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Abstract 

Machine Learning for Abdominal Aortic Aneurysm Characterization from Standard-Of-

Care Computed Tomography Angiography Images 

 

Anish Salvi, MS 

 

University of Pittsburgh, 2022 

 

 

 

 

Abdominal aortic aneurysms (AAAs) are dilations in the descending aorta which can result  

in internal bleeding when ruptured, leading to hospitalization or death. AAAs are commonly 

asymptomatic and discovered by happenstance during imaging tests, including computed 

tomography (CT) and its blood vessel enhancing counterpart computed tomography angiography 

(CTA). However, a past evaluation indicates that radiologists correctly identified and referred to 

monitoring only 32%, or 43 of 133 AAAs, from 3292 CTs. AAAs with larger diameters (> 5 cm) 

are recommended for elective repair; however, < 5 cm AAAs may have a rupture rate as high as 

23%. Utilizing diameter as a one size fits all approach fails to consider intraluminal thrombus 

(ILT) and calcifications, clinically relevant attributes associated with elevated rupture risk. While 

a prior study indicated that type I and III endoleaks, linked with incorrect graft positioning during 

elective repair, had an incidence of only 6.4%, these complications require urgent medical 

attention. Surgical planning may benefit from greater understanding of AAA geometry. There 

remains a critical need for the automated discovery, visualization, and elective repair indication of 

AAAs. Having explored the novel field at the intersection of state-of-the-art machine learning and 

standard-of-care medical imaging, we develop deep learning models to aid the detection, 

segmentation, and classification of AAAs based on pre-operative CTA characteristics while 

observing the frame-of-reference. We describe computational methods which include bounding 

box localization as a precursor to high-resolution segmentation, patch-based segmentation of 
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medical image sub-volumes, image transformers that identify AAA severity, and a vision 

transformer that provides heatmaps indicative of AAA severity prediction. We find that 1) our 

memory-efficient bounding box method outperforms conventional neural network based AAA 

lumen segmentation, 2) patch-based AAA wall segmentation has improved performance as 

compared to our memory efficient computational pipeline for asymptomatic cases, 3) image 

transformers approach and even beat the accuracy achieved by rudimentary classifiers (i.e., 

differentiating between asymptomatic v. symptomatic AAAs) when leveraging embeddings 

derived from class specific segmentation models, and 4) vision transformers not only predict AAA 

severity accurately, but localize the disease by its anatomical basis. In sum, we make key 

contributions to scientific literature concerning medical imaging and machine learning through our 

computational methods of AAA interpretation.  
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1.0 Introduction 

Deep learning algorithms underpinned on convolutional neural networks (CNNs) and 

vision transformers (ViTs) demonstrate significant promise for medical imaging based 

interpretation of abdominal aortic aneurysms (AAAs).  

1.1 Clinical Imaging & Aneurysms 

AAAs are dilations in the descending aorta typified by abrupt abdominal pain. AAA 

rupture can cause internal bleeding, leading to hospitalization or death. In fact, reported ruptured 

AAAs accounted for ~28,200 deaths and reported unruptured AAAs accounted for ~15,400 deaths 

from 2009 to 2019 1. There remains a critical need for the automated discovery, visualization, and 

elective repair indication of AAAs to assist with incidental identification, surveillance, and 

surgical planning. Despite being the 15th leading cause of death, most AAAs are asymptomatic 

and only discovered by happenstance during imaging tests, including computed tomography (CT) 

and its blood vessel enhancing counterpart computed tomography angiography (CTA), for other 

afflictions 2. Unfortunately, screening evaluations for AAAs indicate inconsistent performance by 

radiologists. One study indicated that radiologists reported only 65%, or 122 of 187 AAAs, from 

3246 CTs 3; however, another report stated that radiologists correctly identified and referred to 

monitoring only 32%, or 43 of 133 AAAs, from 3292 CTs 4. These imaging professionals struggled 

to detect AAAs with shorter diameters 4.  
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Surgical decisions are primarily informed by aneurysm diameter where smaller AAAs (< 

5 cm) require monitoring every 6-12 months while larger AAAs (> 5 cm) are recommended for 

elective repair 2. However, an autopsy analysis indicated that < 5 cm AAAs had a 13% rupture rate 

while > 5 cm AAAs had a 40% rupture rate 5; Though a separate study suggested that the rupture 

rate of < 5 cm AAAs may be as high as 23% 6. Utilizing diameter as a one size fits all approach 

fails to consider additional clinically relevant attributes, leading to faulty rupture risk stratification. 

More recently, intraluminal thrombus (ILT) volumes and calcification presence have been 

associated with elevated rupture risk 7, 8. Further, the geometry of the nonuniform AAA wall can 

inform internal bleeding risk (i.e., where a thicker wall implies tissue inflammation and a thinner 

wall is more prone to rupture after exposure to high stress) 9, 10. Allowing clinical staff to consider 

image features of the aneurysm wall, ILT, and calcifications could help ensure optimal treatments. 

Clinicians require CTA imaging to determine AAA size, location, and geometry for 

endovascular aneurysm repair. While a study reported that type I and III endoleaks, linked with 

incorrect graft positioning, had an incidence of only 6.4%, these complications require urgent 

medical attention 11, 12. Delineating AAA boundaries could allow surgeons to better plan stent graft 

placement and design by providing measurements of the aortic neck, aneurysm morphology, and 

iliac artery anatomy 13. Specifically, segmentation of AAA associated anatomy can inform the 

stent’s start and end points as well as its diameter.  

1.2 Biomechanical Evaluation of Disease 

Understanding the forces at play regarding the AAA anatomy gives insight into the 

underlying mechanisms of disease, especially for identifying rupture risk stratification parameters 
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outside of AAA diameter. After conducting force and deformation experiments to AAA wall 

specimens, researchers observed the wall strength of larger AAAs is unrelated to diameter, noting 

that thickness and stiffness could be better indicators of rupture 14. Performing finite element 

analysis (FEA) via CTs, investigators concluded that peak AAA wall stress in symptomatic, 

ruptured AAAs is greater than the same for their asymptomatic, intact counterparts 15. 

Understanding of stress can help relate the ILT to AAA wall. The findings observed from AAA 

specimens subject to various cell chemistry and tensile strength studies drew a connection between 

regional wall weakness and thicker ILT related hypoxia 16.  

Volumetric segmentation of the AAA serves as a starting point for biomechanical 

evaluations. AAA segmentation related AAA asymmetry to posterior wall stress, implying 

surgeons consider asymmetry when formulating elective repair decisions 17. However, the 

incorporation of AAA related biomechanical software, such as FEA, into the clinical workflow 

has been slow due to expenses and requisite expert knowledge 18.  

Artificial intelligence tools that automate segmentation of diseased anatomy for 

downstream calculation of biomechanical properties have been gaining traction in recent years. 

Authors reported a framework which performed 1) 2D CNN segmentation of the AAA, 2) 

reconstitution of predictions into 3D geometries, and 3) prediction of wall stress via regression of 

surface geometries 18. However, our machine learning research does not stop at the intermediate 

step of segmentation for downstream mechanical computation of the AAA endpoint (i.e., level of 

severity, rupture risk indication, etc.). Instead, we apply the model’s intuitive understanding of the 

image volumes themselves to identify the same types of endpoints directly. While biomechanical 

evaluation explains the underlying forces behind disease progression and aggravation from a 

mechanical perspective, we provide interpretable visualization regarding disease classification 
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from an imaging standpoint. Nevertheless, understanding the conclusions of long-established 

biomechanical research helps guide the model development process.  

1.3 State of Machine Learning 

Deep learning refers to a subclass of machine learning algorithms capable of automatic 

feature extraction and interpretation tasks (i.e., detection, segmentation, classification, etc.). We 

present several different perspectives on AAA interpretation as compared to the current literature 

on vascular imaging related quantification techniques. For example, a prior paper reported a CNN 

pipeline which produced the 3D aorta following concatenation of 2D aortic segmentations 19. 

However, since it has been indicated that 3D models can learn more organized and precise patterns 

within volumetric data as compared to their 2D and 2.5D counterparts, we pursue 3D architectures 

for our studies 20, 21. Previous research described segmenting the AAA from image volumes fit to 

the AAA region of interest itself 22. However, we improve upon this shortcoming by formulating 

a sequential inference pipeline which performs bounding box localization prior to high-resolution 

segmentation, accounting for how acquisition methods can vary across clinical imaging settings. 

A previous manuscript proposed 3D segmentation of the AAA wall through variable neighborhood 

search, alternating the search between two different search spaces, voxel intensity and voxel 

gradient 23. To the best of our knowledge, we are the first in the literature to describe automatic 

3D segmentation of the AAA wall from the standpoint of CNNs. While initially limited to 

segmentation at lower resolutions by computational constraints, we pursue patch-based AAA wall 

segmentation which involves splitting patient CTAs into image sub-volumes that are subsequently 

inferred upon by the model prior to being reconstituted into the final prediction. Expanding upon 
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the previous work, we utilize the encoding path of a pretrained 3D segmentation model as an image 

transformer to facilitate neural embedding, or latent representation, based classification of AAA 

severity 24. Our approach considers all image features (i.e., including the AAA lumen, wall, ILT, 

and any surrounding calcifications), unlike prior methods, such as a deep belief network which 

measured AAA severity based off aneurysm diameter 25. Building upon both the patch and 

embedding based strategies we formerly used for segmentation and classification, we implement 

a 3D ViT capable of AAA severity classification 26. Thus, we provide a novel contribution to the 

literature by providing patient and class specific explanations that illustrate the anatomical basis 

for the 3D model’s decision-making, lending itself to medical imaging detection capabilities. Note, 

that in the case of image segmentation experiments, we evaluate performance using ground truths 

derived from and consistent with the original patient CTAs to better demonstrate algorithm 

performance.  

1.4 Key Contributions 

1) We demonstrate our image transformers can approach and even beat the accuracy achieved 

by rudimentary image classifiers or CNNs. Our study emphasizes that embeddings from 

class specific segmentation models carry meaningful information which relate anatomical 

structure to disease severity. Our findings contribute to both the machine learning and 

medical imaging communities for improved disease identification.  

2) Our memory efficient method of bounding box localization as a precursor to high 

resolution segmentation of AAA lumen outperforms the conventional CNN approach to 

the same. We apply a novel technology to a common issue faced by developers in the 
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machine learning field, overcoming computational constraints of the graphics processing 

unit (GPU).  

3) Patch based AAA wall segmentation improves upon our memory efficient computational 

pipeline regarding asymptomatic AAA cases. We apply a previously established 

technology to a novel biomedical imaging problem and fine tune the model to account for 

the large class imbalance present within the medical image volumes. Class imbalances are 

a common issue in the deep learning field (i.e., the anatomical volume of interest occupies 

significantly fewer voxels as compared to that of the whole patient medical image volume).  

4) We engineer a ViT which not only accurately predicts AAA severity but also provides 

heatmaps that highlight the anatomical basis for its predictions in a class specific manner 

while respecting the DICOM format. The novel 3D model lends itself to detection 

capabilities via weakly supervised learning. Interpreting how models formulate their 

classification decisions, especially for novel state of the art transformers, is a nascent field 

within deep learning. Understanding and verifying that the model’s decision is based upon 

the structure, or image characteristics of disease is especially relevant to the medical 

imaging community. The computational approach we describe generates class specific 

heatmaps (i.e., can incorporate more than two classes) and could be applied to other 

diseases which are more widespread throughout the medical image as compared to the 

AAA.  
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1.5 Peer Reviewed Publications 

1) The sections pertaining to AAA-UNet are embodied in Salvi, A., Finol, E., & Menon, 

P. G. (2021, November). Convolutional Neural Network based Segmentation of 

Abdominal Aortic Aneurysms. In 2021 43rd Annual International Conference of the 

IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2629-2632). IEEE.  

2) The sections describing AAA Image Transformer are represented in Salvi, A., Finol, 

E., & Menon, P. G. (2022, April). Image transformers with regional attention for 

classification of aneurysm rupture risk without explicit segmentation. In Medical 

Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional 

Imaging (Vol. 12036, pp. 278-286). SPIE. 
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2.0 Hypothesis 

Having explored the novel field at the intersection of state-of-the-art machine learning and 

standard-of-care medical imaging, we develop deep learning models to aid the detection, 

segmentation, and classification of AAAs based on pre-operative CTA characteristics while 

observing the inherent DICOM format. The latent space of CNNs engineered for image 

segmentation encodes anatomical information indicative of not only AAA geometry, but severity. 

As such, we perform accurate segmentation of the AAA lumen using the de facto CNN approach 

to serve as a baseline. We note that the standard CNN, referred to as AAA-UNet, produces 

segmentations with ill-defined boundaries associated with poor resolution. In consequence, we 

develop a novel and memory efficient method which consists of first localizing the AAA to a 

bounding box prior to high resolution segmentation of the AAA lumen. The described sequential 

inference pipeline, named BB-AAA-UNet outperforms AAA-UNet for the same volumetric 

segmentation task. Segmentation of small objects remains a challenge due to the foreground v. 

background class imbalance. However, the AAA wall, a relatively thin object present within a 

much larger medical image, is a key volumetric feature related to AAA rupture. Thus, we reapply 

BB-AAA-UNet for successful segmentation of the AAA wall. While BB-AAA-UNet successfully 

localized the AAA, it was determined that preserving resolution during training is critical for 

elevating AAA wall segmentation accuracy. Therefore, we describe a patch-based segmentation 

pipeline, Patch Segmentation UNet which involves 1) converting the 3D medical image volume 

to sub-volumes, 2) performing segmentation on each sub-volume, and 3) reconstructing each 

segmentation sub-volume. By adapting and fine tuning this previously established technology, we 

innovate a model that performs more accurately than our previously described memory efficient 
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pipeline. The embeddings derived from segmentation models indicate structural disease through 

regional attention. As such, image transformers improve CNN classification accuracy for 

describing asymptomatic v. symptomatic AAAs as compared to the de facto approach. Established 

methods require measurement of aneurysm diameter, ILT volume, and AAA mechanics, etc. using 

computational tools. Volumetric segmentation by deep learning algorithms helps automate 

computation for such measurements. In their hidden layers, models engineer features which 

differentiate AAAs. Interpretation of these features avoids the need for manual measurement as an 

input to statistical modeling.  Inspired by Patch Segmentation UNet and AAA Image Transformers, 

we develop a novel 3D medical image ViT which incorporates patch embedding of images at 

higher resolutions, multilayer perceptron classification, and self-attention. We surmise that AAA-

VIT provides accurate AAA severity classification and AAA localization by class specific 

heatmaps. Unlike the image transformers, the ViT does not require AAA annotation for training. 

Further, the model itself is interpretable, providing an anatomical explanation for reaching its 

conclusion regarding a patient image.  
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3.0 Methods 

We conduct several deep learning studies to improve the clinical discovery and 

understanding of AAAs starting from pre-operative CTAs. Note, each model is fit to the training 

data (learning volumetric patterns) whereas the test set quantifies model performance on 

previously unseen data. Note, all images displayed in the methods section are the CTA images and 

labels, not model predictions.  

3.1 Datasets 

The two datasets used for the following course of studies are referred to as AAA-DICOM 

(54 patients) and AAA-Wall (123 patients), both were provided courtesy of researchers from 

University of Texas at San Antonio.  
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3.1.1 AAA DICOM Dataset 

 

Figure 1: AAA DICOM Dataset 

Displays a) the computed tomography angiography (CTA) of a patient recommended for elective repair; b) the 

abdominal aortic aneurysm (AAA) annotated for the aorta in red, lumen in green, intraluminal thrombus (ILT) 

in blue, and calcifications in yellow; and c) the previous in 3D. The AAA-DICOM dataset had an original pixel 

size is 512 x 512 where the z-dimension varied. The voxel spacing varied per patient as well.  

 

The first dataset, referred to as AAA DICOM, consisted of 54 CTAs presenting for elective 

repair or surveillance acquired from two separate hospitals which are abbreviated as NMH and 

AGH (Figure 1). Each segmentation was prepared by leveraging ITK-SNAP’s voxel contour 

annotation tool to label the aorta, AAA lumen, ILT (if present), and calcifications (if present) 27. 

Segmentation of each volume was performed by the author, leveraging knowledge of AAA image 

characteristics (i.e., the brightness of the contrast enhanced lumen, the high intensity of 

calcification voxels, approximate location of the darker ILT, etc.). Following a stratified split 

according to hospital and treatment indication (i.e. elective repair or surveillance), the training set 

consisted of 24 patients (13 NMH & 11 AGH; 9 elective-repair & 15 surveillance) while the test 

set consisted of 30 patients (15 NMH & 15 AGH; 12 elective-repair & 18 surveillance). 
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3.1.2 AAA Wall Dataset 

 

Figure 2: AAA Wall Dataset 

Displays a) an asymptomatic patient’s computed tomography angiography (CTA) image with; b) the labelled 

CTA annotated as abdominal aortic aneurysm (AAA) lumen in blue, intraluminal thrombus (ILT) in green, 

and AAA wall in red; and c) the previous in 3D. The original voxel size each image is 512 x 512 where the z-

dimension varies. The voxel spacing is set to 0.9375 x 0.9375 x 3.5 millimeters. 

 

The second dataset, referred to as AAA Wall, consisted of 123 patient-specific CTAs 

presenting for asymptomatic and symptomatic cases, the latter consisting of a majority unruptured 

and minority ruptured walls. Each CTA had been labelled for the AAA lumen, ILT, and AAA 

wall. Note, the AAA-Wall had been fit to the AAA region of interest on the z-axis, unlike AAA-

DICOM (Figure 2). Following a stratified split according to symptom presence and rupture status, 

the training set consisted of 73 patients (38 Asymptomatic & 35 Symptomatic with 30 Unruptured 

& 5 Ruptured Walls) while the test set consisted of 50 patients (25 Asymptomatic and 25 

Symptomatic with 21 Unruptured & 4 Ruptured Walls).  
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3.2 AAA-UNet: Baseline Aneurysm Segmentation 

3.2.1 Medical Image & Data Preprocessing 

The undermentioned study involved AAA-DICOM, exclusively. Each image and 

annotation pair was resampled to 64x64x64 voxels via b-spline and nearest-neighbor interpolation, 

respectively. Subsequently, each image was z-normalized while each annotation was binarized to 

include the AAA lumen, exclusively, to serve as model inputs.  

3.2.2 Model Development 

 

Figure 3: AAA-UNet 

Describes the AAA-UNet methodology where a) represents the original computed tomography angiography 

(CTA) image; b) represents the previous resampled to 64x64x64 voxels and z-normalized; c) displays the 3D 

UNet architecture  28; d) illustrates the abdominal aortic aneurysm (AAA) lumen volume in 64x64x64 voxels; 

and e) depicts the previous, consistent with the original CTA.  

 

The UNet applies a series of convolutional layers to a medical image, culminating in a 

feature map after which a sequence of deconvolutional layers output a prediction of equal size to 

the input 28. Each voxel of the output receives a likelihood of representing the volume of interest 
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(i.e., the AAA lumen). We first develop AAA-UNet, a single model, which typifies the approach 

to automatic image segmentation leveraged by conventional deep learning models, thereby 

providing baseline results for later comparison (Figure 3).  

 

 
𝐷𝑆𝐶 =

2 ∗ (𝑃 ∩ 𝑌)

𝑃 + 𝑌
 

3-1 

Where the Dice Similarity Coefficient (DSC) represents the twice the intersection of the voxels between the 

Prediction (P) and Ground Truth (Y) divided by total number of voxels attributed to P and Y. Note, that P 

represents the model predicted segmentation while Y represents the ground truth annotation of the same. 

 

 𝐷𝐿 = 1 − 𝐷𝑆𝐶 3-2 

Where the Dice Loss (DL) is the complement of the DSC. The model is iteratively fit to minimize the DL. 

 

AAA-UNet was trained upon the 64x64x64 z-normalized CTAs with the AAA lumen 

serving as the target volume and was fit according to the Dice loss (Equations 3-1 and 3-2). The 

model employs a base filter 64, block number 4, and utilized max-pooling as the down-sampling 

operation. As opposed to the original UNet which implemented the rectified linear unit (ReLU) as 

the activation function, we apply the leaky ReLU (LeakyReLU). Training parameters were 

specified as batch size 1, learning rate 1e-4, epochs 100, and optimizer AdamW with weight decay 

1e-2 29. To prevent the model from overfitting (i.e., memorizing the training data as opposed to 

learning the AAA’s volumetric features which are applicable to unseen data), image augmentation 

consisting of random rotations, flipping, reflection, and noise was performed during the training 

process to increase data variability. 
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3.2.3 Performance Evaluation  

The sigmoid function was applied to each of AAA-UNet’s predictions. By preserving the 

inherent meta information (i.e., real-world spacing, origin, size) associated with each patient’s 

medical image via the SimpleITK library, we resample the model predicted segmentations via b-

spline interpolation to ensure they are clinically consistent with their patient-specific CTA 

counterparts 30. After Otsu thresholding to form binary representations of the AAA lumen, we 

evaluate model segmentation accuracy, in terms of DSC, with ground truths consistent with the 

original frame of reference as obtained during standard-of-care imaging (Equation 3-1) 31.  

3.3 BB-AAA-UNet: Memory Efficient High-Resolution Segmentation with Prior Aneurysm 

Localization 

3.3.1 Medical Image & Data Preprocessing 

As above, the following study used the AAA-DICOM dataset with several of the model 

inputs from the previous exercise being used here as well. For the first stage of training, each image 

and annotation pair was resampled to 64x64x64 voxels before each CTA was z-normalized while 

each annotation was binarized to the AAA lumen, ILT, and calcifications. For the second stage of 

training, each CTA was cropped to the region-of-interest inclusive of the AAA lumen, ILT, and 

calcifications with same cropping policy applied to each corresponding patient annotation. Further, 

each region-of-interest CTA was resampled to 64x64x64 voxels before being z-normalized while 

each cropped annotation was binarized to the AAA lumen, exclusively, and resampled to the same 
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dimensions. As before, each image and label were interpolated via b-spline and nearest neighbor, 

respectively.  

3.3.2 Model Development 

 

Figure 4: BB-AAA-UNet 

Describes the BB-AAA-UNet  methodology for bounding box localization prior to high resolution segmentation. 

The first stage where a) represents the original computed tomography angiography (CTA); b) depicts the 

previous resampled 64x64x64 and z-normalized; c) is the 3D UNet used for localization; d) is the 64x64x64 

volume inclusive of the abdominal aortic aneurysm (AAA), intraluminal thrombus (ILT), and surrounding 

calcifications; and e) is the previous with the same frame of reference as the original CTA. The second stage 

where f) represents the region-of-interest CTA; g) is the previous cropped to 64x64x64 voxels and z-normalized; 

h) is the 3D UNet used for high-resolution segmentation; i) is the 64x64x64 AAA lumen volume; and j) 

represents the previous in same frame of reference as the original region-of-interest CTA.  

 

Image segmentation at higher resolutions often suffers from computational overhead (i.e., 

the memory constraints of the compute environment), preventing the development of segmentation 
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pipelines which can capture the finer details of the anatomical region of interest, especially along 

the boundaries. As such, we proposed our own invention, BB-AAA-UNet, sequential models 

which fix a bounding box to the region of interest prior to detailed segmentation of the AAA lumen 

(Figure 4). BB-AAA-UNet’s inference pipeline occurs in two stages, functioning within a low-

cost development environment.  

The localization model deployed in the first stage was trained on the 64x64x64 z-

normalized CTA with the AAA lumen, ILT, and calcifications serving as the target. The high-

resolution segmentation model deployed in the second stage was trained on the cropped 64x64x64 

z-normalized CTAs with the AAA lumen serving as the target. For training, identical 

hyperparameters, loss function, and augmentation policies as the AAA-UNet study were used. 

Note, the model is not trained on its own predictions.  

3.3.3 Performance Evaluation 

BB-AAA-UNet’s inference occurs sequentially, resembling the training procedure. In the 

first stage, the localization model infers the AAA lumen, ILT, and calcifications from the 

64x64x64 z-normalized CTA. Following sigmoid function application, the prediction is resampled 

to the original patient CTA volume by b-spline interpolation before being Otsu thresholded to form 

the rudimentary AAA segmentation. By applying a bounding box fit to this rudimentary region-

of-interest, the same bounded region is extracted from the input CTA resampled to 64x64x64 

voxels. After z-normalization of the region-of-interest CTA, the high-resolution segmentation 

model infers the AAA lumen. The sigmoid function is applied to the resulting secondary prediction 

after which b-spline interpolation and Otsu thresholding ensure the AAA lumen is consistent with 

its region-of-interest CTA counterpart. This final prediction (i.e., confined within the bounding 
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box) is reinserted into the patient-specific standard-of-care, original CTA’s frame of reference. As 

such, AAA lumen segmentation performance comparisons, in terms of DSC, can be made between 

AAA-UNet and BB-AAA-UNet (Equation 3-1).  

We implemented the Anderson-Darling test to determine the distribution (i.e., normal v. 

non-normal) of the test set AAA lumen DSCs of AAA-UNet v. BB-AAA-UNet. After, we applied 

the appropriate test for statistical significance, t-test for normal distributions or Mann-Whitney U 

and Wilcoxon rank-sum for non-normal distributions. For all tests, a = 5e-2.  

3.4 BB-AAA-UNet: As Applied to Aneurysm Wall Segmentation 

3.4.1 Medical Image & Data Preprocessing 

The following study used the AAA Wall dataset. For the first stage of training, each image 

and annotation pair was resampled to 64x64x64 voxels before each CTA was z-normalized and 

each annotation was binarized to the AAA lumen, ILT, and wall. For the second stage of training, 

each CTA was cropped to the region-of-interest inclusive of the AAA lumen, ILT, and wall with 

same cropping policy applied to each corresponding patient annotation. Further, each region-of-

interest CTA was resampled to 64x64x64 voxels before being z-normalized while each cropped 

annotation was binarized to the AAA wall and resampled to the same dimensions, exclusively. As 

before, each image and label were interpolated via b-spline and nearest neighbor, respectively. 
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3.4.2 Model Development 

 

Figure 5: BB-AAA-UNet for AAA Wall Segmentation 

Describes the BB-AAA-UNet methodology as applied to AAA wall segmentation. The first stage where a) 

represents the original computed tomography angiography (CTA); b) depicts the previous resampled 64x64x64 

and z-normalized; c) is the 3D UNet used for localization; d) is the 64x64x64 volume inclusive of the abdominal 

aortic aneurysm (AAA) lumen, intraluminal thrombus (ILT), and surrounding AAA wall; and e) is the previous 

with the same frame of reference as the original CTA. The second stage where f) represents the region-of-

interest CTA; g) is the previous cropped to 64x64x64 voxels and z-normalized; h) is the 3D UNet used for high 

resolution segmentation; i) is the 64x64x64 AAA wall volume; j) represents the previous with the same frame 

of reference as the original region-of-interest CTA; and k) is the AAA wall from the top view.  

 

As compared to the AAA lumen, segmentation of the AAA wall is a more difficult task 

owing to the few numbers of voxels occupied by the anatomy within a medical image; the problem 

is compounded when considering image resampling to lower resolutions can lose relevant 

information. Thus, predicting this small foreground target within a large background remains a 

challenging endeavor (due to the foreground-background class imbalance).  
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Given BB-AAA-UNet’s success at AAA lumen segmentation, we applied the same for 

AAA wall segmentation (Figure 5). The localization model deployed in the first stage was trained 

on the 64x64x64 z-normalized CTA with the AAA lumen, ILT, and wall serving as the target. The 

high-resolution segmentation model deployed in the second stage was trained on the cropped 

64x64x64 z-normalized CTAs with the AAA wall serving as the target. For training, the same 

hyperparameters, loss function, and augmentation policies as the AAA-UNet and BB-AAA-UNet 

studies were conserved. Owing to the dataset size, the number of epochs trained were 55 for the 

first stage localization model and 80 for the second stage high-resolution segmentation model.  

3.4.3 Performance Evaluation 

As before, the model performs inference in two parts. In the first stage, the localization 

model infers the AAA lumen, ILT, and wall from the 64x64x64 z-normalized CTA. Following 

sigmoid function application, the prediction is resampled to the original patient CTA volume by 

b-spline interpolation before being Otsu thresholded to form the rudimentary AAA segmentation. 

By applying a bounding box fit to this rudimentary region-of-interest, the same bounded region is 

extracted from the input CTA resampled to 64x64x64 voxels. After z-normalization of the region-

of-interest CTA, the high-resolution segmentation model infers the AAA wall. The sigmoid 

function is applied to the resulting secondary prediction after which b-spline interpolation and Otsu 

thresholding ensure the AAA wall is consistent with its region-of-interest CTA counterpart. This 

final prediction (i.e., confined within the bounding box) is reinserted into the patient-specific, 

original CTA’s frame of reference. DSC was used to evaluate AAA wall segmentation 

performance (Equation 3-1).  
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3.5 Patch Segmentation UNet: Prediction of Aneurysm Wall by Medical Image Sub-

volumes 

3.5.1 Medical Image & Data Preprocessing 

The following study used the AAA Wall dataset. Each image and annotation pair was 

resampled to 256x256x64. As before, each CTA was z-normalized and annotation was binarized 

to include the AAA wall, exclusively.  

3.5.2 Model Development 

 

Figure 6: Patch Segmentation UNet 
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Depicts the Patch Segmentation UNet methodology where a) represents the original computed tomography 

angiography (CTA) image; b) represents the previous resampled to 256x256x64 and z-normalized; c) depicts 

the previous split into four patches each of size 128x128x64; d) indicates the 3D UNet used for subvolume 

segmentation; e) displays the AAA wall volume at size 128x128x64 amongst four patches; f) represents the 

reconstituted AAA wall volume at 256x256x64; and g) is the previous at the identical frame of reference as the 

original CTA.  

  

Under the assumption that segmentation at higher resolutions would elevate the accuracy 

associated with AAA wall segmentation, we pursue a patch-based segmentation pipeline which 

operates upon medical image sub-volumes (Figure 6) 32. We finetune the training and model 

parameters for our specific biomedical imaging endeavor.  

Training parameters were specified as batch size 2, learning rate 1e-5, epochs 27, and 

AdamW optimizer with weight decay 1e-5. As part of the training process, 6 samples of size 

128x128x64 sub-volumes were randomly taken from the input 256x256x64 CTAs with uniform 

probability. The model parameters were specified as 4 encoding blocks, linear up-sampling, and 

the parametric rectified linear unit (PReLU) as the activation function. The model was trained with 

the 128x128x64 z-normalized CTA sub-volumes serving as the input and the image background 

(0) and AAA wall (1) serving as the mutually exclusive targets. Data augmentation consisted of 

random flipping, noise, and intensity image transformations. 

Given the chance that the image sub-volume contained no instance of the AAA wall, we 

adopt the Generalized Dice Loss (GDL) in lieu of the DL implemented for fitting prior models. 

Mathematically, the GDL applies the weight of the inverse of the class label volume squared when 

computing the losses associated with each class, background and the AAA wall (i.e., a class 

weighted average of the loss) 33. In effect, the contribution towards the loss of an incorrectly 
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predicted AAA wall is much greater than the same for the background, despite the AAA volume 

being much smaller than the background. In sum, the GDL is designed to reduce the class 

imbalance posed by multiclass segmentation.  

3.5.3 Performance Evaluation 

As part of model inference, the 256x256x64 z-normalized CTA is split into patches of 

128x128x64 sub-volumes. The model’s inference pipeline predicts the probability map of each 

sub-volume being associated with either the background or AAA wall, though following the 

application of the channel-wise softmax function and reconstitution of sub-volumes, these 

predictions are later binarized to include the AAA wall, exclusively. These predictions of size 

256x256x64 voxels are resampled to the original patient’s CTA frame of reference using nearest 

neighbor interpolation and later evaluated for segmentation accuracy (Equation 3-1).  

We implemented the Anderson-Darling test to determine the distribution of the test set 

asymptomatic AAA wall DSCs of BB-AAA-UNet v. Patch Segmentation UNet. After, we applied 

the appropriate test for statistical significance, t-test for normal distributions or Mann-Whitney U 

and Wilcoxon rank-sum for non-normal distributions. The process was repeated for symptomatic 

cases. For all tests, a = 5e-2.  
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3.6 AAA Image Transformers: Classifying Medical Images by Aneurysm Severity with 

Latent Representations 

3.6.1 Medical Image & Data Preprocessing 

The following study used the AAA Wall dataset. For the first stage of training, each image 

and annotation pair was resampled to 64x64x64 voxels before each CTA was z-normalized and 

each annotation was binarized to the AAA lumen, ILT, and wall. Patients with asymptomatic cases 

were labelled as the negative class while the symptomatic cases were labelled as the positive class. 

Thus, the presence of AAA symptoms served as an estimate for AAA severity (i.e., positive cases 

being more severe). Severity is a proxy to rupture risk, a limitation to our data gathering efforts.  

3.6.2 Model Development 

 

Figure 7: CNN Encoder & Decoder 

The 3D UNet consists of contracting path (encoder) followed by an expanding path (decoder). The 3D UNet’s 

bottleneck layer (feature map) can contain meaningful information on the region the model was trained to 

segment.  
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A pretrained 3D UNet’s contracting path can serve as an image transformer, converting 

CTAs into their corresponding neural embeddings, or numerical vectors which contain feature 

representations on the region the model was trained to segment, or the AAA (Figure 7).  

 

Figure 8: Representation Learning 

Describes the representation learning workflow where a) displays the original patient computed tomography 

angiography (CTA); b) is the same resampled to 64x64x64 voxels and z-normalized; c) is the pretrained 

encoding or contracting path of the 3D UNet; d) the latent representation or neural embedding of the input 

CTA; e) depicts the neural network engineered for volumetric classification tasks. Following the optimization 

of probability thresholds governing the model prediction of positive v. negative classes, the final asymptomatic 

vs symptomatic predictions are given. Note, f) represents how the embedding serves as a latent representation 

of the abdominal aortic aneurysm (AAA).  

 

We adopt a representation learning pipeline which involves converting CTAs to latent 

representations prior to neural net classification (Figure 8). The contracting path, or encoder, is 

extracted from a localization model. This pretrained encoder is applied to each 64x64x64 z-

normalized CTA, serving as an image transformer which generates the corresponding patient-
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specific 2048x4x4x4 neural embeddings from the bottleneck layer. The belief is that the 

transformed feature representation of the anatomical region the segmentation model was trained 

to identify contains characteristics which differentiate between asymptomatic and symptomatic 

AAAs. Each of the patient-specific embeddings are reshaped to 64x64x32 and z-normalized.  

 

Figure 9: Skip Connection 

The characteristic building block (skip connection) of a 3D ResNet designed for training deeper neural 

networks, or more layers. Adapted from Deep Residual Learning for Image Recognition 34. 

 

Several 3D residual neural networks (ResNets) underpinned on skip connections are 

trained to identify these neural embeddings as either the positive or negative class, fit according to 

the cross-entropy loss (Figure 9) 34, 35, 36.  

We first perform a baseline study by classifying the 64x64x64 z-normalized CTA images 

directly using the 3D ResNet. Training parameters for the image classifier were specified as batch 

size 4, learning rate 1e-4, and epochs 150.  

We then conduct an image transformer study leveraging the encoding path of a class 

agnostic segmentation model derived from the first stage localizer as described in the BB-AAA-

UNet when applied for AAA wall segmentation, which predicts AAA lumen, ILT, and wall. The 

training parameters of the embedding classifier were batch size 4, learning rate 5e-7, and epochs 

300.  
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The remaining two image transformer studies utilize the encoding paths of class specific 

segmentation models. The asymptomatic and symptomatic UNets were trained upon the 38 

asymptomatic and 35 symptomatic cases from the training set, respectively and exclusively. 

Identical training and model parameters to the first stage localizer as described for AAA wall 

segmentation of BB-AAA-UNet were applied though the number of epochs trained was 50. For 

the embeddings derived from the asymptomatic segmentation encoder, the training parameters of 

the embedding classifier were set to batch size 4, learning rate 1e-06, and epochs 300. For the 

embeddings derived from the symptomatic segmentation encoder, training parameters of the 

embedding classifier were specified as batch size 4, learning rate 1e-06, and epochs 300. In sum, 

we present one baseline and three image transformer studies.  

3.6.3 Performance Evaluation 

The softmax function was applied to the 3D ResNet’s predicted, unnormalized logits to 

ensure the probability of the negative class was p and the same for the positive class was 1 – p per 

patient-specific embedding. The area under the receiver operating characteristic curve (AUC) is a 

threshold agnostic measurement of classification performance between the probability of the 

positive class and the class labels. As influenced by the AUC, we search for the optimal probability 

threshold (OPT) of p by which to define the threshold for the positive and negative predictions as 

informed by the training set and later applied to the test set. The OPT is determined by the top 

accuracy achieved by setting the threshold for the positive class. The precision, negative predictive 

value, recall, specificity, and F1 are reported as well. These metrics fully capture class specific 

variation in performance, ensuring both an accurate and balanced model.  
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3.7 AAA-ViT: Moving Towards Detection with Classification of Aneurysm Severity with 

Anatomical Explanation 

3.7.1 Medical Image & Data Preprocessing 

The following study involved the AAA Wall dataset. Each patient CTA was resampled to 

128x128x64 voxels prior to z-normalization. Identical to the AAA Image Transformer study, 

patients with asymptomatic cases were labelled as the negative class while the symptomatic cases 

were labelled as the positive class under the assumption that symptoms imply greater disease 

severity. 

3.7.2 Model Development 

 

Figure 10: Vision Transformer 

Represents the methodology and objective associated with AAA-ViT where a) represents the original patient 

computed tomography angiography (CTA); b) is the same resampled to 128x128x64 voxels and z-normalized; 
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c) represents the processes underlying the vision transformer (ViT). During the forward pass, the ViT projects 

a sequence of flattened patches following a 3D convolution across each portion of the input image. The resulting 

patch + positional embeddings are passed through a transformer encoder, before culminating in a multilayer 

perceptron which predicts the class probabilities [0, N) with N classes. Following the optimization of probability 

thresholds governing the model prediction of positive v. negative classes, the final asymptomatic vs 

symptomatic predictions are given. 

 

Transformers have been predominantly applied to natural language processing (NLP) 

studies, though in more recent years, such algorithms have been embraced for vision tasks as well. 

Serving as both an extension and advancement of our previous work on image transformers, we 

engineer a 3D ViT which classifies the AAA severity from medical images. Authors had reported 

a 2D ViT which provides class specific visualization for attention models 37. By altering the 2D 

convolutional operation confined within the model’s patch embedding layer to 3D, the model has 

been modified to accept 3D medical image inputs. The ViT converts medical images of pre-

specified sizes into tokens based upon pre-specified volume sizes (i.e., where each token represents 

an image patch). Following projection, the positional + patch embeddings are passed through a 

series of self-attention and transformer-encoder layers, culminating in a multilayer perceptron 

which determines the image’s probability associated with belonging to [0, N) classes (Figure 10). 

As such, the embedding process and classification task are unified into a single, cohesive model 

unlike the image transformers we presented earlier.  
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Figure 11: Transformer Encoder 

Illustrates the transformer encoder architecture. The patch embeddings are passed through 1) a normalization 

layer, 2) a multi-head attention module, 3) before combining with the original input via skip connection, 4) 

after which the input passes through a secondary normalization layer, 5) as well as a multilayer perceptron, 

and 6) finally combining with the intermediate via the second skip connection. Vision transformers (ViTs) 

employ self-attention, a mechanism which relates embeddings with respect to each other.  

 

The attention mechanism is based upon the notion that certain pieces of information are 

more instructive and relevant than other pieces of information 38. In the field of NLP, attention 

mechanisms allow models to focus on specific sets of words within a sentence. However, in 

contrast to attention which focuses on which embeddings relate to the desired task, ViTs utilize 

self-attention which considers how embeddings relate with respect to each other (Figure 11). 

Leveraging the attention layers, we indicate the anatomical regions of the medical image the model 

concentrates upon when forming its prediction in a class specific manner.  
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Figure 12: Class Specific Heatmaps 

Details the heatmap generation procedure where a) represents the input class or model prediction from one of 

[0, N) classes; b) is the pretrained 3D ViT; c) is the original patient CTA; d) is the same resampled to 128x128x64 

voxels; e) applies the layer-wise relevance propagation based upon the input; and f) indicates the class specified 

heatmap [0, N) which is generated. Note, however, that since the heatmaps are class-specific, multiple heatmaps 

of the same image can be generated regardless of the model’s prediction.  

 

Heatmap visualization can involve three separate aspects: 1) gradient-based propagation in 

which the gradient is calculated with respect to the previous input layer, a procedure known as 

backpropagation; 2) attribution-based propagation which considers the contribution of all previous 

layers, including the input; and 3) attention scores which are derived from the self-attention head. 

Gradient-based propagation are class insensitive and attention scores do not consider the 

information obtained throughout the model 37. Layer-wise relevance propagation (LRP), an 

attribution-based technique, underpinned on the Deep Taylor Decomposition, propagates 

relevance with respect to the predicted class 39, 40. The method described by the heatmap 

algorithm’s original authors, and consequently used in our own study, implements a LRP inspired 

relevance to calculate the scores for each attention head of the transformer’s layers. By considering 

the relevancy and gradient information while minimizing negative contributions, the scores are 
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combined across the attention graph. In sum, a class-specific visualization (i.e., not constrained to 

the predicted class) can be provided from the pretrained 3D ViT (Figure 12) 37.  

AAA-ViT was trained upon the 128x128x64 z-normalized CTAs with the class labels 

serving as the target and was fit according to the cross-entropy loss. The model employed a patch 

size of 16x16x8, embedding dimension 256, depth 12, number of heads 8, multilayer perceptron 

ratio 8, dropout probability 10%, and attention dropout probability 10%. Model training 

parameters were specified as batch size 12, learning rate 5e-6, epochs 200, and optimizer AdamW 

with weight decay 5e-4. To prevent the model from overfitting, image augmentation consisted of 

random rotations, flipping, and noise.  

3.7.3 Performance Evaluation 

The softmax function was applied to AAA-ViT’s predicted, unnormalized logits to ensure 

the probability of the negative class was p and the same for the positive class was 1 – p per patient-

specific image. Similar to the AAA Image Transformer study, we compute the AUC between the 

probability of the positive class and the class labels, and later search for the OPT as defined by the 

training set, collecting the aforementioned performance metrics in the process.  

For patient-specific heatmap generation, we provide the LRP based algorithm with the 

128x128x64 z-normalized CTA, pretrained AAA-ViT, and specify the negative class label. The 

method produces several tokens which are reshaped based upon the model input dimensions and 

patch size, or 8x8x8 as specified in our study. These 8x8x8 tokens are then scaled to the model 

input dimensions of 128x128x64 using trilinear interpolation. Using b-spline interpolation as well 

as the information provided by the original patient CTA, the heatmap is set to the identical frame 

of reference as the original patient CTA, 512x512 where the z-dimension varied, before being 
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normalized between 0 and 1. This process is repeated for the positive class, generating two class-

specific heatmaps per patient image. Note that by default, the heatmap of the model predicted class 

will be produced. The average precision (AP) score, a threshold agnostic measurement, is 

computed between the heatmaps and the labels inclusive of the AAA lumen, ILT, and wall to 

determine the anatomical regions the model focuses upon.  
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4.0 Results 

Note, the DSC ranges from 0 to 1 where 1 is considered perfectly accurate. The whiskers 

of the boxplot indicate the distribution of the data, except for outliers identified via the inter-

quartile range (i.e., Q1 – 1.5*IQR & Q3 + 1.5*IQR where Q1 is the first quartile, Q3 is the third 

quartile, and IQR is the interquartile range).  

4.1 AAA-UNet: Baseline Aneurysm Segmentation 

 

Figure 13: Train & Test AAA Lumen DSC for AAA-UNet 

Displays the dice score coefficient (DSC) performance of AAA-UNet. The training set with 24 patients achieved 

mean 0.74, std 0.18, Q1 0.71, median 0.79, and Q3 0.81. The test set with 30 patients achieved mean 0.63, std 

0.25, Q1 0.52, median 0.72, and Q3 0.81.  

 

The model achieved mean 0.74 and median 0.79 DSCs for the training set while the same 

for the test set were 0.63 and 0.72, respectively (Figure 13).  
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Figure 14: Train & Test AAA Lumen DSC by Hospital for AAA-UNet 

Displays the dice score coefficient (DSC) performance of AAA-UNet for each hospital subgroup. For NMH, the 

training set with 13 patients achieved mean 0.74, std 0.10, Q1 0.69, median 0.76, and Q3 0.81 while the test set 

with 15 patients achieved mean 0.65, std 0.25, Q1 0.62, median 0.72, and Q3 0.82. For AGH, the training set 

with 11 patients achieved mean 0.73, std 0.24, Q1 0.77, median 0.80, and Q3 0.81 while the test set with 15 

patients achieved mean 0.60, std 0.25, Q1 0.45, median 0.72, and Q3 0.78.  

 

For NMH, the model achieved DSCs of mean 0.74 and median 0.76 for the training set 

while the same for the test set were 0.65 and 0.72, respectively. For AGH, the training set achieved 

DSCs of mean 0.73 and median 0.80 while the same for the test set were 0.60 and 0.72, respectively 

(Figure 14).  
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Figure 15: Train & Test AAA Lumen DSC by Treatment for AAA-UNet 

Displays the dice score coefficient (DSC) performance of AAA-UNet for each treatment indication. For the 

surveillance subgroup, the training set with 15 patients achieved mean 0.78, std 0.10, Q1 0.74, median 0.81, and 

Q3 0.84 while the test set with 18 patients achieved mean 0.61, std 0.26, Q1 0.52, median 0.71, and Q3 0.81. For 

the elective repair subgroup, the training set with 9 patients achieved mean 0.67, std 0.25, Q1 0.69, median 0.77, 

and Q3 0.80 while the test set with 12 patients achieved mean 0.65, std 0.24, Q1 0.57, median 0.74, and Q3 0.80.  

 

For surveillance, the model achieved DSCs of mean 0.78 and median 0.81 while the same 

for the test set were 0.61 and 0.71, respectively. For elective repair, the training set achieved mean 

0.67 and median 0.77 while the same for the test set were 0.65 and 0.74, respectively (Figure 15).  

 

 

Figure 16: AAA Lumen Segmentation Result for AAA-UNet (Surveillance) 
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Illustrates the AAA-UNet test set performance where a) depicts a computed tomography angiography (CTA) 

image recommended for surveillance at NMH; b) depicts the ground truth abdominal aortic aneurysm (AAA) 

lumen label; and c) depicts the predicted segmentation of the previous which achieved dice score coefficient 

(DSC) of 0.84.  

 

 

Figure 17: AAA Lumen Segmentation Result for AAA-UNet (Elective Repair) 

Illustrates the AAA-UNet test set performance where a) depicts a computed tomography angiography (CTA) 

image recommended for elective repair at AGH; b) depicts the ground truth abdominal aortic aneurysm (AAA) 

lumen label; and c) depicts the predicted segmentation of the previous which achieved dice score coefficient 

(DSC) of 0.88. 

 

The predicted segmentations appear to suffer from the effects of low image resolution and 

interpolation as seen by the ill-defined boundaries (Figures 16 and 17).  

4.2 BB-AAA-UNet: Memory Efficient High-Resolution Segmentation with Prior Aneurysm 

Localization 

Note, the DSC ranges from 0 to 1 where 1 is considered perfectly accurate. The whiskers 

of the boxplot indicate the distribution of the data, except for the outliers.  
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Figure 18: Train and Test AAA Lumen DSC for BB-AAA-UNet 

Displays the dice score coefficient (DSC) performance of BB-AAA-UNet. The training set with 24 patients 

achieved mean 0.80, std 0.19, Q1 0.79, median 0.85, and Q3 0.91. The test set with 30 patients achieved mean 

0.70, std 0.33, Q1 0.63, median 0.85, and Q3 0.91.  

 

The model achieved DSCs of mean 0.80 and median 0.85 for the training set and the same 

for the test set were 0.70 and 0.85, respectively (Figure 18).  

 

 

Figure 19: Train & Test AAA Lumen DSC by Hospital for BB-AAA-UNet 
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Displays the dice score coefficient (DSC) performance of BB-AAA-UNet for each hospital subgroup. For NMH, 

the training set with 13 patients achieved mean 0.80, std 0.11, Q1 0.73, median 0.81, and Q3 0.87 while the test 

set with 15 patients achieved mean 0.75, std 0.30, Q1 0.74, median 0.89, and Q3 0.94. For AGH, the training set 

with 11 patients achieved mean 0.80, std 0.27, Q1 0.82, median 0.90, and Q3 0.92 while the test set with 15 

patients achieved mean 0.65, std 0.35, Q1 0.39, median 0.84, Q3 0.88.  

 

For NMH, the model achieved DSCs of mean 0.80 and median 0.81 for the training set 

while the same for the test set were 0.75 and 0.89, respectively. For AGH, the model achieved 

DSCs of mean 0.80 and median 0.90 while the same for the test set were 0.65 and 0.84, respectively 

(Figure 19).  

 

Figure 20: Train & Test AAA Lumen DSC by Treatment for BB-AAA-UNet 

Displays the dice score coefficient (DSC) performance of BB-AAA-UNet for each treatment indication. For the 

surveillance subgroup, the training set with 15 patients achieved mean 0.84, std 0.11, Q1 0.82, median 0.87, and 

Q3 0.92 while the test set with 18 patients achieved mean 0.67, std 0.36, Q1 0.63, median 0.84, and Q3 0.92. For 

the elective repair subgroup, the training set with 9 patients achieved mean 0.73, std 0.28, Q1 0.77, median 0.81, 

and Q3 0.89 while the test set with 12 patients achieved mean 0.73, std 0.29, Q1 0.72, median 0.85, and Q3 0.90.  
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For surveillance, the model achieved DSCs of mean 0.84 and median 0.87 for the training 

set while the same for the test set were 0.67 and 0.84, respectively. For elective repair, the model 

achieved DSCs of mean 0.73 and median 0.81 while the same for the test were 0.73 and median 

0.85, respectively (Figure 20).  

 

 

Figure 21: AAA Lumen Segmentation Result for BB-AAA-UNet (Surveillance) 

Illustrates the BB-AAA-UNet test set performance where a) depicts the computed tomography angiography 

(CTA) image recommended for surveillance at NMH; b) depicts the ground truth abdominal aortic aneurysm 

(AAA) lumen label; c) depicts BB-AAA-UNet’s localized predicted segmentation of the AAA lumen, 

intraluminal thrombus (ILT), and calcifications; d) depicts the bounding box of the previous predicted 

segmentation applied to the CTA; e) depicts BB-AAA-UNet’s high resolution predicted segmentation of the 

AAA lumen; and f) depicts the re-insertion of the high-resolution segmentation into the original CTA frame of 

reference, achieving a dice score coefficient (DSC) of 0.95.   
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Figure 22: AAA Lumen Segmentation Result for BB-AAA-UNet (Elective Repair) 

Illustrates the BB-AAA-UNet test set performance where a) depicts the computed tomography angiography 

(CTA) image recommended for elective repair at AGH; b) depicts the ground truth abdominal aortic aneurysm 

(AAA) lumen label; c) depicts BB-AAA-UNet’s localized predicted segmentation of the AAA lumen, 

intraluminal thrombus (ILT), and calcifications; d) depicts the bounding box of the previous predicted 

segmentation applied to the CTA; e) depicts BB-AAA-UNet’s high resolution predicted segmentation of the 

AAA lumen; and f) depicts the re-insertion of the high-resolution segmentation into the original CTA frame of 

reference, achieving a dice score coefficient (DSC) of 0.94.   

 

The predicted segmentations are of higher quality owing to the mitigation of interpolation 

effects; however, small regions of the AAA lumen appear flattened due to the bounding box 

(Figures 22 and 23). For the Anderson Darling test, both statistics associated with AAA-UNet and 

BB-AAA-UNet test set DSCs were found to be above the respective critical values for a = 5e-2. . 

The same was true for the Mann-Whitney U and Wilcoxon rank-sum tests with p-values < 1e-2.  
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4.3 BB-AAA-UNet: As Applied to Aneurysm Wall Segmentation 

Note, the DSC ranges from 0 to 1 where 1 is considered perfectly accurate. The whiskers 

of the boxplot indicate the distribution of the data, except for the outliers.  

 

 

Figure 23: Train & Test AAA Wall DSC for BB-AAA-UNet 

Displays the dice score coefficient (DSC) performance of BB-AAA-UNet. The training set with 73 patients 

achieved mean 0.37, std 0.15, Q1 0.29, median 0.39, and Q3 0.47. The test set with 50 patients achieved mean 

0.35, std 0.16, Q1 0.23, median 0.37, and Q3 0.48.  

 

The model achieved DSCs of mean 0.37 and median 0.39 for the training set and the same 

for the test set were 0.35 and 0.37, respectively (Figure 23).  
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Figure 24: Train & Test AAA Wall DSC by Severity for BB-AAA-UNet 

Displays the dice score coefficient (DSC) performance of BB-AAA-UNet based upon AAA severity. For the 

asymptomatic subgroup, the training set with 38 patients achieved mean 0.37, std 0.16, Q1 0.29, median 0.41, 

and Q3 0.49 while the test set with 25 patients achieved mean 0.37, std 0.17, Q1 0.24, median 0.41, and Q3 0.50. 

For the symptomatic subgroup, the training set with 35 patients achieved mean 0.36, std 0.14, Q1 0.29, median 

0.38, and Q3 0.46 while the test set with 25 patients achieved mean 0.32, std 0.16, Q1 0.22, median 0.33, Q3 0.45.  

 

For the asymptomatic subgroup, the model achieved DSCs of mean 0.37 and median 0.41 

for the training set while the same for the test set were 0.37 and 0.41, respectively. For the 

symptomatic subgroup, the model achieved DSCs of mean 0.36 and median 0.38 while the same 

for the test set were 0.32 and 0.33, respectively (Figure 24).  
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Figure 25: Train & Test AAA Wall DSC by Rupture for BB-AAA-UNet 

Displays the dice score coefficient (DSC) performance of BB-AAA-UNet based upon the wall rupture status for 

the symptomatic subgroup with asymptomatic provided as reference. For the asymptomatic subgroup, the 

training set with 38 patients achieved mean 0.37, std 0.16, Q1 0.29, median 0.41, and Q3 0.49 while the test set 

with 25 patients achieved mean 0.37, std 0.17, Q1 0.24, median 0.41, and Q3 0.50. For the ruptured wall 

subgroup, the training set with 5 patients achieved mean 0.39, std 0.14, Q1 0.39, median 0.41, and Q3 0.48 while 

the test set with 4 patients achieved mean 0.37, std 0.17, Q1 0.26, median 0.37, and Q3 0.48. For the unruptured 

wall subgroup, the training set with 30 patients mean 0.35, std 0.14, Q1 0.29, median 0.37, and Q3 0.45 while 

the test set with 21 patients achieved mean 0.31, std 0.16, Q1 0.22, median 0.33, and Q3 0.43.  

 

For the ruptured wall subgroup, the model achieved DSCs of mean 0.39 and median 0.41 

for the training set while the same for the test set were 0.37 and 0.37, respectively. For the 

unruptured wall subgroup, the model achieved DSCs of mean 0.35 and median 0.37 while the 

same for the test set were 0.31 and 0.33, respectively (Figure 25).  
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Figure 26: AAA Wall Segmentation Result of BB-AAA-UNet (Asymptomatic) 

Illustrates the BB-AAA-UNet test set performance where a) depicts the computed tomography angiography 

(CTA) image labelled as asymptomatic; b) depicts the ground truth abdominal aortic aneurysm (AAA) wall; 

c) depicts BB-AAA-UNet’s localized predicted segmentation of the AAA lumen, intraluminal thrombus (ILT), 

and wall; d) depicts the bounding box of the previous predicted segmentation applied to the CTA; e) depicts 

BB-AAA-UNet’s high resolution predicted segmentation of the AAA wall; f) depicts the re-insertion of the high-

resolution segmentation into the original CTA frame of reference, achieving a dice score coefficient (DSC) of 

0.65; and g) highlights the previous from the top.  
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Figure 27: AAA Wall Segmentation Result of BB-AAA-UNet (Symptomatic, Ruptured) 

Illustrates the BB-AAA-UNet test set performance where a) depicts the computed tomography angiography 

(CTA) image labelled as symptomatic, ruptured wall; b) depicts the ground truth abdominal aortic aneurysm 

(AAA) wall; c) depicts BB-AAA-UNet’s localized predicted segmentation of the AAA lumen, intraluminal 

thrombus (ILT), and wall; d) depicts the bounding box of the previous predicted segmentation applied to the 

CTA; e) depicts BB-AAA-UNet’s high resolution predicted segmentation of the AAA wall; f) depicts the re-

insertion of the high-resolution segmentation into the original CTA frame of reference, achieving a dice score 

coefficient (DSC) of 0.56; and g) highlights the previous from the top.  
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Figure 28: AAA Wall Segmentation Result of BB-AAA-UNet (Symptomatic, Unruptured) 

Illustrates the BB-AAA-UNet test set performance where a) depicts the computed tomography angiography 

(CTA) image labelled as symptomatic, unruptured wall; b) depicts the ground truth abdominal aortic 

aneurysm (AAA) wall; c) depicts BB-AAA-UNet’s localized predicted segmentation of the AAA lumen, 

intraluminal thrombus (ILT), and wall; d) depicts the bounding box of the previous predicted segmentation 

applied to the CTA; e) depicts BB-AAA-UNet’s high resolution predicted segmentation of the AAA wall; f) 

depicts the re-insertion of the high-resolution segmentation into the original CTA frame of reference, achieving 

a dice score coefficient (DSC) of 0.56; and g) highlights the previous from the top. 

 

The predicted segmentations are consistent with the outer wall of the AAA. However, the 

bounding box which is responsible for reducing the effects of interpolation appears to cut the 

volume of interest (Figures 26, 27, and 28).  
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4.4 Patch Segmentation UNet: Prediction of Aneurysm Wall by Medical Image Sub-

volumes 

Note, the DSC ranges from 0 to 1 where 1 is considered perfectly accurate. The whiskers 

of the boxplot indicate the distribution of the data, except for the outliers.  

 

 

Figure 29: AAA Wall Train & Test DSC for Patch Segmentation UNet 

Displays the dice score coefficient (DSC) performance of the Patch Segmentation UNet . The training set with 

73 patients achieved mean 0.40, std 0.17, Q1 0.29, median 0.44, and Q3 0.53. The test set with 50 patients 

achieved mean 0.37, std 0.19, Q1 0.19, median 0.40, and Q3 0.53.  

 

The model achieved DSCs of mean 0.40 and median 0.44 for the training set and the same 

for the test set were 0.37 and 0.40, respectively (Figure 29).  
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Figure 30: AAA Wall Train & Test DSC by Severity for Patch Segmentation UNet 

Displays the dice score coefficient (DSC) performance of the Patch Segmentation UNet based upon AAA 

severity. For the asymptomatic subgroup, the training set with 38 patients achieved mean 0.44, std 0.16, Q1 

0.41, median 0.47, and Q3 0.55 while the test set with 25 patients achieved mean 0.42, std 0.19, Q1 0.29, median 

0.51, and Q3 0.54. For the symptomatic subgroup, the training set with 35 patients achieved mean 0.35, std 

0.17, Q1 0.22, median 0.34, and Q3 0.48 while the test set with 25 patients achieved mean 0.32, std 0.19, Q1 0.12, 

median 0.33, Q3 0.48.  

 

For the asymptomatic subgroup, the model achieved DSCs of mean 0.44 and median 0.47 

for the training set while the same for the test set were 0.42 and 0.51, respectively. For the 

symptomatic subgroup, the model achieved DSCs of mean 0.35 and median 0.34 while the same 

for the test set were 0.32 and 0.33, respectively (Figure 30).  
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Figure 31: AAA Wall Train & Test DSC by Rupture for Patch Segmentation UNet 

Displays the dice score coefficient (DSC) performance of the Patch Segmentation UNet based upon the wall 

rupture status for the symptomatic subgroup with asymptomatic provided as reference. For the asymptomatic 

subgroup, the training set with 38 patients achieved mean 0.44, std 0.16, Q1 0.41, median 0.47, and Q3 0.55 

while the test set with 25 patients achieved mean 0.42, std 0.19, Q1 0.29, median 0.51, and Q3 0.54. For the 

ruptured wall subgroup, the training set with 5 patients achieved mean 0.44, std 0.16, Q1 0.29, median 0.48, 

and Q3 0.54 while the test set with 4 patients achieved mean 0.46, std 0.14, Q1 0.36, median 0.46, and Q3 0.56. 

For the unruptured wall subgroup, the training set with 30 patients mean 0.34, std 0.17, Q1 0.21, median 0.33, 

and Q3 0.46 while the test set with 21 patients achieved mean 0.30, std 0.19, Q1 0.11, median 0.31, and Q3 0.44. 

 

For the ruptured wall subgroup, the model achieved DSCs of mean 0.44 and median 0.48 

for the training set while the same for the test set were 0.46 and 0.46, respectively. For the 

unruptured wall subgroup, the model achieved DSCs of mean 0.34 and median 0.33 while the 

same for the test set were 0.30 and 0.31, respectively (Figure 31).  
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Figure 32: AAA Wall Segmentation Result of Patch Segmentation UNet (Asymptomatic) 

Illustrates the Patch Segmentation UNet test set performance where a) depicts the computed tomography 

angiography (CTA) image that was labelled as asymptomatic; b) depicts the ground truth abdominal aortic 

aneurysm (AAA) wall; c) depicts the Patch Segmentation UNet’s prediction; d) displays the top view of the 

ground truth AAA wall; e) displays the top view of the Patch Segmentation UNet’s prediction. The model’s 

predicted segmentation achieved a dice score coefficient (DSC) of 0.66.  

 

 

Figure 33: AAA Wall Segmentation Result of Patch Segmentation UNet (Symptomatic, Unruptured)  

Illustrates the Patch Segmentation UNet test set performance where a) depicts the computed tomography 

angiography (CTA) image that was labelled as symptomatic, unruptured wall; b) depicts the ground truth 

abdominal aortic aneurysm (AAA) wall; c) depicts the Patch Segmentation UNet’s prediction; d) displays the 
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top view of the ground truth AAA wall; e) displays the top view of the Patch Segmentation UNet’s prediction. 

The model’s predicted segmentation achieved a dice score coefficient (DSC) of 0.61. 

 

 

Figure 34: AAA Wall Segmentation Result of Patch Segmentation UNet (Symptomatic, Ruptured) 

Illustrates the Patch Segmentation UNet test set performance where a) depicts the computed tomography 

angiography (CTA) image that was labelled as symptomatic, ruptured wall; b) depicts the ground truth 

abdominal aortic aneurysm (AAA) wall; c) depicts the Patch Segmentation UNet’s prediction; d) displays the 

top view of the ground truth AAA wall; e) displays the top view of the Patch Segmentation UNet’s prediction. 

The model’s predicted segmentation achieved a dice score coefficient (DSC) of 0.61. 

 

As before, the predicted segmentations are consistent with the outer wall of the AAA. 

However, despite the removal of the bounding box, the effects of interpolation are still present 

(Figures 32, 33, and 34). For the asymptomatic test set AAA wall DSCs, BB-AAA-UNet’s 

Anderson Darling statistic was below the respective critical value while the same for Patch 

Segmentation UNet was above the respective critical value. The Mann-Whitney U and Wilcoxon 

rank-sum tests determined p-values = 0.21 and 0.20, respectively. For the symptomatic test set 

AAA wall DSCs, the Anderson Darling statistics of both BB-AAA-UNet Patch Segmentation 

UNet were below their respective critical values. The t-test determined p-value = 0.98.  
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4.5 AAA Image Transformers: Classifying Medical Images by Aneurysm Severity with 

Latent Representations 

Asymptomatic cases were labelled as the negative class whereas the symptomatic cases 

were labelled as the positive class. 

 

Table 1: Baseline Image Classification Performance 

Details the classification performance of the image classifier on the AAA Wall dataset, specifically the 64x64x64 

z-normalized computed tomography angiography (CTA) images. The optimal probability threshold (OPT) is 

noted.  

 

 

 

Figure 35: Baseline Image Classification by OPT 

Details the classification performance by patient sample of the image classifier based upon the optimal 

probability threshold (OPT) of 0.59 where a) represents the training set; and b) represents the test set. The 

class labels are specified on the y-axis and the model predictions are specified on the x-axis.  
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For the baseline CTA image set, the classifier achieves AUCs of 0.80 and 0.74 for the train 

and test sets, respectively (Table 1 and Figure 35). Retrieving the OPT from the baseline image 

study significantly boosted the accuracy to ~70% for the test set.  

 

Table 2: Class Agnostic Embedding Classification Performance 

Details the classification performance of the class agnostic embedding classifier on the AAA Wall dataset, 

specifically the 64x64x32 z-normalized embeddings from the class agnostic image transformer. The optimal 

probability threshold (OPT) is noted.  

 

 

 

Figure 36: Class Agnostic Embedding Classification by OPT 

Details the classification performance by patient sample of the class agnostic embedding classifier based upon 

the optimal probability threshold (OPT) of 0.47 where a) represents the training set; and b) represents the test 

set. The class labels are specified on the y-axis and the model predictions are specified on the x-axis.  
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For the embeddings derived from the class agnostic image transformer, the classifier 

achieves AUCs of 0.83 and 0.67 for the train and test sets, respectively (Table 2 and Figure 36). 

 

Table 3: Asymptomatic Embedding Classification Performance 

Details the classification performance of the asymptomatic embedding classifier on the AAA Wall dataset, 

specifically the 64x64x32 z-normalized embeddings from the asymptomatic image transformer. The optimal 

probability threshold (OPT) is noted.  

 

 

 

Figure 37: Asymptomatic Embedding Classification by OPT 

Details the classification performance by patient sample of the asymptomatic embedding classifier based upon 

the optimal probability threshold (OPT) of 0.43 where a) represents the training set; and b) represents the test 

set. The class labels are specified on the y-axis and the model predictions are specified on the x-axis.  

 

For the embeddings derived from the asymptomatic image transformer, the classifier 

achieves AUCs of 0.88 and 0.75 for the train and test sets, respectively (Table 3 and Figure 37). 
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The asymptomatic embedding classifier outperforms the baseline after application of the 

respective OPT, test set accuracy of 76% vs 70%. Though, there are signs of overfitting.  

 

Table 4: Symptomatic Embedding Classification Performance 

Details the classification performance of the symptomatic embedding classifier on the AAA Wall dataset, 

specifically the 64x64x32 z-normalized embeddings from the symptomatic image transformer. The optimal 

probability threshold (OPT) is noted.  

 

 

 

Figure 38: Symptomatic Embedding Classification by OPT 

Details the classification performance by patient sample of the symptomatic embedding classifier based upon 

the optimal probability threshold (OPT) of 0.60 where a) represents the training set; and b) represents the test 

set. The class labels are specified on the y-axis and the model predictions are specified on the x-axis.  

For the embeddings derived from the symptomatic image transformer exclusively, the 

classification model achieved AUCs of 0.89 and 0.72 for the train and test sets, respectively (Table 
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4 and Figure 38). As such, the asymptomatic image transformer outperformed its symptomatic 

counterpart.  

4.6 AAA-ViT: Moving Towards Detection with Classification of Aneurysm Severity with 

Anatomical Explanation 

Asymptomatic cases were labelled as the negative class whereas the symptomatic cases 

were labelled as the positive class. 

 

Table 5: Classification Performance of the Vision Transformer 

Details the classification performance of AAA-ViT on the AAA Wall dataset, specifically the 128x128x64 z-

normalized CTAs. The optimal probability threshold (OPT) is noted. Asymptomatic cases were labelled as the 

negative class whereas the symptomatic cases were labelled as the positive class. 
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Figure 39: Vision Transformer Image Classification by OPT 

Details the classification performance by patient sample of AAA-ViT based upon the optimal probability 

threshold (OPT) of 0.52 where a) represents the training set; and b) represents the test set. The class labels are 

specified on the y-axis and the model predictions are specified on the x-axis.  

 

 

Figure 40: Vision Transformer Image Classification by Normal Threshold 

Details the classification performance by patient sample of AAA-ViT based upon the probability threshold of 

0.50 where a) represents the training set; and b) represents the test set. The class labels are specified on the y-

axis and the model predictions are specified on the x-axis.  

 

The 3D ViT achieved AUCs of 0.73 for both the train and test sets (Table 5 and Figures 39 

and 40). The classification performance between the positive and negative classes of the train and 

tests sets remained balanced, though the overall accuracy was limited to ~70%. AAA-ViT 

indicated no signs of overfitting.  
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Figure 41: Heatmap Results of the AAA-ViT (Asymptomatic) 

The computed tomography angiography (CTA) of a test set patient labelled as asymptomatic and predicted as 

asymptomatic at both the OPT and 0.50 threshold where a) represents the annotation of the abdominal aortic 

aneurysm (AAA) lumen in blue, intraluminal thrombus (ILT) in green, and AAA wall in red; b) represents the 

heatmap of the model predicted negative class, average precision (AP) was 0.14; and c) represents the heatmap 

of the positive class, AP was 0.01.  
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Figure 42: Heatmap Results of the AAA-ViT (Symptomatic) 

The computed tomography angiography (CTA) of a test set patient labelled as symptomatic and predicted as 

symptomatic at both the OPT and 0.50 threshold where a) represents the annotation of the abdominal aortic 

aneurysm (AAA) lumen in blue, intraluminal thrombus (ILT) in green, and AAA wall in red; b) represents the 

heatmap of the negative class, average precision (AP) was 0.04; and c) represents the heatmap of the model 

predicted positive class, AP was 0.07. 

 

The model successfully identified a region of the AAA itself and the accompanying ILT as 

seen in the heatmaps generated for the AAA-ViT predicted class (Figures 41 and 42). However, 

the model also considers the unrelated abdominal tissue and occasionally the image background.  
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Table 6: mean AP of AAA-ViT Heatmaps 

Displays the mean average precision (AP) based upon the original class label as well as the heatmap class 

indication specified for the modified layer-wise relevance propagation (LRP). Note, the mean is taken over all 

the patient APs for each dataset.  

 

 

Upon calculating the AP with respect to both a positive and negative class indication for 

the LRP based heatmap generation, it was observed that the performance remained quite low. 

Considering these metrics as well as the visual inspection, it can be inferred that the 3D ViT 

includes the AAA, but the regions of high intensities are not limited to the AAA (Table 6).  
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5.0 Discussion 

5.1 AAA-UNet: Baseline Aneurysm Segmentation 

Despite the data augmentation and regularization applied to AAA-UNet, we note that the 

model shows signs of overfitting as demonstrated by the training set performance being 

significantly higher than that of the test set. The model achieves mean 0.74 and median 0.79 DSCs 

for the training set while the same for the test set were 0.63 and 0.72, respectively. Furthermore, 

the predicted segmentations suffer from the effects of interpolation to the original frames of 

reference due to the lack of smooth boundaries along the lumen edges. While reducing model input 

dimensions alleviates compute constraints it comes at the expense of accuracy. Further, 

segmentation performance is highly variable though this can be attributed to the limited amount of 

data the model was trained upon. We observe that the surveillance cases have slightly higher 

variation in DSC performance as compared to the same for elective repair cases. Likewise, the 

AGH hospital subgroup has significantly higher variation in test set DSCs as compared to the same 

for NMH.  

5.2 BB-AAA-UNet: Memory Efficient High-Resolution Segmentation with Prior Aneurysm 

Localization 

BB-AAA-UNet still predicts with the high variance but is also less overfit. The model 

achieves DSCs of mean 0.80 and median 0.85 for the training set and the same for the test set were 
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0.70 and 0.85, respectively. As such our memory efficient computational pipeline outperforms the 

current approach to medical image segmentation described by AAA-UNet. This conclusion is 

further validated by the results of the Anderson Darling, Mann-Whitney U, and Wilcoxon rank-

sum tests. As determined by Anderson Darling, the null hypothesis is rejected, indicating a non-

normal distribution. Likewise, Mann-Whitney U and Wilcoxon rank-sum nonparametric tests 

reject the null hypothesis, indicating that test set DSCs for AAA-UNet and BB-AAA-UNet are 

significantly different.  

A limitation to 3D CNNs as compared to their 2D counterparts is the increase in GPU 

memory owing to the substantially greater number of model training parameters 41. Our novel 

computational approach enables 3D models to reap the rewards of high-resolution segmentation 

despite facing memory constrained development environments. Note, BB-AAA-UNet was trained 

in the same computational environment as AAA-UNet.  

However, a shortcoming of the methods underpinning BB-AAA-UNet is that the bounding 

box itself can crop out AAA lumen regions. In consequence, the AAA lumen can have cuts, or the 

appearance of flattened regions incongruous with the anatomical AAA geometry. Comparing the 

hospital and treatment indication subgroups, we do not observe any significant differences from 

the results reported for AAA-UNet.  

The focus of our study was accurate segmentation the AAA lumen while preserving 

memory efficiency; however, we can improve the applicability of our work by serving in lieu of 

conventional image processing pipelines. Semiautomatic segmentation of 2D CTs followed by 

reconstruction allowed researchers to compute geometric features of the ILT surface and volume 

ratios associated, enabling the investigators to observe that the ILT reduces peak wall stress 42. To 
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accelerate discovery of AAA biomechanical properties, we could modify our model to perform 

multiclass and automatic 3D segmentation of the lumen and ILT.  

5.3 BB-AAA-UNet: As Applied to Aneurysm Wall Segmentation 

We find that while BB-AAA-UNet was successful for localizing the AAA, however, the 

high-resolution segmentations suffered from poor segmentation accuracy. By visual inspection, 

the model appears to be missing specific regions of the AAA wall, generally along the boundaries. 

Despite the model showing no signs of overfitting, segmentation performance across both the train 

and tests sets never outperformed DSC of 0.50 in terms of both the mean and median DSC. 

Notably, the symptomatic subgroup had significantly lower DSC performance as compared to the 

same for the asymptomatic subgroup. Provided the results, we presume that interpolation for the 

sake of efficient training removed a significant number of relevant labels and voxels corresponding 

to the AAA wall. Nevertheless, the AAA wall that was confined to the bounding box is accurately 

segmented by BB-AAA-UNet. Automatic 3D segmentation of the AAA wall obviates the need for 

assuming uniform wall thickness when performing stress analysis of biomechanical models 43. 

5.4 Patch Segmentation UNet: Prediction of Aneurysm Wall by Medical Image Sub-

volumes 

While patch-based segmentation preserves memory efficiency, it can fail to capture the full 

global context of the medical image, or the full field of view 41. However, we specify the training 
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parameters and loss function such that each sub-volume of size 128x128x64 voxels represents ¼ 

of the total image of size 256x256x64 voxels and handle the class imbalance by incentivizing the 

model to learn the image characteristics of the AAA wall. Furthermore, larger sub-volumes are 

more likely to incorporate the AAA wall itself. The disease itself, AAAs, manifests in a single 

location, as opposed to manifesting at multiple locations across the vasculature, so preserving 

global context, or full field of view, as much as possible was necessary. Though, selecting a larger 

sub-volume size reduces the overall number of sub-volumes sampled per image. We chose a 

random sub-volume sampler as it reduces overfitting.  

As compared to our own memory efficient approach, we find that while the DSC improves 

for the asymptomatic cases, the symptomatic case performance remains the same. Patch-based 

segmentation outperforms our own memory efficient method for asymptomatic cases, but not for 

the symptomatic cases. For the test set of the asymptomatic subgroup, BB-AAA-UNet achieves 

DSCs of mean 0.37 and median 0.41 while the same for Patch Segmentation UNet is 0.42 and 

0.51, respectively. For the test set of the symptomatic subgroup, BB-AAA-UNet achieves mean 

0.32 and median 0.33 and Patch Segmentation UNet achieves 0.32 and 0.33 for the same, 

respectively. For asymptomatic cases, the null hypothesis of the Anderson Darling test is rejected 

for Patch Segmentation UNet but not for BB-AAA-UNet AAA wall DSCs. As such, we apply 

statistical tests for non-normal distributions. The following Mann-Whitney U and Wilcoxon rank-

sum tests do not reject the null hypothesis. For symptomatic cases, the null hypothesis of the 

Anderson Darling test is not rejected for both Patch Segmentation UNet and BB-AAA-UNet, 

indicating normal distributions. Thereby, the t-test determines that the AAA wall DSCs are not 

statistically different. Nevertheless, as per the reported mean and medians, there remains increase 
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in Patch Segmentation UNet’s DSC performance as compared to BB-AAA-UNet for AAA wall 

segmentation.  

The symptomatic AAAs may require a greater field of view for more robust feature 

extraction or are more variable in geometry as compared to their asymptomatic counterparts. In 

the future, we hope to train at an even higher CTA resolution of 512x512x64 voxels to further 

bolster accuracy.   

Conventional image processing pipelines for AAA or arterial wall segmentation are time 

consuming, inefficient, and prone to annotator variation for manual methods. Investigators found 

that calcification decreases AAA stability as indicated by an increase in peak wall stress after 

computing maximum stresses associated with AAA components. On the other hand, the same 

researchers noted that ILT reduced maximum AAA stress 44. As part of the study which made the 

aforementioned discoveries, a semiautomated segmentation algorithm processed 2D CTs of 20 

patients to annotate the lumen, ILT, wall, and calcifications. The authors report that 3D 

reconstruction demands 3 hours per AAA geometry 44. It was unclear whether this includes 

segmentation and/or any post-processing steps like meshing and exporting. Patch Segmentation 

UNet requires 12.5 minutes to automatically and consistently segment the AAA wall of 123 

patients (i.e., both the train and test sets) starting from a prepared model input to saving the 3D 

prediction in the original frame of reference. Note, Patch Segmentation UNet can be modified to 

predict multiple classes as in the above experiment and we perform inference in a low-cost 

development environment. Interpolation, thresholding, GPU memory, and input medical image 

dimensions are also factors which influence processing time. Our technology could augment 

downstream mechanics related computation regarding AAA anatomy in research or clinical 

settings.  
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5.5 AAA Image Transformers: Classifying Medical Images by Aneurysm Severity with 

Latent Representations 

We find that class specific image transformers can approach and even beat the 

classification performance of conventional CNNs and class agnostic image transformers. 

Classifier performance is as follows: 1) the asymptomatic embedding classifier with test set AUC 

0.75 and accuracy 76%, 2) the baseline image classifier with test set AUC 0.74 and accuracy 70%, 

3) the symptomatic embedding classifier with test set AUC 0.72 and accuracy 68%, and 4) the 

class agnostic embedding classifier with test set AUC 0.66 and 66% accuracy.  

Therefore, the latent space of less severe or asymptomatic AAAs is more meaningful than 

the same for more severe or symptomatic cases. As established by both the bounding box and 

patch segmentation methods struggling to identify AAA wall volumes of the symptomatic class, 

we can infer that the latent space of an asymptomatic image transformer is more finely tuned to 

recognize departures from the more normal anatomy as compared to the symptomatic image 

transformer’s ability to distinguish from the more diseased anatomy. Given that both class specific 

image transformers were more successful than their class agnostic counterpart, it is implied that 

the model learns in a one v. all fashion (i.e., the model has greater success at establishing the latent 

space of a single class and recognizing departures from it). 

We not only prove that segmentation models successfully encode, in the latent space, 

meaningful information beyond that found while analyzing medical images, but the same 

information is clinically relevant to informing disease severity. During hyperparameter tuning (i.e., 

selection of batch size, learning rate, epochs) of the classifier, the model was more likely to overfit 

when trained with embeddings, suggesting that better feature selection or regularization strategies 

should be adopted to further boost accuracy.  
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In a prior study, researchers used backwards stepwise linear regression to identify the most 

relevant local wall strength predictors (i.e., age, gender, AAA size, AAA normalized local 

diameter, ILT thickness, etc.). Following the identification of the significant features, the 

researchers built a linear mixed effects model for noninvasive prediction of AAA wall strength 

(i.e., spatial measures taken from CTs). While the influence of each input could be related to the 

model output, the authors cited that the statistical model could not predict wall strength outside of 

the original data range 45. The purpose of the image transformers study is to relate the intuitive 

task of segmentation to the more complex understanding of classification. The inherent advantage 

of the deep learning models we develop is that they are more robust to variation and perform 

automatic feature extraction. Thus, the models are more finely tuned to recognizing image 

characteristics beyond pre-specified metrics, trading some interpretability in consequence. 

Nevertheless, our end goal has remained to bring explainability to deep learning.  

5.6 AAA-ViT: Moving Towards Detection with Classification of Aneurysm Severity with 

Anatomical Explanation 

Our novel 3D medical image ViT approaches ~70% accuracy in the test set, similar to the 

image classifier described in the previous section. However, unlike the previously mentioned 

image transformers, the ViT not only classifies CTAs by AAA severity, but also provides 

anatomical explanation for its prediction in the form of class specific heatmaps. We observe that 

when the model predicts the correct class, the predicted heatmap of the model predicted class 

carries a strong likelihood of incorporating AAA anatomy (i.e., AAA lumen, ILT, and wall). In 

the visualizations provided, we note that the correctly predicted asymptomatic case highlights a 
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region of the AAA lumen while correctly predicted symptomatic case highlights the ILT, an image 

volume associated with elevated rupture risk.  

As such, the heatmaps of asymptomatic cases are more likely to include the lumen while 

the heatmaps for symptomatic cases are more likely to incorporate the same anatomy as well as 

surrounding features like the ILT,  calcifications, and wall. However, the ViT is not AAA specific 

because it can focus on other aspects of the image volume including the abdominal tissue. 

Therefore, we hope to elevate the AP, a measure of AAA localization by heatmap, through further 

training and tuning of the model.  

A significant limitation to ViTs is that they are described as often being data hungry as 

compared to their CNN counterparts, in part due to their lack of strong inductive bias (i.e., the 

locality – neighboring pixels are related and weight sharing – pattern searching provided by 

convolutions) 46, 47. Though, more recent methods such as student-teacher strategies which employ 

distillation tokens have been shown to maintain accuracy while remaining data efficient during 

training as well as the introduction of  convolutions to ViTs has shown promise in merging each 

architecture’s advantages  48, 49. Nevertheless, as de facto CNNs have used GRAD-CAM explain 

the anatomical basis for classification decisions in the past, we hope to accomplish the same with 

our novel 3D AAA-ViT leveraging LRP 50.  

Moving forward, we plan on reapplying our novel 3D medical image ViT for classification 

of normal v. peripheral arterial disease (PAD) which presents a new challenge. PAD is an illness 

typified by stenoses of the arteries which manifest at infrequent locations across the vasculature, 

unlike AAAs which are generally confined to the descending aorta. Thus, providing prediction of 

patient disease status and anatomical justification of PAD through heatmap based localization 

remains a future endeavor. In short, we engineer a novel, interpretable, and state-of-the-art deep 
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learning technology which is applied for detection of AAAs through patient specific medical image 

classification and weakly supervised heatmap localization.  
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6.0 Conclusion 

We present several key contributions to the scientific literature. The bounding box 

localization for high-resolution image segmentation inference pipeline we develop outperforms 

the conventional CNN for AAA lumen segmentation. Memory efficient methods underpinned on 

bounding boxes and patch-based segmentation show promise for AAA wall delineation. Image 

transformers with class specific segmentation encoders aid the identification of AAA severity, 

approaching and even overcoming the performance achieved by basic medical image classifiers. 

Finally, we present a novel 3D medical image ViT which provides interpretable explanations for 

its prediction of patient disease status. In sum, we engineer several deep learning methods for the 

detection, segmentation, and classification of the AAA while respecting the inherent frame of 

reference provided by the medical image.  
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Appendix A Study References 

Appendix A includes links to the results that were included as part of the Master’s Thesis.  

1) AAA-UNet: Baseline Aneurysm Segmentation  

a. Single Segmentation Model 

i. https://drive.google.com/drive/folders/1AdwupMSqXUQCz4ffgJ4scGovio

JiMwyW?usp=sharing 

2) BB-AAA-UNet: Memory Efficient High-Resolution Segmentation with Prior Aneurysm 

Localization 

a. Bounding Box Localization Model 

i. https://drive.google.com/drive/folders/1Jn_FRGXgw3QcS5pxBnMMIrlse

g2i8LA6?usp=sharing 

b. High Resolution Segmentation Model 

i. https://drive.google.com/drive/folders/19jRj_YDSJhhrOh9WG3dHx9sCe

YeBSTJb?usp=sharing 

3) BB-AAA-UNet: As Applied to Aneurysm Wall Segmentation 

a. Bounding Box Localization Model 

i. https://drive.google.com/drive/folders/1THI1pXtyvfelGQgTo7RLyuf7PIr

RIRqT?usp=sharing 

b. High Resolution Segmentation Model 

i. https://drive.google.com/drive/folders/15FxzBCYQxxAvkuseS5R_ek5I5Y

3XAASS?usp=sharing 

4) Patch Segmentation UNet: Prediction of Aneurysm Wall by Medical Image Sub-volumes 
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a. Single Segmentation Model 

i. https://drive.google.com/drive/folders/1whV1lRzaOOJHJxJx79SmjqpIFN

rfTlpK?usp=sharing 

5) AAA Image Transformer: Classifying Medical Images by Aneurysm Severity with Latent 

Representations 

a. Class Agnostic Image Transformer & Image Classification 

i. https://drive.google.com/drive/folders/1yM9nIQi000KJZC4S8RQgkPuLk

b_cPHMz?usp=sharing 

b. Asymptomatic Image Transformer & Classification 

i. https://drive.google.com/drive/folders/16cjLCj8bW39OC93RY8RZYqi1p

Zrr3goj?usp=sharing 

c. Symptomatic Image Transformer & Classification 

i. https://drive.google.com/drive/folders/1qInJeze8ro_1y9-

MgF9rsnX5_Bkz9cbQ?usp=sharing 

6) AAA-ViT: Moving Towards Detection with Classification of Aneurysm Severity 

a. Single Classification Model 

i. https://drive.google.com/drive/folders/1p6PF0LOhdWt2VHriv_tMR8jO-

G8riJtU?usp=sharing 
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Appendix B Miscellaneous 

Visualization of medical images was accomplished by ITK-SNAP for the Dataset and 

AAA-VIT sections found within Methods 27. Visualization of medical images in all other figures 

was accomplished using ParaView 51.  
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