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Chapters on Reliability

Subbarao Venkata Majety, PhD

University of Pittsburgh, 2022

In this research two problems related to system reliability are addressed: the first is

commonly referred to as the reliability allocation problem, and the second problem is the
development of a class of optimum test plans for demonstrating system reliability.
The reliability allocation problem addressed in this research is for discrete cost-reliability data sets.
Integer programming formulations are presented and solutions are developed based on three
approaches: (i) integer programming, (ii) simulated annealing, and (iii) evolutionary algorithms.
Except for simple series and simple parallel systems, the integer programs formulated are non-
linear. Specifically, Series-Parallel (SP) and Parallel-Series (PS) systems are discussed in detail in
this research. With the integer programming approach, linear relaxations are developed for the
systems and an iterative procedure is developed to solve the problems. In this iterative procedure
a single infeasible solution is eliminated at each iteration until a feasible optimal solution is
achieved. With the simulated annealing approach, a nested algorithm is developed, where an inner
process focuses on optimality while an outer one focuses on feasibility. With the evolutionary
algorithm, a dynamic penalty approach is used to accelerate the convergence of the algorithm to a
good solution.

The second topic addresses test plans for systems and components. In the development of
any system, testing is very important to ensure that a good system is accepted while a bad system
is rejected. In this research, we address a series system with the possibility of interface failures.

For these systems our research evaluates when the less expensive approach of testing only
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components is good enough, when it is necessary to test the whole system, and when a combination

of component and system tests might be best.
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1.0 Introduction

In this research we address two distinct problems associated with system reliability. Both
problems are focused on the design stage. First, it is important to select each component in the
system (along with its associated reliability) so as to ensure that the system reliability exceeds
some minimum desired level. At the same time, the reliability of each component comes with a
cost associated with it. Hence it is important that simultaneously the overall cost of the system is
also kept at a minimum. Second, once reliability allocation of the system has been addressed at the
design stage, tests are needed to ensure that the system meets reliability requirements prior to it
being deployed in the field. These tests may be at the system level where the whole system is
assembled and tested, at the component level where only the components are tested and an
inference on system reliability is made, or a combination of the two. These tests are often costly
and hence it is critical that they be optimally designed. This dissertation addresses these two
problems of reliability allocation and testing for reliability demonstration. In the following

sections, we elaborate on both problems.

1.1 Reliability Allocation

1.1.1 Problem Background

In reliability allocation problem, one wishes to determine the desired reliability levels for

the components that make up a system, given the overall system configuration and possible side



constraints. Most nontrivial systems that consist of many components tend to be expensive, and it
is important that these systems sustain their operations for a long time. In this regard, the reliability
of each component plays a very significant role in determining the overall reliability of the system.
The reliability level of each component in turn, comes with a cost, and the specific choices for
each of the components results in a system of a certain reliability with an associated cost. The
reliability allocation problem thus assumes great importance where the cost of the system has to
be minimized while guaranteeing high reliability for the system, or conversely, where the most
reliable system has to be built given a certain budget.

There are two major thrusts to this research on reliability allocation. First, it will consider
discrete data sets for cost and reliability of components and address the reliability allocation
problem in a system design context. This is distinct from prior research which has focused more
on functional relationship between reliability and cost. Second, new integer programming (IP)
formulations are developed for the problem. These formulations are nonlinear (except in the case
of a simple Series system or a simple Parallel system) primarily due to the complex expressions
for reliability. Linear relaxations are developed, and solution procedures are developed based on
(a) integer programming, (b) simulated annealing and (c) evolutionary algorithms. Since the
problem formulations are integer in nature, an attempt is made to find optimal solutions based on
integer programming. However, the problem formulations are nonlinear in nature, which makes it
very challenging to develop optimum-seeking methods. Thus, even though for some specific
systems, an integer programming approach will work, for more general systems, heuristic
approaches are more suitable. The heuristic approaches developed in this research are more
broadly applicable to many variety of problems. The computing time for a heuristic solution is

also a significant factor in choosing these methods.



A system typically represents an end product designed for use by a customer. Sometimes it
may also represent a unit which becomes an integral part of a larger system. A configuration for
the system is defined based on the functionality of the components within it. For example, a system
is known as a Series System if it fails when any one of its components fails. Similarly, a system is
called a Parallel System if it fails only when all of its components fail. A system with a series
connection of parallel subsystems is called a Series-Parallel (SP) system. Similarly, a system with
a parallel connection of series subsystems is called a Parallel-Series (PS) system. A K-out-of-N
system is one which will function if at least K out of a given N components function.
Configurations for some common systems are shown in Figure 1. In the case of 2-out-of-3 system
depicted in Figure 1, the component numbered 1 in both subsystems represent same component.
In the case of Series-Parallel system and Parallel-Series system shown in the Figure 1, the
components numbered same (for example component numbered 1) in different subsystems

represent different components.

1 subsystem-1 subsystem-2 - - - subsystem-L

H (c) Series-Parallel system

- - 1 2 n
—-_." """ .* subsystem-1

1 2 n,
_.—._ ..... ._ subsystem-2

(b) Simple parallel system H ----- .

subsystem-L

(e) 2-out-of-3 system

Figure 1: System configurations



For a given system configuration, an allocation problem is typically defined as determining
the reliability values of all of its components while optimizing some objective such as the cost or
system reliability and satisfying any specified structural or functional constraints (such as
weight/volume restrictions, minimum required reliability value for the system, and/or specified

limits on the available budget).

1.1.2 Some Applications

System designers are required to consider the reliability of the system as one of the main
factors during the design process. In the competition for higher quality, reliability considerations
at the early design stages acquire new dimensions of importance, but these must also be traded off
against cost. As an example, consider a missile development program. Such programs are usually
very expensive, and a very high reliability of the end product is required for strategic reasons. One
must thus determine a highly reliable design but one that is also cost effective. As another example,
consider the design of a long-distance gas supply line (for example, from Texas to New England).
Since gas cannot be transported for long distances via pipe lines based on simple gradients, motor
pumps are used at regular intervals to lift and pump gas into a continuing pipeline. These motor
pumps are expensive, and their placement within the transportation network needs to be designed
appropriately to ensure a highly reliable system, but one that is also a minimum-cost one. As a
final example, most large commercial and governmental organizations have several supply chain
partners supplying key elements of their products. Since the products are designed and eventually
assembled by the organizations while having to stay within some budget, they need to specify
reliability requirements to the suppliers in order to receive high quality components at competitive
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prices. Hence, it is important for these organizations to do reliability allocation calculations early
in the design stage. In short, when quality control measures are incorporated into designing a
system (or end product), we require reliability target values to be specified for its components in
order to provide an assurance that the system/end product will have some guaranteed minimum
reliability. Furthermore, we will almost always have other considerations (most typically cost, but
possibly, other technological constraints) that must also be considered during this design process.

Following are a few selected examples from the literature. Abed et al. [2019] address the
reliability of a Reduction Oxygen Supply System (ROSS) for a spacecraft. This is a complex
system where the allocation of component reliabilities was determined based on the minimization
of the total cost of the system. The authors used a genetic algorithm approach to solve the reliability
allocation problem. As another example, Hu et al. [2018] address optimal reliability allocation of
+800 kV Ultra HVDC transmission systems. The system architecture comprises several
subsystems in series. Some of these series subsystems are connected in parallel to each other, while
others are connected in series to the system of parallel-connected series subsystems. The
estimation of system reliability is itself a very complex process with many components involved.
The authors use different methods to estimate system reliability and then adopt a genetic algorithm
to optimize the allocation of reliability to components such that cost is minimized.

In summary, reliability allocation within complex multi-component systems lead to
challenging problem formulations with many real-world applications. These have existed for a

long time and will continue to exist in the future.



1.1.3 Problem Formulation

A generic formulation of the reliability allocation problem follows one of the following two
forms:
Problem Al
Minimize C
subject to
R > Rg

Problem A2
Maximize R
subject to
C <Cs
g,(.) =b;, Viel
Here R and C denote the system reliability and system cost respectively, while Rs and Cs
denote the minimum system reliability requirement and maximum budget respectively.
Constraints g,(.) = b; represent other design considerations (e.g., volume/weight) that might be
important and are problem specific.
Problem Al can be viewed as a customer-induced problem since the reliability constraint
originates from customer expectations. Thus, it minimizes the producer’s cost while meeting
customer requirements. On the other hand, Problem A2 can be viewed as a producer’s model in

that it maximizes the system reliability while meeting the producer’s budget constraints. Customer



driven policies are generally more common and we will focus on Problem Al in this work. The
following sections discuss variants or generalizations of reliability allocation problems, viz.

redundancy allocation and redundancy design.

1.1.4 Redundancy Allocation And Redundancy Design Problems

The redundancy allocation problem is a special case of the reliability allocation problem.
For a given system configuration with known component reliability values, the system reliability
may be readily computed in most cases. If this computed value is not satisfactory, then it can be
increased by the addition of redundant components. Clearly component level redundancy is better
than system level redundancy. Thus, for each component, additional redundant units (with the
same reliability value) are added. In such a case, the problem becomes one of finding the optimum
number of redundant units required for each component so that total cost is minimized while some
minimum system reliability level is guaranteed (or reliability is maximized while some budget
limit is not exceeded). The redundancy design problem is similar to the redundancy allocation
problem, but in this case the reliability value for each component level is also a variable to be

determined. This problem may be considered as a further generalization.

1.1.5 Prior Solution Strategies And Their Limitations

It is a known fact that any system can be represented either as a Series-Parallel (SP) system
based on minimal cut sets, or as a Parallel-Series (PS) system based on minimal path sets (Leemis

[1995]). Thus, it is not surprising to see that SP and PS systems have attracted the most attention



from researchers working on reliability allocation. Most of the previous work in this area can be
divided into two broad categories. One emphasizes multiple choices for components, where each
choice comes with known reliability and cost (and sometimes weight, volume, or other features).
The problems, in general, are addressed via integer programming or dynamic programming.
However, from a design point of view the specific problem addressed in most of these formulations
has been the simpler case of redundancy allocation rather than reliability allocation. As is common
in redundancy problems, most of these formulations assume that the reliability of every component
in a subsystem is the same. This restriction is not useful from a design perspective. Nor does it
give rise to any significantly easier solution procedures. The resulting integer programming
formulations are usually nonlinear in nature (primarily due to the reliability expression) and the
commonly recommended solution procedures do not guarantee optimal solutions.

The second category constitutes nonlinear (often, integer nonlinear) formulations where
some functional form is assumed for the relationship between a component’s reliability and its
cost. It is generally true that a component’s cost is an increasing function of its reliability; most
researchers to date adopt exponentially increasing, closed-form functions to relate cost and
reliability. However, in practice such functions are often unknown or difficult to construct. While
such an assumption tends to make the optimization procedures easier, there is no compelling
reason put forth as to why such a relationship is appropriate. On the contrary, Figure 2 shows, the

cost of a component can be a nonconvex and sometimes discontinuous function of its reliability.



0 reliability of component r; 1

Figure 2: Cost vs. Reliability relationships for components

From a manufacturer’s perspective, it is much more reasonable to provide a cost for some
specified reliability of a component, as opposed to providing a precise (and typically, continuous)
cost-reliability relationship. For instance, it might be possible to manufacture the component
(which might be a small subsystem by itself) using different grades of materials, different part
qualities, different configurations, different designs, or different levels of built-in redundancies.
For each of these options, it would be much easier for the manufacturer to specify a reliability
level and quote a price that depends on this level, rather than having to provide a precise
mathematical expression for the cost of the component as a function of its reliability. Indeed, such
a function may well be impossible to determine, especially since the different levels of reliability
that are realizable for the component may be discrete or finite in number. Given this difficulty in
deriving precise mathematical expressions for the cost-reliability curves, an alternative and more
practical/realistic option is to consider discrete cost-reliability data sets for components. In this
research we focus on such data and develop appropriate problem formulations.

The solution procedures to be considered as part of this research are (a) an optimum seeking

approach, namely integer programming (IP), and (b) heuristics, namely (i) nested simulated
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annealing (NSA) and (ii) evolutionary algorithms (EA). As part of the IP approach, problem
specific valid inequalities are generated iteratively to arrive at the optimal solution. Such an
approach guarantees an optimal solution but is usually very time consuming. Heuristics on the
other hand yield “good-enough” solutions that are feasible but not necessarily being optimal.

However, they do so much more quickly and with much lesser computational effort than with IP.

1.2 Test Plans For Systems And Components

1.2.1 Introduction

Every system must go through some testing process that assesses its competence before it is
eventually deployed. The typical goal of the testing program is to demonstrate that the system will
perform at an acceptable level of reliability for the mission for which it was designed. Reliability
is typically expressed as a mean time to failure or as the probability of no failures over some
specified mission time such as a warranty period or a deployment interval. System testing can be
conducted in many ways, for example, (i) only components are tested and inferences on system
reliability are made from that information and how the components are configured to form the
system, (ii) the complete system is assembled and tested and inferences are then made on its
reliability, (iii) some component testing as well as some system testing is done separately, and
inferences on system reliability are then made from the combined results of these tests. It is worth
noting that system-level tests are typically much more expensive than component tests because the
entire system must be assembled before it is tested. They also tend to be more technologically

complex and more difficult to instrument.
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In addition to cost and complexity. component tests have other advantages such as (i) they
take a shorter time to schedule, (ii) they can be done at individual locations by different teams, and
(iii) a system need not be assembled until there is a minimum guarantee that it will perform well,
based on component testing. The interested reader is referred to Rajgopal and Mazumdar [2001]
for more details.

It is also worth mentioning that in addition to the advantages given above, system-based
component tests are also useful in other situations. One example is systems that mix old and new
components. Sometimes a system is an improvement over a previous version of the same system.
Such systems are designed by combining new components and/or new subsystems together with
others that have been successfully used before in earlier designs. In such situations, component
testing to demonstrate a system reliability requirement is particularly effective. A component or a
subsystem that has been used previously requires little or no additional testing and only the new
components require additional testing. The same is true for systems which are evolving
continuously. Also, for complex systems that have several subsystems assembled in different parts
of the world, it makes sense to test individual subsystems to make an inference on overall system
reliability. Once there is a guarantee of overall system reliability, the whole system can then be
assembled.

Much work has been done on expressing the reliability of a system as a function of the
reliabilities of its components, and on using knowledge on the component reliabilities individually
to draw inferences on system reliability. There is abundant literature (e.g., Mann et al. [1974]) on
interval estimates of system reliability based on component test data. However, the same cannot
be said about the proper design of statistically sound, mathematically tractable and economically

desirable component tests designed specifically for drawing inferences on system reliability.
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Research that has directly addressed this aspect of test design will be discussed in the next chapter
on literature review.

One must note that component testing does not necessarily preclude system testing
altogether. There will be instances where system testing is necessary and warranted. Examples
of such situations would be (i) if component failures are not independent, (ii) if interfaces between
components that make up a system are unreliable, or (iii) even if a system designer is simply
uncomfortable with not doing any system testing. However, even in such situations it might be
possible to reduce the amount of (more expensive) system-level testing by combining it with the

results of some (less expensive) component testing.

1.2.2 Problem Formulation

A general formulation for the component-test design problem is now provided (Rajgopal

and Mazumdar [2001]). Suppose a parameter set 8; is associated with each component j of the

system. This parameter set determines the reliability of the component. For example, suppose the

component life time is exponentially distributed. Then the single parameter 4; representing the
failure rate for that component measures its reliability. In such a case 8;=4;. The system reliability

Rs may then be expressed as a function of 84, 85, etc. To be precise let R¢ = f(8) where 8 =
[64,0,,...,0,] is a vector of parameters, and the exact form of the function f depends on the

system configuration (series, parallel, serial connection of parallel systems, etc.). Let C; be the cost
of testing component j; again, C; will depend on the format of the test plan. Let us consider two

sets:
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S1 ={0IRs = f(0) = R,}

1.1
So = {60|Rs = f(8) < Ro}

1.2

Here R, is some specified value below which a system would definitely be considered
unreliable, while R; (>R,,) is some minimal level of desired system reliability (the interval (R,, R;)
is sometimes referred to as a zone of indifference). It may be noted that S; is the set of all
combinations of values for the component reliability parameters that lead to a system with a
definitely acceptable reliability, while S, is the set of all combinations of values that lead to a
system with a definitely unacceptable reliability. Then the problem of minimizing total test costs

subject to constraints on Type 1 and Type 2 error probabilities is stated as follows.

Problem P: Minimize Z = }.; C;
st.  Minimumges, {Prob(Accept the system)} > 1 — «
Maximumgeg, {Prob(Accept the system)} < f8
0<ap<1

The values of Ry, R;, @ and p are typically specified for specific applications. The constants
a and S are suitably low, pre-assigned values representing bounds on Type 1 and Type 2 error
probabilities, respectively. These probability requirements are similar to the ones encountered in
many conventional testing plans; for example, those listed in the Department of the Navy

document MIL-HDBK-781D (1987).

For a given system configuration, Problem P above is a two-stage optimization problem. In

the “inner” stage, assume that we are given a vector of test times t. The probability of accepting
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the system will, in general, be some function of (i) the vector t, and (ii) the reliability parameters
of the components of the system (as represented by the vector 8). Now, there may be many
different vectors 0 in the set S, (each representing some combination of component reliabilities)
that lead to an acceptable system. Hence, for a given t, the probability of system acceptance should
be at least (1-¢) for all 8 € S;. Equivalently, the minimum probability of acceptance across all 8 €
S; should be at least (1-«). This is the first constraint. Similarly, the second constraint imposes a
restriction on the maximum probability of accepting an unacceptable system. Thus, given t, the
LHS of these two constraints lead to two optimization sub-problems (in ) over the sets S; and S,
respectively. If the optimum values of these two subproblems are respectively > (1-«) and < g
then the corresponding vector of test times t is feasible. The “outer” stage optimization problem

aims to find among all such feasible t, the vector that also minimizes the objective function.

1.2.3 Difficulties Associated With The Optimization Problem

Problem P represents the optimization problem in its most general form. The parameters, the
reliability expression, the costs for testing, the sets of parameters leading to definite acceptance or
rejection, and the mathematical representation of the two constraints in the optimization problem
are all determined by not just the system configuration and the failure time distributions but also
by the test format adopted. These formats might be quite different. For instance, a life test format
could be where each component type is tested with replacement for some fixed length of time and
the number of failures observed. Another format could be that a fixed number of components may
be tested to failure and the times to failure observed. A third format could be a binomial type test

where a fixed number of components of each type are subject to a pass-or-fail type test, and the
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number of successful trials observed. In each case, the values observed at the component level
must be combined into some test statistic, and then translated into a decision rule for system
acceptance or rejection. The choice of the best test statistic and the corresponding decision rule are
both open research issues. Realistically, the rules must be (i) analytically tractable, and (ii)
plausible for the specific system being considered. The test costs will also depend on the test
format. The cost structure could be defined in terms of cost per unit time on test, or in terms of

cost per unit tested, depending on the format of the test.

The preceding discussion points to the complexity of the problem. There are two distinct
considerations here: statistical and optimization. Statistical considerations pose numerous
challenging issues such as identifying the underlying failure time distributions, establishing the
relationship between component and system reliabilities, selecting an appropriate test statistic and
developing an appropriate acceptance rule. The optimization considerations include how we
formulate the optimization problem in terms of the component failure time distribution and test
parameters, developing algorithms to solve these optimization problems, deriving suitable
approximations when the problem is intractable, and incorporating problem specific information

into the solution methodology.

Prior knowledge is another important factor. One could sometimes have reliable estimates
for the component failure rates based on prior experience, while at other times one may have no
such knowledge at all. When prior estimates are available, the optimization procedure could
possibly exploit such prior knowledge to develop a plan that will be less costly. Another common
situation is that the interfaces that enable components to be assembled into a system might not be
perfect. In the absence of perfect interfaces, one might be required to perform at least some system

level testing and there is a need to investigate conditions where such system level testing is
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necessary. In this research we will address optimum test plans for a series system where interfaces

are not perfect.

1.3 Research Objectives

The principal objectives of this research are:
Q) For the reliability allocation problem:
e Develop new integer programming formulations for SP and PS systems.
e Develop linear relaxations for the problem formulations addressed.
e Evaluate the strength of the linear relaxations.
e Develop problem-specific, iterative solution procedures by identifying valid
inequalities.
e Develop heuristic solution procedures that can be adopted for most generic
problems.
e Summarize the findings and evaluate the degree of usefulness of the solution
procedures developed in this research.
(i) For optimum test plans:
e Develop problem formulations for a series system with imperfect interfaces.
e Consider interface reliabilities when deriving solutions

e Summarize the findings and evaluate the usefulness of the solutions obtained.
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1.4 Organization Of This Document

In this research we address (a) the reliability allocation problem and (b) the reliability
demonstration problem The reminder of the document is organized as follows.

Chapter 2 comprises two parts. In the first part the research literature pertinent to the
reliability allocation problem and solution procedures is discussed. The second part contains
research literature pertinent to optimum test plans for reliability demonstration.

Chapter 3 discusses the reliability allocation problem formulations and solution procedures.
The integer programming approach and valid inequalities for the problem are also described in
this chapter.

Chapter 4 discusses solutions to the reliability allocation problem based on two heuristic
approaches viz., (i) simulated annealing and (ii) evolutionary algorithm. A novel nested simulated
annealing algorithm is developed for this problem. Such nested simulated annealing algorithms
can be generalized and may be used for a variety of other problems. A solution to the reliability
allocation problem based on an evolutionary algorithm considers a special penalty function that
accelerates the solution procedure and yields quick solutions.

Chapter 5 discusses the optimum test plans for systems and components. In this, a
formulation of the problem is presented that considers Type 1 error as well as Type 2 error
simultaneously. Interface reliabilities are also taken into account and solutions are obtained for
various conditions encountered.

Chapter 6 summarizes the research with a final analysis of all solution approaches adopted

in this research.
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2.0 Literature Review

In this chapter, a literature review on the two problems addressed is presented. The literature
review focuses mostly on the problems addressed in this research, various formulations used to
address these problems in earlier research along with any limitations, and solution procedures
adopted. We also review the relevant literature associated with the specific heuristic methodologies

used in this research to solve the problems.

2.1 Reliability Allocation

2.1.1 Introduction

Reliability allocation is a very old problem but still generates a lot of interest within the
research community. The problem and the formulation evolved over many years and still continues
to evolve. For example, Elegbede et al. [2003] address the reliability allocation problem in their
work. Malaiya [2008] has also studied the reliability allocation problem to apply it to a software
reliability application. His work is clearly inspired by the formulations used in this research.
Yalaoui et al. [2005] have used the Tillman functions for cost-reliability relationships and derived
solution procedures for a system that is a parallel connection of many series systems. An overview
of optimal reliability allocation may be found in the paper by Kuo and Wan [2007]. They stated
that “Optimal reliability design has attracted many researchers who have produced hundreds of

publications since 1960. Due to the increasing complexity of practical engineering systems and
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the critical importance of reliability in these complex systems, this still seems to be a very fruitful
area for future research.” Cruz [2016] has noted in his report that applying reliability allocation
techniques without understanding their limitations and assumptions can produce unrealistic
results. More recently, Si et al. [2019] propose a generalized Birnbaum importance measure
(GBIM) to quantify the contribution of individual components to system reliability improvement
by considering reliability range, manufacturing complexity, and technology feasibility. GBIM
possesses several unique features in terms of guiding system reliability optimization. The authors
develop a GBIM-based genetic algorithm to solve a type of optimal reliability allocation problem.
All of this work clearly indicates that the long-standing reliability allocation problem remains an

important one that continues to attract the attention of researchers in the field.

2.1.2 The Reliability Allocation Problem

As stated in Chapter I, the generic formulation of the reliability allocation problem follows

in one of the following two forms:

Problem Al
Minimize C
subject to
R > Rg
g,(0) =by, Viel
Problem A2
Maximize R
subject to
C <Cs
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g,() = by viel
Here R and C denote system reliability and system cost respectively, while Rs and Cs denote
the minimum system reliability requirement and maximum budget respectively. Constraints
g,(.) = b; represent other design specifications (such as volume/weight) which are problem
specific. In the following subsections we discuss several variants of the above models that have

been addressed by prior work and contrast the proposed research with respect to these variants.

2.1.3 Redundancy Allocation

Redundancy allocation is a classical problem that was first comprehensively discussed by
Tillman et al. [1980] and more recently by Kuo and Wan [2007]. The primary goal of this model
is to achieve reliability goals by using redundancy at the component level. The initial model was
presented by Tillman and Littschwager [1967] and was subsequently adopted by Tillman et al.
[1968], Sharma and Venkateswaran [1971] and many others (refer to the second chapter of Tillman
et al. [1980]). In this model they assumed that the reliability of each component is known and the
decision to be made is the number of redundant units to be placed for each component. Their
formulation for this model expressed the reliability expression for a series system with L different
unit types (or stages) connected in series as R = §=1(1 - (1 - Rj)"f), where x; represents the
number of redundant units to be placed at stage j. In this representation the reliability of each unit

in a stage j is assumed to be the same and is equal to a known quantity R;. In addition, the cost

*j
function with respect to the number of redundant units is presented as € = le ¢i(xj + e(4 )).

20



The first drawback of this model is that there is no compelling reason presented for the
assumption that all redundant units in a stage should have the same reliability. A perfect example
to contradict this assumption would be where a primary power station with high capacity is used
for power supply, while a secondary power station with relatively low capacity (and perhaps lower
reliability) is used as a redundant unit to boost the reliability of the system. Thus, in a design
context, where we wish to determine the reliability level for each component, this model is not
applicable. More importantly, no explanation is given for the cost expression for the system that
is presented. From the expression it appears that it is used as some sort of heuristic approximation.

The first term in the cost, c;x;, represents the cost directly proportional to the number of redundant

X
4

units. However, the second term, cje( ) which is interpreted as the cost of interconnecting parallel
elements, represents an exponential increase in the cost due to more redundant units. This gives
the impression that it is used to discourage solutions where a large number of redundant units
would be adopted in a single stage. Such a cost expression may be applicable for certain cases and
may not be applicable to others. However, with such a cost structure the generality of the model is

lost.
2.1.4 Redundancy Allocation In A Design Context

In order to make the earlier model work from a design point of view, Tillman et al. [1968]
proposed a second model. In this model, the decision to be made is still with respect to the number
of redundant units in each stage in a series system, but the reliability level of each component also
has to be determined. The reliability expression for a series stage is the same as earlier, i.e., R =

§=1(1 — (1 —R;)™) but in this expression both R; and x; are both unknown. However, the
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reliabilities for all units in the same stage are still assumed equal. In this model the cost expression

x:
N ol .
used was the same as earlier, i.e., C = Zle ci(xj + e(4)), where ¢j is cost per component at the

j'" stage which is a function of R;. This cost ¢;(R;) is expressed as a decreasing function of the

Bj
component failure rate, i.e., ¢j(R) = q {#} where a; and B, are constants representing
J

characteristics of components at the j™ stage, while t represents the operating time during which
the component at stage j does not fail.

The main drawbacks of this model are similar to those mentioned for the earlier model, since
the models are essentially identical except that the R; are assumed to be unknown in the second
model. In addition, the authors fail to provide any specific reason or justification for the complex
cost versus reliability relationship assumed in this model. As discussed in Chapter I, it is an
accepted notion that cost is an increasing function of reliability; however, there is no compelling
reason for it to be a convex function. More importantly, from a practical point of view such closed
form functions are not easy to obtain. It may be possible that a particular functional form can be
constructed for a particular application, but the use of the functional form would then be limited

only to that application (or perhaps very similar ones).
2.1.5 Reliability Allocation In The Context Of Assembly

This problem is different from the one addressed by the earlier models. Here the goal is to
place components into known positions within a system configuration. The reliability values for
all components are known; however, the system reliability is dependent on the positioning of
components in the system. Hence the model has an objective of maximizing the system reliability

while placing components in their respective positions. In certain systems all components are
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functionally similar and thus any component can be placed in any position of the system
configuration. This problem for various systems is addressed by Kontoleon [1979], Malon [1984],
El-Neweihi et al. [1986, 1987, 1988], Papastavridis and Sfakianakis [1991], Zuo and Shen [1992]
among others. EI-Neweihi et al. used the theory of majorization and Schur convex functions to
obtain optimal allocations for several systems including Series-Parallel and Parallel-Series
systems. Other researchers approach a similar problem for other systems using heuristic
approaches based on concepts of reliability importance, where the importance of a component is
defined as a partial derivative of the system reliability with respect to the component’s reliability.

The problem addressed with this model is applicable in situations where all components are
functionally similar and it is assumed that their placement within the system configuration has no
bearing on cost. A more general version of this problem would be one where there is a cost
associated with the assignment of a particular component to a particular position. If cost is
considered in this model, the problem would become a more traditional optimization problem and
the concepts of reliability importance and majorization theory offer little assistance in solving the
problem. The following example will justify the need to consider cost.

Consider the example of the design of a long-distance gas supply line (such as from Texas
to New England) mentioned in Chapter I. In this example the motor pumps are functionally similar
and thus each pump can be placed at any of the fixed locations. However, they might come from
different manufacturers and might be associated with different reliability and cost values. All
motor pumps would require a proper foundation and a platform to place them, which in turn might
be dependent on the location. Hence the cost of fixing a motor pump would directly depend on the

location. Hence it is important that cost considerations be taken into account in these models.
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2.1.6 Motivation For Our Research

The inadequacies of earlier models stem from two factors: (1) the problems associated with
complex system reliability expressions in terms of the decision variables and (2) the inability to
handle the wide range of problems that are concerned with reliability allocation as a part of the
design. In this research we attempt to address these issues. To be more specific, with respect to
earlier research the solution procedures suggested are mostly heuristics since the formulations are
very complex and none of the available integer programming procedures suit these formulations.
In fact, Kececioglu [1991] describes existing allocation methods with respect to redundancy as
“poor approximations at best”. For example, Sharma and Venkateswaran [1971] suggested a
heuristic solution to the redundancy allocation problem based on incrementing redundant
components in the most unreliable stage at each successive iteration until the reliability
requirement is met or a constraint is violated. Agarwal et al. [1975] proposed a variant of the same
approach where they propose a different solution procedure for selection of a stage where a
redundant component is added. Several other heuristics are listed in detail by Tillman et al. [1980].

Dynamic Programming was used for solving the redundancy allocation problem by Katelle
[1967], Woodhouse [1972], and others (refer to Tillman et al. [1980] for a summary of dynamic
programming in redundancy allocation). A common criticism leveled against dynamic
programming is that when multiple constraints are present the dimensionality of the problem
increases. Hence most of the dynamic programming applications to reliability allocation are
limited to single constraint problems and unfortunately, most system design problems have many
functional constraints in addition to reliability requirements. Scores of other approaches from the
literature are recorded and summarized by Tillman et al. [1980] for redundancy problems. It is

surprising to see that almost all of them are heuristic solutions and are applied to only simple

24



systems such as a series system. For the redundancy design problem, the formulation is even more
complex given the fact that both R; and x; are variables (with x; also being required to be integer)
and optimization algorithms become very difficult to develop. This is reflected by the fact that
numerous heuristic solution procedures have been proposed (e.g., Agarwal et al. [1975], Nakagawa
and Nakashima [1977], Tillman et al. [1977], Cateanu et al. [1986], Coit and Smith [1996],
Jacobson and Arora [1996]). No attempt has been made to look at alternative formulations where
better solution procedures can be developed so that the model and solution procedures become
widely applicable for more general systems. While the development of heuristic solution
procedures is a logical approach given the complexity of the problem, the formulations themselves
need some attention. Since these formulations are difficult to solve optimally even for a simple
series system (where redundancy is sought for stages that are in series), extending them to more
complex systems offer little hope. In this regard, the approach taken by Bulfin and Liu [1985]
offers interesting insights and in some sense inspires the approach proposed in this research.

Instead of considering the number of redundant components as a variable (i.e., x;), they discretize

this into binary variables and formulate a 0-1 integer programming problem. This research uses an
analogous approach by assuming discrete cost vs. reliability relationships, which is often a more
reasonable approach than assuming a closed form functional relationship.

Consider system design problems such as transportation problems, supply-chain problems
or network design problems. Most of these problems are addressed either by network-based
solutions or integer programming-based solution procedures. However, when reliability
considerations are considered for these problems, they become much harder to approach. The
earlier reliability models offer little assistance with regard to such design problems where the

reliability requirements are desired. There is no effort by any researchers to the best of our
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knowledge to consider reliability requirements for these problems thus far. This may be partly
attributed to the fact that the computation of reliability for a system given the reliability for each
component is itself a very hard problem and no known polynomial algorithms are available for
general systems. However, many systems of practical significance (viz. series-parallel, parallel-
series and systems known as series-parallel-reducible-networks) have polynomial algorithms to
derive reliability of the system from given component reliability values. The solution procedures
developed in this research can be readily applied to any design problem for such systems that
require reliability considerations.

The model proposed in this research is based on discrete data sets for reliability and cost. It
is a generally accepted notion that a component’s cost is an increasing function of its reliability.
Discrete data has been used in the past although the term “discrete data” was not in use at that
time. Fyffe et al. [1968] used a slightly different formulation for redundancy allocation where they
have alternative choices for a component in a stage. Once a choice is made, the problem is then to
determine the number of redundant components of that choice. The problem with this model is
that every component in a stage would have same reliability/weight/cost; in other words, duplicate
copies of the same component are added as redundant. If they had allowed the freedom for all
redundant components in a stage to have their own characteristics (such as reliability/weight/cost
etc.), the model would have much more general appeal. For example, in the power plant example
from the previous chapter, a redundant plant would be of less capacity with relatively less
reliability.

In this research, our model exploits this fact and allows for each component to have its own
characteristics so that the most suitable alternative is chosen via the optimization procedure. For

example, in the electronic industry, components are manufactured in advance and are available
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from a variety of sources. Thus, one can choose a particular component from a finite number of
sources with known reliability and cost values. The model based on discrete data can be used for
all of the redundancy problems mentioned above and in addition, the solution procedures
recommended in this research easily accommodate additional constraints such as functional
requirements based on the nature of the system under consideration. When only discrete data is
available, this model can be used directly. However, it can still be used when a functional
relationship is available for cost and reliability, because we can always draw discrete datasets from
the relationship.

We next provide some background on the methodologies we develop here for solving the

reliability allocation problem.

2.1.7 Integer Programming

In this research work, we formulate the reliability allocation problem as a 0-1 integer
Programming problem. For complex systems, the problem formulation is nonlinear in nature. For
specific systems we tried to identify linear relaxations of the formulations. Once a linear relaxation
is identified, an iterative procedure is recommended to eliminate infeasible solutions resulting from
solutions to the relaxation. Some of these results are given by Majety et al. [1999]. Even 0-1 linear
integer programming problems for simple Series Systems (or Simple Parallel systems) are NP-
hard Knapsack problems. The iterative procedure, developed in this research by solving ILP
relaxations at each iteration, is very time consuming and computationally very taxing. However,
the solution procedure is presented in the hope that better solutions will follow in future. More

details are given in Chapter 3.
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From a practical perspective, these hard problems can be addressed using various heuristic
approaches such as Simulated Annealing, Genetic Algorithms, Evolutionary Algorithms or Tabu
Search etc. We will explore two of these approaches viz., Simulated Annealing (SA) and

Evolutionary Algorithms (EA), in this research.

2.1.8 Simulated Annealing

Many heuristic procedures such as SA (Brusco and Jacobs [1993], Kirkpatrick et al. [1983]),
Genetic Algorithms (Bean and Hadj-Alouane [1992], and Tabu Search (Glover [1989a, 1989b])
have been proposed for difficult combinatorial optimization problems. SA is a heuristic algorithm
for obtaining good, although not necessarily optimal solutions, to optimization problems. Brusco
and Jacobs [1993] list many combinatorial problems for which SA has been successfully applied.
Those include school time-tabling, multilevel lot sizing and cyclic staff- scheduling. Kanagaraj
and Jawahar [2009] are inspired by our research on nested simulated annealing (Majety and Smith
[1996]) and develop a simulated annealing algorithm for their optimal supplier selection problem
using the reliability-based total cost of ownership model, which is also a nonlinear integer
programming formulation.

In a traditional SA approach, one starts with a feasible solution and identifies a feasible
neighboring solution. If this new solution improves the objective function, it is immediately
accepted, and a move is made to that solution. If not, the new solution is accepted probabilistically
based on some annealing schedule. Eglese [1990] mentions that the efficiency of an SA algorithm
depends on the definition of the feasible neighborhood of the current solution. However, instead
of defining a feasible neighborhood, if the problem has a difficult-to-satisfy constraint set, the
addition of an exterior penalty function to the objective function may be used. In this research, we
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used a nested SA algorithm instead of a penalty function. In principle it is quite similar to the
penalty function approach, but the difference is that the penalty is applied to the acceptance
probability for an infeasible solution rather than to objective function, as is done normally. Our
initial experiments with the nested SA always resulted in feasible final solutions (not always
achieved with penalty functions) and thus we adopted the nested SA instead of a regular penalty

function approach. More details are presented in Chapter 4.

2.1.9 Evolutionary Strategy Approach

Evolution strategy [ES] refers to an algorithm that tries to simulate the evolution process. A
detailed description of the method may be found in Back et al. [1991]. Briefly, in the simulation
of an evolution process one tries to find links between the characteristics of an offspring and its
parents. The usual procedure adopted is as follows: the problem is encoded in terms of its variables
(viz. characteristics). An objective is defined as a fitness function value based on these variables.
For the problem, an initial set of solutions is generated, and they are treated as parents. A new set
of offspring is then generated from these parents. Now, from the set of offspring solutions and
parent solutions, a fixed number of fittest solutions are accepted and set as the new set of parents
for the next generation. This process of creation and selection continues until a stopping criterion
is met. A more detailed description of this method and how it is adopted for the reliability

allocation problems of this research are given in Chapter 5.
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2.2 Optimum Test Plans

Gal [1974] was the first to address the area of system based component testing. His initial
work considered an arbitrary coherent system composed of n different component types with
independent failures, and his plan called for each component type j to be tested for ¢; time units,
with the system being labeled acceptable if no failures were observed during the prescribed testing

period for each component type. He formulated the problem as

n

Minimize C(t) = z cjt;
j=1

s.t. Pr{accept system when Ry < Ry} < f8

21

where
¢; is the cost of testing component j per unit time,
R is the system reliability for a unit time period,
R, is a value such that any system with reliability lower than this value would be deemed
as definitely unacceptable, and
B is a suitably low pre-assigned probability.

Under the assumption of exponentially distributed component lifetimes, he derived a general
procedure for obtaining the optimum test times. He also provided specific examples for a few
common system configurations. In Gal’s work, the acceptance rule was very demanding and it
could result in a good system being unnecessarily rejected. This issue was addressed by Mazumdar
[1977], who considered a formulation identical to that considered by Gal, but with another

probability constraint in keeping with the standard statistical practice for determining the sample

size. This constraint is:
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Pr{accept systemwhenR¢ > R} >1—«

2.2

where

R; (>R,) is a value such that any system with reliability greater than this value would be

deemed as definitely acceptable, and
o is some suitably low pre-assigned probability.

Mazumdar [1977] assumed that component testing took place with replacement. Let X;
denote the number of failures of component j that occur when it is tested for ¢; time units. He then

proposed the following alternative to Gal’s acceptance criterion, which he referred to as the sum

rule: “accept the system if }; X; < m," where m is an integer-valued decision variable. He then

showed that with this rule the optimum component test times are the same for each component
irrespective of the testing costs. In his original work, Mazumdar [1977] did not explicitly prove
that a feasible m was guaranteed to exist. It was subsequently shown by Rajgopal et al. [1994] that
when this criterion is used, there exists an m” such that both (2.1) and (2.2) will be satisfied for all

valuesof m > m*,aslongasa + f < 1.

In the following subsection we review research on this topic of system-based component
testing that specifically addresses series systems, since that is the focus of the work in this
dissertation. Subsequently, in Section 1.1.2 we also briefly overview other research related to this

topic.
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2.2.1 Testing Of Series Systems

In a series system, every component must work for the system to work. Yan and Mazumdar
[1986] were the first to address series systems and studied three different test procedures based
upon (1) the total number of failures across all component types, (2) the number of failures for
each component type and (3) the maximum likelihood estimator of system reliability. They
showed that the first and third procedure led to identical results. They also concluded that for
similar levels of protection from Type | and Type Il errors, these procedures were generally
superior to the second case from the point of view of costs. More interestingly, they showed that
in an optimum policy, all component types need to be tested for the same length of time regardless
of the test costs. This is intuitive because a series system is only as good as its weakest component

and in the absence of any prior knowledge, we would need to treat each component equally.

Easterling et al. [1991] address a series system where the individual component failures
follow a binomial distribution. More importantly, this work presented a detailed discussion of the
need for system-based component test plans by demonstrating the drawbacks associated with the
ones customarily used in practice, where it is common to “allocate” the required reliability for a
system among its individual components and then independently require each component to show
this level of reliability with some specified level of confidence. Using system O.C. curves, the
authors show how this could lead to probabilities of Type 1 and Type 2 error that could be vastly
different from the advertised values. They also presented a justification for the use of the so-called
sum rule with binomial failure data, that Mazumdar [1977] had introduced earlier. Several years
later, Mazumdar and Rajgopal [2000] set up the mathematical program for computing the

maximum likelihood estimator for system reliability, and derived the Karush-Kuhn-Tucker
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conditions for the optimum. These conditions yield expressions that involve the sum of the number
of failures observed. The results also indicated that for a series system with binomial failure data,
the sample sizes for each component type should be the same (just as with exponentially distributed

failure times).

The result of equal test times can be intuitively unappealing because designers often have
some idea about how reliable a component is, e.g., they might know based on prior experience that
component X is likely to be more reliable than component Y, or that component Z is known to
have some minimal reliability level. The next major extension for series systems addressed this
scenario, where it was assumed that a priori information of some kind is available on the failure
rates of the individual components (Altinel [1992], Altinel [1994], Rajgopal and Mazumdar
[1995]). Specifically, it was assumed that each component failure rate 4; had a known upper bound
u;. Interestingly, with a priori knowledge the optimal test plan need not require all components to
be tested equally, but rather, for times that depend on the magnitude of the upper bound u; as well
as the unit test cost ¢;. Thus, a component j with a smaller value of u; and a higher value of ¢;
will require less testing than one with a larger u; a smaller ¢;. A detailed discussion of an algorithm
along with computational results may be found in Rajgopal and Mazumdar [1995]. Soon after,
Raghavachari [1998] proposed a simpler procedure to solve the same problem. This method was

based on results from linear programming duality; and the same numerical results were obtained

but with far less computational effort.

Rajgopal and Mazumdar [1995] also provided the formulation and a solution procedure for
the case where each component’s failure time follows a gamma distribution with a common,
known shape parameter and unknown scale parameter. Once again, they considered both bounded
and unbounded failure rates. For the latter case, they developed exact procedures which as

33



expected, yielded equal test times for all components. The former case is much more complex and
the authors used a Normal approximation to formulate a nonlinear optimization problem along
with a cutting plane strategy where a sequence of nonlinear programs were solved at each iteration.
The same authors (Rajgopal and Mazumdar [1997]) also studied the series system with component
failure times that follow a Weibull distribution. Once again, they used a Normal approximation to
develop a solution procedure for the resulting formulation. The results for both the gamma and

Weibull distributions were consistent with those for the exponential distribution.

Rajgopal and Mazumdar [1997] were also the first to introduce the notion of imperfect
interfaces between the components of the system. All of the prior research had assumed that
interfaces were perfect and when the system failed it was only because a component had failed.
In practice, systems often fail at an interface (e.g., a weld or a connecting wire); in fact, this is one
reason why many practitioners tend to use system test as opposed to just relying on component
tests. The research presented in Chapter 5 (Rajgopal et al. [1999]) addresses this issue by

combining component and system testing.

In other related work on series systems, Sankar and Vellaisamy [2000] develop a two-stage
test plan for a series system, similar to double sampling plans that are commonly used in
acceptance sampling. The objective is to try and reduce testing effort while still providing
protection from Type | and Type Il errors. The approach has two parameters m, and m,. In the
first stage, each component j is tested for ¢, ; units of time and the number of failures X, ; observed.
If Y; X,; < m, the system is immediately accepted, and if }; X;; > m, the system is immediately
rejected. If m; < ).;X;; < m, further testing is conducted. In this second stage, each component
J is tested further for ¢,; units of time and; suppose the number of failures at this stage is X,;. The
system is finally accepted if }.; X;; + X,; < m, and rejected otherwise. Note that the total test
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cost is not deterministic anymore; the authors therefore minimize an expression for the maximum
expected cost subject to the usual constraints. They also address both cases with and without prior
information on failure rates. For the latter case, they adapt the approach proposed by Raghavachari
[1998], and for the former case, they use a meta-heuristic genetic algorithm to solve the
optimization problem. The authors show that the maximum average cost is lower than the

minimum cost for the single stage plan (Rajgopal and Mazumdar [1995]) by a little over 10%.

2.2.2 Testing Of Parallel Systems

We now briefly discuss work in this area beyond series systems. Parallel systems (where at
least one component should work for the system to work) are generally more complicated than
series systems because of how system reliability must be expressed as a function of component
reliabilities. Thus, work in this area has exclusively addressed parallel systems with exponentially
distributed failure times. Yan and Mazumdar (1987a) were the first to examine such systems where
they compared several plans using Type | censoring. They examined a system of n components
in parallel where the j** component had an exponentially distributed time to failure with parameter
A; and failures are independent. They also made the assumption that each 4; was “much smaller”
than 1, 1.e., that the system was “highly reliable.” This allowed them to approximate the system

reliability expression as

2.3

This simplification allows the optimization problem to become tractable. Yan and

Mazumdar [1987b] also looked at a parallel system with Type Il censoring. Once again it was
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assumed that component failure times are independent and exponentially distributed, and that unit
test costs for each component type are different. Rajgopal and Mazumdar [1988] present a slightly
different acceptance criterion for the same design problem, based on the sum of the logarithms of
the test times. This vastly simplifies the process of computing the critical value for the test statistic.
The authors also provided several approximate procedures for this computation. With respect to
other system configurations Mazumdar [1980] studied a serial connection of parallel subsystems.
Units in subsystem j are assumed to be identical with independent, exponentially distributed failure
times with parameter 4;. The usual sum-rule is used for deciding on whether the system should
be accepted or not. The results indicate that the optimal test times are independent of the unit test

Ccosts.

Altinel and Ozekici [1997] consider the situation where component failure rates might not
stay fixed over time. For example, it might be that the failure rate is small during the early stages
of deployment but the component degrades with use. The authors formulate the optimization
problem as a semi-infinite linear program and use essentially the same cutting-plane algorithm
presented by Altinel [1994] to solve the problem. They also provide an example of a serial
connection of two subsystems working in three different fixed environments. Altinel and Ozekici
[1998]) extend these ideas and consider a model where component failures are stochastically

dependent.

An interesting extension of system-based component testing is to the area of software
reliability. Cheung [1980] developed a Markovian model for the transfer of control between
various modules in a software system. This allows the system reliability to be expressed as a
polynomial function of the component reliabilities. Poore et al. [1993] suggested following the

standard practice of allocating the system reliability goal among its modules, and as discussed
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earlier, this could be erroneous. Rajgopal et al. [2001] suggest a system-based component test
procedure. Only bounds on Type 2 error probability are considered and an optimization problem
is formulated where the objective is to minimize the total number of test instances across all
modules subject to this constraint. The sum rule is used again and the authors present solutions to
several problems in the literature. Finally, Jin and Coit [1999] address the use of component test
plans to minimize the variance of the system reliability estimate for a series-parallel system with

binomial failure data.

2.3 Review Of Literature That Followed The Research Presented In This Document

In this section we present the literature that followed the publication of research work

presented in this document. For the reliability allocation problem, the main thrust of the research
presented in this document is to consider discrete cost-reliability data sets. This is validated and
such discrete data is adopted by several researchers including Jin et al [2003], Nimah [2015], Aneja
et al [2004], Moreb [2007], Negi et al [2021], Yeh et al [2010], Pant et al [2017].
Gupta and Agarwal [2006] have used a genetic search algorithm in their redundancy optimization
problem of multi-state series-parallel power system. They adopted a dynamic penalty function
approach on some difficult to satisfy constraints based on the distance (some degree of violation
of the constraints). This penalty approach is clearly inspired by the dynamic penalty function used
in this research (Chapter 4).

Heydari et al [2014] have addressed optimal allocation of testing resources in reliability
growth in the design of a system. They are clearly inspired by and used the simulated annealing

strategy presented in this research (Chapter 4).
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The literature that followed our research is divided into following categories: (i) Similar
formulations but other solution approaches (ii) Different formulations with similar goals and, (iii)

Different formulations with different goals.

2.3.1 Similar Formulations With Other Solution Approaches

Several researchers have formulated the problem similar to the combinatorial optimization

problem formulations presented in this research. However, the solution procedures adopted vary.
Aneja et al [2004] have adopted dynamic programming approach to address the same problem that
is presented in this research. They extended their solutions to k-out-of-N:G and k-out-of-N:G-
reducible systems with some success. NG and Sancho [2001] have developed a hybrid dynamic
programming-depth first search algorithm with an application to redundancy allocation.
Yeh [2007] used an interactive augmented max-min MCS-RSM method to address a multi-
objective network reliability problem. Here MCS stands for monte carlo simulation which is used
to estimate the network reliability. RSM stands for the response surface methodology. RSM is
used to derive an approximate function for the reliability of the network there by reducing the
errors in the MCS using regression techniques. They addressed maximization of reliability along
with minimization of cost.

There are many heuristic algorithms developed in recent years to address difficult to solve
combinatorial optimization problems such as (1) Grey wolf optimization, (2) Particle Swarm

optimization,
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2.3.1.1 Grey Wolf Optimization

Grey wolf optimization simulates the chasing, hunting by grey wolves. In grey wolf
optimization, some initial solution vectors are generated. The best solution is termed as alpha.
Second best solution is termed as beta and the third best solution is termed as delta. The remaining
solutions vectors are termed omega. The omega vectors in each iteration are updated based on their
distance from alpha, beta, delta vectors. Thus in each iteration new vectors are generated by
altering current omega vectors based on the distance from leader vectors alpha, beta and delta.
After generating new vectors, all the vectors are evaluated to select new alpha, beta and delta
vectors. Thus the selection process continues for a set number of iterations.

Kumar et al [2017] adopted Grey Wolf optimizer algorithm to solve a system reliability

optimization problem. They report that this algorithm has given very satisfactory results.

2.3.1.2 Particle Swarm Optimization

Particle Swarm Optimization simulates food searching by a flock of birds. In Particle Swarm
Optimization, each particle has its own location and velocity, which determine the flying direction
and distance, respectively. In this approach, an initial set of solutions, called particles, are
generated along with some randomly generated velocities for each. Each particle is associated with
a position vector and a velocity vector. The position vector and velocity vector of each particle
(solution) is then changed using some acceleration coefficients in each iteration. These
acceleration coefficients are then updated in each iteration as well. By carefully altering
accelerations and velocities in each iteration, search process is guided towards global optimum as
the iterations progress.

Pant et al [2017] have adopted a Particle Swarm Approach to reliability optimization

problem. They report that the results are very encouraging. Yeh et al [2010} have used a particle
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swarm approach combined with Monte Carlo simulation to solve reliability optimization problem.
Monte Carlo simulation helps in estimating the reliability of the system while PSO guides the
solution towards optimum. They are able to apply this approach to more complex network
reliability optimization problems. Negi et al [2021] have used a hybrid PSO and GWO-algorithm
to complex system reliability optimization problem. They concluded that such hybrid meta
heuristic performed better than previous heuristic solutions.

There are several other Nature-inspired algorithms that are being used by several researchers.
Some of the other algorithms are (a) Ant colony optimization (b) Flower pollination algorithm (c)
Cuckoo search algorithm. Interested readers may easily search and read literature on these topics.
All these algorithms along with PSO and GWO are all population-based algorithms. In these
algorithms, an initial population is generated and these populations are modified to generate new
populations from iteration to iteration so that best solution is continuously improved through
iterations. The evolutionary algorithm presented in this research is also one such population-based
algorithm which performed satisfactorily. The most common criticism for such heuristic
algorithms is that many parameters are required to guide the search through iterations. Setting of

such parameters is problem specific and there are very few guidelines to set these parameters.

2.3.1.3 Neural Network Approach
Some researchers have adopted artificial neural networks to maximize reliability on some
network problems. Yeh et al [2007] combine artificial neural network with Monte Carlo simulation
to predict reliability of a network. They selected a multilayer feed forward network with non-
polynomial activation functions as it approximated any continuous function in any degree of
accuracy. They used back propagation to train this feed forward neural network. By using the

neural network, they claimed good results.
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Kaushik et al [2013] (in two articles of the same year) have demonstrated by using an
adaptive gradient descent neural network approach with high learning rate and variable
convergence rate. They used a back propagation training algorithm for their neural network. The
input provided for the neural network is (1) the minimal cut sets of network problem for which
reliability is desired, (2) link reliabilities for fixed and variable links of the network and, (3) the
network reliability lower and upper bound obtained from minimal cut set added with neural
network lower and upper bound. They have compared their results with simulation-based

analytical methods and showed that their results are an improvement.

2.3.2 Different Formulations With Similar Goals

Moreb [2007] addressed repairable systems reliability allocation problem. They used
optimum selection based on mean time to failure and mean time to repair. Wang and Li [2015]
have addressed redundancy allocation for reliability design of engineering systems with failure
interactions. They proposed an analytical model that describes the failure rates with failure
interactions. This is followed by a modified analytical hierarchy process to solve redundancy
allocation problem with failure interactions.

Kapur et al [2003] addresses the problem of optimal selection of components for a modular
software system. Such a software is supposedly built by (i) assembling a set of off-the-shelf
components that are available commercially and/or, (ii) In-built independent programs. It is
assumed that more than one alternative is available for each module, they all come with associated
cost. Redundant components are added to enhance fault tolerance. The objective is to maximize
the reliability while subjected to budgetary constraints. In a separate model, they account for
compatibility of alternatives available for different modules.
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2.3.3 Different Formulations With Different Goals

Several researchers have developed different goals with variety of formulations while still
addressing some kind of allocation problems. For example, Anzanello [2009] considered reliability
evaluation of systems composed of non-identical multi-state components. When components have
different magnitudes of failure probabilities, then behavior of reliability of system is difficult to
understand. Anzanello address this problem for series and parallel systems that have non-identical
three-state components. They attempted to allocate non-identical components with budgetary
constraints. Their model comprised of nonlinear programming which is aimed at optimizing
allocation of component under restrictions and solved for series system.

Goel et al [2004] have considered the problem of retrofit design of a multiproduct batch
plant with a consideration of inherent reliability and maintainability of existing as well as new
equipment. In their optimization problem, they sought optimal size, optimal operating mode and
optimal allocation of inherent availability for new equipment during the retrofit stage. The
production capacity is defined by the three decision parameters of (i) batch size, (ii) limiting cycle
time and, (iii) overall plant availability. The availability is an indication of overall reliability of the
plant here. Their formulation of the problem is a mixed integer nonlinear program. They also used
discrete data sets in their formulations.

Keebom et al [2010] have developed decision support models for valuing improvements in
component reliability and maintenance. Providing minimum life cycle cost and maximizing
system availability is the main goal of their research. They considered (i) cost to repair (ii) cost to
hold in inventory in the overall cost function. They used discrete data to formulate their problem.

Salmasnia et al [2017] have also used total cost of the system life cycle in their approach to

address the system design. They have tried to design a multi-state degraded system while
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optimizing maintenance, repair costs and mean system availability. Their estimation of
maintenance costs of system is based on Poisson distribution for failures. They used categories
such as minor maintenance and major maintenance. A minor maintenance restores system to
previous better state where as a major maintenance restores system to the ‘as good as new’ state.
They suggested an integrated optimization scheme and an aggregation method such that both
objectives, (i) total cost (ii) mean availability of system, fall into the decision maker’s acceptable
region.

Dinesh Kumar et al [2007] have emphasized on considering total cost of ownership at the
time of design itself as opposed to unit cost alone which is adopted by many system designers.
According to them the total cost must include upstream unit cost as well as downstream operations,
maintenance and support costs. They proposed a non-linear mathematical model that allocates
system-level reliability and minimizes the total cost for a series-parallel system.

Kanagaraj and Jawahar [2009] have used a simulated annealing algorithm for optimal
supplier selection using the reliability-based total cost of ownership model. They also emphasize
the consideration of total cost of ownership which includes procurement, maintenance and
downtime costs. They also included weight limitations as constraints in their optimization problem
which minimizes the total cost while maintaining the required reliability level of the system. The
formulations are nonlinear integer programs and their solution approach is simulated annealing
algorithm which is clearly inspired by the nested simulated annealing algorithm given in this
document (Chapter 4).

The above researchers are pointing in the right direction of considering the overall cost of

the system during its life cycle. However, there is no consistency and firm theoretical approach in
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estimating the costs associated. Each derive cost expressions based on different factors. There must

be a consistent approach that should guide the estimation of overall cost.
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3.0 Integer Programming Approach

Note: Portions of the work in this chapter were published in Operations Research (Majety,

Dawande and Rajgopal [1999]).

3.1 Introduction And Notation

We formulate the reliability allocation problem as a 0-1 mixed integer programming
problem. In the formulation, each binary variable either represents (a) a specific cost-reliability
datum (when such data are purely discrete), or (b) a prespecified point on the cost-reliability curve
of a component (when such a curve is available). We emphasize that in the latter instance, no
assumption is made regarding the specific function describing the curve.

As will be seen in the following sections, except for simple series and simple parallel
systems, the system reliability is a nonlinear function of these binary variables. Careful, and often
painful, expansions of the expression for system reliability contain terms that are products of
binary variables. While standard procedures could be adopted to linearize these terms, such
product terms increase exponentially as the complexity of the system increases. Thus, this
approach becomes impractical from a computational standpoint for anything other than small
systems. In the following sections, we study the reliability expression for each system
independently and identify linear relaxations of otherwise nonlinear constraints. Three common

system configurations are analyzed: (1) Series-Parallel Systems, (2) Parallel-Series Systems, and
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(3) K-out-of-N Systems. For each of these, the structure of the reliability expression is

independently examined and an algorithm for exact solution is presented.

To generalize the formulations, we will consider any system as being comprised of

subsystems that are assembled and configured with each other in a suitable fashion. Each

subsystem in turn, is made up of components that are assembled and configured with each other

in a suitable fashion. For each such component we have a discrete set of options from which we

must make a selection. The following notation will be used:

i

Dijk, Cijk

Xijk

Index for the subsystems comprising the system; i € {1,2, ..., L}

No. of subsystems

No. of components in subsystem i

Index for component in subsystem i; j € {1,2, ...,n;}

No. of discrete cost-reliability data elements for component j in subsystem i

Reliability and cost associated with option k of the cost-reliability data set for

component j in subsystem i; k € {1,2, ..., K;;}

Binary variable that is 1 if option k of cost-reliability data set for component j

in subsystem i is selected, 0 otherwise
Reliability of component j in subsystem i
Reliability of subsystem i

Reliability of the system

Minimum required system reliability
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Note that Pijk and c;;, are given constants representing (respectively) the reliability and
cost associated with a specific choice for a specific component in a specific subsystem, while
e 1y isafunction of {xl.jk}; Vk € {1,2,...,K;}, i.e., of the specific data point selected
e fisafunction of {rl.].}; vj € {1,2,...,n;}, i.e, reliability of components in
subsystem i

e Risafunctionof {f}; Vi€ {1,2,..,L}, i.e., reliability of the subsystems

Thus, the system reliability is ultimately a function of the binary variables {x;;}, while f,
and r;; are intermediate quantities that are used as a matter of notational convenience. Note that

the only true decision variables are the x;.

3.2 Problem Formulations

A formulation of the reliability allocation problem A(G) for an arbitrary system G where the

system cost is to be minimized subject to some minimum requirement on the system reliability, is

as follows:
PROGRAM A(G):
L n Kij
Min Z CijkXijk
i=1 j=1k=1
3.1
S.t RG_g(rij)ZRS
3.2
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xijk eEX
where

R is the reliability of the system
Kij

X = xijk| xijk € {0,1} V(l,],k), injk =1 V(l,])
k=1

3.3
Ty = Z XijiPye V(& J);
=1
34

and g(.) is a function that depends on the specific system configuration.

Note that in (3.2) the system reliability R is expressed as a function of the reliability of its
components r; via the function g(r;;). The specific form of this function will depend on how the
components are configured. The set X is defined in (3.3) as all 0-1 vectors that correspond to
exactly one of the K;; different options being selected for the j™ component of the i subsystem.
The expression for r;; in (3.4) simply assigns to it the value equal to the reliability of this selected
component. Note that the definitions of the r;; and the set X are identical for any configuration and
are therefore not repeated when the formulations are stated; the reader is requested to refer back
to the above definitions.

In this research we mainly concentrate on formulations for Series-Parallel and Parallel-
Series system configurations. It is important to justify the selection of these. The following
proposition will provide the link between any arbitrary system G and the Series-Parallel (or
Parallel-Series) system derived from minimal cutsets (or minimal pathsets). A minimal cutset is

defined as a minimal set of components such that when they fail together, the system fails.
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Similarly, a minimal pathset is defined as a minimal set of components such that when they work
together, the system works. A system may have multiple minimal cutsets as well as multiple
minimal pathsets. Figure 3 gives an example of a particular system along with its minimal pathsets

and minimal cutsets.

| 4 P|:{1,4} C|:{1,2}
P;: {2, 5} C,: {4, 5}
P}:(1,3,5} Ci:{1,3,5}
Ps:{2,3,4) Ci:{2,3,4}
(a) System (b) Minimal Path Sets and Cut Sets
1(a) 4(a)
1(b) 2(b) .
2(a) 5(a)
=
1 iHb) 3(a) 5(b) [—
B—8-
5(b) 4(b) 2(b)  3(b)  4(b)
———
(c) System Ggp from (d) System Gps from
Minimal Cut Sets Minimal Path Sets

Figure 3: An Example of a system and the derived SP, PS systems

Consider a general system G in which all components are statistically independent. The

collection of all minimal cutsets for system G is given by ¢ = {C;, ..., ¢} and the collection of
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all minimal pathsets for system G is given by P = {Py, ..., Pjp}. Then the system G can be
represented as a series connection of subsystems Cy, ..., C¢ and it can also be represented as a
parallel connection of subsystems Pj, ..., Pp. Consider a component of G that belongs to

Cq,r - Cq,, Where {q,,..,q,} €{1,..,1c]}. Since the same component appears in multiple cutsets,

all these cutsets are statistically dependent on each other. Now assume that the (same) components

appearingin C, , ..., C,_are identical but statistically independent components. Assuming the same
for every component that is repeated in multiple cutsets, the resulting cutsets are statistically
independent. Let these cutsets be Cy,, ..., Cj¢|. We denote the system Gsp as series connection of

Cr

1'

..., Cje|- For example, consider Figure 3. The system in Figure 3 has the cutsets C; = {1,2},
C,= {4,5}, C; = {1,3,5} and, C, = {2,3,4}. Here component 1 is common to both C; and C;.
Suppose we label the component 1 in C; as 1(a) and it is statistically independent of the component
in C3 which is denoted as 1(b). This is the same as duplicating component 1 for C5. If we do the
same for all components, then the resulting cutsets form a System Gsp as shown in Figure 3.

Similarly, now consider a component of G that belongs to F, ,..., P, where {ql,...,qs} c
{1,...,|P]. Since the same component appears in multiple pathsets, all these pathsets are
statistically dependent on each other. Assume once again that the (same) components appearing in

P

. -0 Py, are identical but statistically independent components. Assuming the same for every

component that is repeated in multiple pathsets, the resulting pathsets are statistically independent.
Let these pathsets be P, ..., Pj»|- We denote the system Gps as a parallel connection of P/, ..., P/,
For example, consider Figure 3. The system in Figure 3 has the pathsets P, = {1,4}, P, ={2,5},
P;={1,3,5} and, P, = {2,3,4}. The component 1 is common to both P, and P;. If we assume that

component 1 in P; as 1(a) and that it is statistically independent of component 1 in P; which is
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denoted as 1(b), then this is the same as duplicating component 1 for P;. If we do the same for all

components, then resulting pathsets form a System Gps as shown in Figure 3.

Proposition 1: Suppose Zg, Zsp, Zpg are optimal solutions for Program A(G), Program A(Gsp)

and Program A(Gps) respectively; refer to Section 3.2 for the description of Program A(.). Then
Zip < Zp < Zps.
Proof: Programs A(G), A(Gsp) and A(Gps) differ only in the reliability constraint which may be

written for each (respectively) as

(M)

Rsp = Rg  for A(Gsp)
(i)

Rps = Rs for A(Gps)
(iii)

It is a well-known fact that Rps = R; = Rsp (Leemis [1995]). Thus, it is clear that (ii) =(i)
and (i) = (iii). Let Xps, Xsp and Xg represent the set of all feasible solutions of A(G), A(Gsp) and
A(Gps) respectively. Then it is clear that Xsp = Xe < Xps. Hence the proof.

The utility of this proposition is that it gives us an outline for a solution approach to any
arbitrary system G. If we solve for Gsp, it will provide a feasible solution with an upper bound for
the optimal cost for G. The formulation for G is not guaranteed to be linear but the formulation for
Gps serves as a relaxation (although nonlinear) for G. Any linear relaxation for Gps will be an
automatic linear relaxation for G. Hence it can be seen that the forthcoming Algorithm 1 (in
Section 3.4) will also be useful to solve for arbitrary systems; however, more iterations will be

needed than what would be required to solve for the optimum solution to Ges.
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In the foregoing analysis, one should note that for an arbitrary system, the number of minimal
cutsets (or minimal pathsets) can be exponentially large and at times very difficult to obtain;
clearly, this can be a major issue. However, the solution procedures given in this research will be
useful for developing good solutions for any arbitrary systems. In the following sections,
formulations for Series, Parallel, Series-Parallel, Parallel-Series, and K-out-of-N systems are

developed and discussed. In all the models that follow X and r; are given by (3) & (4) respectively,

and these expressions are therefore not repeated.

3.2.1 Simple Series Systems

For a simple Series system each component constitutes a “subsystem”, so that nj = 1 and j

e {1}; Vi. The formulation is then as follows:

L Kix
Min Z z CikXitk
i=1k=1
3.5
L
s.t. RG =1_[Ti12R5
i=1
3.6
Xi1k eX

Note that the nonlinear system reliability constraint is readily linearized by taking logarithms
and using the equivalence 1 € {p,;,} =1In (r,) € {In (p,;,)}. Then ZiL:lZ’k(Ql X In(p;,) =
In(Ry) replaces constraint (3.6), and the problem reduces to a 0-1 integer linear programming

problem in the variables {x;1}.
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3.2.2 Simple Parallel Systems

For a simple Parallel system, we have a single “subsystem”, so that L= 1 and i = 1 and we
use n4 to represent the number of components in parallel. The formulation is then as follows:
Min Z?il kaijl C1jkX1jk
3.7
s.t. Rg =1—TI;,(1 —11j) 2 Rs

3.8

lek EX

Similar to the series system, the nonlinear system reliability constraint is easily linearized

by taking logarithms and using the equivalence r; € Py} =In(1- rlj) €{ln(1- pljk)}. The
constraint Rg = 1 — T;2,(1 — ) = Rsie; IM2,(1 - ry;) <1— Rs can thus be replaced by
Z?;lzfifl Xy In(1 — pljk) < In(1 — Ryg). Thus, for a simple parallel system the problem is once

again a 0-1 integer linear programming problem in {x;;,}. The next three subsections introduce

more complex systems.
3.2.3 Series-Parallel (SP) Systems

For a Series-Parallel system, the formulation is as follows:
Mi L n; Kij
in Yioq ijl Zkzl CijkXijk

3.9
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[SP]: s.t. [lk.fi =Rs

n
fi=1=]Ja-rp;vi
=1

xl‘jk EX

3.10

3.11

Note that f is the reliability of the i" parallel subsystem. Unlike with simple series or simple

parallel systems, there is no ready transformation whereby this program can be replaced by a linear

equivalent.

3.2.4 Parallel -Series (PS) Systems

For a Parallel-Series system, the formulation is as follows:

. L v vKij
Min Zi=1zj=1 k=1 CijkXijk

[PS]: s.t. 1-[I,(1—f) =Rs

3.12

3.13

3.14

Note that £ is the reliability of the i series subsystem. Once again, unlike with simple series

or simple parallel systems, there is no ready transformation whereby this program can be replaced

by a linear equivalent.
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3.2.5 K-out-of-N Systems

In a K-out-of-N system, the system works if at least K components out of a total of N
components work. See Figure 1 in Chapter | for an example of a 2-out-of-3 system. Note that
unlike in the case of an SP or a PS system, for a K-out-of-N system we do not have distinct
subsystems. Hence, for convenience of notation, all components are assumed to belong to the same
subsystem (i € {1} for all components). Now define e as some arbitrary set of K components out
of the N components and define Ee as the event that all of the components in the set e work. Then
P{E.} = [l;e. 71;- Since the system works as long as the event E. occurs and there are a total of )
different possible events of this kind, the system reliability can be expressedas R = )., Pr{E.} —
A, where A is a positive quantity involving joint probabilities and is a function of {r;}. The
formulation of the allocation problem for this system is as follows:

Min ¥Y_, 21;:'1 C1jiX1jk

3.15

[T]: s.it. Xve(Iljeerj) — A= Rs

3.16

X1k € X
As with the PS and SP systems, there is no ready way to linearize (3.16).
Much of the discussion that follows is common to all three problem formulations (SP, PS,
T) and we use the notation SP/PS/T to refer to the problem formulations described above. Once

again, it is important to note that linearization of the system reliability constraint in SP/PS/T is not
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possible as in the case of simple Series and simple Parallel systems. As such, the above problems
are 0-1 integer nonlinear programming problems which are hard to solve directly; this calls for
other approaches.

3.3 Linear Relaxations To NLIP Formulations

The primary difficulty in solving SP/PS/T stems from the fact that the reliability constraint
is nonlinear. In order to solve SP/PS/T, we introduce three new integer linear programs

SPo/PSo/To. Each of these will be shown to be a relaxation of the original problem.

3.3.1 Problem SPg

. L n K..
Min i1 XL, 22, cijrXiji

3.17
1
[SPol: s.t. [Tley,(1—f) < (1— Rh
3.18
fi Z RS ; Vl
3.19
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fi=1-1LA -7 ; Vi

3.20
xijk eEX
Proposition 2: SPo is a 0-1 linear program.
Proof: First from (3.20),
; . Kif ,
In(1-£)= Z;l;lln (1-— rl.].) = 27;12k=j1(xijk In(1-p;)); Vi
3.21

where the last inequality follows from the equivalence r;; € {p;,} =In (1 - ) €{In (p;)}
Hence constraint (3.19), fizRs =2 (1—f) <(1—Ry)
=In(1—-f) <In(1-Ry)
K .
= 2L Yl (Kijie In (1 = pyja)) < In(1 = Rs); Vi,
where the last clause follows from (3.21). These are all linear constraints in {xl.jk}.

Looking at constraint (3.18),
1 1
LA-f)<@-RH >3E In(1-£) <LIn(1—RL)
K 1
=¥k 2 2 (g In (1= py)) < Lin(1—RY),
which follows from (3.21). Once again, this is linear in {x;;; }. Thus, all constraints are linear in

{xijk}-

Proposition 3: Every feasible solution for SP is feasible in SPo.
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Proof: Consider a feasible solution to SP. First note that SP and SPq differ only in the system
reliability constraints with (3.18) & (3.19) replacing (10), namely [Ii, f; = Rs. This clearly
implies that f, = Rg; Visince 0 < f; < 1; Vi whichis (19).
Now the constraint [k, fi = R = ([Tk, f)VL = R;Y/*
(@)

Since the Arithmetic Mean (AM) of a set of nonnegative numbers is at least as large as their

Geometric Mean (GM), it follows that D 1f‘ > ([T, f)'/" . Therefore, from (a)

ifiz %:Zu f)<L(1- R

i=1

(b)
Once again by the AM-GM inequality L([Ti—,(1 — fl))L <YL.1-£

©
From (b) and (c) it follows that [T/, (1 — f,) < (1 — R ) which is the constraint (3.19) in

SPo. Hence the result.
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[0 Feasible Region for SP
Additional Region for SPy
Nify2Rs
v
=10

(1= fi)1=f)<(1=Ry?)?

Figure 4: Feasible Regions for SP and SPo

The feasible region for SP is thus contained entirely within that of SPo. Figure 4 depicts the
same for an example of two subsystems. In summary, Propositions 2 and 3 thus show that SPq is

a linear relaxation of SP.

3.3.2 Problem PSg

. n; Kij
Min Z%=1 21;1 Zkl:jl Cijkxijk

3.22
1
[PSo: s.t. f; 2 e™Ma(1— (1 - Ry)t); vi
3.23
iz <L-1
3.24
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flzl_[rl]'VI'

3.25

xl'jk € X,Zl' € {0,1}, Vi
Here M is a sufficiently large positive constant. Notice that PSo is also a 0-1 integer linear

program in the variables {x;; .} and {z;}; this follows from (25), (23) and the equivalence r; €
{pijk} =In (Tl.j) € {ll’l (pijk)}’ which ylelds ln(fl) = Z]n;lln (rij) = 2171;1 Zlk(zlxijkln (pijk) 2

1
—Mz; +1In (1 — (1 — Rs)L), which is linear in variables {x;; } and {z;}.

Proposition 4: Every feasible solution to PS is feasible in PSo.
Proof: Once again, PS and PSo differ only in the system reliability constraint, with (3.23) and

(3.24) replacing (3.13). The new constraints in PSp in place of the reliability constraint of PS are:
1
f,= e Ma(1 — (1 - RS)Z); vi andyl,z <L-1
Consider a solution to PS where (3.13) holds. Note that from (3.24), z, = 0 for some r, so

1
that the first constraint indicates that f = (1 — (1 - RS)Z); Vr. For the case where z, = 1 for

some r, a sufficiently large value of M reduces the first constraint to f = 0 which is always

satisfied. Hence it is sufficient to prove that the original constraint (3.13) in PS, namely 1 —

1
L, (1—f;) = Ry implies that £, > (1 — (1 - RS)Z) for at least one i € {1,2, ..., L}.

1
To prove this, suppose that this constraint in PS holds and f, < (1 — (1 — Rs)L); Vi.
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Then (1-f)>(1- RS)%; Vi [lley(1-f)> 1A —Ry) ©1—[ll.1(1 - f,) <Rs, which
contradicts (3.13). Hence the proof.

Once again, from Proposition 4, it may be seen that PSo is a linear relaxation of PS and
contains the feasible region of the latter entirely within its own. The same is shown in Figure 5 for

an example with two subsystems.

. — leI-(l-Rs)IIZ

/

/ fH21-(1-Rg)"?
1 i |
fa

¢

f > =TT
(I-fi))-f)s(1-Rg)

Feasible Region for PS
8 Additional Region for PS,

Figure 5: Feasible regions for PS and PSo

3.3.3 Problem Ty

N Kij
Min Z z C1jkX1jk
j=1k=1
3.26
[To: s.t. Ty > (Re(KD))VE
3.27
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X1k €X
Again, note that To is an integer linear program because
YTy 2 (Rs(K!))% =>3¥N, Zlk{ijl X1jkPyjp = (RS(K!))%
which is clearly linear in {x

1jk}

Proposition 5: Every feasible solution to T is feasible to To.

Proof: T and To differ only in the system reliability constraint with (3.27) replacing (3.16). First
consider (3.16): Yve(Iljee71)) — A= Rs = ZVQ(HjEerj) > Rs. Now note that the coefficient of
[1;e. 71, in the expansion of (27=1r1 ;) is exactly K! and that each such product term appears in
this expansion. Furthermore, the expansion of (Zj?;l r;;)¥ contains additional positive terms, e.g.,
rX,, ..,v%,. Thus, it follows that
@I 71D 2 Tve (K (Meersy)) = Iy ) 2 (KDRs.
The last expression clearly implies (3.27) and thus To is once again a linear relaxation of T.

Hence the result.

3.4 An Algorithm To Solve For Optimal Solutions

Before outlining a cutting plane algorithm that can be used to solve SP/PS/T via the
relaxations SPo/PSo/To we state the following proposition that holds for all three of these

formulations and forms the basis for the cutting planes introduced by the algorithm.

62



Proposition 6: Let x* be an optimal solution vector to SPo/PSo/To. Define I* = {{i,j, k}|x§‘jk = 1},

with cardinality |[I*|=ni+nz+..n. Ifx* is not feasible for SP/PS/T then the inequality
Yviijker Xijk < |[I"| — 1 eliminates x* from the feasible set of SPo/PSo/To and is valid for
SP/PS/T.

Proof: Clearly, the vector x* does not satisfy the proposed inequality and is therefore eliminated.
Moreover x* is the only point that is eliminated from the feasible set of SPo/PSo/To since it is the
only 0-1 point that does not satisfy the inequality. At every other point at least one of the x;;; =1
when x;;, = 0. Since the feasible region for SP/PS/T is contained entirely within that of
SPo/PSo/To, the inequality thus does not eliminate any feasible points for SP/PS/T and hence it is
a valid inequality for the latter.

We now present an iterative algorithm for solving SP/PS/T to optimality.

Algorithm 1

1. Setp =0 and solve SPo/PSo/To.

2. Ifan integer solution vector |xP*| to SPo/PSo/To is feasible to SP/PS/T, stop;
otherwise go to step 3.

3. Define I” = {{i,j, k}|x]; = 1}.

4. Add the inequality Xy ; yee Xije < [IP| — 1 to SPo/PSo/To. Note that the vector
xP* is now infeasible in SPo/PSo/To.

5. Setp=p + 1. Solve SPo/PSo/To and return to Step 2.

Proposition 7: Algorithm 1 is finite and finds the optimal solution to SP/PS/T.
Proof: By proposition 3/4/5, the feasible set of SP/PS/T is contained in the feasible set of

SPo/PSo/To. Hence, if the optimal solution to SPo/PSo/To at the p™ iteration (xP*) is feasible for
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SP/PS/T, then it is also optimal for SP/PS/T. Otherwise, the constraint added in Step 4 eliminates
exactly one point, namely xP* from the feasible set of SPo/PSo/To and nothing from that of
SP/PS/T. Since there are only a finite number of points which are feasible for SPo/PSo/To but

infeasible for SP/PS/T and each iteration removes one such point, the algorithm is finite.

3.5 Examples And Observations

Algorithm 1 is illustrated via data sets in Table 1 and Table 2 for the three systems addressed
in the earlier sections. Four reliability levels (0.85, 0.90, 0.95 and 0.99) are selected and four
components considered. Costs for each component were randomly generated corresponding to
these four reliability levels, while ensuring that these costs increased with reliability. The data are
shown in Table 1 and Table 2. Note that an additional cost and reliability datum is added for each

component (k=1), with c;;; assumed to be zero and Pij1 assumed to be equal to a sufficiently small

value &. This is for the following reason: if x;;; = 1 at the optimum for some i, j then this component

j of subsystem i can be interpreted as being irrelevant and can therefore be removed from the
system. The integer linear programs treated by the algorithm were solved using CPLEX-4.0

callable library.

Table 1: Reliability data matrix {pij}

k 1 2 3 4 5
Pijk 0.0 0.85 0.90 0.95 0.99
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Table 2: Cost data matrix {cix} for example problems

K
Component No i J 1 2 3 4 5
1 1 1 0.00 251.05 339.80 | 440.45 597.70
2 1 2 0.00 354.00 44950 | 572.75 703.30
3 2 1 0.00 248.55 347.90 | 463.75 609.40
4 2 2 0.00 276.70 370.20 | 495.15 628.50

Example 1: Series-Parallel system

We choose a Series-Parallel system with two subsystems. Components 1 & 2 are in parallel
for the first subsystem, and Components 3 & 4 are in parallel for the second subsystem. We choose
Rs = 0.97. Initially SPo is formulated and solved. The optimal solution (x115 = x121 = X215 =
X272 = 1) yields avalue of 0.9677 for the system reliability, which violates the reliability constraint
of SP. Hence, the inequality x115 + X121 + X215 + X222 < 3 is added as per Proposition 5 and SPo
is reoptimized. The new optimal solution (x115 = X121 = X315 = X321 = 1) yields a system
reliability of 0.9801, which satisfies the reliability constraint of SP and provides the optimum to
SP. The optimal cost is 1207.10

Example 2: Parallel-Series system

We choose a Parallel-Series system with two subsystems. Components 1 & 2 are in series
for the first subsystem, and Components 3 & 4 are in series for the second subsystem. We choose
Rs = 0.97. PSo is formulated and solved. The resulting optimal solution (x111 = X121 = X214 =
X,3 = 1) yields a system reliability of 0.855, which violates the reliability constraint of PS. Hence,
the inequality x111 + X121 + X214 + X223 < 3 is added as per Proposition 5 and PSp is reoptimized.

After nine such iterations, we get an optimal solution (x111 = X121 = X215 = X225 = 1) with a
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system reliability of 0.9801 which satisfies the reliability constraint of PS at an optimal cost of
1237.9

Example 3: K-out-of-N system

We consider a 2-out-of-3 system with components 1,3,4 from Table 2. For this system, we
choose Rs = 0.95. Initially To is formulated and solved. The optimal solution (x112 = X132 = X141 =
1) yields a system reliability of 0.7225, which violates the system reliability constraint of T. Hence
the inequality x112 + x132 + X141 < 2 is added and Ty is re-solved. After seven such iterations, we
get the optimal solution (x113 = X132 = X142 = 1) that gives a system reliability of 0.952 and

satisfies the reliability constraint of T. The optimal cost is 865.05

3.6 Strength of SPo and PSg

Algorithm 1 presented earlier (Section 3.4) is guaranteed to solve the reliability allocation
problems addressed. However, when the number of components is large, this algorithm may
require a very large number of iterations. Let us use the term “gap” to denote the portion of the
feasible space of the linear relaxation that does not intersect with the feasible space of the original
nonlinear formulation with the integrality constraints ignored. At each iteration, the algorithm
eliminates one infeasible integer solution from this gap. If the problem size is large, one could
expect a large number of such infeasible integer solutions in the gap. Also, for the problems of SP
and PS, the size of this gap also depends on the value of Rs. For the case of SP consider two
problem instances for the same system with identical cost-reliability data but with R and RZ as
reliability target values where R > RZ > 0.5. Then the gap (see Figure 6) for the problem instance

with R} as the specification will be smaller compared to that for the problem instance specified
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with RZ. On the other hand, for PS, the size of gap for the instance with R2 will be larger compared

to that of the problem instance with RZ (see Figure 6).

Gap for R's

1
L Gap for R's

T Gap for R% R -

Gap for R%s
f

”zzs IRls fl 1 A st‘ R]S 1
(a) (b)

Figure 6: The gap between (a) SPo and SP (b) PSo & PS

Also note that the feasible solutions are discrete, and the number of such solutions in the gap
(see Figure 6) also depends upon the discrete datasets. A larger gap does not necessarily mean
more infeasible integer solutions in that gap, and a larger gap does not necessarily mean more
iterations in the algorithm. A general comment is that the computational time of the algorithm
depends on the number of infeasible solutions (in the order of increasing reliability) in the gap,
which in turn depends upon two factors: (i) the number of components and number of discrete data
points, and (ii) the target value of Rs.

Consider a twenty-component example (see Table 3 and Table 4 below) for SP and PS
systems. First, we choose a Series-Parallel system with four subsystems. Each subsystem has five
components in parallel. For Rg = 0.99, the optimal solution to the problem was obtained after 33
iterations of the algorithm described earlier (see Table 5 below and recall that x;;, = 1 implies that
the k" choice is made for the j component in subsystem i). This configuration resulted in an
overall system reliability of 0.990525 at a cost of 1139.05 units. However, when we tried to solve

the same problem with Rs = 0.98; we could not do so. This point emphasizes the sensitivity of the
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proposed algorithm to the problem parameters and thus the need to develop a solution procedure
which is more robust. This issue can be expected to be even more pronounced as the size of our

problem and the size of the cost-reliability data set (in terms of the number of options available)

increases.
Table 3: Reliability Data Matrix {pij}
k 1 2 3 4 5
Dijk 0.001 | 0.85 | 0.90 | 0.95 | 0.99
Table 4: Cost data matrix { ¢;} for example problems
Component No. i i K
1 2 3 4 5
1 1 1 0.00 64.35 280.65 427.35 511.15
2 1 2 0.00 120.75 160.25 419.45 650.25
3 1 3 0.00 88.85 291.75 479.15 731.35
4 1 4 0.00 117.45 238.85 388.75 710.55
5 1 5 0.00 121.55 277.35 379.85 703.85
6 2 1 0.00 104.25 172.15 446.55 515.35
7 2 2 0.00 98.35 195.35 304.35 651.45
8 2 3 0.00 148.15 203.65 498.95 671.15
9 2 4 0.00 115.95 173.95 494.65 734.55
10 2 5 0.00 148.65 159.25 321.15 682.95
11 3 1 0.00 94.45 207.45 430.25 525.35
12 3 2 0.00 138.25 230.75 482.85 623.75
13 3 3 0.00 101.75 189.15 474.15 562.45
14 3 4 0.00 75.15 154.35 451.25 680.35
15 3 5 0.00 50.45 271.85 329.35 568.85
16 4 1 0.00 79.65 190.35 430.75 691.25
17 4 2 0.00 52.15 215.95 394.15 657.55
18 4 3 0.00 129.85 268.65 452.95 622.85
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19 4 4 0.00 123.95 279.25 400.85 745.95
20 4 5 0.00 53.45 239.45 464.55 718.55

Table 5: Optimum configuration for Series-Parallel system for Rs = 0.99

Subsystem No. Component Choices
1 X112 = X123 = X132 = X141 = X151 = 1
2 X212 = X222 = X231 = X242 = X251 = 1
3 X312 = X321 = X332 = X342 = X352 = 1
4 X412 = X422 = X431 = X441 = Xg52 = 1

Unlike the Series-Parallel system, the problem formulation for the Parallel-Series system
leads to a structure that is much more difficult to solve. While the algorithm described in Section
3.4 works well for relatively small systems, computational times start to increase rapidly as the
problems grow in size. For a problem with the same data set from Table 3 and Table 4, i.e., four
subsystems (all connected in a parallel setting) with five components each connected in series, and
with the same value of Rs = 0.99, the algorithm was completely impractical. Hence, in order to

solve problems of practical size (say 20 components); improved solution procedures are necessary.

3.7 Acceleration Schemes For The Algorithm

While we have provided an algorithm to solve the general IP formulations developed in this
chapter, the algorithm is not capable of efficiently solving more large-scale problems that model
general systems. Thus we have the option of either exploring enhancements to the algorithm that

will accelerate its convergence to a solution, or to develop efficient heuristic procedures for larger
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systems. We will explore the former option in the following sections of this chapter and then look
at heuristic options in the next chapter.

The computational limitations of the algorithm described in Section 3.4 arise primarily out
of the fact that we only eliminate a single infeasible integer point at each iteration. Hence any
better solution procedure for large systems, should be aimed at either (i) eliminating more integer
points at each iteration from the region within the relaxation that is infeasible for the original
problem, or (ii) eliminating an entire section of this region rather than a single point or a set of
integer points. Ideally, this elimination procedure should involve additional linear inequalities that
can be easily handled. In the following sections, we identify a class of additional disjunctive
systems for SP and PS. For SP, these disjunctive systems can yield additional valid inequalities
which strengthen the linear relaxation by eliminating a region from the gap. For PS, the disjunctive

systems might be used as part of a better branching scheme with a branch-and-bound procedure.
3.7.1 Additional Disjunctive Inequalities To Strengthen LP Relaxation SPo

Consider the reliability constraint in SP:
M f, = T {1 - T, —7,)} = Rs

Clearly, this nonlinear constraint cannot be readily linearized. However, if we ignore the
integrality of the binary variables, it is possible to define the feasible region of this constraint by
means of a conjunction of finitely many disjunctive systems of linear inequalities. Furthermore,
from the theory of disjunctive programming (Balas [1979]), it is possible to generate all valid
inequalities for each such disjunctive system. We will show that the conjunction of these
disjunctive systems defines the feasible region of the nonlinear reliability constraint of SP

(ignoring integrality). To see how such disjunctive systems are represented, consider an example
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with two subsystems. Define 0 < s;,s, < 1 such that s;s, = Rg. Now consider the SP system
with reliability requirement f f, > Rs = s15,. Then clearly all f, f, satisfying this will also
satisfy at least one of f, > sy, f, = s,. That is, the disjunction {(f, = s;)V(f, = s;)} is valid for
system SP. This may now be generalized as follows:

Let, 0< sy, ...,5, <1 such that [[;s; =Rs. Then the disjunctive system
D(s):Vi_,{f; = s;} forany such s = [sy,s5,...,s;] is valid for SP. Notice that each element {f; >

s;} of such a system of disjunctions can be rewritten as Ej’.” 1In (1 =7;) <In(1 —s,), which in

turn reduces to Z;ilzlzle(qu In (1—- pi].k)) < In(1 —s,), a linear inequality constraint in x. The

nature of these disjunctive systems with respect to the reliability constraint can be readily

appreciated when we look at an instance with two subsystems (i.e., with L=2).

R hes, A3s/
1.0f / L>s;
4
S2 fr> sé
53
h
S Sl/ 1.0
(i) (ii)

Figure 7 : Disjunctive systems for reliability constraint for SP

Referring to Figure 7(i) above, notice that disjunctive system D(s) = {(f; = s;)V(f, = s,)}

is a relaxation of the reliability constraint f, f, > R, but it contains additional points that violate
f1f, = Rs, as depicted by the dark shaded area in Figure 7(i). However, consider when a second

disjunctive system D(s") = {(f1 = s;)V(f; = s3)} is added to D(s). Together, they contain less
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infeasible region (that is shaded dark) in Figure 7(ii). Intuitively, it should be clear that if we have
the collection of all such disjunctive systems, then they should have, in conjunction, the same
feasible region as the reliability constraint. The following proposition proves this for the more
general case.

Proposition 8: Let » be the set of all disjunctive systems D(s) such that sy, s, ...,s; € (0,1)
and [T~ s; = Rs. Then, the conjunction of the elements of the set D is equivalent to the reliability
constraint of SP.

Proof: Since each disjunctive system D(s) is valid for SP, the collection D clearly represents a
relaxation of the reliability constraint of SP. Now, to prove that they both are equivalent, it would
suffice for us to show that for any point infeasible in the reliability constraint there exists a
disjunctive system in 9 that is violated. Suppose {f; = b;; i = {1,2, ..., L}} is infeasible in the
reliability constraint, so that []%, b; < Rs. Now consider the following set of vectors

Rsb;
Hi=1 b

{a €ERN:Tl,a;=Rg; by < a; < ;Vi}. Clearly a disjunctive system D(a) exists in P for

each member a in the above set. Consider the subset of these elements A={ae

RE:TIk,a; =R by < a; < Hfsb; ;Vi}. Clearly A is a non-empty set and {f; = b;; Vi} violates
k=1"k

all the disjunctive systems {D(a)|a € A}. Hence the proof.
3.7.2 Valid Inequalities For SP From A Disjunctive System

Given a disjunctive system D(s): Vi_,{f; = s;} which is valid for SP, the valid inequality

as a consequence of D(s) is derived as follows:
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n; Kij

\/{fl>sl} \/ ZZ(xl,k In (1 = pyje)) < In(L = 5 X 2 0; V(0. j, )

i=1 \ j=1k=

n; Kij

In (1= p; i) .
\/ ZZ( Xijk <1n(1——53<>> >1; Xijk = 0; V(l,], k);

i=1 \j=1k

Using the theorem of Balas [1972], the valid inequality corresponding to the above system of
disjunctions can be written as:

L n Kij In (1 pl]k)

2.0 0 | n(i=s) )|=!

i=1j=1k=1
Proposition 9: Let (¢, gz, -, 1) be a permutation of the numbers (1,2, ..., L) and [T_; s; = Rs.

Then for every such permutation the inequality

L In(1-p,,)
ZZZ("”"(Inu—s’)))“
is valid for SP.

Proof: Notice that [[i_,s; = Hlesqi = Rs. Thus, the stated inequality is a consequence of

disjunctive system Vi_,{f; = Sq;} and it must be valid for SP. Hence the proof.
3.7.3 Additional Disjunctive Inequalities To Strengthen LP Relaxation PS,

Similar to SP, PS can also be described by a collection of disjunctive systems in place of its
nonlinear reliability constraint. We now show that the conjunction of these disjunctive systems
defines the feasible region of the nonlinear reliability constraint of PS. To develop these

disjunctive systems, consider an example with two subsystems. Define 0 < s;,s, < 1 such that
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(1 —5s;)(1 =5s,) = (1 — Rs). Now consider a PS system with reliability requirement (1 — f;)(1 —
f2) < (1 =Rs) = (1 —51)(1 —53). Then clearly for all feasible £, f, we must have at least one
of (1—-f1) <A -s)or(1-f,) <(1-sy). Thatis, the disjunction {(f, = s1) V(f, = s2)} is
valid for system PS. This may now be generalized as follows:

Let 0 <sy,Sp..,5, <1 such that [[f,(1—s;)=(1-Rs).Then, the following
disjunctive system D(s) = Vi_,{f; = s;} for any such s = [sy, s,, ..., s ], is valid for PS. Notice
that similar to what we saw in the Section 3.7.1 each element {f; > s;} of such a system can be
written as a linear inequality Z?;lzle(xijk lnpijk) >Ins;. Once again, the nature of these

disjunctive systems with respect to the reliability constraint can be readily appreciated when we

look at an instance with two subsystems (L=2) similar to the case of SP.

[a-ma-m<a-r) ] [a-ma-m<a-ry
1
f fi 21 f fi> 1 f; 1- >’31/
! 1.0 -
f2>52 ,/ fa>s2
' . '
s/ 4 f2> 52/
2
f
‘_’ fi 51 S( 1.0_’ =

(i) (ii)

Figure 8: Disjunctive systems for reliability constraint for PS

Referring to Figure 8(i) above, notice that disjunctive system D(s) = {(f, = 51)V(f, = s2)}
is a relaxation of reliability constraint (1—f,)(1—f,) < (1 —Rs), but it contains additional
points that are infeasible; this region is indicated by the shaded area (dark) in Figure 8(i). However,

consider when a second disjunctive system D(s") = {(f, = s1)V(f, = s3)} is added to D(s).
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Together, they contain less infeasible region (shaded dark) in Figure 8(ii). Intuitively, if we have
the collection of all such disjunctive systems, then they should define, in conjunction, the same
feasible region as the reliability constraint. The following proposition proves this for the more
general case.
Proposition: Let® be the set of all disjunctive systems D(s) such that s4, s5, ...,s; € (0,1) and
L (1 —=s) = (1 - Rys). Then, the conjunction of the elements of the set D is equivalent to the
reliability constraint of PS.
Proof: Since each disjunctive system D(s) is valid for PS, the collection D clearly represents a
relaxation of the reliability constraint of PS. Now to prove that they both are equivalent, it would
suffice for us to show that for every infeasible solution to the reliability constraint there exists a
disjunctive system in @ which is violated. Suppose {f; = b;; Vi = {1,2, ..., L}} is an infeasible

solution to the reliability constraint, so that [T¥_,(1 — b;) > (1 — Rs). Now consider the following

set of points ac RL: l-“= 1-— a;) = 1-— Rs ;bi < a; <1- —(1_RS)(1_bi); Vit. Clearly a
=1 L
Hk=1(1_bk)

disjunctive system D (a) exists in 9D for each point a in the above set. Consider the subset of these

(-Rs)=by)

points 4 = {a € R¥: Ty (1 - ap) = (1 = Re)iby < a; < 1 - 0020

;Vi}. Clearly A is a

non-empty set and the infeasible solution {f; = b;; Vi} violates all the disjunctive systems
{D(a)|a € A}. Hence the proof.
Proposition: Let (q4, ¢, ..., q;,) be a permutation of the numbers (1, 2, ..., L) and [[}_,(1 —s;) =

(1-Rs). Then for every such permutation the disjunctive system

Vizg <Z}l;1 % <Xijk ( - pl"‘)) < 1) is valid for PS.

In Sq;
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Proof: Notice that [Ti;(1 —s;) = [T{—1(1 — s4,) = (1 — Rs). Thus, the stated disjunction is a
consequence of disjunctive system Vi_,{f; > Sq;} and it must be valid for PS. Hence the proof.

It should be noted that a single inequality cannot be readily written for the above disjunctive
system. However, a branch and bound algorithm could be developed by using the above
disjunction as part of a branching strategy.

In conclusion, we have provided an outline of possible acceleration strategies for an
algorithm that seeks to solve the IP formulation exactly. In the next chapter we will explore the

second alternative of developing appropriate heuristics to solve the problem.
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4.0 Heuristic Approaches To Solving The Reliability Allocation Problem

Note: The work in this chapter was published in Proceedings of the 5" Annual IE Research
Conference (Majety, Venkatasubramanian and Smith [1996]), and Proceedings of the 6" Annual

IE Research Conference (Majety and Rajgopal [1997])

4.1 Introduction

Metaheuristics such as simulated annealing, tabu search, and evolutionary algorithms have
been commonly adopted by researchers to solve many difficult problems, especially in
combinatorial optimization. In this chapter we develop novel variants of two popular

metaheuristic approaches to solve our reliability allocation problem.

Once again, we adopt 0-1 integer programming formulations where each binary variable
corresponds to either a data point on the cost-reliability curve of a component, or a discrete option
that is available to us, and our objective s to find the minimum-cost system that meets a minimum
prespecified system level reliability. In general, the system reliability is a nonlinear function of
all these variables. However, the primary goal of the methods described in this chapter is to find
good solutions to the problem in a reasonable amount of time, even if they are not guaranteed to
be optimal. It can be easily shown that the problem is NP hard by considering a particular case of
SP system, viz. a series system. Hence, heuristic approaches make useful contributions to problems

of this nature.
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4.2 A Nested Simulated Annealing Algorithm

The first metaheuristic we develop is a variation of simulated annealing that we term “nested”
simulated annealing (NSA). While we describe our algorithm in the context of a series-parallel
(SP) system, the approach is readily generalized to other configurations. In traditional simulated
annealing (SA), one starts with a feasible solution and identifies a feasible neighboring solution.
If this new solution improves the objective function, it is immediately accepted, and a move is
made to that solution. If not, the new solution is accepted (even though we are moving to an
inferior solution) probabilistically based on some “annealing schedule.” The latter term arises
from an analogy with the annealing process for metals where the metal is heated to a certain
temperature and then it is reduced gradually to a lower temperature. This temperature reduction
may take place as a geometric progression, arithmetic progression or in some other appropriate
way. Similarly in simulated annealing algorithms, for inferior solutions that are being considered
for acceptance a probability of acceptance is defined based on the objective function value, and
this probability is reduced gradually (like the temperature) in some systematic fashion as the

algorithm progresses.

The efficiency of an SA algorithm depends on the definition of the feasible neighborhood of
the current solution (Eglese, 1990). Unfortunately, in the context of our problem, it is not so easy
to define a feasible neighborhood solution because the system reliability has to be explicitly
computed for any point in order to verify whether it is feasible or not. We get around this by
employing a novel approach where rather than restricting ourselves to only feasible solutions like
a traditional SA algorithm, we also consider moves to infeasible solutions. For this we use two

SA procedures nested within the same algorithm. The first SA focuses only on feasibility and
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applies the principle of probabilistic acceptance with feasibility as the criterion, i.e., it is designed
to screen solutions generated and allows us to probabilistically further consider any solution,
whether feasible or infeasible. The second SA then focuses on cost and allows us to
probabilistically accept a candidate solution advanced by the first SA, even if its cost is more than
that of the previous solution. As the algorithm proceeds, it becomes increasingly difficult to
accept infeasible solutions within the first SA, and it also becomes increasingly difficult to accept
a solution that is not an improvement within the second SA,; this is similar to a generic simulated

annealing method.

The approach we use is based on the idea that when the problem has a difficult-to-satisfy
constraint set, then rather than defining a feasible neighborhood, we could consider adding an
exterior penalty function to the objective function. The notion of a penalty function is similar to
what is used in the typical class of such methods for nonlinear optimization. However, we use a
Nested SA algorithm instead of a penalty function. In principle, is quite similar to the penalty
function approach. In a regular penalty function method, a penalty is applied by increasing the
value of the objective function (assuming minimization) based on the degree of infeasibility. The
rate of this penalty is increased as iterations progress so that algorithm will not move towards
infeasible solutions because they become more expensive due to the penalty. In our approach, we
have two nested SA algorithms. There is an acceptance probability in each SA. This probability
is progressively reduced to make acceptance of infeasible solutions in the outer SA and acceptance
of non-improving feasible solutions in the inner SA harder as the algorithm progresses through
iterations. It is also worth noting that in our experiments with the Nested SA, we always obtained
feasible final solutions (which is typically not the case with exterior penalty function methods

where we typically have a final “refinement” step to obtain the optimum).

79



Before describing our nested SA algorithm, we define the “cooling” parameters 0 < ag, a; <
1 and the “temperature” parameters T, T,. The temperature parameter plays the role of defining
a probability with which a move is accepted while the cooling parameter plays the role of altering
the probability from one iteration to next iteration. Eventually the algorithm needs to stop with a
well-defined stopping criterion. Examples of stopping criteria could be a fixed total number of
iterations, if the improvement in the objective function in successive iterations falls below some
threshold value, or a combination of both; other appropriate criteria might also be possible. The

algorithm may now be specified is as follows:

STEP 0: Generate an initial feasible solution X with reliability R and cost Z. Define initial

values for Tr, Tz, and define an appropriate stopping criterion;
Set accept = no
STEP 1: If stopping criterion is met, STOP.
STEP 2: Generate a neighboring solution X’ of X with reliability R’ and cost Z'
i. If R" > Ry, then set accept = yes. If R'< Ry, then set accept = yes with probability
e~ (Rs=R')/Tr:
ii. Ifaccept=yesand Z' < Z, thenset X = X'. If accept =yesand Z' > Z , then set X =
X' with probability e=?'~2/Tz;
iii. Set Tr=agTg, T, =a;T;.
STEP 3: Set accept = no. Return to STEP 1.
Notice that the values of Ty, T, values are reduced through the iterations since 0< ay, a; <

1. Due to this, the acceptance probabilities are also correspondingly reduced. This is analogous to

temperature reduction in an annealing process. The probability of acceptance for an infeasible
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neighboring solution is equal to p; X p,, where p, = e~ ®s~R)/Tr and either p, = e~ @'~ 2/Tz or
p, = 1. In other words, the acceptance of a candidate solution is guaranteed if the solution is
feasible and of lower cost than the previous solution. However, when one or both of these
conditions are not true, we accept the solution probabilistically depending on the degree of
infeasibility, the difference in cost, and the point on the cooling schedule at which the search
currently resides. Probabilistic acceptance for violation of either condition becomes harder as the

search proceeds.

4.2.1 Initial Feasible Solution

While an initial feasible solution might be generated in several different ways, we adopt the

following approach:

i.  Assume all f; are equal for all subsystems i; compute f; = (Rs)*/*.

il.  Assume all r;; are equal for all components j in each subsystem i; compute r;; = fl.l/ "

iii.  Assign component j in subsystem i the value of p, j that satisfies p;j—1) <7ij <pyji, and
assign it the corresponding cost ;. If such a k does not exist, then a p;,, value can be

inserted into the data at an artificially high cost c; ;; so that this data point will never appear

in the optimal solution.
This is a simple approach that guarantees that the resulting solution is feasible because the

system with reliabilities of {r;;} is already feasible (with R = Rg) and each chosen component

reliability is greater than or equal to 7;; thus R = Rs.
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4.2.2 Neighboring Solution

It is difficult to arrive at a precise and comprehensive definition of a neighborhood for our
problem; this can often be the case with some combinatorial problems. One approach might be to
first fix the reliability of each subsystem at some value and then compute the individual component
reliabilities. Another approach might be to arbitrarily pick some component (or components) and
randomly increase or decrease the current reliability value to the next higher or next lower value
in their reliability sets. Other options are also possible. While the neighborhood definition is
complicated in and of itself, assuring feasibility (i.e., meeting the minimum system reliability
level) for the neighboring solution further adds to this complexity. The feasibility of a neighboring
solution can be ensured but not without considerable computational effort, which could be
cumbersome. Furthermore, restricting the search to just the feasible region of a constrained
problem also often results in inefficient convergence and suboptimal final solutions. Therefore,
we are willing to accept an infeasible neighboring solution, but with some probability as described
in the algorithm. The Nested SA process makes the acceptance of such infeasible solutions more

unlikely as the search progresses.
We define our “neighborhood” as follows:

I Define kingex(i,j) = {k € (1,2, ..., Kjj|1ij = piji} Note that the {p; .} are assumed to be
ordered by k.

ii.  Randomly select some (not necessarily the same number each time) components in the
subsystem defined by (i, j) and randomly increase or decrease k;, 40, (i, j) by 1 for these
components only. If k;, ., (i,j) corresponds to the lowest (highest) value for a selected

component then we only increase (decrease) its value.
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The neighboring solution obtained in this fashion might be infeasible. However, it is easily seen
that every solution can be reached from a given solution (feasible or infeasible) eventually with
such selection of a neighboring solution. Hence the convergence to feasible solution is guaranteed

in the outer SA eventually, while convergence to better solutions is guaranteed in the inner SA.

4.2.3 Examples And Results

We illustrate the algorithm with two example problems. We adopted the standard geometric
cooling schedule for both the outer SA that considers feasibility and the inner SA that considers
the objective. We use ap = a; = 0.99 for both examples, T = 1000 for Example 1, T = 5,000 for
Example 2; and T, = 10,000 for Example 1, T, = 25,000 for Example 2. The stopping criterion
used was the total number of solutions considered, which was set to 20,000 for Example 1 and

30,000 for Example 2. The results are summarized below.

4.2.4 Example 1

We chose an SP system with nine components for Example 1. As a matter of convenience,
we used the same reliability level options for all components in our data set. For each component,
we assigned randomly generated cost values for each reliability level in the data set as shown in
Table 6. We ensured an increasing trend of cost w.r.t. reliability while assigning costs. However,
we did not assume any kind of a functional relationship (and in particular, any convex functional
relationship); in fact, this is guaranteed due to our random generation of costs. We also account
for the situation where a component might be irrelevant to the system reliability. To address this

situation, for option k = 1, we specify a very low reliability (0.001) and zero cost. If a component
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j in subsystem i is assigned the option k = 1 in the optimal solution, then that component is clearly
redundant and hence can be removed from the system, that is, it is a ‘blank.” The components are
then randomly assigned to three subsystems of an SP system, with L; equal to 3, 4 and 2
components for subsystems i = 1,2, and 3, respectively. The solution search space thus has a total
of 12° candidate points.

From our experience in experimenting with the Nested SA, the best final solutions are
obtained when the algorithm visits mostly infeasible solutions. We speculate that this might be
because there are many more infeasible solutions in the search space than feasible ones and the
optimal solution is likely “surrounded” by many of these infeasible solutions; thus allowing a
wider search is better. For example, (see Table 8) for the best solution observed across 30
independent runs; the ratio of infeasible to feasible solutions (IFR) is 6.52. When we restricted
this ratio to values under 1.5 in the algorithm, the best feasible solution cost from these runs was
quite suboptimal (above 600 as compared to the optimum cost of 500.60). The Nested SA was run
with no restrictions on IFR, and statistics are presented in Table 8 for 30 different independent
runs. The best solution across all runs is within 6.65% of the global optimum solution (which we
obtained by enumeration for the purpose of comparison). The search space considered by the SA

(20,000 solutions) was a minuscule fraction of the total of 12° (0.0004% approx.).

4.2.5 Example 2

We chose Example 2 to demonstrate that the model suggested in this research addresses the
redundancy issue as well. For this purpose, we added two more components to the above system
in subsystem 1 (see Table 7), thus enlarging the search space to 12!! points, but without altering
the optimal solution (with a value of 500.60). However, for these additional components (j=4, 5
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for i=1) we intentionally generated higher costs for the option available at each “real” reliability
levels (i.e., other than for k=1, which has a cost of 0). As in Example 1, the best solutions are
obtained when the algorithm visited mostly infeasible solutions. For the best solution observed
across 30 independent runs of the algorithm, the ratio of infeasible to feasible (IFR) solutions is
10.11. The Nested SA was run again with no restrictions, and statistics are presented in Table 8
for 30 different independent runs. This time the best solution across all runs is within 7.82% of
global solution with the SA again considering only a tiny fraction of the search space (30,000
points of 1211). It is interesting to note that in all the 30 different runs; the best solution always
selected k=1 (cost of zero and reliability of almost zero) for the two additional components with
only high-cost options available. Thus, the algorithm clearly indicated that these components are
not necessary to the system and are ‘blanks.” Or in other words, the optimal configuration of the
system does not need these two components. This demonstrates that the problem formulation

developed in this work also clearly address redundancy design.

Table 6: Cost and reliability data for Example 1 { ci }

RELIABILITY VALUES

i | k=1 | k=2 | k=3 | k=4 | k=5 | k=6 k=7 k=8 k=9 | k=10 | k=11 | k=12

0.001 | 05 | 055| 0.6 [ 0.65 0.7 | 0.75 0.8 0.85 0.9 0.95 | 0.99
11 0 4.05]16.3 | 404 | 674 | 957 | 1358 | 186.05 | 251.1 | 339.8 | 440.5 | 597.7
1|2 0 3.65|178 | 36 |[59.4 | 785 | 169.6 | 224.45 | 303.8 | 392 [ 505.3 | 654.5
1|3 0 9.1 (224 | 445|716 | 105.1 | 148.9 | 198.1 | 276.8 | 374.3 | 496.8 | 633.7
2 |1 0 4351141292505 78.2 | 1176 | 170.9 | 248.6 | 347.9 | 463.8 | 609.4
2 |2 0 3.15]1 108 | 32 52 | 1833 [ 222.1 | 278.8 | 350.3 | 434.2 | 539.3 | 699.2
2 |3 0 7.8 [ 229|439 | 70.8 | 101.5 | 143.7 | 202.05 | 276.7 | 370.2 | 495.2 | 628.5
2 |4 0 8.75118.8 | 428 | 72.1 | 106.3 | 151.2 | 210.95 | 290 370 | 482.8 | 636.6
3 |1 0 5451 16.5] 36.5| 60.7 | 191.2 | 230.8 282 354 | 4495 | 572.8 | 703.3
312 0 205 | 7.67 | 23.9 | 102 | 128.8 | 164.4 207 271.3 | 362.8 | 481 | 623.4
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Table 7: Cost data for additional components in Example 2: { cij }

RELIABILITY VALUES
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12
i
0.001 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99
1 0 231.7 272.8 456 689.4 821 989.6 1354.5 2043.8 3492 4605 6754.5
1 0 219.1 232.4 364.5 591.6 735 978.9 1148.1 1676.8 2474.3 3697 5733.7
Table 8: Summary of results for Examples 1 and 2 with nested SA over 30 runs of each
Max. Mean Min. No. of Feasible . . Best .
Cost Cost Cost Iterations Solutions Best Configuration Reliability CPU time
(sec/run)
Ex 1 662.1 572.7 534 20000 2660 4-5-4 2-5-3-4 5-8 0.85027 2.54
Ex 2 726.2 599.5 541 30000 2699 7-4-3-1-1 2-4-3-3 5-8 0.85092 5.70
Optimal (via enumeration) 501 - - 3-6-5 4-3-2-3 5-8 0.85017 ~6 hrs.

4.3 An Evolutionary Algorithm

The second heuristic approach we develop is an evolutionary algorithm. A common
approach to dealing with problems that are explicitly constrained is the use of traditional penalty
functions which penalize infeasible solutions found by the algorithm. Here, we generalize this
penalty concept by also penalizing solutions that are not necessarily infeasible, but clearly
undesirable. The rationale behind this approach is that for many problems, the general vicinity of
the optimal solution is known. For example, in any optimization problem with a linear objective
function, the optimal solution is known to be near the boundary of feasible region, and thus feasible
solutions far from the boundary may be classified as undesirable. Here, we develop an evolutionary
algorithm and demonstrate that penalizing undesirable feasible solutions (in addition to infeasible
solutions) yields much better results and accelerated convergence.

Consider a penalty function approach to the following general optimization problem:
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min z(x)

st. x e X(E), x€ X(D)

where, X(E) defines a part of the feasible region determined by constraints that are “easy” while
X (D) defines the region determined by the “hard” constraints. Penalizing the hard constraints, the
modified problem is:

min z(x) + ¢[x,d(D)]

s.t.x € X(E)
where d(D) is a measure of the degree of infeasibility for the constraint set defining X (D), and
@[x,d(D)] is a penalty function appended to the objective function. For example, the Lagrangian
relaxation approach uses Lagrange multipliers to bring the difficult constraints into the objective
function. In heuristic optimization methods most researchers (e.g., Coit et al. [1996], Bean and
Hadj-Alouane [1992]) commonly adopt a penalty function based on the degree of infeasibility so
as to discourage infeasible solutions from being selected. While the use of such a penalty drives
solutions to feasibility it does not necessarily guarantee speedy convergence to the neighborhood

of the optimum. We now define a different penalty function.

4.3.1 Penalty Function

We first introduce some notation: suppose N is some feasible neighborhood of the optimum
solution. Then we term any point outside N as an “undesirable” solution. It should be noted that
an undesirable solution might be feasible or infeasible. Clearly, the complement of N is a union of
two disjoint regions (i) I: the infeasible region, and (ii) F\N: the feasible region excluding N. The

modified problem may then be stated as:
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min z(x) + ¢[x € I,d(D)] + ¢[x € F\N,d(N)]

S.t.

x € X(E)
where, p[x € I,d(D)] is the usual penalty function applied to infeasible solutions, while d(N) is
a metric to measure the distance of the solution from the boundary of the feasible region (d(N) =0
if x € N)and ¢[x € F\N,d(N)] is a penalty function for feasible solutions that are not in N.

Our approach is predicated on the fact that for many difficult combinatorial problems the

neighborhood of the optimal solution can be predicted. As an example, for an integer program with
a linear objective, it is known that the optimum solution is in the vicinity of the boundary of the
feasible region. For such problems the neighborhood N can be defined as all feasible solution
within some distance of the boundary. The distance parameter is usually problem specific. It
should be big enough so that the neighborhood defined by it contains the optimal solution; yet
small enough that the penalty is applied to most feasible solutions that are undesirable. The
selection of such a parameter can in general be quite difficult in most generic problem instances.
We therefore suggest a dynamic procedure. In the initial stages, the distance parameter is large so
that most feasible solutions escape this penalty and look more attractive than infeasible solutions.
As the algorithm continues, the distance parameter is progressively reduced so that undesirable
feasible solutions become increasingly unattractive, and the search focuses on finding the

optimum. Our procedure is now described in detail and illustrated.

4.3.2 Evolution Strategy

Evolution strategy (ES) refers to an algorithm that tries to simulate the evolution process. A
detailed description of the method may be found in Back et al. [1991]. Briefly, in the simulation
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of an evolution process one tries to find links between the characteristics of an offspring and its
parents. The usual procedure adopted is as follows: the problem is encoded in terms of an n-
dimensional vector x, and the objective is to find a vector that a minimizes a fitness function f(x).
Initially, a population of parent vectors {x} is generated randomly. Several offspring vectors {0}
are generated from one, two or more parents by means of recombination and/or mutation strategies.
These strategies constitute the heart of any evolutionary process, where recombination refers to
the specific process used to generate offspring from the parent vectors and mutation refers to
specific process used to produce random small changes in one or more characteristics of the
offspring vectors. The specifics of these strategies could vary depending on the particular
algorithm in use and particular application in question.

After the generation of the offspring vectors a selection process is conducted based on fitness
function values. Depending on the algorithm in use, this selection could either be restricted to just
the offspring set, or it could be from a combined set of offspring and parent vectors. The selected
vectors are then given parent status and the procedure is repeated until a desired degree of
convergence is achieved.

In this work, we adapt a («,4)-ES (Back et al. [1991]). In this variant an initial population of
4 vectors is generated, and from these parents, an offspring population of A vectors is created by
means of recombination and/or mutation. Then from the offspring population the best # vectors
are selected as the parent population for the next generation. Based upon extensive preliminary

experimentation, a value of 7 was adopted in this work for the ratio A/x. The following sections

describe in more detail the steps adopted for the reliability optimization problems at hand.
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4.3.3 Encoding

As in the previous section we define kinqe,(i,)) = {k € (1,2, ..., K;j|r;; = pyji.}. By defining
no =0, the vector x is then defined such that the entries (ni + 1) to (ni + ni+1) correspond to
Kindex (i + 1,1) 10 kingex (i + 1,m; + 1). For example, consider a system with three subsystems; the
first subsystem has n, = 3 components, the second subsystem has n,= 4 components, and the third
subsystem has n;= 2 components. Then the encoding {2,3.4, 4,5,6.7, 5,8} indicates that the three
components in subsystem 1 take on the reliability values p;1,, 123, P134, respectively, the four
components in subsystem 2 take on the reliability values p,14, D225, P236, P247, FeSpectively and the
two components in subsystem 3 take on the reliability values ps;s, ps2g, respectively. Each of the
components with a reliability of p; ;. assumes a cost of c;;,.. Given the values for c;;, and p; ., the

cost and the reliability of the system may be obtained for the encoding.

4.3.4 Recombination

Back et al. [1991] describe two different recombination techniques that may be adopted for
a problem: (i) discrete recombination and (ii) global recombination. In discrete recombination two
parents are selected randomly and the offspring is created from these two parents. In global
recombination two parents are selected randomly but with replacement to create each offspring
vector. Within each recombination (discrete or global) the creation of an entry in the offspring
vector is done in two ways: (i) discrete selection where the offspring entry is selected randomly
from one of the two parent entries, and (ii) intermediate selection where the offspring entry is

selected randomly as an intermediate value between the two parent entries. Thus, we have four
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recombination procedures in all. In this work we consider only global intermediate recombination

(GI) since it appeared to consistently produce the best results based on numerical experimentation.
4.3.5 Mutation

Mutation is induced by means of a vector of standard deviations o (initially randomly
generated). Each of the entries in the mutated offspring o follows a normal distribution with mean
equal to the value of the offspring entry before mutation (=0;), and standard deviation equal to o,,.
The offspring vector obtained from recombination may undergo mutation as defined by the
following equation:

0, = 0; + int (0, * N(0,1)); Vi

To understand the process, say that a mutation leads to an improved solution. Such a
mutation is termed “successful.” We adopt the 1/5-success rule as a method for controlling the
mutations (Back et al. [1991]): if the ratio of successful mutations to all mutations is greater than
1/5 then the standard deviations of all entries in the offspring vector are increased by a factor 1/b,
while if the ratio is less than 1/5 then all standard deviations are decreased by a factor of b. We use
a value of b=0.82 based on trial and error. This ratio is measured for every 10n trials and then a
multiplicative factor of N(0,1) is applied, where N (0,1) is a standard normal variable.

Note that when the standard deviation is increased, the resulting offspring entry tends to be
farther away from the original entry. If the successful mutation ratio is higher (more than 1/5), then
mutation is encouraged with a mutated offspring entry that is relatively far away from the original

value before mutation. On the other hand, if the successful mutation ratio is smaller, then mutation
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is not encouraged because of the smaller standard deviation, and the resulting mutated offspring is

likelier to resemble the original offspring more closely.
4.3.6 Structure Of Penalty For The Reliability Allocation Problem

We adopt a simple distance-based penalty function for infeasible solutions. This is defined
as @[x € 1,d(D)] = C(Rs — R(x)); where R(x) is the reliability of the system corresponding to
x, and C is a constant whose value is suitably selected for a given problem. In addition to the
penalty for infeasible solutions we also impose an additional dynamic penalty for undesirable
feasible solutions. This is defined as ¢[x € F\N,d(N)] = C'(R(x) — Rg — A). Here A is defined

as the distance of the acceptance zone from the boundary of the feasible region into its interior (see

Figure 9).
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Figure 9: Penalty function

In general, the cost of a system increases as the desired system reliability increases. It is thus
intuitively clear that the optimal solution will try to meet the reliability requirement exactly, or
more likely (because of the discrete nature of the choices), exceed it by a minimal amount. Initially
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a large value is assigned to A and its value is progressively reduced as the algorithm proceeds. We
adopt a geometric reduction of A with a coefficient of «> 0.9. It is important to assign an
appropriate value for « so that the distance between the boundary of the feasible region and the
feasible penalty region decreases neither too quickly nor too slowly. The effect of this dynamic
penalty on the undesired feasible region is now studied and the results contrasted with a traditional

penalty function approach where none of the feasible solutions are penalized.

4.3.7 Examples And Results

Example-1: SP system:

We choose a system with nine components and three subsystems with 3, 4 and 2 components

in each of these, respectively (Figure 10(a)).
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Figure 10: (a) SP system (b) PS system
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Table 9: Reliability — Cost data for examples

Reliability Values

! J k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12

0.001 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99
1 1 0 4.05 16.30 40.40 67.35 95.70 135.75 | 186.05 | 251.05 | 339.80 | 440.45 | 597.70
1 2 0 3.65 17.75 36.00 59.35 78.50 169.60 | 224.45 | 303.80 | 391.95 | 505.30 | 654.45
1 3 0 9.10 22.35 44.45 71.55 105.1 148.85 | 198.10 | 276.75 | 374.25 | 496.80 | 633.65
2 1 0 4.35 14.10 29.15 50.45 78.20 11755 | 170.90 | 24855 | 347.90 | 463.75 | 609.40
2 2 0 3.15 10.80 31.95 52.00 183.25 | 222.10 | 278.80 | 350.30 | 434.15 | 539.30 | 699.15
2 3 0 7.80 22.85 43.85 70.80 101.45 | 143.70 | 202.05 | 276.70 | 370.20 | 495.15 | 628.50
2 4 0 8.75 18.80 42.80 72.05 106.25 | 151.20 | 210.95 | 289.95 | 370.00 | 482.75 | 636.60
3 1 0 5.45 16.45 36.45 60.70 191.20 | 230.75 | 282.00 | 354.00 | 449.50 | 572.75 | 703.30
3 2 0 2.05 7.67 23.87 101.90 | 128.81 | 164.35 | 207.00 | 271.25 | 362.80 | 480.95 | 623.40
Global Optimal Assignment for SP-system Example-1 = 3-6-5—4-3-2-3—5-8 with R = 0.8502 and Cost = 500.60
Global Optimal Assignment for PS-system Example-2 = 3-3-3—2-2-2-2—10-10 with R = 0.8515 and Cost = 892.75

For ease of exposition, we assume that reliability level options available for each component
are the same, but with varying costs depending upon the component in question. For each
component, we once again assign randomly generated cost values to the corresponding reliability
values in the data set, while ensuring an increasing trend of cost vs. reliability. However, no other
relationship is assumed. This data is given in Table 9. Notice that for k = 1 in the optimal solution,
all components have very low reliability and zero cost. If any component (i,j) is assigned k = 1 in
the optimal solution that component is deemed redundant and can therefore be removed from the
system. Choices from the available option are randomly assigned to each component in the three

subsystems in order to generate the initial population.
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Option-1: Penalty for infeasible solutions only

For the example, the best parameter values based on experimentation were =60, 1=420 and
C = 7500. The stopping criterion was 50 generations. Thus, we perform a total of 60 + 420x50 =
21060 fitness function evaluations, which corresponds to just 4.1x10* percent of the total
combinatorial search space (=12°). The algorithm converged to the same final solution (bottom of
Table 9) in each of 10 different runs — irrespective of the random seed used — and showed

convergence as displayed in Figure 11.

Cost including Penalty Value

8838388

Generation Number

Figure 11: Convergence of ES for SP with option-1

However, the algorithm appears to be sensitive to the values of xand C. At lower values of
u the algorithm converges to a feasible solution but to one that is distinctly inferior. Similarly,
while for a value of C=7500 the algorithm performed adequately; for relatively low values of C,
solutions with less cost are not sufficiently penalized and the algorithm converges to an infeasible
solution with a very low cost. Conversely, if C is too high then the penalty is too high and the

algorithm converges too quickly to a local optimum while missing nearby low-cost solutions.
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Option-2: Penalty for undesirable solutions

For this option, we use the same values for # and A as with the first option. However, in
this case we add the dynamic penalty function for undesirable feasible solutions in addition to the
penalty for infeasible solutions. Based on our experiments we adopted « = 0.95 and C = 1200 for
the SP problem. Convergence to the optimal solution with this option is illustrated in Figure 12. It
is clearly seen that the convergence is quicker than with option 1. It takes up to 32 generations to
converge without the dynamic penalty whereas it takes only 23 generations when this option is
adopted. This results in savings of 9x420 = 3780 function evaluations (=17.9%). Also, it was

found that the dynamic option converges to the optimum even with smaller values for z (such as

40) with A=74. With =40 the savings in function evaluations is (32x420) -(23x280) = 7000

(=33.2%).
1600
1400 §
3 12007 Max Cost
s
z 1000
5 800
o
[=T]
-é 600 Min Cost
.Té 400
:3: 200
o
© »n » o ¥ 2 @ x I AR R 2RV ST
Generation Number

Figure 12: Convergence of ES for SP with option-2

Example-2: PS System:

For the PS problem, we used the same data as for the SP problem except that the three
subsystems are connected in parallel as shown in Figure 10(b). Option-1 with penalty for infeasible
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solutions alone resulted in non-convergence despite many trials with various values for the
parameters. However, Option-2 with a penalty for undesired solutions resulted in convergence (see
Figure 13) to the final configuration shown at the bottom of Table 9. This clearly emphasizes the

utility of the additional penalty for undesired solutions.
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Figure 13: Convergence of ES for PS with option-2

4.4 Conclusions

In this chapter we address the fact that large problems cannot be solved optimally using the
integer programming formulation of the previous chapter, thus necessitating the development of

suitable heuristics. In particular, we develop two different heuristics to solve this NP-Hard

combinatorial problem.
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First, we developed a novel nested SA algorithm. The results are encouraging and the
solution procedure clearly identifies near-optimal configurations of redundant components in the
system, while maintaining feasibility of the final solution. Note that the Nested SA does not require
the extensive tuning and parameter setting of many penalty function approaches. Only a cooling
schedule needs to be specified, and a relatively straightforward geometric cooling schedule appears
to work quite well. We did not consider other constraints such as weight or volume; however, it
would be easy to extend the formulation of the problem to handle these additional constraints.
While applying the Nested SA, one can include more SA procedures for the feasibility of these
additional constraints. We believe that it is worthwhile investigating similar Nested SA algorithms
for other combinatorial problems.

Second, we generalize the concept of a penalty function to include not just a penalty for
infeasible solutions but also for undesirable solutions. This generalization is seen to result in
accelerated convergence. The solutions developed in this chapter are well suited to address the
reliability allocation problems addressed in this document. We adopted an evolution strategy to
solve the combinatorial problem of reliability allocation. The initial results are very encouraging,
and the technique offered optimal solutions to the example problems. An interesting and
conclusive result is that the inclusion of penalty function for undesired feasible solutions enhanced
the results in almost every case tested.

However, there are several open issues. First, a robust and problem-independent penalty
function needs to be identified. For penalizing infeasible solutions, Coit et al. [1996] have
suggested an adaptive penalty function for infeasible solutions. A similar functional form could
possibly be adapted for the penalty for undesired feasible solutions as well. Secondly, the

efficiency of such penalty functions depends on the definition of a neighborhood in a generic sense.
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Ideally, the development of the penalty function should incorporate some user input in defining

the neighborhood while maintaining its efficiency; this is a challenging task.
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5.0 Optimum Test Plans

Note: The work in this chapter was published in IIE Transactions (Rajgopal, Mazumdar and

Majety [1999])

5.1 Introduction

While the previous two chapters were focused on the design phase, this chapter focuses on
the second broad topic of this dissertation, namely the testing of a designed system before it is
deployed. System developers like to ensure that the systems that they design meet certain specified
reliability levels. Therefore, it is essential for a system to be appropriately tested before
deployment. When the tests are conducted, we require some criterion to use along with the test
results so as to determine whether the system is deemed to be acceptable or unacceptable.
Unfortunately, no statistical test can be perfect and every test has some probability of error
associated with it. It is possible that based on the selected criterion a test might reject a good system
on occasion; this is referred to as Type-1 error. Conversely, it is possible that a test might accept a
bad system on occasion; this is referred to as Type-2 error. Thus, in addition to defining suitable
values for the parameters associated with the test rule, a developer must also ensure that the
probability of each type of error occurring is below some specified threshold value. Moreover,
another important fact to keep in mind is that these tests incur costs and can turn out to be
expensive. Therefore, while developing appropriate tests to demonstrate system reliability, we

must also take test costs into consideration.
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It should be obvious that in general, testing units of assembled systems is more complex and
expensive than testing units of individual components. Thus, our preference would be to test only
the components and make statements about the reliability of the overall system based on how these
components are combined to form the system. This scenario has been studied extensively for
various system configurations and under various assumptions (Easterling et al.[1991], Rajgopal
and Mazumdar [1998], Rajgopal et al. [1999], and Rajgopal and Mazumdar, [2000], Rajgopal, J.
and Mazumdar, M. (2001) etc.). However, in the presence of imperfect interfaces between
components it will not be adequate to test only the components. This is because the interfaces
introduce their own uncertainty and with imperfect interfaces it might not be possible to draw
conclusions about the system simply by testing components; the only way to account for this is by
testing the entire assembled system since we cannot “test” the interfaces by themselves. The
approach studied in this chapter will be to test the system but to allow for the possibility of
supplementing it with some component tests as well so as to minimize the total associated test
costs. In particular, we address optimum test plans for a series system where interface reliabilities

are also considered.

5.2 Notation
PARAMETERS
a The maximum acceptable probability of Type 1 error (producer’s risk)
B The maximum acceptable probability of Type 2 error (consumer’s risk)
n Total number of components in the system
j Index for component j € {1,2, ...,n}
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A Expected failure rate of component j;

Failure time of each component is an exponentially distributed random variable with a mean of

At

A Expected failure rate of interfaces;

Failure time of an interface is an exponentially distributed random variable with a mean of ;!

Ac = Xvj4; = The sum of the mean component failure rates

Rg System reliability = exp (—4; — A¢); assuming mission time is scaled to one unit of

time.

R, Lower limit on reliability such that if R; > R; then the system is considered to be definitely
acceptable

R,  Upper limit on reliability such that if R¢ < R, then the system is considered to be definitely
unacceptable;

1>R;>Ry>0anda+p8<1

Cj Cost to test component j for one unit of time
Cs Cost of system level test for one unit of time
VARIABLES

t;  units of time for which to test component j with replacement of failed components

ts  units of time for which to test system with replacement of failed systems

Number of failures observed for component j while testing for ¢; units of time

Xs  Number of system failures observed while testing for tg units of time

X Total Number of failures observed = Y X; + X;

m  anumber such that if X < m the system is accepted; otherwise the system is rejected
Note that ¢;, t; and m are decision variables while X;, Xs and X are random variables.
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5.3 Problem Formulation

We test units of each component as well as of the system, with each test unit having its own
test time and with replacement of failed units. Our acceptance criterion compares the total number
of failures observed across all units tested (components as well as system) with some critical
number, and if the number of observed failures is below this cutoff value we label the system as
acceptable; this is similar in spirit to the criterion used with component testing or system testing
alone. In the absence of any a priori information on component reliabilities or failure rates, it has
been proven in several papers (Yan and Mazumdar [1986], Rajgopal and Mazumdar [1995] &
[1996], Altinel [1992], etc.) that the optimal test times for all components are identical. We will

simplify our formulation by denoting this common test time for each component as t, = t; =

Then the generic problem formulation is as follows:

Minimize C = cgts + (Z’]zl cj)tc

5.1
subject to
PI'{XS + Z]X] < mlRS = Rl} >1—a
5.2
j
53
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ts,tc =0
Note that (5.2) indicates that Type-1 error cannot exceed a while (5.3) ensures that Type-2 eror
cannot exceed 8. We now make the following important definition that will be needed to develop
the mathematical basis for our plans.
Definition 5.1: ¢,,(y) is defined as the mean of a Poisson random variable Y that satisfies
Pr(Y<m)=y;0<y<1.

Clearly the distribution function E,, of the variable Y in the above definition satisfies:

2 m
Fm(¢m(y)) = PI‘(Y < m) =y = exp(—d)m(y)) 1+ d)m()/) + (d’m()’)) ot ((;bm():))

2! m!

For given m and y, the value of ¢,,(y) is easily computed by solving the above nonlinear
equation using a simple technique such as the Newton-Raphson method. We computed the values
of ¢,,(y) for various values of y between 0 and 1 and for values of m ranging from 0 through
500. These values may be found in Appendix A (Figure 17 to 20). Note that ¢,,,(y) decreases with
y (for fixed m) and increases with m (for fixed y). We separate our discussion into two separate
cases, the first where we have no knowledge about the interface reliability, and the second where

we might have prior experience with the interface that allows us to bound its reliability.
5.3.1 Case 1: No Prior Information Available On Interface Reliability

First, we consider the case where there is no knowledge about A, relative to the 4;values. Let

us define § = j—’ as a measure of the relative magnitudes of the failure rates of the interfaces and
C
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the components. Note that § is some unknown positive constant. In such a situation, the following
proposition is valid.
Proposition 5.1: The constraints in the generic formulation as given by (5.2) and (5.3) are
respectively equivalent to the following:
{Maximum {(1 + 8)ts + tc}Ac, subject to {(1+ 8)A¢ < —InRy,Ac = 0}} < ¢ (1 — @)
5.4
{Minimum {(1 + 8)ts + tc} ¢, subject to {(1 + §)A¢c = —InRy, Ac = 0}} = ¢ (B)

5.5

Proof: Note that the number of system failures (Xs) observed over time tg is a Poisson random

variable with mean ts(4; + A¢), and the number of component failures of component j (X;)

observed over time t; is a Poisson random variable with mean t.A;. Hence Xg + 3; X; is also a
Poisson random variable with parameter A = tg(A; + A¢c) + tcde = (ts(1 + 6) + to)Ac.
Since Rg = exp (—A; — A¢) it follows that
R¢ 2 Ri=4+2=14+NHA < —InRy, and
Rs< Ry= A4 +A:=1+8)A = —InR,
Using the Definition 5.1 for ¢,,,(y) and the above; the constraints (5.2) and (5.3) can therefore be
rewritten respectively as follows:
Fr(A) = Fp(p (1 — @) for {, Ac|(1 + 8)A¢c < —InRy; A¢ = 0}
5.6
Fr(A) < Fp(pm(B)) for { A¢|(1 4+ 8)A¢ = —InRy; A¢ = 0}

5.7
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Since the Poisson distribution function E,, (A) is strictly decreasing in A, constraints (5.6) and (5.7)
can respectively be rewritten as:
A< (1 —a)for{{Ac|(1 +6)Ac < —InRy;A; =0}
5.8
A= ¢ (B) for {, Ac|(1 +8)Ac = —InRy;Ac = 0}

5.9

Note that (5.8) and (5.9) are defined for nonnegative values of t. and ts. It is clear that these
constraints reduce to solving the following two linear programming subproblems in A; and A,

Subproblem 1: Maximize A, subjectto {0 < A, < —InR; /(1 + §)}
5.10

Subproblem 2: Minimize A, subjectto{A, = —InRy/(1+ 6);A; = 0}
5.11

and requiring the optimal objective value for Subproblem 1 to be < ¢,,(1 — @) and that of
Subproblem 2 to be > ¢,,,(5). Hence the result. o
Proposition 5.1: The optimum solutions to the two subproblems defined by (5.10) and (5.11) are
given by (—InR)(ts(1+8)+t:)/(1+86) and (—InRy)(ts(1+38) +tc)/(1+6),
respectively.

Proof: Recall that A = (ts(1 + &) + t-)Ac and the coefficient for A is strictly positive. For
Subproblem 1, it is clear that the objective is maximized when A attains its maximum allowed
value of (—=InR;)/(1 + §). Similarly, for Subproblem 2, the objective is minimized when when
Ac attains its minimum allowed value of (—InRy)/(1 + &). The result then follows.

|
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Now let us define A(m) = ¢,,(1 — a)/(—InR,) ; B(m) = ¢, (B)/(—InRy). Thenthe

optimization problem reduces to
n
Minimize C = cgtg + Ecj te
j=1

subject to B(m) <ts+t:/(1+ ) < A(m)
5.12

ts,tc =0
This optimization problem is feasible for any m that satisfiess B(m) < A(m), i.e,
¢m(B)/(=InRy) < ¢ (1 —a)/(=InRy), i.e., (=InRy) /(=InRy) < (1 — @)/ (B).
Since 0 < Ry < R; < 1, the LHS of the last inequality above is strictly less than 1. Moreover, it
has been shown by Rajgopal et al. [1994] that as long as a + 8 < 1, the value of the ratio in the
RHS of the same inequality, namely ¢,,,(1 — @) /., (B), is strictly increasing in m and approaches

1 as m approaches . Thus, the problem is feasible for all m > m* where m” is defined as:

* (=InRq) om(1-a)
= m <
m ’”f{ | ke < ¢m([>’)}

5.13
. . Am) _ (Ppm(1-a) (-InRy) .
Since the ratio B ( =7 )/((_ - RO)), we may equivalently restate the above as
* __ A(m)
m* = Inf {mI—B(m) = 1}

5.14

If we now restrict ourselves to feasible values of m with B(m) < A(m), it is clear that
B(m) =t +t./(1+8) at the optimum, because if B(m) < ts + t./(1+ &) then we could
reduce the value of ts without violating feasibility and improve the objective. Thus, we must have
(14 8)B(m) =ts(1 + 6) + t. at the optimum. Note that A(m) is not important as far as the

optimization is concerned and is of relevance only in terms of defining feasible m. Now since the
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optimization problem is a minimization, from the structure of objective function it is clear that in
general, at the optimum either tg or t. must be equal to zero depending on the magnitude of their
coefficients in the objective function. The optimum solution is given by
@ ts=0,tc =1+ 8)B@m),with € = (X7-,¢;)(1 + 8)B(m) if c5 = (X1¢;)(1+6)
(b) tc =0, tg = B(m), with C = ¢sB(m) if ¢s < (X);¢;)(1 +6)
Moreover, we know that ¢,,,(B) is strictly increasing in m, and therefore, so is B(m). Hence the
optimum value of m is the smallest one that leads to a feasible problem, which is m* as defined in
(5.13).

From the above analysis, one may conclude that for a series system with imperfect interfaces
and no specific a priori knowledge on the relative magnitude of the interface failure rate, the
optimal policy calls for either only system testing or only component testing. Such a decision
depends on the value of §, which is obviously unknown. Because of this, these results are of
somewhat limited practical use. We may consider two special cases here. If § = 0, which leads to
perfect interfaces, then we get the commonsense result that only component testing is warranted
as long as the total testing cost per unit of test time across components is less than system test cost
per unit time. On the other hand, when interfaces are unreliable (i.e., § > 0) the optimum policy
suggests only system testing when & is relatively large. This is intuitively sensible because it
indicates that if interfaces are highly unreliable the only way to draw good inferences is by testing

the entire assembled system.
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5.3.2 Case 2: Using Prior Information On Interface Reliability

We next consider the case where some prior information on A, is available. In particular,
suppose that § is defined as an upper bound on the ratio A;/A. (rather than the exact value of this
ratio), and that a (positive) value for § is given.

By using similar arguments to the ones seen in Case 1 in the previous subsection, we can
respectively, reduce constraints (5.2) and (5.3) to (5.15) and (5.16) below:
{Argmax {A|d; + ¢ < —InRy; A, < 8¢ A1, A¢ = 03} < (1 — @)
5.15
{Argmin {A|A; + Ac = —InRy; A, < 62 A, A¢ = 03} = ¢ (B)
5.16
where once again, A = tg(A; + A¢c) + tede = toA; + (e + ts)Ac

Let us consider the subproblem in the LHS of (5.15). At the optimum solution, the first
constraint 4; + 1. < —In R; must be binding. This is true because if we had a nonnegative vector
which satisfied both constraints 1; + 1. < —In Ry ; A; < 64, and the first one is inactive, then we
could increase A, by the amount of the slack and increase the value of A while continuing to satisfy
the second constraint. Given that A, has a larger objective coefficient, the optimum solution to this
subproblem will have A, = —InR;; A; = 0, with a corresponding value of the objective given
by A* = (t¢ + ts)(—In R;). The second constraint 1; < §A. is redundant at the optimum.

Now let us consider the subproblem in the LHS of (5.16). The first constraint of this problem
A+ ¢ = —In R, must be binding. This is true because if we had a nonnegative vector which
satisfied both constraints 1; + 1 = —In R ; A; < 81, and the first one is inactive, then we could

simply decrease A; by the amount of the excess and improve the objective while continuing to
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satisfy the second constraint. Thus, at the optimum we must have 4; = (—InRy) — A, . The
subproblem then reduces to:

Minimize (—In Ry)ts + tcAc, subjectto {A. = —InRy/(1+6);A; =0}
It is clear that the optimum solution to this subproblem is given by A, = —InR,/(1 + §) and
hence 4; = (—InRy)58/(1 + &). The corresponding objective function value is given by A* =
[—InRy/(1 + &)]tc + (—InRy)ts .

We may now restate the optimization problem as follows:

n
Minimize C = cgtg + ch tc
j=1

subjectto (tc +ts)(—InRy) < pp(1 —a) = (tc +t5) < A(m)
[~ InRo/(1+ &)]tc + (—InRo)ts = pm(B) = ~S+ t5 > B(m)
ts,tc =0
where A(m) and B(m) are as defined before in the proof of Proposition 5.1.

Note that 1t+—ca < t¢ and hence this optimization problem is only feasible if B(m) < A(m),

i.e. o (B)/(—InRy) < ¢, (1 — a)/(—InR;), which can be rewrittenas (—InR;) /(—InRy) <
¢ (1 — @)/ P, (B). This is identical to the condition in Case 1. Hence we are guaranteed that the
problem is feasible for all m > m* where m”* is defined via (5.13) or (5.14).

It is easy to see that at optimum, the constraint 1t+_C5 + tg = B(m) must hold as an equality.

Otherwise, we may decrease t. to make the constraint hold as an equality and improve the
objective, while continuing to satisfy the other constraint. Thus t. = (1 + §)[B(m) — ts].Since
tc = 0; it follows that t; < B(m). Using this information, the optimization problem can be

restated as the following:
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n n
Minimize C = |cs— (1 + ) z ¢ ||ts +(1+6) 2 ¢ | B(m)
=1

j=1
subject to ts = {(1+8)B(m)—A(m)}/é
ts < B(m)
ts =0
Note that this problem is feasible for all m such that % >1,i.e., forallm = m*. We now

exhaustively consider several different scenarios that we might encounter when we are solving the

above optimization problem.

5.3.2.1 Scenario 1
cs—(1+8)(Tjq1c) <0
Note that this expression is the coefficient of ts in the objective. First, suppose we are given
a feasible m. At the optimum the value of ts will be at its upper bound which is determined by
ts < B(m). Hence at the optimum, t¢ = B(m) and t; = (1 + §)[B(m) — ts], i.e., tc =0. This
indicates that only the system is tested and the total optimal cost will be C = csB(m).
Furthermore, since B(m) is increasing in m the optimum value of m is given by its lowest feasible

value which is m = m”* as defined via (5.13).

5.3.2.2 Scenario 2
cs—(1+8)(Tj1¢) =0and (1 + 8)B(m") —A(m*) <0
Since its coefficient in the objective is nonnegative it is clear that given m, at the optimum,
ts = Max{0,[(1 + §)B(m) — A(m)]/6}. Now, (1 + 6)B(m*) — A(m*) < 0 implies that (1 +
&) < A(m*)/B(m™), and as discussed earlier, A(m)/B(m) is strictly increasing in m. Thus, it is
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clear that (1 4+ 8) < A(m)/B(m) for all m > m?*, i.e.,, [(1+ §)B(m)— A(m)]/§ < 0 for all
feasible values of m. This implies that for any feasible m, we must have tg = 0 at the optimum
and hence t, = (1 + 8)[B(m) — ts] = (1 + §)B(m). Moreover, the value of the objective is
given by (1 + 6)(2 1 cj)B(m) for all such m. But B(m) increases with m and thus m = m*
being the smallest feasible m, it is also the optimum choice. So, in this scenario, only components

are tested for t; = (1+ 6)B(m*) units of time. The optimal cost is given by C =

(1 + 8)(T}1 ¢j)B(m").

5.3.2.3 Scenario 3
cs—(1+8)(Tj1¢;) =0and (1+ 8)B(m*) — A(m*) >0

A(m")

Note that here we have 1 < —— B

< (14 8). Suppose again that we are given a feasible

m. Once again because of its positive coefficient in the objective at the optimum t5 =

Max{0, [(1 + §)B(m) — A(m)] E m) 253
However, there are two possibilities here: (a) (m) < (1 + &) and (b) A(mi > (1+6)

We will consider each case separately.

(m)

Scenario 3a: Suppose 1 < ( o)

) <(1+6),ie,(1+5)B(m)—A(m) > 0. Therefore, at the

optimum we will have tg = [(1 + §)B(m) — A(m)]/8and t, = (1 + §)[B(m) — ts],i.e,,

tc = ((”5)) {A(m) — B(m)}. Thus, both the system and components are tested in this scenario.

The optimum cost is given by:
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{(1+ 6)B(m) — A(m)}
C]' 5

n
=1 =1

5.17
A(m)

Scenario 3b: Suppose (%) > (1 +6). Inthiscase (1 + 6)B(m) — A(m) < 0 and clearly, the

situation reverts to that of Scenario 2, and we have the same solution as the one described under
that scenario with tg=0,tc =(1+8)B(m) and an objective value of C=(1+
8)(21’-;1 c,-)B(m).

Optimum value of m: The determination of the optimum m is more complicated with Scenario
3. First consider all m that satisfy the condition for Scenario 3b, and let us define m! as the

smallest such m, i.e.,

t= Inf fmim > ', (A2D) 5 (1 4 6))
m! = Inf {m|m > m", Bam) > ( )

5.18

Since the optimal objective value is (1 + 6)(2’]:1 cj)B(m) and B(m) is monotone

increasing in m it is clear that the only candidate for the optimum m is m* with a corresponding

objective value of (1 + 6)(2;;1 cj)B(ml); all other values of m that satisfy the conditions for
Scenario 3b yield higher values for the cost.

Next, consider all m that satisfy the conditions for Scenario 3a. Let us define the positive

constants k; and k, via k; = (1 +6)(X7-;¢;) and k, = ¢ — (1 + 8)(X7=1 ¢;). Then we can

rewrite (5.17) as ky B(m) + k, {(1 + 8)B(m) — A(m)}/6 = {ky + k; [(1 + 6) — 22|} B(m).

B(m)
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increases monotonically so that [(1 +6) — —gm)

Recall that the value of A%
B(m m)

) ] IS a positive
)
quantity that decreases as m increases. Furthermore, B(m) increases monotonically with m and

with no bound from above. Hence the following Lemma holds:

Lemma 5.1: As long as [(1 +8) — %]w, the expression given by (5.17) will either increase

monotonically with m, or it will initially decrease to some minimum value and then increase
monotonically with m.

Thus, for this scenario we evaluate the expression in (5.17) at successively larger values of
m starting with m* and stop as soon as the value of this expression reaches a minimum at some
optimum m = m° and starts to increase. The only exception is if we are at m = m*® — 1 and the
value of the expression is still decreasing, in which case the optimum value of m is given by m°® =
m! — 1 since this is the last value of m that meets the conditions for Scenario 3a. In our experience,
when § is relatively small, the very first value (m™) will be the optimum one in most cases.

It is clear that the only candidates for the optimum solution are m® and m*. However, it is
not possible to make a general statement about when one will outperform the other because this
depends on the relative magnitudes of &, ¢s and ;. Thus, the objective value can be evaluated at
m® using (6.17) with m = m° and at m* using (1 + 6)(X7-, ¢;)B(m"). The one yielding a
smaller value for the objective is the optimum value for m. The two possibilities are shown in
Figure 14. In Figure 14(a) the value of m° lies between m* and m! and the optimum value is m°.
In Figure 14(b) m°® = m* and the optimum value is m®. One may note that if m° is optimum then
we test both system and components according to the corresponding optimal test times. However,

if m! is optimum then we test only the components for the corresponding optimal test time.
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(a) Optimum m =m? (b) Optimum m =m?

Figure 14: Minimum test costs corresponding to different values of m

5.3.3 Estimating Maximum Type 1 And Type 2 Error Probabilities

An issue that is of interest is the maximum Type 1 and Type 2 error probabilities that are
associated with a test plan derived by the procedure above. This issue becomes particularly
important in order to assess the degree of protection provided by sampling plans that are obtained
when there is uncertainty in the value of §. To compute these probabilities, first note the values of
A; and A, that solve the subproblems are the ones that yield the maximum error probabilities. For
Type 1 error these were given by {A. = —In R, A; = 0} and for Type 2 error these were given by
Ac=(=InRy)/(1+8),4; = (—InRy)F/(1+ §). Substituting these into the equation for A
yields the following

Maximum Type 1 Error Probability = 1 — F,[(ts + tc)(—InR;)]
5.19
Maximum Type 2 Error Probability = F,[{ts + ;—CS}(— InR,)]
5.20
These error probabilities hold for any plan with its corresponding values of tg, t. and m and

thus (5.19) and (5.20) may be used to evaluate the performance of any such plan.
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5.4 Example Problems

Three example problems and their solutions are presented to demonstrate all the different

cases and scenarios that might encountered.

5.4.1 Example 1

In this example we fix the value of § and see how the optimum policy varies as the system
test cost changes relative to the component test costs. Here we consider a series system of five

components to be tested with R, = 0.80 and R; = 0.95. The maximum acceptable probabilities
of Type 1 and Type 2 errors are specified as a = 8 = 0.05. We choose § = 0.1 and {cj} =

{10,15,5,5,2} which gives Zlecj = 37. For this data set, the value of the critical ratio for

determining the smallest feasible m is given by (ZInRy) _ 21095 _ (.23, The smallest value of
(-InRy) —In0.80
m for which 222-9 exceeds 0.23 is m =5 (with $5(095) _ 2613 _ 0.25). Thus m* = 5 with
dm((B) $5(0.05)  10.513
A(m*) = 2mio® 2613 _ 5494 and B(m*) = LnB) = 10513 _ 4797,
—InRq —In 0.95 —InRy T —Ino.80

Q) Suppose ¢s < (1 + 6)(2}1:1 c]-)=40.7. This corresponds to Scenario 1 so that the
optimum value of m is given by m* =5, t. =0, tg = B(5) =47.11 and total
optimum test cost is C = 47.11cg

(i)  Suppose cs > (1+8)(Xf,¢j)=40.7. Here (1+ &B(m") — A(m*) =

(=InRo) _

(1.1)(47.11) — 50.94 > 0. This corresponds to Scenario 3 of Case 2. Also —— CinRD =
1

435> (1+6) = 1.1. So, we need to find m* and m°. Since A(6) = (_??1(1009:;) =
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63.94, B(6) = (£522) = 53.062, we have A(6)/B(6) = 1.205 > (1 +6) = L.1.

—In 0.80

It follows that m* = 6 and the only candidate value for m® is 5. For m® = 5, we have

1+6

te = {A(5) — B(5)} (T) = 4213, ts = {(1+ 8)B(5) — A(5)}/5 = 8.81 and the

total cost C = ¢4(8.81) + 37(42.13) = 8.81¢s + 1558.81 units. For m! = 6, we
have t. = (1+ 6)B(6) =58.38, tg =0 and the total cost C = 37(58.38) =
2160.06 units. Comparing the two values of C, it is clear that if (40.7 <)cs <
68.2 then the optimum is defined by m® = 5, and if cg > 68.2 then optimum solution
is defined by m! = 6.

Similar results hold for other values of § as well. It should be noted that for § < 0.0813
the value of {(1 + §)B(5) — A(5)} is negative and corresponds to Scenario 2, so that in this range,
one would move from pure system tests to pure component tests directly, regardless of the value
of cs. The results are intuitively appealing. When cs is relatively small, we test only the system.
When c¢g becomes larger, for intermediate values, both system and components are tested with
total cost increasing as a piecewise linear function of cs. When cg becomes very large, only
components are tested and system test cost is of little consequence. Figure 15 illustrates this for

values of § =0.01, 0.1, 0.25 and 0.5.
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Figure 15: Minimum total test cost as a function of system test costs

5.4.2 Example 2

Here, we use the same data as the previous example with one change. We fix the value of

cs= 65 and study the effect of § on the optimum cost. The rest of the parameters are maintained at

the same values as before. We now study the three scenarios based on different values of &.

(i)

(i)

(iii)

When § > 0.7568, it can be seen that cs — (1 + 8) (X}, ¢;) < 0. This corresponds to
Scenario 1. The optimal solution is given by m* =5, t, = 0 and t = B(5) = 47.11.
The optimal cost is C = 3062.15 units.

When & < 0.0813, it can be seen that cs—(1+68)(Xf,¢) >0 and (1+
6)B(m*) — A(m™) < 0. This corresponds to Scenario 2. The optimal solution is given
bym* =5t =1+ 8§)B(m*) = (1+ 6)47.11 units and tg = 0. The optimal cost is
C =1743.07(1 + 6) units.

When 0,0813 < § < 0.7568, it can be seen that cs — (1 + 8)(X7-;¢;) > 0 and

(1+6)B(m*) — A(m™) = 0. This corresponds to Scenario 3. The optimal solution is
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given by m = m°® or m = m?! depending upon the specific value of §. That will dictate

if it is economical to test both system and components or just components. The only

way to know is to substitute the particular value of § into the appropriate cost
expressions and compare the two.

Figure 16 shows the minimum total test cost as a function of §. It may be seen that there is

an initial linear region for § < 0.0813, and a final flat region for § > 0.7568. In between, the

optimum cost continuously increases with § and the shape of the cost curve is irregular.
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Figure 16: Minimum total test cost as a function of &
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5.4.3 Example 3

In this example, we illustrate the effect of uncertainty in the estimate for § on the maximum
Type 1 and Type 2 error probabilities associated with a plan. These probabilities depend on t, tg
and m. Here we consider the same data as in Example 2 above and let § = 0.30. It can be seen
that this corresponds to Scenario 3 and the optimal solution is represented by m = 6, t, = 47.58
and tg = 16.47 with optimum total cost € = 2831.01. Using these we compute the maximum
Type 1 and Type 2 errors to be equal to 0.05. Now, suppose that the value of § is estimated
wrongly and its true value is different and could vary in either direction of 0.3. We considered
errors of 10%, 20%, 50%, 100% in either direction of 0.3, and compute solutions and Maximum

Type 1 and Type 2 error probabilities for all these values of § and tabulate the information in Table

10 below.
Table 10: Maximum Type 1 and Type 2 error probabilities for various 8
6 te ts m Max. Pr. Max. Pr.
Type 1 error Type 2 error

0 47.11 0 5 0.115 0.005
0.15 61.03 0 6 0.05 0.027
0.24 56.73 7.32 6 0.05 0.040
0.27 51.65 12.40 6 0.05 0.045
0.30 47.58 16.47 6 0.05 0.05
0.33 15.44 35.50 5 0.115 0.025
0.36 14.47 36.47 5 0.115 0.028
0.45 12.34 38.60 5 0.115 0.038
0.60 10.21 40.73 5 0.115 0.056

It may be noted from Table 10 that as long as m does not change, Type 1 error remains

unaffected because the maximum Type 1 error is not affected by . But when m changes, the Type
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1 error probability increases. On the other hand, Type 2 error changes since it involves § in its
expression. However, the maximum Type 2 error is only slightly more than 0.05. If the 6 value is
unknown, then Type 1 and Type 2 error values may be computed for different values of § to see

how it affects the errors.

5.5 Some Comments

Let us look at the summary of results obtained in this chapter. When no prior information

available (1; = 6A) on interface reliability the result is
@ts=0,tc=(1+8)Bm), m=m"C= (Tj1¢)A+8Bm) if cs = (Xf-1¢)A +6)
(b) tc = 0,ts = B(m), m =m*, C = ¢sB(m) if cs < (X}, ¢;)(1 + 6)
When prior information is available in the form of A; < 6.
(©) ts = B(m), tc =0; m =m" with € = csB(m) if cs < (1 + 8)(X]1 ¢;)
dtc=@0Q+6)B(m"), tg = 0; m=m*, C=1+ 6)(Z?=1cj)B(m*). if cs=>(1+
8)(Xj=1¢) and (1 + 8)B(m*) — A(m*) < 0

(1+6)
o

(e) ts = [(1+ &)B(m) — A(m)]/8and t¢ = (52) {A(m) - B(m)}, m =m® orm?,

m)—-A(m)}
6 b

C=1+8)(Tri¢)Bm) + [c5 — (1 +8)(Tp, ;)| T2 if cg>(1+
8)(2};1 c]-); (1+8)B(m*) > A(m*) and (1 + §)B(m) > A(m)
(f ts=0,tc=1+6)B(m), m=mPorm?, C=(1+ 5)(Z?=1cj)B(m); if cg>(0+

6)(2}121 cj); (1+8)B(m*) > A(m*) and (1 + §)B(m) < A(m)
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Suppose a decision maker decides to choose avoiding system testing by any means and
testing only components irrespective of what the solution indicates, then he will have to play with
certain parameters to see how his decision affects him. Notice that system testing is warranted only
in three cases (b), (c) and (e) above. For example, if there is no priori information and cg <
(Z’}zl cj)(l + 6); the solution recommends system testing. In order to avoid the system testing,
the decision maker may increase the estimate of cost for one unit of system testing (cg) so that
cs > (Z’}zl cj)(l + 6). By doing this, the decision maker may avoid system testing. However,
since there is no prior information on & as well, decision maker will choose more expensive option
just to avoid the system testing.

In the case of prior information being available as suggested in this chapter (1; < §1.), then
just by increasing the estimate of cost for one unit of system testing (cg) is not enough to ensure
only component testing. Suppose, c¢s < (Z}Ll cj)(l + &) which warrants system testing as optimal
solution. In order to avoid the system testing, decision maker may choose to increase cs. But then
the optimal solution may fall into either the case of (e) or (f). If it falls into (f) then no system
testing is necessary. But if it falls into the case of (¢) then system testing is still warranted. In order
to avoid this, the decision maker has to look at the condition of (1 + §)B(m) > A(m). Since for
a given set of values for «, 8, Ry, Ry; the values of A(m), B(m) are fixed irrespective of which
system. The decision maker would not venture to change the values of a, 8, Ry, R;. The only
parameter that can be changed to alter the condition (1 + §)B(m) > A(m) is by reducing the
estimate of § so that the condition changes to (1 + 6)B(m) < A(m). In this case, the decision
maker has to choose the assumption that system interfaces are very strong and the interface failure
rate is much smaller. Here the decision maker runs the risk of ignoring interface failure at the final

deployment if in fact interfaces have higher failure rate. Simply testing only components for much
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longer period of time will not give any better inference on the system reliability when interfaces
are weaker.

One important point that one should notice is that in all the above case (a) to (f); the value

(-InRy) _ pm(1-a)
(-InRo) = pm(B)

of m* = Inf {m| } is constant for a given set of {«, B, Ry, R;}. m* does not

depend upon the number of components in a system. A system of ten components and a system of
one million components will have same m* as long as {«, B, Ry, R, } are the same. This needs to be

investigated further in future studies.

5.6 Conclusions

Test plans for demonstrating reliability either recommend system testing or component
testing. This research makes the first effort to combine tests using system as well components for
systems with unreliable interfaces. From a practitioner’s perspective, this is necessary and an
important step in the direction of optimal test plans. The results obtained in this work are intuitive
and are easily applicable to simple series systems. This analysis clearly gives conditions where
only the system is tested or where only the components are tested and also gives conditions where
both system and components are tested. For a given value of & (an upper bound on interface
reliability), optimal test plans are very easily determined. For unknown values of §, one can
experiment with various values to estimate maximum Type 1 and Type 2 errors to get a feel for
the decisions one has to make. It is also worth noting that in instances where it is optimal to do
only component testing, the test times with imperfect interfaces exceed the test times for a system

with perfect interfaces by a factor of (1 + &) . This is a consequence of the fact that perfect
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interfaces ((6 = 0) represent a special case of the more general case with imperfect interfaces.
Finally, if the a priori information on the interface failure rate is available in the form of an
absolute upper bound, i.e., of the form A; < u, it is easy to show that if u > In R, the bound is too
large to be of use and the optimum policy calls for pure system tests with t; = B(m™*) units of
time, and if u < In Ry, this is exactly equivalent to solving the problem with a value of § = u/{u +
(—InRy}.

In example 1, we assumed that § = 0.1. Suppose there were a total of four failures observed,
two at the system level and two at the component level (with ¢t = 8.81,t, = 42.13). Since we
have fewer than m = 5 failures we are expected to accept the system. However, one would be

reluctant to accept the system because of the fact that there are as many system failures as there

2 2

are component failures. If we estimate A, = erTh 0.0475 and A; + Ac = el 0.227, then

A

= 3.78 which is much bigger than 0.1 for §. Clearly this implies that the estimate of 0.1 for §
C

is far too optimistic and one would have to revise this upward suitably and solve the problem with

new value of 6.

124



6.0 Conclusions

We address two different reliability related problems in this dissertation. The first one
addresses reliability allocation when designing a system and the second addresses testing a new

system before deployment.

6.1 Reliability Allocation Problem

We formulate the problem as a 0-1 integer programming problem, and develop new optimal
as well as heuristic algorithms to solve the problem. In particular, we develop (i) an integer
programming formulation and define appropriate valid inequalities for our formulation, and (ii)
two heuristics: a nested simulated annealing algorithm and an evolutionary algorithm that uses a
penalty function analogy. In the integer programming approach, the original formulations are all
nonlinear integer programs except for simple series and simple parallel systems (which are integer
linear programs). An iterative procedure is proposed where a single infeasible integer solution is
eliminated at each iteration until the optimal solution is found. In the simulated annealing method,
a nested approach is proposed where the outer algorithm addresses feasibility while the inner
algorithm nudges the solution to optimality. In the evolutionary algorithm, a dynamic penalty
approach is used to also penalize feasible solutions that might be far away from the optimum and
to accelerate the search process so that convergence to an optimal solution is quicker. The integer

programming approach guarantees an optimal solution, whereas, the other two solutions offer near
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optimal solutions, but with much quicker computational times. In the following subsections, we

provide suggestions to improve upon these procedures.

6.1.1 Conclusions And Future Research Directions: Integer Programming

The algorithm presented in Chapter 3 eliminates a single infeasible integer solution at each
iteration. Hence any better optimum-seeking procedure for large systems, should be aimed at to
either (i) eliminating more infeasible integer solutions at each iteration from the region within the
relaxation that is infeasible for the original problem, or (ii) eliminating an entire section of this
region rather than a single point. Ideally, this elimination procedure should involve additional
linear inequalities that can be easily handled. In sections 3.7 and 3.8, we identify a class of
additional disjunctive systems for SP and PS. The next step would be to use these inequalities to
develop better procedures.

For SP, these disjunctive systems can yield additional valid inequalities which strengthen
the linear relaxation by eliminating a significant portion of the region from the relaxation that is
not of interest. Since adding additional constraints increases the portion of this region that is
eliminated but also adds to computational effort, it remains to be studied how one can decide on
the appropriate number of valid inequalities to be added at each iteration, and develop an
appropriate algorithm for solving our problem. For PS, the disjunctive systems do not yield a
straightforward linearization and the feasible region is nonconvex, so that an approach such as the
one suggested for SP is not possible. However, it might be possible to use the inequalities
developed in Section 3.8 to develop a better branching scheme within a branch-and-bound

procedure, and this is an avenue open for further research.
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6.1.2 Conclusions And Future Research Directions: Metaheuristics

In Chapter 4, the first metaheuristic described is a nested simulated annealing algorithm that
we developed. In this procedure, two simulated annealing procedures are used. The outer SA
addresses feasibility and allows the algorithm to move to an infeasible point (unlike with
traditional SA) while gradually making such a move more and more difficult as the algorithm
progresses. The rationale here is that a “neighborhood” is not easy to define for our problem and
determining whether a neighboring point is feasible can be computationally inefficient. On the
other hand, the inner SA takes the current point provided by the outer algorithm and drives the
search towards an optimal solution. This type of an approach has general appeal and can be used
for any problem where generation of feasible solutions is difficult. The end results are satisfactory,
but in our attempts, optimal solutions are not found using this approach. In future research, one
could vary the algorithm parameters to study how the algorithm performs with these changes to
determine better settings for these, or to develop some specific parameter functions that suit the
problems at hand so that optimal solutions may be found more consistently in the search. Given
the relatively low computational times, such an effort is worthwhile.

The second metaheuristic developed is an evolutionary algorithm that uses a dynamic
penalty function. The penalty function is novel in that it is applied to infeasible solutions as well
as feasible solutions that are considered as being “undesirable.” The dynamic penalty function
used in this research can also be used to address other optimization problems. Our work shows
that this type of a dynamic penalty function accelerates the solution procedure and at least in the
case of our problem, drives the search to the optimal solution at every attempt. However, the

parameters of the search algorithm needed to be tweaked in order to achieve such results. In future
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research, one might investigate the nature of the parameters used in the algorithm in order to arrive

at more robust and problem independent parameter setting.

6.1.3 Reliability Decay Functions

Every component in a system comes with a reliability value at the beginning. But the
reliability diminishes over time for any such component. Such diminishing reliability can be
modeled using a Decay function. Every component in a system has a definite life span. Even if the
component is highly reliable at the time of first use, its eventual decline is certain. Mechanical
systems, Civil structures etc. all decline in terms of reliability over time. In most system design
problems, many addressed the problem as reliability allocation problem where individual
component reliabilities are determined at minimum cost while making sure that certain system
reliability criterion is met, and in some cases, redundant components are added to increase system
reliability and tried to determine the optimal redundancy at each component level. However, all
these design problems are valid but none of these works addressed an important aspect which is
the decaying of the component and/or system. It is only guaranteed that system works for a certain
design period but how healthy system functions during that process is not considered in design
stages itself. We can define a decay function to highlight the process of decaying of each

component as well as the system.

6.1.3.1 Definitions
Let Rio is reliability of a component at the time of initial use. Over time its reliability is
reducing and the relationship between initial reliability and the reliability after certain time ‘t’ is

given below:
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R;,: Starting Reliability
R;;:: Reliability at time ‘€’
Ri= Rjp.e7Pi®

Where D;(t) is a function of time ‘t’ and defined as ‘Decay Function’. It is a positive and

increasing function in time. The boundary conditions are Di(0) = 0, Di(x) =«

The exponential form of the equation is valid and it can be shown easily so.

Suppose R;:= R;,. f(t) where f(t) is some arbitrary function of time t. Then without losing
generality, f(t) can be written as e 0'(®) _|n that case, In(f(t)) can be equated to —Di(t). Since the
reliability decreases overtime, assumption of Di(t) being an increasing function of time t is valid.

whent=0; R;; = R;,; and whent=o0; R;,, = 0; since tllr?o D;(t) = oo.

For a better understanding of Decay Function, let us observe the definition of reliability.
According to the Department of Defense: “Reliability is the probability that an item will perform
a required function without failure under stated conditions for a stated period of time.”

Suppose tqg is design time. Then traditional reliability definition says that R;, = Pr (T >
tqy). Here we define the reliability at time t as R;; = Pr (T >t + t;). Based on the earlier

definition using decay function and combining this definition gives:

=D -D; () ' _ Rit) _ Pr(Tzt+tq)\ . 1-F(t+tq)
Rit=Rip.e™"1"% = Dy(t) = —In (Rio) o ln( Pr(T=tg) )_ ln( 1-F(tq) )

Where T is the random variable representing life time of component i and F(t) is probability
distribution function of T.

For example, if lifetime of a component is exponentially distributed with a parameter 1 and

—A(t+ty)
is represented by F(t) = 1 —e~*. Then clearly D;(t) = —In (ee_Tdd) =
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6.1.3.2 Future Work Using Decay Functions

Most systems are designed with a specific period in consideration such as warranty period.
However, users tend to use the products well beyond that warranty period. For example, an
automobile comes with a warranty of 7 years or 100000 miles whichever is earlier. But most
drivers like to use the automobile well beyond that warranty. Some automobiles begin to falter as
soon as they cross their warranty period while some other automobiles function much better well
beyond their warranty period. This can be ascertained at the design stage itself if their decay
functions are available. Products with severe decay may incur heavy maintenance costs while
products with milder decay incur much lesser maintenance costs. Hence maintenance costs may
play major role in deciding the selection of the final system and not just initial cost at purchase
time. The decay functions can be strategically used to estimate the maintenance costs. Research in

this direction is ongoing and we will publish that research in the near future.

6.2 Optimal Test Plans

The second reliability problem we consider is testing prior to deployment. Optimal test plans
are developed in this work for a simple series system with imperfect interfaces where both system
level testing and component level testing are considered simultaneously. The results are very
intuitive and easy to understand, and show that the best approach depends on the ratio A;/A:(=
&) of the failure rates of the interface and the components, and what we know about the value of
. In the absence of any information on interface reliability, one could experiment with reasonable

values for § to see what the optimal plans dictate. One could be very liberal in the beginning by
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assuming a very low value for § and progressively correct that estimate by making observations
from some initial testing.

Even though this research makes an important first step, more research is warranted with
consideration of (i) other distributions for failure times of components and interfaces such as
Weibull or Gamma, (ii) other test rules instead of the “sum” rule we adopted and, (iii) other forms
of a priori information such as simple upper bounds on interface failures as well as bounds on

individual component failure rates.
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m 0.001 0.01 0.025 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.975 0.99 0.999
31 | 52.35706 | 46.60818 | 44.00203 | 41.83763 | 39.4298 | 36.63804 | 31.66729 | 27.16825 | 24.99815 | 23.29745 | 21.88798 | 20.32428 | 17.31631
32 | 53.62785| 47.81261| 45.17445| 42.98245| 40.54272| 37.71225| 32.66727| 28.09402| 25.88523| 24.15269| 22.71569| 21.12011| 18.0463
33 | 54.89457| 49.01396| 46.34427| 44.12508| 41.65393| 38.78533| 33.66725| 29.02093| 26.77403| 25.01012| 23.546| 21.91902| 18.78032
34 56.1574( 50.21235| 47.51159| 45.26561| 42.7635( 39.85732| 34.66724( 29.94891| 27.66447( 25.86964| 24.37879( 22.72086| 19.51818,
35 57.4165( 51.40792| 48.67653| 46.40413| 43.8715( 40.92829| 35.66722( 30.87792| 28.55648( 26.73117| 25.21397( 23.52551| 20.25974
36 | 58.67203| 52.60078| 49.83917| 47.54073| 44.978| 41.99827| 36.66721| 31.80792| 29.44998| 27.59462| 26.05143| 24.33286| 21.00482
37 | 59.92413| 53.79104| 50.99963| 48.67548| 46.08306| 43.06731| 37.66719| 32.73887| 30.34493| 28.45991| 26.89107| 25.1428| 21.75331
38 | 61.17294| 54.9788| 52.15797| 49.80846| 47.18674| 44.13543| 38.66718| 33.67073| 31.24126| 29.32697| 27.73282| 25.95523| 22.50505
39 | 62.41858| 56.16416| 53.31428| 50.93974| 48.28908| 45.20267| 39.66716| 34.60347| 32.13892| 30.19574| 28.5766| 26.77004| 23.25994
40 | 63.66118| 57.34722| 54.46865| 52.06937| 49.39014| 46.26908| 40.66715| 35.53705| 33.03787| 31.06615| 29.42232| 27.58716| 24.01784
41 | 64.90083| 58.52804| 55.62113| 53.19742| 50.48997| 47.33467| 41.66714| 36.47145| 33.93804| 31.93813| 30.26992| 28.40649| 24.77867
42 | 66.13765| 59.70672| 56.7718| 54.32395| 51.58861| 48.39948| 42.66713| 37.40662| 34.83941| 32.81164| 31.11933| 29.22797| 25.5423
43 | 67.37174| 60.88333| 57.92072| 55.449| 52.6861| 49.46354| 43.66712| 38.34256| 35.74192| 33.68662| 31.97048| 30.05151| 26.30865
44 | 68.60318| 62.05793| 59.06795| 56.57263| 53.78248| 50.52686| 44.66711| 39.27922| 36.64555| 34.56302| 32.82332| 30.87704| 27.07762
45 | 69.83207| 63.2306| 60.21354| 57.69489| 54.87779| 51.58948| 45.6671| 40.21659| 37.55024| 35.44079| 33.6778| 31.70451| 27.84913
46 | 71.05848| 64.4014| 61.35755| 58.81582| 55.97207| 52.65142| 46.66709| 41.15464| 38.45597| 36.31988| 34.53385| 32.53384| 28.6231
47 72.2825( 65.57039| 62.50004| 59.93547| 57.06533| 53.7127| 47.66708( 42.09335| 39.36271| 37.20027| 35.39143( 33.36498| 29.39944
48 73.5042( 66.73761| 63.64104| 61.05387| 58.15763| 54.77334| 48.66707| 43.0327| 40.27042( 38.0819| 36.25049( 34.19786| 30.17809,
49 | 74.72365| 67.90314| 64.7806| 62.17106| 59.24898| 55.83336| 49.66706| 43.97267| 41.17907| 38.96473| 37.11098| 35.03245| 30.95897
50 | 75.94092( 69.06702| 65.91877( 63.28707| 60.33942| 56.89277| 50.66706( 44.91325| 42.08863| 39.84874| 37.97287( 35.86869| 31.74202
60 | 88.00629| 80.62456| 77.23189| 74.38963| 71.19885| 67.4574| 60.66699| 54.34855| 51.22923| 48.74638| 46.66019| 44.31203| 39.67929
70 | 99.90837| 92.0586| 88.44079| 85.4046| 81.98995| 77.9771| 70.66695| 63.82879| 60.43815| 57.73156| 55.45162| 52.87862| 47.77909
80 | 111.6807| 103.3946| 99.56692| 96.35003| 92.72682| 88.46116| 80.66691| 73.34469| 69.7013| 66.78623| 64.32573| 61.54313| 56.00819
90 | 123.3467| 114.6502| 110.6253| 107.2385| 103.4193| 98.91603| 90.66688| 82.88979| 79.00885| 75.89783| 73.26757| 70.28788| 64.34332
100 | 134.9234| 125.8385| 121.6268| 118.0793| 114.0745| 109.3464| 100.6669| 92.45936| 88.35363| 85.05715| 82.26621| 79.09993| 72.76746|
110 | 146.4239| 136.9691| 132.5798| 128.8792| 124.698| 119.756| 110.6669| 102.0498| 97.73021( 94.25724| 91.31338| 87.96951| 81.26769
120 | 157.8583| 148.0499| 143.4906| 139.6438| 135.2938| 130.1473| 120.6668| 111.6584| 107.1344| 103.4927| 100.4027| 96.88897| 89.83396
130 | 169.2345| 159.0867| 154.3644| 150.3774| 145.8654| 140.5228| 130.6668| 121.2829| 116.5627| 112.7592| 109.5289| 105.8523| 98.45824
140 | 180.5591| 170.0847| 165.2055| 161.0833| 156.4156| 150.8842| 140.6668| 130.9216| 126.0126| 122.0533| 118.6879| 114.8544| 107.134
150 | 191.8376| 181.0479| 176.0172| 171.7647| 166.9465| 161.2329| 150.6668| 140.5728| 135.4817| 131.372| 127.8763| 123.8914| 115.8559
160 | 203.0745| 191.9796| 186.8024| 182.4237| 177.4601| 171.5702| 160.6668| 150.2355| 144.9681| 140.7129| 137.0912| 132.9598| 124.6194
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