appears to be sensitive to the values of and C. At lower values of

 the algorithm converges to a feasible solution but to one that is distinctly inferior. Similarly,

while for a value of C=7500 the algorithm performed adequately; for relatively low values of C,

solutions with less cost are not sufficiently penalized and the algorithm converges to an infeasible

solution with a very low cost. Conversely, if C is too high then the penalty is too high and the

algorithm converges too quickly to a local optimum while missing nearby low-cost solutions.

 96

Option-2: Penalty for undesirable solutions

For this option, we use the same values for and as with the first option. However, in

this case we add the dynamic penalty function for undesirable feasible solutions in addition to the

penalty for infeasible solutions. Based on our experiments we adopted = 0.95 and C = 1200 for

the SP problem. Convergence to the optimal solution with this option is illustrated in Figure 12. It

is clearly seen that the convergence is quicker than with option 1. It takes up to 32 generations to

converge without the dynamic penalty whereas it takes only 23 generations when this option is

adopted. This results in savings of 9×420 = 3780 function evaluations (≅17.9%). Also, it was

found that the dynamic option converges to the optimum even with smaller values for (such as

40) with =7. With =40 the savings in function evaluations is (32×420) -(23×280) = 7000

(≅33.2%).

Figure 12: Convergence of ES for SP with option-2

Example-2: PS System:

For the PS problem, we used the same data as for the SP problem except that the three

subsystems are connected in parallel as shown in Figure 10(b). Option-1 with penalty for infeasible

 97

solutions alone resulted in non-convergence despite many trials with various values for the

parameters. However, Option-2 with a penalty for undesired solutions resulted in convergence (see

Figure 13) to the final configuration shown at the bottom of Table 9. This clearly emphasizes the

utility of the additional penalty for undesired solutions.

Figure 13: Convergence of ES for PS with option-2

4.4 Conclusions

In this chapter we address the fact that large problems cannot be solved optimally using the

integer programming formulation of the previous chapter, thus necessitating the development of

suitable heuristics. In particular, we develop two different heuristics to solve this NP-Hard

combinatorial problem.

 98

First, we developed a novel nested SA algorithm. The results are encouraging and the

solution procedure clearly identifies near-optimal configurations of redundant components in the

system, while maintaining feasibility of the final solution. Note that the Nested SA does not require

the extensive tuning and parameter setting of many penalty function approaches. Only a cooling

schedule needs to be specified, and a relatively straightforward geometric cooling schedule appears

to work quite well. We did not consider other constraints such as weight or volume; however, it

would be easy to extend the formulation of the problem to handle these additional constraints.

While applying the Nested SA, one can include more SA procedures for the feasibility of these

additional constraints. We believe that it is worthwhile investigating similar Nested SA algorithms

for other combinatorial problems.

Second, we generalize the concept of a penalty function to include not just a penalty for

infeasible solutions but also for undesirable solutions. This generalization is seen to result in

accelerated convergence. The solutions developed in this chapter are well suited to address the

reliability allocation problems addressed in this document. We adopted an evolution strategy to

solve the combinatorial problem of reliability allocation. The initial results are very encouraging,

and the technique offered optimal solutions to the example problems. An interesting and

conclusive result is that the inclusion of penalty function for undesired feasible solutions enhanced

the results in almost every case tested.

However, there are several open issues. First, a robust and problem-independent penalty

function needs to be identified. For penalizing infeasible solutions, Coit et al. [1996] have

suggested an adaptive penalty function for infeasible solutions. A similar functional form could

possibly be adapted for the penalty for undesired feasible solutions as well. Secondly, the

efficiency of such penalty functions depends on the definition of a neighborhood in a generic sense.

 99

Ideally, the development of the penalty function should incorporate some user input in defining

the neighborhood while maintaining its efficiency; this is a challenging task.

 100

5.0 Optimum Test Plans

Note: The work in this chapter was published in IIE Transactions (Rajgopal, Mazumdar and

Majety [1999])

5.1 Introduction

While the previous two chapters were focused on the design phase, this chapter focuses on

the second broad topic of this dissertation, namely the testing of a designed system before it is

deployed. System developers like to ensure that the systems that they design meet certain specified

reliability levels. Therefore, it is essential for a system to be appropriately tested before

deployment. When the tests are conducted, we require some criterion to use along with the test

results so as to determine whether the system is deemed to be acceptable or unacceptable.

Unfortunately, no statistical test can be perfect and every test has some probability of error

associated with it. It is possible that based on the selected criterion a test might reject a good system

on occasion; this is referred to as Type-1 error. Conversely, it is possible that a test might accept a

bad system on occasion; this is referred to as Type-2 error. Thus, in addition to defining suitable

values for the parameters associated with the test rule, a developer must also ensure that the

probability of each type of error occurring is below some specified threshold value. Moreover,

another important fact to keep in mind is that these tests incur costs and can turn out to be

expensive. Therefore, while developing appropriate tests to demonstrate system reliability, we

must also take test costs into consideration.

 101

It should be obvious that in general, testing units of assembled systems is more complex and

expensive than testing units of individual components. Thus, our preference would be to test only

the components and make statements about the reliability of the overall system based on how these

components are combined to form the system. This scenario has been studied extensively for

various system configurations and under various assumptions (Easterling et al.[1991], Rajgopal

and Mazumdar [1998], Rajgopal et al. [1999], and Rajgopal and Mazumdar, [2000], Rajgopal, J.

and Mazumdar, M. (2001) etc.). However, in the presence of imperfect interfaces between

components it will not be adequate to test only the components. This is because the interfaces

introduce their own uncertainty and with imperfect interfaces it might not be possible to draw

conclusions about the system simply by testing components; the only way to account for this is by

testing the entire assembled system since we cannot “test” the interfaces by themselves. The

approach studied in this chapter will be to test the system but to allow for the possibility of

supplementing it with some component tests as well so as to minimize the total associated test

costs. In particular, we address optimum test plans for a series system where interface reliabilities

are also considered.

5.2 Notation

PARAMETERS

𝛼 The maximum acceptable probability of Type 1 error (producer’s risk)

𝛽 The maximum acceptable probability of Type 2 error (consumer’s risk)

𝑛 Total number of components in the system

𝑗 Index for component 𝑗 ∈ {1,2, … , 𝑛}

 102

𝜆𝑗 Expected failure rate of component 𝑗;

Failure time of each component is an exponentially distributed random variable with a mean of

𝜆𝑗
−1

𝜆𝐼 Expected failure rate of interfaces;

Failure time of an interface is an exponentially distributed random variable with a mean of 𝜆𝐼
−1

𝜆𝐶 = ∑ 𝜆𝑗∀𝑗 = The sum of the mean component failure rates

𝑅𝑆 System reliability = exp (−𝜆𝐼 − 𝜆𝐶); assuming mission time is scaled to one unit of

time.

𝑅1 Lower limit on reliability such that if 𝑅𝑆 ≥ 𝑅1 then the system is considered to be definitely

acceptable

𝑅0 Upper limit on reliability such that if 𝑅𝑆 ≤ 𝑅0 then the system is considered to be definitely

unacceptable;

1 > 𝑅1 > 𝑅0 > 0 and 𝛼 + 𝛽 < 1

𝑐𝑗 Cost to test component 𝑗 for one unit of time

𝑐𝑆 Cost of system level test for one unit of time

VARIABLES

𝑡𝑗 units of time for which to test component 𝑗 with replacement of failed components

𝑡𝑆 units of time for which to test system with replacement of failed systems

𝑋𝑗 Number of failures observed for component 𝑗 while testing for 𝑡𝑗 units of time

𝑋𝑆 Number of system failures observed while testing for 𝑡𝑆 units of time

𝑋 Total Number of failures observed = ∑ 𝑋𝑗𝑗 + 𝑋𝑆

𝑚 a number such that if 𝑋 ≤ 𝑚 the system is accepted; otherwise the system is rejected

Note that 𝑡𝑗, 𝑡𝑆 and 𝑚 are decision variables while 𝑋𝑗, 𝑋𝑆 and 𝑋 are random variables.

 103

5.3 Problem Formulation

We test units of each component as well as of the system, with each test unit having its own

test time and with replacement of failed units. Our acceptance criterion compares the total number

of failures observed across all units tested (components as well as system) with some critical

number, and if the number of observed failures is below this cutoff value we label the system as

acceptable; this is similar in spirit to the criterion used with component testing or system testing

alone. In the absence of any a priori information on component reliabilities or failure rates, it has

been proven in several papers (Yan and Mazumdar [1986], Rajgopal and Mazumdar [1995] &

[1996], Altinel [1992], etc.) that the optimal test times for all components are identical. We will

simplify our formulation by denoting this common test time for each component as 𝑡𝐶 = 𝑡1 =

𝑡2 = ⋯ = 𝑡𝑛.

Then the generic problem formulation is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 = 𝑐𝑆𝑡𝑆 + (∑ 𝑐𝑗
𝑛
𝑗=1)𝑡𝐶

5.1

 subject to

Pr{𝑋𝑆 + ∑ 𝑋𝑗𝑗 ≤ 𝑚|𝑅𝑆 ≥ 𝑅1} ≥ 1 − 𝛼

5.2

Pr {𝑋𝑆 + ∑ 𝑋𝑗

𝑗

≤ 𝑚|𝑅𝑆 ≤ 𝑅0} ≤ 𝛽

5.3

 104

𝑡𝑆, 𝑡𝐶 ≥ 0

Note that (5.2) indicates that Type-1 error cannot exceed 𝛼 while (5.3) ensures that Type-2 eror

cannot exceed 𝛽. We now make the following important definition that will be needed to develop

the mathematical basis for our plans.

Definition 5.1: 𝜙𝑚(𝛾) is defined as the mean of a Poisson random variable 𝑌 that satisfies

Pr(𝑌 ≤ 𝑚) = 𝛾 ; 0 ≤ 𝛾 ≤ 1.

Clearly the distribution function 𝐹𝑚 of the variable 𝑌 in the above definition satisfies:

𝐹𝑚(𝜙𝑚(𝛾)) = Pr(𝑌 ≤ 𝑚) = 𝛾 = exp(−𝜙𝑚(𝛾)) [1 + 𝜙𝑚(𝛾) +
(𝜙𝑚(𝛾))

2

2!
+ ⋯ +

(𝜙𝑚(𝛾))
𝑚

𝑚!
]

For given 𝑚 and 𝛾, the value of 𝜙𝑚(𝛾) is easily computed by solving the above nonlinear

equation using a simple technique such as the Newton-Raphson method. We computed the values

of 𝜙𝑚(𝛾) for various values of 𝛾 between 0 and 1 and for values of 𝑚 ranging from 0 through

500. These values may be found in Appendix A (Figure 17 to 20). Note that 𝜙𝑚(𝛾) decreases with

𝛾 (for fixed 𝑚) and increases with 𝑚 (for fixed 𝛾). We separate our discussion into two separate

cases, the first where we have no knowledge about the interface reliability, and the second where

we might have prior experience with the interface that allows us to bound its reliability.

 Case 1: No Prior Information Available On Interface Reliability

First, we consider the case where there is no knowledge about 𝜆𝐼 relative to the 𝜆𝑗values. Let

us define 𝛿 =
𝜆𝐼

𝜆𝐶
 as a measure of the relative magnitudes of the failure rates of the interfaces and

 105

the components. Note that 𝛿 is some unknown positive constant. In such a situation, the following

proposition is valid.

Proposition 5.1: The constraints in the generic formulation as given by (5.2) and (5.3) are

respectively equivalent to the following:

{𝑀𝑎𝑥𝑖𝑚𝑢𝑚 {(1 + 𝛿)𝑡𝑆 + 𝑡𝐶}𝜆𝐶 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {(1 + 𝛿)𝜆𝐶 ≤ − ln 𝑅1 , 𝜆𝐶 ≥ 0}} ≤ 𝜙𝑚(1 − 𝛼)

5.4

{𝑀𝑖𝑛𝑖𝑚𝑢𝑚 {(1 + 𝛿)𝑡𝑆 + 𝑡𝐶}𝜆𝐶 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {(1 + 𝛿)𝜆𝐶 ≥ − ln 𝑅0 , 𝜆𝐶 ≥ 0}} ≥ 𝜙𝑚(𝛽)

5.5

Proof: Note that the number of system failures (𝑋𝑆) observed over time 𝑡𝑆 is a Poisson random

variable with mean 𝑡𝑆(𝜆𝐼 + 𝜆𝐶), and the number of component failures of component 𝑗 (𝑋𝑗)

observed over time 𝑡𝑗 is a Poisson random variable with mean 𝑡𝐶𝜆𝑗. Hence 𝑋𝑆 + ∑ 𝑋𝑗𝑗 is also a

Poisson random variable with parameter Λ = 𝑡𝑆(𝜆𝐼 + 𝜆𝐶) + 𝑡𝐶𝜆𝐶 = (𝑡𝑆(1 + 𝛿) + 𝑡𝐶)𝜆𝐶.

Since 𝑅𝑆 = exp (−𝜆𝐼 − 𝜆𝐶) it follows that

𝑅𝑆 ≥ 𝑅1 ⟹ 𝜆𝐼 + 𝜆𝐶 = (1 + 𝛿)𝜆𝐶 ≤ − ln 𝑅1, and

𝑅𝑆 ≤ 𝑅0 ⟹ 𝜆𝐼 + 𝜆𝐶 = (1 + 𝛿)𝜆𝐶 ≥ − ln 𝑅0

Using the Definition 5.1 for 𝜙𝑚(𝛾) and the above; the constraints (5.2) and (5.3) can therefore be

rewritten respectively as follows:

𝐹𝑚(Λ) ≥ 𝐹𝑚(𝜙𝑚(1 − 𝛼)) for {, 𝜆𝐶|(1 + 𝛿)𝜆𝐶 ≤ − ln 𝑅1 ; 𝜆𝐶 ≥ 0}

5.6

𝐹𝑚(Λ) ≤ 𝐹𝑚(𝜙𝑚(𝛽)) for {, 𝜆𝐶|(1 + 𝛿)𝜆𝐶 ≥ − ln 𝑅0 ; 𝜆𝐶 ≥ 0}

5.7

 106

Since the Poisson distribution function 𝐹𝑚(Λ) is strictly decreasing in Λ, constraints (5.6) and (5.7)

can respectively be rewritten as:

Λ ≤ 𝜙𝑚(1 − 𝛼) for {, 𝜆𝐶|(1 + 𝛿)𝜆𝐶 ≤ − ln 𝑅1 ; 𝜆𝐶 ≥ 0}

5.8

Λ ≥ 𝜙𝑚(𝛽) for {, 𝜆𝐶|(1 + 𝛿)𝜆𝐶 ≥ − ln 𝑅0 ; 𝜆𝐶 ≥ 0}

5.9

Note that (5.8) and (5.9) are defined for nonnegative values of 𝑡𝐶 and 𝑡𝑆. It is clear that these

constraints reduce to solving the following two linear programming subproblems in 𝜆𝐼 and 𝜆𝐶

Subproblem 1: 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 Λ, subject to {0 ≤ 𝜆𝐶 ≤ − ln 𝑅1 /(1 + 𝛿)}

5.10

Subproblem 2: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 Λ, subject to {𝜆𝐶 ≥ − ln 𝑅0/(1 + 𝛿) ; 𝜆𝐶 ≥ 0}

5.11

and requiring the optimal objective value for Subproblem 1 to be ≤ 𝜙𝑚(1 − 𝛼) and that of

Subproblem 2 to be ≥ 𝜙𝑚(𝛽). Hence the result. □

Proposition 5.1: The optimum solutions to the two subproblems defined by (5.10) and (5.11) are

given by (− ln 𝑅1)(𝑡𝑆(1 + 𝛿) + 𝑡𝐶)/(1 + 𝛿) and (− ln 𝑅0)(𝑡𝑆(1 + 𝛿) + 𝑡𝐶)/(1 + 𝛿),

respectively.

Proof: Recall that Λ = (𝑡𝑆(1 + 𝛿) + 𝑡𝐶)𝜆𝐶 and the coefficient for 𝜆𝐶 is strictly positive. For

Subproblem 1, it is clear that the objective is maximized when 𝜆𝐶 attains its maximum allowed

value of (− ln 𝑅1)/(1 + 𝛿). Similarly, for Subproblem 2, the objective is minimized when when

𝜆𝐶 attains its minimum allowed value of (− ln 𝑅0)/(1 + 𝛿). The result then follows.

 □

 107

Now let us define 𝐴(𝑚) = 𝜙𝑚(1 − 𝛼)/(− ln 𝑅1) ; 𝐵(𝑚) = 𝜙𝑚(𝛽)/(− ln 𝑅0). Then the

optimization problem reduces to

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 = 𝑐𝑆𝑡𝑆 + (∑ 𝑐𝑗

𝑛

𝑗=1

) 𝑡𝐶

subject to 𝐵(𝑚) ≤ 𝑡𝑆 + 𝑡𝐶/(1 + 𝛿) ≤ 𝐴(𝑚)

5.12

𝑡𝑆, 𝑡𝐶 ≥ 0

This optimization problem is feasible for any 𝑚 that satisfies 𝐵(𝑚) ≤ 𝐴(𝑚), i.e.,

𝜙𝑚(𝛽)/(− ln 𝑅0) ≤ 𝜙𝑚(1 − 𝛼)/(− ln 𝑅1), i.e., (− ln 𝑅1) /(− ln 𝑅0) ≤ 𝜙𝑚(1 − 𝛼)/𝜙𝑚(𝛽).

Since 0 < 𝑅0 < 𝑅1 < 1, the LHS of the last inequality above is strictly less than 1. Moreover, it

has been shown by Rajgopal et al. [1994] that as long as 𝛼 + 𝛽 < 1, the value of the ratio in the

RHS of the same inequality, namely 𝜙𝑚(1 − 𝛼)/𝜙𝑚(𝛽), is strictly increasing in 𝑚 and approaches

1 as 𝑚 approaches ∞. Thus, the problem is feasible for all 𝑚 ≥ 𝑚∗ where 𝑚∗ is defined as:

𝑚∗ = 𝐼𝑛𝑓 {𝑚|
(− ln 𝑅1)

(− ln 𝑅0)
≤

𝜙𝑚(1−𝛼)

𝜙𝑚(𝛽)
}

5.13

Since the ratio
𝐴(𝑚)

𝐵(𝑚)
= (

𝜙𝑚(1−𝛼)

𝜙𝑚(𝛽)
) / (

(− ln 𝑅1)

(− ln 𝑅0)
), we may equivalently restate the above as

𝑚∗ = 𝐼𝑛𝑓 {𝑚|
𝐴(𝑚)

𝐵(𝑚)
≥ 1}

5.14

If we now restrict ourselves to feasible values of 𝑚 with 𝐵(𝑚) ≤ 𝐴(𝑚), it is clear that

𝐵(𝑚) = 𝑡𝑆 + 𝑡𝑐/(1 + 𝛿) at the optimum, because if 𝐵(𝑚) < 𝑡𝑆 + 𝑡𝑐/(1 + 𝛿) then we could

reduce the value of 𝑡𝑆 without violating feasibility and improve the objective. Thus, we must have

(1 + 𝛿)𝐵(𝑚) = 𝑡𝑆(1 + 𝛿) + 𝑡𝐶 at the optimum. Note that 𝐴(𝑚) is not important as far as the

optimization is concerned and is of relevance only in terms of defining feasible 𝑚. Now since the

 108

optimization problem is a minimization, from the structure of objective function it is clear that in

general, at the optimum either 𝑡𝑆 or 𝑡𝐶 must be equal to zero depending on the magnitude of their

coefficients in the objective function. The optimum solution is given by

(a) 𝑡𝑆 = 0, 𝑡𝐶 = (1 + 𝛿)𝐵(𝑚) , with 𝐶 = (∑ 𝑐𝑗
𝑛
𝑗=1)(1 + 𝛿)𝐵(𝑚) if 𝑐𝑆 ≥ (∑ 𝑐𝑗

𝑛
𝑗=1)(1 + 𝛿)

(b) 𝑡𝐶 = 0, 𝑡𝑆 = 𝐵(𝑚), with 𝐶 = 𝑐𝑆𝐵(𝑚) if 𝑐𝑆 ≤ (∑ 𝑐𝑗
𝑛
𝑗=1)(1 + 𝛿)

Moreover, we know that 𝜙𝑚(𝛽) is strictly increasing in 𝑚, and therefore, so is 𝐵(𝑚). Hence the

optimum value of 𝑚 is the smallest one that leads to a feasible problem, which is 𝑚∗ as defined in

(5.13).

From the above analysis, one may conclude that for a series system with imperfect interfaces

and no specific a priori knowledge on the relative magnitude of the interface failure rate, the

optimal policy calls for either only system testing or only component testing. Such a decision

depends on the value of 𝛿, which is obviously unknown. Because of this, these results are of

somewhat limited practical use. We may consider two special cases here. If 𝛿 = 0, which leads to

perfect interfaces, then we get the commonsense result that only component testing is warranted

as long as the total testing cost per unit of test time across components is less than system test cost

per unit time. On the other hand, when interfaces are unreliable (i.e., 𝛿 > 0) the optimum policy

suggests only system testing when 𝛿 is relatively large. This is intuitively sensible because it

indicates that if interfaces are highly unreliable the only way to draw good inferences is by testing

the entire assembled system.

 109

 Case 2: Using Prior Information On Interface Reliability

We next consider the case where some prior information on 𝜆𝐼 is available. In particular,

suppose that 𝛿 is defined as an upper bound on the ratio 𝜆𝐼/𝜆𝐶 (rather than the exact value of this

ratio), and that a (positive) value for 𝛿 is given.

By using similar arguments to the ones seen in Case 1 in the previous subsection, we can

respectively, reduce constraints (5.2) and (5.3) to (5.15) and (5.16) below:

{𝐴𝑟𝑔𝑚𝑎𝑥 {Λ|𝜆𝐼 + 𝜆𝐶 ≤ − ln 𝑅1 ; 𝜆𝐼 ≤ 𝛿𝜆𝐶; 𝜆𝐼 , 𝜆𝐶 ≥ 0}} ≤ 𝜙𝑚(1 − 𝛼)

5.15

{𝐴𝑟𝑔𝑚𝑖𝑛 {Λ|𝜆𝐼 + 𝜆𝐶 ≥ − ln 𝑅0 ; 𝜆𝐼 ≤ 𝛿𝜆𝐶; 𝜆𝐼 , 𝜆𝐶 ≥ 0}} ≥ 𝜙𝑚(𝛽)

5.16

where once again, Λ = 𝑡𝑆(𝜆𝐼 + 𝜆𝐶) + 𝑡𝐶𝜆𝐶 = 𝑡𝑆𝜆𝐼 + (𝑡𝐶 + 𝑡𝑆)𝜆𝐶

Let us consider the subproblem in the LHS of (5.15). At the optimum solution, the first

constraint 𝜆𝐼 + 𝜆𝐶 ≤ − ln 𝑅1 must be binding. This is true because if we had a nonnegative vector

which satisfied both constraints 𝜆𝐼 + 𝜆𝐶 ≤ − ln 𝑅1 ; 𝜆𝐼 ≤ 𝛿𝜆𝐶 and the first one is inactive, then we

could increase 𝜆𝐶 by the amount of the slack and increase the value of Λ while continuing to satisfy

the second constraint. Given that 𝜆𝐶 has a larger objective coefficient, the optimum solution to this

subproblem will have 𝜆𝐶 = − ln 𝑅1 ; 𝜆𝐼 = 0, with a corresponding value of the objective given

by Λ∗ = (𝑡𝐶 + 𝑡𝑆)(− ln 𝑅1). The second constraint 𝜆𝐼 ≤ 𝛿𝜆𝐶 is redundant at the optimum.

Now let us consider the subproblem in the LHS of (5.16). The first constraint of this problem

𝜆𝐼 + 𝜆𝐶 ≥ − ln 𝑅0 must be binding. This is true because if we had a nonnegative vector which

satisfied both constraints 𝜆𝐼 + 𝜆𝐶 ≥ − ln 𝑅0 ; 𝜆𝐼 ≤ 𝛿𝜆𝐶 and the first one is inactive, then we could

simply decrease 𝜆𝐼 by the amount of the excess and improve the objective while continuing to

 110

satisfy the second constraint. Thus, at the optimum we must have 𝜆𝐼 = (− ln 𝑅0) − 𝜆𝐶 . The

subproblem then reduces to:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (− ln 𝑅0)𝑡𝑆 + 𝑡𝐶𝜆𝐶 , subject to {𝜆𝐶 ≥ − ln 𝑅0/(1 + 𝛿) ; 𝜆𝐶 ≥ 0}

It is clear that the optimum solution to this subproblem is given by 𝜆𝐶 = − ln 𝑅0/(1 + 𝛿) and

hence 𝜆𝐼 = (− ln 𝑅0)𝛿/(1 + 𝛿). The corresponding objective function value is given by Λ∗ =

[− ln 𝑅0/(1 + 𝛿)]𝑡𝐶 + (− ln 𝑅0)𝑡𝑆 .

We may now restate the optimization problem as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 = 𝑐𝑆𝑡𝑆 + (∑ 𝑐𝑗

𝑛

𝑗=1

) 𝑡𝐶

subject to (𝑡𝐶 + 𝑡𝑆)(− ln 𝑅1) ≤ 𝜙𝑚(1 − 𝛼) ⟹ (𝑡𝐶 + 𝑡𝑆) ≤ 𝐴(𝑚)

 [− ln 𝑅0/(1 + 𝛿)]𝑡𝐶 + (− ln 𝑅0)𝑡𝑆 ≥ 𝜙𝑚(𝛽) ⟹
𝑡𝐶

1+𝛿
+ 𝑡𝑆 ≥ 𝐵(𝑚)

𝑡𝑆, 𝑡𝐶 ≥ 0

where 𝐴(𝑚) and 𝐵(𝑚) are as defined before in the proof of Proposition 5.1.

Note that
𝑡𝐶

1+𝛿
< 𝑡𝐶 and hence this optimization problem is only feasible if 𝐵(𝑚) ≤ 𝐴(𝑚),

i.e. 𝜙𝑚(𝛽)/(− ln 𝑅0) ≤ 𝜙𝑚(1 − 𝛼)/(− ln 𝑅1), which can be rewritten as (− ln 𝑅1) /(− ln 𝑅0) ≤

𝜙𝑚(1 − 𝛼)/𝜙𝑚(𝛽). This is identical to the condition in Case 1. Hence we are guaranteed that the

problem is feasible for all 𝑚 ≥ 𝑚∗ where 𝑚∗ is defined via (5.13) or (5.14).

It is easy to see that at optimum, the constraint
𝑡𝐶

1+𝛿
+ 𝑡𝑆 ≥ 𝐵(𝑚) must hold as an equality.

Otherwise, we may decrease 𝑡𝐶 to make the constraint hold as an equality and improve the

objective, while continuing to satisfy the other constraint. Thus 𝑡𝐶 = (1 + 𝛿)[𝐵(𝑚) − 𝑡𝑆].Since

𝑡𝐶 ≥ 0; it follows that 𝑡𝑆 ≤ 𝐵(𝑚). Using this information, the optimization problem can be

restated as the following:

 111

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 = [𝑐𝑆 − (1 + 𝛿) (∑ 𝑐𝑗

𝑛

𝑗=1

)] 𝑡𝑆 + (1 + 𝛿) (∑ 𝑐𝑗

𝑛

𝑗=1

) 𝐵(𝑚)

subject to 𝑡𝑆 ≥ {(1 + 𝛿)𝐵(𝑚) − 𝐴(𝑚)}/𝛿

𝑡𝑆 ≤ 𝐵(𝑚)

𝑡𝑆 ≥ 0

Note that this problem is feasible for all 𝑚 such that
𝐴(𝑚)

𝐵(𝑚)
≥ 1, i.e., for all 𝑚 ≥ 𝑚∗. We now

exhaustively consider several different scenarios that we might encounter when we are solving the

above optimization problem.

5.3.2.1 Scenario 1

 𝒄𝑺 − (𝟏 + 𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏) ≤ 𝟎

Note that this expression is the coefficient of 𝑡𝑆 in the objective. First, suppose we are given

a feasible 𝑚. At the optimum the value of 𝑡𝑆 will be at its upper bound which is determined by

𝑡𝑆 ≤ 𝐵(𝑚). Hence at the optimum, 𝒕𝑺 = 𝑩(𝒎) and 𝑡𝐶 = (1 + 𝛿)[𝐵(𝑚) − 𝑡𝑆], i.e., 𝒕𝑪 = 0. This

indicates that only the system is tested and the total optimal cost will be 𝑪 = 𝒄𝑺𝑩(𝒎).

Furthermore, since 𝐵(𝑚) is increasing in 𝑚 the optimum value of 𝑚 is given by its lowest feasible

value which is 𝒎 = 𝒎∗ as defined via (5.13).

5.3.2.2 Scenario 2

𝒄𝑺 − (𝟏 + 𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏) ≥ 𝟎 and (𝟏 + 𝜹)𝑩(𝒎∗) − 𝑨(𝒎∗) ≤ 𝟎

 Since its coefficient in the objective is nonnegative it is clear that given 𝑚, at the optimum,

𝑡𝑆 = 𝑀𝑎𝑥{0, [(1 + 𝛿)𝐵(𝑚) − 𝐴(𝑚)]/𝛿}. Now, (1 + 𝛿)𝐵(𝑚∗) − 𝐴(𝑚∗) ≤ 0 implies that (1 +

𝛿) ≤ 𝐴(𝑚∗)/𝐵(𝑚∗), and as discussed earlier, 𝐴(𝑚)/𝐵(𝑚) is strictly increasing in 𝑚. Thus, it is

 112

clear that (1 + 𝛿) ≤ 𝐴(𝑚)/𝐵(𝑚) for all 𝑚 > 𝑚∗, i.e., [(1 + 𝛿)𝐵(𝑚) − 𝐴(𝑚)]/𝛿 ≤ 0 for all

feasible values of 𝑚. This implies that for any feasible 𝑚, we must have 𝑡𝑆 = 0 at the optimum

and hence 𝑡𝐶 = (1 + 𝛿)[𝐵(𝑚) − 𝑡𝑆] = (1 + 𝛿)𝐵(𝑚). Moreover, the value of the objective is

given by (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1)𝐵(𝑚) for all such 𝑚. But 𝐵(𝑚) increases with 𝑚 and thus 𝒎 = 𝒎∗

being the smallest feasible 𝑚, it is also the optimum choice. So, in this scenario, only components

are tested for 𝒕𝑪 = (𝟏 + 𝜹)𝑩(𝒎∗) units of time. The optimal cost is given by 𝑪 =

(𝟏 + 𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏)𝑩(𝒎∗).

5.3.2.3 Scenario 3

 𝒄𝑺 − (𝟏 + 𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏) ≥ 𝟎 and (𝟏 + 𝜹)𝑩(𝒎∗) − 𝑨(𝒎∗) > 𝟎

Note that here we have 1 ≤
𝐴(𝑚∗)

𝐵(𝑚∗)
< (1 + 𝛿). Suppose again that we are given a feasible

𝑚. Once again because of its positive coefficient in the objective at the optimum 𝑡𝑆 =

𝑀𝑎𝑥{0, [(1 + 𝛿)𝐵(𝑚) − 𝐴(𝑚)]/𝛿}. Since 𝑚 is feasible it follows that 1 <
𝐴(𝑚∗)

𝐵(𝑚∗)
≤

𝐴(𝑚)

𝐵(𝑚)
.

However, there are two possibilities here: (a)
𝐴(𝑚)

𝐵(𝑚)
< (1 + 𝛿) and (b)

𝐴(𝑚)

𝐵(𝑚)
≥ (1 + 𝛿)

We will consider each case separately.

Scenario 3a: Suppose 1 < (
𝐴(𝑚)

𝐵(𝑚)
) < (1 + 𝛿), i.e., (1 + 𝛿)𝐵(𝑚) − 𝐴(𝑚) > 0. Therefore, at the

optimum we will have 𝒕𝑺 = [(𝟏 + 𝜹)𝑩(𝒎) − 𝑨(𝒎)]/𝜹 and 𝑡𝐶 = (1 + 𝛿)[𝐵(𝑚) − 𝑡𝑆], i. e.,

𝒕𝑪 = (
(𝟏+𝜹)

𝜹
) {𝑨(𝒎) − 𝑩(𝒎)}. Thus, both the system and components are tested in this scenario.

The optimum cost is given by:

 113

𝑪 = (𝟏 + 𝜹) (∑ 𝒄𝒋

𝒏

𝒋=𝟏

) 𝑩(𝒎) + [𝒄𝑺 − (𝟏 + 𝜹) (∑ 𝒄𝒋

𝒏

𝒋=𝟏

)]
{(𝟏 + 𝜹)𝑩(𝒎) − 𝑨(𝒎)}

𝜹

5.17

Scenario 3b: Suppose (
𝐴(𝑚)

𝐵(𝑚)
) ≥ (1 + 𝛿). In this case (1 + 𝛿)𝐵(𝑚) − 𝐴(𝑚) ≤ 0 and clearly, the

situation reverts to that of Scenario 2, and we have the same solution as the one described under

that scenario with 𝒕𝑺 = 𝟎, 𝒕𝑪 = (𝟏 + 𝜹)𝑩(𝒎) and an objective value of 𝑪 = (𝟏 +

𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏)𝑩(𝒎).

Optimum value of 𝒎: The determination of the optimum 𝑚 is more complicated with Scenario

3. First consider all 𝑚 that satisfy the condition for Scenario 3b, and let us define 𝑚1 as the

smallest such 𝑚, i.e.,

𝑚1 = 𝐼𝑛𝑓 {𝑚|𝑚 > 𝑚∗, (
𝐴(𝑚)

𝐵(𝑚)
) ≥ (1 + 𝛿)}

5.18

Since the optimal objective value is (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1)𝐵(𝑚) and 𝐵(𝑚) is monotone

increasing in 𝑚 it is clear that the only candidate for the optimum 𝑚 is 𝑚1 with a corresponding

objective value of (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1)𝐵(𝑚1); all other values of 𝑚 that satisfy the conditions for

Scenario 3b yield higher values for the cost.

Next, consider all 𝑚 that satisfy the conditions for Scenario 3a. Let us define the positive

constants 𝑘1 and 𝑘2 via 𝑘1 = (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1) and 𝑘2 = 𝑐𝑆 − (1 + 𝛿)(∑ 𝑐𝑗

𝑛
𝑗=1). Then we can

rewrite (5.17) as 𝑘1 𝐵(𝑚) + 𝑘2 {(1 + 𝛿)𝐵(𝑚) − 𝐴(𝑚)}/𝛿 = {𝑘1 + 𝑘2 [(1 + 𝛿) −
𝐴(𝑚)

𝐵(𝑚)
]} 𝐵(𝑚).

 114

 Recall that the value of
𝐴(𝑚)

𝐵(𝑚)
 increases monotonically so that [(1 + 𝛿) −

𝐴(𝑚)

𝐵(𝑚)
] is a positive

quantity that decreases as 𝑚 increases. Furthermore, 𝐵(𝑚) increases monotonically with 𝑚 and

with no bound from above. Hence the following Lemma holds:

Lemma 5.1: As long as [(1 + 𝛿) −
𝐴(𝑚)

𝐵(𝑚)
]>0, the expression given by (5.17) will either increase

monotonically with 𝑚, or it will initially decrease to some minimum value and then increase

monotonically with 𝑚.

Thus, for this scenario we evaluate the expression in (5.17) at successively larger values of

𝑚 starting with 𝑚∗ and stop as soon as the value of this expression reaches a minimum at some

optimum 𝑚 = 𝑚0 and starts to increase. The only exception is if we are at 𝑚 = 𝑚1 − 1 and the

value of the expression is still decreasing, in which case the optimum value of 𝑚 is given by 𝑚0 =

𝑚1 − 1 since this is the last value of 𝑚 that meets the conditions for Scenario 3a. In our experience,

when 𝛿 is relatively small, the very first value (𝑚∗) will be the optimum one in most cases.

It is clear that the only candidates for the optimum solution are 𝑚0 and 𝑚1. However, it is

not possible to make a general statement about when one will outperform the other because this

depends on the relative magnitudes of 𝛿, 𝑐𝑆 and 𝑐𝑗. Thus, the objective value can be evaluated at

𝑚0 using (6.17) with 𝑚 = 𝑚0 and at 𝑚1 using (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1)𝐵(𝑚1). The one yielding a

smaller value for the objective is the optimum value for 𝑚. The two possibilities are shown in

Figure 14. In Figure 14(a) the value of 𝑚0 lies between 𝑚∗ and 𝑚1 and the optimum value is 𝑚0.

In Figure 14(b) 𝑚0 = 𝑚∗ and the optimum value is 𝑚1. One may note that if 𝑚0 is optimum then

we test both system and components according to the corresponding optimal test times. However,

if 𝑚1 is optimum then we test only the components for the corresponding optimal test time.

 115

Figure 14: Minimum test costs corresponding to different values of m

 Estimating Maximum Type 1 And Type 2 Error Probabilities

An issue that is of interest is the maximum Type 1 and Type 2 error probabilities that are

associated with a test plan derived by the procedure above. This issue becomes particularly

important in order to assess the degree of protection provided by sampling plans that are obtained

when there is uncertainty in the value of 𝛿. To compute these probabilities, first note the values of

𝜆𝐼 and 𝜆𝐶 that solve the subproblems are the ones that yield the maximum error probabilities. For

Type 1 error these were given by {𝜆𝐶 = − ln 𝑅1 , 𝜆𝐼 = 0} and for Type 2 error these were given by

𝜆𝐶 = (− ln 𝑅0)/(1 + 𝛿) , 𝜆𝐼 = (− ln 𝑅0)𝛿/(1 + 𝛿). Substituting these into the equation for Λ

yields the following

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑦𝑝𝑒 1 𝐸𝑟𝑟𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝐹𝑚[(𝑡𝑆 + 𝑡𝐶)(− ln 𝑅1)]

5.19

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑦𝑝𝑒 2 𝐸𝑟𝑟𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐹𝑚[{𝑡𝑆 +
𝑡𝐶

1+𝛿
}(− ln 𝑅0)]

5.20

These error probabilities hold for any plan with its corresponding values of 𝑡𝑆, 𝑡𝐶 and 𝑚 and

thus (5.19) and (5.20) may be used to evaluate the performance of any such plan.

 116

5.4 Example Problems

Three example problems and their solutions are presented to demonstrate all the different

cases and scenarios that might encountered.

 Example 1

In this example we fix the value of 𝛿 and see how the optimum policy varies as the system

test cost changes relative to the component test costs. Here we consider a series system of five

components to be tested with 𝑅0 = 0.80 and 𝑅1 = 0.95. The maximum acceptable probabilities

of Type 1 and Type 2 errors are specified as 𝛼 = 𝛽 = 0.05. We choose 𝛿 = 0.1 and {𝑐𝑗} =

{10,15,5,5,2} which gives ∑ 𝑐𝑗
5
𝑗=1 = 37. For this data set, the value of the critical ratio for

determining the smallest feasible 𝑚 is given by
(− ln 𝑅1)

(− ln 𝑅0)
=

−𝑙𝑛 0.95

−𝑙𝑛 0.80
= 0.23. The smallest value of

𝑚 for which
𝜙𝑚(1−𝛼)

𝜙𝑚(𝛽)
 exceeds 0.23 is 𝑚 =5 (with

𝜙5(0.95)

𝜙5(0.05)
=

2.613

10.513
= 0.25). Thus 𝑚∗ = 5 with

𝐴(𝑚∗) =
𝜙𝑚(1−𝛼)

−𝑙𝑛 𝑅1
=

2.613

−𝑙𝑛 0.95
= 50.94 and 𝐵(𝑚∗) =

𝜙𝑚(𝛽)

−𝑙𝑛 𝑅0
=

10.513

−𝑙𝑛 0.80
= 47.11.

(i) Suppose 𝒄𝑺 < (𝟏 + 𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏)=40.7. This corresponds to Scenario 1 so that the

optimum value of 𝑚 is given by 𝑚∗ = 5, 𝑡𝐶 = 0, 𝑡𝑆 = 𝐵(5) = 47.11 and total

optimum test cost is 𝐶 = 47.11𝑐𝑆

(ii) Suppose 𝒄𝑺 > (𝟏 + 𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏)=40.7. Here (𝟏 + 𝜹)𝑩(𝒎∗) − 𝑨(𝒎∗) =

(1.1)(47.11) − 50.94 > 0. This corresponds to Scenario 3 of Case 2. Also
(−𝑙𝑛 𝑅0)

(−𝑙𝑛 𝑅1)
=

4.35 > (1 + 𝛿) = 1.1. So, we need to find 𝑚1 and 𝑚0. Since 𝐴(6) = (
𝜙6(0.95)

−𝑙𝑛 0.95
) =

 117

63.94, 𝐵(6) = (
𝜙6(0.05)

−𝑙𝑛 0.80
) = 53.062, we have 𝐴(6)/𝐵(6) = 1.205 > (1 + 𝛿) = 1.1.

It follows that 𝑚1 = 6 and the only candidate value for 𝑚0 is 5. For 𝑚0 = 5, we have

𝑡𝐶 = {𝐴(5) − 𝐵(5)} (
1+𝛿

𝛿
) = 42.13, 𝑡𝑆 = {(1 + 𝛿)𝐵(5) − 𝐴(5)}/𝛿 = 8.81 and the

total cost 𝐶 = 𝑐𝑆(8.81) + 37(42.13) = 8.81𝑐𝑆 + 1558.81 units. For 𝑚1 = 6, we

have 𝑡𝐶 = (1 + 𝛿)𝐵(6) = 58.38, 𝑡𝑆 = 0 and the total cost 𝐶 = 37(58.38) =

2160.06 units. Comparing the two values of 𝐶, it is clear that if (40.7 <)𝑐𝑆 <

68.2 then the optimum is defined by 𝑚0 = 5, and if 𝑐𝑆 > 68.2 then optimum solution

is defined by 𝑚1 = 6.

Similar results hold for other values of 𝛿 as well. It should be noted that for 𝛿 < 0.0813

the value of {(1 + 𝛿)𝐵(5) − 𝐴(5)} is negative and corresponds to Scenario 2, so that in this range,

one would move from pure system tests to pure component tests directly, regardless of the value

of 𝑐𝑆. The results are intuitively appealing. When 𝑐𝑆 is relatively small, we test only the system.

When 𝑐𝑆 becomes larger, for intermediate values, both system and components are tested with

total cost increasing as a piecewise linear function of 𝑐𝑆. When 𝑐𝑆 becomes very large, only

components are tested and system test cost is of little consequence. Figure 15 illustrates this for

values of 𝛿 = 0.01, 0.1, 0.25 and 0.5.

 118

Figure 15: Minimum total test cost as a function of system test costs

 Example 2

Here, we use the same data as the previous example with one change. We fix the value of

𝑐𝑆= 65 and study the effect of 𝛿 on the optimum cost. The rest of the parameters are maintained at

the same values as before. We now study the three scenarios based on different values of 𝛿.

(i) When 𝛿 > 0.7568, it can be seen that 𝑐𝑆 − (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1) ≤ 0. This corresponds to

Scenario 1. The optimal solution is given by 𝑚∗ = 5, 𝑡𝐶 = 0 and 𝑡𝑆 = 𝐵(5) = 47.11.

The optimal cost is 𝐶 = 3062.15 units.

(ii) When 𝛿 ≤ 0.0813, it can be seen that 𝑐𝑆 − (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1) > 0 and (1 +

𝛿)𝐵(𝑚∗) − 𝐴(𝑚∗) ≤ 0. This corresponds to Scenario 2. The optimal solution is given

by 𝑚∗ = 5, 𝑡𝐶 = (1 + 𝛿)𝐵(𝑚∗) = (1 + 𝛿)47.11 units and 𝑡𝑆 = 0. The optimal cost is

𝐶 = 1743.07(1 + 𝛿) units.

(iii) When 0,0813 ≤ 𝛿 ≤ 0.7568, it can be seen that 𝑐𝑆 − (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1) > 0 and

(1 + 𝛿)𝐵(𝑚∗) − 𝐴(𝑚∗) ≥ 0. This corresponds to Scenario 3. The optimal solution is

 119

given by 𝑚 = 𝑚0 or 𝑚 = 𝑚1 depending upon the specific value of 𝛿. That will dictate

if it is economical to test both system and components or just components. The only

way to know is to substitute the particular value of 𝛿 into the appropriate cost

expressions and compare the two.

Figure 16 shows the minimum total test cost as a function of 𝛿. It may be seen that there is

an initial linear region for 𝛿 ≤ 0.0813, and a final flat region for 𝛿 ≥ 0.7568. In between, the

optimum cost continuously increases with 𝛿 and the shape of the cost curve is irregular.

Figure 16: Minimum total test cost as a function of δ

 120

 Example 3

In this example, we illustrate the effect of uncertainty in the estimate for 𝛿 on the maximum

Type 1 and Type 2 error probabilities associated with a plan. These probabilities depend on 𝑡𝐶, 𝑡𝑆

and 𝑚. Here we consider the same data as in Example 2 above and let 𝛿 = 0.30. It can be seen

that this corresponds to Scenario 3 and the optimal solution is represented by 𝑚 = 6, 𝑡𝐶 = 47.58

and 𝑡𝑆 = 16.47 with optimum total cost 𝐶 = 2831.01. Using these we compute the maximum

Type 1 and Type 2 errors to be equal to 0.05. Now, suppose that the value of 𝛿 is estimated

wrongly and its true value is different and could vary in either direction of 0.3. We considered

errors of 10%, 20%, 50%, 100% in either direction of 0.3, and compute solutions and Maximum

Type 1 and Type 2 error probabilities for all these values of 𝛿 and tabulate the information in Table

10 below.

Table 10: Maximum Type 1 and Type 2 error probabilities for various δ

𝛿 𝑡𝐶 𝑡𝑆 𝑚 Max. Pr.

Type 1 error

Max. Pr.

Type 2 error

0 47.11 0 5 0.115 0.005

0.15 61.03 0 6 0.05 0.027

0.24 56.73 7.32 6 0.05 0.040

0.27 51.65 12.40 6 0.05 0.045

0.30 47.58 16.47 6 0.05 0.05

0.33 15.44 35.50 5 0.115 0.025

0.36 14.47 36.47 5 0.115 0.028

0.45 12.34 38.60 5 0.115 0.038

0.60 10.21 40.73 5 0.115 0.056

It may be noted from Table 10 that as long as 𝑚 does not change, Type 1 error remains

unaffected because the maximum Type 1 error is not affected by 𝛿. But when 𝑚 changes, the Type

 121

1 error probability increases. On the other hand, Type 2 error changes since it involves 𝛿 in its

expression. However, the maximum Type 2 error is only slightly more than 0.05. If the 𝛿 value is

unknown, then Type 1 and Type 2 error values may be computed for different values of 𝛿 to see

how it affects the errors.

5.5 Some Comments

Let us look at the summary of results obtained in this chapter. When no prior information

available (𝜆𝐼 = 𝛿𝜆𝐶) on interface reliability the result is

(a) 𝑡𝑆 = 0, 𝑡𝐶 = (1 + 𝛿)𝐵(𝑚) , 𝑚 = 𝑚∗, 𝐶 = (∑ 𝑐𝑗
𝑛
𝑗=1)(1 + 𝛿)𝐵(𝑚) if 𝑐𝑆 ≥ (∑ 𝑐𝑗

𝑛
𝑗=1)(1 + 𝛿)

(b) 𝒕𝑪 = 𝟎, 𝒕𝑺 = 𝑩(𝒎), 𝒎 = 𝒎∗, 𝑪 = 𝒄𝑺𝑩(𝒎) if 𝒄𝑺 ≤ (∑ 𝒄𝒋
𝒏
𝒋=𝟏)(𝟏 + 𝜹)

When prior information is available in the form of 𝜆𝐼 ≤ 𝛿𝜆𝐶

(c) 𝒕𝑺 = 𝑩(𝒎), 𝒕𝑪 = 0; 𝒎 = 𝒎∗ with 𝑪 = 𝒄𝑺𝑩(𝒎) if 𝒄𝑺 ≤ (𝟏 + 𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏)

(d) 𝑡𝐶 = (1 + 𝛿)𝐵(𝑚∗), 𝑡𝑆 = 0; 𝑚 = 𝑚∗, 𝐶 = (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1)𝐵(𝑚∗). if 𝑐𝑆 ≥ (1 +

𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1) and (1 + 𝛿)𝐵(𝑚∗) − 𝐴(𝑚∗) ≤ 0

(e) 𝒕𝑺 = [(𝟏 + 𝜹)𝑩(𝒎) − 𝑨(𝒎)]/𝜹 and 𝒕𝑪 = (
(𝟏+𝜹)

𝜹
) {𝑨(𝒎) − 𝑩(𝒎)}, 𝒎 = 𝒎𝟎 𝒐𝒓 𝒎𝟏 ,

𝑪 = (𝟏 + 𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏)𝑩(𝒎) + [𝒄𝑺 − (𝟏 + 𝜹)(∑ 𝒄𝒋

𝒏
𝒋=𝟏)]

{(𝟏+𝜹)𝑩(𝒎)−𝑨(𝒎)}

𝜹
 ; if 𝒄𝑺 ≥ (𝟏 +

𝜹)(∑ 𝒄𝒋
𝒏
𝒋=𝟏); (𝟏 + 𝜹)𝑩(𝒎∗) > 𝑨(𝒎∗) and (𝟏 + 𝜹)𝑩(𝒎) > 𝑨(𝒎)

(f) 𝑡𝑆 = 0, 𝑡𝐶 = (1 + 𝛿)𝐵(𝑚), 𝑚 = 𝑚0 𝑜𝑟 𝑚1, 𝐶 = (1 + 𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1)𝐵(𝑚); if 𝑐𝑆 ≥ (1 +

𝛿)(∑ 𝑐𝑗
𝑛
𝑗=1); (1 + 𝛿)𝐵(𝑚∗) > 𝐴(𝑚∗) and (1 + 𝛿)𝐵(𝑚) < 𝐴(𝑚)

 122

Suppose a decision maker decides to choose avoiding system testing by any means and

testing only components irrespective of what the solution indicates, then he will have to play with

certain parameters to see how his decision affects him. Notice that system testing is warranted only

in three cases (b), (c) and (e) above. For example, if there is no priori information and 𝑐𝑆 ≤

(∑ 𝑐𝑗
𝑛
𝑗=1)(1 + 𝛿); the solution recommends system testing. In order to avoid the system testing,

the decision maker may increase the estimate of cost for one unit of system testing (𝑐𝑆) so that

𝑐𝑆 > (∑ 𝑐𝑗
𝑛
𝑗=1)(1 + 𝛿). By doing this, the decision maker may avoid system testing. However,

since there is no prior information on 𝛿 as well, decision maker will choose more expensive option

just to avoid the system testing.

In the case of prior information being available as suggested in this chapter (𝜆𝐼 ≤ 𝛿𝜆𝐶), then

just by increasing the estimate of cost for one unit of system testing (𝑐𝑆) is not enough to ensure

only component testing. Suppose, 𝑐𝑆 ≤ (∑ 𝑐𝑗
𝑛
𝑗=1)(1 + 𝛿) which warrants system testing as optimal

solution. In order to avoid the system testing, decision maker may choose to increase 𝑐𝑆. But then

the optimal solution may fall into either the case of (e) or (f). If it falls into (f) then no system

testing is necessary. But if it falls into the case of (e) then system testing is still warranted. In order

to avoid this, the decision maker has to look at the condition of (1 + 𝛿)𝐵(𝑚) > 𝐴(𝑚). Since for

a given set of values for 𝛼, 𝛽, 𝑅0, 𝑅1; the values of 𝐴(𝑚), 𝐵(𝑚) are fixed irrespective of which

system. The decision maker would not venture to change the values of 𝛼, 𝛽, 𝑅0, 𝑅1. The only

parameter that can be changed to alter the condition (1 + 𝛿)𝐵(𝑚) > 𝐴(𝑚) is by reducing the

estimate of 𝛿 so that the condition changes to (1 + 𝛿)𝐵(𝑚) < 𝐴(𝑚). In this case, the decision

maker has to choose the assumption that system interfaces are very strong and the interface failure

rate is much smaller. Here the decision maker runs the risk of ignoring interface failure at the final

deployment if in fact interfaces have higher failure rate. Simply testing only components for much

 123

longer period of time will not give any better inference on the system reliability when interfaces

are weaker.

One important point that one should notice is that in all the above case (a) to (f); the value

of 𝑚∗ = 𝐼𝑛𝑓 {𝑚|
(− ln 𝑅1)

(− ln 𝑅0)
≤

𝜙𝑚(1−𝛼)

𝜙𝑚(𝛽)
} is constant for a given set of {𝛼, 𝛽, 𝑅0, 𝑅1}. 𝑚∗ does not

depend upon the number of components in a system. A system of ten components and a system of

one million components will have same 𝑚∗ as long as {𝛼, 𝛽, 𝑅0, 𝑅1} are the same. This needs to be

investigated further in future studies.

5.6 Conclusions

Test plans for demonstrating reliability either recommend system testing or component

testing. This research makes the first effort to combine tests using system as well components for

systems with unreliable interfaces. From a practitioner’s perspective, this is necessary and an

important step in the direction of optimal test plans. The results obtained in this work are intuitive

and are easily applicable to simple series systems. This analysis clearly gives conditions where

only the system is tested or where only the components are tested and also gives conditions where

both system and components are tested. For a given value of 𝛿 (an upper bound on interface

reliability), optimal test plans are very easily determined. For unknown values of 𝛿, one can

experiment with various values to estimate maximum Type 1 and Type 2 errors to get a feel for

the decisions one has to make. It is also worth noting that in instances where it is optimal to do

only component testing, the test times with imperfect interfaces exceed the test times for a system

with perfect interfaces by a factor of (1 + 𝛿) . This is a consequence of the fact that perfect

 124

interfaces ((𝛿 = 0) represent a special case of the more general case with imperfect interfaces.

Finally, if the a priori information on the interface failure rate is available in the form of an

absolute upper bound, i.e., of the form 𝜆𝐼 ≤ 𝑢, it is easy to show that if 𝑢 ≥ ln 𝑅0 the bound is too

large to be of use and the optimum policy calls for pure system tests with 𝑡𝑆 = 𝐵(𝑚∗) units of

time, and if 𝑢 < ln 𝑅0, this is exactly equivalent to solving the problem with a value of 𝛿 = 𝑢/{𝑢 +

(−𝑙𝑛𝑅0}.

In example 1, we assumed that 𝛿 = 0.1. Suppose there were a total of four failures observed,

two at the system level and two at the component level (with 𝑡𝑆 = 8.81, 𝑡𝐶 = 42.13). Since we

have fewer than 𝑚 = 5 failures we are expected to accept the system. However, one would be

reluctant to accept the system because of the fact that there are as many system failures as there

are component failures. If we estimate 𝜆𝐶 =
2

42.13
= 0.0475 and 𝜆𝐼 + 𝜆𝐶 =

2

8.81
= 0.227, then

𝜆𝐼

𝜆𝐶
= 3.78 which is much bigger than 0.1 for 𝛿. Clearly this implies that the estimate of 0.1 for 𝛿

is far too optimistic and one would have to revise this upward suitably and solve the problem with

new value of 𝛿.

 125

6.0 Conclusions

We address two different reliability related problems in this dissertation. The first one

addresses reliability allocation when designing a system and the second addresses testing a new

system before deployment.

6.1 Reliability Allocation Problem

We formulate the problem as a 0-1 integer programming problem, and develop new optimal

as well as heuristic algorithms to solve the problem. In particular, we develop (i) an integer

programming formulation and define appropriate valid inequalities for our formulation, and (ii)

two heuristics: a nested simulated annealing algorithm and an evolutionary algorithm that uses a

penalty function analogy. In the integer programming approach, the original formulations are all

nonlinear integer programs except for simple series and simple parallel systems (which are integer

linear programs). An iterative procedure is proposed where a single infeasible integer solution is

eliminated at each iteration until the optimal solution is found. In the simulated annealing method,

a nested approach is proposed where the outer algorithm addresses feasibility while the inner

algorithm nudges the solution to optimality. In the evolutionary algorithm, a dynamic penalty

approach is used to also penalize feasible solutions that might be far away from the optimum and

to accelerate the search process so that convergence to an optimal solution is quicker. The integer

programming approach guarantees an optimal solution, whereas, the other two solutions offer near

 126

optimal solutions, but with much quicker computational times. In the following subsections, we

provide suggestions to improve upon these procedures.

 Conclusions And Future Research Directions: Integer Programming

The algorithm presented in Chapter 3 eliminates a single infeasible integer solution at each

iteration. Hence any better optimum-seeking procedure for large systems, should be aimed at to

either (i) eliminating more infeasible integer solutions at each iteration from the region within the

relaxation that is infeasible for the original problem, or (ii) eliminating an entire section of this

region rather than a single point. Ideally, this elimination procedure should involve additional

linear inequalities that can be easily handled. In sections 3.7 and 3.8, we identify a class of

additional disjunctive systems for SP and PS. The next step would be to use these inequalities to

develop better procedures.

For SP, these disjunctive systems can yield additional valid inequalities which strengthen

the linear relaxation by eliminating a significant portion of the region from the relaxation that is

not of interest. Since adding additional constraints increases the portion of this region that is

eliminated but also adds to computational effort, it remains to be studied how one can decide on

the appropriate number of valid inequalities to be added at each iteration, and develop an

appropriate algorithm for solving our problem. For PS, the disjunctive systems do not yield a

straightforward linearization and the feasible region is nonconvex, so that an approach such as the

one suggested for SP is not possible. However, it might be possible to use the inequalities

developed in Section 3.8 to develop a better branching scheme within a branch-and-bound

procedure, and this is an avenue open for further research.

 127

 Conclusions And Future Research Directions: Metaheuristics

In Chapter 4, the first metaheuristic described is a nested simulated annealing algorithm that

we developed. In this procedure, two simulated annealing procedures are used. The outer SA

addresses feasibility and allows the algorithm to move to an infeasible point (unlike with

traditional SA) while gradually making such a move more and more difficult as the algorithm

progresses. The rationale here is that a “neighborhood” is not easy to define for our problem and

determining whether a neighboring point is feasible can be computationally inefficient. On the

other hand, the inner SA takes the current point provided by the outer algorithm and drives the

search towards an optimal solution. This type of an approach has general appeal and can be used

for any problem where generation of feasible solutions is difficult. The end results are satisfactory,

but in our attempts, optimal solutions are not found using this approach. In future research, one

could vary the algorithm parameters to study how the algorithm performs with these changes to

determine better settings for these, or to develop some specific parameter functions that suit the

problems at hand so that optimal solutions may be found more consistently in the search. Given

the relatively low computational times, such an effort is worthwhile.

The second metaheuristic developed is an evolutionary algorithm that uses a dynamic

penalty function. The penalty function is novel in that it is applied to infeasible solutions as well

as feasible solutions that are considered as being “undesirable.” The dynamic penalty function

used in this research can also be used to address other optimization problems. Our work shows

that this type of a dynamic penalty function accelerates the solution procedure and at least in the

case of our problem, drives the search to the optimal solution at every attempt. However, the

parameters of the search algorithm needed to be tweaked in order to achieve such results. In future

 128

research, one might investigate the nature of the parameters used in the algorithm in order to arrive

at more robust and problem independent parameter setting.

 Reliability Decay Functions

Every component in a system comes with a reliability value at the beginning. But the

reliability diminishes over time for any such component. Such diminishing reliability can be

modeled using a Decay function. Every component in a system has a definite life span. Even if the

component is highly reliable at the time of first use, its eventual decline is certain. Mechanical

systems, Civil structures etc. all decline in terms of reliability over time. In most system design

problems, many addressed the problem as reliability allocation problem where individual

component reliabilities are determined at minimum cost while making sure that certain system

reliability criterion is met, and in some cases, redundant components are added to increase system

reliability and tried to determine the optimal redundancy at each component level. However, all

these design problems are valid but none of these works addressed an important aspect which is

the decaying of the component and/or system. It is only guaranteed that system works for a certain

design period but how healthy system functions during that process is not considered in design

stages itself. We can define a decay function to highlight the process of decaying of each

component as well as the system.

6.1.3.1 Definitions

Let Rio is reliability of a component at the time of initial use. Over time its reliability is

reducing and the relationship between initial reliability and the reliability after certain time ‘t’ is

given below:

 129

𝑹𝒊𝒐: Starting Reliability

𝑹𝒊𝒕: Reliability at time ‘t’

𝑹𝒊𝒕= 𝑹𝒊𝒐. 𝒆−𝑫𝒊 (𝒕)

Where 𝑫𝒊(𝒕) is a function of time ‘t’ and defined as ‘Decay Function’. It is a positive and

increasing function in time. The boundary conditions are Di(0) = 0, Di(∞) = ∞

The exponential form of the equation is valid and it can be shown easily so.

Suppose 𝑅𝑖𝑡= 𝑅𝑖𝑜 . 𝑓(𝑡) where f(t) is some arbitrary function of time t. Then without losing

generality, f(t) can be written as 𝑒 𝑙𝑛(𝑓(𝑡)). In that case, ln(f(t)) can be equated to –Di(t). Since the

reliability decreases overtime, assumption of Di(t) being an increasing function of time t is valid.

when t = 0; 𝑹𝒊𝒕 = 𝑹𝒊𝒐; and when t = ∞; 𝑹𝒊∞ = 𝟎; since 𝐥𝐢𝐦
𝒕→ ∞

𝑫𝒊(𝒕) = ∞.

For a better understanding of Decay Function, let us observe the definition of reliability.

According to the Department of Defense: “Reliability is the probability that an item will perform

a required function without failure under stated conditions for a stated period of time.”

Suppose td is design time. Then traditional reliability definition says that 𝑅𝑖0 = Pr (𝑇 ≥

𝑡𝑑). Here we define the reliability at time t as 𝑅𝑖𝑡 = Pr (𝑇 ≥ 𝑡 + 𝑡𝑑). Based on the earlier

definition using decay function and combining this definition gives:

𝑅𝑖𝑡= 𝑅𝑖𝑜 . 𝑒−𝐷𝑖 (𝑡) ⟹ 𝐷𝑖(𝑡) = −ln (
𝑅𝑖𝑡

𝑅𝑖0
) = − ln (

Pr(𝑇≥𝑡+𝑡𝑑)

Pr(𝑇≥𝑡𝑑)
) = − ln (

1−𝐹(𝑡+𝑡𝑑)

1−𝐹(𝑡𝑑)
)

Where T is the random variable representing life time of component i and F(t) is probability

distribution function of T.

For example, if lifetime of a component is exponentially distributed with a parameter 𝜆 and

is represented by 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡. Then clearly 𝐷𝑖(𝑡) = − ln (
𝑒−𝜆(𝑡+𝑡𝑑)

𝑒−𝜆𝑡𝑑
) = 𝜆𝑡.

 130

6.1.3.2 Future Work Using Decay Functions

Most systems are designed with a specific period in consideration such as warranty period.

However, users tend to use the products well beyond that warranty period. For example, an

automobile comes with a warranty of 7 years or 100000 miles whichever is earlier. But most

drivers like to use the automobile well beyond that warranty. Some automobiles begin to falter as

soon as they cross their warranty period while some other automobiles function much better well

beyond their warranty period. This can be ascertained at the design stage itself if their decay

functions are available. Products with severe decay may incur heavy maintenance costs while

products with milder decay incur much lesser maintenance costs. Hence maintenance costs may

play major role in deciding the selection of the final system and not just initial cost at purchase

time. The decay functions can be strategically used to estimate the maintenance costs. Research in

this direction is ongoing and we will publish that research in the near future.

6.2 Optimal Test Plans

The second reliability problem we consider is testing prior to deployment. Optimal test plans

are developed in this work for a simple series system with imperfect interfaces where both system

level testing and component level testing are considered simultaneously. The results are very

intuitive and easy to understand, and show that the best approach depends on the ratio 𝜆𝐼/𝜆𝐶(=

𝛿) of the failure rates of the interface and the components, and what we know about the value of

𝛿. In the absence of any information on interface reliability, one could experiment with reasonable

values for 𝛿 to see what the optimal plans dictate. One could be very liberal in the beginning by

 131

assuming a very low value for 𝛿 and progressively correct that estimate by making observations

from some initial testing.

Even though this research makes an important first step, more research is warranted with

consideration of (i) other distributions for failure times of components and interfaces such as

Weibull or Gamma, (ii) other test rules instead of the “sum” rule we adopted and, (iii) other forms

of a priori information such as simple upper bounds on interface failures as well as bounds on

individual component failure rates.

 132

Appendix

Figure 17: Φm (β) Values – Part 1

 133

Figure 18: Φm (β) Values – Part 2

 134

Figure 19: Φm (β) Values – Part 3

 135

Bibliography

1. Agarwal, K.K., Gupta, J.S., and Misra, K.B., A New heuristic criterion for solving a

redundancy optimization problem, IEEE Transactions on Reliability, v R-24, Apr. 1975,

pp 86-87.

2. Alice Yalaoui, Chengbin Chu, Eric Chaˆtelet, Reliability allocation problem in a series–

parallel system, Elsevier, Reliability Engineering and System Safety 90 (2005) 55–61

3. Altinel, I.K. (1992), “The Design of Optimum Component Test Plans in the Demonstration

of a Series System Reliability,” Computational Statistics and Data Analysis, 14, 281-292.

4. Altinel, I.K. (1994), “The Design of Optimum Component Test Plans in the Demonstration

of System Reliability,” European Journal of Operations Research, 78, 97-115.

5. Altinel, I.K. and Ozekici, S. (1997), “A Dynamic Model for Component Testing,” Naval

Research Logistics, 44, 187-197.

6. Altinel, I.K. and Ozekici, S. (1998), “Optimum Component Test Plans for Systems with

Dependent Components,” European Journal of Operations Research, 111, 175-186.

7. Back, T., Hoffmeister, F., and Shwefel, H.P., A Survey of Evolution Strategies,

Proceedings of 4th International Conference on Genetic Algorithms, 1991

8. Balas, E. (1979). Disjunctive programming. Annals of discrete mathematics, 5, 3-51.

9. Bean, J.C., and Hadj-Alouane, A.B., A Dual Genetic Algorithm for Bounded Integer

Programs, Technical Report 92-53, University of Michigan

10. Brusco, M.J. and Jacobs, L.W., A Simulated Annealing Approach to the Cyclic Staff-

Scheduling Problem, Naval Research Logistics, v 40, 1993, pp 69-84

11. Bulfin, R.L., and Liu, C.Y., Optimal Allocation of Redundant Components for Large

Systems, IEEE Transactions on Reliability, 34, 1985, 241-247.

 136

12. Cateanu, V.M., Popentiu, F., and Gheorgiu, M, A Reliability Optimization Computer

Algorithm for Complex Systems, Microelectronics Reliability, v 26, no. 6, 1986, pp

1019-1023.

13. A. O. Charles Elegbede, Chengbin Chu, Member, IEEE, Kondo H. Adjallah, and Farouk

Yalaoui, Reliability Allocation Through Cost Minimization, IEEE TRANSACTIONS

ON RELIABILITY, VOL. 52, NO. 1, MARCH 2003, 106-111

14. Cheung, R. C., (1980), “A User-Oriented Software Reliability Model,” IEEE Transactions

on Software Engineering, SE-6, 118-125.

15. Coit, D. and Smith, A.E., Reliability Optimization of Series-Parallel Systems Using a

Genetic Algorithm, IEEE Transactions on Reliability, 45, 1996, 254-260.

16. Coit, D. and Smith, A.E., and David M. Tate, Adaptive Penalty Functions For

Constrained Combinatorial Problems, INFORMS Journal on Computing, v 8, No 2,

Spring 1996.

17. Cruz J. A., Applicability and Limitations of Reliability Allocation Methods,Technical

Report, National Aeronautics and Space Administration, Glen Research Center,

Cleveland, Ohio, November 2016, [This report is available in electronic form at

http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/]

18. Easterling, R.G., Mazumdar, M., Spencer, F.W., and Diegert, K.V. (1991), "System Based

Component Test Plans and Operating Characteristics: Binomial Data", Technometrics, 33,

287-298.

19. Eglese, R.W., Simulated Annealing: A tool for Operational Research, European Journal

of Operational Research, v-46, 1990, 271-281

http://ntrs.nasa.gov/

 137

20. El-Neweihi, E,. Proschan, F. and Setheraman, J, Optimal Allocation of Components in

Parallel-Series and Series-Parallel Systems, Journal of Applied Probability, 23, 1986,

770-777.

21. El-Neweihi, E,. Proschan, F. and Setheraman, J, Optimal Assembly of Systems Using

Schur Functions and Majorization, Naval Research Logistics, 34, 1987, 705-712

22. El-Neweihi, E,. Proschan, F. and Setheraman, J, Optimal Allocation of Multistate

Components, Handbook of Statistics, 7, 1988, 427-432

23. Fyffe, D.E., Hines, W.W and Lee, N.K., System Reliability Allocation and a

Computational Algorithm, IEEE Transactions on Reliability, Vol. R-17, No 2, 1968, 64-

69

24. Gal, S. (1974), "Optimal Test Design for Reliability Demonstration," Operations Research,

22, 1236-1242.

25. Glover, F., Tabu Search, ORSA Journal on Computing, v 1, 1989, pp 190-206

26. Glover, F., Tabu Search – Part II, ORSA Journal on Computing, v2, 1989, pp 4-32

27. Hu B., Xie K., and Tai H., Optimal Reliability Allocation of ±800 kV Ultra HVDC

Transmission Systems, IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 33,

NO. 3, JUNE 2018

28. Inagaki, T., Inoue, K. and Akashi, H., Interactive optimization of system reliability under

multiple objectives, IEEE Transactions on Reliability, v-27, 1978, 264-267

29. Jacobson, D.W. and Arora S.R., Simultaneous Allocation of Reliability and Redundancy

Using Simplex Search, Proceedings of Annual Reliability and Maintainability

Symposium, IEEE, 1996, 243-250

 138

30. Jin, T. and Coit, D. (1999), "Allocation of Test Units to Minimize System Reliability

Estimation Variability," Rutgers University Industrial Engineering Department, Working

Paper 99-122.

31. Kanagaraj, G. and Jawahar, N., A Simulated annealing algorithm for optimal supplier

selection using the reliability-based total cost of ownership model, HomeInternational

Journal of Procurement Management, Vol 2, No 3, May 2009, 244-266

32. Kattele, J.D., Least-Cost allocation of reliability investment, Operations Research, vol.

10, 1967, 249-265

33. Kececioglu, D., Reliability Engineering Handbook, 1991, Prentice Hall, Engelwood

Cliffs, NJ

34. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Optimization by Simulated annealing,

Science, v-220, 1983, 671-680

35. Kontoleon, J.M., Optimal Link Allocation of Fixed Topology Networks, IEEE

Transactions on Reliability, 28, 1979, 145-147

36. Leemis, L.M., Reliability: Probabilistic Models and Statistical Methods, 1995, Prentice-

Hall, Engelwood Cliffs, New Jersey

37. Majety, Subba Rao V., Milind Dawande, and Jayant Rajgopal. "Optimal reliability

allocation with discrete cost-reliability data for components." Operations Research 47,

no. 6, 1999, 899-906.

38. Majety, Subba Rao V. and Rajgopal, J., Dynamic Penalty Function for Evolutionary

Algorithms with an application to reliability allocation, Proceedings of the Sixth

International Industrial Engineering Research Conference, pp. 36-41. 1997.

39. Majety, Subba Rao V., Srikanth Venkatasubramanian, and Alice E. Smith., Optimal

reliability allocation in series parallel systems from component’s discrete cost–reliability

 139

data sets: a nested simulated annealing approach, Proceedings of the Fifth International

Industrial Engineering Research Conference, pp. 435-440. 1996.

40. Malaiya, Yashwant K., "Reliability allocation", Encyclopedia of Statistics in Quality and

Reliability 4 (2008).

41. Malon, D., Optimal Consecutive-2-out-of-n:F Component Sequencing, IEEE

Transactions on Reliability, 33, 1984, 414-418

42. Mann, N.R., Schafer, R.E., and Singpurwalla, N.D. (1974), Methods for Statistical

Analysis and Life Data, New York: John Wiley.

43. Mazumdar, M. (1977), "An Optimum Procedure for Component Testing in the

Demonstration of Series System Reliability", IEEE Transactions on Reliability, R-26, 342-

345.

44. Mazumdar, M. (1980), "An Optimum Component Testing Procedure for a Series System

with Redundant Subsystems”, Technometrics, 22, 23-27.

45. Mazumdar, M. and Rajgopal, J. (2000) “Minimum Cost Test Plans for a Series System

with Imperfect Interfaces", in Perspectives in Statistical Science, (Basu, A.K., Ghosh, J.K.,

Sen, P.K. and Sinha, B.K., Eds.), Oxford University Press, New Delhi.

46. MIL-HDBK-781 (1987), Washington: Department of the Navy, Space and Naval Warfare

Systems Command, Washington DC 20363, July 14, 1987.

47. Nakagawa, Y., and Nakashima, K., A Heuristics Method for Determining Reliability

Allocation, IEEE Transactions on Reliability, v R-26, Aug 1977, pp 156-161

48. Poore, J. H., Mills, H. D., and Mutchler, D., (1993), “Planning and Certifying Software

Systems Reliability,” IEEE Software, 88-99.

49. Ppastavridis, S.G. and Sfakianakis, M., Optimal-Arrangement and Importance of the

Components in a consecutive-k-out-of-n:F System, IEEE Transactions on Reliability, 40,

1991, 277-279

 140

50. Raghavachari, M. (1998), “A Note on Optimal Component Test Plans for Series System

Reliability With Exponential Failure Times,” Technometrics, 40, 345-347.

51. Rajgopal, J., and Mazumdar, M. (1988), "A Type-II Censored, Log Test-Time Based

Component Testing Procedure for a Parallel System", IEEE Transactions on Reliability,

37, 406-412.

52. Rajgopal, J., Mazumdar, M. and Savits T. (1994), "Some Properties of the Poisson

Distribution with an Application to Reliability Testing," Probability in the Engineering

and Informational Sciences, 8, 345-354.

53. Rajgopal, J., and Mazumdar, M., (1995), "Designing Component Test Plans for Series

System Reliability via Mathematical Programming", Technometrics, 37, 195-212.

54. Rajgopal, J., and Mazumdar, M., (1996) “A System Based Component Test Plan for a

Series System, with Type-II Censoring,” IEEE Transactions on Reliability, 45(3), 375-378.

55. Rajgopal, J., and Mazumdar, M., (1997) "System Based Component Test Plans for

Reliability Inferences," Frontiers in Reliability, (Basu et al., Eds.), World Scientific Press,

Singapore, pp. 295-302, 1998.

56. Rajgopal, J., and Mazumdar, M., (1997) “Minimum Cost Component Test Plans for

Demonstrating Reliability of a Parallel System”, Naval Research Logistics, 44, 401-418,

1997.

57. Rajgopal, J., Mazumdar, M., and Majety, S.V. (1999) "Optimum Combined Test Plans for

Systems and Components," IIE Transactions, 31(6), 481-490.

58. Rajgopal, J. and Mazumdar, M. (2001), “System-based component test plans for reliability

demonstration: A review and survey of the state-of-the-art”, Handbook of Statistics,

Volume 20, Chapter 25, 659-677

59. Rajgopal, Jayant, Mainak Mazumdar, Subba Rao Majety, and Vikram Talada. "Modular

Test Plans for Certification of Software Reliability." IEEE Trans. Software Eng. (2001).

 141

60. Saad Abbas Abed, Hatem Kareem Sulaiman, and Zahir Abdul Haddi Hassan, Reliability

Allocation and Optimization for (ROSS) of a Spacecraft by using Genetic Algorithm, IOP

Conf. Series: Journal of Physics: Conf. Series 1294 (2019) 032034

61. Sankar, S. and Vellaisamy, P. (2000), “Two-Stage Component Test Plans for Testing the

Reliability of a Series System,” Department of Mathematics, Indian Institute of

Technology, Powai, Mumbai 400076, India.

62. Sharma, J., and Venkateswaran, K.V., A direct method for maximizing the system

reliability, IEEE Transactions on Reliability, v R-20, Nov 1971, pp 256-259

63. Shubin Si, Mingli Liu, Zhongyu Jiang, Tongdan Jin, and Zhiqiang Cai , Member, IEEE

System Reliability Allocation and Optimization Based on Generalized Birnbaum

Importance Measure, IEEE Transactions on Reliability, Vol. 68, No. 3, September 2019,

831-843

64. Tillman, F.A., and Littschwager, J.M., Integer Programming formulation of constrained

reliability problems, Management Science, v 13, July 1967, pp 887-899

65. Tillman, F.A., Hwang, C.L., Fan, L.T., and Balbale, S.A., Systems reliability subject to

multiple nonlinear constraints, IEEE Transactions on Reliability, v R-17, Sept 1968, pp

153-157

66. Tillman, F.A., Hwang, C.L., and Kuo, W., Determining component reliability and

redundancy for Optimal System Reliability, IEEE Transactions on Reliability, v R-26,

Aug 1977, pp 162-165

67. Tillman, F.A., Hwang, C.L., and Kuo, W., Optimization of Systems Reliability, 1980,

Marcel Dekker Inc., New York, NY

68. Way Kuo, and Rui Wan, Recent Advances in Optimal Reliability Allocation, IEEE

Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 37,

no. 2, march 2007, 143-156

 142

69. Woodhouse, C.F., Optimal Redundancy Allocation by Dynamic Programming, IEEE

Transactions on Reliability, Vol. R-21, No. 1, 1972, 60-62

70. Yan, J.H., and Mazumdar, M. (1986), "A Comparison of Several Component Testing Plans

for a Series System”, IEEE Transactions on Reliability, R-35, 437-443.

71. Yan, J.H., and Mazumdar, M. (1987b), "A Component Testing Plan for a Parallel System

with Type II Censoring,” IEEE Transactions on Reliability, R-36, 425-428.

72. Yan, J.H., and Mazumdar, M. (1987a), "A Comparison of Several Component Testing

Plans for a Parallel System," IEEE Transactions on Reliability, R-36, 419-424.

73. Zuo, M.J., and Shen, J., System Reliability Enhancement Through Heuristic Design,

OMAE-Volume II, Safety and Reliability, ASME, 1992, 301-304

74. Sang Hwa Jin, Yeong-Koo Yeo, Il Moon, Yonsoo Chung, and In-Won Kim, Equipment

selection for the optimal system unavailability of jacketed reactors with discrete cost data,

Elsevier-Journal of Loss Prevention in the Process Industries 16 (2003) 443–448

75. Benedict K. Nmah, Shorter Searches for Least-Cost Allocations of Redundancy,

AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH, 2015, 6(6):

116-122

76. Michel José Anzanello , A simplified approach for reliability evaluation and component

allocation in three-state series and parallel systems composed of non-identical components,

Gest. Prod., São Carlos, v. 16, n. 1, p. 54-62, jan.-mar. 2009

77. Harish D. Goel, Margot P. C. Weijnen, and Johan Grievink, Optimal Reliable Retrofit

Design of Multiproduct Batch Plants, Ind. Eng. Chem. Res. 2004, 43, 3799-3811

78. Y. P. Aneja, R. Chandrasekaran, and K. P. K. Nair, Minimal-Cost System Reliability With

Discrete-Choice Sets for Components, IEEE TRANSACTIONS ON RELIABILITY,

VOL. 53, NO. 1, MARCH 2004, pp 71-76

79. Ahmad A. Moreb, ALLOCATING REPAIRABLE SYSTEM’S RELIABILITY

SUBJECT TO MINIMAL TOTAL COST - AN INTEGER PROGRAMMING

APPROACH, JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING

(Dec 2007) 16(4): 499-506

 143

80. B. Kaushik, N. Kaur, A.K. Kohli, Achieving maximum reliability in fault tolerant network

design for variable networks, Elsevier Applied Soft Computing 13 (2013) 3211–3224

81. Baijnath Kaushik, Navdeep Kaur, and Amit Kumar Kohli, Improved Approach for

Maximizing Reliability in Fault Tolerant Networks, Journal of Advanced Computational

Intelligence and Intelligent Informatics, Vol.17 No.1, 2013, pp 27-41

82. Wei-Chang Yeh, Chien-Hsing Lin, and Yi-Cheng Lin, A MCS Based Neural Network

Approach to Extract Network Approximate Reliability Function, Conference

Paper in Communications in Computer and Information Science, AsiaSim 2007, CCIS 5,

pp. 287–297, 2007

83. Anuj Kumar, Sangeeta Pant and Mangey Ram, System Reliability Optimization Using

Gray Wolf Optimizer Algorithm, Qual. Reliab. Engng. Int., 2017, 33, pp 1327–1335

84. Ganga Negi, Anuj Kumar, Sangeeta Pant and Mangey Ram, OPTIMIZATION OF

COMPLEX SYSTEM RELIABILITY USING HYBRID GREY WOLF OPTIMIZER,

Decision Making: Applications in Management and Engineering Vol. 4, Issue 2, 2021, pp.

241-256

85. Wei-Chang Yeh, Yi-Cheng Lin, Yuk Ying Chung, and Mingchang Chih, A Particle Swarm

Optimization Approach Based on Monte Carlo Simulation for Solving the Complex

Network Reliability Problem, IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO.

1, MARCH 2010, pp 212-221

86. Sangeeta Pant, Anuj Kumar and Mangey Ram, Reliability Optimization: A Particle Swarm

Approach, Advances in Reliability and System Engineering, Springer, Mangey Ram J.

Paulo Davim Editors, Management and Industrial Engineering ISBN 978-3-319-48874-5,

2017, pp 163-187

87. W. C. Yeh, An interactive augmented max-min MCS–RSM method for the multi-objective

network reliability problem, International Journal of Systems Science Vol. 38, No. 2,

February 2007, 87–99

88. P. K. Kapur, A. K. Bardhan and P. C. Jha, Optimal Reliability Allocation Problem for a

Modular Software System, OPSEARCH, Vol. 40, No. 2, 2003, pp 138-148

 144

89. Kevin Y.K. NG and NGF Sancho, A Hybrid ‘dynamic programming/depth first search’

algorithm, with an application to redundancy allocation, IIE Transactions, 2001, VOL 33,

pp 1047-1058

90. Kang, Keebom; Doerr, Kenneth H.; Apte, Uday; Boudreau, Michael, Decision Support

Models for Valuing Improvements in Component Reliability and Maintenance, Military

Operations Research, Vol. 15, No. 4, 2010, pp 55-68

91. A. Salmasnia; E. Ameri , A. Ghorbanian; and H. Mokhtari , A multi-objective multi-state

degraded system to optimize maintenance/repair costs and system availability, Scientia

Iranica, Transactions E: Industrial Engineering 24 (2017) 355-363

92. U Dinesh Kumar, J E Ramı´rez-Ma´rquez, D Nowicki, and D Verma, Reliability and

maintainability allocation to minimize total cost of ownership in a series-parallel system,

Proc. IMechE Vol. 221 Part O: J. Risk and Reliability, 2007, pp 133-140

93. Jing Wang &Mian Li, Redundancy Allocation for Reliability Design of Engineering

Systems With Failure Interactions, Transactions of the ASME, Journal of Mechanical

Design, MARCH 2015, Vol. 137, pp 031403-1 to 031403-8

94. G. Kanagaraj and N. Jawahar, A Simulated annealing algorithm for optimal supplier

selection using the reliability-based total cost of ownership model, International Journal of

Procurement Management, Vol. 2, No. 3, 2009, pp 244-266

95. Rashika Gupta and Manju Agarwal, Penalty guided genetic search for redundancy

optimization in multi-state series-parallel power system, Journal of Combinatorial

Optimization, 2006, vol 12, pp 257-277

96. M.H. Heydari, K.M.Sullivan and E.A.Pohl, Optimal Allocation of Testing Resources in

Reliability Growth, Proceedings of 2014 Industrial and Systems Engineering Research

Conference

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	1.0 Introduction
	1.1 Reliability Allocation
	1.1.1 Problem Background
	Figure 1: System configurations

	1.1.2 Some Applications
	1.1.3 Problem Formulation
	1.1.4 Redundancy Allocation And Redundancy Design Problems
	1.1.5 Prior Solution Strategies And Their Limitations
	Figure 2: Cost vs. Reliability relationships for components

	1.2 Test Plans For Systems And Components
	1.2.1 Introduction
	1.2.2 Problem Formulation
	1.1
	1.2

	1.2.3 Difficulties Associated With The Optimization Problem

	1.3 Research Objectives
	1.4 Organization Of This Document

	2.0 Literature Review
	2.1 Reliability Allocation
	2.1.1 Introduction
	2.1.2 The Reliability Allocation Problem
	2.1.3 Redundancy Allocation
	2.1.4 Redundancy Allocation In A Design Context
	2.1.5 Reliability Allocation In The Context Of Assembly
	2.1.6 Motivation For Our Research
	2.1.7 Integer Programming
	2.1.8 Simulated Annealing
	2.1.9 Evolutionary Strategy Approach

	2.2 Optimum Test Plans
	2.1
	2.2
	2.2.1 Testing Of Series Systems
	2.2.2 Testing Of Parallel Systems
	2.3

	2.3 Review Of Literature That Followed The Research Presented In This Document
	2.3.1 Similar Formulations With Other Solution Approaches
	2.3.1.1 Grey Wolf Optimization
	2.3.1.2 Particle Swarm Optimization
	2.3.1.3 Neural Network Approach

	2.3.2 Different Formulations With Similar Goals
	2.3.3 Different Formulations With Different Goals

	3.0 Integer Programming Approach
	3.1 Introduction And Notation
	3.2 Problem Formulations
	3.1
	3.2
	3.3
	3.4
	Figure 3: An Example of a system and the derived SP, PS systems
	(i)
	(ii)
	(iii)
	3.2.1 Simple Series Systems
	3.5
	3.6

	3.2.2 Simple Parallel Systems
	3.7
	3.8

	3.2.3 Series-Parallel (SP) Systems
	3.9
	3.10
	3.11

	3.2.4 Parallel -Series (PS) Systems
	3.12
	3.13
	3.14

	3.2.5 K-out-of-N Systems
	3.15
	3.16

	3.3 Linear Relaxations To NLIP Formulations
	3.3.1 Problem SP0
	3.17
	3.18
	3.19
	3.20
	3.21
	(a)
	(b)
	(c)
	Figure 4: Feasible Regions for SP and SP0

	3.3.2 Problem PS0
	3.22
	3.23
	3.24
	3.25
	Figure 5: Feasible regions for PS and PS0

	3.3.3 Problem T0
	3.26
	3.27

	3.4 An Algorithm To Solve For Optimal Solutions
	3.5 Examples And Observations
	Table 1: Reliability data matrix {pijk}
	Table 2: Cost data matrix {cijk} for example problems

	3.6 Strength of SP0 and PS0
	Figure 6: The gap between (a) SP0 and SP (b) PS0 & PS
	Table 3: Reliability Data Matrix {pijk}
	Table 4: Cost data matrix { ,𝒄-𝒊𝒋𝒌.} for example problems
	Table 5: Optimum configuration for Series-Parallel system for RS = 0.99

	3.7 Acceleration Schemes For The Algorithm
	3.7.1 Additional Disjunctive Inequalities To Strengthen LP Relaxation SP0
	Figure 7 : Disjunctive systems for reliability constraint for SP

	3.7.2 Valid Inequalities For SP From A Disjunctive System
	3.7.3 Additional Disjunctive Inequalities To Strengthen LP Relaxation PS0
	Figure 8: Disjunctive systems for reliability constraint for PS

	4.0 Heuristic Approaches To Solving The Reliability Allocation Problem
	4.1 Introduction
	4.2 A Nested Simulated Annealing Algorithm
	4.2.1 Initial Feasible Solution
	4.2.2 Neighboring Solution
	4.2.3 Examples And Results
	4.2.4 Example 1
	4.2.5 Example 2
	Table 6: Cost and reliability data for Example 1 { cijk }
	Table 7: Cost data for additional components in Example 2: { cijk }
	Table 8: Summary of results for Examples 1 and 2 with nested SA over 30 runs of each

	4.3 An Evolutionary Algorithm
	4.3.1 Penalty Function
	4.3.2 Evolution Strategy
	4.3.3 Encoding
	4.3.4 Recombination
	4.3.5 Mutation
	4.3.6 Structure Of Penalty For The Reliability Allocation Problem
	Figure 9: Penalty function

	4.3.7 Examples And Results
	Figure 10: (a) SP system (b) PS system
	Table 9: Reliability – Cost data for examples
	Figure 11: Convergence of ES for SP with option-1
	Figure 12: Convergence of ES for SP with option-2

	4.4 Conclusions

	5.0 Optimum Test Plans
	5.1 Introduction
	5.2 Notation
	5.3 Problem Formulation
	5.1
	5.2
	5.3
	5.3.1 Case 1: No Prior Information Available On Interface Reliability
	5.4
	5.5
	5.6
	5.7
	5.8
	5.9
	5.10
	5.11
	5.12
	5.13
	5.14

	5.3.2 Case 2: Using Prior Information On Interface Reliability
	5.15
	5.16
	5.3.2.1 Scenario 1
	5.3.2.2 Scenario 2
	5.3.2.3 Scenario 3
	5.17
	5.18
	Figure 14: Minimum test costs corresponding to different values of m

	5.3.3 Estimating Maximum Type 1 And Type 2 Error Probabilities
	5.19
	5.20

	5.4 Example Problems
	5.4.1 Example 1
	Figure 15: Minimum total test cost as a function of system test costs

	5.4.2 Example 2
	Figure 16: Minimum total test cost as a function of δ

	5.4.3 Example 3
	Table 10: Maximum Type 1 and Type 2 error probabilities for various δ

	5.5 Some Comments
	5.6 Conclusions

	6.0 Conclusions
	6.1 Reliability Allocation Problem
	6.1.1 Conclusions And Future Research Directions: Integer Programming
	6.1.2 Conclusions And Future Research Directions: Metaheuristics
	6.1.3 Reliability Decay Functions
	6.1.3.1 Definitions
	6.1.3.2 Future Work Using Decay Functions

	6.2 Optimal Test Plans

	Appendix
	Figure 17: Φm (β) Values – Part 1
	Figure 18: Φm (β) Values – Part 2
	Figure 19: Φm (β) Values – Part 3

	Bibliography

