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Bayesian Clustering and Modeling Approaches for the Analysis of

Brain-Imaging Data

Haoyi Fu, PhD

University of Pittsburgh, 2022

With the rapid development of modern techniques to measure functions and structures

of the brain, statistical methods for analyzing brain-imaging data have become increasingly

important to the advancement of science. My dissertation focuses on developing Bayesian

clustering and modeling approaches for brain-imaging data with application to a brain-

imaging technique in particular: functional near-infrared spectroscopy (fNIRS).

In the first part, I propose a group-based approach to clustering univariate time series

via a mixture of smoothing splines experts. Time-independent covariates are incorporated

via the logistic weights of a mixture-of-experts model. I formulate the approach in a fully

Bayesian framework and conduct inference via reversible jump Markov chain Monte Carlo

(RJMCMC) where the number of mixture components is assumed unknown. The superior

performance of the approach in terms of subgroup detection and estimation is demonstrated

through both simulation studies and applications to the analysis of fNIRS data.

In the second part, the approach proposed in the first part is extended to the multivariate

time series setting. Parameter estimation and inference are performed by Gibbs sampling,

and the number of multivariate components is selected based on the deviance information

criterion (DIC). The superior performance of the approach in terms of subgroup detection

and estimation is demonstrated by simulation studies and applications to the analysis fNIRS

data.

In the final part, I propose a horseshoe prior-based generalized lasso for interpretable

scalar on function regression. The approach is able to penalize regression coefficients with

selected orders of differences by specifying appropriate prior structures. The horseshoe prior

is able to control both the global and local shrinkage levels of each coefficient simultaneously.

The proposed method is demonstrated to have superior performance in terms of signal de-

tection and prediction accuracy through simulation studies, and is applied to the analysis of

iv



fNIRS data.

Public Health Significance:

Developing model-based clustering and modeling approaches provides innovative sta-

tistical methods for the analysis of brain-imaging data, which overcome the challenges of

heterogeneity and high dimensionality. My proposed methods facilitate the discovery of un-

derlying patterns of brain-imaging signals, as well as associations between these functional

signals and clinical outcomes.
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1.0 Introduction

In this chapter, the background information will be introduced. Section 1.1 gives an

overview of functional near-infrared spectroscopy (fNIRS). Section 1.2 discusses related sta-

tistical issues in the analysis of fNIRS data. Section 1.3 presents an introduction to the

motivating study. Finally, an overview of the dissertation will be introduced in Section 1.4.

1.1 Overview of functional near-infrared spectroscopy (fNIRS)

Due to the rapid development of modern neuroimaging techniques, many types of brain-

imaging techniques have emerged and been used in a wide range of biomedical areas. Pop-

ular brain-imaging techniques include but are not restricted to: Functional Magnetic Reso-

nance Imaging (fMRI), Computed Tomography (CT) scan, Positron Emission Tomography

(PET), Magnetoencephalography (MEG), Electroencephalography (EEG) and Functional

near-infrared spectroscopy (fNIRS). My dissertation focuses on the analysis of fNIRS brain-

imaging data.

1.1.1 Description of fNIRS

Functional near-infrared spectroscopy (fNIRS) is a noninvasive brain imaging technique

that measures changes in both oxy- and deoxy-hemoglobin using the near-infrared light

(Jobsis, 1977; Villringer et al., 1993). fNIRS is sensitive to hemodynamic changes in localized

cerebral blood flow, which is similar to functional magnetic resonance imaging (Aarabi and

Huppert, 2016). When near-infrared light goes through the head, it can be either scattered

or absorbed by the brain tissue.

Blood carries oxygen and glucose to the brain, which provides the necessary substances

for the normal operation of brain functions. Hemoglobin is a specific protein that transports

oxygen from the respiratory organs to the rest of the body, including the brain (Wells and
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Figure 1. Absorption spectra of oxy- and deoxy-hemoglobin (Reprinted from Wikipedia).

Hung, 1990; Sidell and O’Brien, 2006). When the brain uses up oxygen, the hemoglobin in

the red blood cells changes from oxygenated to de-oxygenated. By measuring the amount

of oxygenated and de-oxygenated blood, we have a proxy measurement for brain activ-

ity. Typically, the oxygenated blood is red while the de-oxygenated blood is blue. Since

hemoglobin is a significant absorber of near-infrared light while tissues and bones are trans-

parent to near-infrared light, changes in absorbed light can be used to reliably measure

changes in hemoglobin concentration. Figure 1 shows the absorption spectra for oxy- and

deoxy-hemoglobin. They have different absorption coefficients in the near-infrared (NIR)

region, which allows us to measure the amount of oxy- and deoxy-hemoglobin by colors.

Due to the different absorption coefficients of oxy- and deoxy-hemoglobin (Figure 1),

one can measure changes in hemoglobin concentration at different wavelengths. Two wave-

lengths, one below 810 nm and one over 810 nm are selected to represent the measurement

of two hemoglobin, where 810 nm is the wavelength that oxy- and deoxy-hemoglobin have

the same absorption coefficients (Cope et al., 1988; Villringer and Chance, 1997; Aarabi
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and Huppert, 2016). fNIRS device measures the change in the light intensity, which can be

converted to the measurement of changes in relative hemoglobin concentration through the

Modified Beer–Lambert law (mBLL) (Wyatt et al., 1986; Kocsis et al., 2006; Baker et al.,

2014).

fNIRS has the advantage of low cost and high portability compared to other brain-

imaging methods such as fMRI and PET. Since fNIRS is non-confining and noninvasiveness,

it is the most appropriate brain-imaging technique for children and infants (Barker et al.,

2013). Previously, the fNIRS technique has been widely used to assess and study the re-

lationship between different types of cognitive tasks and cerebral activation (Ferrari and

Quaresima, 2012; Boas et al., 2004). The capability to measure brain activity during mod-

erate movement of participants has expanded the use of fNIRS to different motion (Miyai

et al., 2001; Suzuki et al., 2008) and balance tasks (Karim et al., 2013b, 2012, 2013a).

1.1.2 Statistical analysis tools for fNIRS data

fNIRS has been used in a variety of study fields over the past several decades, as described

in Section 1.1.1. With the development and availability of advanced fNIRS techniques and

devices, the need for more sophisticated statistical analysis methods, which aim to address

different scientific questions, has increased dramatically.

Currently, many statistical analysis methods for fNIRS data come directly from the

analysis of fMRI data, which contain first-level (single scan, subject or trial level) and second-

level (group level) analysis (Ashby, 2019). However, direct use of those methods fails to

consider the unique features and properties of fNIRS data such as complex motion and

physiological noise artifacts (Huppert, 2016; Santosa et al., 2018).

1.1.2.1 HOMER and NIRS-SPM toolbox

Many statistical analysis tools and packages have been developed to uniquely address the

analysis of fNIRS data. HOMER is a set of MATLAB scripts used to analyze fNIRS data,

with functions to obtain estimates and map brain activation (Aasted et al., 2015; Cui et al.,

2010). The current versions are HOMER3 and AtlasViewer, which are MATLAB applications
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that provide data analysis for fNIRS including calculation of hemodynamic changes, signal

processing, and basic first and second-level statistical analysis (Huppert et al., 2009). Ye

et al. 2009 developed a new statistical toolbox called NIRS-SPM where a general linear model

was used to build the model at the first level. Pre-whitening (Worsley and Friston, 1995)

and pre-coloring methods (Bullmore et al., 1996; Friston et al., 2002) have been implemented

to estimate temporal correlations.

1.1.2.2 NIRS AnalyzIR toolbox

Santosa et al. 2018 developed the NIRS Brain AnalyzIR Toolbox. This toolbox is an

open-source Matlab-based analysis package, which integrates several tools such as HOMER3,

AtlasViewer, and NIRS-SPM including new functions in both signal processing and statis-

tical analysis. This toolbox incorporates multiple functions and is designed for fNIRS data

management, pre-processing, statistical analysis, image reconstruction, and region-of-interest

(ROI) statistics (Santosa et al., 2018).

Statistical modules in the AnalyzIR toolbox contain different statistical methods for both

first-level (single scan, subject, or trial level) and second-level (group level) models. First-

level model is usually used to test whether the task condition is significantly different from

the reference level for each scan. Different options for statistical methods are offered in the

AnalyzIR toolbox, including ordinary least-squares (OLS) used in HOMER2, autoregres-

sive and iteratively reweighted least-squares (AR-IRLS), pre-whitening with AR(1) model

in NIRS-SPM and other nonlinear GLM methods. The default first-level method in the

toolbox is AR-IRLS, which is able to control type-I errors. More details about the AR-IRLS

model can be found in Barker et al. 2013. Second-level models focus on investigating the

effect of a pre-specified group (e.g. tasks, disease vs. non-disease group) for a collection of

subjects, while possibly adjusting for other covariates. Some widely-used methods for re-

peated measurements such as mixed models, ANOVA, and fixed-effect models are provided

in the toolbox, using coefficients from the first-level as the outcomes. More details about

second-level models are given in Santosa et al. 2018.
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1.2 Statistical issues in the analysis of fNIRS data

Many statistical issues have arisen with the increased need for the analysis of fNIRS

data. Those issues include correlated noise, heterogeneity of data across subjects, and high

dimensionality for modeling.

1.2.1 Noise in fNIRS

Ordinary least squares (OLS) is the most common way to estimate the regression pa-

rameters in linear regression assuming zero mean and common variance for the error term.

However, for fNIRS data, those assumptions are violated. Two major issues with respect

to noise in fNIRS are the serial correlation of errors caused by systematic physiology and

heavy-tailed noise distributions caused by motion artifacts. Figure 2 shows an example of

physiological noise and motion artifacts existing in the fNIRS time series.

1.2.1.1 Serially-correlated errors

The noise in fNIRS data is correlated. Due to the existence of strong physiological noise

such as cardiac, respiratory, and blood pressure variation, noise in fNIRS exhibits serial

correlation within each channel (Naseer and Hong, 2015). Physiological noise is usually

slower than the sampling rate of fNIRS data, leading to stronger serial correlation compared

to that in fMRI. This physiological noise can be found with the presence of specific frequencies

in fNIRS temporal data (Huppert, 2016). Serial correlation in fNIRS noise masks the true

signal and results in systematic bias when using traditional statistical models. Thus, pre-

processing steps are needed before fitting a model.

Many approaches have been applied to solve the serial correlation issue triggered by

physiological noise. Solutions include applying a specific filter to the model, which aims

at transforming correlated noise into independent normally distributed random variables

(Friston et al., 1994, 1995; Plichta et al., 2007; Jang et al., 2009). The purpose of these

approaches is to allow the use of general linear models (GLM) with different noise structures.

Common filters include: low-pass filter (Izzetoglu et al., 2005), high-pass filter (Huppert
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Figure 2. An example of motion artifacts and physiological noise (Reprinted from Huppert

2016).

et al., 2009), wavelet filter (Chiarelli et al., 2015), principal component analysis (PCA) filter

(Li et al., 2017) and independent component analysis (ICA) filter (Robertson et al., 2010;

Aarabi and Huppert, 2016). Each filtering approach aims at eliminating or reducing a certain

type of noise with particular frequencies or components.
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Pre-whitening is another technique used to remove noise from the error term in the

model. Pre-whitening in linear regression is given by:

WY = WXβ +Wϵ,

where a pre-whitening matrix W multiplies both sides of the equation. By using pre-

whitening, data, model and errors are re-weighted such that new error vector Wϵ meets

the assumptions of ordinary least squares. Pre-whitening solves the issue of biased estima-

tion resulting from the filtering, which only applies the filtering to the measurement data.

In general, pre-whitening is preferred over filtering because pre-whitening can give unbiased

estimators unless we are confident that removed parts are not related to the model part

(Xβ). Different choices of the pre-whitening matrix can be found in (Ye et al., 2009; Jang

et al., 2009; Schroeter et al., 2004; Purdon and Weisskoff, 1998; Barker et al., 2013).

1.2.1.2 Heavy-tailed noise distributions

Another issue in fNIRS noise is its heavy-tailed noise distribution induced by motion

artifacts. Motion artifacts arise from the movement of the head since fNIRS sensors are

placed on the surface level of participants’ heads. The heavy-tailed noise distribution refers

to outliers originating from motion artifacts, which are usually stronger than physiological

and other types of noise (Huppert, 2016; Cooper et al., 2012). The upper panel of Figure

2 shows several outliers resulting from motion artifacts. The existence of these outliers

violates the common variance assumption of OLS, indicating that the variance of the noise

is heteroscedastic. Since motion artifacts are not part of the model, including them will result

in estimates with non-ignorable bias. Different statistical methods have been developed to

eliminate or reduce motion artifacts.

Robust regression is widely used to solve the issue of heavy-tailed outliers by iteratively

down-weighting each outlier (Ruppert and Wand, 1994; Holland and Welsch, 1977). Barker

et al. 2013 developed the autoregressive and iteratively reweighted least-squares (AR-IRLS)

method to solve the issue of motion artifacts, which is the default first-level statistical method

used in the AnalyzIR toolbox of Section 1.1.2.2. This method first uses an auto-regression
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filter to pre-whiten both sides of the model. Robust regression, aimed at down-weighting

outliers iteratively, is then applied to the pre-whitened data.

1.2.2 Heterogeneity across subjects

Section 1.2.1 introduces serially correlated noise which violates the assumptions of linear

regression. These methods described in Section 1.2.1 transform heteroscedastic noise to

follow the normal distribution by applying a filter or a pre-whitening method. Coefficients

are estimated using the proposed methods, reflecting the brain activation level as opposed

to the reference or the baseline period. However, these methods focus on obtaining robust

estimates of coefficients, without looking at the estimation of time series trajectories.

The fNIRS time series itself is important since we can observe the level of brain acti-

vation throughout multiple periods with different tasks. However, due to the heterogeneity

across different subjects, different patterns of brain activation levels could be observed for

subjects who belong to different unobserved groups. In contrast, subjects who are in the

same unobserved group may have similar cerebral responses with regard to a certain stimulus

event. Thus, there is a need to develop reliable statistical methods to cluster subjects and

discover underlying time series patterns related to certain stimulus events.

1.2.3 High-dimensionality

High dimensionality is a common issue for any types of functional imaging data. fNIRS

data are usually observed at a large number of time points, where the number of time points

is largely greater than the number of subjects. Functional regression (Ramsay and Silverman,

2013) is a statistical tool for the modeling of functional data, where either the outcome or

predictors, or both the outcome and predictors, can be functional. However, functional data

analysis gives complicated coefficient curve estimates, where sometimes is lack of a good

interpretation. Hence, for the modeling using fNIRS data, it is desirable to assume sparsity

and find an approach to produce interpretable trends for large coefficients and shrink other

coefficients towards zero.
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1.3 Motivating study

Due to portability and mobility compared to fMRI, fNIRS has a wide range of use, from

the population of infants to the elderly, as well as the area of movement (e.g. walking and

gait speed) and cognitive tasks with various study designs. Our motivating study is called

face-to-face still-face (FFSF) study, which aims to understand patterns of an infant’s brain

activity before, during and after an emotionally stressful probe (Tronick et al., 1978).

1.3.1 Overview of the Still-face study

Face-to-face interactions between mothers and infants are essential to the development

of infants with respect to communication and social skills, as well as the regulation of emo-

tion and temperament (Northrup et al., 2019; Hipwell et al., 2019; Ainsworth et al., 2015;

Feldman et al., 1999). To be more specific, Ainsworth and Bell 1972 and Bigelow et al. 2010

demonstrated that positive interactions between mothers and infants are associated with

infants’ language and cognitive development. In contrast, negative interactions between par-

ents and infants are related to the changes in behavioral and emotional problems (Belsky

et al., 1998; Edwards and Hans, 2015; Levendosky et al., 2006).

The FFSF paradigm is a widely used stress task (a violation of the expectation of social

interaction) that allows for biobehavioral measurement of individual differences in infant

response and recovery (Tronick et al., 1978; Northrup et al., 2019). The still-face paradigm

comprises of three phases: interact or baseline, still-face and recovery (Adamson and Frick,

2003). A picture of three phases of the still-face study is shown in Figure 3. In phase 1,

mothers perform normal interactions with infants without the use of toys; this phase serves

as the baseline. In phase 2, mothers adopt a neutral facial expression (still-face with no

facial or oral communication) to infants, followed by phase 3, where mothers resume normal

interactions with their infants (Mesman et al., 2009; Sravish et al., 2013). Prior to the start

of the FFSF, an fNIRS cap is fitted on the infant’s head to measure the level of and change

in brain activation across the three phases.

Many studies have revealed that the increase in negative affect, along with a decrease
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Figure 3. Three-phase still-face paradigm (Reprinted from Kim et al. 2014).

in positive affect in infants has been found as a result of their mothers’ still-face. These re-

sponses reflect infants’ ability to communicate with their mothers intentionally after sensing

a negative emotion or expression (Mesman et al., 2009; Carter et al., 1990; Tarabulsy et al.,

2003). However, although many studies have discovered common responses from infants in

different designs of still-face studies, there still exists a large amount of heterogeneity at the

individual level (Mesman et al., 2013). There are wide individual differences in response,

which may be related to the quality of the mother-infant relationship as well as temperamen-

tal features. Due to its portability and non-confining property, fNIRS is a good brain-imaging

tool to investigate the dynamic level of brain activation during a still-face study. However,

to the best of our knowledge, there are few studies that have focused on applying fNIRS to

still-face studies. Thus, it is critical to apply fNIRS technology to still-face studies, while

taking subject heterogeneity into consideration.
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1.3.2 PGS-ECHO fNIRS still-face study

Participant mothers in the motivating study were recruited from the longitudinal Pitts-

burgh Girls Study (PGS), a population-based study of 2,450 girls who were recruited in

the city of Pittsburgh between the ages of 5 and 8 (Keenan et al., 2010). In 2016, a large-

scale sub-study of the PGS was initiated to investigate how environmental factors, such as

psychological stressors experienced during childhood and adolescence, affect later maternal

pregnancy and child health. The study is part of the National Institutes of Health Envi-

ronmental Influences of Child Health Outcomes (ECHO) program, which examines different

impacts of prenatal environmental exposures across biological, chemical, physical, and social

domains on offspring health and development (Gillman and Blaisdell, 2018).

The PGS-ECHO study enrolls PGS participants as they become pregnant or recently

deliver a live birth. Participants complete multiple prenatal lab visits and the children are

followed from ages 6 to 36 months. The lab protocol includes interviews and interaction tasks

to assess contextual stressors, health, mood, lifestyle behaviors, and offspring behavioral and

emotional development.

In the current study, we measured infant brain activity using the above fNIRS probe

(roughly 120 seconds of measurements for each phase). At the end of 2021, recorded fNIRS

still-face data had been collected from 155 infant subjects. Demographic variables of infants

and mothers such as gestational age, infant age, sex, birth weight, head circumference, along

with parent reports on the Infant Behavior Questionnaire-Revised (IBQ-R) (Gartstein and

Rothbart, 2003) were also collected. Until the end of 2021, we have collected fNIRS data from

155 subjects, with still-face data that pass quality control. Some demographic variables of

infants and mothers such as gestational age, infant age, sex, birth weight, head circumference,

along with several parent-reported scores from the Infant Behavior Questionnaire (IBQ) are

also provided.

1.3.3 fNIRS probe configuration

PGS-ECHO fNIRS still-face data are recorded using a continuous NIRS imaging system

(NIRScout; NIRx Medical Technologies, Berlin, Germany) at the sampling rate of 7.8125
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Figure 4. fNIRS probe configuration. (a) Positioning of 8 sources, 4 detectors and 12

channels. (b) Brodmann areas covered by the fNIRS probe.

Hz and NIRStart acquisition software. The data are measured simultaneously at two wave-

lengths (760 nm and 850 nm). As shown in Figure 4(a), this fNIRS probe comprises of 12

channels from 8 sources and 4 detectors. Brodmann area is a region of the cerebral cortex in

the human brain defined by its cytoarchitecture or histological structure and organization of

cells (Brodmann, 1909; von Economo and Koskinas, 1925; Garey, 1999). Figure 4(b) shows

that a total of seven Brodmann areas are covered by the fNIRS probe.

1.3.4 fNIRS data pre-processing

Before performing any desired statistical analysis, data need to be pre-processed including

rescaling of data, dealing with subjects with incomplete data and outliers.

1.3.4.1 Sample size

Until the end of 2021, a total of 155 infants have participated in the PGS-ECHO fNIRS

still-face study resulting in recorded still-face data that have passed the manual quality con-

trol check. However, some experiments were terminated due to extremely negative responses

(e.g. crying, excessive movements, etc.). In some experiments, phases were too short or in-
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complete, or severe outliers were present. Thus, by removing infants who did not complete

three phases of the still-face paradigm, who had strong outliers based on leverage and who

had very short period measurements of any of the three still-face phases, we had a total of

82 subjects with complete fNIRS still-face data available for future analysis. The above data

processing was performed by NIRS brain AnalyzIR toolbox in MATLAB (Santosa et al.,

2018).

1.3.4.2 Outliers

For the data pre-processing, the modified Beer-Lambert law (Cope et al., 1988; Kocsis

et al., 2006) was used to convert the measured light intensity to the relative concentration

of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb). To solve the issue of heavy-tailed

noise from motion artifacts as detailed in Section 1.2.1.2, we implemented a motion correc-

tion method for fNIRS called Temporal Derivative Distribution Repair (TDDR) (Fishburn

et al., 2019). TDDR is a novel motion correction method that implements robust regression

to remove shifts from artifacts without using any user-supplied parameters. Before applying

TDDR, we first used a PCA filter to remove systematic physiological noise, which was rel-

atively narrow-band and quasi-stationary. This approach computes the temporal derivative

of the measured signal, and then iteratively estimates robust observation weights, followed

by applying the robust weights to the centered temporal derivative to produce a corrected

derivative. To avoid the issue of variance inflation induced by high-frequency components,

which affects the estimation of temporal derivative in TDDR, this approach splits the data

into low and high-frequency parts with a low-pass filter. TDDR is applied to the low-

frequency part and then added back to the high-frequency part (Fishburn et al., 2019). The

TDDR motion correction method can also be done using the NIRS brain AnalyzIR toolbox

in MATLAB (Santosa et al., 2018).

1.3.4.3 Data rescaling

After data pre-processing in MATLAB, we passed our processed data into R software

for further processing. First, for each processed fNIRS time series, we took another step for
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Figure 5. An example of processed fNIRS time series from two subjects and four channels.

dealing with outliers by removing any measurement points which were out of three standard

deviations of the mean. By the end of this step, we removed outliers that were not removed

by the TDDR in Section 1.3.4.2. Hereafter, interpolating splines were used to insert points

(Catmull and Rom, 1974; Kochanek and Bartels, 1984). In general, interpolating splines is

a widely-used type of interpolation which is preferred over polynomial interpolation because

the interpolation error is small even when using low-degree polynomials for the splines (Hall

and Meyer, 1976). By using interpolation, we are able to obtain processed fNIRS time series

of equal lengths which are evenly spaced in each phase (interact, still-face and recovery),

each channel, and each subject. Finally, to avoid the effect of extremely large or small mean

values across different fNIRS time series, we rescaled time series measurements and sampling

time to be between 0 and 1.

In conclusion, our final processed fNIRS data included a total of 82 subjects, each with

processed time series of both oxy and deoxy-hemoglobin from twelve channels. For each

fNIRS time series, we had a total of 1500 measurement points and each phase consisted of
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500 points. All measurements and sampling times were between 0 and 1 after the rescaling

step. Figure 5 shows an example of processed time series from two subjects and four selected

channels. We will only focus on oxy-hemoglobin (HbO or HbO2) in the future since we find

that deoxy-hemoglobin is usually more erratic with high variability than oxy-hemoglobin.

1.4 Overview of the dissertation

My dissertation has four chapters. Chapter 1 provides an introduction to fNIRS brain-

imaging data and still-face study, which serves as background information and motivation

for Chapters 2-4.

In Chapter 2, I propose a group-based approach to clustering and estimating trajecto-

ries of univariate time series via a Bayesian mixture of smoothing splines. The approach

assumes each time series is a mixture of multiple dynamic components using a spline model

with different mixing weights for each component. Time-independent baseline covariates are

assumed to be associated with the mixture components and are incorporated via the mixing

weights using the mixture of experts model. This approach is formulated in a fully Bayesian

framework using reversible jump Markov chain Monte Carlo (RJMCMC) and a data-based

relabeling algorithm is adopted to solve the label switching issue. The superior performance

of the approach in terms of subgroup detection and estimation is demonstrated through both

simulation studies and applications to the analysis of fNIRS data.

In Chapter 3, I extend my proposed approach in Chapter 2 to multivariate time series.

The study consists of multivariate time series observed on a collection of individuals, each

with a multi-dimensional time series. Gibbs sampling is used as the sampling algorithm and

the number of components is selected based on the deviance information criterion (DIC).

The Equivalence Classes Representatives (ECR) algorithm is adopted to solve the label

switching issue. The superior performance of the approach in terms of subgroup detection

and estimation is demonstrated by simulation studies and applications to the analysis fNIRS

data.

In Chapter 4, I propose a horseshoe prior-based generalized lasso for interpretable scalar

15



on function regression. The approach is able to penalize regression coefficients with selected

orders of differences by specifying appropriate prior structures. The horseshoe prior is able

to control both the global and local shrinkage levels of each coefficient simultaneously. The

proposed method is demonstrated to have superior performance in terms of signal detection

and prediction accuracy through simulation studies, and is applied to the analysis of fNIRS

data.
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2.0 Covariate-Guided Bayesian Mixture of Spline Experts for the Analysis of

Univariate Time Series

2.1 Introduction

Time series are realizations of random processes, and obtaining estimated time series

trajectories may provide insights into many practical problems. In many brain-imaging

techniques, such as fNIRS introduced in Section 1.1, processed data are always nonstationary

time series with non-constant mean and high variability across time, which poses many

statistical challenges in inference and estimation. In addition, as in the case of fNIRS, it is

critical to find an appropriate method to analyze a collection of time series that are from

different subjects. However, time series are usually heterogeneous with high variability and

different patterns across subjects. Thus, a methodological approach is proposed to deal with

issues of nonstationary time series and heterogeneity across subjects.

Time series clustering is used to tackle heterogeneity across subjects by clustering sim-

ilar time series together using various models or distance-based algorithms. Clustering of

time series has been used in diverse scientific areas with the purpose of discovering patterns

or trajectories, which leads to uncovering valuable information from complex and massive

datasets (Liao, 2005; Aghabozorgi et al., 2015). The process of time series clustering parti-

tions the whole collection of data into different groups such that homogeneous time series are

grouped together based on a certain similarity measure. Challenges in time-series clustering

include computational issues due to its large datasets, high-dimensionality with slow pro-

cessing time (Lin et al., 2003; Keogh and Pazzani, 2000; Zhang et al., 2006) and identifying

proper similarity measures (Wang et al., 2004; Lin et al., 2004).

In the review paper of Aghabozorgi et al. 2015, most of the methods for time series

clustering can be classified into three categories: whole time series clustering, sub-sequence

clustering, and time point clustering. Whole time-series clustering is the clustering of a

set of univariate time series (Keogh and Lin, 2005). It is often used to cluster different

subjects, where each subject has an individual time series. Sub-sequence clustering refers to
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clustering on a set of sub-sequences of a time series, or clustering of segments from a single

long time series. This approach is often used to estimate a single nonstationary time series

by dividing it into locally stationary segments (Keogh and Lin, 2005; Adak, 1998). Time

point clustering is used to cluster time points based on a combination of their temporal

proximity and the similarity of time point values (Gionis and Mannila, 2003; Ultsch and

Mörchen, 2005; Mörchen et al., 2005). Our proposed method focuses on whole time series

clustering.

In general, there are three categories for whole time series clustering, namely model-

based, feature-based and shape-based. Details on feature-based and shape-based clustering

can be found in Keogh and Lin 2005. For model-based clustering approaches, certain para-

metric or nonparametric models are established to obtain estimates of model parameters,

then an appropriate clustering algorithm is chosen to assign individual time series into dif-

ferent groups (Liao, 2005; Vlachos et al., 2004; Mitsa, 2010).

Typical modeling approaches for time series data consist of polynomial models (Bagnall

and Janacek, 2005), linear mixed models (Biernacki et al., 2000), autoregressive–moving-

average (ARMA) (Corduas and Piccolo, 2008), Markov chain (Ramoni et al., 2000) and

Hidden Markov models (Bicego et al., 2003; Hu et al., 2006). Lots of work have been done

in modeling nonstationary time series by assuming local stationarity in each segment of the

time series. Kitagawa and Akaike 1978 suggested that a nonstationary time series can be

partitioned into small segments and each segment was assumed to be stationary. Wood

et al. 2011 proposed a Bayesian mixture of autoregressive (AR) models for the analysis of

possibly nonstationary time series. Mixing weights for each component were computed as a

function of time, and a common but unknown lag was considered for the AR components.

However, this approach does not address the issue of the estimation of structural breaks.

Davis et al. 2006 considered a piecewise AR model for nonstationary time series, where the

number of segments, the locations of structural breaks, and the orders of AR models were all

unknown. An objective function was obtained and optimized to find the best combination

of the number of segments, locations of breaks, and orders of AR models. Ombao et al. 2001

implemented a nonparametric model for the estimation of piecewise stationary time series by

using a smooth localized complex exponential transform, while Lau and So 2008 proposed

18



an infinite Bayesian mixture of AR models with a Dirichlet process prior. Furthermore,

another approach for fitting time series models is to allow model parameters to evolve over

time. State-space models with a smoothness prior are often used for dynamical estimators

by implementing a random walk for AR processes (Kitagawa and Gersch, 1996; West et al.,

1999). Prado and Huerta 2002 assumed that the order of AR model also changed over time by

fitting a discrete random walk, and Gerlach et al. 2000 proposed an efficient Bayesian MCMC

approach with rapid convergence of the posterior distributions for estimating a mixture of

state-space models.

Instead of the time domain, much work has been focused on the frequency domain. Ap-

proaches to the spectral estimation of a single nonstationary time series include estimates

of evolutionary parameters over time and model-based time-frequency analysis using time-

varying AR models (Kitagawa and Gersch, 1996; Dahlhaus, 1997; Yang et al., 2016), fitting

smoothing spline models for spectrum (Ombao et al., 2001; Guo et al., 2003) and piece-

wise AR models (Adak, 1998; Davis et al., 2006). Tuft et al. 2021 proposed an approach to

time–frequency analysis that decomposes the power spectrum into orthogonal layers and pro-

vides a parsimonious representation of the time-varying power spectrum. Notably, mixture

of spline models are widely used to perform spectral analysis. Wood et al. 2002 presented a

Bayesian method for spatially adaptive nonparametric regression where regression functions

were modeled using a mixture of splines. Rosen et al. 2009 proposed a Bayesian mixture

of smoothing splines with time-varying mixing weights to estimate the evolution of the log

spectrum. Later, Rosen et al. 2012 extended previous work and proposed an adaptive spec-

tral estimation for a single nonstationary time series by adaptively dividing time series into

an unknown number of segments using reversible jump MCMC (Green, 1995; Richardson

and Green, 1997).

For the spectral estimation of multiple time series, many papers use a covariate-dependent

model to associate mixture components with time-independent covariates. Bertolacci et al.

2021 extended the work of Rosen et al. 2012 by using a covariate-dependent infinite mixture

model employing the logistic stick-breaking process (Rigon and Durante, 2021). Wang et al.

2021 considered a sparsity-inducing Dirichlet hyperprior for high-dimensional covariates in

a tree-based model, which provided sparsity in covariate estimation and variable selection.
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Krafty et al. 2011 introduced a mixed effect spectral model with the consideration of covari-

ates on the second order of power spectrum and in 2017 Krafty et al. proposed a method

to connect power spectra to clinical outcomes by using a tensor-product spline model of

outcome-dependent power spectra. Bruce et al. 2018 introduced a method for investigating

the association between the time-varying power spectrum and covariates by adaptively par-

titioning grids of time and covariate into different blocks by penalized spline. Cadonna et al.

2019 developed an approach to estimate spectral densities by adopting a mixture of Gaussian

models with frequency-dependent mixing weights with frequency-dependent parameters.

The mixture-of-experts model (Jacobs et al., 1991; Jordan and Jacobs, 1994) use a multi-

nomial logistic model as weights of the components, which are referred as experts. This

model has a direct application to clustering, with mixing weights depending on external

covariates. Waterhouse et al. 1995 established a Bayesian framework to estimate the param-

eters in the mixture-of-experts model, which avoided the overfitting issue. Zens 2019 pro-

posed a variable selection method based on the Bayesian mixture-of-experts framework using

Gibbs sampling. Mixture-of-experts have also been used in time series modeling. Huerta

et al. 2003 addressed the issue of time series model mixing and allowed the incorporation

of covariates for model comparisons using the hierarchical mixture-of-experts. In addition,

Frühwirth-Schnatter et al. 2012 and Fröhwirth-Schnatter and Kaufmann 2008 applied the

mixture-of-expert framework to model-based clustering under a fully Bayesian framework.

Tang and Qu 2016 proposed an unbiased estimating equation approach for a longitudinal

mixture model with correlated responses, where the mixture-of-experts model was used to

model the mixing weights. Comprehensive overviews of the mixture-of-experts model can

be found in Masoudnia and Ebrahimpour 2014 and Yuksel et al. 2012.

In our first project, we propose a mixture of spline experts for model-based cluster-

ing of multiple univariate time series. Smoothing splines are used to fit the time series

with flexibility and a low-rank approximation approach (Wood et al., 2002; Wahba, 1980)

was adopted to obtain smoothing coefficients based on a small set of basis functions. The

mixture-of-experts model is incorporated into the proposed model to allow for the inclusion of

time-independent covariates. The Pólya-Gamma data augmentation strategy (Polson et al.,

2013) is used to simplify the sampling of the logistic parameters in the proposed model.
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The proposed approach is formulated in a fully Bayesian framework and sampling from the

posterior distributions is done via a reversible jump Markov chain Monte Carlo (RJMCMC)

(Richardson and Green, 1997; Green, 1995; Rosen et al., 2012). The rest of Chapter 2 is

organized as follows. In Sections 2.2 and 2.3 we present the proposed model and priors

for each parameter. Section 2.4 introduces the Bayesian sampling scheme of the proposed

RJMCMC algorithm. In Section 2.5 we report simulation results under different settings

and Section 2.6 illustrates our proposed method using the data from the PGS-ECHO fNIRS

still-face study introduced in Chapter 1. Section 2.7 gives a conclusion of our first project

as well as limitations and future works.

2.2 Covariate-guided Bayesian mixture of spline experts model

In this section, I will introduce our proposed covariate-guided Bayesian mixture of spline

experts model. Smoothing spline priors are placed on the time series trajectories, and the

mixture of experts framework is adopted where the mixing weights for each mixture compo-

nent depend on time-independent covariates.

2.2.1 Mixture of splines model

Smoothing splines is a nonparameteric modeling approach to estimate unknown func-

tions which allows the regularization of smoothness by a smoothing parameter (Green and

Silverman, 1993; Hastie and Tibshirani, 2017). The smoothing parameter controls the trade-

off between the model goodness of fit and the roughness of the underlying function. In the

Bayesian setting, smoothing splines are incorporated into the model by placing a prior on

the underlying functions of interest (Kimeldorf and Wahba, 1970; Wahba, 1978).

We propose a Bayesian mixture of smoothing splines model for model-based clustering

of univariate time series from multiple subjects. For each subject i, i = 1, . . . , N , yi is

a univariate time series. Under the mixture model framework, we assume that subject i

belongs to a latent component g, g = 1, . . . , G. To simplify the computation, we introduce
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latent indicators zig, such that zig = 1 if the ith time series belongs to the gth component

and zig = 0 otherwise. We also denote tj = t1, . . . , tn as the time of the jth time point.

Let yi =
[
yi(t1), . . . , yi(tj), . . . , yi(tn)

]′
be the univariate time series of length n for the ith

subject The model for time series yi, conditional on component g, can be written as

{yi | zig = 1} = Xαg +Wβg + ϵi, (1)

where X =

1 1 . . . 1

t1 t2 . . . tn

′

and W is a n×m matrix of smoothing spline basis functions.

The n×1 vector Xαg represents the linear part of the time series and Wβg is the nonlinear

part. The 2 × 1 vector αg contains the intercept and slope for gth component. The m × 1

vector βg contains the coefficients of the basis functions and m is the number of basis

functions. The n× 1 vector of errors ϵi is assumed to have a N(0, σ2
gIn) distribution which

means that the errors are independent and have a common variance over time. The parameter

σ2
g is the error variance for the gth component.

Based on the time series pre-processing in Section 1.3.4, we will assume that each uni-

variate time series are observed at the same n time points. Thus, common design matrix X

and W across subjects and components are used in model (1).

Section 2.3 provides a detailed explanation of the smoothing spline model and the low-

rank approximation in the Bayesian setting. To simplify the notation, we define S = [X W ]

and θg = (α′
g,β

′
g)

′. Model (1) can thus be rewritten as:

{yi | zig = 1} = Sθg + ϵi. (2)

2.2.2 Model for mixing weights

As introduced in Section 2.1, the mixture-of-experts approach (Jacobs et al., 1991) is

applied to formulate a covariate-guided model, where selected covariates are used to predict

mixing weights via the so-called gating functions. As in Rosen et al. 2009, the mixing weights

are expressed using the multinomial logits model so that
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πig(V i) =
exp(V T

i δg + ζig)∑G
h=1 exp(V

T
i δh + ζih)

, (3)

where V i = (1, Vi1, . . . , ViP )
′, δg = (δg0, δg1, . . . , δgP )

′, and we let δg = 0 for identifiability.

The vector V i contains the covariate values for subject i, P is the number of covariates and

δg is a vector of logistic parameters. To enhance the model performance and inference of the

mixing weights, a random term ζig for each subject and component is added to the mixing

weights.

2.2.3 Likelihood

For brevity, we denote Θg as the aggregation of all parameters of interest for component

g, and Θ = (Θ′
1, . . . ,Θ

′
G)

′ are the parameters of interest for all components. Let fg(yi | Θg)

be the probability density function of the gth component for time series yi. Thus, the

contribution to the likelihood function from the ith subject can be written as:

L(Θ | yi) =
G∑

g=1

πigfg(yi | Θg). (4)

To simplify the computation, we use latent indicators zig to augment the likelihood

function. The posterior weight of zig can be expressed as

p(zig = 1 | yi) =
πigfg(yi | Θg)∑G
h=1 πihfh(yi | Θh)

(5)

Denoting y as univariate time series for all subjects. Thus, the augmented likelihood

function with the latent indicator for all subjects is

L(Θ, zig | y) =
N∏
i=1

G∏
g=1

[
πig(V i)fg(yi | Θg)

]zig (6)
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2.3 Priors and joint posterior distribution

In this section, I will introduce the priors used for each parameter in the proposed

covariate-guided mixture of spline experts model.

2.3.1 Smoothing splines priors

The conditional expectation of a mixture component in model (4) is given by E(yi |

zig = 1) = Xαg + Wβg. We place a smoothing spline prior on βg and let Hg = Wβg,

where Hg =
[
Hg(t1), . . . ,Hg(tn)

]′
is a zero-mean Gaussian process with variance covariance

matrix τ 2gΦ (Wahba, 1980; Wood et al., 2002), such that cov
[
Hg(tr),Hg(th)

]
= τ 2gϕrh, τ

2
g

is a smoothing parameter for component, and the (r, h)th element of Φ is given by ϕrh =

1
2
t2r(th− tr

3
) for tr ≤ th. The matrix Φ is common to all subjects since time series are observed

at common time points.

As seen above, the matrix Φ is n× n, and to avoid the computational burden for large

n, a low-rank approximation is often adopted. To facilitate this approximation, we obtain

basis functions via the spectral decomposition of Φ, as has been proposed in Wood et al.

(2002) and used in Rosen et al. (2009, 2012); Krafty et al. (2011). In particular, the matrix

W consists of m basis functions evaluated at times t1, . . . , tn, and βg is an m-dimensional

vector of basis function coefficients. These basis functions are obtained by applying the

spectral decomposition to Φ such that Φ = QΓQT , where Q is the matrix of eigenvectors

of Φ, and Γ is a diagonal matrix containing the eigenvalues of Φ. We then let the design

matrix W = QΓ1/2 and place a normal prior N(0, τ 2g In) on βg, which leads to Hg or

Wβg ∼ N(0, τ 2gΦ) as mentioned above.

By using the low-rank approximation, the number of columns of W is reduced from

n to m (m < n), which greatly reduces the computational burden without sacrificing the

model fit (Wahba, 1980; Wood, 2006). Eubank (1999) indicated that the eigenvalues in the

diagonal matrix Γ decay rapidly as m increases. Thus, we can achieve a good approximation

by selecting a relatively small number m of basis functions. We use m = 20 basis functions

in the real-data application, which are able to explain more than 98% of the total variance
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based on an empirical finding in Krafty et al. 2011.

As in (9), where linear and spline parts are put together, we thus assume the Gaussian

prior θg ∼ N(0,Dg), where Dg = diag(σ2
α12, τ 2g1m) is the covariance matrix for θg. The

parameter σ2
α is the hyperprior variance for αg, and we fix σ2

α = 100 reflecting a noninfor-

mative prior across all components. The parameter τ 2g is the smoothing parameter for the

gth component, and 1m is the m-vector of ones.

2.3.2 Priors on the smoothing parameters

We assume the smoothing parameters τ 2g vary across components g. Although the most

common choice for the prior on a variance parameter is the inverse gamma distribution,

Gelman (2006) and Wand et al. (2011) suggested that a half-t prior on the standard deviation

can reflect a lack of information on a scale parameter. The half-t is a family of heavy-

tailed distributions and has a good shrinkage performance. It can be expressed as a scale

mixture of inverse gamma random variables using a latent variable that follows an inverse

gamma distribution (Wand et al., 2011). Thus, we assume a half-t distribution such that

τg ∼ t+ντ (0, Aτ ), where ντ is a degrees of freedom parameter, and Aτ is a scale parameter.

We set ντ = 3 and Aτ = 10 for all components and entries.

2.3.3 Priors on the error variances

Similar to the priors on the smoothing parameters in section 2.3.2, we assume that

the error variance σ2
g varies across components and follows a half-t distribution, such that

σg ∼ t+νσ(0, Aσ), where νσ is the degree of freedom and Aσ is a scale parameter. We set

νσ = 3 and Aσ = 10 for all components.

2.3.4 Priors on the logistic parameters and the variances of random intercepts

This section provides details on the prior distributions placed on the parameters of the lo-

gistic weights (3). For ease of notation, we denote δ∗
g = (δT

g , ζ
T
g )

T , where ζg = (ζ1g, . . . , ζNg)
T ,

g = 1, . . . , G. We let V ∗
i = (V ′

i, e
′
i)
′ where ei is a vector of all zeros except for a single 1 in the
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ith position, and V ∗ is a matrix consisting of the rows V ∗T
i , i = 1, . . . , N . Gaussian priors

are placed on the logistic parameters, i.e., δ∗
g ∼ N(0,Bg), whereBg = diag(σ2

δg1P+1, κ
2
ζg1N),

and the priors on the random intercepts satisfy ζg ∼ N(0, κ2
ζgIN). As for the hyperparam-

eters, we assume σ2
δg = 10 for all components and covariates, and κζg ∼ t+νκ(0, Aκ), where

νκ = 3 and Aκ = 10 for all components.

To sample the logistic parameters, Polson et al. (2013) proposed a data augmentation

scheme incorporating Pólya-Gamma latent variables, which facilitates Gibbs steps. Details

on sampling the logistic parameters are provided in the Appendix A.1.

2.3.5 Joint posterior distribution

Based on the augmented likelihood function in (6) and the prior distributions in Sec-

tion 2.3, we denote all parameters of component g by Θg = (θ′
g, τ

2
g , σ

2
g , δ

∗′
g , κ

2
ζg)

′ and Θ =

(Θ′
1, . . . ,Θ

′
G)

′. The joint augmented posterior distribution of all parameters Θ can be writ-

ten as:

f(Θ | y,S,V ∗) ∝
N∏
i=1

G∏
g=1

[
πigfg(yi | Θg)

]zig
×

G∏
g=1

fθ(θg | Dg)×
G∏

g=1

fτ (τ
2
g | ντ , Aτ )

×
G∏

g=1

fσ(σ
2
g | νσ, Aσ)×

G∏
g=1

fδ(δ
∗
g | Bg)

×
G∏

g=1

fκ(κ
2
ζg | νκ, Aκ),

(7)

where fθ, for example, denotes the prior probability density function on θg.

2.4 Sampling scheme

We proposed a novel RJMCMC algorithm, aimed at obtaining trans-dimensional moves

by allowing the number of components to either increase or decrease by 1.
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2.4.1 Proposed RJMCMC algorithm

Reversible jump MCMC (RJMCMC) was proposed by Green 1995 by allowing the

Markov Chain sampler to jump between parameter subspaces of different dimensionality.

Richardson and Green 1997 applied RJMCMC to the analysis of univariate normal mixtures

using a hierarchical prior model. Many papers in time series and spectral analysis have

utilized RJMCMC (Rosen et al., 2009, 2012; Bertolacci et al., 2021; Li and Krafty, 2019).

In this project, we use RJMCMC as the sampling algorithm, which is an advanced

Metropolis-Hastings algorithm allowing sampling from varying dimensions. In our algorithm,

each RJMCMC iteration ℓ contains two types of moves: between-model moves and within-

model moves. Between-model moves involve a change in parameter dimensions by proposing

to add or remove one component. Within-model moves do not involve a change in parameter

dimensions and Gibbs sampling is used to sample from the posterior distribution of the

parameters.

To aid in developing the RJMCMC, we let Θg,G = (θ′
g, τ

2
g , σ

2
g , δ

∗′
g , κ

2
ζg)

′ be the aggre-

gation of all parameters for gth component and ΘG = (Θ′
1,G, . . . ,Θ

′
g,G, . . . ,Θ

′
G,G)

′ as the

aggregation of all parameters of all components. We denote the current state as (Gc,Θc
Gc)

and the proposed state as (Gp,Θp
Gp), where the superscript c and p denote the current and

proposed states, respectively.

The number of components g is first initialized, followed by initializing the other model

parameters. Between-model moves consist of steps to either split a component into two or

merge two components into one. The proposed moves are then accepted or rejected using

a Metropolis-Hasting step. Within-model moves involve sampling each model parameter

using Gibbs sampling without changing the number of components. The RJMCMC sampling

scheme is described as follows, and a detailed sampling scheme is provided in Appendix A.1.

1. Between-model moves

For the between-model moves, a new value of G is proposed, and conditional on this

value, parameter values θg, τ
2
g , σ

2
g , δ

∗
g and κ2

ζg are proposed.

a. The number of components is proposed to either increase by 1 (split) or decrease by

1 (combine) with equal probabilities. Thus, we have Gp = Gc + 1 or Gp = Gc − 1, if
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Gc ̸= 1 or Gc ̸= Gmax, where Gmax is the maximum number of components we allow.

b. If a split step is proposed, then a candidate component for splitting is drawn ran-

domly. A new vector of logistic parameters is generated for the new component. New

smoothing parameters and error variances are drawn based on the current parameter

values. Finally, conditional on the smoothing parameters and error variances, two

new sets of model parameters are drawn. We accept the proposed move with the

probability

α = min

{
1,

p(Gp,Θp
Gp | y)× q(Gc,Θc

Gc | Gp,Θp
Gp)

p(Gc,Θc
Gc | y)× q(Gp,Θp

Gp | Gc,Θc
Gc)

}
,

where p(·) denotes the target density of the proposed or current states and is the

product of the joint likelihood function and the prior densities. The function q(·)

denotes the proposed density conditional on the current or proposed states. If the

proposed state is accepted, we move to the model with Gp components. If the

proposed state is rejected, we stay at the current state with Gc components.

c. If a combine step is proposed, then two components are selected to be combined,

with one component to which the smallest number of subjects are allocated. We

begin a combine proposal by first removing one set of logistic parameters. Values

of the combined smoothing parameters and error variances are then computed. Fi-

nally, conditional on the values of the combined smoothing parameters and error

variances, the new set of model parameters of the combined component are drawn.

The acceptance rate is the inverse of that from the split proposal.

2. Within-model moves

After completing between-model moves, given the new value of Gc, parameters corre-

sponding to a model with Gc components can be updated using Gibbs sampling. Denote

ℓ as the index of the Gibbs sampling iteration. For the (ℓ+ 1)th iteration, we carry out

the following steps:

a. Draw θ(ℓ+1)
g from (θ(ℓ+1)

g | y,S, τ 2(ℓ)g , σ
2(ℓ)
g ) ∼ N(ug, σ

2
gΛg), where ug and Λg are

posterior means and covariance matrix. Detailed formulas are displayed in Appendix

A.1.
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b. Draw σ
2(ℓ+1)
g from (σ

2(ℓ+1)
g | ϵ(ℓ+1)

ig , a
(ℓ+1)
σg ) ∼ IG

(
nNg+νσ

2
,
∑N

i=1 zigϵ
′
igϵig

2
+ νσ

aσg

)
, where

Ng is the number of subjects in the gth component, ϵig is the error vector for the gth

component and ith subject and aσg is a latent variable related to the augmentation

of the half-t distribution (Wand et al., 2011).

c. Draw τ
2(ℓ+1)
g from (τ

2(ℓ+1)
g | β(ℓ+1)

g , a
(ℓ+1)
τg ) ∼ IG

(
ντ+m

2
,
β′
gβg

2
+ ντ

aτg

)
, where aτg is a

latent variable related to the augmentation of the half-t distribution.

d. Draw δ∗(ℓ+1)
g from (δ∗(ℓ+1)

g | V ∗, z
(ℓ)
ig , ω

(ℓ+1)
ig , κ

2(ℓ)
ζg ) ∼ N(M g,Σg), where ω

(ℓ+1)
ig is

a Pólya-Gamma latent variable related to the augmentation of the Pólya-Gamma

distribution (Polson et al., 2013). The terms M g and Σg are posterior mean and

covariance matrices. Detailed formulas are displayed in Appendix A.1.

e. Draw κ
2(ℓ+1)
ζg from (κ

2(ℓ+1)
ζg | ζ(ℓ+1)

g , a
(ℓ+1)
κg ) ∼ IG

(
νκ
2
,
ζ′
gζg

2
+ νκ+N

aκg

)
, where aκg is a

latent variable related to the augmentation of the half-t distribution.

f. Mixing weight π
(ℓ+1)
ig can be obtained by computing p(π

(ℓ+1)
ig | V ∗, δ∗(ℓ+1)

g , z
(ℓ)
ig ) fol-

lowing (3).

g. Draw z
(ℓ+1)
ig ∼ p(z

(ℓ+1)
ig = 1 | y,S,θ∗(ℓ+1)

g , σ
2(ℓ+1)
g , π

(ℓ+1)
ig ) following (5).

Details of conditional posterior distributions are given in Appendix A.1.

2.4.2 Label switching

The label switching issue is a well-known issue in mixture models. Although the likeli-

hood is invariant under the permutations of labeling, it becomes a problem when we aim at

estimating trajectories of one component (Rossell and Steel, 2019). Consider a random sam-

ple from a population of two normal components. If the means of the two components are

well separated, labeling by the posterior mean will be equivalent to the population labeling.

However, if the level of separation reduces and the two posterior distributions overlap, label

switching issues will occur (Jasra et al., 2005). The issue of label switching will mix infer-

ences of posteriors from different components and impede the correct inferences of posterior

distributions of a single component.

Richardson and Green 1997 mentioned the issue of label switching in the context of

RJMCMC in the univariate mixture case. Label switching can be tackled by choosing to
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order on means, variances, weights, or some combination of all three parameters. Richardson

and Green suggested to post-process the MCMC runs according to different choices of labels.

However, in more complex models such as our time series model, ordering approaches do

not work well because it is rarely true that the selected ordering constraint is able to separate

symmetric posterior modes (Jasra et al., 2005; Fúquene et al., 2019), especially in RJMCMC

(Spezia, 2009). Many solutions have been proposed to solve or reduce the issue of label

switching. Stephens 2000 was the first who proposed a solution to deal with label switching.

A Kullback-Leibler divergence between an averaged matrix of classification probabilities in

each MCMC iteration is minimized using a permutation-based method. Marin et al. 2005,

2007 proposed the pivotal reordering algorithm, which is a data-driven approach that selects

the permutation that minimizes the Euclidean distance between the pivot and the set of

permuted parameter vectors in each MCMC iteration. Papastamoulis and Iliopoulos 2010,

2013 proposed different versions of Equivalence Classes Representatives (ECR) algorithms

based on the assumption that equivalent allocation vectors are mutually exclusive from the

label switching solution. Different ECR algorithms differ in the choice of equivalent allocation

vectors. In addition, Sperrin et al. 2010 presented a probabilistic relabeling algorithm based

on an EM-type algorithm and Rodriguez and Walker 2014 proposed a data-based labeling

method that is based on a k-mean type loss function between the cluster pivots and the

observed data.

For our proposed method, we choose to use a data-based relabeling algorithm to solve

the issue of label switching by post-processing the RJMCMC iterations. This algorithm

is a permutation-based method based on the latent indicators z
(t)
i for each subject i at

each iteration t = 1, . . . ,m. First, cluster centers mkr and dispersion parameters skr are

estimated for each component k = 1, . . . , K and each dimension r = 1, . . . , d. Then the

optimal permutations are determined based on the optimization of a k-means type loss

function between the cluster pivots and the observed data xir. The data-based relabeling

algorithm is given below.

1. Obtain estimates mkr and skr for k = 1, . . . , K and r = 1, . . . , d.
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2. For each iteration t = 1, . . . ,m, find a permutation τ that minimizes

K∑
k=1

K∑
ℓ=1

I(z
(t)
i = τl)

∑
i:τz

(t)
i =ℓ

d∑
r=1

(
xir −mkr

skr
)2.

To implement the above methods in R, Papastamoulis 2015 has created an R pack-

age, label.switching, which includes all of the above methods and provides user-friendly

functions to implement these relabeling algorithms.

2.5 Simulation studies

We have conducted simulation studies and compared our method to different existing

methods.

2.5.1 Comparing performance of the proposed method to other methods

We conducted simulation studies according to six model settings, denoted by M1 to M6.

All model settings generate a collection of univariate time series with two components. We

generated s = 100 replicates, each consisting of a collection of N = 150 univariate time series

of length n = 300. Models based on regression splines usedm = 10 basis functions and P = 4

covariates (including the intercept). Different model parameters such as spline coefficients,

linear coefficients, error variances, and smoothing parameters were assigned values for each

component g and for each model setting.

To form different model settings, we assume two true models, which are evaluated by

three methods. M1, M2 and M3 generate a two-component mixture model where each

mixture follows a cubic function of time. The true cubic models fg(t) for the two mixture

components are

f1(t) = 3− 2t+ 1.5t2 − 0.1t3

and

f2(t) = 10 + t− 0.5t2 − 0.05t3,
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where the error variances are 2 and 4 respectively. M1, M2 and M3 then fit different models

using our proposed model, an R package lcmm and TRAJ in SAS. M4, M5 and M6 generate a

2-component mixture model where each mixture follows a regression spline model. M4, M5

and M6 then fit different models using the three methods listed above. Parameters used for

the cubic and the regression splines model are presented in Table 2.

Proust-Lima and Liquet 2011; Proust-Lima et al. 2015 developed an R package called

lcmm, which is an abbreviation for latent class mixed model. It can be used to fit various

extensions of mixed models including latent class mixed models, joint latent class mixed

models, mixed models for curvilinear outcomes or mixed models for multivariate longitudi-

nal outcomes using maximum likelihood estimation (MLE). A numerical method called the

modified Marquardt algorithm is used to obtain the MLEs with strict convergence criteria

based on the parameter values and likelihood stability, as well as the negativity of the second

derivatives. In our simulation studies, we apply the latent class random intercept model for

Gaussian longitudinal outcomes. A finite number of latent classes needs to be specified. In

addition, covariates can be incorporated into the class membership model via multinomial

logistic regression.

TRAJ performs a group-based trajectory modeling for longitudinal data (Jones et al.,

2001). It is based on a polynomial model of different orders. TRAJ assumes that conditional

on the group membership, longitudinal outcomes are independently distributed, although

longitudinal outcomes are not conditionally independent at the population level. The pro-

cedure obtains MLE using a numerical quasi-Newton iterative algorithm and allows the

inclusion of covariates via a class membership model. As described before, the amount of

smoothing in our approach is controlled by the τ 2g .

The data for each replicate of the regression splines case are generated as follows:

1. Generate fixed and evenly-spaced time points with a length of 300 from 0 to 5

2. Generate 10 sets of basis functions as a function of time

3. Set values for the parameters τ 2g , σ
2
g ,αg and generate βg ∼ N(0, τ 2g Im) for each com-

ponent g. The values of intercepts for two components are 1 and 5, and the values of

slopes for two components are -2 and 1. Error variances are set to be 2 and 4 for each

component, as well as 0.8 and 1 for the smoothing parameters
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Table 1. Simulation results for the logistic parameters in the 2-component mixture model:

values in each cell are in the format of RMSE (bias, variance).

Method Model setting δ0 δ1 δ2 δ3

Proposed M1 0.90 (0.08,0.81) 0.51(-0.18,0.23) 0.28(0.11,0.07) 0.35(-0.02,0.12)

lcmm M2 1.15(0.49,1.11) 0.67(-0.34,0.34) 0.34(0.12,0.10) 0.36(0.06,0.13)

PROC TRAJ M3 1.28(0.22,1.64) 0.74(-0.20,0.52) 0.35(0.09,0.12) 0.34(0.02,0.11)

Proposed M4 1.12 (0.41,1.12) 0.54(-0.25,0.24) 0.25(0.07,0.06) 0.33(-0.01,0.11)

lcmm M5 1.41(0.50,1.76) 0.67(-0.25,0.38) 0.26(0.05,0.06) 0.33(-0.01,0.11)

PROC TRAJ M6 1.53(0.52,1.84) 0.78(-0.23,0.56) 0.28(0.09,0.07) 0.34(0.02,0.11)

4. Generate values of four covariates (including the intercept) for each univariate time series,

which follow normal distributions with different means and variances.

5. Set the logistic parameters δg, with the values of 5, -3, 1 and 0.1 for each covariate

(including the intercept). These values are also used in the cubic model in model settings

M1 to M3.

6. Plug the covariate values and the true logistic parameters into the multinomial logits to

obtain the mixing weights

7. Sample latent indicators zig for each univariate time series and each component, based

on the weights from step 6.

8. For each component, simulate each univariate time series yi according to model (1)

Table 1 shows the results of the logistic parameters in the 2-component mixture model

in terms of RMSE (bias, variance) for the six model settings. Model settings M1 to M6 are

introduced. Our proposed method outperforms the other two methods for both the cubic

and regression splines (M1 and M4), especially for the intercept δ0 and the first coefficient

of the covariate δ1. Both bias and variances are smaller than for lcmm and TRAJ methods.

Our covariate-guided model can be viewed as a regularization model with a penalty since

we assume the logistic parameters follow a normal distribution, which corresponds to ridge

regression in the frequentist setting. The shrinkage parameter or the penalty is able to result

in more accurate estimates for some extreme cases, such as perfect separation and unbalanced
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designs, where logistic parameter estimates are hugely inflated in ordinary logistic regression.

The small RMSEs of the proposed method demonstrate the stability of our proposed model

and its capability for accurate clustering compared to the other two methods, in which no

penalty is added to the class membership model.

We also investigate the performance of the estimated trajectories for each component by

calculating the averaged root square error (ARSE) of each component

ARSE =

√√√√ 1

nK

n∑
j=1

K∑
k=1

(
ŷj − yj

)2

,

where ŷj is the estimated value of the true yj for the jth time point, j = 1, . . . , n. Table 2

provides the ARSE, averaged bias (A-bias) and V-bias for each component, where V-bias is

computed by calculating the sample variance of the bias over time points.

For model settings M1, M2 and M3 in Table 2, unsurprisingly, lcmm and TRAJ outperform

our proposed model since they use the true model, while our proposed model fits a penalized

splines to the truth of a cubic model. However, our proposed method still shows a relatively

good performance with a comparable bias to the other two methods. For model settings M4,

M5 and M6 in Table 2, our proposed model outperforms the other two methods, especially

compared to TRAJ. Notably, M4, M5 and M6 use a regression spline model as the true model.

Thus, our proposed method demonstrates good performance when the model is correctly

specified. lcmm is able to fit a linear mixed model using spline basis functions as input

covariates, thus leading to an accurate estimation. However, since TRAJ only allows fitting

polynomial models, it performs the worst among the three methods because of several poor

fits among all replicates. In general, our proposed method is able to give precise trajectory

estimates for both underlying models. An example of estimated trajectories with the true

trajectory from one replicate for M1 and M4 model settings is presented in Appendix A.2.

34



Table 2. Simulation results of estimated trajectories in the 2-component mixture model:

values in each cell are in the format of ARSE×100 (SD×100).

Method Model setting Statistics First component Second component

Proposed M1

ARSE 3.2 (0.5) 4.3 (0.9)

A-Bias 0.05 (0.8) -0.04 (1.4)

V-bias 0.1 (0.03) 0.2 (0.04)

lcmm M2

ARSE 1.7 (0.6) 2.6 (0.9)

A-Bias 0.05 (0.8) -0.04 (1.4)

V-bias 0.03 (0.02) 0.06 (0.04)

TRAJ M3

ARSE 1.8 (0.6) 2.8 (1.0)

A-Bias 0.05 (0.8) -0.04 (1.4)

V-bias 0.03 (0.02) 0.05 (0.04)

Proposed M4

ARSE 2.9 (0.6) 3.9 (0.9)

A-Bias 0.04 (0.8) -0.02 (1.4)

V-bias 0.1 (0.03) 0.1 (0.06)

lcmm M5

ARSE 3.0 (0.7) 4.3 (0.8)

A-Bias 0.02 (0.8) -0.02 (1.3)

V-bias 0.1 (0.04) 0.2 (0.07)

TRAJ M6

ARSE 26.8 (6.9) 28.9 (7.2)

A-Bias 1.6 (8.1) -1.5 (8.6)

V-bias 7.2 (0.38) 8.4 (0.42)

2.6 Real-data application results

We apply our proposed method to the analysis of the fNIRS still-face study. Introduction

to fNIRS data and the motivating study are given in Chapter 1. Five covariates are included
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in our covariate-guided model, including Infant Behavior Questionnaire-Revised negative

emotionality (IBQ-NE) score, gestational age (in Days), infant age (in Months), head cir-

cumference (in cm) and sex. All continuous covariates are scaled to follow the standard

normal distribution.

Infant Behavior Questionnaire-Revised (IBQ-R) is a widely used parent report of mea-

sure developed to assess dimensions of temperament along multiple scales (Gartstein and

Rothbart, 2003). The IBQ-NE construct combines data from the following subscales: Sad-

ness, Distress to Limitations, Fear, and Falling Reactivity/Rate of Recovery from Distress

(Gartstein and Rothbart, 2003; Gartstein et al., 2010). We assume that these covariates are

associated with the mixing weights of each component and the trajectory pattern of that

component. The data pre-processing steps in Section 1.3.4 resulted in a sample of 82 sub-

jects with complete covariates, each with a univariate time series from each channel. Each

univariate time series consists of a grid of 1500 time points of which 500 measurements are

in the still-face period. Here we present results the RJMCMC results after post-processing

using the data-based relabeling algorithm Papastamoulis 2015 introduced in Section 2.4.2.

Table 3 lists the estimated posterior probabilities for each number of components, as well

as the acceptance rates for the twelve channels. Two-component models have the largest

posterior probabilities for all channels. Three-component models have the second-largest

probabilities for almost all channels. In addition, five-component and six-component models

are less appealing with very small probabilities. The acceptance rates for the twelve channels

range from 8.9% to 11.3%, which are reasonable for RJMCMC. A very low acceptance rate

prevents the algorithm from exploring the entire parameter space and requires a large number

of iterations to achieve convergence. A very high acceptance rate would indicate poor model

fitting without stability.

We present results from two selected channels S1D1 and S5D4. Results of the trajectory

estimates for the other three channels S1D3, S6D4 ad S7D4 are given in Appendix A.3. Since

two-component models are the most appealing, we look at the estimated trajectories based

on the 2-component model. Estimated trajectories with pointwise 95% credible intervals for

the 2-component model are displayed in Figures 6 and 7. Components in the right panel

of Figures 6 and 7 are the reference component for the covariate-guided model analysis.
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Table 3. Estimated posterior Probabilities of the number of components, along with the

acceptance rate for each channel.

Channel P(G=1) P(G=2) P(G=3) P(G=4) P(G=5) P(G=6) Acceptance rate

S1D1 0.0782 0.5000 0.2977 0.1024 0.0198 0.0018 0.0937

S1D2 0.1260 0.4469 0.3191 0.0959 0.0119 0.0002 0.1128

S1D3 0.0686 0.5238 0.3088 0.0833 0.0146 0.0009 0.0943

S2D2 0.1230 0.4608 0.2966 0.0968 0.0202 0.0026 0.1005

S3D2 0.1440 0.5560 0.2370 0.0555 0.0067 0.0008 0.0904

S4D2 0.1253 0.5130 0.2846 0.0655 0.0106 0.0010 0.0904

S5D1 0.0696 0.5338 0.3104 0.0748 0.0110 0.0004 0.0894

S5D3 0.2379 0.4718 0.2234 0.0582 0.0083 0.0004 0.0904

S5D4 0.0700 0.4446 0.3404 0.1217 0.0218 0.0014 0.0995

S6D4 0.1286 0.5031 0.2694 0.0815 0.0157 0.0017 0.1027

S7D4 0.1143 0.4508 0.2988 0.1129 0.0216 0.0015 0.1019

S8D4 0.2072 0.4642 0.2367 0.0740 0.0156 0.0022 0.1076

We are interested in the brain activation trajectories for the still-face period (S), while the

interact (I) period serves as the reference level. Both the S1D1 and S5D4 channels show clear

trajectory patterns. One component has a decreasing trend during the still-face period, while

the other component has an increasing trend during the still-face period in both channels.

Table 4 displays the logistic coefficient estimates for channels S1D1 and S5D4, where

the number of components G = 2 as well as pooled results across all components (2-6).

Pooled results refer to pooling results of logistic parameter estimates from iterations that

have 2 to 6 components. Since all iterations included at least two components, where one

component shows increasing brain activity whereas the other has decreasing brain activity

in the still-face period, we are able to pool the iterations of the logistic parameter estimates

for these two components together and find pooled posterior means as well as 95% credible

intervals. The results based on the pooled analysis are similar to the results conditional on

two components, where the directions of all coefficients are the same. Though all credible
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Figure 6. Estimated trajectories with pointwise 95% credible intervals for the two-component

model for the S1D1 channel. I: Interact S: Still-face R: Recovery.

Figure 7. Estimated trajectories with pointwise 95% credible intervals for the two-component

model for the S5D4 channel I: Interact S: Still-face R: Recovery.

intervals include zero, the negative posterior mean estimate of the IBQ-NE score from the

S1D1 channel and positive posterior mean estimate of the IBQ-NE score from the S5D4

channel could still indicate that high IBQ-NE score is associated with a decreasing brain

activation for the still-face period.
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Table 4. Logistic coefficient estimates for channels S1D1 and S5D4.

Covariates
S1D1 G=2 S5D4 G=2

Mean Lower 95% CI Upper 95% CI Mean Lower 95% CI Upper 95% CI

Intercept -0.083 -4.890 4.432 0.669 -3.989 5.102

IBQ-NE -1.523 -5.028 1.877 1.489 -2.352 5.033

Infant age 2.212 -1.954 5.698 2.133 -1.674 5.896

Gestational days -0.069 -3.855 3.520 0.954 -2.910 4.335

Head Circumference 0.785 -2.651 4.688 0.542 -3.358 4.206

Sex 0.142 -4.038 4.354 -0.175 -4.231 4.165

Covariates
S1D1 pooled S5D4 pooled

Mean Lower 95% CI Upper 95% CI Mean Lower 95% CI Upper 95% CI

Intercept -0.041 -4.727 4.449 0.729 -3.902 5.289

IBQ-NE -1.794 -5.597 2.245 0.952 -2.822 4.614

Infant age 1.809 -2.238 5.618 1.693 -2.284 5.655

Gestational days -0.064 -3.846 3.527 0.97 -2.838 4.752

Head Circumference 0.592 -3.007 4.369 0.563 -3.227 4.338

Sex 0.171 -3.965 4.424 -0.184 -4.114 4.285

2.7 Discussion

Our proposed covariate-guided Bayesian mixture of spline experts model aims to per-

form model-based clustering of univariate time series from multiple subjects. The proposed

method is a Bayesian mixture of splines, where covariates are incorporated into the mix-

ing weight of each component. The performance of our proposed method is illustrated in

simulation studies in Section 2.5. Results from the simulation studies demonstrate that

the Bayesian penalized spline model is flexible enough to be able to provide a good fit to

a parametric cubic model. Simulation studies also compare our proposed method to two

existing methods and results show that our proposed method outperforms these methods

in terms of both trajectory estimates and logistic parameter estimates, especially when the

true trajectory is wiggly.

We apply our proposed method to an fNIRS still-face study, aiming to discover trajectory
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patterns for a single channel and to see how selected covariates are associated with the

trajectory patterns of each component. Based on results from several channels, we conclude

that clear patterns emerge in the components making up the trajectory estimates within the

still-face period. From the logistic coefficients estimates in Table 4, we are able to conclude

that a higher IBQ-NE score is related to a lack of response in the still-face period, with

a decreasing trajectory of oxy-hemoglobin. The potential explanation for this association

is that infants with a high IBQ-NE are not able to or attempt to regulate their emotions,

which indicates less blood flowing to their brains and thus results in a decreasing trajectory

of responses. Though the 95% credible interval of infant age does include zero, we can still

reach a conclusion that young infants tend not to have the control to attempt to regulate

emotions, which leads to the decreasing trend of brain activity level as seen in the second

component of S1D1 and the first component of S5D4 in Figures 6 and 7.

Our proposed method has some limitations. First, our proposed RJMCMC algorithm

still suffers from the issue of label switching. The credible intervals are still wide for some

channels, indicating the possible existence of label switching even after performing the post-

processing steps. Second, our proposed method focuses on the clustering of univariate time

series. However, in the area of brain-imaging, time series from different channels, voxels, or

electrodes are usually multi-dimensional. Thus, it is natural to extend our proposed method

to multivariate time series, which will be more meaningful in real-data applications of brain-

imaging data. Our next project in Chapter 3 extends our proposed model to the clustering

of multivariate time series from multiple subjects.
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3.0 Covariate-guided Bayesian mixture of spline experts for the analysis of

multivariate time series

3.1 Introduction

With the rapid development of modern technologies in diverse scientific areas, the anal-

ysis of multivariate time series data becomes more and more important, especially in the

brain-imaging area. With the fast computing technologies such as cloud computing, many

statistical approaches are able to be implemented by considering the heterogeneity and di-

mensionality of multivariate time series. Multivariate time series is a common data structure

in brain-imaging data, such as fNIRS introduced in Section 1.1, where each subject has a

multi-dimensional time series of oxy-hemoglobin (HbO) measurements in multiple channels.

Multivariate time series have different definitions in different settings. In our project, it

refers to a collection of individuals, each with a multi-dimensional time series. Multivariate

time series are often heterogeneous across subjects and even for different dimensions or vari-

ates within a subject, hence causing many statistical challenges in inference and estimation.

Thus, we extended our previous work in Chapter 2 to the multivariate case with the purpose

of clustering multivariate time series under the Bayesian framework.

Several authors have focused on proposing different clustering algorithms for multivari-

ate time series. Johnson et al. 2014 and McLachlan 2005 have applied the discriminant

and cluster analysis to the case of multivariate time series. Kakizawa et al. 1998 used

Kullback-Leibler discrimination information as the minimum discrimination criteria for the

clustering of multivariate Gaussian time series. Parzen 1990 proposed the Chernoff informa-

tion measures and Zhang and Taniguchi 1994, 1995 have shown its robustness in clustering

of multivariate non-Gaussian time series. Singhal and Seborg 2005 proposed a new method

for multivariate time series clustering based on two similarity factors, where one factor is

based on the principal component within the dimension and another one is based on the

Mahalanobis distance between multivariate time series. Wang et al. 2007 used a modified

K-mean clustering algorithm for the clustering of multivariate time series based on univariate
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structures. A variety of papers have established different model-based clustering methods for

the clustering of multivariate time series, such as multivariate AR models (Kalpakis et al.,

2001; Xiong and Yeung, 2002) and Hidden Markov Models (Li et al., 2001; Wang et al.,

2002). Other feature-based clustering approaches with dimension reduction include princi-

ple component analysis (Li, 2019; Rani and Sikka, 2012; Ye et al., 2004) and independent

component analysis (Verdoolaege and Rosseel, 2010; Guo et al., 2008). A comprehensive

review of methods of time series clustering can be found in Liao 2005.

Many works have been performed for a single multivariate time series in both the time

and the frequency domains. Dahlhaus 2000 proposed a multivariate locally stationary pro-

cess with time-varying parameters using a generalization of Whittle likelihood. Krafty and

Collinge 2013 presented a novel approach for the smoothness and estimation of multivariate

power spectrum using a penalized multivariate Whittle likelihood. Guo and Dai 2006 pro-

posed a nonparametric smoothing method for the estimation of a time-varying spectrum that

is assumed to be smooth over both time and frequency. A smoothing splines ANOVA was

used to smooth Cholesky components of the power spectrum for both time and frequency.

Other contributions of nonparametric models of multivariate spectral analysis include the

multivariate smooth localized complex exponential (SLEX) model (Ombao et al., 2005) and

stationary wavelet models (Sanderson et al., 2010; Park et al., 2014). Bayesian approaches

have been widely used for the spectral analysis of multivariate time series. Zhang 2016

extended the Bayesian adaptive spectral analysis from Rosen et al. to the multivariate non-

stationary setting. Rosen and Stoffer 2007 proposed a Bayesian method for multivariate

time series that is able to fit the smoothing splines model to each component separately by

using the Cholesky decomposition of the spectral matrix. Li and Krafty 2019 introduced

an approach to the adaptive spectral analysis of multivariate time-varying power spectrum.

This approach can be formulated in the Bayesian framework with the advantage of approx-

imating both abrupt and slowly varying changes in spectral matrices. Recently, Li et al.

2021 developed an approach to analyze the association between covariates and multivariate

time series across multiple subjects. This method was fully Bayesian and assumed that the

number of groups as well as the covariate partition defining groups are random.

Different statistical and computational methods of multivariate correlated time series
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have been applied to the brain-imaging areas. In the area of functional data analysis, mul-

tivariate functional PCA (Chiou et al., 2014; Happ and Greven, 2018) have been used to

analyze functional processes. Zhang et al. 2021 used an interpretable functional principal

component analysis for the analysis of multilevel multivariate functional data with the ap-

plication to the electroencephalography (EEG) data, where EEG measures brain activities

from different locations and with different frequency bands. Multivariate time series are

often high-dimensional and have a correlated structure in brain-imaging data such as EEG.

Hector and Song 2021 proposed a divide-and-conquer algorithm for the estimation of re-

gression parameters that allows a fully distributed computation at each data source with a

pairwise composite likelihood. Later Hector and Song performed a joint integrative analysis

based on a distributed quadratic inference function. In addition, Baladandayuthapani et al.

2008 proposed a Bayesian approach to analyze hierarchical spatially correlated functional

data with multiple nested hierarchy layers and spatial correlations.

Many works have been focused on the latent class analysis of multivariate longitudinal

data. Jones et al. 2001 and Nagin et al. 2018 developed a group-based multivariate trajectory

modeling approach with a quasi-Newton procedure and aimed to identify trajectory estimates

based on multivariate longitudinal data. This approach fits polynomial models with different

orders for the estimation of trajectories and it is implemented in SAS software through a

procedure called TRAJ. Magrini 2022 presented another group-based multivariate trajectory

modeling approach using the EM algorithm. Proust-Lima et al. 2015, 2017 proposed a latent

class mixed model to estimate trajectories of multivariate markers by using different marker-

specific link functions from different families. This approach can be extended to a joint

analysis with the time-to-event data.

In our project, we extend our proposed mixture of spline experts model to the case of

multivariate time series, which refer to a collection of multi-dimensional time series across

subjects. Models with different parameters are fit separately for each component of univari-

ate time series across subjects. Smoothing splines models were used to fit the time series

model with flexibility and a low-rank approximation approach (Wood et al., 2002; Wahba,

1980) was adopted to obtain smoothing coefficients based on a small set of basis functions.

Mixture-of-experts model was incorporated to allow for the inclusion of time-independent
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covariates. The Pólya-Gamma data augmentation strategy (Polson et al., 2013) was used to

obtain logistic parameters and mixing weights for each component. The proposed approach

was formulated in a fully Bayesian framework and sampled from the posterior distributions

via Gibbs sampling. The number of components was selected using an adjusted deviance in-

formation criteria (DIC) based on the posterior variance (Celeux et al., 2006; Gelman et al.,

1995). The rest of Chapter 3 is organized as follows. In Section 3.2 and 3.3 we present the

proposed model and priors for each parameter. Section 3.4 introduces the Bayesian sampling

scheme based on Gibbs sampling. In Section 3.5 we report simulation results under different

settings and Section 3.6 illustrates our proposed method with the real-data application of

the PGS-ECHO fNIRS still-face study, which is given a detailed introduction in Chapter 1.

Section 3.7 gives a conclusion of our first project as well as limitations and future works.

3.2 Multivariate mixture of spline experts model

In this section, we provide a detailed description of the proposed covariate-guided Bayesian

mixture of spline experts model. The proposed model consists of spline components whose

mixing weights depend on covariates.

3.2.1 Mixture of splines model

We propose a tensor-product mixture of splines model for multivariate time series. For

each subject i = 1, . . . , N , let yi = (y′
i1, . . . ,y

′
ik, . . . ,y

′
iK)

′ be the nK-vector corresponding to

the K-dimensional time series for k = 1, . . . , K, where yik =
[
yik(t1), . . . , yik(tj), . . . , yik(tn)

]′
is the kth entry of the time series of length n for j = 1, . . . , n, and ϵi = (ϵ′i1, . . . , ϵ

′
iK)

′ is the

nK-vector of errors. Following the model representation of Krafty et al. (2017), the tensor-

product model for the K-dimensional multivariate time series, conditional on component g,

g = 1, . . . , G, can be written as:

{yi | zig = 1} = (IK ⊗X)αg + (IK ⊗W )βg + ϵi, (8)
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where {zig}Gg=1 are latent indicators as described in Section 3.2.3, αg = (α′
g1, . . . ,α

′
gK)

′ is a

2K-vector of intercepts and slopes, βg = (β′
g1, . . . ,β

′
gK)

′ is a mK-vector of basis function

coefficients as described in Section 3.3.1, IK is a K × K identity matrix and ⊗ denotes a

tensor product. The matrix X is given by X =

1 1 . . . 1

t1 t2 . . . tn

′

and the m columns

of the matrix W are smoothing splines basis functions as described in Section 3.3.1. We

assume the error vector ϵi follows a MVN(0,Ψg⊗U) distribution, where U = In is the n×n

identity matrix, and Ψg = diag(σ2
g) is a K × K diagonal matrix with the error variances

σ2
g = (σ2

g1, . . . , σ
2
gK)

′. We assume each subject has a common grid of time points across all

K entries, such that X and W are common to all subjects, although our proposed method

can be generalized to the case where subjects are observed at different grids of time points.

In addition, we assume E(yik,yih) = 0n×n for k ̸= h.

To simplify notation, we let S = [X W ] and θg = (α′
g1,β

′
g1, . . . ,α

′
gK ,β

′
gK)

′. The model

(8) can then be rewritten as:

{yi | zig = 1} = (IK ⊗ S)θg + ϵi. (9)

3.2.2 Model for mixing weights

As in 2.2.2, the mixture-of-experts model (Jacobs et al., 1991) is also applied to form

a covariate-guided structure for the clustering of multivariate time series, where the mixing

weights are multinomial logits that are functions of selected covariates. As in Sun et al.

(2007), the mixing weights are expressed as

πig(V i) =
exp(V ′

iδg + ζig)∑G
h=1 exp(V

′
iδh + ζih)

, (10)

where V i = (1, Vi1, · · · , ViP )
′ is a vector of length (P + 1) containing values of P covari-

ates for subject i, and δg = (δg0, δg1, · · · , δgP )′ is the corresponding coefficient vector. For

identifiability, we set δG = 0. Equation (10) differs slightly from the weights in the tradi-

tional mixture of experts model in that it includes a random term ζig for each subject. This

term accounts for unmeasured factors beyond the observed covariates and enhances model

performance and inference of the mixing weights.
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3.2.3 Augmented likelihood

To account for heterogeneity across subjects, we assume that the kth entry of the mul-

tivariate time series, yik, comes from a mixture model with G components, i.e.,

yik ∼
G∑

g=1

πigfgk(yik | µgk, σ
2
gkIn), (11)

where fgk(yik | µgk, σ
2
gkIn) is the probability density function of the multivariate normal

distribution with mean vector µgk = Xαgk + Wβgk and covariance matrix σ2
gkIn for the

gth component and the kth entry. The πig are mixing weights that depend on covariates as

described in Section 3.2.2.

As is common in mixture models, augmenting the likelihood with latent variables indi-

cating the component from which a time series originates simplifies the computation greatly

(Dempster et al., 1977). In particular, let zig = 1 if the ith multivariate time series be-

longs to the gth component and zig = 0, otherwise. Let y = (y1, . . . ,yN)
′ be all observed

multivariate time series and Θgk be the aggregation of all parameters for component g and

entry k. The parameter vector for all components and all entries are then denoted by

Θ = (Θ′
11, . . . ,Θ

′
GK)

′. The augmented likelihood of all N multivariate time series is given

by

L(Θ | y, Z) =
N∏
i=1

G∏
g=1

[
πig

K∏
k=1

fgk(yik | Θgk)
]zig

, (12)

where Z = {zig} is the matrix of all indicators, and fgk(yik | Θgk) is the probability density

function as appeared in the (11). From Bayes’ rule, the distribution of the latent indicators

zig is given by

p(zig = 1 | y,S,Θ, πig) =
πig

∏K
k=1 fgk(yik | Θgk)∑G

h=1 πih

∏K
k=1 fhk(yik | Θhk)

. (13)
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3.3 Priors

3.3.1 Smoothing splines prior

Following the smoothing splines prior in the univariate case and the low-rank approxi-

mation method introduced in 2.3.1, we assume the following diagonal Gaussian priors in the

multivariate case

θg ∼ N(0,Dg),

whereDg = diag(σ2
α112, τ

2
g11m, . . . , σ

2
αK12, τ

2
gK1m) is the covariance matrix for θg. The vec-

tor (σ2
α1, . . . , σ

2
αK)

′ contains fixed prior variances for the regression coefficients αgk, common

to all components and entries. In particular, we fix the common prior variance σ2
α = 100.

The vector τ 2
g = (τ 2g1, . . . , τ

2
gK)

′ contains the smoothing parameters for the gth mixture com-

ponent and 1m is an m-vector of ones. We assume independence between the regression

coefficients αgk and the basis function coefficients βgk.

3.3.2 Priors on the smoothing parameters

We assume the smoothing parameter τ 2
g = (τ 2g1, . . . , τ

2
gK)

′ varies from components and

entries. For the prior of the smoothing parameter, we assume it follows a half-t distribution

as in Section 2.3.2 such that τgk ∼ t+ντ (0, Aτ ), where ντ is the degree of freedom and Aτ is

the scale parameter. We set ντ = 3 and Aτ = 10 for all components and entries.

3.3.3 Priors on the error variances

Similar as priors for smoothing parameters in section 3.3.2, we assume the error variance

σ2
g = (σ2

g1, . . . , σ
2
gK)

′ varies from components and entries. For the prior of the error variance,

we assume it follows a half-t distribution such that σgk ∼ t+νσ(0, Aσ), where νσ is the degree

of freedom and Aσ is the scale parameter. We set νσ = 3 and Aσ = 10 for all components

and entries.
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3.3.4 Priors on the logistic parameters and the variances of random intercepts

Priors for logistic parameters and variances of random intercepts are the same as the

univariate case in Section 2.3.4. For the simplification of notations, we denote δ∗
g = (δT

g , ζ
T
g )

T ,

where ζg = (ζ1g, . . . , ζNg)
T . We also denote V ∗

i as the covariates with a subvector indicating

the random intercept for subject i and V ∗ is a matrix with each subject as a row. We

assume the priors of logistic parameters δ∗
g ∼ N(0,Bg), where Bg = diag(σ2

ζg1P+1, κ2
ζg1N)

and the priors of random intercept ζg ∼ N(0, κ2
ζgIN). For hyperparameters, we give a

weakly informative prior with σ2
ζg = 10 by assuming independence across all components

and covariates. We also give a half-t hyperprior distribution for κg with κg ∼ t+νκ(0, Aκ). We

set νκ = 3 and Aκ = 10 for all components.

For the estimates of logistic parameters using the Bayesian method, Polson et al. 2013

proposed a data augmentation strategy with the inclusion of a Pólya-Gamma latent vari-

able that follows the Pólya-Gamma distribution. This data augmentation strategy has been

shown to outperform other known data augmentation strategies with computational effi-

ciency. Details about the implementation of Pólya-Gamma augmentation strategy are dis-

played in the sampling scheme in Appendix B.1.

For the purpose of explanation, Figure 8 shows a directed acyclic graph (DAG) for the

Bayesian hierarchical structure of the proposed Bayesian mixture of spline experts model in

the multivariate time series. Priors of error variances, model parameters, and mixing weights

are in different branches.
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Figure 8. Directed acyclic graph (DAG) for the Bayesian hierarchical structure.

3.3.5 Joint posterior distribution

Based on the augmented likelihood function in (12) and prior distributions in Section

3.3, the joint posterior distribution of Θ can be written as:

f(Θ | y,S,V ∗) ∝
N∏
i=1

G∏
g=1

{πig

n∏
j=1

fg(yitj
| Θg)}zig

×
G∏

g=1

fθ(θg | τ 2
g, σ

2
α)×

G∏
g=1

fτ (τ
2
g | ντ , Aτ )

×
G∏

g=1

fσ(σ
2
g | νσ, Aσ)×

G∏
g=1

fδ(δ
∗
g | σ2

ζg, κ
2
ζg)

×
G∏

g=1

fκ(κ
2
ζg | νκ, Aκ),

(14)

where fθ, for example, denotes the prior probability density function for the model parame-

ters.

49



3.4 Sampling scheme

This section outlines the Gibbs steps for sampling from the conditional posterior distri-

butions of all the model parameters. More details are given in Appendix B.1.

3.4.1 Gibbs sampling steps

Letting ℓ denote the current Gibbs sampling iteration, parameter values at the (ℓ+1)th

iteration are drawn according to the following steps.

1. Draw θ
(ℓ+1)
gk from (θ

(ℓ+1)
gk | y,S, τ 2(ℓ)gk , σ

2(ℓ)
gk ) ∼ N(ugk, σ

2
gkΛgk), where ugk and Λgk are

mean vectors and covariance matrices.

2. Draw σ
2(ℓ+1)
gk from (σ

2(ℓ+1)
gk | ϵ

(ℓ+1)
igk , a

(ℓ+1)
σgk ) ∼ IG

(
(nN

(ℓ)
g + νσ)/2,

∑N
i=1 zigϵ

′
igkϵigk/2 +

νσ/aσgk

)
, where N

(ℓ)
g is the current number of subjects in the gth component, ϵigk is the

error vector for the gth component, the ith subject and the kth entry, and aσgk
is a latent

variable in the IG scale mixture underlying the half-t distribution.

3. Draw τ
2(ℓ+1)
gk from (τ

2(ℓ+1)
gk | β(ℓ+1)

gk , a
(ℓ+1)
τgk ) ∼ IG

(
(ντ +m)/2,β′

gkβgk/2 + ντ/aτgk

)
, where

aτgk is a latent variable as in 2.

4. Draw δ∗(ℓ+1)
g from (δ∗(ℓ+1)

g | V ∗, z
(ℓ)
ig , ω

(ℓ+1)
ig , κ

2(ℓ)
ζg ) ∼ N(M g,Σg), where ω

(ℓ+1)
ig is a Pólya-

Gamma latent variable in the augmentation described in Section 3.3.4.

5. Draw κ
2(ℓ+1)
ζg from (κ

2(ℓ+1)
ζg | ζ(ℓ+1)

g , a
(ℓ+1)
κg ) ∼ IG

(
νκ/2, ζ

′
gζg/2+ (νκ+N)/aκg

)
, where aκg

is a latent variable as in 2 and 3.

6. The mixing weights π
(ℓ+1)
ig are obtained by computing p(π

(ℓ+1)
ig | V ∗, δ∗(ℓ+1)

g , z
(ℓ)
ig ) from

Equation (10).

7. Draw z
(ℓ+1)
ig ∼ p(z

(ℓ+1)
ig = 1 | y,S,θ(ℓ+1)

gk , σ
2(ℓ+1)
gk , π

(ℓ+1)
ig ) according to Equation (13).

3.4.2 Label switching

The issue of label switching still persists for our proposed Gibbs sampling algorithm.

Section 2.4.2 has listed a set of solutions for solving the label switching issue. For the case

of multivariate time series with Gibbs sampling, we use Equivalence Classes Representatives
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(ECR) algorithm version 1 (Papastamoulis and Iliopoulos, 2010), which uses the simulated

allocation variables as the equivalent allocation vectors.

ECR algorithm is based on the equivalent allocation vectors, which are mutually exclusive

by simply permuting its labels. First, it partitions the set of allocation vectors z
(t)
i into

equivalence classes for each subject i, i = 1, . . . , n at each iteration t = 1, . . . ,m and selects

one representative from each class. Then the optimal permutation is determined by the one

that reorders the allocations and is identical to the representative of its class. ECR algorithm

version 1 uses only the vector of latent indicators as input and selects one representative at

random. The ECR algorithm version 1 is given below.

1. Choose m initial permutations τ (t) for each iteration t = 1, . . . ,m (set to identity for

each iteration).

2. Update z∗i = mode{τz(t)i ; t = 1, . . . ,m} for each subject i = 1, . . . , n.

3. For each iteration t = 1, . . . ,m, find the optimal permutation τ (t) that maximizes∑n
i=1 I(τz

(t)
i = z∗i ).

4. If there is an improvement of
∑m

t=1

∑n
i=1 I(τz

(t)
i = z∗i ), go back to step 2, finish otherwise.

One advantage of ECR algorithm version 1 is this algorithm only needs allocation vectors

for each MCMC iteration and it is computationally efficient compared to other methods listed

in Section 2.4.2. More details about the ECR algorithm can be found in Papastamoulis and

Iliopoulos 2010.

Papastamoulis 2015 developed an R package called label.switching, which includes the

user-friendly R function to implement the ECR algorithm. We post-process our proposed

Gibbs sampling results using the ECR algorithm to solve the label switching issue before

making inferences.

3.4.3 Select number of components

In the second project, we did not apply the RJMCMC for the clustering of multivariate

time series. Instead, we fit the proposed model and update model parameters using Gibbs

sampling. Thus, the best model based on the number of components needs to be selected

based on certain model selection criteria.
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Akaike information criterion (AIC) and Bayesian information criterion (BIC) are the two

most widely-used model selection criteria for the frequentist way. However, Spiegelhalter

et al. 2014 argued that AIC is not asymptotically consistent since it is not seeking to select

the true model. Gelman et al. 1995 stated that BIC is not intended to assess the model

performance and it is completely possible for a complex model to have a good prediction

performance while having a relatively high BIC due to a large penalty function. Hence, it is

necessary to seek other model selection criteria which may have a good performance under

the Bayesian framework.

Spiegelhalter et al. 2002 suggested the use of deviance information criterion (DIC) for

a Bayesian criterion of model selection by a measure of an effective number of parameters.

DIC under the Bayesian framework is defined as

DIC1 = D(θ) + pD

= Eθ|y
[
− 4 log p(y | θ)

]
+ 2 log p(y | θ̄),

where D(θ) is the posterior mean of deviance, pD is the proposed effective number of param-

eters or the penalty function. θ̄ is the posterior mean.

Many works have been done for the improvements or the extension of DIC to other

models. Celeux et al. 2006 extended the use of DIC to different areas including missing

data models, random effect models and mixture models with multiple versions of DICs. Kim

2021 provided theoretical properties of DICs proposed by Celeux et al. 2006. Watanabe and

Opper 2010 proposed a fully Bayesian approach for evaluating the model performance called

Watanabe-Akaike information criterion (WAIC), with the desirable property of averaging

over the posterior distribution rather than conditioning on a point estimate. Considering

the complexity of our proposed model, we adopt the DIC to assess the performance of a set

of proposed models varying by the number of components.

In a review paper by Spiegelhalter et al., many criticisms about the DIC in Spiegelhalter

et al. have been discussed. Firstly, pD is not invariant to reparameterization and can be

negative if the posterior of θ is very skewed. Thus, θ̄ does not give an accurate estimate of

θ. Secondly, it suffers from the lack of consistency if the label switching issue persists due
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to the overlapping of posterior distributions in mixtures.

Gelman et al. 2003 introduced an alternative measure of an effective number of parame-

ters using the variance log predictive density over MCMC iterations. DIC can be expressed

as

DIC2= − 2 log p(y | θ̄) + 4V L
ℓ=1[log p(y | θℓ)],

where V L
ℓ=1

[
log p(y | θℓ)

]
= 1

L−1

∑L
ℓ=1

[
log p(y | θℓ) − log p(y | θ)

]2
and log p(y | θ) is the

averaged log predictive density over all MCMC iterations. This DIC is remarkably robust

and more accurate than the original DIC in Spiegelhalter et al.. Moreover, this DIC has the

advantage of always being positive and not affected by reparameterizations (Gelman et al.,

2003; Spiegelhalter et al., 2014).

For the evaluation of models varying from the different numbers of components in our

project, we adopted DIC2 as the model selection criterion by extending it into the framework

of the mixtures of the time series model.

3.5 Simulation studies

We have conducted two sets of simulation studies. Simulation I aims to evaluate the

performance of the proposed penalized splines model under different true models. Simulation

II aims to evaluate the performance of our proposed method by comparing it to other existing

methods.

3.5.1 Simulation I: Evaluate the performance of the proposed method under

different true models

We conducted simulation I based on two scenarios. Scenario 1 generates a collection of

bivariate time series with four components. Scenario 2 generates a collection of trivariate

time series with two components. For each scenario, we generated s = 100 replicates, each

with a collection of N = 150 multivariate time series of length n = 70 for each variate.
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Two scenarios both used m = 10 number of basis functions for the proposed model and

with P = 4 number of covariates (including the intercept). Different model parameters such

as basis function coefficients, linear coefficients, error variances, and smoothing parameters

were given for each component g and each variate k for each scenario.

For each scenario, we generated four model settings, which were listed as M1, M2, M3

and M4. M1 and M2 generate a mixture model where each mixture follows a cubic model

on time. M1 fits a Bayesian cubic model with noninformative priors and a covariate-guided

structure using generated covariates on generated data, while our proposed Bayesian mixture

of spline experts model is fitted for M2. M3 and M4 generate a mixture model where

each mixture follows a regression splines model on time. M3 fits a Bayesian regression

splines model with noninformative priors on spline coefficients with no smoothing parameter,

while M4 utilizes our proposed method, which introduces the regularization of roughness by

adding the smoothing parameter. In general, our proposed method implements a penalized

splines model by adding a hyperprior distribution of the prior variance of model coefficients.

The prior variance of model coefficients is assumed to be random and thus can control the

smoothness of the model as compared to the ridge regression in the frequentist way.

From above, M1 and M2 have the same underlying true model but are evaluated by

either the true or proposed penalized splines model. So as M3 and M4. Data generation

steps of each replicate for the mixture regression splines model are shown below:

1. Generate fixed and evenly-spaced time points with a length of 70 from 0 to 5

2. Generate 10 sets of basis functions based on time

3. Set true values of parameters τ 2gk, σ2
gk,αgk and generate βgk ∼ N(0, τ 2gkIm) for each

component g and entry k

4. Generate values of four covariates (include the intercept) for each multivariate time series

5. Set true logistic parameters δg

6. Compute mixing weights based on covariates and true logistic parameters

7. Sample latent indicators zig for each multivariate time series and each component

8. For each component, simulate each multivariate time series yi(t) as

{yi(t) | zig = 1} = α0g +α1gt+ β1gW1(t) + . . .+ βmgWm(t) + ϵigt,
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where α0g and α1g are multivariate intercept and slope for each component g, βg =

(β′
1g, . . . ,β

′
mg)

′ is a vector of multivariate spline coefficients for component g, {W1(t), . . . ,

Wm(t)} are m basis functions, and ϵgt are independent zero-mean multivariate Gaussian

random variable as

ϵgt ∼ MVN
(
0, diag(σ2

g1, . . . , σ
2
gK)

)
.

Table 5 shows the results of logistic parameters for the four-component bivariate scenario

in terms of RMSE (bias, variance) for simulation I. Component 4 is always used as the

reference component and different components are listed as C1, C2, C3 and C4 in the table.

δ0,δ1,δ2 and δ3 are the intercept and three covariates. Comparing the results of M1 vs M2,

M3 vs M4 for which true models are the same, we found that RMSE, bias and variance for

each covariate and each comparison are comparable without any large differences. Those

findings are reasonable since our proposed penalized splines model does not affect estimates

of logistic parameters if all multivariate time series are assigned to the correct cluster. Those

similar RMSE of logistic parameters demonstrate the stability of our proposed model and

the capability of accurate clustering classification.

We also investigate the performance of estimated trajectories for each component by

calculating the averaged root square error (ARSE) of each component

ARSE =

√√√√ 1

nK

n∑
j=1

K∑
k=1

(
ŷkj − ykj

)2

,

where ŷkj is the estimated value of the true ykj for the kth entry and the jth time point.

All estimated values are posterior means. In addition to ARSE, we also report the averaged

bias (A-bias) and the variance of the bias (V-bias), where

A-bias =
1

nK

n∑
j=1

K∑
k=1

(
ŷkj − ykj

)
,

and V-bias is computed by calculating the sample variance of the bias over entries and time

points. Boxplots of ARSE, A-bias, and V-bias for each component are given in Figures 9

and 10.

In terms of M1 vs M2 in Figure 9, unsurprisingly, the Bayesian cubic model outperforms
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Table 5. Results of logistic parameters for the four-component bivariate scenario in Simula-

tion I: values in each cell are in the format of RMSE (bias, variance).

Model setting Comparison δ0 δ1 δ2 δ3

M1

C1 vs C4 0.80 (0.01, 0.65) 0.52 (-0.06,0.27) 0.29 (-0.01, 0.09) 0.41 (-0.05, 0.17)

C2 vs C4 0.99 (0.03, 0.98) 0.49 (0.13, 0.22) 0.49 (-0.20, 0.20) 0.37 (-0.03, 0.14)

C3 vs C4 0.81 (-0.22, 0.61) 0.40 (0.07, 0.15) 0.27 (0.004,0.07) 0.30 (-0.03, 0.09)

M2

C1 vs C4 0.75 (0.02, 0.57) 0.57 (-0.05,0.32) 0.30 (-0.01, 0.09) 0.42 (-0.04, 0.18)

C2 vs C4 0.96 (0.06, 0.93) 0.44 (0.12, 0.18) 0.45 (-0.20, 0.17) 0.38 (-0.06, 0.14)

C3 vs C4 0.79 (-0.23, 0.57) 0.40 (0.05, 0.16) 0.27 (0.02, 0.07) 0.29 (-0.03, 0.08)

M3

C1 vs C4 0.76 (-0.09, 0.57) 0.44 (-0.05,0.20) 0.30 (0.05,0.09) 0.34 (-0.06,0.11)

C2 vs C4 1.48 (0.29, 2.13) 0.74 (0.01,0.56) 0.55 (-0.10,0.30) 0.34 (0.02,0.11)

C3 vs C4 1.02 (-0.30, 0.97) 0.54 (0.11,0.28) 0.34 (-0.01,0.12) 0.31 (-0.06, 0.09)

M4

C1 vs C4 0.77 (-0.14,0.58) 0.47 (-0.01,0.23) 0.31 (0.04,0.10) 0.35 (-0.05,0.12)

C2 vs C4 1.47 (0.23,2.14) 0.75 (0.05,0.57) 0.57 (-0.13,0.31) 0.37 (0.03,0.14)

C3 vs C4 0.99 (-0.28,0.91) 0.56 (0.14,0.30) 0.35 (-0.04,0.12) 0.32 (-0.05,0.10)

our proposed model since it uses the true model. However, our proposed method still shows

a relatively good performance with small ARSE values and a similar bias level compared to

the Bayesian cubic model. In terms of M3 vs M4 in Figure 10, our proposed model outper-

forms the Bayesian regression splines model by adding the regularization using smoothing

parameters. Adding smoothing parameters will lower ARSE by decreasing the variance es-

timates. This is demonstrated with boxplots in 10 in that our proposed Bayesian mixture of

spline experts model exhibits smaller ARSE in terms of variance compared to the Bayesian

regression splines model.

In conclusion, Simulation I demonstrates the flexible use of our proposed Bayesian pe-

nalized splines model even if the true model follows a certain parametric model. Additional

simulation results of the two-component trivariate model are placed in Appendix B.2.
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Figure 9. Boxplots of RMSE, bias and variance of trajectory estimates for model setting M1

vs M2 in Simulation I: four-component bivariate model.

3.5.2 Simulation II: Comparing the performance of the proposed model to other

existing methods

In simulation II, we compare the performance of our proposed model to other existing

methods including TRAJ procedure in SAS and gbmt R package.

TRAJ performs a group-based trajectory modeling based on longitudinal data (Jones

et al., 2001). Nagin et al. 2018 extended this method to the multivariate trajectory mod-

eling based on a polynomial model with different orders. TRAJ assumes conditional on the

group membership, longitudinal outcomes are independently distributed. But longitudinal

outcomes are not conditionally independent at the population level. It obtains MLE using
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Figure 10. Boxplots of RMSE, bias and variance of trajectory estimates for model setting

M3 vs M4 in Simulation I: four-component bivariate model.

a numerical quasi-Newton procedure with iterations and it allows the inclusion of covariates

via a class membership model.

gbmt is an abbreviation for group-based multivariate trajectory and it is developed by

Magrini 2022. This method also uses a polynomial model to construct group trajectories and

EM algorithm is used to update model parameters. However, this method does not allow to

use covariates to predict mixing weights.

To demonstrate the performance of the proposed method, we conduct simulation studies

by generating data sets from the proposed model under two scenarios: a two-component

mixture (G = 2) of trivariate time series (K = 3) and a four-component mixture (G = 4)

of bivariate time series (K = 2). We simulate 100 replicates in each simulation setting with

N = 150 time series of length n = 50. A total of 20, 000 Gibbs sampling iterations are
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Table 6. Root mean square errors (RMSEs) of each logistic parameter for the four-component

bivariate model from 100 replicates of 150 four-component bivariate time series of length 50.

RMSEs of the proposed method were compared to TRAJ procedure in SAS. Parameters δ0, δ1,

δ2 and δ3 are intercept, first, second and third logistic parameters, respectively. The fourth

component was used as the reference component. The true values of logistic parameters are

5,−3.5, 1, 0.1 (first component), −4, 2.5,−2,−0.2 (second component), 3,−2, 0.8, 0.2 (third

component). C1, C2, C3 and C4 denote first, second, third and fourth components, respec-

tively.

n N Method Comparison δ0 δ1 δ2 δ3

50 150

Proposed

C1 vs C4 0.81 0.53 0.30 0.39

C2 vs C4 1.11 0.46 0.42 0.36

C3 vs C4 0.89 0.42 0.28 0.34

TRAJ

C1 vs C4 1.20 0.74 0.35 0.41

C2 vs C4 3.81 2.27 1.33 0.49

C3 vs C4 2.07 1.33 0.76 0.32

run with a burn-in of 4, 000. Data generation steps are similar to simulation I. Table 6 and

Figure 11 display simulation results of logistic parameters and trajectory estimates for the

4-component bivariate scenario.

For the performance of estimates of logistic parameters, our proposed method outper-

forms TRAJ for almost all comparisons and covariates. The smaller RMSE comes from both

bias and variances. This demonstrates the importance of adding the shrinkage parameter or

penalty in the multinomial logistic model. TRAJ fits a multinomial logistic model without the

penalty term, which may lead to biased estimates and inflated coefficients in some extreme

cases such as the unbalanced design and perfect separation. Our proposed method adds the

penalty by specifying a prior variance for logistic parameters, thus resulting in more accurate

estimates.

For the performance of trajectory estimates, Figure 11 compares our proposed method
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Figure 11. Boxplots of the averaged root square error (ARSE), the averaged bias (A-bias) and

the variance of bias (V-bias) of estimated trajectories for each component from 100 replicates

of 150 four-component bivariate time series of length 50. Estimates of the proposed method

were compared to R package gbmt and TRAJ procedure in SAS. The diamond markers denote

the means of each estimate. All boxplots are zoomed in for better visualization.

with gbmt and TRAJ. The proposed method is able to outperform both gbmt and TRAJ in

terms of ARSE. The smaller ARSE comes from the variance estimates. This is within our

expectation in that our proposed method uses a penalized splines model for each component,

which aims to reduce ARSE in terms of reducing variance. The red diamond marks in Figure

11 gives the mean for each component and each method. Notably, TRAJ has a larger mean of

variance across replicates, which could be an indication that TRAJ has several poor trajectory

estimates. Our proposed method is stable with no obvious outliers in boxplots.

More simulation results of different numbers of time series N and time series length n
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under two scenarios (two-component trivariate and four-component bivariate) are displayed

in Appendix B.2.

3.6 Real-data application results

We apply our proposed method to the analysis of the fNIRS still-face study introduced

in Chapter 1. Six covariates are included in our covariate-guided model, including In-

fant Behavior Questionnaire-Revised negative emotionality (IBQ-NE) score, Infant Behavior

Questionnaire-Revised effortful control (IBQ-EC) score, gestational age (in Days), infant age

(in Months), head circumference (in cm) and sex. All continuous covariates are centered and

scaled to follow the standard normal distribution. We set the number of basis functions

m = 20 and run a total of 30, 000 Gibbs iterations with a burn-in period of 6, 000. The same

values of hyperparameters are used as in the simulation studies.

Infant Behavior Questionnaire-Revised (IBQ-R) is a widely-used parent-report measure

developed to assess dimensions of temperament along multiple scales (Gartstein and Roth-

bart, 2003). The IBQ-NE construct combines data from the following subscales: Sadness,

Distress to Limitations, Fear, and Falling Reactivity/Rate of Recovery from Distress. IBQ-

EC refers to the ability to inhibit a dominant response to perform a subdominant one and

has been shown to be protective against a myriad of difficulties (Gartstein et al., 2013). We

assume that those covariates are associated with the mixing weights of each component and

the trajectory pattern of that component. Through data pre-processing steps in Section

1.3.4, we had a sample size of 79 subjects, each with multivariate time series from twelve

channels. Each univariate time series consists of a grid of 1500 time points and 500 mea-

surements for each still-face period (Interact, still-face and recovery). Here we presented a

set of four-channel results and all-channel results.
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3.6.1 Four-channel analysis

We presented the results of the four-channel analysis by selecting four channels from four

detector. Four selected channels are S1D1, S2D2, S5D3 and S6D4. S1D1 and S5D3 are in

the center prefrontal region, while S2D2 and S6D4 are in the left and right prefrontal regions,

respectively. We fitted our proposed model with the number of components varying from 2

to 6. Based on values of DIC2 in Section 3.4.3, the 2-component model was selected as the

best model for this four-channel analysis.

Figure 12 gives estimated trajectories of the 2-component model with four selected chan-

nels. We are interested in brain activation signals in the still-face period while the interact

period is used as the reference level. For component 1, a decreasing trajectory is observed

for the still-face period in all four channels. In contrast, an increasing trend is observed for

the still-face period in all four channels for component 2. We define component 1 as the

no response component and component 2 as the response component based on trajectory

patterns in the still-face period. Figure 13 shows logistic coefficient estimates for all covari-

ates in the 2-component model. Component 2 is used as the reference component in the

covariate-guide model. IBQ-NE score is a significant covariate and 95% pointwise credible

interval does not include zero. Positive coefficients of IBQ-NE indicate that a higher IBQ-

NE score is associated with component 1, which has decreased brain activation levels in the

still-face period for all four selected channels. Though other logistic coefficients have 95%

credible intervals including zero, the negative posterior mean estimate of the IBQ-EC score

could still be evidence indicating that a high IBQ-EC score is associated with an increasing

brain activation as shown for component 2. These conclusions are consistent with findings

in Gartstein et al. (2013) that IBQ-NE is negatively associated with IBQ-EC. Enlow et al.

(2016) reported a negative association between activity level and IBQ-NE among infants

whose families encourage a high level of activity. Furthermore, a negative posterior mean of

infant age may suggest that younger infant tends to have a decreasing brain activation level

in the still-face period. Results of another four-channel analysis are given in Appendix B.3.
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Figure 12. Estimated trajectories of the two-component model with four selected channels.

I: Interact S: Still-face R: Recovery.

3.6.2 All-channel analysis

We conducted an all-channel analysis by fitting the proposed model for all twelve chan-

nels. Based on values of DIC2 in Section 3.4.3, the three-component model was selected as

the best model for this all-channel analysis.

Figure 14, 15 and 16 provide estimated trajectories of the three-component model with

all channels. Component 1 is considered as the no response component since decreasing

trajectory patterns were found in this component for all channels. Component 3 is considered

the response component since increasing brain activities were discovered for this component

for most of the channels. In addition, we have an additional component which we call

the mixture response component since it involves different trajectory trends in the still-face

period. For example, in Figure 15, channel S1D1 and S3D2 have increased brain activity in
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the still-face period, while for channel S6D4 and S8D4 we observe a more wiggly trend.

Logistic coefficient estimates for the all-channel analysis are shown in Figure 17. Compo-

nent 3 is used as the reference component. 95% pointwise credible intervals of all covariates

contain zero, which indicates that the association between covariates and components is not

strong. However, the positive posterior mean of IBQ-NE of no response component still sug-

gested that a higher IBQ-NE score is related to the no response component with decreasing

brain activity in the still-face period, which achieves the same conclusion as for the previous

four-channel analysis and in Enlow et al. (2016). In contrast to the four-channel analysis, the

positive posterior mean estimate of the mixture component indicates that the older infant is

related to the mixture response component, which exhibits a discordant trajectory pattern

among twelve channels.

Heatmaps with averaged first derivatives among certain grids of time for estimated tra-

jectories are an effective visualization method to uncover different trajectory patterns for

different components. Heatmaps of the four-channel and all-channel analyses are placed in

Appendix B.3.
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Figure 13. Logistic coefficient estimates and 95% pointwise credible intervals of the two-

component model.
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Figure 14. Estimated trajectories of component 1 for a three-component model with all

channels. I: Interact S: Still-face R: Recovery.
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Figure 15. Estimated trajectories of component 2 for a three-component model with all

channels. I: Interact S: Still-face R: Recovery.
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Figure 16. Estimated trajectories of component 3 for a three-component model with all

channels. I: Interact S: Still-face R: Recovery.
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Figure 17. Logistic coefficient estimates and 95% pointwise credible interval of the three-

component model.
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3.7 Discussion

Our proposed covariate-guided Bayesian mixture of spline experts model aims to perform

a model-based clustering of multivariate time series from multiple subjects. The proposed

method implements a Bayesian penalized splines approach to fit the model of each mixture

component, while covariates are incorporated to compute mixing weights. The performance

of our proposed method is illustrated in two simulation studies in Section 3.5. Simulation I

demonstrates that the Bayesian penalized splines model we use is flexible enough to be able

to have a good fit for a parametric model. In the real-world setting, the true model is often

unknown and non-parametric. A non-parametric splines model with the regularization of

smoothness is one of the good fits for different types of data. Simulation II compares our

proposed method to two existing methods and results have shown that our proposed method

outperforms other methods in terms of both trajectory estimates and logistic parameter

estimates by introducing penalty terms.

We apply our proposed method to an fNIRS still-face study, aiming to discover trajectory

patterns of different components and how selected covariates are associated with patterns of

components. Through results from four-channel and all-channel analyses, we conclude that

clear patterns of response and no response component can be discovered by both analyses

based on estimated trajectories within the still-face period. To the best of our knowledge, this

is the first still-face study using the fNIRS technique with the purpose of finding trajectory

components and covariates that are associated with a certain component. To be more specific

in estimated trajectories, we also observe an increasing trend in the recovery period of

component 1, which can be seen in Figure 12 and 14 for some channels. This may be an

indication of a ’delayed’ effect from the still-face period. Infants belonging to component

1 tend to have delayed brain activation from the still-face period, which are reflected in

the later recovery period. In terms of covariates in multinomial logits, we find that a high

IBQ-NE score is associated with the decreasing brain activation level for the all-channel

analysis and the four-channel analysis including channels S1D1, S2D2, S5D3 and S6D4. We

are able to reach the same conclusion as the univariate case that a high IBQ-NE score is

associated with a lack of response in the still-face period, which could be due to infant’s
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failure to regulate emotions. In addition, young infants are not able to attempt to regulate

their emotions compared to old infants, which indicate that they might have decreasing brain

activity or response in the still-face period. Lastly, a high IBQ-EC score is related to the

increasing brain activity in that infants with a high IBQ-EC score are able to regulate their

emotions and behavior, which might result in responses or increasing blood flowing in the

still-face period due to these regulations.

Our proposed method has some limitations. First, the proposed method assumes inde-

pendence between different time series entries. However, there exist different ways of spatial

correlations among different fNIRS channels. A multilevel multivariate model can be a choice

to incorporate correlations within a level. Secondly, our proposed method will not work well

in the case that there is large heterogeneity within entries. Our method assumes compo-

nents for all entries and if large amount of differences are present within entries, our proposed

method will fail to give a parsimonious number of components. Lastly, our proposed method

uses DIC to select the best number of components since RJMCMC introduces severe label

switching issues and components are indistinguishable for models with more components.

However, there should be no best model and model selection based on DIC is not always the

best approach. Model averaging approaches such as Bayesian model averaging and stacking

could be considered later.

71



4.0 Bayesian generalized LASSO on selected orders of differences via the

horseshoe prior with application to functional regression

4.1 Introduction

With the emergence of modern technologies to record data, functional data analysis has

become an increasingly important analytic tool in many areas such as health and economy.

Functional regression is one of the most popular tools in the area of functional data analy-

sis, where the response, the predictors, or both the response and predictors are functional.

Scalar-on-functional regression refers to functional regression with a scalar response yi for

each subject i and functional predictors over a period of time. Sometimes we refer β(t) as the

coefficient function. Many books and review papers have been focusing on functional data

analysis and introducing topics on scalar-on-functional regression (Ramsay and Silverman,

2013, 2002; Ramsay et al., 2009; Reiss et al., 2017).

In general, there are two common frequentist approaches to obtain the estimation of the

coefficient function β(t). The first approach uses basis functions to obtain a smooth estimate

of the coefficient function. Some popular choices of basis functions include B-splines (Frank

and Friedman, 1993), Fourier (Marx and Eilers, 1999), eigenfunctions (Rice and Silverman,

1991) and wavelet (Ogden, 1997). The second approach introduces regularization to the

coefficient function β(t) by adding a penalty term, which is able to produce a shrink estimate

of the coefficient function. Some popular choices of this penalization approach include cubic

B-splines (Ramsay and Silverman, 2013) and penalized B-splines (Eilers and Marx, 1996).

However, both basis function and penalized approaches give complicated coefficient function

estimates with wiggles and are difficult to interpret in practice. Thus, out of consideration

for interpretation and simplicity, a statistical approach that is able to give interpretable

trends over some time regions and shrink other parts of β(t) to zero appears to be more

desirable.

LASSO (Tibshirani, 1996) is one of the most popular regularization methods that is

able to shrink the magnitude of coefficients by introducing an ℓ1 penalty term. In addition,
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LASSO can perform the variable selection by shrinking coefficients towards zero, where other

regularization methods, such as ridge regression (Hoerl and Kennard, 1970) and best subset

selection (Hocking and Leslie, 1967), are not able to perform regularization and variable

selection simultaneously. However, LASSO only penalizes regression coefficients themselves

without considering spatial or temporal correlations between these coefficients, which cannot

be ignored in the case of functional regression. Tibshirani et al. (2005) proposed the fused

lasso, which includes both the lasso penalty and an additional penalty of first-order differ-

ences. Fused lasso takes spatial and temporal structure into consideration and it is widely

used in time series and functional data analysis. Tibshirani et al. (2005) also extended the

fused lasso to the generalized fused lasso, where differences of neighboring features, not nec-

essarily the adjacent ones, are penalized. However, fused lasso only gives the constraint on

the first-order differences. In functional regression, it is common to assume sparsity not only

for the coefficients (zeroth-order differences) and the first-order differences but also for the

higher-order differences. By selecting appropriate orders of differences, one can produce a

set of highly-flexible and interpretable coefficient curves.

Several approaches have been proposed to address the constraints of multiple selected

orders of differences. James et al. (2009) proposed an approach called FLiRTI, which per-

forms variable selection on multiple derivatives of the coefficient function β(t) using LASSO

or Dantzig selector (Candes and Tao, 2007). FLiRTI transforms coefficients themselves to

the differences of coefficients with selected orders based on differential operators and adds

constraints to each selected derivative. This approach is proven to be theoretically desir-

able and can produce accurate and interpretable estimates. Another approach to tackle

multiple selected orders of differences is the generalized lasso proposed by Tibshirani and

Taylor (2011). Generalized lasso utilizes a common penalty matrix for the coefficient vec-

tor β, which is able to create various constraints including lasso, the first-order difference

(fused lasso), the first-order difference of selected neighbors (generalized fused lasso) and

multiple orders of differences. Hence, generalized lasso has the advantage of being able to

induce multiple orders of differences and is a good choice in functional regression. Despite

the computational simplicity of these penalization methods, the quantification of estimation

uncertainty has remained challenging.
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Bayesian modeling approaches have become more and more popular in recent decades

since they give prior beliefs to coefficients and are able to consider uncertainties for coefficient

estimates. In general, there are two main types of Bayesian modeling approaches: discrete

mixtures and shrinkage priors. The first approach, also known as spike-and-slab model

(Mitchell and Beauchamp, 1988; George and McCulloch, 1993; Ishwaran and Rao, 2005), is

widely used in Bayesian variable selection. Priors of coefficients follow a two-point mixture

distribution with a degenerate distribution at zero as the spike part and a flat distribution as

the slab part. Spike-and-slab priors can be applied to the group-level variable selection. Xu

and Ghosh (2015) proposed the sparse group lasso with the spike-and-slab priors to perform

both group selection and within-group variable selection. The second approach utilizes con-

tinuous priors centered at zero, which induce shrinkage for coefficient estimates. Tibshirani

(1996) emphasized that lasso can be interpreted as the linear regression with Laplace priors

on coefficients. Park and Casella (2008) proposed Bayesian lasso by expressing the Laplace

distribution as a scale mixture of normals (Andrews and Mallows, 1974) and using Gibbs

sampling to draw model parameters. To consider spatial and temporal structures, Casella

et al. (2010) proposed the Bayesian fused lasso with the Laplace prior and a hierarchical rep-

resentation using Gibbs sampling. Zhang et al. (2014) proposed the hierarchical structured

variable selection method, which enabled the group selection with spike-and-slab priors and

incorporated the Bayesian fused lasso for within-group selection based on the Laplace prior.

Both discrete mixtures and shrinkage approaches have their own issues. Computational

issues related to the marginal distributions of latent indicators exist for the discrete mixtures.

Laplace prior tends to overshrink coefficients compared to other priors with heavy-tailed dis-

tributions. In addition to using the Laplace prior for shrinkage, many other shrinkage priors

are implemented into Bayesian hierarchical models and are demonstrated to have outstand-

ing performances. Tipping (2001) used the Student-t prior with inverse-gamma mixing as

the shrinkage prior. Griffin and Brown (2005) and Shimamura et al. (2019) used the normal-

exponential-gamma (NEG) prior for Bayesian variable selection. Carvalho et al. (2010) pro-

posed the horseshoe prior and it shares features of both discrete mixtures and Laplace priors.

The horseshoe prior includes a global shrinkage parameter for all regression coefficients to

control the global shrinkage level, as well as local shrinkage parameters for each regression
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coefficient to obtain parameter-specific shrinkage. In addition, the horseshoe prior is proven

to have an infinite spike at zero and a Cauchy-like tail, which results in weak shrinkage on

non-zero coefficients and strong shrinkage on exact-zero coefficients. Thus, horseshoe prior

is a popular choice in recent years for Bayesian modeling and variable selection. Kakikawa

et al. (2022) proposed a Bayesian fused lasso modeling with the Laplace prior on regression

coefficients and the horseshoe prior on the difference of successive regression coefficients.

In this project, we propose a Bayesian generalized LASSO on selected orders of differ-

ences via the horseshoe prior, which imposes multiple constraints with selected orders of

differences and apply the proposed method to functional data with the purpose of obtaining

interpretable coefficient estimates. The rest of Chapter 4 is organized as follows. In Section

4.2 we present the proposed model and priors for each parameter. Section 4.3 introduces the

Bayesian sampling scheme based on Gibbs sampling. In Section 4.4 we report simulation

results under different settings and Section 4.5 illustrates our proposed method with the

real-data application of the PGS-ECHO fNIRS still-face study as described in Chapter 1.

Section 4.6 gives a discussion of the last project as well as future works.

4.2 Model and priors

4.2.1 Scalar-on-functional regression with a simple grid basis

As in the FLiRTI approach proposed by James et al. (2009), the scalar-on-functional

regression model can be expressed as

Yi = β0 +

∫
Xi(t)β(t)dt+ ϵi, (15)

where Yi is the response for ith subject, i = 1, . . . , n, β0 is the intercept, β(t) is the coefficient

function with t ∈ [0, 1] and errors ϵi are iid with mean zero and a constant variance σ2. Let

Q(t) = [q1(t), . . . , qm(t), . . . , qp(t)]
′ be a p-dimensional simple grid basis, where qm(t) = 1 if

m−1
p

< t ≤ m
p
and 0 otherwise. Thus, the coefficient function βt can be expressed as

β(t) = Q(t)β, (16)
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where β is a p-dimensional vector of basis function coefficients associated with the simple

grid basis Q(t). Based on (15) and (16), the scalar-on-functional regression model with a

simple grid basis is given as

Yi = β0 +X ′
iβ + ϵi, (17)

where X i =
∫
Xi(t)Q(t)dt is the vector of functional observations for ith subject since

the simple grid basis Q(t) is just a p × p identity matrix. By centering each functional

observation, we can get rid of the intercept and (17) can be expressed as the familiar linear

model in matrix form

Y = Xβ + ϵ, (18)

where Y is a vector of responses with length n, ϵ is an error vector with length n, X is a

n× p matrix where the jth column is the jth covariate for j = 1, . . . , p, and β is a vector of

corresponding coefficients with length p for the design matrix X.

By using the simple grid basis, we convert the scalar-on-functional regression to the

conventional regression model. We use the simple grid basis and (18) for the rest of the

paper. Notably, our proposed method can be extended to other complicated basis such as

B-splines, Fourier and wavelet by specifying the corresponding basis function Q(t).

4.2.2 Bayesian linear regression with the horseshoe prior

Based on the model (18), Makalic and Schmidt (2015) proposed the Bayesian linear

regression with horseshoe prior using hierarchical model formulation. This method corre-

sponds to adding the constraint only to the coefficients themselves, which we also refer to as

the zeroth-order difference. The Bayesian hierarchical models can be expressed as

y|X,β, σ2 ∼ N(Xβ, σ2In),

βj|ω2
j , τ

2, σ2 ∼ N(0, ω2
j τ

2σ2),

σ2 ∼ σ−2dσ2,

ωj ∼ C+(A),

τ ∼ C+(A),

(19)
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where τ 2 is the global shrinkage parameter and ω2
j are the local shrinkage parameters for

the horseshoe prior, C+(A) is a half-Cauchy distribution with the scale parameter A,A > 0.

Local shrinkage parameters ω2
j adjust the level of local shrinkage for regression coefficient

βj, while τ 2 determines the degree of global shrinkage for all regression coefficients and σ2

controls the scale of regression coefficients. With two types of shrinkage parameters, the

horseshoe prior is able to control the overall shrinkage level, as well as shrinkage levels

for each coefficient. The half-Cauchy distribution of shrinkage parameters allows strong

coefficients to remain large due to its property of a heavy tail.

To deal with the hierarchy of the half-Cauchy distribution, Wand et al. (2011) introduced

a latent variable for the hierarchical expression of the half-Cauchy distribution based on the

inverse-gamma distribution. For example, if τ ∼ C+(A), then we have

τ 2|a ∼ IG(
1

2
,
1

a
), a ∼ IG(

1

2
,
1

A2
),

where a is a latent variable, then we have a|τ 2 ∼ IG(1, 1
τ2

+ 1
A2 ). Hence, the hierarchical

model (19) can be rewritten as:

y|X,β, σ2 ∼ N(Xβ, σ2In),

βj|ω2
j , τ

2, σ2 ∼ N(0, ω2
j τ

2σ2),

σ2 ∼ σ−2dσ2,

ω2
j |ζj ∼ IG(

1

2
,
1

ζj
),

τ 2|η ∼ IG(
1

2
,
1

η
),

ζ1, . . . , ζp, η ∼ IG(
1

2
,
1

A2
),

(20)

where (ζ1, . . . , ζp, η) are latent variables associated with local and global shrinkage parameters

(ω2
1, . . . , ω

2
p, τ

2).

4.2.3 Bayesian generalized lasso with the horseshoe prior

Tibshirani and Taylor (2011) introduced generalized lasso, which is able to solve the

lasso-type optimization problem with multiple penalties on coefficients. The optimization
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problem can be expressed as

β̂ = argmin
β

1

2
∥y −Xβ∥22 + λ∥Dβ∥1, (21)

where λ > 0 is a tuning parameter for the lasso-type penalty term, D includes all selected

finite difference operators. To be more specific, (21) can be rewritten as

β̂ = argmin
β

1

2
∥y −Xβ∥22 +

∑
k∈E

λk∥D(k)β∥1, (22)

where k is a non-negative integer denoting kth-order difference, E is a set with selected

orders of differences, λk is the tuning parameter for the kth-order difference, and D(k) is

the kth-order difference operator. For example, zeroth-order difference operator D(0) = Ip,

where Ip is a p× p identity matrix. The first-order difference operator D(1) is a (p− 1)× p

matrix with

D(1) =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −1 1

 ,

and the second-order difference operator D(2) is a (p− 2)× p matrix with

D(2) =


1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1 −2 1

 .

For the Bayesian generalized lasso with the horseshoe prior, we place horseshoe priors
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on each selected order of difference. We propose the following hierarchical models

y|X,β, σ2 ∼ N(Xβ, σ2In),

D(k)β ∼ N(0p−k, σ
2Bk), Bk = diag(τ 2kω

2
1,k, . . . , τ

2
kω

2
p−k,k), k ∈ E,

σ2 ∼ IG(b1, b2),

τ 2k |ηk ∼ IG(
1

2
,
1

ηk
), k ∈ E,

ω2
j,k|ζj,k ∼ IG(

1

2
,
1

ζj,k
), j = 1, . . . , p− k, k ∈ E,

ηk, ζj,k ∼ IG(
1

2
,
1

A2
), j = 1, . . . , p− k, k ∈ E,

(23)

where D(k) is the kth-order difference operator, 0p−k is a vector of 0 with length p − k,

τ 2k is the global shrinkage parameter for the kth-order difference, ω2
j,k is the local shrinkage

parameter for the jth covariate and the kth-order difference, ηk and ζj,k are corresponding

latent variables for τ 2k and ω2
j,k. For hyperparameters, we set b1 = b2 = 0.01 and A = 10.

All priors are non-informative priors by using the above hierarchical structures and selecting

appropriate hyperprior values.

The priors in (23) can be represented using a scale mixture of normals (Andrews and

Mallows, 1974), by integrating out all latent variables {τ 2k , ω2
j,k, ηk, ζ

2
j,k} for k ∈ E and j =

1, . . . , p− k. Hence, the priors in (23) can be expressed as

f(β|σ2) ∝
∫

· · ·
∫ ∏

k∈E

1√
(2πσ2)p−k|Bk|

exp
{
− 1

2σ2

∑
k∈E

(D(k)β)′B−1
k (D(k)β)

}
×

∏
k∈E

f(τ 2k |ηk)×
∏
k∈E

f(ηk)×
∏
k∈E

p−k∏
j=1

f(ω2
j,k|ζj,k)×

∏
k∈E

p−k∏
j=1

f(ζj,k)

d(
∏
k∈E

τ 2k ) d(
∏
k∈E

ηk) d(
∏
k∈E

p−k∏
j=1

ω2
j,k) d(

∏
k∈E

p−k∏
j=1

ζj,k),

(24)

where f(·|·) denotes probability density function for the corresponding parameters listed in

(23). Let S = exp
{
− 1

2σ2

∑
k∈E(D

(k)β)′B−1
k (D(k)β)

}
, then S can be rewritten as

S = exp
{
− 1

2σ2

∑
k∈E

(D(k)β)′B−1
k (D(k)β)

}
= exp

{
− 1

2σ2
β′(

∑
k∈E

D(k)′B−1
k D(k))β

}
.

(25)
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Let Σ−1
E =

∑
k∈E D(k)′B−1

k D(k), we can conclude that β follows a multivariate normal

distribution with mean vector 0p and variance covariance matrix σ2ΣE.

For example, if E = {0, 1}, which indicates that we choose to penalize zeroth and first-

order differences. Therefore, we have Σ−1
{0,1} = D(0)′B−1

0 D(0) + D(1)′B−1
1 D(1). Through

matrix calculation, we can express Σ−1
{0,1} as

Σ−1
{0,1} =



1
τ20ω

2
1,0

+ 1
τ21ω

2
1,1

− 1
τ21ω

2
1,1

0 . . . 0

− 1
τ21ω

2
1,1

1
τ20ω

2
2,0

+ 1
τ21ω

2
1,1

+ 1
τ21ω

2
2,1

− 1
τ21ω

2
2,1

. . . 0

...
...

...
. . .

...

0 0 0 . . . − 1
τ21ω

2
p−1,1

0 0 0 . . . 1
τ20ω

2
p,0

+ 1
τ21ω

2
p−1,1


.

Though our proposed method shares some similarities with the HSVS method in Zhang

et al. (2014) and the HORSES method in Kakikawa et al. (2022), which focus on Bayesian

fused lasso modeling, it is able to extend the fused lasso to a more common case called

generalized lasso, with the advantage of adding any types of penalties on coefficients. In

addition, the implementation of horseshoe priors on all types of penalties has superiority

over Laplace and spike-and-slab priors because of simultaneous controls of both global and

local shrinkage levels.

4.3 Sampling scheme

With the model in (18) and prior structures in (23), we are able to derive the conditional

posterior distribution of all parameters. Let ω2
k = (ω2

1,k, . . . , ω
2
p−k,k)

′ be a vector of length (p−

k) of the local shrinkage parameters for the kth-order difference, Ωk = diag(ω2
1,k, . . . , ω

2
p−k,k)

be a (p − k) × (p − k) diagonal matrix with each value of ω2
k as the diagonal element, and

D
(k)
j be the jth row of the kth difference operator D(k), for j = 1, . . . , p − k, k ∈ E. The

full conditional posterior distributions are listed as follows:
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β|y,X, {D(k), τ 2k ,ω
2
k}, σ2 ∼ N

(
(X ′X +Σ−1

E )−1X ′y, σ2(X ′X +Σ−1
E )−1

)
,

σ2|y,X, {D(k), τ 2k ,ω
2
k},β ∼ IG

(2b1 + n+
∑

k∈E(p− k)

2
,
2b2 + ∥y −Xβ∥22 + β′Σ−1

E β

2

)
,

τ 2k |β, σ2,ω2
k,D

(k), ηk ∼ IG
(p− k + 1

2
,

1

2σ2
(D(k)β)′Ω−1

k (D(k)β) +
1

ηk

)
,

ω2
j,k|β, σ2, τ 2k ,D

(k)
j , ζj,k ∼ IG

(
1,

1

2τ 2kσ
2
(D

(k)
j β)′(D

(k)
j β) +

1

ζj,k

)
,

ζj,k|ω2
j,k ∼ IG

(
1,

1

ω2
j,k

+
1

A2

)
,

ηk|τ 2k ∼ IG
(
1,

1

τ 2k
+

1

A2

)
.

(26)

Therefore, we can sample each set of parameters iteratively based on the above posterior

distributions using Gibbs sampling.

4.4 Simulation studies

We conduct simulation studies to evaluate the performance of our proposed method.

Simulated data is generated from the true model (18), where β is the true coefficient vector

of length p, and the error vector ϵ is iid and follows a distribution of N(0n, σ
2In). We

also assume that all covariates are independent and generated from the standard normal

distribution.

We consider nine different cases with three different numbers of covariates p and three

prior structures with different selected orders of differences E. Nine cases are listed as follows

• Number of covariates p = 40

Case 1: βC1,nz = (2′
5,1

′
5)

′ with E = {0, 1},

Case 2: βC2,nz = (−2.5,−2,−1.5,−1,−0.5, 3, 2.5, 2, 1.5, 1)′ with E = {0, 2},

Case 3: βC3,nz = (−2.5,−2,−1.5,−1,−0.5,1′
5)

′ with E = {0, 1, 2},

• Number of covariates p = 80

Case 4: βC4,nz = (−3′
5,1

′
5,−1.5′

5,2
′
5)

′ with E = {0, 1},
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Case 5: βC5,nz = (β′
C2,nz, 1, 1.5, 2, 2.5, 3,−0.5,−1,−1.5,−2,−2.5)′ with E = {0, 2},

Case 6: βC6,nz = (−2.5,−2,−1.5,−1,−0.5,2′
5, 3, 2.5, 2, 1.5, 1,−2′

5)
′

with E = {0, 1, 2},

• Number of covariates p = 120

Case 7: βC7,nz = (β′
C4,nz,−1.5′

5,25)
′ with E = {0, 1},

Case 8: βC8,nz = (β′
C5,nz,−2,−1, 0, 1, 2, 2, 1, 0,−1,−2)′ with E = {0, 2},

Case 9: βC9,nz = (−0.5,−1,−1.5,−2,−2.5,−1′
5,−3,−2,−1, 0, 1,2′

5,

2, 1, 0,−1,−2,−2′
5)

′ with E = {0, 1, 2},

where for example, βC1,nz is a vector of non-zero coefficients for Case 1 and 2′
5 is a vector of 2

with lengh 5. Other than non-zero coefficients, all other coefficients are zero for all cases. In

addition, we assume the error variance σ2 = 1 for all nine cases. For each case, we simulate

r = 100 replicates, each with n1 = 100 for training the model and n2 = 100 for testing the

model performance and accuracy.

We compare our proposed method with four existing methods using both Bayesian and

frequentist approaches in each above case. The first two methods are Bayesian with dif-

ferent prior structures. The first one is the Bayesian generalized lasso with Laplace priors

on selected orders on differences. The second one puts a spike-and-slab prior on regres-

sion coefficients themselves (only zeroth-order difference) (Ishwaran and Rao, 2005; Xu and

Ghosh, 2015). The third one is the so-called LASSO (Tibshirani, 1996) and the last one is

the generalized lasso with selected orders of differences from (Tibshirani and Taylor, 2011).

Notably, for the proposed method, the first and the last compared methods, we are able

to give constraints on selected orders on differences E. However, for the second and third

compared methods, we are only able to evaluate the simulated data with a constraint on the

coefficients themselves. In addition, for two frequentist methods, we select the best tuning

parameters using 5-fold cross-validation.

To evaluate the accuracy between true and estimated coefficients, we compute mean

square error (MSE)

MSE =
1

100

100∑
r=1

(β̂
(r)

mean − β)′(β̂
(r)

mean − β), (27)
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Figure 18. Coefficient function plots of five methods for p = 80 and selected orders of

differences E = {0, 1} (Case 4).

where β̂
(r)

mean is a p-dimensional vector of the posterior mean estimates of regression coeffi-

cients for the rth replicate. In addition, we also assess the prediction accuracy on testing

data by computing the prediction errors (PE)

PE =
1

100

100∑
r=1

(Y (r) −X(r)β̂
(r)

mean)
′(Y (r) −X(r)β̂

(r)

mean)

n2

, (28)

where Y (r) is rth response vector of testing data with length n2 = 100 and X(r) is rth design

matrix containing covariates of subjects in testing data.

Figure 18 shows coefficient function plots of five methods (proposed plus four compared

methods) using Case 4 as an example. Our proposed method, Bayesian generalized lasso

with the horseshoe prior, achieves accurate coefficient estimates with narrow 95% credible

intervals. Bayesian generalized lasso with the Laplace prior has good coefficient estimates

but with slightly wider 95% credible intervals. Bayesian lasso with the spike-and-slab prior

tends to shrink non-zero coefficients with the widest 95% credible intervals. Two frequentist
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Figure 19. Boxplots of MSE and prediction errors for five methods with p = 40 (Case 1,2

and 3). Diamond markers denote the means of ease case and method.

methods, LASSO, and generalized lasso, also perform some levels of shrinkage on non-zero

coefficients. Coefficient function plots of other simulation cases are given in supplemental

materials. More coefficient function plots of other simulation cases are given in Appendix

C.1.

Simulation results of MSE and prediction errors for each case and each method are shown

in Figure 19, 20 and 21. Each simulation case corresponds to each figure with one set of

selected orders of differences E. For a better visualization, we plot MSE and prediction

errors for p = 120 under the log scale. For all nine cases, our proposed method has the

lowest MSE and prediction errors compared to the other four methods. In Figure 19 with

p = 40 (Case 1, 2 and 3), the spike-and-slab model shows a good performance in terms of

both MSE and PE, only inferior to the proposed method with the horseshoe prior. However,

it has the worst performance for p = 120 (Case 7,8,9), where the number of covariates is

larger than the number of observations. The model with the Laplace prior also tends to
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Figure 20. Boxplots of MSE and prediction errors for five methods with p = 80 (Case 4,5

and 6). Diamond markers denote the means of ease case and method.

have larger MSE and PE with the increase of p, but not much as the spike-and-slab prior.

Between the two frequentist methods, generalized lasso always performs better than LASSO

since it is able to add desired orders of differences into the penalty matrix, while LASSO

only penalizes coefficients themselves (zeroth-order difference).

In conclusion, our proposed method, Bayesian generalized lasso with the horseshoe prior,

can achieve a better model fit and prediction accuracy compared to other existing methods.

Good performance is demonstrated under multiple simulation settings. Comparing our pro-

posed method to other Bayesian models with Laplace and spike-and-slab prior, our method

is able to produce coefficient estimates with less shrinkage and stable results with narrow

95% credible intervals. Tables of simulation results of all cases and methods can be found

in Appendix C.1.
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Figure 21. Boxplots of MSE and prediction errors for five methods with p = 120 (Case 7,8

and 9). Values are presented using the log scale. Diamond markers denote the means of ease

case and method.

4.5 Real-data application results

We apply our proposed method to the scalar-on-functional regression using fNIRS still-

face data introduced in Chapter 1. Measurements of concentration of oxygen Hemoglobin

(HbO) are treated as functional predictors to predict Infant Behavior Questionnaire-Revised

negative emotionality (IBQ-NE) or Infant Behavior Questionnaire-Revised effortful control

(IBQ-EC) score. To save computational time, we take an average of every ten measurements

so that the number of functional predictors equals 150 per subject. In addition, all functional

predictors are centered and rescaled to follow the standard normal distribution. We run a

total of 10,000 Gibbs iterations with a burn-in period of 2,000 and use hyperparameters as

provided in Section 4.2.3. We ran multiple analyses with measurements from each channel

being treated as functional predictors and only presented results of coefficient curve estimates
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Figure 22. Coefficient plots of selected orders of differences for the model with IBQ-NE as

the outcome and measurements of channel S1D1 as functional predictors. The horizontal

green dashed line is the line of zero and two vertical green dashed lines are separations of

three FFSF phases (Interact, still-face, recovery).

from channel S1D1.

Figure 22 gives coefficient curve estimates of selected orders of differences for the model

with IBQ-NE as the outcome, along with 50% credible intervals. Results from four sets

of selected orders of differences are shown: zeroth and first-order differences, zeroth and

second-order differences, zeroth and third-order differences, and zeroth, first, second, and

third-order differences. From the coefficient plot with zeroth and first-order differences, we

can observe the positive coefficient estimates and a decreasing trend of HbO at the beginning

of the interact period (baseline), followed with sudden drops to the negative level at the end

of the still-face period and the middle of the recovery period. In general, the IBQ-NE score is

related to the increasing brain activity at the interact period, but the relationship is reversed

and the IBQ-NE score is related to the decreasing brain activity at the still-face and recovery

periods. Other three coefficient plots in Figure 22 also shows the above trends, but with
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Figure 23. Coefficient plots of selected orders of differences for the model with IBQ-EC as

the outcome and measurements of channel S1D1 as functional predictors. The horizontal

green dashed line is the line of zero and two vertical green dashed lines are separations of

three FFSF phases (Interact, still-face, recovery).

weaker coefficient estimates as the constraints of high-order differences are incorporated in

the prior structures. The hierarchical model with four selected orders of differences (zeroth,

first, second and third) tends to shrinkage coefficients more towards zero.

Figure 23 gives coefficient curve estimates of four selected orders of differences for the

model with IBQ-EC as the outcome, along with 50% credible intervals. From the coefficient

plot with zeroth and first-order differences, coefficients are negative at the beginning and are

close to zero later. We observe a large positive signal at the end of the interact period and

a small positive signal at the beginning of the recovery period. As described in the above

model with the outcome IBQ-NE, the hierarchical model with a more complicated prior

structure (more constraints of high-order differences) gives more shrinkage towards zero.
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4.6 Discussion

In this Chapter, we propose a Bayesian version of generalized lasso, with the purpose of

giving constraints on certain orders of differences. The proposed method is able to correctly

find the trend (constant, linear, quadratic, etc) of coefficients by manipulating prior struc-

tures of coefficients. In addition, the well-defined Bayesian hierarchical model structures give

more flexibility to choose the appropriate orders of differences and the desired trend filtering.

We also use the horseshoe prior instead of the traditional Laplace prior, which gives both

global and local shrinkage priors for regression coefficients and is able to control the global

shrinkage level and local shrinkage level of each coefficient simultaneously. We conduct sim-

ulations with different settings and compare our proposed method to two Bayesian methods

using Laplace and spike-and-slab priors, as well as two frequentist methods: LASSO and

generalized lasso. Simulation results show the superiority of the proposed method over other

four methods in terms of smaller MSE, prediction errors, and stable coefficient estimates

with the tightest 95% credible intervals in all simulation settings. We also apply our pro-

posed method to the fNIRS still-face study and aim to obtain coefficient curve estimates by

using IBQ-NE or IBQ-EC scores as the outcome and functional measurements in a selected

channel as predictors.

However, for the real-data application, we did not find any strong signals between the

outcome and functional predictors using the fNIRS still-face data. From Section 4.5, we did

not find any large coefficient estimates as desired in the simulation studies. All coefficient

estimates seem to be around zero, which show a small contribution to the prediction of the

outcome. In addition, we only plot the 50% credible intervals and the 95% credible intervals

are very wide. Overall, fitting models have a large prediction error as well as a large error

variance, which also confirm the poor fit of the data. Later we will apply our proposed

method to another dataset with more promising results.

Our future works include the following two directions. First, we can incorporate the fea-

ture of group selection into our proposed model. Currently, our proposed method is designed

to fit the model with functional predictors only from one source. However, for functional

imaging data, there are always more than one source. Thus, it is meaningful to extend
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our proposed method with a group selection feature, which is able to select the appropriate

group that has large effects on prediction and penalizes other groups to exact zero. Second,

as emphasized in Section 4.2.1, we use a simple grid basis to convert the scalar-on-functional

regression to the conventional regression model. In reality, more complicated basis such as

polynomial, B-splines and Fourier basis are more common in functional regression analysis.

We can try our proposed method based on any of these common basis functions.
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Appendix A Chapter 2

A.1 Detailed RJMCMC sampling scheme

We use the reversible jump MCMC (RJMCMC) as the Bayesian sampling algorithm,

with the advantage of jumping over the number of components through MCMC iterations.

RJMCMC is an advanced Metropolis-Hastings algorithm and it can allow posterior distri-

bution sampled from varying dimensions. In our study, each RJMCMC iteration ℓ contains

two types of moves: between-model moves and within-model moves. Between-model moves

involve the change of parameter dimensions by proposing to add or remove one component.

RJMCMC can be used to fulfill this type of move. Within-model moves do not involve the

change of parameter dimensions and Gibbs sampling is used to draw different parameters.

For ease if notations, we define Θg,G = (θ′
g, τ

2
g , σ

2
g , δ

∗′
g , κ

2
ζg)

′ as the aggregation of all

parameters for gth of a total of G components and ΘG = (Θ′
1,G, . . . ,Θ

′
g,G, . . . ,Θ

′
G,G)

′ as

the aggregation of all parameters from all components. We also denote the current state as

(Gc,Θc
Gc) and the proposed state as (Gp,Θp

Gp), where the superscript c and p are the current

and proposed state, respectively. The proposed RJMCMC sampling algorithm is detailed

below:

1. Between-model moves

We propose to move from (Gc,Θc
Gc) to (Gp,Θp

Gp) by drawing (Gp,Θp
Gp) from a proposed

density q(Gp,Θp
Gp | Gc,Θc

Gc) and accepting it with the acceptance rate

α = min

{
1,

p(Gp,Θp
Gp | y)× q(Gc,Θc

Gc | Gp,Θp
Gp)

p(Gc,Θc
Gc | y)× q(Gp,Θp

Gp | Gc,Θc
Gc)

}
, (29)

where p(·) denotes the target density and is the product of the joint likelihood function

times prior densities. The proposed density function q(·) varies from different moving

types and proposed distributions. In our case, the proposed density of the proposed state
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q(Gp,Θp
Gp | Gc,Θc

Gc), given the current state is:

q(Gp,Θp
Gp | Gc,Θc

Gc) = q(Gp | Gc)× q(Θp
Gp | Gp, Gc,Θc

Gc)

= q(Gp | Gc)× q(τ 2p
Gp | Gp, Gc, τ 2c

Gc)× q(σ2p
Gp | Gp, Gc,σ2c

Gc)

× q(θp
Gp | Gp, Gc, τ 2p

Gp ,σ
2p
Gp)× q(δ∗p

Gp | Gp, Gc, δc
Gc ,κ

2p
ζGp)

× q(κ2p
ζGp | Gp, Gc,κ2c

ζGc),

(30)

where {τ 2p
Gp ,σ

2p
Gp ,θ

p
Gp , δ

∗p
Gp ,κ

2p
ζGp} are the corresponding parameters of all components at

the proposed state. From (30), we can first draw Gp and then follow by drawing τ 2p
Gp ,

σ2p
Gp , θ

p
Gp , κ

2p
ζGp and δ∗p

Gp .

The first step of the proposed RJMCMC algorithm is to decide whether to split one

component into two or combine two components into one. For the following part, we will

call the two steps split and combine. For the first step, Gp is proposed from q(Gp | Gc)

and q(Gp = Gc − 1) = q(Gp = Gc + 1) = 0.5, which assumes equal probability of split

or combine. Notably, split proposal will be accepted with probability 1 if Gc = 1 and

combine proposal will be accepted with probability 1 if Gc reaches a predefined maximum

number of components, saying Gmax.

a. Split proposal

Suppose split proposal is selected and thus we have Gp = Gc + 1. The detailed split

proposal is listed below.

i. A component r is randomly selected to split

ii. Sampling new variance of the random intercept

Denoting κ2p
ζGp = (κ2c

ζ,1, . . . , κ
2c
ζ,r, κ

2p
ζ,r+1, κ

2c
ζ,r+1, . . . , κ

2c
ζ,Gc−1)

′ as the new vector of

variances of random intercepts, where κ2p
ζ,r+1 is the new variance of the random

intercept at the proposed state. We propose to generate κ2p
ζ,r+1 by drawing a

common random variable u3 from a Uniform distribution such that u3 ∼ U(0, 1)

and let

κ2p
ζ,r+1 = κ2c

ζ,r ×
u3

1− u3

.

iii. Sampling new logistic parameters

Denoting δ∗p
Gp = (δ∗c′

1 , . . . , δ∗c′
r , δ∗p′

r+1, δ
∗c′
r+1, . . . , δ

∗c′
Gc−1)

′ as the new vector of logis-
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tic parameters. δ∗p
r+1 is the vector of logistic parameters of the new proposed

component and can be drawn by:

A. Computing the Mahalanobis distance between each subject which is classified

to component r and the rth estimated component trajectory given θc
Gc .

B. Performing an initiated two-component clustering of those subjects using the

K-means clustering algorithm. The split proposal will be rejected if none or

only one subject belongs to the selected component r for the current state.

C. Sampling δ∗p
r+1 with a Polya-Gamma augmentation strategy using Gibbs sam-

pling, which is detailed in the within-model moves later.

iv. Computing mixing weights

Based on logistic parameter δ∗c
r for the rth component and the newly-generated

logistic parameter δ∗p
r+1, we need to recompute mixing weights π∗p

r and πp
r+1,

where πp
r denotes mixing weights of all subjects for rth component at the pro-

posed state and πp
r+1 represents mixing weights of all subjects for (r + 1)th

component at the proposed state. To keep mixing weights of other components

unchanged, πp
r and πp

r+1 need to be rescaled such that πp
r+πp

r+1 = πc
r, to ensure

that mixing weights for each subject sum up to 1.

v. Sampling new smoothing parameters

Under the split proposal, let τ 2p
Gp = (τ 2c1 , . . . , τ 2cr−1, τ

2p
r , τ 2pr+1, τ

2c
r+1, . . . τ

2c
Gc)′ be the

new vector of smoothing parameters, where τ 2pr and τ 2pr+1 are values of new

smoothing parameters at the proposed state splitting from τ 2cr . We propose

to split τ 2cr by drawing a common random variable u1 across dimensions from a

Uniform distribution such that u1 ∼ U(0, 1) and let

τ 2pr = τ 2cr × u1

1− u1

,

τ 2pr+1 = τ 2cr × 1− u1

u1

.

vi. Sampling new error variances

Let σ2p
Gp = (σ2c

1 , . . . , σ2c
r−1, σ

2p
r , σ2p

r+1, σ
2c
r+1, . . . σ

2c
Gc)′ be the new vector of error vari-

ances, where σ2p
r and σ2p

r+1 are values of new error variances at the proposed state
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splitting from σ2c
r . We propose to split σ2c

r by drawing a common random vari-

able u2 across dimensions from a Uniform distribution such that u2 ∼ U(0, 1)

and let

σ2p
r = σ2c

r × u2

1− u2

,

σ2p
r+1 = σ2c

r × 1− u2

u2

.

vii. Sampling new model coefficients

Let θp
Gp = (θc′

1 , . . . ,θ
c′
r−1,θ

p′
r ,θ

p′
r+1,θ

c′
r+1, . . .θ

c′
Gc)′ be the new vector of model co-

efficients, which includes regression and smoothing spline coefficients. Thus, θp′
r

and θp′
r+1 can be drawn from the conditional posterior distribution based on τ 2pGp

and σ2p
Gp in a Gibbs manner, which is detailed in the within-model moves later.

viii. Subject reallocation

After splitting a component into two by sampling all parameters {τ 2p
Gp ,σ

2p
Gp ,θ

p
Gp ,

δ∗p
Gp ,κ

2p
ζGp} at the proposed state, we need to reallocate subjects that belong to

component r to two new components by computing the distribution of latent

indicator zir and zi,r+1 with

f(zir = 1 | yi,Θ
p
r) =

πirfr(yi | Θp
r)∑r+1

h=r πihfh(yi | Θ
p
h)
, (31)

thus zir and zi,r+1 can be drawn from the multinomial distribution.

ix. Computing the acceptance rate

The acceptance rate for the split proposal is α = min{1, A}, where

A =
p(y | Gp,Θp

Gp) p(Θ
p
Gp | Gp) p(Gp)

p(y | Gc,Θc
Gc) p(Θc

Gc | Gc) p(Gc)

× q(Gc | Gp) q(θc
r)

q(Gp | Gc) q(Alloc) q(u1) q(u2) q(u3) q(θ
p
r) q(θ

p
r+1) q(δ

∗p
r+1)

× |J |,
(32)

where q(Alloc) is the probability that this reallocation is made, q(u1) = q(u2) =

q(u3) = 1 is the probability density function of U(0, 1) and the jacobian J is:

|J | =

∣∣∣∣∣∂(τ 2pr , τ 2pr+1, σ
2p
r , σ2p

r+1, κ
2p
ζ,r+1)

∂(τ 2cr , σ2c
r , u1, u2, u3)

∣∣∣∣∣ .
b. Combine proposal
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Suppose combine proposal is selected and thus we have Gp = Gc − 1. The combine

proposal is the reversed step of split proposal since detailed balance condition is

required to hold for the proposed RJMCMC algorithm. The combine proposal is

listed below.

i. Selecting two components to combine

Under the combine proposal, we need to first select two components to combine.

One component is the component that is allocated with the fewest number of

subjects and another component is selected based on the weights of the number

of subjects that belong to each component.

ii. Removing variance of the random intercept

Since a new variance of the random intercept is generated via the split proposal,

we need to remove one variance of the random intercept in order to reduce one

component. Thus, one variance of the random intercept is randomly selected to

be removed from two selected components.

iii. Removing logistic parameters

Since a new set of logistic parameters is generated via the split proposal, we need

to remove one set of logistic parameters in order to reduce one component. Thus,

the set of logistic parameters which belong to the same component removed by

the variance of the random intercept is randomly selected to be removed from

two selected components.

iv. Computing mixing weights

Since two components are selected to combine, the mixing weights of two com-

ponents are added together to form the new mixing weights of the combined

component.

v. Computing combined smoothing parameters

Let τ 2p
Gp = (τ 2c1 , . . . , τ 2cr−1, τ

2p
r , τ 2cr+2, . . . τ

2c
Gc)′ be the new vector of smoothing pa-

rameters, where τ 2pr is the value of new smoothing parameters at the proposed

state, combining from τ 2cr and τ 2cr+1. τ 2pr is computed by reversing the step de-

scribed in sampling new smoothing parameters in the split proposal and thus we
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have:

τ 2pr =
√

τ 2cr τ 2cr+1.

vi. Computing combined error variances

Let σ2p
Gp = (σ2c

1 , . . . , σ2c
r−1, σ

2p
r , σ2c

r+2, . . . σ
2c
Gc)′ be the new vector of error variances,

where σ2p
r is the value of new error variances at the proposed state, combining

from σ2c
r and σ2c

r+1. Similar to the combine of smoothing parameters, σ2p
r is

computed by reversing the step described in sampling new error variances in the

split proposal and thus we have:

σ2p
r =

√
σ2c
r σ2c

r+1.

vii. Sampling combined model coefficients

Let θp
Gp = (θc′

1 , . . . ,θ
c′
r−1,θ

p′
r ,θ

c′
r+2, . . .θ

c′
Gc)′ be the new vector of model coeffi-

cients. Thus, θp
r can be drawn from the conditional posterior distribution based

on τ 2pr and σ2p
r in a Gibbs manner, which is detailed in within-model moves later.

viii. Computing the acceptance rate

Since the detailed balanced condition holds for the proposed RJMCMC algo-

rithm, which indicates that the split and combine proposal can be reversible.

Thus, the acceptance rate for the combine proposal is α = min{1, A−1}, where

A can be obtained using (32).

2. Within-model moves

Within-model moves sample ΘG = (Θ′
1,G, . . . ,Θ

′
g,G, . . . ,Θ

′
G,G)

′ without the change of

parameter dimensions or the number of components. For ease of notation, we sup-

press the subscript G in within-model moves. As notations in 2.2.1, we denote Θg =

(θ′
g, τ

2
g , σ

2
g , δ

∗′
g , κ

2
ζg)

′ as parameters for gth component, detailed within-model moves sam-

pling scheme is shown as below.

a. Sampling model coefficients

For each component g, based on the augmented likelihood and priors on θg =
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(α′
g,β

′
g)

′, the conditional posterior distribution of (θg | y,S, τ 2g , σ2
g) is:

p(θg | y,S, τ 2g , σ2
g) ∝ p(y | S,θg, σ

2
g) · p(θg | τ 2g )

∝
N∏
i=1

{
(σ2

g)
−n/2 exp

[
− 1

2σ2
g

(yi − Sθg)
′(yi − Sθg)

]}zig

× |Dg|−1/2 exp
(
− 1

2
θ′
gD

−1
g θg

)
∝ exp

{
− 1

2σ2
g

[ N∑
i=1

zig(yi − Sθg)
′(yi − Sθg) + θ′

gσ
2
gD

−1
g θg

]}
∝ exp

[
− 1

2σ2
g

(θg − µg)
′(Λg)

−1(θg − µg)
]

∼ N(µg, σ
2
gΛg),

where Λg = (NgS
′S + σ2

gD
−1
g )−1 and µg = Λg

∑N
i=1 zigS

′yi, Ng is the number

of time series that belongs to the gth component, Dg = diag(σ2
α12, τ

2
g 1m) is the

prior covariance matrix for θg. Hence, for each component g, we can draw (θg |

σ2
g , τ

2
g ,y,S) ∼ N(µg, σ

2
gΛg).

b. Sampling error variances

We expand the half-t prior by augmenting the posterior of error variances with a

latent variable aσg , using the hierarchical structure

σ2
g | aσg ∼ IG

(νσ
2
,
νσ
aσg

)
, aσg ∼ IG

(1
2
,
1

A2
σ

)
,

so that the full conditional distributions are

p(aσg | σ2
g) ∝ p(σ2

g | aσg)p(aσg) ∝ exp
[
− 1

aσg

(νσ
σ2
g

+
1

A2
σ

)]
· (aσg)

−( 1
2
+1+ νσ

2
),

which can be sampled from IG
(

νσ+1
2

, νσ
σ2
g
+ 1

A2
σ

)
. Denoting ϵig as the error of time

series yi for the component g and ϵig = yi −Sθg, where ϵig ∼ N(0, σ2
gIn). Thus we
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have

p(σ2
g | ϵig, γg) ∝ p(ϵig | σ2

g)p(aσg | σ2
g)p(σ

2
g)

∝
N∏
i=1

[
(σ2

g)
−n

2 exp
(
− 1

2σ2
g

ϵ′igϵig

)]zig
× (σ2

g)
−( νσ

2
+1) exp

(
− νσ

σ2
gaσg

)
∝ (σ2

g)
−(n

2
Ng+

νσ
2
+1) · exp

[
− 1

σ2
g

(

∑N
i=1 zigϵ

′
igϵig

2
+

νσ
aσg

)
]
,

which can be sampled from IG
(

nNg+νσ
2

,
∑N

i=1 zigϵ
′
igϵig

2
+ νσ

aσg

)
. The sampling scheme

proceeds by first sampling (aσg | σ2
g) than (σ2

g | ϵig, aσg).

c. Sampling smoothing parameters

Following the same procedure of sampling error variances, we can sample smooth-

ing parameter τ 2g by introducing a latent variable aτg . We first draw (aτg | τ 2g ) ∼

IG
(

ντ+1
2

, ντ
τ2g

+ 1
A2

τ

)
, then we have

p(τ 2g | βg, aτg) ∝ p(βg | τ 2g )p(aτg | τ 2g )p(τ 2g )

∝ (τ 2g )
−m+ντ

2 · exp
[
− 1

τ 2g
(
ντ
aτg

+
β′

gβg

2
)
]
,

which can be sampled from IG
(

ντ+m
2

,
β′
gβg

2
+ ντ

aτg

)
. The sampling scheme proceeds

by first sampling (aτg | τ 2g ) then (τ 2g | βg, aτg).

d. Sampling logistic parameters

Based on (3) and Section 2.3, the conditional posterior distribution of (δ∗
g | zig,V ∗)

is

p(δ∗
g | zig,V ∗) ∝ p(zig = 1 | δ∗

g,V
∗)p(δ∗

g)

=
N∏
i=1

[ exp(V ∗′
i δ

∗
g)∑G

h=1 exp(V
∗′
i δ

∗
h)

]zig
· p(δ∗

g).

To sample from the posterior distribution of p(δ∗
g | zig,V ∗), we use a data augmenta-

tion strategy from Polson et al. 2013 by introducing a latent Póyla-Gamma variable

ωig, which comes from the Pólya-Gamma distribution. Thus, we have

p(δ∗
g | zig, ωig,V

∗) ∝ p(zig = 1 | ωig, δ
∗
g,V

∗)p(δ∗
g)

∝ exp
(
−

ωigη
2
ig

2

)
p(ωig | 1, 0)|Bg|−P/2 exp

(
− 1

2
δ∗′
g B

−1
g δ∗

g

)
,
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where ηig = V ∗′
i δ

∗
g − Cig and Cig = log

∑
h̸=j exp(V

∗′
i δ

∗
h), p(ωig | 1, 0) is the Pólya-

gamma distribution PG(b, c) with b = 1 and c = 0, Bg is the prior covariance

matrix from section 2.3 and Bg = diag(σ2
ζgIP+1, κ

2
ζgIN). Using the conjugate prior

δ∗
g ∼ N(0,Bg), we have

ωig | δ∗
g,V

∗ ∼ PG(1, ηig),

δ∗
g | zig, ωig,V

∗ ∼ N(M g,Σg),

where posterior variance Σg = (V ∗′ΩgV
∗ + B−1

g )−1 and posterior mean M g =

Σg

[
V ∗′(ΩgCg + ξg)

]
. Here Ωg = diag(ω1g, . . . , ωNg), Cg = (C1j, . . . , CNg)

′, and

ξg = (ξ1g, . . . , ξNg)
′, where ξig = zig − 1

2
. Thus, δ∗

g can be sampled by first drawing

(ωig | δ∗
g,V

∗) and then drawing (δ∗
g | zig, ωig,V

∗).

e. Sampling variances of the random intercept

Following the same procedure for sampling τ 2g , we first draw (aκg | κ2
ζg) ∼ IG

(
νκ+1
2

,

νκ
κ2
ζg

+ 1
A2

κ

)
, then we have

p(κ2
ζg | ζg, aκg) ∝ p(ζg | κ2

ζg)p(aκg | κ2
ζg)p(κ

2
ζg)

∝ (κ2
ζg)

−N+νκ
2

+1 · exp
[
− 1

κ2
ζg

(
νκ
aκg

+
ζT
g ζg

2
)
]
,

which can be sampled from IG
(

νκ+N
2

,
ζT
g ζg

2
+ νκ

aκg

)
. The sampling scheme proceeds

by first sampling (aκg | κ2
ζg) than (κ2

ζg | ζg, aκg).

f. Computing mixing weights

After drawing δ∗
g from its posterior distribution, we can directly compute mixing

weights πig from (3) with known design matrix V ∗.

g. Sampling latent indicators

After obtaining all estimated parameters and computing mixing weights, the final

step is to allocate subjects to different components by sampling the latent indicator

zig. The latent indicator zig has the following distribution as in (5):

f(zig = 1 | Θ,yi) =
πigfg(yi | Θg)∑G

h=1 πihfh(yi | Θh)
,

where the latent indicator zig can be drawn from the multinomial distribution.
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A.2 Additional simulation results

Figure A.2.1. An example of estimated trajectories with true trajectories from one

replicate of M1.
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Figure A.2.2. An example of estimated trajectories with true trajectories from one

replicate of M4.
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A.3 Additional real-data results

Figure A.3.3. Estimated trajectories with 95% pointwise credible intervals for the two-

component model of channel S1D3. I: Interact S: Still-face R: Recovery.

Figure A.3.4. Estimated trajectories with pointwise 95% credible intervals for the two-

component model of channel S5D1. I: Interact S: Still-face R: Recovery.
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Figure A.3.5. Estimated trajectories with 95% pointwise credible intervals for the two-

component model of channel S6D4. I: Interact S: Still-face R: Recovery.

Figure A.3.6. Estimated trajectories with pointwise 95% credible intervals for the two-

component model of channel S7D4. I: Interact S: Still-face R: Recovery.
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Appendix B Chapter 3

B.1 Detailed Gibbs sampling scheme

Sampling Θ = (Θ′
1, . . . ,Θ

′
g, . . . ,Θ

′
G)

′ does not require the change of parameter dimen-

sions or the number of components. We can sample parameters from each kth dimension

separately from their conditional posterior distribution using Gibbs sampling. Denoting

Θgk = (θ′
gk, τ

2
gk, σ

2
gk, δ

∗′
g , κ

2
ζg)

′ as parameters for gth component and kth dimension, detailed

Gibbs sampling scheme is shown as below.

1. Sampling model coefficients

For each component g and time series dimension k, based on the augmented likeli-

hood and priors on θgk = (α′
gk,β

′
gk)

′, the conditional posterior distribution of θgk |

y,S, τ 2gk, σ
2
gk is:

p(θgk | y,S, τ 2gk, σ2
gk) ∝ p(y | S,θgk, σ

2
gk) · p(θgk | τ 2gk)

∝
N∏
i=1

[(σ2
gk)

−n/2 exp{− 1

2σ2
gk

(yik − Sθgk)
′(yik − Sθgk)}]zig

× |Dgk|−1/2 exp{−1

2
θ′
gkD

−1
gk θgk}

∝ exp{− 1

2σ2
gk

[
N∑
i=1

zig(yik − Sθgk)
′(yik − Sθgk) + θ′

gkσ
2
gkD

−1
gk θgk]}

∝ exp{− 1

2σ2
gk

(θgk − µgk)
′(Λgk)

−1(θgk − µgk)}

∼ N(µgk, σ
2
gkΛgk),

where Λgk = (NgS
′S + σ2

gkD
−1
gk )

−1 and µgk = Λgk

∑N
i=1 zigS

′yik, Ng is the number of

time series that belongs to the gth component, Dgk = diag(σ2
α12, τ

2
gk1m) is the prior

covariance matrix for θgk. Hence, for each component g and entry k, we can draw

θgk | σ2
gk, τ

2
gk,y,S ∼ N(µgk, σ

2
gkΛgk).

2. Sampling error variances

We follow Wand et al.(2012), expanding the half-t prior in 3.3.3 by augmenting the
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posterior of error variances with a latent variable aσgk
, using the hierarchical structure

σ2
gk | aσgk

∼ IG(
νσ
2
,
νσ
aσgk

), aσgk
∼ IG(

1

2
,
1

A2
σ

),

so that the full conditional distributions are

p(aσgk
| σ2

gk) ∝ p(σ2
gk | aσgk

)p(aσgk
) ∝ exp

(
− 1

aσgk

(
νσ
σ2
gk

+
1

A2
σ

)
)
· (aσgk

)−( 1
2
+1+ νσ

2
),

which can be sampled from IG(νσ+1
2

, νσ
σ2
gk

+ 1
A2

σ
). Denoting ϵigk as the error of time series

yik for the component g and ϵigk = yik −Sθgk, where ϵigk ∼ N(0, σ2
gkIn). Thus we have

p(σ2
gk | ϵigk, aσgk

) ∝ p(ϵigk | σ2
gk)p(aσgk

| σ2
gk)p(σ

2
gk)

∝
N∏
i=1

[(σ2
gk)

−n
2 exp(− 1

2σ2
gk

ϵ′igkϵigk)]
zig × (σ2

gk)
−( νσ

2
+1) exp(− νσ

σ2
gkaσgk

)

∝ (σ2
gk)

−(n
2
Ng+

νσ
2
+1) · exp

(
− 1

σ2
gk

(

∑N
i=1 zigϵ

′
igkϵigk

2
+

νσ
aσgk

)
)
,

which can be sampled from IG(nNg+νσ
2

,
∑N

i=1 zigϵ
′
igkϵigk

2
+ νσ

aσgk
). The sampling scheme

proceeds by first sampling aσgk
| σ2

gk than σ2
gk | ϵigk, aσgk

.

3. Sampling smoothing parameters

Following the same procedure in sampling error variance, we can sample smoothing pa-

rameter τ 2gk by introducing a latent variable aτgk . We first draw aτgk | τ 2gk ∼ IG(ντ+1
2

, ντ
τ2gk

+

1
A2

τ
), then we have

p(τ 2gk | βgk, aτgk) ∝ p(βgk | τ 2gk)p(aτgk | τ 2gk)p(τ 2gk)

∝ (τ 2gk)
−m+ντ

2 · exp
(
− 1

τ 2gk
(
ντ
aτgk

+
β′

gkβgk

2
)
)
,

which can be sampled from IG(ντ+m
2

,
β′
gkβgk

2
+ ντ

aτgk
). The sampling scheme proceeds by

first sampling aτgk | τ 2gk then τ 2gk | βgk, aτgk .

4. Sampling logistic parameters

Sampling logistic parameters utilize the same method as shown in the sampling logistic

parameters of within-model moves of RJMCMC in Appendix A.1.

5. Sampling variances of the random intercept
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Sampling variances of the random intercept adopt the same method as shown in the sam-

pling variances of the random intercept in RJMCMC within-model moves in Appendix

A.1.

6. Computing mixing weights

After drawing δg from its posterior distribution, we can directly compute mixing weights

πig for each component from (10) with known design matrix V ∗.

7. Sampling latent indicators

After obtaining all estimated parameters and computing mixing weights, the final step

is to allocate subjects to different components by sampling the latent indicator zig. The

latent indicator zig has the following distribution as in (13):

f(zig = 1 | Θg,S,yi) =
πig

∏n
j=1 fg(yitj

| Θg)∑G
h=1 πih

∏n
j=1 fh(yitj

| Θh)
, (33)

which can be drawn directly from the multinomial distribution.

B.2 Additional simulation results

Table B.2.1. Results of logistic parameters for the two-component trivariate scenario in

Simulation I: values in each cell are in the format of RMSE (bias, variance).

Model Setting Comparison δ0 δ1 δ2 δ3

M1 C1 vs C2 0.90 (0.10,0.81) 0.42 (-0.09,0.17) 0.23 (0.03,0.05) 0.31 (-0.01,0.10)

M2 C1 vs C2 0.89 (0.09,0.80) 0.41(-0.09,0.16) 0.23 (0.03,0.05) 0.31 (-0.01,0.10)

M3 C1 vs C2 0.86 (0.07,0.73) 0.50(-0.13,0.23) 0.29 (0.08,0.08) 0.31 (-0.05,0.10)

M4 C1 vs C2 0.86 (0.07,0.74) 0.50 (-0.13,0.23) 0.29 (0.08,0.08) 0.31 (-0.05,0.10)
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Figure B.2.7. Boxplots of RMSE, bias and variance of trajectory estimates for model

setting M1 vs. M2 in Simulation I: two-component trivariate model.
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Figure B.2.8. Boxplots of RMSE, bias and variance of trajectory estimates for model

setting M3 vs. M4 in Simulation I: two-component trivariate model.
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Table B.2.2. Root mean square errors (RMSEs) of each logistic parameter for the two-

component trivariate model from 100 replicates of N two-component trivariate time series of

length n. RMSEs of the proposed method were compared to TRAJ procedure in SAS. Param-

eters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters, respectively.

The true values of logistic parameters are 5,−3.5, 1, 0.1, respectively.

n N Method δ0 δ1 δ2 δ3

50 150
Proposed 0.89 0.52 0.29 0.32

TRAJ 1.57 0.87 0.36 0.34

70 150
Proposed 0.86 0.50 0.29 0.31

TRAJ 1.55 0.86 0.36 0.34

50 250
Proposed 0.77 0.40 0.22 0.23

TRAJ 0.96 0.50 0.23 0.24

70 250
Proposed 0.77 0.41 0.22 0.23

TRAJ 0.97 0.51 0.24 0.24
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Figure B.2.9. Boxplots of the averaged root square error (ARSE), the averaged bias (A-

bias) and the variance of bias (V-bias) of estimated trajectories for each component from 100

replicates of 150 two-component trivariate time series of length 50. Estimates of the proposed

method were compared to R package gbmt and TRAJ procedure in SAS. The diamond markers

denote the means of each estimate.
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Table B.2.3. Mean (standard deviation) of the averaged root square error (ARSE),

the averaged bias (A-bias) and the variance of bias (V-bias) of estimated trajectories for

each component from 100 replicates of N two-component trivariate time series of length n.

Estimates of the proposed method were compared to R package gbmt and TRAJ procedure

in SAS. C1 and C2 denote the first and the second components. Means were calculated by

averaging over estimates of 100 replicates. Standard deviations are Monte Carlo standard

deviations from estimates of 100 replicates. Each value was reported ×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

50 150

Proposed
8.35

(1.26)

0.03

(1.83)

0.68

(0.22)

7.65

(1.38)

0.10

(1.76)

0.58

(0.22)

gbmt
10.67

(1.91)

0.03

(1.83)

1.15

(0.42)

9.08

(1.72)

0.10

(1.76)

0.83

(0.33)

TRAJ
11.06

(1.48)

0.03

(1.83)

1.22

(0.33)

10.59

(1.52)

0.10

(1.76)

1.12

(0.34)

70 150

Proposed
7.16

(1.04)

0.24

(1.38)

0.51

(0.16)

6.53

(1.07)

-0.11

(1.42)

0.42

(0.14)

gbmt
9.91

(1.96)

0.24

(1.38)

1.01

(0.40)

8.19

(1.65)

-0.11

(1.42)

0.68

(0.29)

TRAJ
9.34

(1.10)

0.24

(1.38)

0.87

(0.22)

8.95

(1.13)

-0.11

(1.42)

0.80

(0.20)

50 250

Proposed
6.81

(1.02)

0.07

(1.33)

0.46

(0.14)

6.22

(0.94)

0.02

(1.31)

0.38

(0.12)

gbmt
9.79

(1.91)

0.07

(1.33)

0.98

(0.40)

8.00

(1.53)

0.02

(1.31)

0.65

(0.26)

TRAJ
8.70

(1.18)

0.07

(1.33)

0.76

(0.21)

8.20

(1.03)

0.02

(1.31)

0.67

(0.17)

70 250

Proposed
5.65

(0.84)

0.08

(1.00)

0.32

(0.10)

5.27

(0.82)

-0.06

(1.42)

0.27

(0.09)

gbmt
9.15

(1.96)

0.08

(1.00)

0.87

(0.38)

7.43

(1.60)

-0.06

(1.42)

0.56

(0.26)

TRAJ
7.18

(0.94)

0.08

(1.00)

0.52

(0.14)

6.80

(0.77)

-0.06

(1.42)

0.45

(0.10)
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Table B.2.4. Mean (standard deviation) of the averaged root square error (ARSE), the

averaged bias (A-bias) and the variance of bias (V-bias) of estimated trajectories for each

component from 100 replicates of 150 four-component bivariate time series of length 50.

Estimates of the proposed method were compared to R package gbmt and TRAJ procedure

in SAS. C1, C2, C3 and C4 denote first, second, third and fourth component, respectively.

Means were calculated by averaging over estimates of 100 replicates. Standard deviations are

Monte Carlo standard deviations from estimates of 100 replicates. Each value was reported

×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

50 150

Proposed
4.38

(1.04)

0.38

(1.59)

0.18

(0.08)

3.76

(0.87)

-0.01

(1.37)

0.13

(0.06)

gbmt
4.75

(1.04)

0.38

(1.59)

0.21

(0.09)

4.79

(1.17)

0.01

(1.65)

0.22

(0.11)

TRAJ
13.87

(15.59)

0.62

(9.91)

3.39

(9.24)

12.41

(13.42)

0.08

(9.74)

2.41

(5.37)

n N Method ARSE C3 A-bias C3 V-bias C3 ARSE C4 A-bias C4 V-bias C4

50 150

Proposed
4.69

(1.14)

-0.11

(1.83)

0.20

(0.12)

3.88

(1.15)

-0.09

(1.56)

0.14

(0.08)

gbmt
5.08

(1.12)

-0.12

(1.83)

0.24

(0.12)

4.70

(1.32)

-0.09

(1.78)

0.21

(0.12)

TRAJ
14.55

(14.82)

-1.58

(10.31)

3.24

(7.35)

14.36

(17.01)

0.12

(9.92)

3.99

(10.70)
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Table B.2.5. Mean (standard deviation) of the averaged root square error (ARSE), the

averaged bias (A-bias) and the variance of bias (V-bias) of estimated trajectories for each

component from 100 replicates of 150 four-component bivariate time series of length 70.

Estimates of the proposed method were compared to R package gbmt and TRAJ procedure

in SAS. C1, C2, C3 and C4 denote first, second, third and fourth component, respectively.

Means were calculated by averaging over estimates of 100 replicates. Standard deviations are

Monte Carlo standard deviations from estimates of 100 replicates. Each value was reported

×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

70 150

Proposed
3.82

(0.95)

0.44

(1.30)

0.14

(0.07)

3.22

(0.85)

-0.07

(0.95)

0.10

(0.06)

gbmt
4.05

(0.97)

0.44

(1.30)

0.16

(0.08)

4.11

(1.12)

-0.08

(1.15)

0.17

(0.10)

TRAJ
13.51

(17.04)

-0.30

(9.34)

3.86

(10.73)

10.00

(10.11)

-0.25

(6.21)

1.64

(4.02)

n N Method ARSE C3 A-bias C3 V-bias C3 ARSE C4 A-bias C4 V-bias C4

70 150

Proposed
4.12

(0.90)

-0.29

(1.69)

0.15

(0.06)

3.52

(0.85)

0.24

(1.22)

0.12

(0.06)

gbmt
4.38

(1.01)

-0.29

(1.69)

0.17

(0.07)

4.13

(0.99)

0.27

(1.40)

0.16

(0.09)

TRAJ
13.03

(17.04)

0.30

(10.49)

3.86

(10.73)

11.77

(13.78)

0.39

(8.49)

2.57

(6.45)
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Table B.2.6. Root mean square errors (RMSEs) of each logistic parameter for the four-

component bivariate model from 100 replicates of 150 four-component bivariate time series

of length 70. RMSEs of the proposed method were compared to TRAJ procedure in SAS.

Parameters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters, re-

spectively. The fourth component was used as the reference component. The true values

of logistic parameters are 5,−3.5, 1, 0.1 (first component), −4, 2.5,−2,−0.2 (second compo-

nent), 3,−2, 0.8, 0.2 (third component). C1, C2, C3 and C4 denote first, second, third and

fourth component, respectively.

n N Method Comparison δ0 δ1 δ2 δ3

70 150

Proposed

C1 vs C4 0.81 0.51 0.29 0.41

C2 vs C4 1.42 0.73 0.58 0.36

C3 vs C4 1.05 0.58 0.37 0.31

TRAJ

C1 vs C4 1.13 0.66 0.31 0.45

C2 vs C4 3.12 1.66 0.99 0.55

C3 vs C4 1.15 0.74 0.48 0.35
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Table B.2.7. Mean (standard deviation) of the averaged root square error (ARSE), the

averaged bias (A-bias) and the variance of bias (V-bias) of estimated trajectories for each

component from 100 replicates of 250 four-component bivariate time series of length 50.

Estimates of the proposed method were compared to R package gbmt and TRAJ procedure

in SAS. C1, C2, C3 and C4 denote first, second, third and fourth component, respectively.

Means were calculated by averaging over estimates of 100 replicates. Standard deviations are

Monte Carlo standard deviations from estimates of 100 replicates. Each value was reported

×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

50 250

Proposed
3.42

(0.78)

0.18

(1.19)

0.11

(0.05)

2.86

(0.61)

-0.14

(0.98)

0.08

(0.04)

gbmt
3.57

(0.85)

0.18

(1.19)

0.12

(0.06)

3.68

(0.79)

-0.15

(1.20)

0.13

(0.06)

TRAJ
11.66

(15.03)

0.53

(10.63)

2.50

(6.30)

8.90

(9.38)

1.47

(7.81)

1.05

(2.16)

n N Method ARSE C3 A-bias C3 V-bias C3 ARSE C4 A-bias C4 V-bias C4

50 250

Proposed
3.93

(0.92)

-0.06

(1.48)

0.14

(0.07)

3.28

(0.76)

-0.10

(1.19)

0.10

(0.05)

gbmt
4.16

(0.95)

-0.06

(1.49)

0.16

(0.07)

3.83

(0.83)

-0.13

(1.36)

0.14

(0.06)

TRAJ
10.80

(9.92)

0.49

(5.78)

1.83

(3.70)

10.17

(12.54)

-0.17

(8.83)

1.84

(5.20)
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Table B.2.8. Root mean square errors (RMSEs) of each logistic parameter for the four-

component bivariate model from 100 replicates of 250 four-component bivariate time series

of length 50. RMSEs of the proposed method were compared to TRAJ procedure in SAS.

Parameters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters, re-

spectively. The fourth component was used as the reference component. The true values

of logistic parameters are 5,−3.5, 1, 0.1 (first component), −4, 2.5,−2,−0.2 (second compo-

nent), 3,−2, 0.8, 0.2 (third component). C1, C2, C3 and C4 denote first, second, third and

fourth component, respectively.

n N Method Comparison δ0 δ1 δ2 δ3

50 250

Proposed

C1 vs C4 0.63 0.41 0.26 0.29

C2 vs C4 1.00 0.46 0.40 0.27

C3 vs C4 0.63 0.33 0.23 0.24

TRAJ

C1 vs C4 0.91 0.56 0.30 0.28

C2 vs C4 1.40 0.86 0.61 0.35

C3 vs C4 2.24 1.40 0.85 0.27
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Table B.2.9. Mean (standard deviation) of the averaged root square error (ARSE), the

averaged bias (A-bias) and the variance of bias (V-bias) of estimated trajectories for each

component from 100 replicates of 250 four-component bivariate time series of length 70.

Estimates of the proposed method were compared to R package gbmt and TRAJ procedure

in SAS. C1, C2, C3 and C4 denote first, second, third and fourth component, respectively.

Means were calculated by averaging over estimates of 100 replicates. Standard deviations are

Monte Carlo standard deviations from estimates of 100 replicates. Each value was reported

×102.

n N Method ARSE C1 A-bias C1 V-bias C1 ARSE C2 A-bias C2 V-bias C2

70 250

Proposed
2.94

(0.60)

-0.04

(1.06)

0.08

(0.04)

2.61

(0.57)

-0.01

(0.87)

0.06

(0.03)

gbmt
3.10

(0.63)

-0.04

(1.06)

0.09

(0.04)

3.18

(0.70)

0.01

(1.05)

0.10

(0.05)

TRAJ
13.52

(17.70)

-1.58

(11.09)

3.71

(8.80)

11.51

(14.85)

-0.19

(9.98)

2.54

(7.10)

n N Method ARSE C3 A-bias C3 V-bias C3 ARSE C4 A-bias C4 V-bias C4

70 250

Proposed
3.30

(0.76)

-0.02

(1.21)

0.10

(0.05)

2.85

(0.73)

-0.07

(0.97)

0.08

(0.04)

gbmt
3.51

(0.79)

-0.01

(1.21)

0.12

(0.06)

3.26

(0.80)

-0.09

(1.06)

0.10

(0.05)

TRAJ
13.07

(15.21)

1.48

(10.52)

2.90

(7.11)

10.68

(12.93)

0.65

(8.11)

2.16

(5.66)
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Table B.2.10. Root mean square errors (RMSEs) of each logistic parameter for the

four-component bivariate model from 100 replicates of 250 four-component bivariate time

series of length 70. RMSEs of the proposed method were compared to TRAJ procedure in

SAS. Parameters δ0, δ1, δ2 and δ3 are intercept, first, second and third logistic parameters,

respectively. The fourth component was used as the reference component. The true values

of logistic parameters are 5,−3.5, 1, 0.1 (first component), −4, 2.5,−2,−0.2 (second compo-

nent), 3,−2, 0.8, 0.2 (third component). C1, C2, C3 and C4 denote first, second, third and

fourth component, respectively.

n N Method Comparison δ0 δ1 δ2 δ3

70 250

Proposed

C1 vs C4 0.64 0.40 0.26 0.28

C2 vs C4 0.92 0.42 0.41 0.28

C3 vs C4 0.63 0.31 0.23 0.23

TRAJ

C1 vs C4 0.82 0.50 0.27 0.28

C2 vs C4 1.47 0.86 0.61 0.36

C3 vs C4 1.60 0.96 0.57 0.25
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B.3 Additional real-data results

Figure B.3.10. Estimated trajectories of the three-component model with four selected

channels. I: Interact S: Still-face R: Recovery. Red curves are posterior mean and two green

dashed curves are 95% pointwise credible intervals.
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Figure B.3.11. Logistic coefficient estimates and 95% credible intervals for each covariate

of the three-component model.
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Figure B.3.12. Heatmap of averaged first derivatives of estimated trajectories for combi-

nations of all components and selected channels.

121



Figure B.3.13. Heatmap of averaged first derivatives of estimated trajectories for combi-

nations of all components and all channels.
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Appendix C Chapter 4

C.1 Additional simulation results

Figure C.1.14. Coefficient function plots of five methods for p = 40 and selected orders

of differences E = {0, 1} (Case 1).
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Figure C.1.15. Coefficient function plots of five methods for p = 40 and selected orders

of differences E = {0, 2} (Case 2).
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Figure C.1.16. Coefficient function plots of five methods for p = 40 and selected orders

of differences E = {0, 1, 2} (Case 3).
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Figure C.1.17. Coefficient function plots of five methods for p = 80 and selected orders

of differences E = {0, 2} (Case 5).
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Figure C.1.18. Coefficient function plots of five methods for p = 80 and selected orders

of differences E = {0, 1, 2} (Case 6).
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Figure C.1.19. Coefficient function plots of five methods for p = 120 and selected orders

of differences E = {0, 1} (Case 7).
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Figure C.1.20. Coefficient function plots of five methods for p = 120 and selected orders

of differences E = {0, 2} (Case 8).
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Figure C.1.21. Coefficient function plots of five methods for p = 120 and selected orders

of differences E = {0, 1, 2} (Case 9).
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Table C.1.11. Mean (standard deviation) of prediction errors for five methods and nine

simulation cases with different numbers of covariates and orders of differences (i.e. 0, 1

indicates zeroth and first-order differences are selected).

Type
p=40 p=80 p=120

0,1 0,2 0,1,2 0,1 0,2 0,1,2 0,1 0,2 0,1,2

Bayesian

generalized

LASSO

(Horseshoe

prior)

0.99

(0.14)

1.03

(0.14)

1.02

(0.15)

1.07

(0.15)

1.19

(0.19)

1.20

(0.21)

1.10

(0.15)

1.23

(0.20)

1.72

(2.20)

Bayesian

generalized

LASSO

(Laplace prior)

1.19

(0.18)

1.35

(0.24)

1.30

(0.22)

2.38

(0.52)

2.28

(0.49)

2.10

(0.44)

4.72

(1.21)

4.53

(1.21)

3.90

(1.11)

Bayesian

LASSO

(Spike-and-slab

prior)

1.11

(0.17)

1.11

(0.17)

1.12

(0.17)

2.02

(1.06)

1.78

(0.71)

2.04

(1.08)

45.43

(17.84)

20.39

(11.89)

25.51

(13.92)

LASSO
1.39

(0.27)

1.44

(0.29)

1.44

(0.30)

2.10

(0.57)

2.17

(0.56)

2.15

(0.57)

5.64

(3.72)

4.66

(2.91)

4.08

(2.26)

Generalized

LASSO

1.15

(0.19)

1.24

(0.20)

1.21

(0.19)

1.24

(0.20)

1.69

(0.37)

1.71

(0.35)

1.70

(0.33)

2.79

(0.99)

3.17

(1.24)
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Table C.1.12. Mean (standard deviation) of mean square errors for five methods and

nine simulation cases with different numbers of covariates and orders of differences (i.e. 0, 1

indicates zeroth and first-order differences are selected).

Type
p=40 p=80 p=120

0,1 0,2 0,1,2 0,1 0,2 0,1,2 0,1 0,2 0,1,2

Bayesian

generalized

LASSO

(Horseshoe

prior)

0.03

(0.03)

0.08

(0.05)

0.06

(0.07)

0.07

(0.04)

0.19

(0.10)

0.19

(0.12)

0.10

(0.04)

0.24

(0.12)

0.70

(2.04)

Bayesian

generalized

LASSO

(Laplace prior)

0.24

(0.08)

0.42

(0.13)

0.36

(0.11)

1.37

(0.35)

1.26

(0.35)

1.07

(0.29)

3.70

(0.97)

3.53

(1.01)

2.88

(0.81)

Bayesian

LASSO

(Spike-and-slab

prior)

0.16

(0.07)

0.17

(0.07)

0.17

(0.07)

1.04

(1.11)

0.79

(0.74)

1.07

(1.18)

44.03

(16.57)

19.03

(11.04)

23.87

(12.88)

LASSO
0.45

(0.18)

0.50

(0.21)

0.51

(0.21)

1.07

(0.43)

1.16

(0.47)

1.15

(0.48)

4.54

(3.43)

3.61

(2.69)

3.02

(2.07)

Generalized

LASSO

0.20

(0.10)

0.29

(0.12)

0.27

(0.11)

0.29

(0.12)

0.66

(0.28)

0.70

(0.30)

0.69

(0.23)

1.77

(0.97)

2.14

(1.19)
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els using pólya–gamma latent variables. Journal of the American statistical Association,
108(504):1339–1349.

Prado, R. and Huerta, G. (2002). Time-varying autoregressions with model order uncertainty.
Journal of Time Series Analysis, 23(5):599–618.

Proust-Lima, C. and Liquet, B. (2011). Lcmm: an r package for estimation of latent class
mixed models and joint latent class models. In The R User Conference, useR! 2011 August
16-18 2011 University of Warwick, Coventry, UK, page 66. Citeseer.

143



Proust-Lima, C., Philipps, V., Diakite, A., and Liquet, B. (2017). lcmm: Extended mixed
models using latent classes and latent processes. R package version, 1(7).

Proust-Lima, C., Philipps, V., and Liquet, B. (2015). Estimation of extended mixed
models using latent classes and latent processes: the r package lcmm. arXiv preprint
arXiv:1503.00890.

Purdon, P. L. and Weisskoff, R. M. (1998). Effect of temporal autocorrelation due to phys-
iological noise and stimulus paradigm on voxel-level false-positive rates in fmri. Human
brain mapping, 6(4):239–249.

Ramoni, M., Sebastiani, P., and Cohen, P. (2000). Multivariate clustering by dynamics. In
AAAI/IAAI, pages 633–638.

Ramsay, J., Hooker, G., and Graves, S. (2009). Functional Data Analysis with R and MAT-
LAB. Use R! Springer New York.

Ramsay, J. and Silverman, B. (2002). Applied Functional Data Analysis: Methods and Case
Studies. Springer Series in Statistics. Springer New York.

Ramsay, J. and Silverman, B. (2013). Functional Data Analysis. Springer Series in Statistics.
Springer New York.

Rani, S. and Sikka, G. (2012). Recent techniques of clustering of time series data: a survey.
International Journal of Computer Applications, 52(15).

Reiss, P. T., Goldsmith, J., Shang, H. L., and Ogden, R. T. (2017). Methods for scalar-on-
function regression. International Statistical Review, 85(2):228–249.

Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure
nonparametrically when the data are curves. Journal of the Royal Statistical Society:
Series B (Methodological), 53(1):233–243.

Richardson, S. and Green, P. J. (1997). On bayesian analysis of mixtures with an unknown
number of components (with discussion). Journal of the Royal Statistical Society: series
B (statistical methodology), 59(4):731–792.

Rigon, T. and Durante, D. (2021). Tractable bayesian density regression via logit stick-
breaking priors. Journal of Statistical Planning and Inference, 211:131–142.

Robertson, F. C., Douglas, T. S., and Meintjes, E. M. (2010). Motion artifact removal for
functional near infrared spectroscopy: a comparison of methods. IEEE Transactions on
Biomedical Engineering, 57(6):1377–1387.

Rodriguez, C. E. and Walker, S. G. (2014). Label switching in bayesian mixture models:
Deterministic relabeling strategies. Journal of Computational and Graphical Statistics,
23(1):25–45.

144



Rosen, O. and Stoffer, D. S. (2007). Automatic estimation of multivariate spectra via smooth-
ing splines. Biometrika, 94(2):335–345.

Rosen, O., Stoffer, D. S., and Wood, S. (2009). Local spectral analysis via a bayesian mixture
of smoothing splines. Journal of the American Statistical Association, 104(485):249–262.

Rosen, O., Wood, S., and Stoffer, D. S. (2012). Adaptspec: Adaptive spectral estimation for
nonstationary time series. Journal of the American Statistical Association, 107(500):1575–
1589.

Rossell, D. and Steel, M. F. (2019). Continuous mixtures with skewness and heavy tails. In
Handbook of Mixture Analysis, pages 219–237. Chapman and Hall/CRC.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression.
The annals of statistics, pages 1346–1370.

Sanderson, J., Fryzlewicz, P., and Jones, M. (2010). Estimating linear dependence be-
tween nonstationary time series using the locally stationary wavelet model. Biometrika,
97(2):435–446.

Santosa, H., Zhai, X., Fishburn, F., and Huppert, T. (2018). The nirs brain analyzir toolbox.
Algorithms, 11(5):73.
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Ultsch, A. and Mörchen, F. (2005). ESOM-Maps: tools for clustering, visualization, and
classification with Emergent SOM, volume 46. Univ.

146



Verdoolaege, G. and Rosseel, Y. (2010). Activation detection in event-related fmri through
clustering ofwavelet distributions. In 2010 IEEE International Conference on Image Pro-
cessing, pages 4393–4396. IEEE.

Villringer, A. and Chance, B. (1997). Non-invasive optical spectroscopy and imaging of
human brain function. Trends in neurosciences, 20(10):435–442.

Villringer, A., Planck, J., Hock, C., Schleinkofer, L., and Dirnagl, U. (1993). Near infrared
spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain
function in human adults. Neuroscience letters, 154(1-2):101–104.

Vlachos, M., Gunopulos, D., and Das, G. (2004). Indexing time-series under conditions of
noise. In Data mining in time series databases, pages 67–100. World Scientific.

von Economo, C. F. and Koskinas, G. N. (1925). Die cytoarchitektonik der hirnrinde des
erwachsenen menschen. J. Springer.

Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against
model errors in regression. Journal of the Royal Statistical Society: Series B (Methodolog-
ical), 40(3):364–372.

Wahba, G. (1980). Automatic smoothing of the log periodogram. Journal of the American
Statistical Association, 75(369):122–132.

Wand, M. P., Ormerod, J. T., Padoan, S. A., and Frühwirth, R. (2011). Mean field variational
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