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Abstract 

Computer-aided drug design: developing and applying simulation-based tools to identify 
small-molecule ligands that inhibit proteins 

 
Erich Hellemann Holguín, PhD 

 
University of Pittsburgh, 2022 

 
 
 
 

In this dissertation, I discuss how computational methods can help in drug discovery, from 

developing a new tool that allows obtaining ensembles of protein conformations to using 

established computational tools for elucidating the mechanism of inhibition.  

Sub-Pocket Explorer (SubPEx) is a tool I wrote that leverages weighted ensemble to 

accelerate the sampling of protein pocket conformations. I demonstrated that SubPEx is faster and 

protein pocket conformations are more diverse than those obtained by vanilla molecular dynamics 

(MD) simulations. I applied the SubPEx algorithm to three relevant proteins for human health: 

heat shock protein 90, neuraminidase, and hexokinase II. With these proteins, I showed how 

SubPEx could be applied to small rigid proteins, proteins with a flexible pocket, and proteins that 

undergo extensive domain rearrangements.  

I show how a combination of experimental and computational work can help find a new 

resistance mechanism to the known inhibitor 2-deoxy-glucose (2DG). I described how 

collaborators found a new mutation in hexokinase II and how with MD simulations, I proposed a 

mechanism by which this mutation could confer resistance to 2DG. 

Finally, I show the importance of undergraduate research and what we can achieve with 

the help of undergraduates. In one of the two projects I did with undergraduates, we applied an 

established computational protocol to recommend small molecule binders to a protein involved in 

cancer. The last project I described in the dissertation is how we used MD simulations to discover 



 v 

the allosteric mechanism by which a small molecule inhibits TEM-1, a protein involved in 

multidrug resistance.  
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1.0 Introduction 

1.1 Dissertation outline 

This dissertation begins with an introduction to computer-aided drug design that describes 

techniques used in the following chapters. After the introduction, three chapters detail projects I 

contributed to.  

In chapter two, I describe the development of Sub-Pocket EXplorer (SubPEx), a tool that 

uses weighted ensemble simulations to sample protein pocket conformations efficiently. I explain 

how I developed the progress coordinate used in SubPEx, and how I cluster the simulations to 

obtain representative conformations. I finish by testing SubPEx on neuraminidase and hexokinase 

II.  

In chapter three, I describe a collaboration between experimentalists and computationalists. 

We found a new mutation in Saccharomyces cerevisiae hexokinase II that confers 2-deoxy-glucose 

resistance. I used molecular dynamics in this work to understand how this mutation confers 

resistance to 2DG.  

Chapter four describes projects where I mentored undergraduate students. I start with a 

brief introduction of how research in undergraduate studies is advantageous to the student and the 

field. The first project involved searching for ligands that could inhibit the activity of SMUG1, a 

protein responsible for repairing DNA damage. We used homology modeling to obtain a series of 

protein conformations for use in ensemble docking. The second project used molecular dynamics 

to understand the mechanism by which an allosteric ligand inhibits TEM-1, a known antibiotic-

resistance-conferring protein.  
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Finally, in chapter five, I finish with some concluding remarks and future directions.   

1.2 Computer-aided drug design 

Drug discovery is a time-consuming and expensive endeavor. Studies propose costs 

ranging from $161 million to a staggering $4.54 billion to bring a new drug to the market, with 

development times between 10 and 15 years.1,2 Given these high costs and the decline of new 

molecular entities (NMEs) being approved by the FDA, the pharmaceutical industry and research 

laboratories have searched for ways to lessen the costs and increase success rates (the FDA 

approves only about 13% of drugs entering clinical trials).3  

One approach involves a combination of experimental and computational methods.4 

Computer-aided drug design or discovery (CADD) is a collection of computational techniques that 

have permeated almost all steps in the drug discovery pipeline. CADD is a rational approach to 

drug development. It has become essential in early-stage lead discovery since it aims to minimize 

failures cost-effectively. One of the early successes of CADD is the development of dorzolamide, 

a carbonic anhydrase inhibitor. Here, scientists used first-principle calculations to understand the 

differences in inhibition between two enantiomers.5,6 

CADD can be classified into two approaches: structure-based drug design (SBDD) and 

ligand-based drug design (LBDD). 
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Figure 1. Drug discovery pipeline and Computer Aided Drug Design. Image adapted from Sumudu P. 

Leelananda et al.7 A) Steps in the drug discovery pipeline. B) Computer-aided drug design can be divided 

into two branches: ligand and structure-based drug design. Presented are some of the techniques used in 

CADD. Once one or more compounds have been found, experimental validation is needed. 

The focus of this thesis is going to be on SBDD. SBDD is a process of rationally designing 

new drugs, using many tools/methods to accomplish that goal. The main requirement in SBDD is 

to have an atomic resolution structure of the protein target; when the protein target is not known, 

or a structure cannot be obtained, LBDD is used.8 SBDD leverages the macromolecule’s three-

dimensional structure to predict interactions with prospective ligands in hopes of finding a small 

molecule that will progress through clinical trials, to end up in the market as therapeutics finally. 

In the following sections, I will briefly introduce some of the computational tools used in SBDD. 
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1.2.1 Homology modeling 

Usually, the goal in drug discovery is to use protein structures determined by X-ray 

crystallography, nuclear magnetic resonance (NMR), or cryo-electron microscopy (cryo-EM). It 

is not always possible to use experimentally derived protein structures; when they are unavailable, 

one can predict the three-dimensional structure of a protein using computational methods. 

Homology modeling, also known as comparative modeling, is a computational technique that takes 

a protein amino-acid sequence to predict that three-dimensional structure. It takes advantage of the 

fact that protein structure is more conserved during evolution than is the sequence, so sequence-

related proteins generally share similar structures.8  

The homology-modeling algorithm starts by identifying template proteins with known 

three-dimensional structures. A multi-template approach can be used when no single template 

covers the whole protein. When there is a significant sequence identity between the protein and a 

template (30% or higher), an approximate structure can likely be obtained. Once suitable templates 

have been found, sequence alignment between the protein and its templates is done. This step is 

crucial in model accuracy and uses pairwise sequence alignment. Then, the algorithm uses the 

templates to generate an initial model for the protein, which is later refined. Refinement usually 

includes a minimization step that uses molecular mechanics. The last step is model validation or 

evaluation, which is when the model accuracy is determined.9,10 

Lately, machine learning (ML) approaches have been used to generate models. The 

catalyzer for ML’s use in homology modeling is the advent of the “big data” era.11,12 Specifically, 

convolutional neural networks (CNN), an algorithm used in image analysis, have been used to 

predict protein structures, as exemplified by AlphaFold and RaptorX.13,14 According to the authors, 
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AlphaFold is the first tool that predicts protein structures “to near experimental accuracy in a 

majority of cases.”14  

As a rule, a model is considered suitable for structure-based drug discovery if the sequence 

identity is above 50%; these models are considered to be of sufficient quality for SBDD. Models 

generated with templates that share 25-50% sequence identity can be used to assess how druggable 

a protein target is. Models with less than 25% sequence identity are only useful for directing 

mutagenesis experiments or protein function assignment.10,15  

There are plenty of examples of how homology modeling has helped in the drug discovery 

process, but there are still challenges to overcome. The first and foremost challenge is how 

homology modeling struggles to predict the structure of proteins whose family structure has not 

been determined and the structure of intrinsically disordered proteins or intrinsically disordered 

protein regions.12 

1.2.2 Molecular docking 

High-throughput screening (HTS), introduced in the early 90s, is an experimental 

technique used to accelerate lead discovery.16,17 In HTS, an extensive library of small molecules 

is tested against a target, often using an in vitro essay (e.g., fluorescence) to observe a response 

and find drug candidates. The objective of HTS is to test thousands of compounds per day to find 

a small-molecule that modulates the activity of a specific target, be it a protein, a pathway, or a 

cellular event.18 For HTS to be able to test the massive amount of compounds per day, it needs to 

use automation of sample handling, assay processing, and response readouts. HTS is expensive 

because you must have the equipment, reagents, and compound libraries, and you have to maintain 
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everything. This problem is exacerbated by the development of combinatorial chemistry, which 

has exponentially increased the size of many available chemical libraries.19  

To reduce the number of compounds that need to be experimentally tested, the research 

community has developed computational methods to screen molecules in silico. Virtual screening 

uses experimental or physical principles to predict compounds that will be active, reducing the 

number of molecules that need to be tested experimentally.20 

The most used SBDD technique for virtual screening is molecular docking. The goal of 

docking is to predict the binding affinity between a protein and a ligand. Docking algorithms seek 

to answer two questions. First, what is the ideal pose (spatial arrangement) of the ligand in the 

protein pocket? Second, how strong is this interaction (scoring)? The algorithm must be fast and 

accurate if one hopes to apply docking in virtual screening. 

 

Figure 2. Simplified depiction of how molecular docking can find a drug lead.  First, a protein pocket has to 

be identified with the goal that a small molecule will bind to it and elicit a biological response. Once the 

pocket has been identified, one tries to predict how small molecules will bind and the strength of this binding.   

In practice, it is computationally expensive to sample all the poses a ligand can assume 

within the pocket. Consequently, most searching algorithms consider the protein as a rigid body 

and only sample a fraction of the ligand’s available conformational space.21 One popular searching 

approach is the Monte Carlo algorithm.20–22 This method uses simulated annealing and random 
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moves to sample across the energy landscape. To accept or reject the proposed move, it uses the 

Metropolis criteria.  

Once a single or a set of ligand poses has been found by the searching algorithm, the 

docking program predicts the strength of the protein-ligand interaction. Scoring functions, which 

can be physics-based, knowledge-based, or empirical, are used to this effect.23 These functions 

serve two purposes. First, they are used to find the best pose for a ligand. Second, after docking a 

library of small molecules, they help differentiate between possible and poor binders.  

However, proteins are inherently flexible; they “wiggle and jiggle,”* which allows them to 

adopt different conformations. In some cases, substantial changes can be seen in the protein 

binding pocket. Molecular docking typically ignores this conformational richness. However, by 

docking a small molecule database to an ensemble of protein conformations, we incorporate some 

of this conformational richness into the virtual screen. This technique is called ensemble docking 

and has been shown to improve predictions of binding compared to single conformation 

docking.24,25 It is preferable to get the protein conformations through experimental means (X-ray 

or NMR), but that is not always possible; for such cases, one can use computational methods, like 

molecular dynamics simulations.  

 

* “If we were to name the most powerful assumption of all, which leads one on and on in an attempt to understand 

life, it is that all things are made of atoms, and that everything that living things do can be understood in terms of the 

jigglings and wigglings of atoms.” - Richard P. Feynman 
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1.2.3 Molecular dynamics 

Proteins perform many of the biochemical functions that cells require for survival. This 

function is encoded by the protein structure and its dynamics. X-ray crystallography, NMR, and 

cryo-EM are excellent experimental techniques for obtaining protein structures, but these 

“pictures” provide only a static representation of the protein. We can use computational 

simulations to get an atomistic “movie” that captures the jigglings and wigglings, which often 

provide meaningful information about their function. Quantum mechanics calculations are 

impossibly expensive for proteins, so we need to simplify the biomolecular system we want to 

study. We can use Newtonian physics to approximate protein motions. To do this, we need to 

assume that the atoms’ position is represented by their nuclear positions (Born-Oppenheimer 

approximation).26,27 Other approximations are how we represent atoms and bonds, and they are 

treated as solid spheres and springs, respectively. 

Molecular dynamics simulations consist of three steps that we repeat over and over again. 

First, we calculate a set of approximate forces for each atom using a semi-empirical force filed. 

The force filed approximates the system by using a potential energy function that models bonding, 

bond angles, bond torsions, electrostatics, and van der Waals interactions (see equation below). 

We next move the atoms according to these forces and advance the simulation by one or two 

quadrillionths of a second (1 or 2 fs). We repeat these three steps millions or billions of times. 
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The first two terms in this equation represent the chemical bonds and the atomic angles, 

which we approximate as springs (Hooke’s law). The third term represents dihedral angles, which 

we represent using a sinusoidal function. The last term describes the nonbonded interactions. To 

calculate Van der Waals forces and electrostatic interactions, we use the Leonard-Jones potential 

and Coulomb’s law, respectively.27,28 

MD simulations are used extensively in drug discovery. For example, they can provide 

different protein conformations for use in ensemble docking.24 After docking, MD simulations can 

determine binding-pose stability, as demonstrated by Kokubo’s group,29,30 which has used 

simulations to further discriminate ligand poses obtained by docking. MD simulations have also 

been used to find cryptic pockets, also known as hidden allosteric pockets. These pockets open the 

possibility of targeting proteins previously thought of as undruggable.31,32 Although most cryptic 

pockets have been found by chance, and there is a growing effort focused on finding new proteins 

with cryptic pockets.33  

Finally, another use for MD simulations in drug discovery is calculating binding free 

energies using methods like thermodynamic integration and free energy perturbation, among 

others. These computationally expensive methods are the most accurate in predicting how well a 

ligand binds a protein. The difference in free energy between two related molecules can be used 

to determine if a ligand modification will improve its binding to the target protein.34 This method 

can be used to create relationships between the modification and binding affinity, generating a 

structure-activity relationship model.35 
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1.3 Conclusions 

Here I briefly introduced the field of computer-aided drug design, focusing on methods 

that use the structure of the target protein (SBDD methods). CADD has accelerated drug discovery 

by providing protein models, minimizing the number of compounds that need to be experimentally 

tested, and generating structure-activity relationships. 

Drug discovery may be in a paradigm change due to the advances in CADD methods, 

which are not only aiding in drug discovery but are driving this enterprise.36,37 The goal of CADD 

will always be to deliver new and safer medicines fast and cost-effectively.  
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2.0 Sub-Pocket EXplorer (SubPEx): Leveraging weighted ensemble simulations to enhance 

the conformational sampling of binding-pocket conformations 

2.1 Introduction 

Drug discovery is a lengthy and expensive endeavor with research and development costs 

ranging from 161 million dollars to a staggering 4.54 billion dollars for new drugs.1,2 

Computational methods are used extensively in most steps of the drug discovery pipeline. Virtual 

screening can alleviate the high costs associated with early-stage hit identification. Standard 

virtual-screening methods dock flexible compounds into a single, rigid protein receptor. These 

methods are fast, but they do not consider all the conformational sub-states a protein can adopt. 

Ensemble docking seeks to overcome this limitation by docking candidate ligands into multiple 

protein conformations.24,25,38,39 These protein conformations are often derived from brute-force 

molecular dynamics (MD) simulations. However, standard MD usually takes too long to 

thoroughly sample the entire conformational landscape, even with advances in computational 

resources like graphics processing units (GPUs) and parallel computing.40,41 Energy landscapes 

typically have metastable states with large energy barriers separating them; crossing these 

barriers is a rare event that MD simulations have difficulty sampling. The scientific community 

has developed several methods to overcome this limitation, including methods to simplify the 

systems (coarse-graining), modify the energy landscape (accelerated MD, replica exchange MD, 

metadynamics), and focus computational efforts on rare-event sampling (transition path sampling, 

weighted ensemble). 42–45 
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Huber and Kim46 developed† the weighted ensemble (WE) path sampling method. This 

computational technique accelerates rare-event sampling by encouraging even sampling along a 

predetermined uni or multi-dimensional progress coordinate, which is usually divided into bins. 

The WE method involves two main steps; in the first step, several stochastic simulations (walkers), 

each carrying a statistical weight, are performed for a predefined interval (τ). In the second step, 

merging and splitting ensures even distribution in the progress coordinate space. The probabilities 

of the involved walkers are divided or added in the merging and splitting, respectively.  

 

 

Figure 3. Graphical description of the weighted ensemble method. Depicted here is a weighted ensemble 

simulation that starts by populating the first bin in the progress-coordinate phase space with two walkers. 

After short MD simulations, one walker has crossed to another bin, so we repopulate each occupied bin with 

two walkers, each with half the probability of the parent simulation. Following another short MD simulation, 

we repopulate the third bin and merge walkers in the first bin. We continue to perform these two steps as 

needed. 

 

† Some consider this a rediscovery of the splitting strategy developed in 1951 by Kahn and Harris. 
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In this work, I present the development of Sub-Pocket EXplorer (SubPEx), a novel tool to 

obtain ensembles of protein pocket conformations. To accelerate sampling, SubPEx uses WE as 

implemented in WESTPA, an open-source, highly scalable WE implementation.47,48 Here, I 

describe the development of SubPEx, its progress coordinate, and how it compares to vanilla MD 

simulations. Also, I developed a clustering algorithm that clusters per generation. This clustering 

algorithm gives better and faster results than using every SubPEx simulation frame. Finally, I apply 

SubPEx to three proteins relevant to drug discovery: heat shock protein 90, influenza 

neuraminidase, and yeast hexokinase II. 

2.2 Methods 

2.2.1 Preparation of proteins for simulations 

Proteins models were created from crystal structures downloaded from the Protein Data 

Bank.49 For the ATP binding domain of heat shock protein 90 alpha (HSP90), I used PDB 5J2V50; 

for N1 Neuraminidase (NA), I used PDB 2HU4 and 2HTY51 for closed and open conformations, 

respectively. I removed the bound ligand (oseltamivir) in the closed NA conformation. Finally, for 

Saccharomyces cerevisiae hexokinase II (ScHxk2p), I used PDB 1IG8.52 

I added hydrogen atoms to each protein using the PDB2PQR53 webserver (pH 7.0), which 

uses the PROPKA algorithm to optimize the hydrogen-bond network.54 I used LEaP, part of the 

AmberTools18 package55, to add a water box that extends in every direction for 10 Å beyond the 

protein. I also added Na+ or Cl- ions to neutralize the charge of the protein and added additional 
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ions to approximate a 150 mM NaCl solution. For the proteins, I used the Amber ff14SB force 

field56, and for water, I used TIP3P.57 

To obtain a protein/solute system without any steric clashes, I applied four rounds of 

minimization with 5000 steps each. I used either NAMD (versions 2.13 and 2.14)58 or Amber from 

Amber55 to perform this step. In the first minimization step, I allowed hydrogen atoms to be free. 

In the second, hydrogen atoms and water molecules. In the third, hydrogen atoms, water molecules, 

and protein side chains were allowed to relax. Finally, in the fourth step, all atoms were free. I 

followed this with an equilibration period of at least one ns.  

For the simulations using NAMD, the equilibration was done serially, gradually relaxing 

the restraints on the backbone (1.00, 0.75, 0.50, 0.25, and 0.00 kcal/mol/Å2, respectively). All the 

steps were done in the NPT ensemble; the first step used a one fs timestep, and the subsequent 

steps used a two fs timestep.  

For the Amber simulations, I used a three-step equilibration. The first step was in the NVT 

ensemble for 10,000 steps with 1 kcal/mol/Å2 constraints on backbone atoms. The second step is 

in the NPT ensemble, for one ns of total time using a two fs timestep and 1 kcal/mol/Å2 constraints 

for backbone atoms. The last step is the same as the previous step but without constraints on the 

backbone.  

2.2.2 Molecular dynamics and weighted ensemble simulations 

To run the WE and vanilla molecular dynamics (MD) simulations, I used NAMD 2.13, 

NAMD 2.14, Amber18, and Amber20. I did not mix engines or versions; for the systems 

equilibrated with NAMD, I continued with NAMD, and for the systems equilibrated with Amber, 

I continued with Amber. 
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For each system, the vanilla MD simulations were run in the NPT ensemble, using a two 

fs timestep. For the SubPEx and the vanilla simulations, I used the Monte Carlo barostat with a 

pressure of 1.01325 bar (1 atm). Since WE simulations rely on stochastic processes, I implemented 

the Langevin thermostat with a collision frequency of 5.0 ps-1 and a target temperature of 310K 

for both types of simulations. I performed three production runs, one 500 ns and two 250 ns, for a 

total of 1 μs for each system. All systems were neutralized with Na+ or Cl-, and I added the same 

ions to approximate a 150 mM solution. 

SubPEx uses WE to accelerate pocket conformational sampling. I used WESTPA 1.0 as 

the WE implementation.47 WESTPA is compatible with any molecular dynamics engine, so I 

implemented two engines in SubPEx; I used the same engines as in the vanilla MD simulations, 

Amber and NAMD. For binning, I used the minimal adaptive binning algorithm developed by 

Torillo and coworkers.59 All WE simulations were performed with a tau of 20 ps; the specifics of 

each simulation (e.g., number of bins, walkers per bin) are specified for each WE simulation in the 

section where each simulation is discussed (Section 2.3.1, 2.3.3, and 2.3.4). 

2.2.3 Analysis of simulations 

Progress coordinate calculations were done using in-house scripts, I used MDAnalysis for 

all molecular data reading and manipulation. PCA analysis was done using the MDAnalysis 

python package version 1.0.0.60,61 Clustering the points I used to fill the pocket was done using 

SciKit-Learn (version 0.22.1).62  

Clustering of the MD simulation trajectories was performed with Amber20’s CPPTRAJ63 

using hierarchical agglomerative clustering with average-linkage, which uses the average distance 

between members of two clusters to calculate the similarity between that pair of structures.64 



 16 

2.3 Results and discussion 

2.3.1 Development of SubPEx and its progress coordinate  

We first hypothesized that we could use a pocket-similarity metric, the pocket-shape 

Jaccard Distance (JD), as the SubPEx progress coordinate. To calculate JD, the user provides the 

center of the pocket to be sampled, and the SubPEx algorithm creates a field of points (FOP) that 

fills the pocket. The procedure is similar to that used by the POVME algorithm.65,66 It starts by 

creating a sphere of points centered at a user-defined point, this point should be at the center of the 

pocket the user wants to enhance sampling. To delete points that clash with any protein atom, I 

used a VdW radius of 2.6 Å. Next, it calculates and deletes all points outside the convex hull 

created by the Cα atoms of the protein. Finally, we cluster the FOP using DBScan to obtain the 

final FOP. This FOP is then compared to the FOP of a reference, and the JD is calculated as 

follows: 

𝐽𝐽𝐽𝐽𝑖𝑖 = 1 −  
�𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑎𝑎𝑟𝑟�
�𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 ∪ 𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑎𝑎𝑟𝑟�

 

The JD metric is degenerate, and we can break the degeneracy of JD by introducing a 

second progress coordinate, which is why I tested the SubPEx algorithm with a two-dimensional 

progress coordinate. The first dimension was JD, and the second was the pocket heavy-atoms 

RMSD (pRMSD). Heavy atoms in the pocket are obtained by an algorithm that takes every residue 

within the initial sphere of points. Then the user is encouraged to visually inspect and remove 

residues that are not part of the protein pocket. 

I tested this 2D progress coordinate on the open 150-cavity conformation of influenza 

neuraminidase (see section 2.3.3), a viral protein that allows the influenza virion to leave its host 
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cell. The simulations had a τ of 20 ps, five independent trajectories (“walkers”) per bin, 68 bins, 

and 75 total iterations. The maximal trajectory length, the total simulation time for a single walker 

from generation 1 to the last one, was 1.50 ns with 360.3 ns aggregate simulation time 

(concatenation of all the walkers in all the generations). 

A comparison of the 2D NA SubPEx simulation and the three vanilla MD simulations 

(totaling 1 μs) can be seen in Figure 4 and Figure 5. The SubPEx simulation samples more of the 

progress-coordinate space than the vanilla simulations, especially in the lower pRMSD and JD 

region. However, the vanilla MD simulations sample more of the higher pRMSD and JD values. 

It is also noteworthy that the vanilla MD simulations sample around what seems to be an energy 

minimum (in this particular space). The SubPEx simulation is not stuck at the minimum. 

 

 

Figure 4. A) Two-dimensional probability distribution as a function of the JD (x-axis) and pRMSD (y-axis). 

In a yellow trace, I show the path that the lowest probability walker took; in blue and white, the walker with 

the highest JD and pRMSD, respectively. The cumulative simulation time is 360.3 ns. B) Two-dimensional 

probability distribution as a function of the JD (x-axis) and pRMSD (y-axis) of the vanilla MD simulations 

(total simulation time 1 μs), with the probability shown as counts (colors are inverted compared to A). 
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The violin plots shown in Figure 5 could explain why the SubPEx simulations do not 

adequately sample the higher pocket RMSD conformations in this case. The SubPEx simulations 

seem to be neglecting backbone sampling; by not allowing some backbone flexibility, the pocket 

atoms may be too constricted, limiting pocket sampling. An evident advantage of the SubPEx 

simulation is that the pocket conformational space that SubPEx samples, it does thoroughly. This 

thoroughness is observed by the pRMSD violin plot and the even distribution of pRMSD values 

observed for the SubPEx simulation.  

 

Figure 5. Violin plots of NA pocket heavy-atom RMSD (left) and backbone RMSD (right) for SubPEx and 

vanilla MD NA simulations. The vanilla MD simulations are presented in purple. In dark purple, I present 

the concatenation of the three MD simulations. Only the first 360.3 ns of the third vanilla MD simulation is 

included in this analysis. The other two MD simulations are presented without truncation since they are 

shorter than the 360.3 ns of the 2D-SubPEx simulation.  

One of the most critical pieces of information the WESTPA algorithm provides, the 

probability of the walkers, is completely lost on all the violin plots presented in this chapter. WE 

is a demonstrated method that accelerates sampling of rare events and conformational sampling,67–
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69 but to reach meaningful state probabilities these WE simulations have to equilibrate. All the 

simulations I present in this chapter have not reached equilibrium, which is why the probabilities 

each state has are not representative of reality. One thing I can do, is to reweight the probabilities, 

which is stated in the future directions section, and obtain probability-weighted violin plots. 

However, the project aims to study the extent of conformational sampling, not the kinetics or the 

thermodynamics of the process, which is why for the moment, we can safely ignore the 

probabilities.  

I also applied SubPEx to the ATP binding domain of human heat shock protein 90 

(HSP90), chosen because of its smaller size, the many structures deposited in the Protein Data 

Bank (260 structures with 100% sequence identity as of July 15th, 2022), and its relevance to cancer 

therapy.70,71 HSP90 is a molecular chaperon that plays a central role in many cellular processes, 

including cell cycle control and survival. It is one of the most abundant proteins in the cytosol and 

is involved in maintaining cellular homeostasis. It is a frequently targeted protein in cancer drug 

discovery because its overexpression is an important factor in tumorigenesis.70–73 

I began with an apo HSP90 (PDB 5J2V) structure. After minimization and equilibration 

using Amber20 (see methods section), I ran three vanilla MD simulations and a 2D-SubPEx 

simulation with the same parameters as the previous NA simulation, except I used three walkers 

per bin instead of the five. I ran this SubPEx simulation for 32 generations for a total cumulative 

simulation time of 104.52 ns and a maximal trajectory length of 0.64 ns. 

When comparing SubPEx and vanilla simulations with the same cumulative simulation 

time, we see that SubPEx samples the pocket conformational space, per pRMSD, roughly the same 

as the three vanilla simulations. The violin plots in Figure 6 show that the SubPEx simulation 

samples more pocket diversity (per pRMSD) than the vanilla MD simulations but does not reach 
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high pRMSD values as does the second MD production run. As with the previously discussed NA 

simulation, SubPEx is still sampling low backbone RMSD (bbRMSD) values, limiting which 

pocket conformations are obtained in the simulation.  

 

Figure 6. Violin plots of HSP90 pocket RMSD and backbone RMSD for a 2D SubPEx simulation and three 

production runs of vanilla MD simulations. I present data of only the first 104.52 ns for each vanilla MD 

simulation.  

To compensate for the hyper-focusing on the initial backbone conformation observed in 

both SubPEx simulations, I developed a new progress coordinate: the composite RMSD (cRMSD). 

My new hypothesis is that if we include some backbone flexibility into the progress coordinate, 

we can better sample the accessible pocket conformations while still focusing on pocket 

conformational sampling. I expect that some pocket conformations are going to be more accessible 

with modest backbone rearrangements. I defined the composite RMSD as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐽𝐽 = 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝐽𝐽 +  𝜎𝜎 × 𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝐽𝐽 
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where bbRMSD is the backbone RMSD of the whole protein and σ is a proportionality constant 

(the percentage of backbone atoms not in the pocket divided by two). This constant was added to 

continue to focus SubPEx sampling on the pocket while introducing some of the whole-protein 

backbone dynamics.  

To test the new progress coordinate, I set up three SubPEx simulations with one-

dimensional progress coordinates (JD, pRMSD, and cRMSD) and three vanilla MD simulations 

(totaling 1 μs of simulation time). All the simulations use NAMD. I calculated pRMSD, cRMSD, 

and JD, for each SubPEx simulation. These metrics were calculated to be used as the progress 

coordinate or as auxiliary data, which can then be used to compare the simulations. Each SubPEx 

simulation had 19 bins using the MAB scheme,59 had three walkers per bin, and was run for 50 

generations using a τ of 20 ps. The runs had 46.98, 49.62, and 47.88 ns of cumulative simulation 

time and a maximal trajectory length of one ns. Figure 7 shows the probability distributions per 

generation (iteration) for the three simulations.  

 

Figure 7. Probability distribution plots for the three 1D SubPEx HSP90 simulations. A) Simulation with JD 

as the progress coordinate. B) Simulation with pRMSD as the progress coordinate. C) Simulation with 

cRMSD as the progress coordinate. Note that the X axes and the color scheme do not share the same scale. 

These plots show the sampling of the JD simulation is stalled; only a few walkers reach 

higher JD values, with most of the probability staying in the range of ~0.4-0.65. In contrast, in the 

pRMSD simulation, more walkers sample higher progress-coordinate values. Finally, in the 
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cRMSD progress coordinate, many walkers reach higher progress-coordinate values, and the 

probabilities are more spread out compared to the other simulations.  

 

Figure 8. Violin plots comparing SubPEx HSP90 simulations with vanilla MD simulations. In blue, orange, 

and turquoise, we have the SubPEx simulations run using the JD, pRMSD, and cRMSD progress coordinates, 

respectively. In purple, three vanilla MD simulations up to 50 ns, with darker purple being the concatenation 

of all the frames of the vanilla simulations for a total of 1 μs of simulation time.  

To compare pocket sampling between simulations, I created violin plots showing pRMSD 

and bbRMSD for the three SubPEx simulations and the three vanilla simulations. These plots show 

that the cRMSD SubPEx simulation outperforms all other simulations according to the pRMSD 

metric, both in maximum pRMSD value and sampling distribution. It almost reaches higher 

pRMSD values than even the 1 μs vanilla MD simulation. In comparison, the cRMSD samples 

more protein backbone conformations but still focuses conformational sampling on the pocket, as 

expected. As in the previous simulations, the JD and the pRMSD simulations were hyper-focused 

on the pocket with no enhanced backbone sampling. Given how well the cRMSD SubPEx 
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simulation performed, I extended it for 50 more generations (accumulative simulation time of 

103.02 ns, shown in Figure 9 and Figure 10).  

Finally, I explored whether a two-dimensional progress coordinate consisting of bbRMSD 

and pRMSD could outperform the new composite progress coordinate. This 2D SubPEx 

simulation also used the MAB binning scheme (108 bins). I ran the 2D SubPEx simulation with 

three walkers per bin, a τ of 20 ps, and 73 generations, for an accumulative simulation time of 

253.74 ns and a maximal trajectory length of 1.46 ns.  

 

Figure 9. Probability distribution plots of SubPEx HSP90 simulations. A) Probability distribution per 

generation, cRMSD simulation (accumulated simulation time 102.6 ns). B) Probability distributions per 

generation for the first dimension (bbRMSD) of the 2D SubPEx simulation. C) Probability distributions per 

generation for the second dimension (pRMSD) of the 2D SubPEx simulation. D) Two-dimensional probability 

distributions as a function of bbRMSD and pRMSD for the 2D SubPEx simulation (accumulated simulation 

time 102.6 ns). 
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The probability distribution plots comparing the 1D cRMSD and the 2D bbRMSD/pRMSD 

SubPEx simulations (Figure 9) show that the 1D SubPEx simulation outperforms the 2D 

simulation, even when the simulation is less than half the cumulative simulation time (103.02 vs. 

253.74 ns). The difference is even more striking when we compare simulations with roughly the 

same cumulative simulation time, as seen in Figure 10. In this plot, I show data from the first 31 

generations of the 2D SubPEx simulation; separately, I present data from the whole simulation. I 

did this truncation of data because the 31-generation mark had about the same cumulative 

simulation time as the cRMSD SubPEx simulation. The cRMSD SubPEx simulation sampled 

higher pRMSD values compared to any other simulation. It also had a more even sampling 

distribution (i.e., it sampled low and high pRMSD values). 

Interestingly the 2D SubPEx simulation focused more on exploring backbone 

conformations than pocket conformations, as exemplified by their high bbRMSD values compared 

to all other simulations. In contrast, the simulation with the 2D progress coordinate falls short, 

both in magnitude and distribution of pRMSD values, compared to the vanilla MD simulations 

and the cRMSD SubPEx simulation. In comparison, the cRMSD simulation is still focused on 

sampling the pocket but allows for improved backbone conformational sampling. 
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Figure 10. Violin plots comparing SubPEx HSP90 simulations with vanilla MD simulations. In turquoise, a 

SubPEx simulation using cRMSD as the progress coordinate. In green, the 2D SubPEx simulation with 

bbRMSD and pRMSD as the progress coordinates. Lighter green show results up to generation 31 

(approximately the same simulation time as the cRMSD simulation). In purple, three vanilla MD simulations 

up to 100 ns, with darker purple being the concatenation of all the frames of the vanilla simulations.   

Having demonstrated the pocket conformational sampling power of the cRMSD progress 

coordinate, I wanted to verify that we are sampling conformations that are attainable. In lieu of 

reweighing or running the simulations to equilibrium, I explored whether the HSP90 SubPEx 

simulations sampled conformations are similar to protein conformations in the PDB Data Bank. I 

performed principal component analysis (PCA) on pocket heavy atoms using the cRMSD SubPEx 

simulation, three truncated vanilla simulations, and a collection of 75 HSP90 crystal structures 

extracted from the PDB Data Bank. To calculate the PCs, I truncated the vanilla simulations to be 

the same length as the SubPEx simulation.  
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Figure 11. PC2 vs. PC1 plots of the HSP90 cRMSD SubPEx and three vanilla MD simulations. To ensure I 

used the same PC space between simulations, I performed a single PC analysis on a concatenated simulation 

with the SubPEx, the vanilla, and crystallographic structures.  

Figure 11 shows the first and second PCs for all three vanilla MD simulations, the cRMSD 

SubPEx simulation, and the crystallographic structures (marked as red dots).  

To confirm the results observed in the violin plots, I used the same PC analysis to calculate 

the percentage coverage of the PC space by each simulation. SubPEx samples the PC space more 

thoroughly than the vanilla MD simulations with ~47% coverage compared to the ~43, 25, or 11% 

coverage of the vanilla simulations. 
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To confirm which simulation shares more of the PC space with the crystallographic 

structures. I performed a PCA on the pocket atoms using only the SubPEx simulation and the first 

vanilla MD run. This analysis shows (Figure 12) that the SubPEx shares more PC space with the 

75 crystallographic structures compared to the first vanilla MD run. These analyses taken together 

indicate that the SubPEx simulations sampled more conformations that are experimentally relevant 

compared to the vanilla MD simulations. 

 

Figure 12 PC2 vs. PC1 plots of the cRMSD SubPEx and the first vanilla MD simulations. To ensure I used the 

same PC space between simulations, I performed a single PC analysis on a concatenated simulation with the 

SubPEx, the first vanilla MD, and the crystallographic structures. 

2.3.2 Clustering of simulations  

Having established that the SubPEx-sampled conformations are experimentally relevant 

according to PCA, I next explored how to extract meaningful conformations for later use in 

ensemble docking. Clustering is the logical approach for obtaining individual representative 

protein conformations. However, the confirmations obtained from SubPEx are not linearly 
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correlated, as are the conformations obtained by vanilla MD, and we should aim to use all of 

SubPEx’s data. Using every frame in the SubPEx simulation frame for clustering can be 

troublesome because calculating the pair-wise distance matrix needed is computationally 

expensive in terms of memory and time.  

To minimize the time it takes to calculate the matrix while still using every frame, I 

developed a script that clusters the data on each generation and then performs a final clustering 

with the centroids of the previously clustered data. This script considers the number of walkers in 

each generation, so I don’t introduce bias in the final clustering results to any generation. The 

clustering focuses on the pocket conformations, and the algorithm I used is hierarchical 

agglomerative clustering using average linkage, as implemented in CPPTRAJ. The distance matrix 

calculation has a quadratic time complexity, meaning that calculating the distance matrices for the 

per generation algorithm will take substantially less cumulative time than the single distance 

matrix calculation using all the frames. Another advantage of the per generation algorithm is that 

each cluster’s centroids are further apart when clustering per generation, as observed in the “all vs. 

all” pocket RMSD plots shown in Figure 13B. Both sides of this plot represent data from the 

SubPEx simulation; on the left, I present the clustering using the per generation algorithm, and on 

the right, I show clustering using all the frames of the SubPEx simulation.  
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Figure 13. A) Plot of the time it takes to cluster using per generation clustering compared to clustering using 

all the frames. B) All vs. all pocket RMSD of the centroids obtained from clustering. Left) clustering per 

generation, right) clustering using every frame.  

To further compare the SubPEx and vanilla MD simulations, I clustered the cRMSD 

HSP90 simulation using the per generation script and the vanilla simulations using every frame. 

Plots showing all vs. all backbone and pocket RMSD for the vanilla and SubPEx simulations are 

given in Figure 14. Comparing results from SubPEx and the first 102.6 ns of the third vanilla MD 
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production run (same cumulative time) shows that there is more backbone RMSD sampling in the 

SubPEx simulation (Figure 14). This better backbone sampling disappears when we compare 

SubPEx’s backbone sampling to the full microsecond vanilla simulations. In these simulations, the 

MD cluster centroids sample more backbone conformational space. Comparing the pocket RMSD 

between simulations suggests that the SubPEx sampling is better. In the full μs MD simulation, 

we observe regions of low pRMSD, especially in the pRMSD of the first five clusters. 

Comparatively, although the SubPEx simulation has some similar clusters, it still has more diverse 

pocket shapes overall per the pRMSD metric.  

 

 Figure 14. All vs. all RMSD plots for the cRMSD and vanilla MD HSP90 simulations. On top, I show 

backbone RMSD. On the bottom, I show pocket RMSD.  
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Figure 15. Superposition of HSP90 structures obtained from clustering SubPEx and vanilla MD simulations 

(same cumulative simulation time of 102.6 ns). A) Structures obtained by the cRMSD SubPEx simulation. B) 

Structures obtained by vanilla MD simulations. 

These results show that the per-generation clustering algorithm is a fast algorithm to obtain 

distinct pocket conformations from WE simulations. I also demonstrate the conformational 

diversity observed in the HSP90 cRMSD SubPEx simulations seen in the all vs. all pRMSD plots 

of the centroids of the clusters obtained by the clustering algorithm.  

2.3.3 Neuraminidase pocket sampling 

To further test the SubPEx algorithm, I performed SubPEx and vanilla MD simulations on 

neuraminidase, a protein important in influenza’s infection cycle. Influenza is a seasonal viral 

pathogen that, even though most people recover after a couple of days, influenza still kills between 

290,000 to 650,000 people worldwide.74 Viral replication ends with the budding and release of the 

viral entity. This release is mediated by neuraminidase (NA), the enzyme responsible for breaking 
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the sialic-acid linkages between viral hemagglutinin and the infected cell’s membrane surface.75–

77 NA proteins have nine serotypes (N1 to N9), which can be divided into two groups according 

to their sequence. The main structural difference between both groups is the presence or absence 

of an extra cavity in the active site.78,79 This cavity, which has been actively exploited for drug 

development,80 is formed when the flexibility of a loop, the 150-loop, is increased by breaking the 

D147-H/R150 salt bridge.81  

 

Figure 16. Superposed structures of neuraminidase with the 150-cavity in its closed (PDB 2HU4, orange) and 

open (PDB 2HTY, cyan) conformations.  

To test SubPEx on this known flexible pocket, I prepared two NA systems for SubPEx and 

vanilla MD simulations. One starts from the open 150-cavity NA structure (PDB 2HTY:A, shown 

in cyan), and the second starts from the closed 150-cavity NA structure (PDB 2HU4:A, shown in 

orange). I used Amber to run the simulations for both systems (see Methods section).  
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Comparing the 1D cRMSD SubPEx and vanilla MD simulations starting from the open 

NA conformation shows that the SubPEx simulation samples higher pRMSD (Figure 17). 

Especially notable is the low bbRMSD sampled for the protein, demonstrating that we are focusing 

on the pocket diversity, not whole protein dynamics. 

 

Figure 17. Violin plots comparing SubPEx NA simulations with vanilla MD simulations. In turquoise, 

SubPEx simulation using cRMSD as the progress coordinate, starting from the open conformation. In purple, 

three vanilla MD simulations using the first 215.58 ns, with darker purple being the concatenation of all the 

vanilla simulation frames.   

When running the simulations starting from the closed conformation, the SubPEx 

simulations did not reach the same high pRMSD values as the vanilla simulations. I analyzed the 

vanilla trajectories and noticed that the system’s equilibration was only achieved after ~50 ns for 

two of the three simulations. This result explains why SubPEx was not able to keep up with the 

vanilla simulations. SubPEx is spending its sampling power to equilibrate the closed system.  

A simple analogy can explain this phenomenon; let us imagine that the vanilla MD is a 

single skier going down a hill, while SubPEx is like multiple skiers tied together trying to reach 
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the bottom of the mountain. The single skier will not be constrained and will arrive at the bottom 

of the hill (energy minima) more directly than the multiple skiers. Of course, the tied skiers will 

cover more terrain while going downhill compared to the single skier. This better sampling for low 

pRMSD values is observed in the distribution of the SubPEx simulation of NA starting from the 

closed conformation (data not shown). 

2.3.4 Hexokinase II (Hxk2) results 

To test SubPEx on a system that undergoes large domain rearrangements when binding a 

ligand, I ran a SubPEx simulation on Saccharomyces cerevisiae hexokinase II, a protein involved 

in glucose catabolism. In mammals, there are four hexokinases, all with a role in glucose 

metabolism. These enzymes begin the glucose catabolism when they phosphorylate glucose at its 

sixth position.82,83 Cancerous cells have high energy requirements due to their unregulated cell 

growth and proliferation. These cells fulfill their energy requirements by increased glycolysis, 

known as the Warburg effect.84–86 The increase in glycolysis can be achieved by overexpression 

of hexokinase 2; this overexpression is usually observed in cancerous cells. This makes Hxk2 an 

attractive target for novel anticancer therapeutics.  

Using the Saccharomyces cerevisiae Hxk2 (ScHxk2p PDB 1IG852) to model hexokinase 

behavior, I ran a SubPEx simulation and three vanilla MD simulations. Structurally, ScHxk2 

contains two domains, a large and a small domain. These domains must come together to bind 

glucose. Results comparing the SubPEx and vanilla simulations are presented in Figure 18.  
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Figure 18. Hxk2 protein pocket sampling by SubPEx and vanilla MD. A) Violin plots depicting pocket and 

backbone sampling. B) All vs. all RMSD of clustered protein conformations for vanilla MD and SubPEx. 

 

Especially telling of SubPEx’s sampling capabilities is the comparison of both ensembles 

of protein conformations to crystallographic structures depicting hexokinase in its closed 
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conformation and (Kluyveromyces lactis hexokinase I, PDB 3O8M87) and open conformations 

(PDB 1IG8). The SubPEx protein ensemble is more similar to the closed conformation compared 

to the vanilla simulations (Figure 19), exemplifying how even when substantial conformational 

changes need to happen, SubPEx performs well.  

 

Figure 19. ScHxk2p conformational diversity as obtained by SubPEx and vanilla MD. In red, I show the 

starting conformation for the simulations (PDB 1IG8), and in blue, the closed hexokinase conformation (PDB 

3O8M). 

2.4 Conclusions 

In this chapter, I discussed the development of SubPEx, a tool that improves pocket 

conformational sampling. I showed how incorporating some of the backbone’s flexibility into the 

progress coordinate increases pocket conformational sampling without sacrificing SubPEx’s 

computational focus on the pocket. With PC analysis, I showed that the SubPEx sampling includes 
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conformations observed experimentally. I also developed a clustering algorithm for SubPEx 

simulations that helps users efficiently obtain diverse pocket conformations for their later use in 

ensemble docking. 

I demonstrated SubPEx efficacy using three systems. HSP90 simulations showed that the 

cRMSD progress coordinate allows for fast pocket sampling. Neuraminidase has a flexible loop 

and was a good candidate for SubPEx. NA starting from the open conformation showed better 

sampling compared to vanilla MD. Meanwhile, the NA system starting from the closed 

conformation demonstrates the importance of having a totally equilibrated system. If the system 

is not equilibrated, SubPEx will instead thoroughly sample the path to the energy minima, limiting 

the pocket sampling. To ensure an equilibrated state has been reached, I recommend 

autocorrelation analysis88 or clustering analysis to monitor the number of clusters.89 The last 

system I tested is ScHxk2p; this protein has a significant domain rearrangement when binding 

glucose. SubPEx captured this rearrangement, including both the closed and open conformations.  

In conclusion, I show that SubPEx can accelerate the sampling of different protein pocket 

conformations compared to vanilla MD. This tool will help computational and medicinal chemists 

better incorporate protein flexibility into the drug discovery process. Specifically, with SubPEx 

one can obtain an ensemble of protein conformations with diverse pocket shapes in a time efficient. 

These protein conformations can then be used in ensemble docking.   
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3.0 Novel mutation in hexokinase 2 confers resistance to 2-deoxyglucose by altering protein 

dynamics 

This work has been published and can be found at: 

Hellemann E*, Walker JL*, Lesko MA*, Chandrashekarappa DG, Schmidt MC, 

O’Donnell AF, Durrant JD. (2022) Novel mutation in hexokinase 2 confers resistance to 2-

deoxyglucose by altering protein dynamics. PLOS Computational Biology 18(3): e1009929. 

https://doi.org/10.1371/journal.pcbi.1009929.*equal contribution.90 

This work is a combination of experimental and computational methods. I did most of the 

published computational work, and I repeated or did not include in this chapter the analyses I did 

not personally perform. The physical experiments were performed mostly by Mitchell Lesko and 

Jennifer Walker. I have added a summary of the experimental results to give context to the 

computational results.  

3.1 Introduction 

Glucose is a molecule central to sustaining life and is used as an energy source and a 

building block for biosynthesis. After glucose intake by the cell, the sugar is converted into 

glucose-6-phosphate (Glc-6P), which is further transformed by anaerobic fermentation, aerobic 

oxidative phosphorylation, or the pentose-phosphate pathway. This first glucose transformation is 

catalyzed by a group of enzymes called hexokinases. Hexokinase 2 is the most active of the 

hexokinases82 and is often upregulated in cancerous cells.91,92 

https://doi.org/10.1371/journal.pcbi.1009929
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Cancerous cells require more energy and metabolites due to their unregulated cell growth 

and proliferation. Tumors fulfill their high energy requirements by metabolic reprograming; 

specifically, cancerous cells rely more on glycolysis than healthy cells.84,85 This effect was first 

described by Otto Warburg and is known as the Warburg effect.93 It is not entirely understood 

what the benefits are of the reliance in glycolysis, given that cancerous cells do not fully oxidize 

the products of glycolysis. One theory is that oxygen supply is limited at the core of a growing 

tumor under rapid ATP generation, forcing the cell to rely on fermentation for ATP synthesis, 

rather than oxidation.84,91  

Poor prognosis in several cancer types is associated with the upregulation of hexokinase 

II. In humans, Hexokinase 2 (hsHk2) can bind mitochondria through its N-terminal helical domain. 

This association allows hsHk2 to interact with the voltage-dependent anion channel (VDAC), 

placing hsHk2 in a prime position to affect the apoptosis cycle. VDAC is responsible to release 

pro-apoptotic proteins, that are stored in the mitochondria, into the cytoplasm, but when VDAC 

interacts with hsHk2 it interferes with the release.94 

Structurally, Saccharomyces cerevisiae hexokinase II (ScHxk2p, from now on Hxk2) 

adopts a palm-shaped α/β fold with two subdomains: a large and a small subdomain. The protein 

starts in the so-called open conformation, with its enzymatic cleft accessible to substrates and 

water. When glucose binds, it induces a large conformational change where the two subdomains 

rotate relative to each other. This movement envelops or embraces glucose, making the inter-

domain crevice inaccessible to additional substrates.95–98 After glucose binding, ATP is able to 

bind Hxk2, priming the 6-hydroxy-methyl group to be acted upon by aspartate 211, the catalytic 

residue, and abstract the hydrogen atom in the hydroxy group.  
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Figure 20. Saccharomyces cerevisiae hexokinase II structure and its G238V mutation (*). The model was 

generated by superimposing ScHxk2p (PDB 1IG8) with HsHk1 (PDB 4FPB) and OsHxk6 (PDB 6JJ8) to 

position glucose (A) and ADP (B), respectively. Shown in blue  and pink are the large and small domains, 

respectively. 

2-deoxy-glucose (2DG) is a toxic glucose analog missing the hydroxy group at the second 

position. 2DG, like glucose, is phosphorylated by hexokinases, producing 2DG-6P. 2DG-6P 

cannot undergo the next step in glucose catabolism, the isomerization to fructose-6-phosphate, 

because it is missing the required oxygen.99 2DG is a potent inhibitor of glycolysis even when 

other carbon sources are available. It inhibits cell growth by several mechanisms, including 
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weakening cell walls100, repressing gene expression101, and depleting ATP reserves102, among 

others. Due to the increased energy demands in cancerous cells, 2DG has been extensively studied 

as a cancer therapeutic103–105, but cancerous cells rapidly acquire resistance, undermining 

treatment.  

To better understand 2DG resistance mechanisms, we used in vivo evolution and whole 

genome sequence analysis to identify spontaneous mutations that confer resistance to 2DG in 

baker’s yeast. We found a novel mutation in hexokinase II that confers resistance to 2DG. This 

mutation does not line the enzymatic cleft, but it still affects the enzymatic activity. We performed 

four sets of molecular dynamics simulations to elucidate the mechanism by which this mutation 

confers 2DG resistance. These simulations suggest that the mutation alters the dynamics of the 

glucose binding cleft, discouraging persistent glucose binding. Our findings provide novel insight 

into the mechanisms that cancer cells use to acquire 2DG resistance, which will aid in designing 

more effective hexokinase inhibitors for cancer treatment.  

3.2 Methods  

3.2.1 Experimental section methods 

I did not perform any of the physical experiments reported in the manuscript. For 

completeness’ sake, I have copied them verbatim in the sections below.90 
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3.2.1.1 Yeast strains, plasmids, and growth conditions 

Yeast strains employed in this study are listed in Table 3 (reproduced in Figure 21). The 

strains were grown on YPD (2% peptone, 1% yeast extract, 2% glucose) or synthetic complete 

medium (per O’Donnell et al.106) lacking the amino acids needed for maintaining plasmids. 

Plasmid information is provided in Table 4 (reproduced in Figure 22). Plasmids were introduced 

into yeast strains using the lithium acetate transformation method.107 Where indicated, SC or YPD 

containing 2% glucose were supplemented with 2DG to a final concentration (presented as % w/v). 

We generated a 2% 2DG (Sigma-Aldrich, St. Louis MO) stock by dissolving two grams of 2DG 

in 100 mL of water and then filter sterilizing. Unless otherwise indicated, cells were grown at 

30°C. 
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Figure 21. Yeast strains used in the current study. Reproduction of table 3 of the manuscript.90 

3.2.1.2 In vitro evolution and whole genome sequencing analysis 

We used directed evolution to identify mutations that confer 2DG resistance to the ABC16-

monster strain,108–111 which lacks sixteen ABC transporters. We evolved resistance via serial 

passaging in five independent replicates. In each passage, cultures were grown at 30°C in 30 mL 

of YPD (2% peptone, 1% yeast extract, 2% glucose) and 2DG, with shaking at 250 rpm. We 

stopped each passage when the growth reached saturation (OD ~3.0 per visual inspection) and 

examined the cultures under a microscope to verify that there was no contamination. We then 
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placed 300 μL aliquots into a fresh supply of 30 mL YPD with 2DG (i.e., a 1:100 dilution into 

fresh media with drug) and repeated the process. In early passages, 0.05% 2DG was added, and 

growth to saturation required 4–5 days. As resistance developed, the time needed for saturation 

shortened to roughly two days. To ensure evolved resistance at higher 2DG concentrations, we 

then increased the 2DG concentration to 0.2% and resumed serial passages. Each replicate required 

between eight and twelve passages total, at which point the growth rate of each had stabilized (per 

eighteen-hour growth curves calculated at multiple 2DG concentrations, 0.05–0.2%). To enable 

comparative genomics and growth-rate analyses, we also generated a no-drug control that involved 

passaging for the same time intervals but in medium containing no 2DG. 

 

Figure 22. Plasmid DNA used in the current study. Reproduction of table 3 of the manuscript.90 

To determine the genomic changes associated with evolved 2DG resistance, we isolated 

the genomic DNA of both the resistant (passaged) and control strains using a glass-bead/phenol-

extraction protocol.112 We performed next generation sequencing on Illumina NextSeq500 

machines. As detailed in Soncini et al.,113 sequencing libraries were prepared and multiplexed into 

single lanes for each strain to produce 151-bp paired end reads. 

To identify potential resistance-conferring mutations, we followed the protocol described 

in Ellison et al.114 In brief, we used the Bowtie 2 software115 to align the sequence reads to the 
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S288C reference yeast genome. We then used Samtools 1.3.1116 to sort the alignments by their 

leftmost coordinates and to index the sorted alignments. BCFtools 1.3.1117 was used for variant 

calling (consensus calling model). VCFtools 0.1.14117 was used to identify variants that differed 

between the 2DG-resistant and no-drug control strains. Finally, we used SnpEff 4.3p118 to annotate 

the identified variants (e.g., frameshift variants, missense variants, stop-gained variants, disruptive 

inframe insertions, putative impact high/moderate/low, etc.). 

3.2.1.3 2-deoxyglucose resistance assays 

We monitored resistance to 2DG in three different ways. First, to verify the 2DG resistance 

of the passaged strains, we performed serial dilution growth assays by plating serial dilutions of 

yeast cells onto solid agar medium containing the indicated concentrations of 2DG and allowing 

cells to grow for the time indicated for each figure at 30 ̊C. We compared the growth of the evolved 

yeast cells to the unpassaged, parental strain (ABC16-monster) or the parental strain that was 

passaged using medium lacking 2DG (naïve ABC16-monster). Serial dilution growth assays were 

performed as described in O’Donnell et al.106 In brief, we grew cells to saturation overnight in 

YPD or SC medium, measured the optical density of each culture, and initiated our dilution series 

with a cell density of A600 = 1.0 (or ~1 x 107 cells/mL). We then made five-fold serial dilutions 

of cells and pinned them onto solid YPD or SC with or without 2DG (0.05%, 0.2%, and 0.4%).  

Second, we assessed our 2DG-resistant or control strains (parental ABC16-monster or 

naïve ABC16-monster, as indicated above) using growth curve analyses.119 In brief, we grew cells 

to saturation in YPD or SC medium, washed cells into fresh medium, and inoculated in triplicate 

into flat-bottom 96-well plates at an A600 of 0.05 in the medium indicated (i.e., YPD or SC 

containing varying concentrations of 2DG). Prepared plates were incubated with shaking in a 

BioTek Cytation 5 plate reader (BioTek instruments; Winooski, VT, USA), and optical density 
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measurements were taken every 30 minutes for 24 hours using the Gen5 software package. Optical 

densities measured over time are presented with a path-length correction (to report measurements 

in a 1 cm path length). We used these curves to calculate the doubling times of yeast cells via the 

following equation: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑙𝑙𝑑𝑑𝑛𝑛𝑑𝑑 𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡 =  
ln(2)

�ln(𝐹𝐹𝐽𝐽2) − ln(𝐹𝐹𝐽𝐽1)
𝑡𝑡2 − 𝑡𝑡1

�
 

Doubling times were calculated based on the mean growth curves of each strain by 

selecting two points that span the linear range of the logarithmic growth portion of the growth 

curve. Third, we challenged cells with a range of 2DG concentrations, as described in Soncini et 

al.113 In this approach, overnight cultures are grown to saturation in either glucose (Fig 3A) or 

galactose (Fig 5D) as a carbon source, diluted to an A600 of 0.1, and grown in the absence or 

presence of 2DG (0.01%, 0.02%, 0.05%, 0.1%, or 0.2%) for 18 hours at 30 ̊C with either 2% 

glucose (Fig 3A) or 2% galactose (Fig 5D) as a carbon source.113 Each A600 was measured, and 

cell growth was normalized to growth in the absence of 2DG for each strain. The average of three 

replicate cultures is presented in Fig 3A, with statistical comparisons made using the Student’s t-

test for unpaired variables with equal variance. In this case, p-values are indicated as follows: *p 

< 0.05, **p< 0.01, ***p < 0.001. 

3.2.1.4 Immunoblotting to assess Hxk2G238V abundance and stability 

To assess Hxk2G238V abundance in cells, we performed whole cell protein extracts using 

the trichloroacetic acid (TCA) method.106,120 In brief, an equal density of mid-log phase cells was 

harvested by centrifugation, washed in water, and then resuspended in water with 0.25 M sodium 

hydroxide and 72 mM β-mercaptoethanol. Samples were then incubated on ice, and proteins were 

precipitated by the addition of TCA. After incubation on ice, proteins were collected as a pellet by 
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centrifugation, the supernatant was removed, and the proteins were solubilized in 50 μL of TCA 

sample buffer (40 mM Tris-Cl [pH 8.0], 0.1 mM EDTA, 8M urea, 5% SDS, 1% β-

mercaptoethanol, and 0.01% bromophenol blue). Samples were then heated to 37 ̊C for 30 minutes, 

and the insoluble material was removed by centrifugation before resolving samples by SDS-

PAGE. Proteins were transferred to a membrane support and detected with either anti-GFP 

antibodies (Santa Cruz Biotechnology) or an anti-V5 probe (Invitrogen), followed by goat anti-

mouse IRDye 680 (Thermo) or goat anti-rabbit IRDye 800 (LiCor). Antibody complexes were 

visualized using an Odyssey Infrared Imager (LiCor), and bands were quantified using the 

Odyssey software. REVERT (LiCor) total protein staining of membranes was used as a protein 

loading and membrane transfer control in immunoblotting. 

3.2.1.5 Enzymatic assays for Hxk2 function 

To verify that the hxk2G238V mutation alone is sufficient to confer 2DG resistance, we 

used site-directed mutagenesis to introduce the hxk2G238V mutation into a plasmid encoding the 

HXK2 gene (Table 4). We performed DNA sequencing of the entire open reading frame to ensure 

that no unintentional changes were generated. We separately transformed plasmids expressing WT 

HXK2 and hxk2G238V into the hxk1Δ hxk2Δ glk1Δ triple deletion cells (Table 4) and measured 

the hexokinase activity associated with these two alleles, as described in Soncini et al.113 In 

summary, we prepared protein extracts using a glass-bead extraction protocol and assayed 

enzymatic activity by coupling the phosphorylation of glucose to its oxidation by glucose-6-

phosphate dehydrogenase. The resulting production of NADPH, detected by measuring 

absorbance at 340 nm, correlates with hexokinase activity. For comparison, we used the same 

protocol to assess the enzymatic activity of WT Hxk2 (positive control). To measure the Michaelis-

Menten constant (Km), we measured the reaction rate (v) at several glucose or 2DG concentrations 
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([S]) using a constant concentration of ATP (1 mM) and plotted the inverse of rate (1/v) against 

the inverse of concentration (1/[S]) (Lineweaver-Burk plot).113 To calculate the Km for ATP, we 

measured the reaction rate at several ATP concentrations, kept the glucose concentration constant 

(2 mM), and plotted the inverse rate against the inverse of the substrate concentration. 

3.2.1.6 Invertase assays 

The invertase activity of cells grown in 2% glucose, where expression of the SUC2 gene 

that encodes invertase is repressed in an Hxk2-dependent manner, was measured as in Soncini et 

al.113 For this assay, three independent cultures were assessed using a colorimetric assay that 

measures Suc2 enzymatic function coupled to glucose oxidase.121 The mean of these replicates is 

plotted with the standard error indicated by the error bars. Invertase activity is measured in units 

per OD of cells, where 1 unit is equal to 1 μmole of glucose released per minute. Student’s t-test 

for unpaired variables with equal variance was used to compare the difference between hxk2Δ 

cells containing plasmids expressing WT HXK2 vs. an empty vector or the hxk2 mutant alleles. 

P-values are indicated as follows: *p < 0.05, **p< 0.01, ***p < 0.001. 

3.2.2 File preparation  

The crystal structure of the apo ScHxk2p (PDB 1IG852) was downloaded from the Protein 

Data Bank. We obtained the mutated protein by computationally mutating G238 to valine. Jennifer 

Walker changed the experimentally observed mutation using the Mutation-Wizard tool in 

PyMOL.122 For the protein bound to glucose (holo), I manually generated the model because no 

crystal structure of the complex exists. The structure of Hxk2 bound to a ligand with a glucose-

like substructure (PDB 2YHX123) has the same sugar binding pose as ScHxk1p (yeast, PDB 
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3B8A96), hsHk2 (human, PDB 2NZT124), and hsHk1 (human, PDB 4FPB), which are all bound to 

glucose. Given this consistent glucose binding pose, I generated the holo model by superimposing 

the apo structure and the crystallographic structure of ScHxkIp bound to glucose (PDB 3B8A).  

I used the PDB2PQR53 tool to protonate Hxk2 at a pH of 7. This program uses the 

PROPKA54 algorithm to optimize the hydrogen-bond network. Using LEaP from Ambertools1855, 

I added water molecules and additional Na+ and Cl- counterions to neutralize the environment and 

approximate a 150 mM solution. Water molecules extended 10 Å beyond the protein in all 

directions. I used the Amber’s ff14sb56, tip3p57, and GLYCAM_06j-1125 force fields for the 

protein, water, and glucose. 

3.2.3 Molecular dynamics simulations 

All molecular dynamics simulations were done with the NAMD 2.13 package.58,126 We 

performed a stepwise minimization, each consisting of 5000 steps. First, we relaxed all hydrogens; 

then we added the water molecules to the atoms to be relaxed; followed by hydrogen atoms, water 

molecules, and protein side-chain relaxation; finally, all atoms were allowed to relax. The 

equilibration of the systems was done in the NPT ensemble (isobaric-isothermal) at 310K. We also 

equilibrated the apo simulations in a stepwise manner. Each step consisted of 0.25 ns, in which we 

applied constraints to the protein backbone atoms, starting at 1.0 kcal/mol/Å2, which we gradually 

relaxed to 0.75, 0.5, 0.25, and finally 0.0 kcal/mol/Å2. For the ligand-protein complex, I relaxed 

in a single unrestrained one ns equilibration step that used one fs timestep. All simulations used 

the SHAKE127 algorithm, the Nosé-Hoover method to maintain a pressure of 1.01325 bar, and the 

Langevin thermostat (5 ps-1 collision frequency). 



 51 

Following the minimization and equilibration of the four systems, we started three 

independent isothermal-isobaric (NPT) production runs per system. Two of the three production 

runs consist of 250 ns, while the other consists of 500 ns. Each simulation uses a two fs timestep.  

3.2.4 Analysis of molecular dynamics simulations 

To confirm that our simulations had equilibrated after the minimization and equilibration 

steps, I calculated the RMSD of the backbone heavy atoms against the first frame of the simulation 

using MDAnalysis 1.0.0.60,61 Plots of the calculated RMSD values for the 12 simulations (divided 

into four systems) showed that the systems had not fully equilibrated. I considered the first five ns 

of the production runs as part of the equilibration step and discarded them. All further analysis 

does not include these discarded portions of the simulations.  

RMSD against the first frame of the simulation and per-residue RMSF analyses were 

performed using MDAnalysis 1.0.0. Per-residue RMSF is a metric to assess the flexibility of each 

residue, and I used the center of geometry of each residue to calculate this metric. To evaluate the 

protein’s opening and closing mechanism, a large-scale conformational change, I calculated the 

radius of gyration (RoG) of the protein in each frame of the simulation. RoG is a measure of protein 

conformation compactness. I used PDB 1IG852 and 3O8M87 as the open- and close-conformation 

references. I confirmed the results obtained by RoG by monitoring the change in the distance 

between the centers of geometry of the big and small domains.  
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3.2.5 Dynamical cross-correlation (DCC) 

I calculated DCC matrices for each of the four systems using MD-TASK.128 Values in a 

DCC matrix describe the correlated motion between residue i and residue j (i.e., 1 is a complete 

correlation, and -1 is a complete anticorrelation). Elements in this matrix are calculated as follows: 

𝐶𝐶𝑖𝑖𝑖𝑖 =
〈 ∆𝑟𝑟𝑖𝑖 ∙ ∆𝑟𝑟𝑖𝑖〉

�〈∆𝑟𝑟𝑖𝑖2〉 ∙ �〈∆𝑟𝑟𝑖𝑖2〉
 

To observe changes in correlation between residues among systems, I calculated ΔDCC 

matrices by element-wise subtraction.  

3.2.6 Betweenness centrality (BC)  

I calculated BC using MD-TASK. BC is a metric that describes the importance of a node 

for communication within the network. To calculate BC, we represent the protein as a graph with 

nodes centered at the Cβ atoms of each residue (Cα for glycine) and edges connecting any two 

nodes within 6.7 Å of each other. With the graph representation of the protein, one can calculate 

the shortest paths between all residue pairs. The BC of a node (a residue in our case) is the number 

of shortest paths that pass through that node. BC is a metric of the importance a given node has 

for communication within the network. I normalized the per residue BC value in each of the 

systems. 
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3.3 Results and discussion 

3.3.1 Summary of the experimental section 

I am presenting the experimental results obtained mainly by Mitchell Lesko and Jennifer 

Walker to give context to the computational experiments and results. These experiments were not 

performed by me. 

To identify new mechanisms of 2-deoxyglucose (2DG) resistance, we performed in vitro 

evolution and whole genome analysis.129,130 We used an especially sensitive Saccharomyces 

cerevisiae (baker’s yeast) strain that lacks 16 ABC transporters (ΔABC16).131–134 These cells are 

less able to evade cytotoxic chemicals by an efflux mechanism. We exposed ΔABC16 to 

increasing concentrations of 2DG via serial passaging, resulting in five 2DG resistant strains.  

We performed a whole genome analysis to find the genetic causes of resistance. All five 

evolved strains contained a missense mutation in Hxk2 at position 238. The WT protein has 

glycine, while the mutated protein has valine (Hxk2G238V). To confirm that Hxk2G238V is enough 

to confer resistance, we introduced Hxk2, Hxk2G238V, and Hxk2D211A to cells lacking Hxk2, which 

are inherently resistant to 2DG. We observed that both the catalytically inactive Hxk2D211A and the 

mutated Hxk2G238V were still resistant to 2DG, while the WT Hxk2, as expected, had restored 

sensitivity to 2DG. Cells that do not have Hxk2 are resistant to 2DG, which brings the possibility 

that the Hxk2G238V protein might be unstable. To assess its stability, we introduced Hxk2G238V into 

a cell line without any of the three hexokinases (hxkIΔHxk2Δglk1Δ). This line supported yeast 

growth on glucose, showing that Hxk2G238V is sufficiently folded to perform its enzymatic activity. 
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Figure 23. Strains 1-5 are resistant to 2DG. A) Images of serial dilution growth assays of parental ΔABC16, 

and five resistant strains. We used increasing concentrations of 2DG with 2% glucose as the carbon source. 

B) Plots showing the change in cell density over time. Image generated by Mitchell Lesko. 

To assess changes in enzymatic activity in Hxk2G238V, we compared the ability of 

Hxk2G238V and Hxk2G238V to phosphorylate glucose. We obtained protein extracts of 

hxkIΔHxk2Δglk1Δ cells after we had introduced either Hxk2 or Hxk2G238V. With these extracts, we 

compared average NADPH production as a proxy of glucose-6-phosphate generation.83 These 



 55 

experiments revealed a dampened activity for Hxk2G238V, with WT Hxk2 having a substantially 

higher specific activity and an appreciably lower Km (see Table 1). 

Table 1. Enzyme kinetics for WT Hxk2 and Hxk2G238V. In parenthesis, we show statistical significance. *** < 

0.0005, ** < 0.005. Values of 2DG phosphorylation by mutant Hxk2 could not be reliably determined (ND) 

and are not shown. Km represents the Michaelis-Menten constant, and SA is the specific activity (Vmax 

normalized by the enzyme level). 

 Km glucose 
(mM) 

SA Glucose 
(nmol/min/au) 

Km 2DG 
(mM) 

SA 2DG 
(nmol/min/au) 

Km ATP 
(mM) 

SA ATP 
(nmol/min/a
u) 

WT Hxk2 0.23 ± 0.02 27.6 ± 1.6 0.48 ± 
0.06 

8.59 ± 0.67 0.13 ± 
0.01 

24.2 ± 1.0 

Hxk2G238V 2.3 ± 0.37 
(***) 

8.9 ± 1.0 (**) ND ND 2.0 ± 0.21 
(***) 

7.1 ± 0.71 
(**) 

In summary, we demonstrate that the novel G238V mutation in Hxk2 is responsible for the 

observed 2DG resistance. Hxk2G238V is a stable and functional protein, but the catalytic activity of 

this mutant is substantially lower than the WT protein. 

3.3.2 The mutation is unlikely to interfere directly with ligand binding 

To understand the molecular mechanism by which Hxk2G238V elicits resistance to 2DG, I 

generated a glucose-bound model of Hxk2 (see Methods section). In this model, which was 

generated from the protein in the open conformation, I observed that the mutation is not likely to 

interfere directly with glucose binding. G238 is in β10, ~5.0 Å away from any glucose atom, and 

the mutated valine side chain would point towards the protein’s interior, not towards bound 

glucose. To determine if the mutation would interfere with ligand binding or catalysis in the closed 

conformation, I used the glucose-bound Kluyveromyces lactis Hxk2 crystal structure as a model 

(PDB 3O8M87). I had to use this homologous protein (73.4% sequence identity with ScHxk2 per 
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Blast alignment135,136) because there is no ScHxk2 structure in the closed conformation. The 

distance between the G238 equivalent residue (also a glycine) and any glucose atom is 5.8 Å. This 

mutation is also unlikely to directly interfere with catalysis since it does not form any interactions 

with D211, the catalytic residue. 

3.3.3 The Hxk2G238V mutation may alter protein dynamics  

To observe whether Hxk2G238V changes protein dynamics in hopes of understanding the 

mechanism by which the mutation lowers enzymatic activity, I performed molecular dynamics of 

four different systems: apo WT protein (apo Hxk2), glucose bound WT protein (holo Hxk2), apo 

mutant protein (apo Hxk2G238V), and glucose bound mutant protein (holo Hxk2G238V). For each 

system, we performed three separate MD simulations, one of 500 ns and two of 250 ns, for a total 

of one µs per system (4 µs total). All systems started from the open conformation (PDB 1IG8). 

My goal with these glucose simulations was to capture the initial dynamics following glucose 

binding. 

3.3.4 Pocket dynamics is affected by the Hxk2G238V mutation 

The simulations showed that three pocket regions were mainly affected by the mutation. 

The β9/β10 β-hairpin (I231-V236), the catalytic residue D211, and the α11 helix (D417-P425). 

The flexibility of these three regions is increased in the apo Hxk2G238V simulations. In the holo 

simulations, the β-hairpin is stabilized by the mutation.  
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3.3.4.1 β9/β10 β-hairpin 

The β9/β10 β-hairpin (I231-V236) is a protein region at the center of the enzymatic cleft, 

close to the ATP and glucose binding sites. This β-hairpin likely influences catalysis by its 

proximity to D211, the catalytic residue. To assess flexibility differences due to the mutation, I 

calculated the RMSF of each residue and its differences between simulations. These ΔRMSF 

(RMSFWT – RMSFG238V) calculations suggest that in the apo simulations, the mutation increases 

the flexibility over the WT; on the other hand, in the holo simulations, it is decreased compared to 

the WT. 

The mutation affects the dynamics of V236, a β-hairpin residue. To monitor this change, I 

calculated the V236 χ1 dihedral angle (N-Cα-Cβ-Cγ1) throughout the simulation (Figure 24C). For 

the Hxk2 simulations, we observe a change in V236 side-chain conformations due to glucose 

binding. In the apo state, Hxk2 heavily samples the gauche conformation, the same conformation 

observed in the open reference (-53.1°). However, in the holo form, V236 χ1 shifts more towards 

the anti-conformation, observed in the closed state (155.3° observed in PDB 3O8M). This shift of 

dihedral angles due to ligand binding is not observed for the mutated protein. Another difference 

in Hxk2G238V is that it barely samples the other gauche conformation. I hypothesize that V236’s 

rotational transition from the gauche to the anti-conformer are crucial for domain closure, and the 

changes observed in Hxk2G238V affect this process (see Figure 24).  

I also observed changes in the correlated motions between residue 238 and residues in the 

β-hairpin, as observed using dynamical cross-correlation (DCC) analysis. Differences in DCC 

(ΔDCC = DCCWT – DCCG238V) show more correlation in the Hxk2G238V simulations for this region, 

suggesting an allosteric influence due to the mutation. Many residues in the β-hairpin have ΔDCC 

values two standard deviations larger than the mean ΔDCC across all residues.  
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Table 2. Dynamical cross-correlation of residue 238 (G for WT or V for mutant) with β9/β10 β-hairpin 

residues.  

resid residue DCC apo wt 
all 

DCC apo mut all DCC holo wt all DCC holo mut all 

231 I 0.65 0.69 0.64 0.68 

232 F 0.50 0.55 0.58 0.51 

233 G 0.28 0.31 0.21 0.32 

234 T 0.18 0.32 0.04 0.33 

235 G 0.10 0.38 0.08 0.36 

236 V 0.21 0.62 0.35 0.56 

3.3.4.2 Aspartate 211, the catalytic residue 

The catalytic residue D211 also is affected by the G238V mutation. I only observed a 

difference between WT and mutant when no ligand was present; the mutation increased the 

residue’s flexibility. To understand the impact of the mutation on D211 dihedral angles, I 

calculated Janin plots for the four systems. Figure 24A shows that the impact of the mutation on 

the apo simulations is negligible, but the effect is quite noticeable in the holo simulations. Here 

we observe a noticeable population shift, and the structural difference is the position of the carboxy 

group, shown in Figure 24B. This change in population for the ligand bound mutant, may position 

D211 in a non-favorable way to catalyze the reaction with glucose, lowering the activity of this 

enzyme. 
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Figure 24. Dihedral angle analysis for D211 and V236. A) Janin plots for the catalytic aspartate (D211). B) 

Two conformations were obtained from the apo Hxk2G238V simulations that show the conformational changes 

observed in D211 and V236. In blue, V236 is shown in an open-like confirmation, with D211 in a glucose-

ready conformation. In pink, D211 and V236 are shown in displaced and closed-like conformations, 
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respectively. C) χ1 dihedral angle distributions for V236. The angle typical of the open and closed 

conformations (references) are shown as dotted lines. Jacob D. Durrant made panel B. 

3.3.4.3 α-helix 11 

The third region affected by the mutation is α-helix 11 (D417-P425), a part of the protein 

lining the ATP-binding site. I observed increased flexibility for this helix in the Hxk2G238V 

simulations only when no ligand was present. In contrast, I saw little to no effect in the ligand-

bound simulations. The increased flexibility could suggest an impact on ATP binding, changing 

the catalytic properties of Hxk2. 

 

Figure 25. Summary of hypothesized impacts on Hxk2 pocket dynamics due to the G238V mutation. G238V 

affects three regions involved in Hxk2 catalysis: the β9/β10 β-hairpin, D211, and α11.  
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3.3.5 The Hxk2G238V mutation affects global dynamics 

To compare the simulated conformations to the open and closed conformations, I 

calculated the RMSD of each simulation against two references. For the open conformation, I used 

the backbone atoms of the ScHxk2p structure I used for the simulations, PDB ID 1IG8. For the 

closed conformation, I used a structure of K. lactis HxkIp (PDB 3O8M), as mentioned before. 

Although not a perfect match, KlHxkIp structure helped us better understand the protein’s opening 

and closing dynamics. The apo systems came close to the 1IG8 crystallographic structure, within 

0.78 Å (RMSD) for the WT simulation and 0.75 Å for the mutant simulation. The holo simulations 

also came close to their closed-conformation reference (KlHxkIp), within 1.13 Å and 1.18 Å for 

the WT and mutant simulations, respectively.  

 

Figure 26. Violin plots showing the RMSD of the four systems compared to the open (PDB 1IG8) and closed 

(PDB 3O8M) reference conformations.  
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Figure 27.  The RMSD between simulated conformations and the last frame of the equilibration simulation. 

As an indirect way of measuring the opening and closing of the protein, I calculated the 

radius of gyration (RoG) of the whole protein using MDAnalysis. A larger RoG value indicates 

the protein is in the open conformation, and a lower value indicates the closed conformation. I 

performed a Kruskal-Wallis test to assess the difference in means because the RoG distributions 

are not normally distributed. I rejected the null hypothesis that the means of each system come 

from the same distribution (F-statistic of 2.6 x 106 and p-value < 0.001). I followed this analysis 

with the Conover post hoc analysis showing that all four systems are statistically different in terms 

of RoG. The RoG for Hxk2G238V is generally lower than for the WT protein, suggesting that 

Hxk2G238V is less likely to adopt a fully open conformation. The mutation has a medium effect on 

RoG according to Cohen’s d statistic (0.55 and 0.52 for apo and holo simulations, respectively). 
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The standard deviation is also different between the WT and Hxk2G238V; the mutant protein has a 

greater standard deviation, suggesting it is less likely to adopt a fully closed conformation, perhaps 

explaining why its Km is ten times higher than the WT. 

  

Figure 28. Opening and closing of Hxk2 as measured by the radius of gyration and the interdomain distance.  

To corroborate the results obtained by the RoG analysis, I calculated the distance between 

the centers of geometry of the domains (Figure 28). I observe a linear correlation between the RoG 

and the interdomain distance, showing that RoG is a reasonable metric for how closed or open the 

protein is.  
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Figure 29. Comparison of the open and closed Hxk2 conformations using PDB 1IG8 and PDB 3O8M (K. 

Lactis) 

3.3.6 Hxk2G238V changes the centrality of cleft-lining residues 

To assess changes in intra-protein communication, I calculated betweenness centrality 

(BC). In network analysis, BC measures the importance of a node (residue) in the flow of 

information within a network (protein). BC analysis showed how important D211 and the β-hairpin 

are for intra-protein communication (Figure 30). These residues are among the most connected 

residues, according to BC. These residues appear among the 90th percentile for at least one of the 
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simulated systems. All but T234 and G235 appear in the 90th percentile for all four systems. This 

suggests the β-hairpin is a nexus where information can flow. 

The difference in the mutated residue itself is particularly noteworthy; in the WT 

simulations (glycine), this residue is in the 57th and 60th percentile for the apo and the holo 

simulations, respectively. But when residue 238 is a valine, it is among the residues in the 90th 

percentile for both simulations (apo 93rd and holo 94th percentile). The effect size observed for this 

change is large, with Cohen’s d values of 2.53 for the BC difference in the apo simulations and 

2.33 for the difference in the holo simulations (Hxk2 – Hxk2G238V). This difference could be 

explained by the fact that the mutation exchanges a hydrogen atom for an isopropyl group. 

Increasing the volume of the side chain increases the possible interactions it can have with 

neighboring residues.  

I calculated the per residue difference (Hxk2 – Hxk2G238V) of BC values for the apo and 

holo simulations to understand how the flow of signals is affected due to the mutation. In the β-

hairpin, I observed that all residues except T234 have at least one difference that is significant (two 

standard deviations above the mean). Especially V236, the BC value of this residue increases in 

both the apo and holo simulations by 145% and 133.5%, respectively. The increase in V236 for 

the mutant protein, suggests it becomes more critical for intra-protein communication in the mutant 

protein. The effect size observed for this change is large for both the apo and holo simulations, 

with Cohen’s d values of 0.80 and 1.08, respectively.  

The D211 BC values change significantly only in the apo simulations, with a small effect 

size (Cohen’s d of 0.40). This residue is more interconnected in the WT protein. The changes in 

α11 are more varied, with some residues increasing BC values and others decreasing due to the 

mutation. 
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Figure 30. WT Hxk2. Residues in purple have significant changes in BC due to the mutation.  

BC analysis suggests that the β-hairpin is a hub that communication can flow through, so 

any changes in its dynamics can be felt throughout the protein. I hypothesize that the binding of 

glucose could send a signal throughout the protein, inducing domain closure and catalysis. The 

shift of centrality to V236 in Hxk2G238V may alter how the glucose binding signal propagates, 

impending domain closure, and catalysis. 

3.4 Conclusions 

In this work, we discovered a novel mutation in Saccharomyces cerevisiae’s hexokinase II 

that confers resistance to the known inhibitor 2-deoxy-glucose. Even though the catalytic activity 

of this mutant is substantially lower than the wild-type, it still provides the essential activity needed 

for survival. We demonstrated that the G238V mutation alone confers resistance to 2DG. 
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The addition of three heavy atoms due to the mutation appears to be a small change, but it 

has a crucial impact on the protein’s dynamics. These changes, as I demonstrated, must be 

allosteric. In the mutant, V238 does not interact with glucose, but it changes the motions of the 

neighboring β-hairpin, which in turn propagates the signal to the rest of the protein, perturbing 

local and global dynamics. Primarily, we observed a substantial change in the dihedral angles 

sampled by V236, a residue that belongs to the β-hairpin. Its side chain undergoes a conformational 

change from gauche to anti when binding glucose in the WT simulations. This conformational 

change is also observed in crystallographic structures of the WT protein, but it does not occur in 

our simulations of the mutant protein. I hypothesize that the lack of rotational transition in V236 

prevents the protein from sampling the full motion from the open to closed conformation. This in 

turn impacts glucose binding and catalysis. 

The enzymatic-cleft flexibility is increased in Hxk2G238V, which in turn increases the 

number of microstates visited by the protein; this increase may the entropic penalty of glucose 

binding for the mutated protein. Experimental methods like isothermal titration calorimetry (ITC), 

which can assess entropic and enthalpic contributions, could further explore this hypothesis. 

This work is significant because, to our knowledge, this is the one of two 2DG resistance-

conferring mutation observed in yeast’s hexokinase II that does not directly impact the binding 

cleft. Most other mutations, directly impact glucose or ATP binding. (e.g., glucose binding: 

K176T, T212P, Q299H; ATP binding: D211A, D417G, G418C, R423T, and S345P).101,137 

The human homolog of this protein, hsHxk2, is a potential target in cancer therapy. hsHxk2 

is usually upregulated in cancerous cells. These cancerous cells obtain their energy requirements 

through glycolysis and lactic acid fermentation, even in the presence of oxygen. 2DG binds 

hsHxk2 and has anti-cancer properties, but spontaneous resistance has prevented its use in the 
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clinic.138,139 Understanding the underpinnings of 2DG resistance is critical for developing new 

cancer therapies, and the present work provides insight into potential resistance mechanisms. 
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4.0 Mentoring undergraduates in computational research 

4.1 Undergraduate research experiences, an introduction 

Undergraduate research experiences (UREs) are experiences of students that join a faculty 

research laboratory, usually for longer than a semester. Regularly, they are provided with one-on-

one mentoring, suggesting an apprenticeship model. We should not confuse UREs with course-

based undergraduate research experiences (CUREs), which, as the name suggests, are part of a 

course, have a curriculum, and are broadly available to many students. CUREs usually replace a 

typical laboratory course.140 

UREs’ benefits range from increasing students’ understanding of their particular field to 

developing practical skills like communication, synthesis of information, and problem-solving.141 

The main advantage of UREs is the retention of students in science, technology, engineering, and 

mathematics (STEM) majors.142 UREs may also improve interest in higher degrees,143  rates of 

acceptance to medical school,142 development of self-identity as a scientist, and understanding of 

science practices,140 among other benefits.144 On the other hand, a study at a Hispanic serving 

institution showed that although Latino/a students are aware of such experiences, that awareness 

did not translate to engagement in UREs. Highlighting the need to fight preconceptions that 

underrepresented minorities might have about who can benefit from these experiences.141 

Students participating in UREs are usually mentored by faculty members, postdoctoral 

researchers, or graduate students. The mentor’s objective is to orient the mentee in developing and 

integrating concepts and background information as well as the technical aspects of the research. 
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But mentors also have the responsibility to teach the nature of scientific research and develop the 

mentee’s science identity.144  

4.2 Finding SMUG1 inhibitors, a traditional computer-aided drug design project 

4.2.1 Justification 

This project started as a summer research experience for Badiallo Diani, an undergraduate 

student, and is a collaboration with Professor Van Houten, who works at the Hillman Cancer 

Center. Ms. Diani was part of the TECBio 2021 initiative at the University of Pittsburgh. Due to 

the COVID restrictions, she thought this research experience would be an excellent opportunity to 

learn about the computational skills needed in computational biophysics research. The project 

aimed to find small-molecule binders of the target protein SMUG1, a base excision repair 

mechanism component. The student had to create a homology model of the protein and then dock 

a library of small molecules into the protein. I guided the student, met with her weekly, and was 

available through email to answer questions or schedule additional meetings if needed. I started 

by teaching the student the basics of the Linux terminal, reviewing the relevant techniques, and 

guiding her through the literature necessary to understand the methods she was using. Badiallo 

finished with a poster, and she found through docking a list of small-molecule candidate binders 

for the target protein.  

After the summer, another undergraduate student, Ann Wang, completed the project. She 

had more experience with computational tools but was equally inexperienced in computational 

biophysics. This new student created a consensus list of the best docked small molecules and 
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visually inspected the best docking compounds. Using a more accurate docking algorithm, we 

redocked the best 250 small molecules according to the consensus list into the protein 

conformations. 

4.2.2 Introduction 

Deoxy ribonucleic acid (DNA), the molecule in charge of storing the genetic information 

within the cell, can be damaged at any time by several means (e.g., radiation, reactive oxygen 

species, etc.).145 This damage is highly relevant to cancer progression, its origins, and the 

advancement of tumors from benign to malignant. Cells have evolved several repair pathways to 

combat DNA damage, but cancerous cells often have weakened or defective repair 

mechanisms.146,147 The base excision repair (BER) pathway is used to repair damage when it is 

localized in the bases. This damage can be due to oxidation, deamination, and alkylation, among 

others.148 There are several proteins involved in BER, depending on the specific type of damage. 

Single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1), a member of the 

uracil-DNA glycosylases (UDG), is the protein responsible for the removal of oxidized 

pyrimidine, 5-hydroxymethyl-2’-deoxyuridine(5-hmdU), or the presence of uracil (due to the 

deamination of cytosine).149 The name suggests SMUG1 acts only on single-stranded DNA, but 

this name is misleading since SMUG1 can act on double-stranded DNA. The only requirement for 

SMUG1 action on double-stranded DNA is for it to be potentiated by AP-endonuclease (APE1).150 

Besides maintaining DNA integrity, SMUG1 is involved in RNA maturation and quality control, 

as well as telomere maintenance.149 
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Figure 31. Lesions repaired by SMUG1. A) Formation of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU) by 

reactive oxygen species. B) Formation of uracil in DNA. 

SMUG1, as a member of the uracil DNA glycosylase (UDG) family, has the α/β fold 

characteristic of the UDG family, as seen by the crystallographic structure of Xenopus SMUG1 

(xSMUG1 PDB 1OE4) bound to DNA.151 Structurally, xSMUG1 has two unique features 

compared to other UDG members. These unique features help SMUG1 recognize damage in DNA. 

The first is a five amino acid loop (residues P251-P256, shown in orange in Figure 32), and the 

second is a five-residue long α-helix (residues P256-K260, shown in dark orange in Figure 32). 

xSMUG1’s structure suggests it recognizes its substrate via a water displacement mechanism. 

Mayumi Matsubara and coworkers performed mutagenesis studies on human SMUG1 to identify 

critical residues for protein function. The catalytically relevant residues are N85 and H239. The 
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authors found that residues F98 and N163 are important for discriminating the pyrimidine rings, 

while residues G87, F89, G90, and M91 are critical for recognizing C5 substituents.152 

 

Figure 32. Crystal structure of Xenopus SMUG1 bound to DNA and soaked with 5-hmdU (PDB 1OE6). The 

unique loop and helix are shown in orange and red-orange, respectively. 

SMUG1 plays a role in acquired resistance to 5-fluorouracil (FU), one of the most used 

drugs in chemotherapy. FUs cytotoxicity comes from its accumulation in the genome of the 

cancerous cell, and SMUG1 protects the cell by excising FU.153 Damage by 5-hmdU, the primary 

substrate of SMUG1, is elevated in tumor cancer cells.149 Finally, the action of FU was enhanced 

in the presence of 5-hmdU.154 This suggests that SMUG1 could be a good drug target for novel 

cancer treatments. 

We used several computational tools to identify probable hSMUG1 binders. To achieve 

the discovery of new drugs targeting hSMUG1, we modeled the hSMUG1 structure, obtaining six 

different conformations of the protein. Then with virtual screening techniques, we predicted the 

binding affinity of 13,421 small molecules. We performed docking on the six hSMUG1 
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conformations to account for protein flexibility, a protocol known as ensemble docking. It has 

been demonstrated that the use of different docking programs gives different results, and 

combining them in a technique called consensus scoring, can yield improved hit rates.155,156 Using 

two different computer programs, we docked the small molecules into the proteins and created a 

consensus list with the best 250 predicted binders. These best binders were re-docked with a more 

accurate but computationally expensive algorithm to obtain 12 compounds with the best predicted 

binding affinities. Among these compounds, those that formed a salt bridge with residues R124, 

E135, or R243 tended to have lower predicted binding affinities (i.e., they are better at binding 

hSMUG1). We sent the list of 12 molecules to our collaborators to test experimentally for 

hSMUG1 inhibition.  

4.2.3 Methods 

4.2.3.1 Homology model building 

The sequence of human SMUG1 (hSMUG1) was submitted to the SWISS-MODEL web 

server to obtain a homo-dimer homology model (accessed on 2022-06-01).157 This homo-dimer 

was then refined with DeepRefiner, a web server for high-accuracy protein refinement that uses 

neural networks (accessed on 2022-06-07).158 We refined the protein as a dimer and monomer, 

using chain A as the input for the monomer algorithm. We used the default parameters for the 

refinement. Finally, we also used an AlphaFold structure of hSMUG1 (obtained on 2022-07-23).14 

This procedure gave us six different conformations for hSMUG1: SWISS-MODEL chain A (SM 

A), SWISS-MODEL chain B (SM B), DeepRefiner chain A (DR A), DeepRefiner chain B (DR 

B), DeepRefiner monomer (DR M), and AlphaFold (AF). The proteins were prepared for docking 
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with two packages: MGLTools and Maestro, for their use in Autodock Vina and Glide, 

respectively. We selected the orthosteric pocket and used the default parameters for both. 

4.2.3.2 Small molecule datasets and ensemble docking 

We considered three compound libraries: the NCI diversity set III, NCI diversity set VI, 

and the Enamine DDS-10-25-Y-10 set, with 1597, 1584, and 10240 compounds, respectively 

(13,421 small molecules total). These datasets were prepared in two separate ways. First, we 

generated three-dimensional structures using Gypsum,159 followed by parametrization using 

MGLTools (Version 1.5.6).160 MGLTools enables docking with Autodock Vina;161,162 it calculates 

the partial charges of each atom, defines rotatable bonds, and adds polar hydrogens. Second, we 

used LigPrep,163 a program in the Maestro suite (Version 2021-3),164 a software package made by 

Schrödinger. We used default parameters, except that we constrained the generation of 

stereoisomers to a maximum of 16.  

Initial docking of the 13,421 compounds into the six different conformations was 

performed using two different programs: Autodock Vina161,162 and Glide165166 (Schrödinger). The 

box size and center were manually selected, targeting the catalytic pocket. For Autodock Vina, we 

used a box size of 15 Å and exhaustiveness of 20. For Glide, we used the standard precision (SP) 

level of theory and the default parameters.  

To compare docking results obtained from Autodock Vina and Schrodinger, we ranked the 

position of each ligand. Each small molecule has 12 ranks, the six members of the ensemble from 

Autodock Vina and the six members from Glide; we discarded the two highest values, which are 

the two worst predicted binding affinities, to account for poor protein-conformation/ligand match 

and then averaged the rank to obtain a ranked list. 
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For the final docking, we considered the 20 best-predicted binders for each of the 

conformations (a total of 191 small molecules). To this list, we added ligands with the best-ranked 

average, further expanding the list to 250 compounds. These compounds were prepared with 

LigPrep for a final list of 932 different small molecules with different conformations and 

configurations. Using Glide, we redocked the ligands to each protein conformation with the extra 

precision (XP) level of theory. 

Interaction diagrams were created in Maestro, while protein structure figures were created 

in Blender 3.0. 

4.2.4 Results and discussion 

4.2.4.1 Three-dimensional models of human SMUG1  

Using the human SMUG1 sequence, we generated a homology model using SWISS-

MODEL (SM) web server. The algorithm used the Xenopus SMUG1 protein (PDB 1OE4) as the 

template since the frog protein shares a 65.31% sequence identity with the human protein. The 

initial model is a homodimer with a high-quality estimation QMEANDisCo of 0.86 ± 0.05 (values 

closer to one are expected for good models). This initial hSMUG1 model is an asymmetric 

homodimer.  

We refined the structure using another online tool called DeepRefiner (DR). This web 

server uses deep neural networks to calculate the residue-level errors and subsequently minimizes 

the errors using an energy-minimization-based restrained relaxation. We optimized the protein 

as a dimer and also as an individual chain, leading to three new models: chain A from the dimer, 

chain B from the dimer, and the refined structure from the monomer. 
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Lastly, the structure obtained by AlphaFold (AF) was also used; this structure has a high 

confidence measure (average pLDDT 92.39) except on the N-terminus of the protein, where there 

is a disordered section of 25 residues. The confidence measure pLDDT increases to 97.20 if we 

ignore the disordered N-termini.   

In total, we have six different individual hSMUG1 conformations. Figure 33 shows the 

difference in backbone RMSD; the conformations obtained by SM are similar to each other, as are 

the DR conformations. In contrast, the AF model is dissimilar to all the other conformations. Figure 

33B shows the pocket conformational diversity, especially observed in the side chain 

conformations of M84, R243, and the backbone conformation of the loops around the binding 

pocket (residues A171-T178 and L237-N244). The conformational diversity observed in the 

pocket is introduced into the docking algorithm when we use all the models. 

 

Figure 33. Comparison of SMUG1 conformations. A) All vs. all backbone RMSD of the six different 

homology models. B) Superposition of the homology models. Showing residues in the binding pocket. The six 

conformations are SWISS-MODEL chain A (SM A), SWISS-MODEL chain B (SM B), DeepRefiner chain A 

(RF A), DeepRefiner chain B (RF B), DeepRefiner monomer (RF M), AlphaFold (AF). 
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4.2.4.2 Small molecule parameterization 

To identify novel SMUG1 ligands, we considered the NCI diversity set III (Div3) and 

diversity set VI (Div6) from the NCI compound sets.167 These databases were chosen because their 

compounds are readily available and were tailored to maximize pharmacophore diversity, but they 

have considerable overlap with most of the compounds being shared between both libraries. We 

also considered the Enamine Discovery Diversity Set DDS-10; we chose this dataset because the 

compounds are purchasable from the vendor, and the size of the library (10,240 compounds) was 

amenable for docking with our computational resources. We calculated all versus all Tanimoto 

scores to sample database diversity (Figure 34). According to Tanimoto distributions, we can see 

that the Div3 and Div6 are more diverse compared to the Enamine database, but the Enamine 

database is about 6.5 times larger. 

 

Figure 34. A) Molecular-weight distribution of each database. B) All versus all Tanimoto scores for each 

database. 



 79 

To convert the 2D structures from the SDF files to their 3D structures, we used Gypsum159 

with its default parameters. The resulting 3D structures were then processed with MGLTools to 

generate a final set of 13,421 small molecules ready to use in AutoDock Vina. The original SDF 

files were also processed with LigPrep, with used the default parameters except that we constrained 

the maximum number of stereoisomers to 16, this constrain was only applied to the ligands that 

did not have their configuration defined in the input file. We ended with 39,106 different small 

molecules for later use in Glide.   

4.2.4.3 Ensemble docking of readily available small molecules 

Trying to maximize the hit rate for SMUG1, the initial docking of the small-molecule 

databases was done in two different programs, a technique known as consensus scoring. A 

significant limitation of docking is the inconsistent performance of different programs. This 

inconsistency can be addressed by consensus scoring, a method where one combines the results 

obtained by various docking programs.168–170 The first tool we used was AutoDock Vina, a free 

docking tool that may have a steep learning curve for people without computational knowledge. 

The second was Glide, with standard precision (SP) and default parameters. We used SP for initial 

docking because of its low computational cost. Glide is a tool that does not have the steep learning 

curve as AutoDock Vina, but it comes at a high monetary cost.  

Visual inspection of the best 20 scored ligands per protein conformation showed that the 

inspected ligands bound in the active site with no apparent clashes. We created a consensus list to 

combine the results of our two docking tools. First, for each protein conformation, we assigned a 

rank to each ligand. Each ligand thus has 12 ranks, six for AutoDock Vina and six for Glide. We 

averaged the ranks, ignoring the two worst-predicted binders to account for a bad ligand/conformer 

match. To obtain the list with the best 250 predicted binders, we took the best 20 scoring ligands 
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for each conformation and each docking program (191 molecules). We added the lowest average 

rank ligands that were not already on the list to complete it. We took these best-predicted binders 

and prepared them for follow-up docking, which resulted in 932 different small-molecule models 

(due to the inclusion of possible stereoisomers). Now using the highest level of theory available in 

Glide, XP level, we docked the 932 molecules into the six protein conformations. 

The compounds’ docking scores range from -11.637 to 10.546 kcal/mol, with a mean of  -

3.730 kcal/mol and a median of -3.931 kcal/mol. I present the distribution of docking scores in 

Figure 35. Interestingly, the DeepRefiner A conformation has one of the lowest average of docking 

scores (-3.996 kcal/mol), but none of the poses are on the top-scoring list. 

 

Figure 35. Glide XP docking scores of the 931 best-binder small molecules when docked into the six SMUG1 

conformations. 

Especially notable was compound NSC 91529, which appeared 16 times with a docking 

score below -8.5 kcal/mol (the 0.5 percentile cutoff is -8.516 kcal/mol). This compound has four 

chiral centers and two double bonds. Due to the restrictions we imposed on creating the ligands, 

only 16 of the 64 possible stereoisomers were generated. Using Maestro, we manually generated 
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the correct configuration for NSC 91529, a natural product named 1,4-Dicaffeoylquinic acid. We 

then redocked the correct stereoisomer to the six protein conformations. Table XX shows the 12 

top-scoring compounds (99.5 percentile) after pruning NSC 91529’s incorrect configuration poses. 

Table 3. List of best binders according to Glide docking at the XP level of theory.  

Rank 
(ID) 

Compound 
name 

Structure Protein 
conformer 

Docking 
score 

1 Z1603696798 
(Enamine) 

N

O
O

N
H

O

OH

 

DRB -11.637 (-
8.642) 

2 Z509792530 
(Enamine) 

N
H

O
H
N

HN

N

O  

DRM -10.043  

3 Z2108760361 
(Enamine) 

O

N
H

N

O

OH

O

 

DRB -9.862 

4 Z2448501887 
(Enamine) 

HN

O

NH

HN

N

O

 

DRM -9.624 

5 Z2911212478 
(Enamine) 

H
N

O

NH
N

O

OH

 

DRB -9.614 
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6 Z1332790714 
(Enamine) 

N

O O
NH N

H

NHN
S

O

 

AF -8.912 

7 NSC 91529 
(Div VI) 

OH

OO

OHO

HO

O

O

HO
OH

OH

HO

 

SMB -8.793 

8 Z1656856947 
(Enamine) 

N
H

O

O

N
NH

N

O  

AF -8.774 

9 Z2608766234 
(Enamine) 

N

N

O N

N F

F F
O

N

HN
N

O

 

SMB -8.705 

10 Z2881982401 
(Enamine) 

N
H

O

N

O

NN
HN

N  

AF -8.685 

11 46385 
(Div III) 

NSN
N

NN

H2N

O

HO

OH

OH

 

SMA -8.671 
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12 Z1754084691 
(Enamine) H

N

H
N

O
O

N N

O

 

DRM -8.558 

 

4.2.4.4 Assessment of top binders 

Computer docking suggests that all the compounds would occlude substrate binding since 

they all bind in the catalytic pocket. We can observe how ligands completely insert themselves 

into the pocket of three SMUG1 crystal structures (xSMUG1 PDB 1OE5, and 1OE6151; Geobacter 

metallireducens SMUG1 5H9I171).  This complete insertion was observed in all but three 

compounds (3, 8, and 12). To increase the binding affinity of these three compounds, they could 

be further optimized to include a moiety that interacts with N163, a residue that appears in all the 

interaction diagrams except these three compounds. 

All compounds bind at the entrance of the pocket, pointing towards F89. The region where 

F89 lies is in charge of discriminating substrate C5 substitutions. In one of the xSMUG1 crystal 

structures (PDB 1OE6), a 5-hydroxymethyl uracil moiety is positioned at the pocket entrance, 

providing experimental evidence of the pharmacological potential of the region. The only 

compound that uses the other side of the pocket entrance is compound 3; this region could be used 

to further optimize all other compounds.  

The 12 top-ranked compounds participate in some common interactions. In our models, all 

but one of the compounds form at least three hydrogen bonds with the protein. The residues that 

participate most in hydrogen bonding are M84 and N85, with six compounds participating in 

hydrogen bonds with these residues. However, interactions with M84 are more prevalent in the 
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highest-scoring compounds compared to N85, which suggests that forming an interaction with 

M84, substantially stabilizes ligands in the pocket. Salt bridges are only present in the first five 

top-ranked compounds and always form with R124, E135, or R243. These three residues are close 

to each other, and they line the entrance to the pocket. Finally, five compounds form π-π 

interactions with the protein, including three that interact with the catalytic H239.  

Compound 1 forms six predicted hydrogen bonds with the protein (Figure 36). The 

compound’s carboxyl group is predicted to form a salt bridge with R124, and this group also 

participates in two hydrogen bonds with N176 and R243. Finally, a hydrogen bond is also 

predicted to form between compound 1’s cyclic amide carbonyl group and M84. 

 

Figure 36. Predicted interactions between hSMUG1 and Z1603696798. A) Interaction diagram; salt bridges 

are shown as multicolored lines and hydrogen bonds as pink arrows. B) Structure of the protein-ligand 

complex. Atoms of the pocket residues side chains are shown as spheres, and the ligand is shown as ball and 

sticks. 
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4.2.4.5 Conclusions 

In the present work, we performed homology modeling of SMUG1 to obtain six different 

protein conformations. We used three diverse small molecule datasets with compounds available 

for purchase or delivery. These compounds were docked into six protein conformations using two 

separate docking programs. We then generated a list of the best 250 compounds, which were 

docked using Glide at the XP level of theory.  

After docking at a higher level of theory, we learned that compounds that can form salt 

bridges with R124, E135, or R243 tend to have a high predicted binding affinity. Another 

interaction that seems to increase the binding affinity is the hydrogen bonds with M84 and H239. 

We recommended 12 compounds for experimental testing because they appear to block the 

catalytic pocket and/or the entrance to the catalytic pocket.  

Below are the contributions each individual made to this project. 

• Badiallo Diani - Generated five protein conformers using online tools. 

Parametrized NCI’s diversity set III and VI using MGLtools. Docked two small 

molecule datasets (NCI Div 3 and NCI Div 6) into five of the protein confirmations 

(all except AlphaFold, which was obtained after the student left) using AutoDock 

Vina. 

• Ann Wang - Docked a new small-molecule dataset, the Enamine data set, to the six 

protein conformations using Autodock Vina. Visual inspection of docking results, 

only the top 20 per conformer. Created a best probable binder list and visually 

inspected it. Created a consensus list for the overall best binders.  
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• Erich Hellemann- Mentored undergraduate students. Using Glide, docked the three 

small-molecule data sets to the six protein confirmations. Performed the last 

docking step with the best 250 compounds into the six protein confirmations using 

Glide at the XP level of theory.  
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4.3 Small molecule binding to TEM-1 β-lactamase’s cryptic pocket changes side chain 

dynamics, leading to inhibition 

4.3.1 Justification 

This project started as an undergraduate research experience for Amrita Nallathambi. The 

student had plenty of experience with computational tools and also had experience with 

computational biophysics methods. The project aimed to determine the atomistic mechanism by 

which a small allosteric molecule inhibits TEM-1 β-lactamase activity to confer resistance to 

lactam-containing antibiotics. The student began with a literature search to understand the 

protein’s biology and relevance and learn the basics of computational biophysics. This reading 

was part of the Durrant laboratory’s literature club, which I initiated and guided. For the project, 

the student had to parametrize the protein and the small molecule for molecular dynamics 

simulations. Once the parameterization was done, she ran the molecular dynamics simulations at 

the Center for Research and Computing at the University of Pittsburgh. She then analyzed the 

simulations by calculating the RMSD of the protein and ligand and the RMSF of the protein. She 

also performed cluster analysis, PCA, side chain sampling, and network analysis. Regrettably, 

when starting to write the manuscript, we encountered an issue with the parametrization of the 

protein and so had to repeat the simulations and analysis. I did all the work presented here and 

wrote the final manuscript for publication.  



 88 

4.3.2 Introduction 

The discovery of antibiotics in the early 20th century was a significant driver in decreasing 

morbidity and mortality in the human race. However, decades of indiscriminate prophylactic and 

therapeutic use in agriculture, human health, and research have put incredible evolutionary 

pressure on microorganisms forcing them to adapt and evolve to resist these compounds.172–174 

Antimicrobial resistance (AMR) is recognized by the World Health Organization (WHO) as one 

of humanity’s top ten global public health threats.175 β-lactam antibiotics, which are the most 

prescribed and sold class of antibiotics,176 were discovered in the early 20th century by Alexander 

Fleming. These compounds block the last step of bacterial cell wall formation by targeting DD-

transpeptidases, also known as penicillin-binding proteins (PBPs). These proteins are responsible 

for the cross-linking of peptides in peptidoglycan synthesis. β-lactam antibiotics, as their name 

suggests, have a lactam ring that bacteria have evolved to open by hydrolysis. Once the lactam 

ring is open, the antibiotic is rendered inert, and its antimicrobial activity is blocked.  

Proteins that open the lactam ring are named lactamases and are divided into four classes 

(A through D). Class A, B, and C are serine hydrolases, and class D are metallo-lactamases. TEM-

1, a class A lactamase member, was first identified in 1963 when it was isolated from penicillin-

resistant bacteria.177 This discovery led to the development of new lactam antibiotics, which 

inevitably led to the appearance of new lactamases. This cycle of new drugs, followed by the 

evolution of resistance, is known as the “β-lactamase cycle.” 178,179 Currently, there are over 240 

TEM variants, as reported in the Beta-Lactamase DataBase.180  

Structural studies of class A β-lactamases have shown that they have two tightly packed 

domains, a primarily α helical domain, and an α/β-domain. Three α-helices and five anti-parallel 

β-sheets forms the α/β-domain. The mostly α helical domain contains nine helices, most 
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catalytically relevant residues, and most of the catalytic pocket lining residues. The acylation and 

deacylation reactions required to open the antibiotic lactam ring happen through an activated 

serine. Activation of the catalytic S70 is proposed to go through the general base E166. This 

interaction is mediated by a conserved water molecule since E166 and S70 are too distant. This 

water molecule is observed in many class A lactamase crystal structures.179,181  

 

Figure 37. TEM-1 β-lactamase with bound allosteric inhibitor FTA. Structure from PDB 1PZP. 

An allosteric pocket in the α/β-domain was discovered by Horn and Soichet182 when they 

found TEM-1 inhibitors that did not block the orthosteric pocket. This cryptic pocket is formed 

when α11 rotates and moves away from α12. Allosteric inhibition of β-lactamases is an attractive 

avenue to tackle the problems arising from the “β-lactamase cycle” because an allosteric inhibitor 

can be highly selective, and in this case, target a highly conserved region of the protein. 
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In the present work, I use molecular dynamics (MD) simulations of TEM-1 with the 

allosteric inhibitor 3-(4-phenylamino-phenylamino)-2-(1H-tetrazol-5-yl)-acrylonitrile (FTA) 

bound (holo) and without the bound inhibitor (apo), for a total of ≈3 μs of simulation time. MD 

simulations give us an atomistic view of the changes in TEM-1 dynamics that FTA binding 

induces. MD, coupled with network analysis, is an efficient way of elucidating allosteric 

pathways.36,37 I applied these principles to discover that FTA may elicit population changes in 

R244, which would weaken the binding of a β-lactam ring containing antibiotics. The binding of 

the inhibitor also changes inter-protein communications, which could further help with inhibition. 

Our simulations also revealed the opening of a larger pocket and the complete burial of the small 

allosteric molecule. This pocket is similar to the one reported for N,N-bis(4-chlorobenzyl)-1H-

1,2,3,4-tetrazole-5-amine (PDB 1PZO182). I suggest that medicinal chemists could exploit the 

pocket observed in the alternative binding mode to develop novel TEM inhibitors. 

4.3.3 Methods 

4.3.3.1 File preparation  

Crystal structures of the apo (PDB 1ZG4183) and holo (PDB 1PZP182) complexes of TEM-

1 were downloaded from the Protein Data Bank. The complex structure includes two copies of the 

small molecule 3-(4-phenylamino-phenylamino)-2-(1H-tetrazole-5-yl)-acrylonitrile (FTA), one of 

which is bound in the cryptic pocket being investigated. The second FTA lies at a protein-protein 

interface, the product of crystallographic contacts, and so was removed. There is a difference of 

three residues in the sequences of both proteins. Using ChimeraX,184 I mutated residues I84V, 

N100R, and V184A of the holo protein, so the only difference would be the ligand and initial 

coordinates. The protein structures in the PDB files were then checked using MolProbity185 and 
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corrected for side chain flips. After visual inspection, only residues Q39 and N276 for the holo 

proteins were deemed necessary. A general visual inspection of crystallographic structures and 

electron density maps was also performed. Using the PDB2PQR53 web server, which employs the 

PROPKA54 algorithm, I added hydrogens to all the proteins at pH 7.  

The ligand was individually hydrogenated using the reduce function from Leap, a program 

from the AmberTools20 package.55 Partial charges were obtained with the default parameters at 

the AM1-BCC level of theory.  

The smallest water box that completely enveloped each protein was optimized by rotating 

the protein or protein-ligand complex. The proteins were then solvated in this position with a water 

box that extended 10 Å in every direction beyond the protein. The systems were neutralized using 

Na+ counter ions, and Na+ and Cl- ions were used to achieve a 0.15 M solution. The systems were 

parametrized in Antechamber using Amber’s ff14sb,56 GAFF,186 and TIP3P57 force fields for 

protein, small molecule, and water, respectively.  

4.3.3.2 Molecular Dynamics simulations 

Molecular dynamics (MD) simulations were performed with the NAMD 2.13 package.58 

The systems were minimized in a four-step process of 5000 steps each. First, all hydrogens were 

relaxed; then hydrogen atoms and water molecules; continued by hydrogen atoms, water 

molecules, and protein side chains; to end with all atoms being relaxed.  

Equilibration was performed in the NPT (isothermal–isobaric) ensemble at 310K, using 

long-range Particle Mesh Ewald electrostatics (14 Å cutoff), the Nosé-Hoover method to keep a 

pressure of 1.01325 bar, and Langevin dynamics (damping constant 5 /ps). For the apo 

simulations, a four-step equilibration was performed. In each 0.25 ns step, I applied harmonic 

constraints to the protein backbone atoms, which were gradually relaxed in each step (1.0, 0.75, 
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0.5, 0.25, 0.00 kcal/mol/Å2, respectively). For the holo simulations, a single 1 ns equilibration step 

was performed with a one fs time step. All simulations used the SHAKE127 algorithm.  

Once equilibration finished, three different production runs per system were set up with 

identical conditions to start from the last frame of equilibration. Three different production runs of 

lengths 250ns, 250ns, and 500ns were obtained for each system. Using MDAnalysis, the backbone 

RMSDs of each trajectory were calculated. This measure suggested that during the first 10ns, some 

of the systems continued to equilibrate, leading me to remove this portion of the simulation before 

carrying out further analysis. For consistency, each run was similarly trimmed, and these truncated 

runs were used in the analyses described in the rest of the paper. Finally, the simulations were 

aligned by their backbone atoms using MDAnalysis (V 1.0.0).60,61 

4.3.3.3 Induced Fit Docking, MM-GBSA, and binding pose metadynamics 

I clustered the holo simulation in which the ligand inserted itself more into the protein. I 

performed two clustering analyses. The first centered on the part of the simulation with the ligand 

in the crystallographic pose and the second on the “horizontal” pose (see further description 

below). 

I assembled a conformational ensemble comprising the crystallographic structure, the 

centroid of the most populated cluster for both clustering analyses, and a single frame from the 

simulation with the ligand in its “horizontal” pose. I prepared all the conformations with 

Schrödinger’s protein preparation wizard.164 To prepare FTA for docking, I used LigPrep163 from 

Schrödinger with the OPLS4 forcefield.187 I then used the induced fit docking188,189 module in 

Schrödinger to re-dock FTA to all protein conformations with extended sampling. This docking 

procedure considers the flexibility of the protein and the ligand, something regular docking does 

not. The poses with the lowest binding energy for each protein conformation (crystallographic and 
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“horizontal”) were further processed with Prime-MMGBSA. The lowest binding energy poses 

from IFD and MMGBSA, the crystallographic pose, and the extracted “horizontal” pose were then 

used in the binding pose metadynamics module from Schrödinger.190,191 

4.3.3.4 Analysis of molecular dynamics simulations 

Visualization of the systems and simulations was done with VMD.192 MDAnalysis60,61 or 

CPPTRAJ63 were used to analyze the trajectories and calculate RMSD, RMSF, and distances. Side 

chain angles for some residues of interest were calculated and plotted using the Janin class of 

MDAnalysis. Clustering of Janin plots was performed with K-Means as implemented in Scikit-

Learn.193   

The secondary structure of TEM-1 was predicted using the online server Stride194 with 

PDB 1ZG4 as the template. 

4.3.3.5 Network analysis 

Further analysis of the relationships between amino acids within the protein was conducted 

using the MD-TASK suite of modules.128 Dynamic cross-correlation (DCC) between the residues 

for each system was calculated using every tenth frame. The results of the DCC analysis yield a 

matrix that describes the degree of correlation between Cα atoms, and each element of this matrix 

is calculated as: 

𝐶𝐶𝑖𝑖𝑖𝑖 =
〈 ∆𝑟𝑟𝑖𝑖 ∙ ∆𝑟𝑟𝑖𝑖〉

�〈∆𝑟𝑟𝑖𝑖2〉 ∙ �〈∆𝑟𝑟𝑖𝑖2〉
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I performed analysis on the concatenated and aligned individual simulations. This analysis 

gives a value between -1 and 1 for each pair of residues. Values close to one are residues whose 

movement is correlated, while values close to -1 are for residues moving in an anticorrelated way. 

Additionally, I calculated the betweenness centrality of each residue (BC), and the average 

shortest path to each residue (L). For these analyses, the protein is represented as a set of nodes 

that are said to interact if they are near each other. An edge connects Cβ (Cα for glycine) carbons 

within a cutoff of 7.0 Å. 

The BC of a node denotes the number of shortest paths that pass through that node when 

calculating all vertices’ shortest paths to all other vertices. BC measures how important a given 

node is for communication within the network (protein). L is the sum of all the shortest paths to 

the residue divided by the number of residues minus one. 〈L〉 describes the accessibility of the 

residue within the protein network.  

The averages and changes in BC and L across the trajectories were also determined and 

used to identify residues with distinctly different behavior in the apo and holo simulations. 

4.3.4 Results and analysis 

To understand the mechanism by which the small molecule FTA inhibits the catalytic 

activity of TEM-1, I performed molecular dynamics (MD) simulations of three different systems. 

The first system is wild-type (WT) TEM-1 in its apo form. The initial coordinates of the apo 

protein were obtained from PDB 1ZG4. The second system is the holo mutant system, which I 

downloaded from PDB 1PZP. This structure, reported by James R. Horn and Brian K. Shoichet,182 

shows the binding between TEM-1 and FTA a small molecule allosteric inhibitor. The 

crystallographic complex contains two copies of the small molecule inhibitor, one in a cryptic 
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pocket that opens up when α11 moves away from α12. The second lies at a protein-protein 

interface, a product of crystallographic packing. Visual inspection of the electron density and 

crystal packing also showed contacts between the tetrazole ring in FTA and one of the adjacent 

proteins in the crystal structure. I manually deleted the FTA molecule at the protein-protein 

interface and called this the holo mutant complex because the protein differs by three amino acids 

compared to the WT system. In WT, we have I84, N100 and V184, but in the mutant protein, these 

are valine, arginine, and alanine, respectively. To generate the third system, the holo WT system, 

I used ChimeraX to computationally mutate these residues in the holo mutant complex to the 

residues in the WT protein. 

4.3.5 Ligand binding increases protein stability 

The systems were prepared, minimized, and equilibrated as described in the methods 

section. The equilibrated systems were run in the NPT ensemble, and each system had three 

replicates totaling one μs of simulation time per system. The simulations were aligned, and I 

calculated the RMSD of backbone atoms for each system, showing the protein to be rigid. This 

rigidity agrees with Nuclear Magnetic Resonance (NMR)195 and previous Molecular Dynamics 

(MD) studies196–198 which have shown a highly rigid protein as observed by a high order parameter 

for the whole protein (〈S2〉 = 0.90±0.02) and low RMSD values in the simulations. 

The apo simulation showed a higher degree of mobility (〈bbRMSDapo〉 = 1.15 ± 0.17 Å) 

according to its backbone RMSD compared to the holo simulations (〈bbRMSDholo wt〉 = 0.91 ± 0.10 

Å and (〈bbRMSDholo mut〉 = 0.94 ± 0.09 Å).  
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Figure 38. Comparison of protein confirmational sampling between apo and holo simulations. A) Violin plots 

of backbone RMSD compared to the first frame, wild-type apo and holo simulations. B) RMSD to the first 

frame for the apo TEM1 simulations. C) RMSD to the first frame for the holo TEM1 WT simulations. 

To identify the protein regions with greater flexibility, I calculated RMSF values per 

residue for all three systems using each residue’s center of geometry (CoG). I calculated ΔRMSF 

values per residue (apo - holo) and observed overall higher flexibility in the apo simulations 

(Figure 38). Our results are similar to those obtained for the simulations of TEM-1 bound to BLIP, 

a known protein that inhibits TEM-1, reported by Meneksedag and coworkers. They see a 

reduction of mean square fluctuations in the inhibitor-bound systems.199,200 In our case, I see a 

reduction from 〈RMSF〉apo = 0.78 ± 0.39 Å for the apo system to 〈RMSF〉holo WT = 0.71 ± 0.32 Å 

and 〈RMSF〉holo mut = 0.70 ± 0.31 Å for the holo WT and mutant, respectively. In contrast, the 

results differ from those of Shozeb Haider and coworkers.201 These authors found that the FTA 

ligand binding decreases protein stability, as observed by increased RMSD and RMSF, especially 
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in three regions. The difference between their simulations and ours could explain the discrepancy 

between the results. The authors of this publication obtained their apo protein by deleting FTA 

from the complex and equilibrating the system. We ran the simulations in the isobaric-isothermal 

ensemble (NPT) while they ran in the canonical ensemble (NVT). Finally, they used a different 

MD engine, ACEMD, while we used NAMD. 

 

Figure 39. Difference in per-residue RMSF (center of geometry) between apo and holo simulations (apo – 

holo). 

There are two regions where the apo simulation is substantially more flexible than the holo 

simulations. The first region is one of the hinges connecting both the primarily α helical domain, 

and an α/β-domain. This hinge is comprised of the loop connecting helices α10 and α11, with α11 

having direct contact with FTA. The second region of higher flexibility for the apo simulations is 

comprised of residues after α7 (residues 155-162). α12 has a slightly higher RMSF in the holo 

sims, especially towards the N-terminus of the helix (residues 269-279). This helix is also in 

contact with FTA, but contacts with the crystallographic pose are on the C-terminus of the helix. 

Another region with higher fluctuations in the holo systems is three residues in α11 (residues 220-
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222), with L221 lining the binding pocket. Differences between holo simulations are small (less 

than 0.3 Å) except for the coil after α7, where the mutant is more flexible. There is one RMSF 

outlier, residue 100 for holo mutant; this residue is one of the mutations observed in 1PZP 

(N100R), but if we compare RMSF of only Cα atoms, we see a 0.026 Å difference between both 

holo simulations. Catalytic residue S70 and the general base E166 have lower RMSF values for 

the holo mutant simulations, but the changes fall below 0.3 Å. In general, the effect of FTA seems 

to make the protein more rigid, making it less likely to adopt different conformations. 

 

Figure 40. RMSF difference between apo and holo WT simulations. Red residues have higher RMSF in the 

apo simulations, and blue residues have higher RMSF in the holo WT simulations. RMSF differences are 
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projected onto the first frame of the apo simulation. The location where the ligand binds in PDB 1PZP is 

marked with an asterisk. 

To observe differences in essential dynamics between the three systems, I performed 

Principal Component Analysis (PCA) on the backbone atoms of the simulations. This analysis 

shows that the first two components account for about 33.8% of the data variance and that the holo 

simulations have only one distinct well compared to the two wells in the apo simulations (Figure 

41). If we go to the third and fourth components, for an accounted total variance of 48.8%, we also 

observe more than one well for the apo simulation. These differences in distributions agree with 

the RMSD and RMSF results in that we generally observe reduced conformational sampling in the 

holo simulations.  

In the holo simulations, the first component captures the allosteric pocket’s opening, with 

α11 moving away from α12. On the other hand, in the apo simulations, this component describes 

the movement of the loop connecting α11 and α12, and the loop after α7. These are the same 

regions of increased flexibility in the apo simulations.  
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Figure 41. PCA projections for the TEM-1 simulations. Top row shows the 1st and 2nd principal components. 

Bottom row shows the 3rd and 4th components.  

4.3.6 Holo WT simulations suggest a novel alternate FTA binding pose 

I observed that in one of the holo WT simulations, the ligand buried itself completely 

between α11 and α12, as shown in Figure 42. For that ligand insertion to happen, the secondary 

amine connecting both aromatic rings has to invert. The amine’s hydrogen pointing towards the 

N-terminus of α12 breaks its interaction with I279’s carbonyl and inverts itself to point towards 

the C-terminus of α12. The L221 side chain then packs closer to the β-sheet, further opening the 
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pocket, and α12 rotates counterclockwise. This pocket opening allows the tetrazole moiety to insert 

itself between α11 and α12. From now on, the inserted pose is referred to as the “horizontal” pose.  

To understand the two different binding poses, I performed packing analysis using 1PZP’s 

electron density map. The TEM-1 crystal structures obtained by Horn and coworkers were 

obtained by crystal soaking, a technique shown to present in some cases different binding poses 

than the slower, more difficult, and more accurate cocrystallization method.202 This effect is 

observed more dramatically when there are crystal contacts with the ligand and the neighboring 

unit, as observed in trypsin bound to an aminopyridine derivative (PDBs 6QL0 and 6T5W). In our 

case, FTA forms a hydrogen bond between one of the nitrogens in the tetrazole moiety and K192 

(distance 3.067 Å) of the neighboring protein in the crystal structure. This significant interaction, 

a product of crystallographic packing, could stabilize the crystallographic pose. A structure of 

SHV-1 β-lactamase (68% sequence identity) with a ligand in the same allosteric pocket (PDB 

4ZAM),203 shows a similar pose. This ligand also interacts extensively with its neighbor in the 

crystal structure, in this case, four hydrogen bonds.  
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Figure 42. Alternate binding pose (“horizontal”) identified in one of the holo WT production runs. 

The binding observed in the “horizontal” pose is similar to the one observed in another 

crystal structure obtained by Horn and Shoichet (PDB 1PZO). Instead of FTA, this structure has 

two copies of N,N-bis(4-chlorobenzyl)-1H-1,2,3,4-tetrazole-5-amine. The location of the tetrazole 

ring in the “horizontal” pose is close to where one of the tetrazole rings lies in the 1PZO structure, 

giving some experimental validity to the “horizontal” pose. The opening of the pocket that could 

accommodate the ligand in the “horizontal” position was also previously predicted by elastic 

network models.204 

4.3.7 Ligand pose assessment 

To assess which ligand pose is most likely, I performed induced-fit docking (IFD). I used 

the crystallographic structure, the centroid of the most populated cluster using only the part of the 
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simulation that contains the crystallographic pose, a single frame with the ligand in its “horizontal” 

pose, and the centroid of the most populated cluster using only the part of the simulation that 

contains the “horizontal” pose. Results of IFD can be seen in Table 4. At least 15 poses of each 

system were used to calculate binding affinities with Prime MM-GBSA. The poses with the best 

scores for IFD and MM-GBSA were then used for Binding Pose Metadynamics studies, along with 

crystallographic pose and the single frame from MD simulations with the “horizontal” pose. The 

crystallographic system was the only pose with both the highest IFDScore and MM-GBSA 

predicted binding affinities. BPM results are also presented in Table 1; these results show higher 

stability for the “horizontal” pose with an average score of 2.113 ± 0.891 Å, compared to the 

crystallographic pose average of 2.975 ± 0.151 Å. By the Shapiro-Wilk test for normality, we do 

not have normally distributed data for BPM scores (0.223 and 0.07 for crystallographic and 

“horizontal” poses), so I performed a Mann-Whitney U rank test. The Mann-Whitney U test did 

not allow us to discard the hypothesis that both samples come from a different distribution (p = 

0.09). We could have obtained these results because we are underpowered (we only have 4 and 5 

samples). However, the observed effect size for the stability of the ligand due to the change in pose 

is large (η2 = 0.24). An experiment that could be performed to assess the validity of the proposed 

pose would be chemical shift perturbation in solution-state NMR; this way, no crystal contacts 

would be observed, avoiding the stabilization of the tetrazole ring outside the protein pocket.  

Table 4. Ligand-pose assessment using induced-fit docking (IFD), MM-GBSA, and binding-pose 

metadynamics (BPMD).  

 IFDScore (Docking 
Score) 

Best MM-GBSA 
(best IFDScore) 

BPM score  
(not from IFD) 

Crystallographic -11653.68 (-9.398) -63.56 (same 
structure) 

2.723 (3.039) 

Centroid -11561.41 (-9.311) -64.00 (-59.24) 3.017, 3.123 
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crystallographic 

“horizontal” -11554.00 (-9.437) -81.35 (-74.94) 1.264, 1.917 (1.646) 

Centroid 
“horizontal” 

-11524.65 (-7.542) -53.75 (-61.72) 1.905, 3.831 

4.3.8 Residue side chain population differences affect ligand binding and stabilization  

The mechanism by which FTA inhibits TEM-1 is allosteric. The center of geometry of the 

ligand is located 21 Å away from the Cα of the catalytic S70, and the closest any FTA atom comes 

to the same Cα is 15.46 Å, according to the crystallographic structure. To understand how side 

chain dynamics affect protein function, I calculated Janin plots (χ1 versus χ2) of some critical 

residues (K73, Y105, E166, W229, K234, R244, and R275).182,205,206  

Tyrosine 105, a residue that lines the catalytic pocket and is crucial for ligand recognition 

and stabilization,206 undergoes a population shift in our simulations. The most visited state for the 

apo simulations has the phenolic ring pointing towards the solvent, this conformation is observed 

in ligand-bound structures of TEM-1 and TEM-1 bound to BLIP, a known protein inhibitor.207 

This conformation is sampled 43.65% of the time in our apo simulations, but only 34.58% and 

21.00% in the holo WT and holo mutant, respectively. In the holo simulations, a conformation 

with the phenolic ring packet against P107 is more populated than in the apo simulations, going 

from 11.79% for the apo to 29.53% for holo WT and 42.59% for holo mutant. The population 

changes observed in Y105 side chain conformation due to FTA binding could affect TEM-1’s 

ability to recognize ligands in the orthosteric pocket. 

The residue with the biggest change in the side chain conformation according to the 

calculated Janin plots is R244. This arginine is close to FTA in the crystallographic structure (~11 

Å), and has been proposed to stabilize the binding of lactams in the catalytic pocket.208,209 The 
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conformational change this residue presents due to FTA binding was proposed as the underlying 

mechanism by which FTA inhibits TEM-1.182 R244 has a different starting conformation in the 

apo and holo simulations; in the apo system, the side chain points towards the orthosteric pocket. 

In contrast, in the holo conformation, the side chain points towards the C terminus of α12 (Figure 

43).  

 

Figure 43 FTA binding influences Y105 and R244 side chain dynamics. Here I show representative 

conformations of Y105 and R244 side chain conformations, in dark purple, a representative conformation 

with FTA in the “horizontal” conformation. In light blue, a conformation from the simulations close to the 

1PZP crystallographic R244 conformation. The open form of penicillin G in the orthosteric pocket was 

obtained by superimposing PDB 1FQG to one of the conformations from the holo WT simulation. 

Arginine 244 also shows a significant shift in the population of side chain conformations 

over the course of the simulations. The side chain does not deviate much from its starting position 
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in the apo simulations, with 84.32% of the simulation staying in that conformation. The holo 

simulations spend most of their time in a conformation that has the side chain closer to α12. The 

holo WT simulations spend 37.24% of the time in that closer conformation and the holo mutant 

39.19%, compared to 2.97% in the apo simulation.  

The R244 side chain conformation observed in the holo crystallographic structure is 

seldom sampled in the apo simulations (0.67% of the time), compared to 16.50% and 3.21% for 

holo WT and mutant, respectively. The RMSF observed for the residue has a substantial increase 

in holo systems compared to the apo simulations, with a 79.01% and 74.45% increase in RMSF 

for holo WT and mutant, respectively (0.4689 Å for apo, 0.8394 Å for holo WT and 0.818 Å for 

holo mutant); this increase of fluctuations in the residue is in agreement with the clustering of 

Janin results.  

Interestingly, when I only take the portion of the simulations where the ligand is in the 

“horizontal” pose, the χ1 and χ2 R244 conformation always match that of the ligand-bound crystal 

structure.  
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Figure 44. Janin plots for side chains with the most significant population shifts. The upper line contains 

Janin plots for tyrosine 105, a residue responsible for ligand recognition. The lower line includes Janin plots 

for arginine 244, a residue responsible for ligand stabilization in the orthosteric pocket. 

I calculated the distance between the R244Cζ and the orthosteric pocket (S70Cα). I 

observed a nearly Gaussian distribution for the apo system, but we observed a bimodal distribution 

for both holo systems. I fitted bimodal distributions to all the systems and barely observed the 

second distribution in the apo system. The average distance between both nodes in the distributions 

is 1.46 Å, going from 10.14 Å to 11.60 Å. As can be seen by all these results, Arg 244 has vastly 

different dynamics when FTA binds to TEM-1, which makes the residue more flexible and orients 

its side chain away from the orthosteric pocket, thus precluding its stabilizing effect on antibiotic 

binding.  
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Figure 45. Distance distributions between R244Cζ and S70Cα for the three systems. In red are the calculated 

bimodal models for each system.  

If we only consider the portion of the simulation with the “horizontal” pose, we see only 

one distribution, centered 11.52 Å away from the pocket.  

 

Figure 46. Distance distribution between R244Cζ and S70Cα for the portion of the simulations in the 

“horizontal” pose. In red is the calculated normal distribution for the system. 
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4.3.9 Dynamical cross-correlation analysis, betweenness centrality, and average shortest 

path 

Finally, to observe the correlation of motions between residues in the protein, I calculated 

dynamical cross-correlation (DCC) matrices for the three systems and calculated the differences 

between the systems. I will only discuss medium and high correlations (|DCC|ij above 0.4) and 

differences three or more standard deviations larger than the average difference. DCC analysis 

shows that all the systems have common correlations. All β-sheets are correlated to the neighboring 

ones, α1 and α12 have correlated motions, α10 is correlated to β3 (residues 230-237). Helices 3, 

4, and 5 are all correlated. There are also correlations between α2 and α10 and between α7 and α8. 

R244 is one of the residues in the β-strands that is most correlated.  

When I compare apo against holo systems, we observe the loss of all anticorrelated motions 

present in the apo system. These anticorrelated motions in the apo system are between α1 and β4 

and β5, and between α12 and β1 and β2. Most significant changes (three standard deviations or 

more above the average difference) involve the α/β-domain, the domain that binds FTA (Figure 

47). The interdomain correlations seemed to be weakened by FTA, except for the correlations of 

α11 with α10 and α5. There is an increase in coordinated motions within the α/β-domain, especially 

between the α1 N-terminus and α12 C-terminus. We also observe an increase in correlations 

between β3 and β4 and helix α11 and α12. On the residue-specific analysis, we see an increase in 

correlation in the holo mutant between Ser70 and α8. As for R244, we lose the correlation of 

motions between the arginine and C-terminus of α1 and N-terminus of α12.  
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Figure 47. Changes in correlation. In red, we observe a change in anticorrelated motions; in blue, we observe 

a change in correlated motions. For figure clarity, I only show changes three STD above the average 

difference and from residues with medium or high correlations. The location where the ligand binds in PDB 

1PZP is marked with an asterisk. 

To assess how critical a residue is for information transfer within the protein and how FTA 

impacts that flow of information, I calculated betweenness centrality (BC), which describes how 

important a residue is to the communication within a protein. As expected, residues at the core of 

the protein have high BC values. When we introduced FTA, the values of these core residues 

generally remained unchanged. One notable exception is a product of how BC is calculated; since 
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we are using Cβ for residues (except for glycines where Cα is used), the gap that FTA forms does 

artificially decrease the BC for residues in α11 and α12 for the holo system. 

 

Figure 48. Betweenness centrality (BC) changes between apo and holo WT simulations. In blue are residues 

with higher BC in apo simulations. In red are residues with higher BC values in holo WT simulations. The 

location where the ligand binds in PDB 1PZP is marked with an asterisk. 

It has been shown210,211 that critical residues tend to have high centralities, so it is 

interesting that four residues in the catalytic pocket (S70, K73, E166, K234) have lower BC values 

in the holo simulations. This suggests a change in how information (physical or chemical) can pass 

through the catalytic pocket since residues with high BC control the flow of information. This 

finding could also explain the impact FTA has on TEM-1 catalysis by altering how the catalytic 

residues respond to changes in the protein. Another notable difference between apo and holo 

simulations is the increase in BC in the holo simulations for the N-terminus of β4. This region 
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includes R244, the residue we have shown to be, on average, further away from the catalytic pocket 

in the holo simulations precluding its ligand stabilization properties.  

4.3.10 Allosteric inhibition mechanism by FTA 

FTA is an allosteric inhibitor since it binds far away from the catalytic pocket. This ligand 

changes the global and local dynamics of the whole protein. When it binds to the protein, I observe 

a rigidification of the protein. Local changes in dynamics are observed in the loop preceding α11, 

the helix that opens for the cryptic pocket to be formed; this loop is less flexible in the ligand-

bound simulations. Especially notable are the changes in side chain dynamics of the residues 

important for ligand recognition and stabilization: R244 and Y105. R244 in the apo simulations is 

observed mainly pointing towards the orthosteric pocket (seen in the distance analysis), while in 

the holo simulations, the side chain also has a second distribution that has the side chain further 

away from the catalytic pocket. This second distribution would not be able to stabilize a ligand in 

the orthosteric pocket, in part explaining the inhibition properties of FTA.  

Interestingly I observed a “horizontal” alternative pose in one of the MD simulations. In 

this pose, the effect observed in R244 is more substantial; all the frames in this pose have R244 

pointing away from the orthosteric pocket. This result raises the possibility that the observed 

“horizontal” conformation is more effective in antibiotic inhibition than the crystallographic pose. 

Y105 side chain also presented substantial changes because of FTA binding. In this case, 

the apo simulations presented a conformation more akin to the ones observed in simulations of the 

benzylpenicillin/TEM-1 complex.212 While the holo simulations had the side chain packed against 

P107, in this side chain conformation, the phenol group of Y105 will not be able to interact with 



 113 

the antibiotic’s aromatic groups, which would further destabilize the binding of an antibiotic 

molecule in the orthosteric pocket. 

I also observed how the BC of critical residues changes in the simulations. S70, one of the 

catalytic residues, has a higher BC value in the apo simulations. This decrease in BC for the holo 

simulations suggests that ligand binding reduces the influence on inter-protein communication of 

S70. Another impacted residue is R244; this residue’s influence on information transmission is 

increased in the holo simulations. These changes suggest how FTA binding alters how the protein 

responds to external changes, reducing how important residues for catalysis can react to changes 

in the protein (i.e., antibiotic binding) and increasing the response of one residue that has been 

shown to diminish ligand binding. 

4.4 Conclusions 

In this work, I used molecular dynamics simulations and network analysis of TEM-1 with 

and without the allosteric inhibitor FTA to propose a mechanism by which the small molecule 

inhibits TEM-1. This inhibitor lies ≈15 Å away from the orthosteric pocket. Ligand binding has 

profound effects on protein local and global dynamics; even though TEM-1 is a rigid protein, the 

binding of FTA increases the rigidity of the protein even more. This rigidity increase was 

confirmed by RMSD, RMSF, and PCA analysis and agreed with studies of TEM-1 binding to the 

protein inhibitor BLIP.199,200 The allosteric ligand also has important effects on the population 

shifts of side chain conformations of critical residues. Notably, R244 has a significant population 

change. In the apo simulations, it assumes a single conformation and lies a consistent distance 

from the pocket. In the holo simulations, the distance has a binary distribution, and the residue 
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assumes a different main conformation per Janin plots. The ligand also changes the protein 

network and the communication between residues, as seen by the changes in correlated motions, 

BC, and L. These changes could influence how catalytic residues respond to binding in the 

orthosteric pocket, likely leading to changes in catalysis. 

Here, I also show a novel binding mode for FTA. As support for the existence of the 

“horizontal” pose could be rationalized because of the presence of a similar binding pocket, as 

observed in the structure of N,N-bis(4-chlorobenzyl)-1H-1,2,3,4-tetrazole-5-amine bound TEM-1 

(PDB 1PZO). Crystallographic contacts of tetrazole moiety in FTA could stabilize the 

crystallographic pose, which has FTA partially embedded in the cryptic pocket. This new insight 

can help medicinal chemists explore a different pocket conformation to target β-lactamases as they 

search for new molecules to combat multi-resistance strains. To conclude, to our knowledge, our 

study is the first to propose a “horizontal” pose for FTA binding, helping medicinal chemists in 

their quest to combat MDR strains. 
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5.0 Conclusions and future directions 

5.1 Chapter 1 - Introduction to computer-aided drug design 

In chapter one, I briefly introduced the field of computer-aided drug design (CADD). Here 

I talked about the importance of CADD and how it has advanced drug discovery. I introduced 

some of the structure-based drug-design techniques I used in this dissertation.  

One of the biggest challenges in drug discovery and in CADD is the low hit rates observed 

in lead discovery, and ensemble docking is helping address this problem.213 In this dissertation, I 

described the development of a tool that leads to better protein-pocket sampling, helping better 

incorporate protein flexibility into docking, which will then help increase the hit rates in docking 

algorithms.  

In the next two chapters, I used molecular dynamics simulations to understand how a 

perturbation (mutation or ligand binding) affects protein dynamics. I used several analysis tools to 

uncover the mechanisms by which a ligand or a mutation inhibits catalysis. I also undertook a more 

traditional CADD project that uses ensemble docking to identify candidate inhibitors for 

experimental testing.  
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5.2 Chapter 2 – Sub-Pocket EXplorer (SubPEx): Leveraging weighted ensemble 

simulations to enhance the conformational sampling of binding-pocket conformations 

In chapter two, I described how I developed Sub-Pocket EXplorer (SubPEx). This tool uses 

weighted ensemble path sampling to accelerate the sampling of protein pocket conformations for 

later use in ensemble docking. I showed that the composite RMSD, a linear combination of pocket 

and backbone RMSD, outperformed all other progress coordinates as well as vanilla MD 

simulations. I also demonstrated how clustering by generation improves the clustering speed and 

the diversity of pocket conformations. Finally, I tested SubPEx on biologically relevant proteins 

involved in cancer or viral infections.  

Before publishing the SubPEx manuscript, I need to repeat the simulations for 

neuraminidase starting from its closed conformation. As mentioned in the chapter, the system had 

not fully equilibrated because the crystal structure has a ligand in the pocket, stabilizing the 

conformation observed in the experimentally determined protein structure. The system needs more 

time to equilibrate correctly. 

My current implementation ignores the probabilities that WESTPA calculates. Since we 

are nowhere near the equilibrium population distribution, we cannot use the WESTPA 

probabilities in subsequent analysis without reweighting them so they are closer to the actual 

equilibrium probabilities. I propose using the history augmented Markov state models plugin 

developed for WESTPA48, or a Markov state model approach. 

Once the walkers are reweighted, we could use the walker probabilities we obtain from 

WE to calculate the probabilities of the clusters obtained by the clustering algorithm. These cluster 

probabilities could then be assigned to the centroids for use in Boltzmann docking, an ensemble 
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docking technique that weights the predicted binding affinities (scores) of each state by its 

equilibrium probability.214,215 

5.3 Chapter 3 – Novel mutation in hexokinase 2 confers resistance to 2-deoxyglucose by 

altering protein dynamics 

In chapter three, I showed how molecular dynamics simulations could explain a mutation’s 

role in the resistance mechanism of a known inhibitor. This published work 90 shows the power of 

combining experimental and computational tools to explain a phenomenon at atomistic resolution.  

We demonstrated how a change in a single residue in a 469-residue protein can greatly 

impact catalysis, even when that residue does not interact with the substrate. We studied 

hexokinase II, a protein relevant to the catabolism of glucose. A mutation in this protein allows 

yeast cells to grow in the presence of 2-deoxy-glucose, an environment typically not conducive to 

life. The G238V mutation changed the dynamics of the whole protein, impacting it in large 

conformational changes as well as in small, more localized changes. Using network analysis 

applied to the molecular dynamics simulations, I observed how the mutation changes the flow of 

intra-protein communication. 

The mutation substantially impacted residue V236, and I hypothesized that V236 plays a 

crucial role in determining how the protein transitions from the open to the closed conformation. 

The impact of V236 on global dynamics could be tested experimentally using mutagenesis. I 

hypothesize that a larger side chain (e.g., isoleucine, leucine, to maintain the hydrophobicity) or 

one that cannot rotate (e.g., proline) will further hinder the open-to-close transition. In contrast, 

glycine, a more flexible residue, should enable the transition.  
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Another hypothesis that requires experimental validation is the proposed increase in the 

entropic penalty for glucose binding. I hypothesized this penalty would be more significant for the 

mutated protein because we observed higher fluctuations in the binding cleft. This hypothesis 

could be proven correct by isothermal titration calorimetry (ITC), which determines binding 

affinities and the enthalpic and entropic contributions to binding.  

5.4 Chapter 4 – Mentoring undergraduates in computational research 

In chapter four, I showed results I obtained with undergraduate students' help. I introduced 

the chapter by describing the importance of undergraduate research experiences, their impact on 

the students, and the future of STEM fields. 

In the first half of the chapter, we used a traditional computer-aided drug design approach 

to lead discovery. We first generated six models of the human protein SMUG1, a protein involved 

in base excision repair. We next docked three different small molecule databases into the six 

protein conformations.  

We concluded this project by recommending our collaborators test some of these small 

molecules for experimental validation. The next step will be to optimize any compound that binds 

the human protein using structure-activity relationship studies. 

In the second project, I used molecular dynamics simulations of a protein-ligand complex 

to understand how the ligand influences the protein. The system we studied consists of an allosteric 

small-molecule inhibitor that binds TEM-1 lactamase, one of the proteins responsible for antibiotic 

resistance in bacteria. Here I performed molecular dynamics simulations of the protein bound to 

the inhibitor and tracked the changes in protein dynamics observed due to ligand binding. 



 119 

One of the most exciting results is that the ligand inserted itself further into the allosteric 

pocket. This insertion only happened in one of our WT TEM-1 simulations, but I pursued this 

unexpected ligand pose to understand the alternate pose’s viability. As a follow-up experiment, I 

would perform NMR experiments, specifically chemical shift perturbation (CSP) analysis.216 CSP 

has been extensively used to track the location of ligand binding by analyzing changes in protein 

chemical shifts due to ligand binding.  

Dihedral-angle and network analysis suggest a mechanism by which the small molecule 

inhibits catalytic activity. This study can help medicinal chemists develop new small molecule 

inhibitors that bind the allosteric pocket, advancing the fight against multidrug-resistant bacteria. 
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