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Medical diagnosis is the process of determining the nature of a disease and distinguish-

ing it from other similar diseases. A diagnostic error happens when a diagnosis is missed,

inappropriately delayed, or inaccurate. Diagnostic error accounts for the most severe patient

harm, the largest fraction of claims, and highest total penalty payouts. One way to reduce

diagnostic error is to use a computer-aided diagnostic (CAD) system to augment doctors’

diagnostic abilities. More and more machine learning algorithms have been applied to the

medical diagnosis field and achieve good performance. However, because most of the mod-

els are very complicated and the diagnostic process is different from physicians’ workflow,

physicians usually do not trust those models.

My dissertation investigates how to combine electronic health record (EHR) data with

medical knowledge to generate a sequential diagnostic system that utilizes clinical alignment,

which is when the diagnostic process is in line with physicians’ diagnostic process. The new

system has two main characteristics: (1) data-driven so that we can use EHR data and

machine learning algorithms for developing a multi-label classification system; (2) clinical

knowledge-driven so that valuable clinical diagnostic knowledge can be integrated into the

system.

I have developed (1) a framework that can integrate pre-defined medical knowledge with

disease patterns in EHR data for sequential diagnosis and (2) an algorithm that generates

medical diagnostic trees that recommend diagnostic actions by considering clinical workflow,

diagnostic accuracy, and misdiagnosis costs. Experiments show that the learned model has

better clinical alignment, higher diagnostic accuracy, and lower misdiagnosis costs than base-

line models, which were developed using a traditional multi-label classification tree algorithm

(ML-C4.5) and a deep reinforcement learning algorithm (deep Q learning), respectively.
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1.0 Introduction

More and more machine learning algorithms have been applied into the medical diag-

nosis field and have gotten good performance. However, because most models for medical

diagnosis are complicated and their recommended diagnostic process is largely different from

physicians’ workflow, physicians usually do not trust them [36]. This dissertation investigates

how to combine EHR data with medical knowledge to generate a sequential diagnostic sys-

tem that is, unlike models currently in use, in clinical alignment. Clinical alignment means

the diagnostic process is in line with physicians’ diagnostic process. The new system will

have two main features: (1) it will be data-driven so that we can use EHR data and machine

learning algorithms for developing a multi-label diagnostic system that can handle diagno-

sis for patients who have multiple diseases; (2) it will be clinical-knowledge-driven so that

valuable clinical diagnostic knowledge can be integrated into machine learning algorithm to

guide the model building process and make the model clinical alignment. This dissertation

research project has three main goals: (1) achieve medical knowledge retrieval, represen-

tation, and integration, (2) build a multi-label sequential classification tree system that is

in clinical alignment for medical diagnosis, (3) evaluate the proposed system by applying

it in real-world heart disease diagnosis tasks. This chapter provides research background,

presents the research questions, and defines the scope of this dissertation.

1.1 Overview

Our medical knowledge has increased significantly during the last century. For example,

“The Merck Manual of Diagnosis and Therapy” is the best-selling medical textbook in the

world and the oldest continuously published textbook, demonstrates the growth. Its first

edition, published in 1899, only had 192 pages [111], while the current edition (the 20th

edition) published in 2018 has 3530 pages [77]. An urgent problem, however, has emerged as

a result of this large increase in knowledge: individual physicians cannot hold in their minds
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so much knowledge, which makes it difficult at times to make a correct diagnosis.

Medical diagnosis is the process of determining the nature of a disease and distinguishing

it from other similar diseases. A diagnostic error happens when a diagnosis is missed, inap-

propriately delayed, or is wrong [117]. diagnostic errors account for the most severe patient

harm, the largest fraction of medical claims and highest total penalty payouts. For example,

a recent study estimated that the rate of outpatient diagnostic errors is about 5%, or ap-

proximately 12 million US adults every year [92]. Moreover, in a Harvard Medical Practice

study [48], researchers found that diagnostic errors accounted for 17% of preventable errors

in hospitalized patients. Another 1986-2010 study of malpractice claims assessed that the

financial consequences of diagnostic errors were $38.8 billion among all paid claims. Diag-

nostic error was the leading type of error (28.6%) and accounted for the highest proportion

of total payments (35.2%) [96]. Unfortunately, reducing diagnostic errors is not easy.

In general, we have three ways to reduce diagnostic errors: the first way is to improve

clinicians’ own diagnostic abilities; the second way is to improve laboratory tests for diagnos-

ing diseases more thoroughly and accurately; and the third way is to use a computer-aided

diagnosis (CAD) system to augment doctors’ diagnostic abilities [19]. The latter has been

shown to be capable of reducing instances of delayed diagnosis and of improving diagnostic

accuracy [1]. The development of a CAD system depends on many factors, such as the

availability of large amounts of clinical data, the existence of rich medical knowledge, and

access to new advances in artificial intelligence technology.

CAD systems can be roughly divided into two types: knowledge-driven systems and

data-driven systems [70]. In knowledge-driven systems, knowledge is predominant, and such

systems require scores and logic rules in reasoning to derive new knowledge. The diagnostic

process of these systems is in line with clinical rules. However, these systems are limited in

that they are labor-intensive and difficult to adapt to add new diseases.

Data-driven systems, on the other hand, are data dominant. These systems learn diag-

nostic rules from data directly, so they can be extended to diagnose new diseases very easily.

However, there are three main drawbacks to these systems. First, to make final diagnoses,

most of these systems must use complicated machine-learned mathematical models, which

are difficult for physicians to understand; thus they are perceived to be ”black-box” systems.

2



Physicians usually do not trust the final decisions if the system cannot provide a clinically

sound explanation [36]. A second drawback is that even when some mathematical models are

easy to understand, they may not be in clinical alignment. A third drawback is that while

most data-driven CAD systems provide a list of candidate diagnoses, they cannot provide

further suggestions about how to differentiate these diseases and reach a final diagnosis.

All these challenges motivated us to develop a machine learning algorithm to combine

patients’ medical data and existing medical knowledge to build a white-box computational

sequential diagnostic system. This system could help physicians find the most valuable dif-

ferential diagnosis questions to get a final primary diagnosis, and the order of these questions

makes medical sense, being in alignment with the clinical decision-making process.

1.2 Research Background

1.2.1 Computer Application in Disease Diagnosis

When the first digital computers were developed in the 1940s [53], people were told that

these new machines could be used for calculation and information retrieval. Later, people

found that the computer has several capabilities ideally fitted to medical diagnosis [31]: they

can store large quantities of data over a long period of time, recall data exactly as stored,

perform complex calculations at very high speed, and display possible diagnoses from the

most likely to the least likely. Within 10 years of their first appearance, physicians and other

healthcare workers had begun to use computers to solve medical problems [49]. For example,

in the late 1950s, a few physicians at the New York and Mt. Sinai Hospital set up a program

for differential diagnosis of hematological diseases. They recorded 30 diseases and 98 related

symptoms on a magnetic tape. To make diagnosis for a new case, the symptoms of that case

were recorded on a tape and compared with the symptoms for the 30 diseases. Based on

this comparison, the computer printed out a list of diseases that have the same symptoms

with the new case, symptoms that might support the 30 diseases’ final diagnosis as well as

untested symptoms that are worthy checking [118].

3



Early CAD systems from the 1970s and 1980s were often referred to as “expert systems

in medicine.” They used medical knowledge from medical textbooks and flow-chart guide-

lines [87], statistical pattern-matching theories [83], or probability theories [32] to mimic

diagnostic process. Some famous examples of such systems include the MYCIN expert sys-

tem [90], the INTERNIST-1 expert system [58] and the CADUCEUS expert system [22].

In a typical classic expert system, a user interacts with a knowledge base via the inference

engine, and the inference engine can use a forward or backward chaining approach to get

a decision/recommendation. The knowledge base is composed of a set of facts and rules.

Usually, these rules are in a logical structure of the IF-THEN form.

The advantage of these knowledge-driven systems is that they are easy to understand

and apply. They align well with clinicians’ reasoning process. The disadvantage of these

systems is that the development of the knowledge base is highly labor-intensive, so it is not

easy to adapt the system to include new diseases.

As more and more EHR data have become available, various data-driven CAD systems

have been developed to help physicians make diagnosis. The architecture of a classic data-

driven CAD system can be found in Figure 1. The whole data set is split into training data

and test data, where the training data is used to develop models, which are then used on test

data to conduct diagnosis. This type of system can be used in different aspects of disease

diagnosis, including as heart sound and signal analysis system [64], medical image analysis

system [93], and lab test analysis system [55].

The advantages of the data-driven systems are that they are easy to add new diseases.

The disadvantages of the data-driven systems are: (1) their models are often complicated

(black-box systems), which may not be easily understood by physicians. (2) Most systems

only focus on disease diagnosis and do not consider disease diagnosis process. (3) Model

generation processes mostly rely on mathematical criterion, so the developed models may

not be clinically aligned and clinically actionable. (4) Most systems assume that one patient

only has one disease, while in reality one patient usually has multiple diseases at the same

time.
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Figure 1: Architecture of a Classic Data-Driven Computational Diagnostic System

1.2.2 Characteristics of Emergency Care

Each year, there are approximately 136 million visits to emergency departments (ED)

in the United States [39], accounting for 11% of all outpatient visits [74]. Nearly half of

intensive care unit admissions and 25% of surgical intensive care unit admissions are firstly

treated in ED [44]. The most surprising thing is that (excluding births) more patients are

admitted into hospital through ED than any other routes [61]. This means ED is often the

front door of hospital.

Emergency care research is defined as “research that focuses on the discovery and appli-

cation of time-critical diagnosis, decision-making and treatments that save lives, prevent or

reduce disability, and restore human health” [42]. Emergency care has several unique charac-

teristics [10]. For example, ED is the front door of the sickest and worst patients; emergency

medical care is the only medical care that emphasizes both immediacy and universality of

service; emergency medicine needs to interact with all medical departments in the hospital;

emergency physicians must be able to do rapid risk stratification and diagnosis. Briefly, three

key factors impacting outcomes of emergency care are: Severity (life-threatening illness) and

Time sensitivity (physicians must do diagnosis and treatment in minutes to hours). Lastly,

the emergency medicine environment is highly pressurized, immediate, emotional, and often

overburdened.
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1.2.3 The Demand for a Computational Sequential Diagnostic System in Emer-

gency Care

The common workflow of medical practice is evaluating a patient’s signs and symptoms,

making diagnosis, and providing treatments. After retrieving a patient’s presenting symp-

toms, medical history, and reviewing results from physical examinations, physicians often

create a list of suspected diagnoses (possible conditions or diseases that could be causing

the patient’s symptoms based on the known information) and order some lab tests to get

a final diagnosis. The accuracy of a final diagnosis depends on the physician’s experience,

the ability to consider the relevant possible diagnoses, and the environment in which the

diagnosis is made. And for the same disease, different physicians may choose different diag-

nostic strategies based on their own experience [95]. Some strategies are good, while some

strategies are bad. Physicians in ED must make correct diagnoses in a relatively short time,

often with only partial clinical information (e.g., no lab result returns in a short time).

A common situation in ED is that symptoms of patients may be caused by a disorder

in any of the several organ systems, which could lead to major irreversible organ injury in

a short time if the disorder is undiagnosed or improperly treated. For example, chest pain

(one of the most common principal reasons for visiting an ED) [43] may be due to heart

disease, pulmonary disease, emotional disease, neural disease, or gastrointestinal disease.

Differentiating these diseases and making the correct diagnosis for a patient requires ED

physicians to remember medical knowledge related to all organ systems and make the correct

diagnosis in a very short time. This situation has created a strong demand for computer-

aided diagnostic systems in ED [73].

1.3 Research Motivation and Aims

Since both knowledge-driven systems and data-driven systems have their own advantages,

could we combine them together to build a better system that have all the advantages? The

goals of this study are to combine the strengths of knowledge-driven systems and data-driven
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systems, consider the situation that a patient may have multiple diseases at the same time,

use expected misdiagnosis costs as the core criterion, consider both diagnostic accuracy and

diagnosis process, and establish a white-box computer-aided diagnostic system.

Two types of algorithms that consider both predictions results and the prediction process

are classification trees and reinforcement learning. The developed model of the classification

tree algorithm is very straightforward: the leaf nodes can be used to do prediction; and the

path from root node to leaf nodes can be used as the prediction process. The reinforce-

ment learning algorithm, on the other hand, has a reward prediction model that is very

complicated, but the model can generate a policy for each patient. The policy is similar to

the classification tree path. It contains features, the order of features, and the prediction

results. Because classification tree model is very straightforward, physicians can understand

the model easily. It is a white-box model. Therefore, I choose the classification tree al-

gorithm as the core algorithm in this study. I will compare our classification tree model’s

performance with the performance of one implementation of reinforcement learning.

There have been very few studies on how to find useful medical domain knowledge, how

to transform domain knowledge so that it can be used by machine learning algorithms, or

how to add domain knowledge into a pure data-driven computational diagnostic system so

that its diagnostic process can make medical sense. Our research aims to fill this void. The

goals of this dissertation are (1) to develop a framework that can integrate expert-defined

medical knowledge with disease patterns in EHR data for sequential diagnosis; and (2) to

develop an algorithm that generates medical classification trees, which recommend diagnostic

actions by taking into account clinical workflow, diagnostic accuracy, and misdiagnosis costs

simultaneously.

Furthermore, decision processes in the medical field are correct not only because they

can arrive at the correct final decisions, but also because the rules that lead to the final

decision are in clinical alignment. Therefore, this study evaluated models’ performance from

two angles: model prediction accuracy and model clinical alignment. The detailed definition

of clinical alignment for research Aim 1 can be found in hypothesis 1b in Section 4.2. The

detailed definition of clinical alignment for research Aim 2 can be found in hypothesis 2b in

Section 4.3.
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Research Aim 1. Integrate Expert-Defined Medical Knowledge with EHR Data

to Perform Disease Diagnoses

Combining medical knowledge with EHR data is important. The development of an

expert-defined medical diagnostic system usually requires a lot of resources. This type of

system also may not completely cover all possible complicated medical scenarios and may not

accurately capture all uncertain characteristics of medical diagnostic processes. Moreover,

retrieving and adding new rules to this type of system can also be tedious. Therefore, the

hope is that the knowledge base of an expert-defined diagnostic system can be automatically

updated by using routinely collected EHR. On the other hand, while pure machine-developed

models (by mining EHR) can get good diagnostic performance, they are limited by the quality

and quantity of the training data.

The task of combining medical knowledge with EHR itself is not trivial. Medical knowl-

edge is usually stored in many different formats, such as medical textbooks, peer-reviewed

medical articles (e.g., PubMed repository), and medical professional websites (e.g., upTo-

Date). It is not easy to compile all this knowledge and represent them in a coherent way

that can be easily integrated with medical data.

I developed a machine learning framework that can integrate expert-defined medical

knowledge with EHR data for disease diagnosis. In this dissertation, I only focus on the

medical knowledge that has been well represented in an expert-defined diagnostic system. I

used the QMR system as an example [57]. I tested the following four hypotheses:

• 1a: When EHR sample size is small, models trained using EHR data only are less accu-

rate than models trained using small sample size EHR data and medical knowledge.

• 1b: When EHR sample size is small, models trained using EHR data only are less

clinically aligning than models trained using small sample size EHR data and medical

knowledge.

• 1c: When EHR sample size is large, models trained using EHR data only perform simi-

larly to models trained using large sample size EHR data and medical knowledge.
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• 1d: When EHR sample size is large, models trained using EHR data only are less clinically

aligning than models trained using large sample size EHR data and medical knowledge.

Research Aim 2. Build a Sequential Diagnostic Model that Considers Diagnostic

Accuracy, Clinical Workflow, and Misdiagnosis Costs

After obtaining disease diagnostic models, the next step is to use these models to find

sequential steps to reach a final diagnosis. When using machine-learned models for clinical

decision support, the real-world needs are often multi-dimensional:

1. Because the diagnostic process is actually a sequential decision-making process, a diag-

nostic system needs to provide users with information about the best next action (e.g.,

clinical questions to be asked, lab test to be ordered).

2. The suggested diagnosis should have good accuracy.

3. Misdiagnosis costs should be considered in addition to general accuracy. Because not

all diseases are equally important, the diseases that have severe clinical outcomes (e.g.,

death) should be firstly ruled out.

4. The diagnostic action sequence must align with the existing clinical workflow. Because

only when physicians think the action sequence makes sense, they can use this system

and trust the diagnosis results.

In this dissertation, I developed a machine learning algorithm, Sequential Diagnosis

Generating Algorithm (SDG) that have relatively high accuracy and low diagnosis costs.

Real-world diagnostic costs involve many complicated scenarios, for example, cost in terms

of money, time, emotion, and so on. I ignored these costs in this dissertation and used

physician-defined diagnostic costs that focus more on patients’ health. I tested following

research hypotheses:

• 2a: The sequential diagnostic models generated using the SDG algorithm have a higher

diagnostic accuracy than the sequential diagnostic model generated using the ML-C4.5
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algorithm.

• 2b: The sequential diagnostic models generated using the SDG algorithm are more clin-

ically aligning than the sequential diagnostic model generated using the ML-C4.5 algo-

rithm.

• 2c: The sequential diagnostic models generated using the SDG algorithm have a higher

diagnostic accuracy than the policies developed by one implementation of deep Q learn-

ing algorithm.

• 2d: The sequential diagnostic models generated using the SDG algorithm are more clin-

ically aligning than the policies developed by one implementation of deep Q learning

algorithm.

• 2e: The sequential diagnostic models generated using the SDG algorithm uses less re-

sources than models generated by ML-C4.5 algorithm and one implementation of deep

Q learning algorithm.

1.4 Significance

This dissertation presents a framework that is designed to combine EHR and medi-

cal knowledge to make machine learning models that exhibit clinical alignment. Existing

literature has demonstrated the importance of a computational diagnostic system in help-

ing physicians reduce diagnostic error; it also shows that pure rule-based and pure machine

learning-based approaches each have their own limitations. I use machine learning algorithms

to combine EHR and medical knowledge to build a new type of computational diagnostic

system. The key innovations of this dissertation research are:
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1. A framework that can integrate expert-defined medical knowledge with disease patterns

in EHR data for disease diagnosis.

2. An algorithm that generates medical classification trees that recommend diagnostic ac-

tions by considering clinical workflow, diagnostic accuracy, and misdiagnosis costs simul-

taneously.

Although my dissertation focuses on algorithm development and its accuracy and clinical

alignment evaluation, if the system I propose works well, it could be applied to the following

medical practice scenarios in the future.

Scenario 1: Provide Next-Step Suggestions

When a physician reviews the information that a patient has entered into a computation

system, the system will apply the developed algorithm, some suggestions will pop up for

the physician that suggest what physical exams may be informative and what lab tests are

recommended to be ordered. Though my system may not be available for immediate use,

when the ambient healthcare computing is achieved, this issue will have been addressed.

Scenario 2: Conduct a Final Review of Physician Diagnostic Process and Diag-

nosis

After a physician completes his/her diagnostic process and writes down the diagnosis,

the system can compare the physician’s diagnostic process with that of the tree model. If

the physician forgets to order a lab test that is considered to be important by the sequen-

tial diagnostic model, the system can prompt a suggestion about this lab test. If the final

diagnosis list of the system and the physician is different, the system can provide a possible

diagnosis suggestion.

Scenario 3 : Help with Triage in the Emergency Department Waiting Room

My system can be installed on tablets. When a patient is sitting in the waiting room, a

triage nurse can give him/her a tablet. The patient can type chief complaint, medical history

in the system. The system will then ask questions in a physician-interview phase prompted

by the tree model. In this way, the system can help physicians do the interview job to save
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their time. We assume the patient is feeling well enough to enter information and is willing

to do so. We also assume the system can elicit information well from the patient.

Scenario 4: Be a Part of Medical Student Training Classroom

Teachers can show the sequential diagnosis tree model to new medical students, and

explain how they can use the tree to distinguish similar diseases. Because the sequential

diagnostic model is very straightforward, medical students can read and understand rules

easily.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 provides a literature

review of computational diagnostic systems, domain knowledge retrieval and integration.

Chapter 3 introduces the research methods. Chapter 4 focuses on experiment design and

results. Chapter 5 presents discussions, conclusions, contributions, and future work. The

abbreviations used in this dissertation are listed in table 1.
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Table 1: Abbreviations and Descriptions

Abbreviation Description Usage

Ci a CCS category Experiment for research

aims (see Section 4.2)

C(E) the expected misdiagnosis

costs of a population dataset

that includes multiple en-

counters

SDG algorithm (see Section

3.3)

C(Ex) the expected misdiagnosis

costs of one encounter given

clinical evidence Ex

SDG algorithm (see Section

3.3)

Cdi(Ex) the expected misdiagnosis

costs of one encounter re-

lated to di given clinical ev-

idence Ex

SDG algorithm (see Section

3.3)

cost(di → dj) the misdiagnosis costs of di-

agnosing an encounter with

disease di to have disease dj

Gorry and Barnett’s algo-

rithm (see Section 5.1.6)

di a disease SDG algorithm (see Section

3.3)

Die a random sample of EHR

training dataset for disease

di

Experiment for research

aims (see Section 4.2)

Diq all QMR-generated syn-

thetic samples

Experiment for research

aims (see Section 4.2)

E a set of clinical evidence for

a population dataset

SDG algorithm (see Section

3.3)
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Ex a set of clinical evidence for

one encounter x

SDG algorithm (see Section

3.3)

EDC expected diagnosis value Gorry and Barnett’s algo-

rithm (see Section 5.1.6)

fjx a clinical feature, 1 ≤ j ≤

number of candidate fea-

tures for one encounter x

SDG algorithm (see Section

3.3)

fj a clinical feature at the pop-

ulation level

SDG algorithm (see Section

3.3)

M(d̄i|di) the cost of mistakenly miss-

ing the diagnosis of a dis-

ease di when a patient has

the disease di

SDG algorithm (see Section

3.3)

M(di|d̄i) the cost of mistakenly di-

agnosing that a patient has

disease di when the patient

does not have the disease di

SDG algorithm (see Section

3.3)

Mie a Naive Bayes model gener-

ated with Die for disease di

Experiment for research

aims (see Section 4.2)

Miq a Naive Bayes model gener-

ated with Diq for disease di

Experiment for research

aims (see Section 4.2)

Mieqm a knowledge augmented

model for disease i using

EHR data Die, and Miq

with equivalent sample size

m

Experiment for research

aims (see Section 4.2)

P (di|Ex) a posterior probability of

having a disease di given an

encounter’s evidence Ex

SDG algorithm (see Section

3.3)
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P (d̄i|Ex) a posterior probability of

not having a disease di given

an encounter’s evidence

SDG algorithm (see Section

3.3)

Q expected cost of misdiagno-

sis

Gorry and Barnett’s algo-

rithm (see Section 5.1.6)

R(fj, E) the reduction in the ex-

pected misdiagnosis costs

given evidence at the popu-

lation level, when evidence

includes E and a new fea-

ture fj.

SDG algorithm (see Section

3.3)

R(fjx, Ex) the reduction in the ex-

pected misdiagnosis costs

given evidence at a pa-

tient level, when evidence

includes Ex and a new fea-

ture fj

SDG algorithm (see Section

3.3)

Sie features of a model Mie Experiment for research

aims (see Section 4.2)

Sieqk features of a model Mieqm Experiment for research

aims (see Section 4.2)

Subseti a subset of encounters that

belong to the CCS category

Ci

Experiment for research

aims (see Section 4.3)
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2.0 Literature Review

This chapter serves three purposes. Firstly, I compare the development of a compu-

tational sequential diagnostic system using a pure knowledge-driven strategy with using a

pure data-driven strategy. Secondly, I introduce the techniques of combination of incorpo-

rating domain knowledge in machine learning. Thirdly, I present classic classification tree

algorithms.

2.1 Computational Sequential Diagnostic System

Researchers have been exploring the potential of using computers to help physicians

make diagnosis since computers were first developed. Many studies [49, 98, 106, 69, 52, 56]

employ a similar strategy in their investigations of this possibility. A given set of clinical

findings (symptoms, signs, and laboratory tests) are obtained for all patients. The results

are used as the input of some statistical model; using this input, the model computes the

probability distribution for some candidate diseases. Based on the determined distribution,

the model suggests a list of final diagnoses. However, this strategy focuses on the inference

function of medical diagnosis, which is only one aspect of the disease diagnostic process.

In fact, there is another important aspect in the disease diagnostic process - determining

the proper sequence of tests to provide the information most needed to physicians, a process

called sequential diagnosis. Physicians refer to the list of possible diagnoses for a patient

as the ”differential diagnosis”, they refer to this disease diagnosis process as ”resolving the

differential diagnosis”.

Existing medical diagnostic systems for sequential diagnosis can be categorized into two

categories: clinical-knowledge-driven sequential diagnostic systems and data-driven sequen-

tial diagnostic systems.
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2.1.1 Clinical-Knowledge-Driven Sequential Diagnostic Systems

Clinical knowledge-driven systems strongly depend on pre-defined clinical knowledge

(e.g., the relationship between a disease and clinical findings). These systems often use score

or logic in reasoning. The usage of these systems may be restricted by their knowledge base;

they can only handle diseases and symptoms in the defined clinical areas. Extending and

updating this type of system usually requires a lot of resources. Knowledge-driven sequential

diagnostic systems can be divided into two types: rule-based systems and decision theoretic

systems.

2.1.1.1 Rule-Based Systems

Flowcharts

A flowchart is the simplest type of rule-based system. A flowchart only contains sequen-

tial diagnosis rules, these rules are derived from medical domain knowledge and sometimes

consider simple mathematical scores, for example, the Apgar Score [7]. The advantage of

flowcharts is that they are easy to understand and use. When compared to statistical mod-

els, which are sometimes overly complicated for physicians to use to conduct calculations

mentally, flowcharts also have advantages in application and teaching [27]. For example,

James Fries et al. [27] constructed a flowchart using 30 questions, with approximately 1,000

separate routes that divides 190 patients in different clinical manifestations into 35 diagnos-

tic categories. Diagnosis using this chart reached an accuracy of 96%. The advantage of this

system is its simplicity and the visibility of the logical operations. These make it easy to use

when teaching medical knowledge. The disadvantage is that it is not easy to generalize to

other diseases.

In general, while a flowchart is very straightforward and easy to use in practice, the appli-

cation of a flowchart is very limited because any unanticipated finding will render flowchart

unusable until it is extended. This fact limits its usefulness in real-world practice, where

unanticipated findings are the norm.
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Expert Systems

A more complicated type of clinical knowledge-driven system is the expert system. An

expert system generally consists of two components: a knowledge base and an inference

engine. The knowledge base usually stores many medical terms and rules, and the infer-

ence engine uses these terms and rules to make inferences. As an important sub-field of

artificial intelligence (AI), the development of expert systems involves the efforts of both AI

researchers and expert physicians. The AI researchers first elicit expert physicians’ detailed

insights into the basic nature of clinical problem-solving, and then translate these insights

into an intelligent system. These elicitation and translation processes are often dynamically

changing, so it is essential that the team leader knows both AI and medicine well.

Many expert systems have been successfully developed. For example, Adlassnig et al.

developed two expert systems, CADIAG-1 [4] and CADIAG-2. [3]. The CADIAG-1 uses

symbolic logic to represent the relationships among medical concepts, while the CADIAG-2

uses fuzzy set theory and fuzzy logic to represent these relationships.

Another example, the INTERNIST-1 system [76, 58], is a decision support tool for

general internal medicine. It was initially developed at the University of Pittsburgh in the

1970s. In 1985, its knowledge base was incorporated into a diagnostic system named, Quick

Medical Reference (QMR). Later, the QMR was converted into as a two-level belief-network

(Quick Medical Reference, Decision Theoretic, QMR-DT) [91] to represent the probabilistic

dependencies between diseases and clinical findings. It contains 534 adult diseases and 4040

clinical findings, with 40740 arcs pointing from diseases to clinical findings. In QMR-DT,

several assumptions were made to reduce the representational and computational complexity

of the belief network, including: (1) marginal independence of diseases: there is no arc

connecting diseases nodes; (2) conditional independence of clinical findings: there is no arc

among finding nodes; (3) binary diseases and findings: each finding or disease has two

possible statuses: present or absent; (4) causal independence: the effect of diseases on

the finding (present or absent) occurs independently. This final assumption simplifies the

calculation of the likelihoods of finding given multiple diseases. Findings are all modeled

as manifestations of diseases. The probabilities in the two-level belief network of QMR-

DT were defined based on national statistics data and knowledge in QMR. In particular, the
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prior probabilities of disease were derived based on the National Center for Health Statistics,

which were from approximately 192,000 inpatients discharged from short-stay non federal

hospitals in 1984. The conditional probabilities were elicited from experts who originally

developed INTERNIST/QMR by asking them to assign a frequency (1, 2, 3, 4, or, 5) to the

question “How often do patients with the disease have the finding?” Then, the assignments

were mapped to probabilities (1→0.025, 2→0.2, 3→0.5, 4→0.8, 5→0.985). When conducting

a diagnosis, simulation algorithms are used, including the likelihood-weighting approach and

self-important sampling.

2.1.1.2 Decision Theoretic Systems

The development of decision theoretic systems often follows the following steps: (1) an

expert defines the knowledge base, including utilities for individual items; and then (2) some

statistical method is used to calculate overall utilities for different settings and then choose

the setting with highest overall utility. For example, G. Anthony Gorry built a decision-

theoretic system [33, 30, 29, 31] consisting of three components: an information structure,

an inference function, and a test selection function.

The information structure contains rich domain knowledge, including the prior probabil-

ity of each disease, the conditional probability of signs and symptoms for each disease, the

cost of the lab test, and the cost of misdiagnosis. The inference function uses Bayes rules

and the most recent observation of a patient’s clinical features to update the probability

distribution of suspected diseases. The test selection function is designed to identify the

best test to be done from among a number of candidate tests and also “no test.” The test

selection function uses the probability distributions of diseases and the cost of possible mis-

diagnoses to determine the best diagnosis and the expected risk of misdiagnosis. For each of

the candidate tests, the test selection function uses the disease probability distribution, the

cost of the test, and the likelihood of possible test results to evaluate the potential usefulness

of the test.

Alan Rector and Eugene Ackerman [81], upon finding that Gorry’s method does not work

if none of the candidate tests can change the choice of the best diagnosis, proposed a new
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test selection function that chooses tests based on their cumulative effects on misdiagnosis

costs. Their experimental results showed that the new function requires little computation

and is robust against small errors in the knowledge base.

Mussi [63] proposed a similar but more complicated algorithm, which considers 10 as-

pects of each test: seriousness, urgency, probability, sensitivity, specificity, risk, cost, dis-

comfort, time required, and remarks about default and exceptional values. This algorithm

also considers the interaction among variables. For example, the ”urgency” feature affects

the importance weight of the ”time required” feature. With this domain knowledge, the

algorithm uses a Bayesian approach to suggest the next test.

In another study, Castro et al. [16] used an analytic hierarchy process strategy to de-

velop a sequential test selection method for analyzing the underlying cause of abdominal

pain. They split the work into three levels. The first level (goal) is to choose the optimal

test strategy. The second level consideration of four criteria: minimizing costs, minimiz-

ing discomfort, minimizing risk, and maximizing diagnostic ability. The third level involves

consideration of the diagnostic capability of four lab tests: abdominal CT, upper GI series,

abdominal ultrasound, and endoscopy. The relative weight of the four criteria and prob-

abilities related to the diagnostic accuracy of the four lab tests were estimated by domain

experts. The diagnostic capability of each test is calculated using [(test sensitivity)×(disease

frequency)+(test specificity)×(1-disease frequency)]. A score is calculated using all criteria

and is used for choosing which test should be done next. Once the result of the test is known,

the disease probability is updated through a Bayesian method.

In addition, Druzdzel et al. [67, 68, 66] developed a Bayesian network, of which the feature

set and structure are defined based on domain knowledge while the parameters (conditional

probabilities) are learned from real-world data. They also used a cross-entropy approach

to rank the importance of the unobserved features and named the value as the diagnostic

value. Based on the diagnostic value of different features, physicians can select the most

informative feature to continue their exploration. Druzdzel et al. further implemented this

approach in their Bayesian Network software, GeNie.
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2.1.2 Data-Driven Sequential Diagnostic Systems

In addition to using domain knowledge to (partially) define computational sequential

diagnostic systems, learning from real-world data is another way to approach development.

In this section, I will introduce three types of data-driven sequential diagnostic systems.

2.1.2.1 Bayesian Diagnostic Systems

Diagnosis in medicine often involves significant uncertainties. Many diagnostic sys-

tems [40, 37, 32, 54] uses Bayesian probability approach to manage these uncertainties.

The Bayesian approach often involves a prior probability distribution over the possible dis-

eases and many conditional probability distributions for each clinical feature given each

disease. With these probabilities and a patient’s clinical manifestations, diagnostic systems

can provide posterior probability distribution over the possible diseases that are derived from

Bayesian inferences. For example, the Pathfinder [38, 38] is an expert system for the diagno-

sis of lymph-node disease using over 30 features reflecting clinical, laboratory, immunological,

and molecular biological information, where expert knowledge of these features is encoded

in a belief network.

If a Bayesian diagnostic system can optimize the order in which it asks about manifes-

tations, then it is called sequential diagnostic system. For example, Gorry [32] developed

sequential diagnostic systems for acute renal failure. The Phase I system provides the order

of questions so that, at each time point, the expected can be minimized by getting the an-

swers of the identified question at that time, while the Phase II system uses expected utility

to guide question asking.

If the probability distributions of a system are learned from data, then it is data-driven.

For example, Mcsherry [54] proposed an algorithm to do test selection using a Naive Bayes

method. All diseases are assumed to be mutually exclusive and exhaustive, and the test

results are assumed to be conditionally independent given each disease. The measure of

attribute usefulness is called evidential power. The equation of the evidential power is

λ(A,Ht, ζ) =
∑n

i=1 p(A = vi|Ht)p(Ht|A = vi, ζ), where v1, v2, . . . , vn are the values of test
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A and ζ represents all other evidence provided by previous tests. The evidential power is

used to indicate the ability to increase the probability of the target hypothesis (i.e., the

probability of the correct diagnosis).

2.1.2.2 The Reinforcement Learning Method

Lastly, reinforcement learning (RL), a sub-field of machine learning, has been explored

as a method to solve sequential decision making problems, aiming to optimize sequences of

actions to reach the best long-term outcome. The main components of RL are Agent(s) and

Environment. In RL, an agent operates in an environment setting: it observes (possibly

partial) State of the environment; from a set of candidate actions, the agent chooses an

action; after that, the agent takes the chosen Action. After the agent takes an action,

the state of the environment changes, and the environment gives the agent an immediate

Reward (or penalty). When operating in the environment, the ultimate goal of the agent

is to find a sequence of actions that maximizes a cumulative reward.

Mathematically, a RL problem is often framed as a Markov decision process (MDP) [11].

A MDP includes five components (S, A, P, R, γ) [116]: S is a finite state space consisting

of possible states of an environment; A is a finite action space consisting of possible actions

that an agent can take; P is a Markovian transition function representing the probabilities

of transitioning from one state to another given a (state, action) pair; R is a reward function

defining the reward given (state, action) pair; γ is a discount factor related to long-term

reward. Additionally, a policy π is a function from S to A. It specifies the recommended

actions that the agent should take for every possible state in the environment.

The goal of RL is to find an optimal policy that maximizes cumulative discounted reward.

To find this policy, traditional RL algorithms define strong assumptions about transitional

probabilities among states. These are called model-based RL, where “model” refers to the

model of transitional probabilities. Unfortunately, the difficulty of defining the model of

transitional probabilities greatly reduces the ability of these model-based RL algorithms to

be applied to many real-world scenarios. However, for complicated scenarios where it is hard

to define transitional probabilities, model-free RL algorithms may be useful.
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Model-free RL algorithms, unlike their model-based counterparts, do not assume an

exact mathematical model of the transitional probabilities. As an example, one classic

(transitional probability) model-free RL, Q-learning algorithm [107], uses incremental

method to estimate action-values. Given a start state s0 and a policy π, the value function

provides the expected cumulative discounted reward: V π(s) = E[
∑t

≥0 γrt|s0 = s, π], where t

is the time step, γ is the discount factor, and rt is the reward at time t. This value function

indicates how good a state is. Then, what action should an agent take in a state s? The Q-

value function is the expected cumulative reward from taking action a given a start state s0

and a policy π: Qπ(s, a) = E[
∑

t≥0 γrt|s0 = s, a0 = a, π]. The optimal Q-value function

Q∗ is the maximum Q value achievable: Q∗(s, a) = maxπQ
π(s, a) = maxπE[

∑
t≥0 γrt|s0 =

s, a0 = a, π]. By Bellman’s theory, optimal Q-value function also satisfies: Q∗(s, a) =

Es′∼ϵ[r+ γ×maxa′Q
∗(s′, a′)|s, a]. Therefore, the, Q∗ function suggests the optimal policy

π∗, which takes the best action in any state as specified by Q∗. Briefly, the Q-learning

algorithm includes a sequence of episodes. In each episode, the agent observes the current

state, selects and performs the action with the highest reward, observes the subsequent state,

receives an immediate payoff, and then adjusts the Q values by incorporating the immediate

payoff. With these episodes, the Q values will be iteratively updating. The Q-learning

algorithm was shown to converge to the optimum action-values (with probability 1) when

the action-values are discrete and all actions are repeatedly sampled in all states [108]. The

Q-value function learning can involve trial and error to learn about the world (exploration)

and explicit selection of the best known action at a state (exploitation).

One popular variant of the Q-learning algorithm is deep Q learning (DQL), firstly de-

veloped by Mnih et al. at DeepMind Technologies in 2013 [60]. They used the deep neural

network approach to represent and iteratively learn the state-action Q value function. The

deep neural network is very powerful in representing distributions - it can represent any non-

linear function well. The model the DeepMind team used is a convolutional neural network:

the input is raw pixels and the output is a set of estimated future rewards, with one value

corresponding to an action. The team applied the DQL based RL to seven Atari 2600 games

and demonstrated a high performance on all games.

Researchers are increasingly interested in using DQL for automated medical diagnosis.
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Tang et al. [94] applied DQL in their symptom checking system, where the agent makes

disease diagnosis by querying information about symptoms. The system needs to make a

sequential decision about which symptoms to check, whether a diagnosis should be made

and what the diagnosis should be. The system includes a set of deep neural networks.

Each deep neural network is used to represent a non-linear state-action Q value function,

which estimates a set of Q-values for an input state (a set of clinical findings with one-hot

representation of positive, negative, unknown values) and all potential actions (all candidate

questions and all suspected diagnoses). The immediate reward after an action is defined

as: 1 if the action predicts the correct disease (in training data), -1 if the system asks one

question repeatedly, and 0 otherwise. The inquiry system terminates when the action makes

a diagnosis (regardless of whether it is correct or not).

Liao et al. [50] extended Tang’s work by proposing a hierarchical reinforcement learning

approach. This system represents the policy function in a two-level hierarchical way. The

high-level policy controls the trigger of a low-level policy, while the low-level policy consists of

a disease classifier and many symptom checkers. Each symptom checker controls symptom

queries related to a certain group of disease, which is like a specialist. Their collected

patient information is then used by the disease classifier, mimicking the scenario of a group

of specialists meeting and making a final diagnosis. The strategy of using multiple networks

with each representing one medical domain may be rational because of the complication of

the relationships between symptoms and actions/diagnosis. For example, a fever related to

respiratory disease is much different from a fever related to a digestive disorder.

In addition to the DQL RL approach for medical diagnosis, there is a LEAD system that

uses a rule-based RL to suggest proper diagnostic tests. This was developed by Fakih and

Das [21]. The performance criterion considered are the cost of testing, morbidity, mortality

and time, and the diagnostic ability of the tests. The test candidates and performance

criterion are input into the RL algorithm, and the optimized diagnostic strategies are learned.

The approach was evaluated on a diagnostic problem of solitary pulmonary nodule, and the

results showed that the RL algorithm improved testing strategies in diagnosis compared

with several fixed testing strategies. The LEAD system considers the medical diagnostic

tests scenarios more completely, but the disadvantage of this type of rule-based system is
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that it may need an exponential number of decision rules and thus may not be feasible when

the state involves a relatively large size of variables.

2.1.2.3 Other Data-driven Sequential Diagnostic Systems

There are a few other data-driven sequential diagnostic systems. I review two examples

here.

Case Similarity System

Rosati et al. [83] built an information system for ischemic heart diseases. For ischemic

heart disease patients, the researchers collected a defined set of data, which included history

of present illness, medical history, review of forms, physical exams, lab test results, treatment

information, and follow-up information. This information system works as follows: When a

new patient comes in, his/her information is entered into the system. Based on this infor-

mation, the system conducts a query on its database, which returns with a specific subgroup

of patients that are similar to this new patient. In an example, the off-line report includes

three sections: the new patient’s information, the clinical descriptions of the subgroup, and

the prognosis of the subgroup. Based on this report, physicians can continue the diagnostic

process by prescribing further laboratory tests.

Optimal Coordinate System

Kulikowski [46] developed a method of class featuring information compression algorithm

to conduct sequential diagnosis for hyperthyroidism. All diagnosis-related features were split

into three groups: symptoms, physical exams, and lab tests. Instead of considering features

one by one for diagnosis, at each step, a new group of features is combined with the previous

ones, and the entire feature set is used to find the best set of diagnostic features. For

each class, an optimal coordinate system is found. Most intraclass variation is concentrated

along a few of these optimal coordinates; by discarding the less important coordinates, the

number of tests is decreased while minimal error is achieved. For a new patient, the patient’s

information is firstly converted to a test vector. Then, the squared cosine of the angle between

the test vector with its projection onto each subclass is calculated to be a measure of the test
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vector’s closeness to each subclass. By setting the threshold on the difference, the researcher

can classify the test case into three categories at each step: 1) he does not have any diseases;

2) he has one of the diseases; 3) more information is needed to get a reliable diagnosis. The

sequence of calculation can be summarized as follows:

1) form test case vector

2) calculate the square cosine values between test case and each class

3) obtain the difference, difference = value(class A) - value(class B)

4) decide on classification

4.1)if difference is greater than threshold 1, then test case belongs to class A

4.2)if difference is less than threshold 2, then test case belongs to class B

4.3)if difference is bigger than threshold 2 and less than threshold 1, then move to next

stage, where a new variable is added in.

The researcher obtained the sequential order by splitting features into groups, and adding

groups into diagnosis by order. The researcher then decreased the number of tests by deleting

unimportant coordinates.

2.2 Incorporating Domain Knowledge into Machine Learning

Domain knowledge has not gained enough attention in this era of big data and ma-

chine learning, where most modeling processes are data-driven. When developing models,

researchers often rely heavily on training data and ignore most of the domain knowledge.

The main reasons for this are: (1) researchers who develop machine learning algorithms

usually create general purpose algorithms rather than some algorithms in a specific domain;

(2) domain knowledge may be represented in many ways; there is no one standard format to

represent it; and (3) domain experts usually cannot understand complicated machine learn-

ing algorithms, and thus do not have the skills to add their domain knowledge into machine

learning.

Unfortunately, when solving real-world problems, only relying on training data can be

problematic. Firstly, it is rare that the training data we used can capture all the patterns in
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a whole population. Another potential issue is over-fitting. You cannot build a model that

fits the training data too well: the developed model will be too specific to the examples in

the training data, which means it would work poorly on real life data samples (i.e., lack of

generalization).

Combining domain knowledge and training data can be valuable in that machine learning

algorithms can discover patterns that are too subtle for humans to detect, and domain

knowledge can contain information about a specific domain that is not well represented

in the training data. thereby addressing the above issues. There are at least four ways

for researchers to incorporate domain knowledge into machine learning: (1) use domain

knowledge to prepare training data; (2) use domain knowledge to initiate the hypothesis;

(3) use domain knowledge to change the search objective; and (4) use domain knowledge to

augment searches. I will review each of these approaches in this section.

2.2.1 Using Domain Knowledge to Prepare Training Data

Using Domain Knowledge to Clean and Transform Training Data

Domain knowledge can provide important information to remove redundant features, two

of the main reasons for poor performance in machine learning. If we do not have sufficient

domain knowledge, we do not know which features are important for the target variable; this

means the model then needs to have access to and then mine a large size of representative

training data [100].

Moreover, domain knowledge can be used to transform original features into new features

or to find must-link features (features that must be considered at the same time) and cannot-

link features (features that must not be considered at the same time). For example, Joao

Vieira and Claudia Antunes [103] proposed an ontology-driven classification tree learning

algorithm, where each feature in the training data was put into a related domain ontology,

and each level of abstraction for each feature was returned and combined into the training

data set. These researchers further used domain knowledge to create new features, including

abstraction features and feature combinations. With these ontology knowledge-augmented

features, machine learning was able to generate smaller and more accurate trees.
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Using Domain Knowledge to Generate Virtual Samples

Prior domain knowledge is also useful as it can be used to generate new training sam-

ples (i.e., virtual samples), these virtual samples can improve model performance when the

sample size is limited, or the training data is unbalanced. Virtual samples can be newly

generated [75] or be transformed from original data [65]. For example, Partha Niyogi et

al. [65] incorporated prior information into neural networks and used this approach to gener-

ate virtual examples, which is mathematically equivalent to adding domain knowledge as a

regularizer. Murali Ravuri et al. [80] used an expert system as a generative model to simulate

data for modeling. They found that the developed model not only preserved the original

properties of the expert system, but also added new properties and addressed some limi-

tations. They also showed that simulated data can be combined with real-world electronic

health record data.

The major drawback of adding virtual samples is the increase in computational cost.

However, Scholkopf et al. [86] have proposed a virtual support vectors method that can

preserve the advantage of virtual samples without increasing the computational cost. In

their study, the support vector machine algorithm trained models solely on support vectors,

and the training process was split into three steps: (1) using the training data to get the

support vector set; (2) generating virtual samples and obtaining virtual support vectors by

applying invariance transformations to support vectors; and (3) using the enlarged set of

support vectors to obtain another support vector machine model.

Using domain knowledge to generate virtual samples is an indirect way of incorporating

the knowledge. This solution can be applied universally for any machine learning method.

2.2.2 Using Domain Knowledge to Restrict the Hypothesis Space

Another way of using domain knowledge is to restrict the hypothesis space so that all

candidate hypotheses can align well with the existing domain knowledge. For example,

Langseth et al. [47] developed an Object-Oriented Bayesian Network method that defines

domain knowledge-based hierarchical relationships. The properties of the super-class are

inherited by the subclasses. This facilitates the structural learning of a Bayesian Network
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structure.

With domain knowledge, researchers can add some restrictions to the search space or

the hypothesis space. For example, Yoon Suk-Chung et al. [115] proposed a semantic query

optimization method that transforms a query into an equivalent form, which can be evaluated

quickly in the narrowed search space. For example, suppose we have the following domain

knowledge: “all ships whose dead weight is greater than 700 tons travel at a speed greater

than 60 mph”, and “ships whose dead weight are greater than 700 tons are supertankers”.

According to the domain knowledge, when querying about the ship that fulfills the dead

weight and speed requirements (greater than 700 tons and speed greater than 60 mph), only

ships that are supertankers should be considered, and the dead weight and speed can be

ignored.

Using domain knowledge to pre-define a hypothesis space may provide a better starting

point for machine learning, and thus lead to a faster convergence speed and lower computa-

tion cost. For example, Shavlik and Towell et al. [88] proposed a Knowledge-Based Artificial

Neural Network (KBANN) method. Firstly, they used domain knowledge to construct an

initial network. Then, they used training samples to adjust the weights of the initial network

using a back propagation algorithm. With a better starting point (the knowledge-defined

initial network), the KBANN developed a final model that achieved a better generalization

accuracy. In another example, Mirchevska et al. [59] proposed a domain knowledge-based

method to identify people who have experienced falls. A domain expert firstly defined an

initial classifier that contained some classification rules. Then, the researchers used training

data to refine these rules. Their experimental results showed that the refined classifier was

more reliable and robust than a machine-learned classifier that was developed using limited

samples.

2.2.3 Using Domain Knowledge to Refine the Search Objective or Verify Search

Results

Domain knowledge can be used to refine the search objective or verify the search results.

Most machine learning algorithms typically transform a learning task into an optimization
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problem, which mathematically defines an objective function. The goal of learning is then

to find a set of parameters that can minimize the objective function. The machine learning

process uses training data to calculate empirical risk and uses algorithms (e.g., gradient

descent) to reach the optimal point. In this type of optimization setting, when researchers

want to add domain knowledge, they can either add an additional regularizer to the objective

function or add a set of additional constraint functions.

Adding domain knowledge in the form of a regularizer or additional constraints is not

trivial. What should be added heavily depends on the research design. Overall, there are

two types of designs: (1) modifying the objectives or searching scores to fit both the domain

knowledge and the training data; and (2) using domain knowledge to verify the search result.

2.2.3.1 Modifying the Objectives or Searching Scores to Fit both the Domain

Knowledge and the Training Data

Researchers have explored three main ways to modify objectives or searching scores to

fit both the domain knowledge and the training data: setting constraints, assigning weights

to samples, and incorporating costs.

Modifying the Objectives or Searching Scores by Setting Constraints

For machine learning algorithms that use objective functions, domain knowledge can be

transformed into additional constraints in these functions. For example, Abu-Mostafa [2]

defined Hints to represent the penalty of violating the domain knowledge, hints included:

invariance hint, monotonicity hint, example hint, approximation hint, consistency hint, and

catalytic hint. Each hint has its own calculating function. If the training data violate the

Hints, then the corresponding risk Rknowledge will be included in the objective function. In

another example, Muralidhar et al. [62] proposed a domain adapted neural networks (DANN)

to combine domain knowledge with deep neural networks. They incorporated knowledge

about monotonicity constraints and approximation constraints into the loss function of deep

neural networks. The results showed that the domain-aware DANN model significantly

outperformed the domain-agnostic neural network model in sparse and noisy settings.
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Instead of using objective functions, many searching algorithms use scores. For these

algorithms, domain knowledge can be added into the searching scores. For example, Iqbal

et al. [5] proposed an approach to incorporate a feature importance score into classification

tree learning. Importance score is defined as the expected probability of the class variable

given the feature. The searching score is a weighted sum of the importance score and

the information gain score used in classic classification tree algorithms. Using this new

score, their searching algorithm produced better trees than traditional classification tree

learning algorithm. Tran et al. [99] provided another example. Their method modified

the gain score of a candidate feature of the classification tree C4.5 method by multiplying

extra weight based on information from MEDLINE, the National Library of Medicine’s

bibliographic database containing over 27 million journal articles on the life sciences with

a concentration on biomedicine. A feature’s external weight was calculated based on the

number of references in MEDLINE. The authors hypothesized that the larger the number

of documents in MEDLINE, that mentioned the feature, the greater its external weight.

Modifying the Objectives or Searching Scores by Assigning Weights to Samples

Learning with weighted samples is another commonly used method for incorporating

domain knowledge into machine learning algorithms. For example, Wu et al. [113] developed

a Weighted Margin Support Vector Machine. This algorithm firstly used prior knowledge

to generate virtual training data, and then used a hyper-parameter to control the relative

importance between virtual training data and other training data. In another example, Tay

et al. [15] developed a new SVM algorithm to consider the importance of timeliness in time-

series problems, which assigned higher weights to the most recent training samples and lower

weights to the older training samples.

Incorporating Costs into Objectives or Scores

Many classification tasks have different costs for misclassification errors, which is an

important aspect to consider. A cost-sensitive classification algorithm incorporates the in-

formation about costs into machine learning. For example, Vo et al. [105] used deep neural

network models to do sentiment analysis in natural language processing. They realized that

31



the loss functions in traditional approaches did not reflect the degree of errors of sentiment

misclassification very well. To solve this problem, they developed a new penalty matrix,

which considered the different levels of importance of misclassification errors. This matrix

provided a better result, compared to the classical cross entropy loss function.

2.2.3.2 Using Domain Knowledge to Verify Search Results

Finally, domain knowledge can be used to guide the searching process through verifying

search results. For example, Russell et al. [84] proposed a knowledge-guided autonomous

learning algorithm. This algorithm first generates all candidate hypotheses in terms of

primitive language that are then tested for consistency with prior knowledge.

2.2.4 Using Domain Knowledge to Augment a Search

Using domain knowledge to augment a search is similar to using domain knowledge

to alter a search objective. The difference is that using domain knowledge to augment a

search produces new hypothesis candidates in the process of searching. Pazzani et al. [72]

proposed the FOCL algorithm as an extension of the FOIL system. The FOIL system

generates hypotheses purely from training data. FOCL adds in the use of domain knowledge

to generate additional specifications. A limited amount of research has been done in this

category, as it is difficult to adjust both the process of convergence and the hypothesis space

at the same time.

2.3 Classification Tree Algorithm

2.3.1 Why Choose a Classification Tree Algorithm for Medical Diagnosis

A classification tree model starts from a root node and partitions data recursively into

subgroups. For medical diagnostic problems, we choose classification tree structures because

they are:
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1. Interpretable: In classification tree models, the path from root to leaf node is very similar

to reasoning process physicians use to conduct differential diagnosis. With straightforward

structures, the tree models can be easily understood by potential users (e.g., clinicians).

Blackbox models (e.g., deep neural network models) usually have complicated linear and

nonlinear transformations that are much less interpretable. Therefore, we will not consider

deep reinforcement learning algorithms in our study.

2. Actionable: Because classification tree model is similar to physician’s reasoning process

and is easy to be understood by physicians, the features learned in classification tree model

can be used by physicians directly when diagnosing new patients. This property does not

exist in other interpretable models, such as Bayesian network models.

2.3.2 Classification Tree Algorithm Introduction

One of the most popular data-driven approaches is the the classification tree algorithm [8].

A classification tree algorithm generates a sequence of tests, these may can be clinical ques-

tions or laboratory tests. For each test, if its value is numeric, then the algorithm finds a

cut-off threshold to transform the test value to be categorical. Once the value is categorical,

then this test can split patients into two or more subgroups. The classification tree model is

trained in this way:

1. Based on the values of some searching score, a feature is chosen as the next node (next

test). The first node is the root node.

2. Based on the values of the selected node, the training data is divided into subgroups.

Here, there are many variants. If the selected node is numeric, it is transformed into

a categorical variable and the threshold is often data-driven. If the selected node is

categorical but has a lot of values, these values are grouped so that the number of

categories will be much smaller.

3. In each subgroup, step 1 and step 2 are repeated, until the subgroup only contains one

category, or reaches some human-defined threshold, such as the maximum tree depth.

The leaf nodes of a classification tree can be used to do prediction, the majority category

of the node is the predicted value.
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For a patient, using a classification tree for diagnosis follows these steps:

1. Starting with the root node, the value of the patient is compared with the node values,

and the patient is moved to one of the subgroups.

2. Step 1 is repeated until one of the leaf nodes is reached

3. The majority class in that leaf node is the diagnosis for the patient.

2.3.3 Multi-label Classification Tasks and Solving Strategies

An entity may have multiple labels in real life. For example, a patient may have more

than one disease; a gene may have more than one function; a document may cover more than

one topic. This creates the need for research methods to cope with multi-label problems.

Multi-label learning aims to predict labels of test cases by learning from training cases

that are associated with a set of labels simultaneously. There are three general strategies

for multi-label classification tasks: data transformation, ensembles of classifiers, and method

adaptation. I first introduce these three general strategies for handling multi-label classifi-

cation tasks, and then I introduce several multi-label classification tree algorithms.

2.3.3.1 Strategies for Multi-label Classification Tasks

Data Transformation Strategy

The idea of data transformation is to generate datasets that can be processed using

binary or multi-class classifiers. Later, the output of those classifiers is back-transformed to

obtain the multi-label diagnosis. Some common methods include:

• Applying binarization techniques [28]: this method trains k classifiers, one for each label,

taking the instances, in which the labels appear as positive and all others as negative.

• Selecting a single label [12]: when a sample is associated with multiple labels, this method

chooses one label randomly or based on some score methods.

• Ignoring multi-label instances [12]: this method dismisses all the samples associated with

more than one label. This transformation generates a new dataset that has only one label

per instance.
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• Unfolding samples with multiple labels [101]: this method unfolds each sample into as

many samples as labels it contains, cloning the input features and assigning to each

sample one of the labels.

• Using the label set as a class identifier [12]: this method uses each different combination

of labels as the identifier of a new class. The new dataset has the same number of

samples, but only one class per instance.

Classifier Ensemble Strategy

Classifier ensemble is a widespread technique to improve the performance obtained by

individual classifiers. An ensemble is compounded by a set of classifiers, of which the outputs

are combined in a weighted or unweighted averaging way. The theory is that a group of weak

classifiers that have different biases may perform better than a strong classifier. Ensembles of

binary classifiers have been used to solve many multi-class classification tasks, either by one-

vs-all or one-vs-one decompositions. Therefore, it is not surprising that ensemble techniques

are also applied to many multi-label problems[102, 89, 82].

Method Adaptation Strategy

The method adaptation approach aims to adapt existing classification algorithms so

that they can deal with multi-label data, producing several outputs instead of only one. The

adaptation can be quite simple or complex, depending on the nature of the original method.

I will provide some examples in the next section.

2.3.3.2 Some Multi-label Classification Tree Algorithms

In this section, I introduce some multi-label classification tree algorithms. A few of them

used both the data transformation strategy and the classifier ensemble strategy.

1. Multi-label Classification Tree Algorithms Using both Data Transformation

and Classifier Ensembles Strategies

Freund and Mason [25] proposed an alternating classification tree algorithm, which is a

generalization of classification trees, voted classification trees, and voted decision stumps. It

provides an alternative to techniques such as boosting to improve the diagnostic performance

of tree-based classifiers.
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Francesco De Comite et al. [20] combined the Adaboost method and alternating classi-

fication tree ideas to propose an ADTBoost.MH algorithm. The samples are decomposed

following the one-vs-all strategy. The samples are re-weighted at each boosting step: sam-

ples that were misclassified by the hypothesis in the previous round have a higher weight

in the current round. Since ADTBoost.MH trains many models and each of them is an

alternating classification tree, it transforms data using the binarization technique. In this

way, it combines the data transformation strategy and the classifier ensemble strategy.

Wu [112] proposed an ML-TREE algorithm. This algorithm treats a tree as a hierarchy of

data. At each node, it uses many one-vs-all SVM classifiers to recursively partition data into

subgroups. For each leaf node, the algorithm defines a predictive label vector to represent

the multi-label diagnosis. The obtained model can be considered an ensemble of multiple

SVM classifiers.

2. Multi-label Classification Tree Algorithms Using the Method Adaptation

Strategy

Clare et al. [17] proposed a multi-label C4.5 (ML-C4.5) algorithm. The new algorithm is

founded on the well-known C4.5 algorithm, appropriately modified to deal with multi-label

problems. The two key points of the adaptation are:

• The leaves of the tree contain samples that are associated with multiple labels, instead

of only one label.

• The original entropy measure is adjusted to take into consideration the possibility that

the instance is not a member of a certain label. The original entropy measure of the C4.5

algorithm is entropy(S) = −
∑N

i=1 p(ci)logp(ci). where p(ci) is the probability (relative

frequency) of class ci in the data set. The updated entropy measure in the ML-C4.5

algorithm is −
∑N

i=1(p(ci)logp(ci)+ q(ci)logq(ci)). where p(ci) is the probability (relative

frequency) of class ci; q(ci)=1-p(ci) is the probability of not being a member of class ci.

If a sample has multiple labels, then it will be counted several times when calculating a

new entropy.

AI-Otaibi et al. [6] proposed a LaCova algorithm that uses the adaptation strategy. This
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algorithm considers the correlations among labels. The key idea is that the splitting criterion

is based on the label covariance matrix at each node, which allows the algorithm to choose

between a horizontal split (branching on a feature) and a vertical split (separating the labels).
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3.0 Methodology

This chapter includes five sections. The first section describes the medical knowledge that

I applied to EHR machine learning in my studies. I used three types of domain knowledge.

The first type of knowledge is represented in a computational medical expert system. This

system contains a rich set of diseases, their clinical features, and their correlations. I used

this system to generate synthetic data that I could use in my studies. The second type of

knowledge that I used in my studies is misdiagnosis costs defined by human experts. Using

this knowledge, I set up a criterion of automatically identifying the next diagnostic action

that can reduce estimated expected diagnosis costs when generating a sequential diagnostic

model. The third knowledge that I included in the modeling process is the order of features in

a regular clinical workflow. Based on a physician expert’s knowledge, I classified the features

into four phases: triage nurse phase, physician interview phase, physical exam phase, and

lab test phase. Since this order aligns well with the regular clinical workflow, this order

was considered by my algorithm when restricting the diagnostic actions (i.e., nodes) in the

sequential diagnostic model.

The second section describes how I combine medical knowledge and EHR data to develop

Naive Bayes models that can conduct differential diagnosis. The third section introduces how

my sequential diagnosis generating algorithm (SDG) generates sequential diagnosis recom-

mendations by considering misdiagnosis costs and clinical workflow. The fourth section

introduces how multi-label C4.5 (ML-C4.5) algorithm can be used in sequential diagnostic

modeling. This algorithm was used as first approach for comparison. This section then

presents a comparison of the performance of a model developed by ML-C4.5 with that of

a model learned by the SDG algorithm. Finally, the fifth section introduces how Deep Q

learning, one implementation of classic deep reinforcement learning algorithm, can be used

find the best diagnostic strategies. This algorithm was used as the second approach for

comparison.
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3.1 Medical Domain Knowledge Used in this Study

A medical diagnosis problem can be formulated as a sequential decision-making task.

After a new patient comes to a hospital, clinicians need to make a sequence of diagnostic

actions, including asking the patients many questions, conducting many physical exams,

and ordering some lab tests. This sequence of diagnostic actions often directly determines

whether a diagnosis will be correctly made, how soon it can be made, and how much medical

resource will be utilized.

When I first built a sequential diagnostic model (in the format of a classification tree)

using the classic ID3 classification tree algorithm, I encountered three problems. (1) a

multi-label problem: A patient with multiple heart diseases will have multiple diagno-

sis labels; the classic ID3 classification tree algorithm cannot handle this type of training

data; (2) limited training data: when the sample size of training data is very limited,

the model’s performance is not good; (3) lack of clinical significance and being clin-

ically unactionable: the node searching criteria only considers information gain or some

mathematical score; thus, it cannot guarantee that the generated tree models are in clinical

alignment. For example, a diagnostic tree may suggest conducting a laboratory test prior

to a triage nurse question, simply because laboratory test results are more discriminating

than some symptoms. Unfortunately, given that this type of order does not align well with

regular clinical workflow, it is unlikely that physicians will follow this diagnostic order in

their real-world clinical practice.

To solve the first problem, I first built eight Naive Bayes models, one for each disease

category, and then combined them into a diagnostic tree using the proposed algorithm. To

resolve the last three problems, I combine medical domain knowledge with EHRs for model

development.

3.1.1 The QMR System and its Simulation Data

The first knowledge that I used in my study is the medical knowledge stored in the

Quick Medical Reference (QMR) [57], which was developed by Dr. Randolph A. Miller
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and colleagues at the University of Pittsburgh in 1980s. The QMR helps internists conduct

clinical diagnoses for adults by providing access to medical knowledge including diseases and

findings about them (e.g., signs, symptoms, lab results, demographic information, and past

medical history information), as well as the relationships among them. When there is a

relationship between a disease and a finding, then there is a set of representations describing

this relationship. Briefly, the strength of the relationship between a disease and a finding is

parameterized by two variables: evoking strength (0-5 scale) and frequency (1-5 scale). These

values are manually assigned based on physicians’ judgement and the medical literature. An

evoking strength between finding A and disease B represents the likelihood: “if finding A

appears, how likely this patient has disease B.” The frequency variable is about “if one

patient has disease B, how often finding A appears.” In addition, there is another variable

“import” for each finding, which is not related to disease. This variable represents the global

importance of each finding. For example, “shortness of breath” is more important (higher

import score) than the finding “feel cold.”

Different from QMR knowledge base, EHR data are in a format of structured variables

or free-text notes that contains the majority of clinical information. After using natural lan-

guage processing to extract clinical features and combining them with structured variables,

we often obtain research data as a matrix. In the matrix, each row is one patient encounter;

each column is one clinical feature; and the value in each cell is the value of this feature for

this record.

Because the format of QMR domain knowledge and EHR data is so different, directly

combining the knowledge base in QMR with EHR data is difficult. An alternative is to

transform the knowledge provided in the QMR into synthetic records that still contain rich

medical knowledge. The approach of simulating cases from the QMR knowledge base has

been explored by Parker et al. [71]. Briefly, the steps reported for this approach are as

follows: (1) The simulator chooses a disease; (2) For a patient having this disease, the

simulator samples the patient’s demographics variables with probabilities proportional to

the values of associated frequency variables; (3) The simulator then samples clinical findings

(predisposing variables) in a decreasing order of the value of the frequency variable. Each

clinical finding is randomly chosen to be present or absent. If a finding is chosen to be
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present, then findings that are not chosen but are impossible to manifest are removed from

the candidate list (e.g., if the patient’s gender is male, then this patient cannot be pregnant).

If a finding is chosen to be present, its high co-occurrent findings are then prioritized to have

a high possibility of being present.(4) The simulation ends when all findings in the knowledge

base have been considered. Murali Ravuri et al. [80] have found that QMR simulated data

can improve the performance of deep learning models, indicating that QMR simulated data

contains valuable quantitative relationships between diseases and clinical findings.

In my study, I used the synthetic data to calculate useful conditional probabilities and

then applied a prior equivalent sample size method to combine these probabilities with

probabilities learned from EHR data (Section 3.2). My hypothesis is that using the medical

domain knowledge found in the QMR system would be able to improve model performance

when the sample size is limited.

3.1.2 Misdiagnosis Costs

When using EHR data and a machine learning approach to develop diagnostic models,

one fact is often ignored: diseases have different levels of clinical severity. For example, acute

myocardial infarction is more severe than chronic high blood pressure. Emergency depart-

ment physicians usually need to make diagnoses in a short time with limited information,

and misdiagnosis errors have various consequences of varying impact. For example, if one

patient has a severe acute disease and the physician does not discover this, the consequences

can be very serious - valuable time may be wasted and the patient might even die as a result

of delay in proper treatment. If a patient has a mild disease and the physician does not

discover this, the consequences will be less serious - medical resources may be wasted, but a

patient’s treatment may not be delayed that much. In a third scenario, if a patient does not

have a severe disease but is diagnosed by a doctor as having the disease, the consequences

will also be less serious - medical resources may be wasted and patients feel a lot of stress.

If a patient does not have a disease but is diagnosed by a physician as having a mild disease,

the consequences will be the least serious - not so many medical resources will be wasted

and the patient will not have so much stress.
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It is important to incorporate different impacts of clinical mistakes into diagnostic mod-

eling. However, defining a misdiagnosis costs matrix in a multi-label diagnosis scenario is

difficult. Assuming that a patient can have or not have any of 8 diseases, then there are

28 = 256 types of disease combinations. For each combination, there are 255 types of mis-

diagnoses, the total number of misdiagnoses is 256× 255 = 65280. Therefore, I assume that

expected misdiagnosis costs can be additive as the sum of the expected misdiagnosis costs

of each disease category. With this assumption, I only need to consider two types of misdi-

agnosis costs in each disease category: (1) the misdiagnosis cost when the disease does exist

but is ignored; (2) the misdiagnosis cost when the disease doesn’t exist and but is mistakenly

diagnosed to exist. A human expert only needs to estimate 8 × 2 = 16 misdiagnosis costs,

then I can calculate any costs for any mistakes with the additive approach.

I elicited information about misdiagnosis costs from an emergency department physician,

and these are listed in the Results Chapter. These expected misdiagnosis costs range from

1 to 10, based on the clinician’s domain knowledge. By considering misdiagnosis costs, the

model development process can give more weight to severe diseases misdiagnosis than to

mild diseases misdiagnosis. The information about misdiagnosis costs was integrated with

modeling using my algorithm, which is described in Section 3.3.

3.1.3 Knowledge of Clinical Workflow

When physicians perform disease diagnosis, they generally collect information in the

following order: first, the triage nurse collects chief complaint information and demographic

information; then a physician conducts an interview and asks some more detailed questions;

then the physician does a physical exam; and at last, the physician orders some lab tests.

Based on the information collected above, the doctor then makes a final diagnosis.

An expert emergency medicine doctor provided information that led us to group the

features in our data set into four sources: the triage nurse source (phase 1), the physician

interview source (phase 2), the physical exam source (phase 3) and the lab test source (phase

4).

When developing a sequential diagnosis tree, phase 1 features are searched first, followed
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by phase 2, phase 3, and finally phase 4. Using this approach, the diagnostic activities (nodes

in diagnosis tree) will align well with the existing clinical workflow.

I elicited this knowledge from an emergency department physician who has split all the

features into those four phases. If a feature can appear in more than one phase, then it is

included in all those phases. The knowledge about clinical workflow can be integrated into

modeling using my algorithm that is described in Section 3.3.

3.2 A Bayesian Approach to Combine QMR Knowledge with EHR Data

In this section, I describe how medical knowledge in QMR and EHR data can be combined

to develop disease diagnostic models that may perform better than models developed using

pure EHR data. I developed a Bayesian approach that can use both medical knowledge

and EHR data to develop disease diagnostic models. To provide a complete picture, I first

describe the general process of developing a Naive Bayes model for disease diagnosis. Then

I point out where and how I add QMR knowledge.

3.2.1 General Process of Developing a Disease Diagnostic Model

In my studies, the disease diagnostic models are in the format of a Bayesian network.

Briefly, a Bayesian network is a type of probabilistic graphic model. A directed acyclic graph

represents the correlation among variables (i.e., nodes in the graph). When there is an arc

pointing from Node A to Node B, we say that Node A is one of the parents of Node B. There

are numeric values (ranging from 0 to 1) associated with the nodes in the graph, which

represent prob(child value | parents’ value). I chose Bayesian network models because they

can provide posterior probabilities of a disease given clinical findings and the probability

estimation can be done with any set of clinical findings. When some clinical findings are not

observed, a Bayesian network model can still make a probability estimation by averaging out

all potential values of unknown variables. These important characteristics allow this type

of model to deal with the uncertainty in the medical diagnostic process very well. Other
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models, such as deep neural networks, cannot operate with missing value scenarios.

The model development process involved both feature selection and model building [114].

To develop a model for a disease A, the main steps include: (1) labeling each training sample

as “disease A” or “not disease A.” (2) Information gain measures expected entropy reduc-

tion and is a common measure in machine learning for measuring a feature’s discriminative

ability [35]. We sort candidate findings in descending order of the information gain score for

disease A. (3) using a greedy forward method to add the feature into the feature set of the

model - in each iteration, one feature is added into the feature set, and the corresponding

Bayesian networks’ average AUROC is calculated in five-fold cross validation experiments.

If the average AUROC increases, then the feature is included in the feature set. Otherwise,

the feature is not added to the feature set. The greedy forward process stops when no new

feature can increase the average AUROC. (4) using the final feature set to develop a Bayesian

network model for disease diagnosis.

3.2.2 Using A Bayesian Approach to Add QMR knowledge into EHR Modeling

Firstly, for each disease, I used all provided QMR simulation data and all clinical findings

to develop a Naive Bayes model and assumed that the developed models can represent the

probability relationships between clinical findings and the disease. I call these models QMR

models. Then, I used a Bayesian approach to add the knowledge in these QMR models into

the EHR modeling process. Using EHR data to develop disease diagnostic models follows

the four steps in the last section. In steps 3 and 4, I added QMR-model knowledge when

estimating conditional probabilities for a finding given a disease diagnosis.

Prior Equivalent Sample Size

For a binary finding X and a binary disease Y , this is how we estimate P (X|Y ). If we

model the prior probability using a beta distribution and model the probability of the data

using a binomial likelihood, the estimate we obtain is as follows:

P̂ (X = present|Y = present) =
n+ q ×K

N +K

where:
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• n is the count in the EHR data in which X is present and Y is present.

• N is the count in the EHR data in which Y is present.

• q is the prior probability of P (X = present|Y = present) that we derived from QMR

models.

• K is a ”prior equivalent sample size”, which indicates how strongly we believe the prior;

we can think of K as being the sample size of simulated data that are produced by the

distribution P (X = present|Y = present) that we derive from QMR.

M is a hyper-parameter not shown in the equation. let K = M ×P (Y = present). then

the formula above becomes:

P̂ (X = present|Y = present) = n+P (X=resent|Y=present)×M×P (Y=present)
N+M×P (Y=present)

Here, P (X = present|Y = present)×M×P (Y = present) is the count in the simulation

data in which X is present and Y is present. M × P (Y = present) is the count in the

simulation data in which Y is present.

With this Bayesian approach, I was able to add QMR-model knowledge into the EHR

modeling process. I conducted many experiments using different sample sizes of EHR training

data (N) and different sample sizes of simulation data (M), aiming to find out in what

scenarios models learned with EHR data and augmented with QMR knowledge can perform

better than models learned with pure EHR data. Experimental results and discussion are

provided in the next chapter.

3.3 The Sequential Diagnosis Generating Algorithms (SDG)

An important goal of integrating domain knowledge into a machine learning process is

to build a domain-meaningful model, such as a clinical alignment model. If a model is

developed to help physicians do diagnosis, the model should be explainable in order to be

understood by users (e.g., physicians). The model structure should be similar to physicians’

existing workflow so that physicians can use it easily. The model should also make clinical

sense so that physicians can trust it.
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I chose the classification tree structure to provide sequential diagnosis support to clini-

cians, because the tree model is easily explainable and is like physicians’ diagnostic reasoning

process. There are many classic algorithms to develop tree structures. When selecting split-

ting nodes in the tree development process, most algorithms use some score criteria, such

as Information Gain [78], Gain Ratio [79], or Gini index [13]. When a classification tree

algorithm is used in medical diagnosis, misdiagnosis costs [30, 31, 51, 24] has also been con-

sidered as a selection criterion, because the most important thing for emergency department

physicians is to rule out the most likely severe diseases to reduce the misdiagnosis costs. In

my study, I also consider misdiagnosis costs in the tree model development process. The

goal of using expected misdiagnosis costs as a criterion is to find out important features

from the clinical perspective, instead of from an information theory or mathematical theory

perspective.

For sequential diagnostic modeling, I developed two algorithms: the SDG-no-phase algo-

rithm considers diagnostic accuracy and misdiagnosis costs, while the SDG-phase algorithm

considers those two aspects as well as the knowledge of clinical workflow (as mentioned in

Section 3.1.3). Both algorithms use population-level training data to develop a sequential

diagnosis tree. In population machine learning, the developed model is optimized to per-

form well on average on all future individuals, which is different from personalized machine

learning that develops models at a patient level [104]. More discussions about population

machine learning and personalized machine learning are available in Section 5.4.6.

Next, I will introduce the general flow of SDG-no-phase algorithm, mathematical equa-

tions of searching score, and pseudo code of important functions. Then, I will introduce the

SDG-phase algorithm, which is different from the SDG-no-phase algorithm in using knowl-

edge of clinical workflow to restrict feature searching processes. Detailed pseudo code of

SDG-phase and SDG-no-phase algorithms and related functions are provided at the end of

this section. As shown in the pseudo code, the SDG-no-phase algorithm conducts greedy

tree growth until at least one of the stopping criteria in every branch has been met (reaches

a leaf node). The stopping criterion include: (1) the sample size of encounters in a partition

of a leaf node (based on distinct values on the feature) is less than a threshold (minimal

number of samples); (2) depth of the tree is greater than the maximum depth.
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During the greedy tree growth process, the SDG-no-phase algorithm goes through all

candidate features to find out the feature that has the largest score among all candidate

feature (highest reduction of expected misdiagnosis costs) and chooses this feature as the

root node of the tree. Then, the algorithm repeats the searching process in each sub portion

to continuously build the tree model. The score of selecting a splitting node in each growing

step of the diagnostic tree is defined as the reduction of expected misdiagnosis costs. To

calculate this score, the related concepts and their relationships are as follows:

• di: a disease, 1 ≤ i ≤ number of candidate diseases

• Ex: a set of clinical evidence for one encounter x. 1 ≤ x ≤ number of encounters in a

population dataset

• P (di|Ex): a posterior probability of having a disease di given an encounter’s evidence Ex

• P (d̄i|Ex): a posterior probability of not having a disease di given an encounter’s evidence

• M(d̄i|di): the cost of mistakenly missing the diagnosis of a disease di when a patient has

the disease di

• M(di|d̄i): the cost of mistakenly diagnosing that a patient has disease di when the patient

does not have the disease di

• Cdi(Ex): the expected misdiagnosis costs of one encounter x related to di given clinical

evidence Ex. In training data, we already know the disease status of each encounter.

If an encounter x has disease di but it is misdiagnosed as not having the disease, then

the expected misdiagnosis cost is M(d̄i|di) and the possibility of making this mistake

is P (d̄i|Ex). On the other hand, if an encounter x does not have disease di and is

misdiagnosed to have the disease, then the expected misdiagnosis cost isM(di|d̄i) and the

possibility of making this mistake is P (di|Ex). Using an indicator function, I(dix = ture),

which is 1 when encounter x has the disease di, and 0 otherwise. I can use a general

expression to represent these two scenarios:

Cdi(Ex) = I(dix = true)×M(d̄i|di)×P (d̄i|Ex)+(1−I(dix = true))×M(di|d̄i)×P (di|Ex)

Now, let me describe a perfect diagnostic model scenario. For each encounter, with

sufficient evidence, a perfect probability model will estimate a probability of 1 for diseases

that the encounter has, and will estimate a probability of 0 for diseases that the encounter
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does not have. That is P (di|Ex) = 1 and P (d̄i|Ex) = 0 when dix is true; and P (di|Ex) = 0

and P (d̄i|Ex) = 1 when dix is false. In this situation, Cdi(Ex) is 0 for all diseases.

Another extreme situation is the worst diagnostic model scenario, when a probability

model estimates a probability of 0 for diseases that the encounter has and estimates a

probability of 1 for diseases that the encounter does not have. In this situation,

Cdi(Ex) = I(dix = ture)×M(d̄i|di) + (1− I(dix =true))×M(di|d̄i)

• C(Ex): the expected misdiagnosis costs of one encounter given clinical evidence Ex. I

assume that this expected misdiagnosis costs in a multi-label scenario is additive. The

cost is the sum of each cost of each disease. C(Ex) =
∑

di
Cdi(Ex)

• C(E): the expected misdiagnosis costs of a population dataset that includes multiple en-

counters. C(E) =
∑

x C(Ex) =
∑

x

∑
di
Cdi(Ex) =

∑
di

∑
xCdi(Ex) =

∑
di

∑
El
{ndi,El

×

P (d̄i|El)×M(d̄i|di)+nd̄i,El
×P (di|El)×M(di|d̄i)}, where ndi,El

is the number of patients

who have disease di and have the same evidence value El, and nd̄i,El
is the number of

patients who have the same evidence value El and do not have disease di. This was used

in the function calcualteCost in pseudo code section.

• fjx: a clinical feature, 1 ≤ j ≤ number of candidate features

• R(fjx, Ex): the reduction in the expected misdiagnosis costs given evidence in an en-

counter level, when evidence includes Ex and a new feature fj.

• fj: a clinical feature at the population level

• E: a set of clinical evidence for a population dataset. E = {E1, ...., En}.

• R(fj, E): the reduction in the expected misdiagnosis costs given evidence at the popula-

tion level, when evidence includes E and a new feature fj. R(fj, E) = C(E)−C(E ∪ fj)

where C(E ∪ fj) =
∑

x C(Ex ∪ fjx), C(Ex ∪ fjx) =
∑

di
Cdi(Ex ∪ fjx), and

Cdi(Ex∪fjx) = I(dix = ture)×M(d̄i|di)×P (d̄i|Ex∪fjx)+(1−I(dix =true))×M(di|d̄i)×

P (di|Ex ∪ fjx) From these formulas, we can see that R(fj, E) > 0 if C(E ∪ fj) < C(E).

The latter happens if including fj can reduce the probabilities of making important

mistakes in a population where the importance of mistakes is indicated by the expected

misdiagnosis cost values: M(d̄i|di) and M(di|d̄i).

Same as the SDG-no-phase algorithm, the SDG-phase algorithm uses the score, R(fj, E),

to assess potential feature. The only difference is that SDG-phase algorithm restricts its
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search on the best feature in a set of candidate features in phase 1 (the triage nurse phase)

first until no feature in phase 1 can reduce the expected misdiagnosis costs. After reaching

that point, the SDG-phase algorithm will then start finding the best feature in a set of

candidate features in phase 2 (physician interview phase). After finishing all searching in

phase 2, then phase 3 (physical exam phase), then phase 4 (lab test phase). In this way, the

SDG-phase algorithm conducts feature searching based on the knowledge of different phases

in ED (as mentioned in Section 3.1.3) so that a developed sequential tree can align well with

existing clinical workflow. As shown in the pseudo code, the SDG-phase algorithm and the

SDG-no-phase algorithm are different in the function that finds the best feature.

3.3.1 Pseudocode for SDG-no-phase and SDG-phase Algorithms

In the following pseudo code, main algorithms and functions are bolded. Comments are

written in blue color.

ALGORITHM SDG-no-phase(dataset, depth, max-depth, leaf-min-sample-size,

knownFeatureList, candidateFeatureList)

This is the SDG-no-phase algorithm. The data structure of a tree is a dictionary of dictio-

naries, each of which is also a dictionary of dictionaries, ..., and continue until the leaf node.

depth = depth + 1

bestFeature = findBestFeature-no-phase(dataset, knownFeatureList,

candidateFeatureList)

tree={}

if (bestFeature is not NULL):

tree = {bestFeature:{}}

knownFeatureList.append(bestFeature)

candidateFeatureList.remove(bestFeature)

On the next line, the splitDataset method splits data based on the values of best feature.

Since each NLP-extracted clinical finding has two distinct values, present or absent (missing

is categorized as absent), the dataset is split into two sub-datasets. One dataset includes

encounters that have the “present” value of the best feature. Another dataset includes en-
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counters with “absent.”

leftData, rightData = splitDataset(dataset, bestFeature)

minimunSize = minimum(leftData.size, rightData.size)

if (minimunSize > leaf-min-sample-size and depth < max-depth):

Next two lines recursively call the SDG-no-phase algorithm to get a left and a right sub-tree.

A deep copy of an object is a copy whose properties do not share the same references as

those of the source object from which the copy was made.

tree[(bestFeature)][T] = SDG-no-phase(leftData, depth, max-depth,

leaf-min-sample-size, deepcopy(knownFeatureList),

deepcopy(candidateFeatureList))

The tree is a dictionary. The bestFeature is its key. The tree[(bestFeature)] is the value

of the “tree” dictionary corresponding to the key “bestFeature”. The tree[(bestFeature)] is

also a dictionary. The tree[(bestFeature)][T] is the value of the “tree[(bestFeature)]” dic-

tionary corresponding to the key “T.” The “T” value denotes the “present” state of an

NLP-extracted feature.

tree[(bestFeature)][F] = SDG-no-phase(rightData, depth, max-depth,

leaf-min-sample-size, deepcopy(knownFeatureList),

deepcopy(candidateFeatureList))

return tree

END ALGORITHM

FUNCTION findBestFeature-noPhase(dataset, knownFeatureList,

candidateFeatureList):

This function aims to find the best feature and is called by the SDG-no-phase algorithm.

MC-parent is the expected misdiagnosis costs of a population dataset, denoted as C(E) in

Section 3.3, where E is saved in the knownFeatureList.

MC-parent = calculateCost(dataset,knownFeatureList)

bestFeature is NULL

best-MC-reduction = 0

for feature in candidateFeatureList:
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tempKnownFeatureList = deepcopy(knownFeatureList)

tempKnownFeatureList.append(feature)

leftData, rightData = splitDataset(dataset, feature)

After a feature fj is temporally added to knowFeatureList, MC-children is the total expected

misdiagnosis costs of two population datasets, C(E, fj = present) and C(E, fj = absent).

MC-children = calculateCost(leftData,tempKnownFeatureList) +

calculateCost(rightData,tempKnownFeatureList)

The reduction of expected misdiagnosis costs is calculated, which is the R(fj, E) in Section

3.3.

MC-reduction = MC-parent - MC-children

if MC-reduction > best-MC-reduction:

best-MC-reduction = MC-reduction

bestFeature = feature

print(“found best feature: ”, bestFeature, reduce ”, best-MC-reduction)

return bestFeature

END FUNCTION

FUNCTION calculateCost(dataset,tempKnownFeatureList):

This function aims to calculate the expected misdiagnosis costs of a population dataset given

a list of features as evidence.

if dataset.size==0:

return 0

else:

cost = 0

Because the cost is additive for each patient encounter x and also additive for each disease

di, the function can firstly calculate a population cost for each disease and then sum up

these costs. C(E)=
∑

xC(Ex) =
∑

x

∑
di
C(Ex, di) =

∑
di

∑
x C(Ex, di) =

∑
di

∑
El
{ndi,El

×

P (d̄i|El) × M(d̄i|di) + nd̄i,El
× P (di|El) × M(di|d̄i)}. Thus, the following codes have two

for-loops, the first goes over disease, and the second goes over data.

for disease in diseaseList:
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FeatureList2 = deepcopy(tempKnownFeatureList)

FeatureList2.append(disease)

In the next line, the dataset was grouped based on distinct value combinations of features in

the feature list. Encounters with the same values in these features have the same posterior

probability of a disease. This grouping slightly reduces running time.

tempDataFrame = dataset.groupby(FeatureList2).size().reset-index(name=“count”)

BayesianNetwork = BayesianNetworkTable[disease]

for index, record in tempDataFrame.iterrows():

record-true-status = record[disease]

Given the true disease status and a list of features, this calculateMisdiagnosisP method re-

turns the probabilities of making a mistake. If the true disease status of di for this group of

patients is Yes, then it returns P (d̄i|El). And the getMisCost method looks over a pre-saved

dictionary and returns M(d̄i|di). If the true disease status is No, then the calculateMisdiag-

nosisP function returns P (di|El) and the getMisCost method returns M(di|d̄i).

misProb = calculateMisdiagnosisP(BayesianNetwork, record,

tempKnownFeatureList, record-true-status)

misCost = getMisCost(disease,record-true-status)

cost = cost + misProb × misCost × record[“count”]

return cost

END FUNCTION

ALGORITHM SDG-phase (dataset, depth, max-depth, leaf-min-sample-size,

knownFeatureList, candidateFeatureList, phase, phase1List, phase2List, phase3List,

phase4List)

The SDG-phase algorithm is different from SDG-no-phase algorithm in using phase informa-

tion as restrictions to find the best feature. When firstly calling this algorithm, phase was

initiated as 1.

depth = depth + 1

bestFeature, currentPhase = findBestFeature-phase (dataset, knownFeatureList,

candidateFeatureList, phase, phase1List, phase2List, phase3List, phase4List)
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tree={}

if (bestFeature is not NULL):

tree = {bestFeature:{}}

knownFeatureList.append(bestFeature)

candidateFeatureList.remove(bestFeature)

leftData, rightData = splitDataset(dataset, bestFeature)

minimunSize = minimum(leftData.size, rightData.size)

if (minimunSize > leaf-min-sample-size and depth < max-depth):

Recursively call the SDG-phase algorithm to get a left sub-tree.

tree[(bestFeature)][T] = SDG-phase(leftData, depth, max-depth,

leaf-min-sample-size, deepcopy(knownFeatureList),

deepcopy(candidateFeatureList), phase, phase1List,

phase2List, phase3List, phase4List)

tree[(bestFeature)][F] = SDG-phase(rightData, depth, max-depth,

leaf-min-sample-size, deepcopy(knownFeatureList),

deepcopy(candidateFeatureList), phase, phase1List,

phase2List, phase3List, phase4List)

return tree

END ALGORITHM

FUNCTION findBestFeature-phase(dataset, knownFeatureList, candidateFeatureList,

phase, phase1List, phase2List, phase3List, phase4List):

This function aims to find the best feature among candidate feature list that was an inter-

section of the candidate feature list and the current phase list. This is the only difference

between SDG-phase algorithm and SDG-no-phase algorithm. Other functions and methods,

such as calcualteCost and splitDataset are exactly the same.

MC-parent = calculateCost(dataset,knownFeatureList)

bestFeature is NULL

best-MC-reduction = 0

currentPhase = phase
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if phase==1:

candidateFeatureList-phase = intersection(candidateFeatureList, phase1List)

elif phase==2:

candidateFeatureList-phase = intersection(candidateFeatureList, phase2List)

elif phase==3:

candidateFeatureList-phase = intersection(candidateFeatureList, phase3List)

elif phase==4:

candidateFeatureList-phase = intersection(candidateFeatureList, phase4List)

for feature in candidateFeatureList-phase:

tempKnownFeatureList = deepcopy(knownFeatureList)

tempKnownFeatureList.append(feature)

leftData,rightData = splitDataset(dataset, feature)

MC-children = calculateCost(leftData, tempKnownFeatureList) +

calculateCost(rightData, tempKnownFeatureList)

MC-reduction = MC-parent - MC-children

if MC-reduction > best-MC-reduction:

best-MC-reduction = MC-reduction

bestFeature = feature

If there is no best feature found in one phase, then the phase number is added 1 and the

search goes to the next phase as shown in the codes below.

if bestFeature is NULL and phase ≤3:

currentPhase = phase + 1

bestFeature, currentPhase = findBestFeature-phase(dataset, knownFeatureList,

candidateFeatureList, currentPhase, phase1List, phase2List, phase3List, phase4List)

print(”found best feature: ”, bestFeature, ”reduce ”, best-MC-reduction)

return bestFeature, currentPhase

END FUNCTION

FUNCTION classifytest(inputTree, testDataSet):

This function can be used to leverage a learned tree (a dictionary of dictionaries) to conduct
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patient diagnosis when patient encounters are in testing data and their disease statuses are

unknown. This function goes through all encounters in a testing dataset one by one. For

each encounter, it firstly adds the demographic features as known features. Then, it calls the

classify function to obtain probabilities of diseases for one encounter, which are then saved

into a dataframe. Most codes are in python format. pd is the abbreviation of the pandas

package.

column-names = diseaseList

df = pd.DataFrame(columns = column-names)

for index, testVec in testDataSet.iterrows():

knowFeatureValueDict = {}

for demoFeature in demoList:

knowFeatureValueDict[demoFeature] = testVec[demoFeature]

probDic = classify(inputTree, testVec, knowFeatureValueDict)

probValueList = [ ]

for disease in diseaseList:

probValueList.append(probDic[disease])

df.loc[len(df.index)] = probValueList

return df

END FUNCTION

FUNCTION classify(inputTree, testVec, knowFeatureValueDict):

This function returns probabilities of diseases for an individual encounter. It directly calls

the calculateProbDic function, unless the diagnosis tree can be continuously traced down

(recursively calling the calculateProbDic function).

firstKey = list(inputTree.keys())[0]

firstFeature = list(inputTree.keys())[0]

knowFeatureValueDict[firstFeature] = testVec[firstFeature]

secondDict = inputTree[firstKey]

probDic = {}

if len(list(secondDict.keys())) > 0:
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if testVec[firstFeature] not in secondDict.keys():

probDic = calculateProbDic(knowFeatureValueDict)

else:

for key in secondDict.keys():

if testVec[firstFeature] == key:

if secondDict[key] is not NULL:

probDic = classify(secondDict[key], testVec, knowFeatureValueDict)

else:

probDic = calculateProbDic(knowFeatureValueDict)

else:

probDic = calculateProbDic(knowFeatureValueDict)

return probDic

END FUNCTION

FUNCTION calculateProbDic(knowFeatureValueDict):

This function uses pre-learned Bayesian networks to calculate posterior probabilities given

clinical evidence.

probDic={}

for disease in diseaseList:

BayesianNetwork = BayesianNetworkTable[disease]

prob-dieaase-true = BayesianNetwork.getProbabilityDiseaseTrue(knowFeatureValueDict)

probDic[disease] = prob-dieaase-true

return probDic

END FUNCTION

FUNCTION printAllTestPath(inputTree, testDataSet):

This function uses the eight CCS categories scenario as an example to show how to print

a diagnosis path and probabilities of diseases for each encounter in a testing dataset. The

classifyAndPrintPath function is the one that returns probabilities and a string of a diagnosis

path.
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column-names = diseaseList

df = pd.DataFrame(columns = [”path”, ”d721-p”, ”d722-p”, ”d723-p”, ”d724-p”,

”d726-p”, ”d727-p”,”d7289-p”, ”d7211-p”])

for index, testVec in testDataSet.iterrows():

knowFeatureValueDict = {}

initialPrint=“”

for demoFeature in demoList:

knowFeatureValueDict[demoFeature] = testVec[demoFeature]

initialPrint=initialPrint+testVec[demoFeature]+”—”

probDic, toPrint = classifyAndPrintPath(inputTree, testVec,

knowFeatureValueDict, initialPrint)

df = df.append(’path’ : toPrint, ’d721-p’ : probDic[’d721’], ’d722-p’ : probDic[’d722’],

’d723-p’ : probDic[’d723’],’d724-p’ : probDic[’d724’],’d726-p’ : probDic[’d726’],

’d727-p’ : probDic[’d727’], ’d7289-p’ : probDic[’d7289’],’d7211-p’ : probDic[’d7211’],

ignore-index = True)

return df

END FUNCTION

FUNCTION classifyAndPrintPath(inputTree, testVec, knowFeatureValueDict, toPrint):

This function returns a diagnosis path and probabilities of diseases for an individual en-

counter. The probability portion is the same as as the classify function.

firstKey = list(inputTree.keys())[0]

firstFeature = list(inputTree.keys())[0]

if firstFeature not in treeFeatureList:

treeFeatureList.append(firstFeature)

if firstFeature in nameDic:

toPrint=toPrint+” -> ” + str(nameDic[firstFeature]) +”(”+testVec[firstFeature]+”)”

else:

toPrint=toPrint+”-> ” + firstFeature +”(”+testVec[firstFeature]+”)”

knowFeatureValueDict[firstFeature] = testVec[firstFeature]

57



secondDict = inputTree[firstKey]

probDic = {}

if len(list(secondDict.keys())) > 0:

if testVec[firstFeature] not in secondDict.keys():

probDic = calculateProbDic(knowFeatureValueDict)

else:

for key in secondDict.keys():

if testVec[firstFeature] == key:

if secondDict[key] is not NULL:

probDic = classifyAndPrintPath(secondDict[key], testVec,

knowFeatureValueDict, toPrint)

else:

probDic = calculateProbDic(knowFeatureValueDict)

else:

probDic = calculateProbDic(knowFeatureValueDict)

return probDic

END FUNCTION

3.4 Using ML-C4.5 to Generate a Sequential Diagnosis Tree

Clare et al. [17] proposed a C4.5 (ML-C4.5) algorithm to handle multi-label classification

problems. I applied the ML-C4.5 algorithm to generate a sequential diagnosis tree. As with

a traditional classification tree, the sequential diagnosis tree growing process mainly depends

on greedy searching the next best node. The next best node is determined based on which

node can reduce the empirical entropy the most. Before splitting data, the empirical entropy

is calculated with training data using

Entropy(C) = −
∑
ci∈C

[P (ci)log2P (ci) + (1− P (ci))log2(1− P (ci))]
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where C is a set of diseases; ci is each disease, each disease is treated as binary; P (ci)

is the probability (relative frequency) of disease class ci; and 1-P (ci) is the probability of

not being a member of disease class ci. When P (ci) equals 0 or 1, we cannot calculate

P (ci)log2P (ci) or (1− P (ci))log2(1− P (ci)). In these situations, I define this portion to be

0 for disease class ci.

After splitting the data using a candidate feature A, the entropy becomes:

Entropy(C,A = a) = −
∑
ci∈C

[P (ci, a)log2P (ci, a) + (1− P (ci, a))log2(1− P (ci, a))]

The reduction of entropy is:

Entropy(C)−
∑
a∈A

N(a)

N
Entropy(C, a)

After using entropy reduction as score to find the best next node, the algorithm divides

the training data into a few subsets according to the values of the chosen node. Then,

in each of these subsets, repeat previous step until get a complete classification tree. In

the leaf nodes, we use the probability (relative frequency) of each disease as the estimated

probabilities for each disease, we use this probability to do prediction.

When using the generated tree for diagnosis, we use a patient’s data to follow the path

until no more nodes can be filled with clinical evidence and use the probability distributions

in the last node as the estimated probabilities for each disease. With these probabilities, we

can evaluate the performance of the generated tree using a testing dataset. Moreover, we

can ask human experts to review the diagnostic path of a few samples for clinical alignment

evaluation.

3.5 Using Deep Q Learning to Generate a Sequential Diagnosis Policy

Reinforcement learning algorithms are designed to solve sequential decision-making prob-

lems. In this section, I firstly introduce the main concepts of one popular reinforcement

learning algorithm, deep Q learning. Then, I describe how to apply deep Q learning to
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suggest a sequence of actions in medical diagnosis. Finally, I briefly present the settings of

using deep Q learning in my research experiments. More details about experiment settings

and results are provided in the next chapter.

Deep Q learning is one type of Q learning algorithm. In Q learning (as introduced in

the reinforcement learning section of the Literature Review Chapter), the Q function is an

action-value function that indicates the expected cumulative discounted reward given a state

s, action a, and policy π. Corresponding to the best policy, the optimal Q−value function

is Q∗(s, a) = maxπQ
π(s, a) = maxπE[

∑
t≥0 γrt|s0 = s, a0 = a, π]. According to Bellamn’s

theory, optimal Q−value function also satisfies: Q∗(s, a) = Es′∼ϵ[r+γ×maxa′Q
∗(s′, a′)|s, a].

Therefore, Q∗ function suggests the optimal policy π∗, which (in any state s) takes the

best action that has the highest value of Q∗(s, a).

To approximate a Q function, deep Q learning uses a deep neural network as the function

approximator. After choosing an appropriate Q network architecture, the learning process

becomes an optimization process that aims to find the optimal Q-function, a Q-function

that satisfies the Bellman Equation. Because learning from a set of consecutive instances is

problematic: instances are correlated; current parameters of Q network directly determine

next training instances, and this may lead to bad feedback loops, the algorithm uses an

experience replay strategy. After initializing a Q network with random parameters, the

algorithm goes through multiple episodes. Each episode includes an exploration stage and

an optimization stage. In the exploration stage, the agent often selects the action that

maximizes the estimatedQ value in the current state, takes the action, receives the immediate

reward, and observes the next state. This generates an instance of transition. Then, the

algorithm stores this instance to a replay memory repository. With a small probability, the

agent can select a random action instead of the best action. This exploration is important

especially at the early episode when the Q network is not close to optimal. Then, in the

optimization stage, from the replay memory repository, the algorithm randomly selects a

set of transitions and use them to update the parameters of the Q network. When conducting

the optimization, in the forward pass, for a non-terminal state, yi, the estimated cumulative

reward for each case by the Q network, is calculated using the Bellman Equation and the

target network (the Q network saved in last episode). In the backward pass, using yi as a
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silver standard, the algorithm performs a gradient descent step to update the parameters of

the Q network to minimize the square error between yi and the estimated Q value for each

instance in the selected experience replay set. Note that in Mnih et al. deep Q learning

paper [60], θ in the formula rj + γmaxa′ Q(ϕj+1, a
′; θ) corresponds to the parameters in

the Q network that have been saved in the previous episode. While in the formula (yj −

Q(ϕj, aj; θ))
2, θ corresponds to the parameters that are being updated in a gradient descent

step .

Wei et al. [110] developed a deep Q learning-based medical dialogue system that can

collect additional symptoms through system-patient conversations before making final diag-

nosis. In this system, the main components of the Markov decision process mentioned in

literature review (S,A, P,R, γ) are the following:

• State S: includes informed symptoms until the current time t (represented in SNOMED

CT codes, with three values: positive, negative, not-mentioned), the previous action of

the user (i.e., patient), the previous action of the agent (i.e., digital doctor), and the

user-agent dialogue information.

• Action A is composed of a dialogue act (e.g., inform, deny) and a slot (i.e., query about

a symptom or make a diagnosis from a list of candidate diseases). The inquiry system

terminates when the action makes a diagnosis (regardless of whether it is correct or not).

• Reward R is the immediate reward at step t after an action is taken.

• Discount factor γ represents the discount for non-immediate award.

• Transition probability P is not defined here because deep Q learning is a model-free

approach.

In my dissertation, I leverage Wei et al. implementation of a dialogue system [109] in

order to compare deep Q learning with my algorithm. Details about hyper-parameters and

results are provided in the Results Chapter.
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4.0 Experimental Design and Results

This research aims to integrate expert-defined medical knowledge with EHRs to build

disease diagnostic models, as well as develop and test a sequential diagnosis generating

algorithm that considers diagnostic accuracy, misdiagnosis costs, and clinical workflow. The

Introduction Chapter briefly described research background, motivation and aims. The

Literature Review Chapter presented many strategies that have been used to incorporate

domain knowledge into machine learning. The Methodology Chapter described the domain

knowledge used in my study and the approaches I used to include domain knowledge into

machine learning algorithms. This chapter connects all the dots and shows the research

data, experiment design and results of experiments testing multiple hypotheses under two

research aims.

4.1 Research Data

In this section, I first introduce the clinical classifications software (CCS), which is used

to group many clinically similar ICD codes into one CCS category. This CCS grouping

enabled us to have sufficient research samples for model development and evaluation. Then

I describe research datasets from two resources and provide summative statistics of the

UPMC emergency department data and the QMR-simulation data.

4.1.1 The Clinical Classifications Software (CCS)

Of the over 14,000 diagnosis codes and 3,900 procedure codes in the International Clas-

sification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) system, I used the

239 related to heart diseases to test my algorithms. However, developing a model for each

of the 239 codes for the diseases would require training samples of a very large size, which

were not available in my research, so I needed to group these 239 codes into several clinically
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similar groups. To create these groups, I chose to use the Clinical Classifications Software

(CCS) [23] for ICD-9-CM, a diagnosis and procedure categorization scheme that groups more

than 4,000 ICD codes into a smaller number of categories. Codes in each CCS category are

clinically similar.

Grouping ICD codes into CCS categories allowed me to have sufficient samples for model

development and evaluation. Altogether, the 239 heart-disease related ICD-9-CM codes I

chose to include could be grouped into 11 CCS categories (Table 2).

Table 2: Heart Disease CCS Categories

CCS category CCS definition

7.2.1 Heart valve disorders

7.2.2 Peri-; endo-; and myocarditis; cardiomyopathy

7.2.3 Acute myocardial infarction

7.2.4 Coronary atherosclerosis and other heart disease

7.2.5 Nonspecific chest pain

7.2.6 Pulmonary heart disease

7.2.7 Other and ill-defined heart disease

7.2.8 Conduction disorders

7.2.9 Cardiac dysrhythmias

7.2.10 Cardiac arrest and ventricular fibrillation

7.2.11 Congestive heart failure; nonhypertensive

4.1.2 UPMC Emergency Encounter Data

Heart Disease Visits

We retrieved data from all heart disease visits from 15 emergency departments at the

University of Pittsburgh Medical Center (UPMC) between January 1, 2008 and December
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31, 2014. The University of Pittsburgh Institutional Review Board approved this study

(Study No.18100069). I identified a visit as a cardiac disease visit if its primary ED diag-

nosis included one of the 239 ICD-9-CM codes for cardiac diseases. Based on a physician’s

suggestion, I made the following changes to the categorization list. I deleted category 7.2.5

(nonspecific chest pain) because it is not a specific heart disease; I deleted category 7.2.10

(cardiac arrest and ventricular fibrillation) because it is very easy to do diagnosis and physi-

cians cannot make a mistake with this diagnosis. I merged category 7.2.8 and category 7.2.9

into one category, which I named 7.2.89, because they are very similar. After these modifica-

tions to the original list of the 11 CCS categories, eight categories were used for the research

data: 7.2.1, 7.2.2, 7.2.3, 7.2.4, 7.2.6, 7.2.7, 7.2.89, and 7.2.11. I used these 8 categories in

my research experiments. Detailed information about ICD codes and their associated CCS

categories are provided in Appendix A. Table 3 lists counts of encounters in each of eight

categories in the EHR data. If one patient has more than one CCS category heart disease,

it will be counted in all related CCS categories. For example, one patient has heart disease

CCS7.2.1 and CCS7.2.2. When we calculate the count number of category CCS7.2.1, this

patient will be included; when we calculate the count number of category CCS7.2.2, this

patient will also be included.

Figure 2 shows each step in the data processing workflow. From the 141,660 encounters

that have a primary diagnosis code in one of the 239 ICD-9-CM codes, I first excluded CCS

7.2.5, CCS 7.2.10 and encounters without complete demographic information and ED clinical

notes. I then divided the remaining encounters into a training dataset for model development

(43,910 encounters between 2008 and 2013) and a test dataset for model evaluation (13,444

encounters in 2014).
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Table 3: Counts of Encounters in CCS Categories in EHR Data

CCS category CCS definition N of Encounters

7.2.89 Conduction disorders and cardiac dysrhythmias 32,879

7.2.4 Coronary atherosclerosis and other heart disease 26,456

7.2.11 Congestive heart failure; nonhypertensive 9,461

7.2.1 Heart valve disorders 7,147

7.2.2 Peri-; endo-; and myocarditis; cardiomyopathy 3,736

7.2.6 Pulmonary heart disease 3,087

7.2.7 Other and ill-defined heart disease 1,603

7.2.3 Acute myocardial infarction 1,581

65



Figure 2: UPMC Data Preprocessing
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Demographic Features

Basic structured demographic information from the cohort population includes biological

sex (male, female), race (white, black, other), age group (0-17, 18-64, 65+), insurance (com-

mercial, Medicare, other), and income (low, middle, high). We estimated patients’ household

income based on two variables: home zip code and census data for median income for the

area. The income information was then categorized into three groups.

NLP-extracted Features

To include more clinical findings, we collected unstructured ED discharge summaries

of retrieved UPMC encounters. From the ED discharge summaries, we extracted medical

findings using MedLEE [26], a well-known NLP tool. For each report, MedLEE returned

a set of Unified Medical Language System Concept Unique Identifiers (UMLS CUIs), each

of which represents a clinical concept. Each concept was associated with a certainty level.

For each clinical concept CUI, I assigned “Present” if the certainty value is “yes”, “high

certainty”, “moderate certainty”, “positive”, or “no negation.” I assigned “Absent” if the

certainty value is “ignore”, “no”, “low certainty”, “very low certainty”, “negative”, or “rule

out.”

If a CUI was not mentioned in a report, we also treated it as “Absent.” I made this

assumption based on the results of a preliminary study. In that study, I set “Not Mentioned”

to be a new value, so each CUI had three values (“Present”,“Absent”, or “Not Mentioned”).

I used a classic classification tree algorithm (ID3) and EHR data to generate a classification

tree model. The pure data-driven tree had many nodes that combined “Not Mentioned”

with “Present” as one group (“Not Mentioned or “Present”) and used “Absent” as the

other group to divide patient population for disease diagnosis purpose. After reviewing the

generated tree, a physician expert commented that most of these machine learned patterns

of using “Not Mentioned” and “Present” together as one combination (“Not Mentioned” or

“Present”) did not make any clinical sense for disease diagnosis. To avoid these patterns, I

assumed “Not Mentioned” as “Absent” in this dissertation research. With this assumption,

all NLP-extracted clinical features were binary: “Present” or “Absent” in my experiemnts.

From the NLP-retrieved clinical findings, I further removed heart-disease related CUIs
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so that these features would not be used for diagnosis. Clinical notes may already contain

diagnostic information. Using diagnosis related UMLS codes as candidate features in a com-

putational diagnostic system, its potential performance may be overestimated in real-world

clinical practice. On the other hand, historical evidence about heart disease is important in-

formation for diagnosis. My research data cannot distinguish whether the disease information

in clinical notes is historical evidence or a current diagnosis. To provide a fair evaluation of

algorithms, I manually reviewed descriptions of candidate features and removed 667 unique

CUIs that were heart disease names and had the semantic type ‘disease or symptom’ or

‘pathologic function’ in the UMLS 2019AA version, such as C0085610 (sinus bradycardia).

4.1.3 QMR Simulation Data for Heart Diseases

The simulated heart disease data include 125,659 records, involving 51 primary diagnoses,

100 secondary diagnoses. The secondary diagnoses are diseases that may appear in patients

with the primary diagnosis, some of them are heart diseases, some of them are not heart

diseases. There are 51 heart diseases in the QMR knowledge base. A collaborator, Dr.

Randolph A. Miller, helped to set 51 heart diseases as a primary diagnosis and other possible

diseases as a secondary diagnosis to generate simulation data.

Figure 3 shows the steps in the data processing workflow. In the simulation data, diseases

and clinical findings are all in free-text description format, such as ”acute myocardial infarc-

tion”, ”chest pain”. However, the training data that I retrieved from EHR contain diseases

annotated in ICD9-CM codes, as well as clinical findings coded in UMLS codes. Therefore,

for each simulated record, the definitions of appearing features were concatenated together to

create a report. Then, cTakes software [85] was used to parse each report to obtain medical

CUI codes. The cTakes is a clinical natural language processing tool. It combines rule-based

and machine learning techniques to extract information from clinical tests. In total, 1204

unique CUI codes appeared in the simulation data, of which 864 unique codes also appeared

in the UPMC EHR data (37,961 unique CUI codes). Each free-text disease description I

mapped to ICD-9-CM codes and then to a CCS category. After these preprocessing steps,

the format for the simulation data and UPMC data was the same.
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Figure 3: QMR Simulation Data Preprocessing
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4.2 Experiment Settings and Results for Research Aim 1

Research Aim 1. Integrate Expert-Defined Medical Knowledge with EHR Data

to Perform Disease Diagnoses

The task of combining medical knowledge with EHR was not easy. Medical knowledge

is usually published in many different formats, such as medical textbooks, peer-reviewed

medical articles (e.g., PubMed repository), and medical commercial websites (e.g., Upto-

Date). It is challenging to compile medical knowledge and represent them in a coherent

way that can be easily integrated with EHR data, which are often in their own format. In

this dissertation, I only focus on medical knowledge that is represented in an expert-defined

diagnostic system, the QMR system. I use the QMR system as an example and test four

research hypotheses. Since QMR simulation data do not have CCS 7.2.89, experiments in

aim 1 focused on 7 CCS categories (CCS 7.2.1, 7.2.2, 7.2.3, 7.2.4, 7.2.6, 7.2.7, 7.2.11).

1a.When EHR sample size is small, models trained using EHR data only are less

accurate than models trained using small sample size EHR data and medical

knowledge.

In each research hypotheses section, I first introduce the experiment setting, then provide

results.

Experiment Setting

For each CCS category, Ci, in (CCS 7.2.1, 7.2.2, 7.2.3, 7.2.4, 7.2.6, 7.2.7, 7.2.11), I

developed diagnostic models and evaluated their performance using the following steps:

[1] Generated an EHR training dataset, Die, by randomly sampling 1 percent of encounters

(439 encounters), from the whole training dataset (i.e., UPMC heart-disease related ED

encounters between 2008 and 2013). In this way, I simulated a scenario when the EHR

sample size is small.

[2] Used the EHR training dataset, Die, to develop a Naive Bayes model, Mie, through the

general process described in Section 3.2.1 (“EHR model”).

[3] Used all QMR-generated synthetic samples, Diq, to develop a Naive Bayes model, Miq,

through the general process described in Section 3.2.1.

70



[4] Used the QMR model, Miq, and EHR training dataset, Die, to develop knowledge aug-

mented models, Mieqm, which differ in the equivalent sample size M . The model de-

velopment followed the Bayesian approach that is described in Section 3.2.2. (“EHR-

knowledge model”)

[5] Compared performance of Mie with Mieqm, where performance was measured using the

Areas Under the Receive Curve (AUROC) in the whole EHR test dataset (i.e., UPMC

heart-disease related ED encounters in 2014). the Delong’s test was conducted to calcu-

late statistical significance.

Experimental Results

Table 4 shows the performance for the different models. The first column is sample size

of EHR data. The second column is the equivalent sample size. When M equaled 0, final

models were developed using EHR data only. When M was greater than 0, final models

were developed using EHR data and the QMR model. Other columns list AUROCs of

Mieqm models that were developed using EHR data and QMR models. We used the Delong

method in the R package “pROC” to compare AUROC values, threshold was 0.05. If a

Mieqm model’s AUROC is statistically significantly higher than a Mie model’s AUROC (the

second row in the same column, bolded in the table), then the cell is colored green. If an

Mieqm model’s AUROC is statistically significantly lower than a Mie model’s AUROC, then

the cell is colored red. If an Mieqm model’s AUROC is not statistically significantly different

from the Mie model’s AUROC, then the cell is not colored.

Results in Table 4 show that most EHR-knowledge models for CCS 7.2.6 (pulmonary

heart disease) and CCS 7.2.11 (congestive heart failure; nonhypertensive) perform statisti-

cally significantly better than EHR models. For CCS 7.2.2 (peri-; endo-; and myocarditis;

cardiomyopathy), CCS 7.2.3 (acute myocardial infarction), CCS 7.2.4 (coronary atheroscle-

rosis and other heart disease), when assigning a relatively small weight to QMR knowl-

edge, the developed EHR-knowledge models often perform better. When assigning a large

weight to QMR knowledge, the performance of developed EHR-knowledge models for CCS

7.2.1 (heart valve disorders) and CCS 7.2.2 (peri-; endo-; and myocarditis; cardiomyopathy)

dropped significantly.
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Table 4: Performance Comparison of EHR Models and EHR-knowledge Models (EHR Sam-

ple Size is Small).

N M CCS 7.2.1 CCS 7.2.2 CCS 7.2.3 CCS 7.2.4 CCS 7.2.6 CCS 7.2.7 CCS 7.2.11

439 0 0.772 0.723 0.809 0.872 0.664 0.527 0.857

439 44 0.772 0.736 0.838 0.876 0.762 0.529 0.873

439 220 0.77 0.717 0.836 0.87 0.78 0.524 0.864

439 329 0.771 0.709 0.827 0.876 0.764 0.515 0.87

439 439 0.765 0.716 0.824 0.871 0.745 0.526 0.86

439 659 0.759 0.701 0.821 0.872 0.776 0.526 0.867

439 878 0.748 0.704 0.818 0.862 0.774 0.527 0.871

439 1,317 0.744 0.689 0.812 0.874 0.757 0.527 0.865

439 1,756 0.744 0.686 0.793 0.876 0.777 0.532 0.866

439 2,196 0.75 0.702 0.795 0.874 0.766 0.527 0.871

439 2,635 0.749 0.701 0.793 0.878 0.754 0.526 0.868

439 3,074 0.747 0.705 0.792 0.871 0.758 0.526 0.87

439 3,513 0.747 0.691 0.79 0.873 0.758 0.53 0.87

439 3,952 0.746 0.691 0.789 0.867 0.742 0.53 0.87

439 4,391 0.737 0.692 0.788 0.867 0.749 0.53 0.869

439 8,782 0.726 0.717 0.784 0.869 0.767 0.53 0.871

439 17,564 0.728 0.708 0.79 0.86 0.748 0.517 0.872

439 26,346 0.733 0.696 0.786 0.859 0.747 0.518 0.86

439 35,128 0.732 0.737 0.784 0.863 0.771 0.53 0.869

439 43,910 0.728 0.73 0.783 0.868 0.771 0.528 0.87

1b. When EHR sample size is small, models trained using EHR data only are

less clinically aligning than models trained using small sample size EHR data

and medical knowledge.

Experiment Setting
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Clinical alignment is important, but it is not easy to measure. In Aim 1, I mainly

used AUROC and number of noisy features as measures of clinical alignment how much a

clinician’s opinions of features importance agree with the developed models. Specifically, for

a CCS category, Ci, I compared Mie with Mieqm (N = 439,M = 44) using the following

steps:

[1] From a model Mie, got its features, Sie, and their clinical descriptions

[2] From a model Mieqm, got its features, Sieqm, and their clinical descriptions

[3] Got the union of Sie and Sieqm and requested a physician expert to annotate whether

each feature was an influential feature for the diagnosis of CCS category, Ci. Labelled 1

if yes; otherwise, labelled 0. This is a single-blind experiment design. For each feature,

the physician did not know which model a feature came from.

[4] I used two approaches to handle the situation that an annotated feature did not appear

in one model. In the first approach, for each feature in the union set, if it did not

appear in model Mie, I deleted it; if it appeared in model Mie, I extracted P (finding =

true|disease = true) from the modelMie. Then, I used features’ P (finding = true|disease =

true) and the physician’s annotations to calculate an AUROC, which is EHR model per-

formance in Table 5. I used the same method to process features in each EHR-knowledge

model to calculate the performance, which is also listed in Table 5. I then compared these

two AUROCs using the Delong’s method and reported P-values in Table 5. A high AU-

ROC value indicates that the model’s perception of the relationships between variables

and a disease aligns well with that of a physician.

[5] In the second approach, for each feature in the union set, if it appeared in model

Mie, I extracted P (finding = true|disease = true) from the model Mie; if it did not

appear in model Mie, I assigned P (finding = true|disease = true) = 0. Then, I used

features’ P (finding = true|disease = true) and the physician’s annotations to calculate

an AUROC, which is EHR model performance in Table 6. With the same approach,

I calculated the performance of EHR-knowledge model in Table 6, which also includes

p-values for comparisons.

[6] Moreover, I compared number of noisy features as another indication of clinical align-

ment. I used the two-sample sign test to calculate statistical significance.
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Experimental Results

Using these steps, I obtained models’ performance and comparisons listed in table 5 and

table 6. In table 5, the AUROCs of EHR-knowledge models were higher than the AUROCs

of EHR models. However, the differences were not statistically significant. In table 6, the

AUROCs of EHR-knowledge models were similar to the AUROC of EHR models, and there

was no statistically significant differences.

A high number of noisy features indicates that the model does not align well with physi-

cians’ perspective. Table 7 shows that EHR-knowledge models had fewer noisy features

than EHR models. The two-sample sign test showed that the number of noisy features in

EHR models was statistically greater than the number of noisy features in EHR-knowledge

models (p=0.0156).

Table 5: Clinical Meaningfulness of Nodes in EHR Models and EHR-knowledge Models

(EHR Sample Size is Small, Delete Missing).

model CCS 7.2.1 CCS 7.2.2 CCS 7.2.3 CCS 7.2.4 CCS 7.2.6 CCS 7.2.7 CCS 7.2.11

EHR model 0.513 0.607 0.451 0.612 0.538 0.445 0.621

EHR-knowledge model 0.520 0.697 0.619 0.634 0.616 0.5 0.754

P-value 0.6819 0.2518 0.3994 0.6963 0.5072 0.7254 0.06435

Table 6: Clinical Meaningfulness of Nodes in EHR Models and EHR-knowledge Models

(EHR Sample Size is Small, Missing as Zero).

model CCS 7.2.1 CCS 7.2.2 CCS 7.2.3 CCS 7.2.4 CCS 7.2.6 CCS 7.2.7 CCS 7.2.11

EHR model 0.544 0.591 0.520 0.578 0.518 0.449 0.577

EHR-knowledge model 0.488 0.585 0.596 0.504 0.523 0.512 0.569

P-value 0.4275 0.9243 0.7112 0.1499 0.9551 0.538 0.8931
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Table 7: Numbers of Noisy Features (Numbers of All Features) in Models When EHR Sample

Size is Small.

model CCS 7.2.1 CCS 7.2.2 CCS 7.2.3 CCS 7.2.4 CCS 7.2.6 CCS 7.2.7 CCS 7.2.11

EHR model 54 (126) 60 (140) 6 (52) 90 (235) 22 (71) 19 (52) 53 (164)

EHR-knowledge model 34 (77) 27 (71) 2 (23) 70 (165) 12 (39) 8 (23) 22 (77)

1c. When EHR sample size is large, models trained using EHR data only per-

form similarly to models trained using large sample size EHR data and medical

knowledge.

Experiment Setting

I tried scenarios with different sample sizes: 43,910 (all training data), 35,128 (randomly

selected 80 percent of training data), 26,346 (randomly selected 60 percent of training data),

17,564 (randomly selected 40 percent of training data), and 8,782 (randomly selected 20

percent of training data). Then, following the same steps in the experiment setting in

hypothesis 1a, I developed EHR models. With different equivalent sample sizes, I generated

many EHR-knowledge models and compared their performance with EHR models.

Experimental Results

Experimental results (Table 8) show that for CCS 7.2.1 and CCS 7.2.4, EHR-knowledge

models performed worse than EHR models (bolded values). In other categories, EHR-

knowledge models performed similarly to EHR models.
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Table 8: Performance Comparison of EHR Models and EHR-knowledge Models (EHR Sam-

ple Size is Large).

N M CCS

7.2.1

CCS

7.2.2

CCS

7.2.3

CCS

7.2.4

CCS

7.2.6

CCS

7.2.7

CCS

7.2.11

43,910 0 0.872 0.823 0.876 0.916 0.891 0.662 0.906

43,910 8,782 0.865 0.824 0.876 0.909 0.89 0.655 0.905

43,910 17,564 0.865 0.824 0.877 0.909 0.89 0.657 0.905

43,910 26,346 0.865 0.825 0.88 0.909 0.889 0.659 0.904

43,910 35,128 0.862 0.826 0.877 0.909 0.89 0.658 0.905

43,910 43,910 0.862 0.827 0.878 0.909 0.892 0.656 0.906

35,128 0 0.864 0.821 0.874 0.916 0.888 0.662 0.905

35,128 8,782 0.867 0.821 0.878 0.908 0.89 0.659 0.904

35,128 17,564 0.864 0.821 0.882 0.909 0.891 0.658 0.904

35,128 26,346 0.864 0.821 0.882 0.909 0.891 0.657 0.904

35,128 35,128 0.864 0.821 0.881 0.91 0.887 0.651 0.904

35,128 43,910 0.864 0.821 0.88 0.909 0.888 0.653 0.903

26,346 0 0.873 0.824 0.885 0.916 0.889 0.654 0.907

26,346 8,782 0.872 0.826 0.883 0.908 0.887 0.651 0.907

26,346 17,564 0.866 0.824 0.883 0.908 0.887 0.65 0.906

26,346 26,346 0.868 0.825 0.882 0.908 0.888 0.649 0.906

26,346 35,128 0.868 0.823 0.881 0.909 0.889 0.643 0.906

26,346 43,910 0.868 0.824 0.881 0.909 0.889 0.647 0.906

17,564 0 0.861 0.821 0.879 0.909 0.881 0.66 0.905

17,564 8,782 0.852 0.818 0.88 0.906 0.883 0.654 0.905

17,564 17,564 0.852 0.82 0.879 0.906 0.883 0.654 0.906

17,564 26,346 v0.851 0.819 0.883 0.906 0.883 0.654 0.906

17,564 35,128 0.85 0.822 0.881 0.906 0.883 0.651 0.906
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17,564 43,910 0.853 0.819 0.877 0.906 0.883 0.652 0.905

8,782 0 0.853 0.806 0.872 0.913 0.868 0.628 0.902

8,782 8,782 0.844 0.799 0.877 0.905 0.864 0.623 0.904

8,782 17,564 0.842 0.8 0.871 0.905 0.858 0.622 0.903

8,782 26,346 0.843 0.799 0.873 0.905 0.86 0.62 0.902

8,782 35,128 0.846 0.799 0.876 0.905 0.859 0.618 0.901

8,782 43,910 0.843 0.8 0.875 0.905 0.859 0.614 0.901

1d. When EHR sample size is large, models trained using EHR data only are

less clinically aligning than models trained using large sample size EHR data

and medical knowledge.

Experiment Setting

Similar to hypothesis 1b, for each CCS category, Ci, I compared Mie with Mieqm (N =

43910,M = 43910). I also used two ways to handle the situation that a physician anno-

tated feature does not appear in one model. Using the first approach, when one feature

did not appear in the model, I deleted it; the AUROCs are listed in table 9. Using the

second approach, if one feature did not appear in the model, I assigned its P (finding =

true|disease = true) = 0; the AUROCs are listed in table 10.

Experimental Results

The results in table 9 show that the AUROCs of EHR models were higher than those of

EHR-knowledge models, but their differences were not statistically significant. The results

in table 10 show that most AUROCs of EHR models (row 2) and EHR-knowledge models

(row 3) were similar, and their differences were not statistically significant.

Comparing the number of noisy features between EHR models and EHR-knowledge mod-

els, table 11 shows that and the noisy feature number between two models were not statisti-

cally significant different (two-sample sign test, p-value = 0.25). The feature number between

two models were also similar. That means that most features in the developed EHR models
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and EHR-knowledge models were clinically aligning. Overall, when using all four years of

training data (43,910 samples), I obtained diagnostic models that performed well and were

clinically aligning. In this situation, my approach to add medical knowledge, although not

harmful, was not necessary. This research hypothesis was not supported in my experimental

results.

Table 9: Clinical Meaningfulness of Nodes in EHR Models and EHR-knowledge Models

(EHR Sample Size is Large, Delete Missing)

model CCS 7.2.1 CCS 7.2.2 CCS 7.2.3 CCS 7.2.4 CCS 7.2.6 CCS 7.2.7 CCS 7.2.11

EHR model 0.930 0.717 0.453 0.518 0.578 0.578 0.627

EHR-knowledge model 0.744 0.693 0.460 0.503 0.578 0.446 0.685

P-value 0.01366 0.8036 0.951 0.9232 1 0.9168 0.6439

Table 10: Clinical Meaningfulness of Nodes in EHR Models and EHR-knowledge Models

(EHR Sample Size is Large, Missing as Zero)

model CCS 7.2.1 CCS 7.2.2 CCS 7.2.3 CCS 7.2.4 CCS 7.2.6 CCS 7.2.7 CCS 7.2.11

EHR model 0.510 0.668 0.455 0.681 0.513 0.618 0.606

EHR-knowledge model 0.775 0.574 0.467 0.462 0.513 0.632 0.635

P-value 0.1856 0.1707 0.8406 0.1312 1 0.9444 0.7036

Table 11: Numbers of Noisy Features (Numbers of All Features) in Models when EHR

Sample Size is Large.

model CCS 7.2.1 CCS 7.2.2 CCS 7.2.3 CCS 7.2.4 CCS 7.2.6 CCS 7.2.7 CCS 7.2.11

EHR model 1 (44) 14 (79) 16 (85) 6 (70) 3 (50) 3 (18) 12 (91)

EHR-knowledge model 1 (44) 15 (74) 16 (86) 8 (57) 3 (50) 4 (18) 12 (89)
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4.3 Experiment Settings and Results for Research Aim 2

Research Aim 2. Build a Sequential Diagnostic Model that Considers Diagnostic

Accuracy, Clinical Workflow, and Misdiagnosis Costs

To generate a sequential diagnosis tree model, I used two types of knowledge: (1) expert-

defined four-phase workflow to restrict the search of the nodes, (2) expert-defined misclas-

sification costs to calculate searching scores. In this way, the modeling process was able

to consider diagnostic accuracy, clinical workflow, and misdiagnosis costs simultaneously. I

compared the performance of the classification tree generated by the SDG-phase algorithm

and the SDG-no-phase algorithm with the classification trees generated using the multi-label

classification tree algorithm ML-C4.5 [17] , as well as policies learned by deep Q learning [110]

and tested multiple research hypotheses.

2a: The sequential diagnostic models generated using the SDG algorithm have a

higher diagnostic accuracy than the sequential diagnostic model generated using

the ML-C4.5 algorithm.

Experiment Setting

Since all three models (SDG-phase model, SDG-no-phase model, and ML-C4.5 model)

provided probabilities for each disease category, I used testing data (2014 data) to evaluate

their diagnostic performance in AUROCs for each CCS category.

For models with depth 10, I also calculated the testing accuracy for each of the three

models. Because these models did not provide diagnostic labels, thresholds were decided

using the training data. For each disease category in each model, the threshold value that

reached the highest accuracy in the training data was selected as the threshold for this

category. In each model (SDG-phase model, SDG-no-phase model, and ML-C4.5 model),

each disease category (out of eight categories) had a threshold value for diagnosis. Using

these thresholds and the probabilities from the SDG-phase model, SDG-no-phase model,

and ML-C4.5 model, I generated diagnostic labels for eight categories. With the generated

diagnostic labels, I calculated accuracies for the three models using true diagnosis information
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in the testing dataset. If an encounter included multiple diseases, a diagnosis was considered

to be correct only if all of the diseases were diagnosed correctly.

Experimental Results

Figure 4 shows the comparison of models’ diagnostic accuracies using testing encounters

with true diagnosis of category 7.2.1. The horizontal axis is the depth of the sequential tree

models, and the vertical axis is the AUROC of models. The SDG-phase model and SDG-

no-phase model’s performance increased as depth increased. The SDG-no-phase models had

higher accuracy than ML-C4.5 models in most of the time. The SDG-phase models had the

lowest AUROC. The ML-C4.5 model’s performance increased when depth increased. But

when the depth number became too large (depth 14 in Figure 4), AUROC decreased, indi-

cating potential over-fitting. Similar patterns can be found in Figure 5 (comparison result

of Category 7.2.2), Figure 6 (comparison result of Category 7.2.3), Figure 7 (comparison

result of Category 7.2.4), Figure 8 (comparison result of Category 7.2.6), Figure 9 (compar-

ison result of Category 7.2.7), Figure 10 (comparison result of Category 7.2.89), Figure 11

(comparison result of Category 7.2.11).
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Figure 4: Classification Tree Diagnostic Accuracy Comparison–Category CCS 7.2.1 (Heart

valve disorders)
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Figure 5: Classification Tree Diagnostic Accuracy Comparison–Category CCS 7.2.2 (Peri-;

endo-; and myocarditis; cardiomyopathy)
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Figure 6: Classification Tree Diagnostic Accuracy Comparison–Category CCS 7.2.3 (Acute

myocardial infarction)
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Figure 7: Classification Tree Diagnostic Accuracy Comparison–Category CCS 7.2.4 (Coro-

nary atherosclerosis and other heart disease)
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Figure 8: Classification Tree Diagnostic Accuracy Comparison–Category CCS 7.2.6 (Pul-

monary heart disease)
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Figure 9: Classification Tree Diagnostic Accuracy Comparison–Category CCS 7.2.7 (Other

and ill-defined heart disease)
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Figure 10: Classification Tree Diagnostic Accuracy Comparison–Category CCS 7.2.89 (Con-

duction disorders and cardiac dysrhythmias)
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Figure 11: Classification Tree Diagnostic Accuracy Comparison–Category CCS 7.2.11 (Con-

gestive heart failure; nonhypertensive)

Table 12 provides the AUROCs of three sequential tree models for diagnosing different

disease categories. In each column, if the highest value(s) are statistically significantly higher

than other values, then the number(s) are bolded. These results show that the SDG-no-phase

model’s performance was significantly better than ML-C4.5 model’ in most of the time. The

SDG-phase model performed the worst. The SDG-phase model restricted the searching to

earlier phases before exploring other phases. With this restriction, the SDG-phase model did

not choose the most discriminative features and thus had a worse diagnostic performance.
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Table 12: Performance of Sequential Tree Models

Depth Model CCS 7.2.1 CCS 7.2.2 CCS 7.2.3 CCS 7.2.4 CCS 7.2.6 CCS 7.2.7 CCS 7.2.8 and CCS 7.2.9 CCS 7.2.11

5 ML-C4.5 0.6692 0.6776 0.6551 0.8314 0.6726 0.6065 0.8056 0.7887

5 SDG-no-phase 0.667 0.706 0.7574 0.8539 0.6725 0.6013 0.8126 0.8161

5 SDG-phase 0.6073 0.6508 0.6793 0.7917 0.6673 0.6101 0.7961 0.7657

6 ML-C4.5 0.6825 0.6841 0.6954 0.8508 0.6892 0.6085 0.8112 0.7953

6 SDG-no-phase 0.6792 0.7062 0.7598 0.8671 0.6718 0.6013 0.8142 0.8156

6 SDG-phase 0.6076 0.6615 0.6855 0.7946 0.6682 0.6245 0.7962 0.7848

7 ML-C4.5 0.6886 0.6869 0.7484 0.8566 0.6805 0.6331 0.8227 0.7996

7 SDG-no-phase 0.6928 0.708 0.7596 0.8783 0.6735 0.6013 0.8196 0.8165

7 SDG-phase 0.6082 0.6653 0.6875 0.8006 0.669 0.6255 0.7971 0.7897

8 ML-C4.5 0.7203 0.6871 0.7427 0.8615 0.6953 0.6264 0.8321 0.8044

8 SDG-no-phase 0.7018 0.7083 0.7598 0.8823 0.6745 0.615 0.8318 0.8204

8 SDG-phase 0.6095 0.6701 0.6882 0.8008 0.6712 0.6288 0.797 0.7956

9 ML-C4.5 0.7332 0.6801 0.7495 0.8647 0.7591 0.6269 0.8364 0.8049

9 SDG-no-phase 0.7329 0.7108 0.764 0.8836 0.6764 0.6154 0.8371 0.8249

9 SDG-phase 0.6093 0.6699 0.6896 0.8024 0.6754 0.6298 0.7988 0.7969

10 ML-C4.5 0.7325 0.6719 0.767 0.8692 0.7572 0.6205 0.8427 0.8019

10 SDG-no-phase 0.7577 0.7127 0.7648 0.8846 0.6773 0.6203 0.8392 0.8268

10 SDG-phase 0.6095 0.6707 0.6917 0.8029 0.677 0.6299 0.8 0.7995

11 ML-C4.5 0.7505 0.6701 0.7666 0.8695 0.7493 0.6164 0.8446 0.8001

11 SDG-no-phase 0.7811 0.7133 0.7695 0.8868 0.6893 0.6205 0.8394 0.8307

11 SDG-phase 0.6095 0.6699 0.6915 0.803 0.7015 0.6299 0.8003 0.8007

12 ML-C4.5 0.7578 0.6697 0.771 0.8679 0.742 0.6095 0.8433 0.7962

12 SDG-no-phase 0.7881 0.7149 0.7694 0.8876 0.7399 0.6208 0.8407 0.8311

12 SDG-phase 0.6095 0.6658 0.6909 0.8028 0.702 0.6299 0.8004 0.8014

13 ML-C4.5 0.7625 0.6632 0.7687 0.8693 0.7284 0.593 0.8392 0.7902

13 SDG-no-phase 0.7938 0.716 0.7834 0.8876 0.7421 0.6206 0.8396 0.8341

13 SDG-phase 0.6095 0.666 0.6905 0.8034 0.7016 0.6302 0.8003 0.8019

14 ML-C4.5 0.758 0.6571 0.7488 0.8662 0.7286 0.5875 0.8377 0.7856

14 SDG-no-phase 0.7953 0.7166 0.7834 0.889 0.7446 0.621 0.8422 0.836

14 SDG-phase 0.6095 0.666 0.6913 0.8033 0.7025 0.6302 0.8003 0.8022

15 ML-C4.5 0.7559 0.6529 0.7377 0.8651 0.7151 0.5864 0.8359 0.7777

15 SDG-no-phase 0.7989 0.7176 0.7835 0.8892 0.7452 0.6207 0.8427 0.8389

15 SDG-phase 0.6095 0.6663 0.6931 0.8033 0.7025 0.6302 0.8003 0.8024

For the model with depth 10, the ML-C4.5 model had the highest accuracy (0.4772).

The SDG-no-phase model performed slightly worse (0.4621). The SDG-phase model had the

lowest accuracy (0.4035).
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2b: The sequential diagnostic models generated using the SDG algorithm are

more clinically aligning than the sequential diagnostic model generated using the

ML-C4.5 algorithm.

Using three different modeling strategies (SDG algorithm, SDG algorithm without con-

sidering phase information, and ML-C4.5 algorithm), I obtained three sequential diagnostic

models: an SDG-phase model, SDG-no-phase model, and ML-C4.5 model. To compare their

clinical alignment, I used two measurements: (1) calculating the expected misdiagnosis

costs of each model in a testing dataset. Since an important goal in clinical practice is to

reduce severe diagnosis errors and misdiagnosis costs may reflect the consideration of clinical

severity and clinical alignment. A low misdiagnosis cost indicates few severe mistakes. (2)

retrieving diagnosis paths for many representative real-world records and asking a physician

to review them.

Misdiagnosis Costs Calculation

For SDG-phase and SDG-no-phase methods, in the training data, for each category, I used

the expected misdiagnosis costs as a criterion to select the best probability threshold, then

used this threshold to do prediction in test data. I used the following steps:

[1] For a CCS category, Ci, I used the training data, Di, to decide the best threshold for

disease diagnosis: I sorted disease probability values from highest to lowest, searched the

threshold from the highest value to the lowest, and found the threshold that could lead

to the lowest total expected misdiagnosis costs in the training data. Then this threshold,

pi , was used as the threshold for disease diagnosis in the CCS category. I used the same

approach to find the best thresholds for all CCS categories.

[2] I used pi and the probabilities of the SDG model for each encounter in the test data to

generate a diagnostic label for CCS category, Ci, in the test data. In the same way, I

generated a diagnostic label for each of the eight CCS categories.

[3] Using the generated diagnostic labels, I used the expert defined misdiagnosis costs matrix

to calculate the expected misdiagnosis costs for all encounters in the test data.

[4] I added up these expected misdiagnosis costs to obtain the total expected misdiagnosis

costs for each algorithm.
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When calculating the total expected misdiagnosis costs for the ML-C4.5 model in the

test data, I used accuracy instead of total expected misdiagnosis costs in the training data

as a score to find the best threshold for probabilities in each CCS category. Using these

thresholds, I generated diagnostic labels for the ML-C4.5 model’s probabilities in the test

data. Then, with these diagnostic labels and the expert defined misdiagnosis costs matrix,

I calculated the total expected misdiagnosis costs for the ML-C4.5 model in the test data. I

used the two-sample sign test to compare misdiagnosis costs.

Sequential Diagnosis Path Review

I selected 20 most representative records for each category from test data, input 20×8 = 160

paths into each model, obtained the sequential diagnosis path of each record, then asked

physicians to annotate whether the diagnosis path makes sense. The larger the number of

paths that were agreed by a physician expert, the more clinical alignment the model had.

To select the 20 most representative paths for physician review, I used the following steps

for each disease category in each model:

[1] For each category, Ci, I assigned a subset of encounters, Subseti, in the testing dataset

that had any diagnosis in this category.

[2] I conducted an unsupervised k-means clustering on encounters in Si. The clustering

minimized within-cluster variances; the Euclidean distances between two points were

calculated based on the values of the clinical findings of these two encounters.

[3] For each category, I used the k-means clustering approach to find 20 cluster centers.

Then for each cluster center, I used the nearest point to represent the center. In this

way, I obtained 20 encounters that represented 20 different clinical manifestations of

this disease category. The selection of these 20 representative encounters was completely

independent of sequential diagnostic models.

[4] I used an SDG-phase model, SDG-no-phase model, and ML-C4.5 model to generate

diagnostic paths for these 20 encounters and requested a physician expert to review.

Experimental Results

Table 13 lists the misdiagnosis costs matrix that I elicited from a physician expert.
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Misdiagnosis occurs when a doctor diagnoses a patient with a disease but the patient does

not have the disease at that time. A missed diagnosis means that the patient has a disease

but gets no diagnosis. The estimated costs range from 1 to 10, with 1 be the lowest cost

and 10 be the highest cost. For instance, for a patient having a disease in CCS 7.2.1, if a

physician missed this disease, then the cost is 2. If a patient does not have a disease in CCS

7.2.1 but a physician mistakenly diagnoses that the patient has the disease, then the cost is

6. The differences in cost values indicate the differences in the severity of the mistakes.

Table 13: Misdiagnosis Costs Defined by an Expert

CCS category type of error estimated cost

CCS 7.2.1 missed diagnosis 2

CCS 7.2.1 misdiagnosis 6

CCS 7.2.2 missed diagnosis 3

CCS 7.2.2 misdiagnosis 7

CCS 7.2.3 missed diagnosis 5

CCS 7.2.3 misdiagnosis 10

CCS 7.2.4 missed diagnosis 2

CCS 7.2.4 misdiagnosis 5

CCS 7.2.6 missed diagnosis 2

CCS 7.2.6 misdiagnosis 5

CCS 7.2.7 missed diagnosis 2

CCS 7.2.7 misdiagnosis 6

CCS 7.2.89 missed diagnosis 1

CCS 7.2.89 misdiagnosis 4

CCS 7.2.11 missed diagnosis 3

CCS 7.2.11 misdiagnosis 7
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Using the steps mentioned in the experimental setting, I calculated the expected misdi-

agnosis costs of the SDG models and ML-C4.5 models in the test data. Figure 12 shows that

the SDG models had lower misdiagnosis costs than the ML-C4.5 model after the depth was

greater than 7. The misdiagnosis costs of ML-C4.5 increased as depth increased, which may

result from potential model over-fitting. The SDG-no-phase had the lowest misdiagnosis

costs most of the time.

Figure 12: Classification Tree Misdiagnosis Costs Comparison

Now, let us look at the reviewing result of sequential diagnosis paths. In total, I selected

8× 20 = 160 encounters (20 for one category) for physician expert review. Each encounter

had three diagnostic paths, each of which was generated by one model (depth=10). A

physician expert reviewed these paths and marked 1 or 0 to indicate whether a path was
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clinically correct for diagnosing a disease category: 1 indicated correct; 0 indicated wrong.

Using the expert’s annotation as gold standard, the accuracies of the paths were: SDG-phase

model (85 out of 160), SDG-no-phase model (97 out of 160), ML-C4.5 model (81 out of 160).

The SDG models were more clinically aligning with the ML-C4.5 model. Table 14 provides

frequency counts of the clinically aligned paths in each category. The SDG-no-phase models

have more clinically aligned paths than ML-C4.5 model. This difference was not statistically

significant (two sample sign test p-value=0.125), due to the small sample size (eight CCS

categories mean eight data points). The difference of number of clinically aligned paths

between SDG-no-phase model and SDG-phase model was also not statistically significant

(two sample sign test p-value=0.6875). Also difference of number of clinically aligned paths

between SDG-phase model and ML-C4.5 model was not statistically significant (two sample

sign test p-value=1).

Table 14: Frequency of Clinically Aligned Paths

Category ML-C4.5 model SDG-no-phase model SDG-phase model

CCS 7.2.1 5 9 4

CCS 7.2.2 8 9 10

CCS 7.2.3 15 18 16

CCS 7.2.4 13 16 13

CCS 7.2.6 11 7 9

CCS 7.2.7 10 15 10

CCS 7.2.89 11 11 11

CCS 7.2.11 8 12 12

total 81 97 85
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The misdiagnosis cost and clinical path comparison results partially proved the research

hypothesis: The sequential diagnostic models generated using the SDG algorithm are more

clinically aligning than the sequential diagnostic model generated using the ML-C4.5 algo-

rithm. It is surprised that SDG-no-phase models were more clinically aligning than SDG-

phase models. Comparisons between the SDG-no-phase algorithm and the SDG-phase algo-

rithm are provided in Section 5.1.4. Discussions on future work of SDG-phase algorithm is

provided in Section 5.4.4.

2c: The sequential diagnostic models generated using the SDG algorithm have

a higher diagnostic accuracy than the policies developed by one implementation

of deep Q learning algorithm.

Experiment Setting

For the deep Q learning, I set demographic features as explicit features, and chose a re-

ward discount 0.95. The learned DQN model provided one final diagnosis for each encounter

in the test data. I only used encounters (in the test data) that had one diagnosis (instead of

multiple diagnoses) for evaluation and comparison. For each encounter, the SDG-no-phase

model and SDG-phase model both provided a probability for each disease category. Each

encounter was assigned to the category with the highest probability. Comparing the label

generated by models against the true disease category, I obtained a measure of diagnostic

accuracy.

Table 15 lists research data that were used in training and testing a deep Q learning

model. The research data included 29,607 training samples and 8,532 test samples, with

1799 unique features. The data were saved in pickle files with a total size of 295.4G before

using them as input for the deep Q learning implementation.
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Table 15: EHR Data for Deep Q Learning

CCS Description Cases in Training

data

Cases in Test data

7.2.1 Heart valve disor-

ders

1713 513

7.2.2 Peri-; endo-; and

myocarditis; car-

diomyopathy

628 166

7.2.3 Acute myocardial

infarction

570 170

7.2.4 Coronary

atherosclerosis

and other heart

disease

9865 2603

7.2.6 Pulmonary heart

disease

795 333

7.2.7 Other and ill-defined

heart disease

298 57

7.2.89 Conduction disor-

ders and cardiac

dysrhythmias

14742 4421

7.2.11 congestive heart

failure; nonhyper-

tensive

996 269

Experimental Results

The training process of a deep Q model finished after about 125 hours on DELL Precision
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5820 Tower with Nvidia RTX A5000, 24GB, 4DP. Table 16 shows that the SDG-no-phase

model performed the best. The SDG-phase model performed better than the DQN model.

In fact, the DQN model assigned the category (CCS 7.2.8 or CCS 7.2.9) to all encounters in

testing data. This category had the largest percentage in both training and testing data.

Table 16: Accuracy Comparisons between SDG and Deep Q Learning

Model Depth=5 Depth=10 Depth=15

SDG-no-phase 0.689 0.737 0.755

SDG-phase 0.682 0.688 0.687

DQL 0.518 0.518 0.518

2d: The sequential diagnostic models generated using the SDG algorithm are

more clinically aligning than the policies developed by one implementation of

deep Q learning algorithm.

Experiment Setting

Because the deep Q learning model provides only one diagnosis for each encounter, I

selected encounters that only had one diagnosis in the testing dataset for evaluation. The

SDG-phase model and SDG-no-phase model all provided probabilities for each category.

Thus, for each model, the estimated diagnostic label for one encounter would be the category

with the highest probability in that encounter. With these estimated diagnostic labels, true

diagnostic labels, and the misdiagnosis matrix in Table 13, I calculated expected misdiagnosis

costs for encounters with one diagnosis. Since the DQN model directly assigns CCS7.2.89

to all testing encounters without asking any question, there is no diagnosis path for review.

Experimental Results

The SDG models had much lower misdiagnosis costs than the deep Q models in the

testing data. The misdiagnosis costs in the testing dataset were: DQN model, 25611; SDG-
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no-phase model, 15277; SDG-phase model, 18236.

2e: The sequential diagnostic models generated using the SDG algorithm uses

less resources than models generated by ML-C4.5 algorithm and one implemen-

tation of deep Q learning algorithm.

Experiment Setting

I compared the resource usage suggested by the developed models. An important consid-

eration for emergency department physicians is to get the final diagnosis as fast as possible

- the fewer resources as possible. On the premise of keeping a high diagnostic quality, the

fewer the number of the lab tests, the faster physicians can get a final diagnosis.

Experimental Results

Figure 13 shows that ML-C4.5 models used many more features than the SDG-phase

model and SDG-no-phase models. The SDG-no-phase models used fewest features. Next,

for models with tree depth 10, I compared feature information of the SDG-phase model,

SDG-no-phase model, and ML-C4.5 model. The SDG-phase model included 32 features

(Appendix C), including 12 signs or symptoms, 11 findings, 4 diseases or syndromes, 2

mental or behavioral dysfunctions, 2 pathologic functions, and 1 organism function. When

generating the SDG-phase model, the SDG (phase) algorithm restricted its search to findings

that had been included in any of eight EHR models. It explored the candidate features in

phase 1 first, followed by phase 2, and then phase 3 and phase 4. It only explored features in

the next phase after no feature in the previous phase was found to be useful. Because of this

restriction, the developed model may align with clinical workflow well. The SDG-no-phase

model included 76 features (Appendix D), including 16 findings, 6 diseases or syndromes,

15 organic chemical finding, 9 medical devices, 7 therapeutic or preventive procedures, 2

diagnostic procedures, and 1 laboratory procedure. When generating the SDG-no-phase

model, the SDG algorithm restricted its search on findings that had been included in any of

the eight EHR models while ignoring phase information.
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Figure 13: Resource Usage Comparison

The ML-C4.5 model included 239 features (Appendix E), including 39 findings, 17

diseases or syndromes, 32 signs or symptoms, 13 laboratory procedures, 12 diagnostic pro-

cedures, 14 therapeutic or preventive procedures, and 33 pharmacologic substances. When

generating the ML-C4.5 model, the algorithm searched for the best feature among candidate

features. The candidate feature set was the union of feature sets, where each feature set

contained features whose information gain scores for a disease category (as measured using

training data) were greater than 0.0001. The deep Q network was designed to provide

scores for all candidate actions. Therefore, it involved all features in the candidate feature

set. I used the same information gain set (as ML-C4.5) for deep Q learning.

I measured diagnostic quality based on the number of lab tests suggested by the models

(depth = 10) in the research data. The SDG-phase model includes 32 features (Appendix

C) and does not include any lab test. The SDG-no-phase model has 76 features (Appendix
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D), including 2 diagnostic procedures (cardiac catheterization procedures performed, Holter

Electrocardiography), 1 laboratory procedure (digoxin blood measurement), and 7 therapeu-

tic or preventive procedures (coronary artery bypass surgery, dialysis procedure, intubation,

percutaneous transluminal coronary angioplasty, replacement of aortic valve, and replace-

ment of mitral valve).

The ML-C4.5 model has 239 features (Appendix E), including 13 laboratory procedures,

12 diagnostic procedures, and 14 therapeutic or preventive procedures. Laboratory pro-

cedures in ML-C4.5 model include blood thyroid stimulating hormone analysis, complete

blood count, creatine kinase measurement, folic acid measurement, international normalized

ratio, laboratory studies, liver function tests, oxygen saturation measurement, potassium

measurement, sodium measurement, total protein measurement, vitamin d measurement,

and white blood cell count procedure. Diagnostic procedures include auscultation, di-

agnostic imaging, diagnostic radiologic examination, echocardiography, exercise stress test,

holter electrocardiography, pulse oximetry, palpation, plain chest x-ray, plain x-ray, teleme-

try, and work-up. Therapeutic or preventive procedures include bypass, catheteriza-

tion, coronary artery bypass surgery, dialysis procedure, hysterectomy, intubating, irradi-

ation of neck, knee strapping, organ transplantation, pacemaker placement, pain control,

replacement of aortic valve, stabilization, and triage.
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5.0 Discussions, Conclusions, Contributions, and Future Work

This chapter will discuss the algorithms and experimental results. Then, it will present

conclusions and discuss research contributions and future directions.

5.1 Discussions

5.1.1 Using QMR Knowledge to Enhance Diagnostic Modeling

When UPMC data sample size was small, EHR-knowledge model performance was

better than EHR-model performance. The reason is that with very few training samples,

it is hard to distinguish useful features and noisy features. The QMR knowledge helps to

emphasize useful features that are highly influential and thus help reduce noisy features.

When UPMC data sample size was large, EHR-knowledge model performance was

similar to EHR-model performance. The reason is that with very large training samples, it

is easy to distinguish useful features and noisy features using EHR data itself. With very

large training samples, a model can find all classification patterns in training data. At that

point, adding domain knowledge is not very useful.

5.1.2 Comparison of Strategies for Developing a Sequential Diagnostic System

In Chapter 4, I presented experimental results comparing four different sequential diag-

nostic models - an SDG phase model, an SDG-no phase model, an ML-C4.5 model, and a

DQN model - in three different aspects: diagnostic accuracy,clinical alignment (misdiagnosis

costs and meaningfulness of diagnostic path), and medical resource usage. Below, I summa-

rize and discuss these results.

Diagnostic Accuracy (SDG-no-phase > ML-C4.5≥ SDG-phase > DQN)

Comparing diagnostic accuracy, results showed that the SDG-no-phase model performed
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the best. The SDG-no-phase model leveraged pre-trained Bayesian network models that

have been developed using a cross-validation approach to avoid over-fitting. Without con-

trol for over-fitting, the ML-C4.5 model began to overfit the data when depth was increased.

The SDG-phase model was developed by restricting the feature search process in a small set

of annotated candidate features in a particular phase. With this restriction, the diagnostic

path can lead to the choice of checking a syndrome over requiring a laboratory test. When

we required these models to make diagnosis within 15 steps, the SDG-phase model performed

slightly worse than the SDG-no-phase model and the ML-C4.5 model, which do not restrict

the search on the features’ phase stage. The discussions about DQN are provided in Sections

5.1.5. and 5.4.7.

Misdiagnosis Costs (SDG-no-phase< SDG-phase < ML-C4.5)

For misdiagnosis costs, SDG models had lower costs than the ML-C4.5 model. The SDG

models’ development used a score, the expected misdiagnosis costs, which took into account

the expert-defined misdiagnosis costs matrix (Table 13) that weighted disease categories dif-

ferently. The ML-C4.5 model’s development did not consider the misdiagnosis costs matrix

and treated disease categories as equally important. Most features in the SDG-phase model

were phase 1 features that had weak discriminative ability when making diagnosis. Many

features in the SDG-no-phase model were phases 3 and 4 features that had strong discrimi-

native ability when making diagnosis. Therefore, the SDG-phase model’s chance of making

mistakes were higher than SDG-no-phase model, and it had a higher misdiagnosis cost.

Clinical Meaningful Diagnostic Path (SDG-no-phase > SDG-phase > ML-C4.5)

Regarding diagnostic paths’ clinical meaningfulness, the SDG models’ paths were more

clinically aligning than the ML-C4.5 model’s paths. Because the ML-C4.5 algorithm is purely

data-driven, it sometimes induced a few noisy features that may be clinically irrelevant to a

target disease. My SDG algorithm, on the other hand, relies on pre-built Bayesian network

models, of which the development process involved cross validation that can help reduce

noisy features. Because SDG-no-phase search was not restricted to phases to find the best

feature, it included many more clinically discriminative features, which enhanced its clinical
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meaningfulness. Although the physician’s annotation of phase information help SDG-phase

model reduce a few noisy features, without many important clinical features, SDG-phase

model was less clinically aligning than the SDG-no-phase model.

Resource Usage (SDG-phase < SDG-no-phase < ML-C4.5)

In respect to resource usage, the SDG-phase model used the fewest features, most of

which were signs, symptoms, or findings. The ML-C4.5 model used the highest number

of features. The ML-C4.5 model (depth 10) includes 39 laboratory procedures, diagnostic

procedures, or therapeutic or preventive procedures. The SDG-no-phase model (depth 10)

used 10 of these types of procedures, while at the same time, it reached a high diagnostic

accuracy, highest clinical alignment, and lowest misdiagnosis costs. Overall, the SDG-no-

phase algorithm performed better than the ML-C4.5 algorithm.

5.1.3 Combining EHR Data and Medical Knowledge to Develop Sequential

Diagnostic Models

This dissertation explored strategies to integrate medical knowledge into the EHR ma-

chine learning process. Use of three types of knowledge was studied: an expert-defined

diagnostic system, expert-defined misdiagnosis costs, and knowledge of clinical workflow.

I used the QMR system as the expert-defined diagnostic system. Since the 1970s, the

development of the QMR system represents rich medical knowledge (diseases, clinical find-

ings, and their relationships) rigorously defined by physician experts. One of the creators of

QMR, Dr. Randolph A. Miller, kindly generated synthetic data of visits having heart dis-

eases and shared them with me. With these synthetic data, I generated Naive Bayes models

for diagnosing heart diseases (called QMR models in my dissertation). Naive Bayes models

can represent QMR knowledge well. Splitting synthetic data into training and testing data,

the developed Naive Bayes models reached very high AUROCs in the testing portion of the

synthetic data (CCS 7.2.1: 0.971; CCS 7.2.2: 0.976; CCS 7.2.3: 0.998; CCS 7.2.4: 0.987;

CCS 7.2.6: 0.983; CCS 7.2.7: 0.978; CCS 7.2.11: 0.972).

I designed a Bayesian approach to add the QMR models’ knowledge into EHR modeling
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(Section 3.2.2), where the degree of adding knowledge can be adjusted by setting different

values of equivalent sample size. I tested the approach’s performance in different scenar-

ios, varying the sample size of EHR data and the value of equivalent sample size. Results

showed that adding the QMR model’s knowledge can help significantly reduce noisy features

and improve model performance when there is a small amount of EHR data; QMR model

may weight equally (or slightly less) important as EHR data. When I used a large amount

of UPMC EHR data for modeling, adding knowledge did not help much in regard to per-

formance. Further investigation may focus on whether adding knowledge can improve the

robustness of a developed model when applying it to a healthcare system over years or to a

different healthcare system.

The next domain knowledge I studied is the expert-defined misdiagnosis costs for sequen-

tial diagnostic modeling. The misdiagnosis costs could be measured in terms of a patient’s

physical and/or mental health, and clinical resource usage. The goal of this study was not

to provide an economic or utility assessment of misdiagnosis costs. Instead, the misdiagno-

sis costs were used to develop sequential diagnostic models that penalized more heavily on

severe mistakes during the model development process. To evaluate model performance, I

requested a physician expert to provide a score (ranged from 1 to 10) to indicate the dif-

ferent degree of costs of different diagnostic errors, and integrated the resulting diagnostic

matrix into the search process of the SDG algorithm. The developed SDG models had lower

misdiagnosis costs in testing data than the ML-C4.5 model, which did not use the misdiag-

nosis costs information for model development. Future work can investigate how to create

more accurate assessments of costs of various mistakes in the modeling process as well as

comprehensive economic analysis or utility analysis on computational sequential diagnosis

for clinical decision support in ED.

In addition, to integrate the knowledge of clinical workflow, features were grouped in four

phases: the triage nurse phase (1), the physician interview phase (2), the physician exam

phase (3), and the lab test phase (4). Other were labelled as 5. The SDG-phase model was

developed with the search process restricted to exhaustively choose a useful feature in an

earlier phase before going to a next phase, aiming to make the SDG-phase model more in

alignment with clinical workflow. Comparing paths of representative encounters, the SDG-
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phase model was more clinically aligning than the ML-C4.5 model. However, the SDG-phase

model was less clinically aligning than the SDG-no-phase model, which may result from the

reduced diagnostic power of the SDG-phase model. On the other hand, integrating the

knowledge of clinical workflow made the SDG-phase model efficient - but only when relying

on syndromes and findings, and not replying on any laboratory exam.

5.1.4 Comparison between the SDG-phase Algorithm and the SDG-no-phase

Algorithm

When developing diagnostic sequence models, both SDG-phase and SDG-no-phase al-

gorithm conducted a greedy search strategy with the same score – the change in expected

misdiagnosis costs estimated using diagnostic models, the expert-developed misdiagnosis ma-

trix, and encounters’ feature values in the training data. The difference between the two

algorithms is that the SDG-phase algorithm firmly restricts its search in one phase until no

feature can reduce the expected misdiagnosis costs. The SDG-no-phase algorithm does not

have this restriction.

With this restriction, the generated SDG-phase model used fewest procedures. The

generated SDG-phase model actually performed less accurate than the SDG-no-phase model.

That is because the SDG-phase model included too many phase 1 feature (nurse-triage

feature) and almost no features from other phases. And because of low accuracy, the number

of meaningful diagnosis paths of SDG-phase model was lower than that of the SDG-no-phase

model.

5.1.5 Deep Q Learning Performance

The reason why deep Q learning model did not perform well in sequential diagnosis is

that: (1) The action space is too large. Unlike many reinforcement learning tasks, which

have few action options, a sequential diagnosis has a much larger number of action options,

because there are so many symptoms to check and so many lab test options. (2) There are

unclear immediate rewards. In many reinforcement learning tasks, the environment setting

often has clear rules about rewards and can provide explicit information about immediate
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rewards. In medical diagnosis, the immediate reward is often unclear and hard to define.

The silver standard about rewards in different states (estimated using a deep neural network

model) could be very inaccurate. This inaccuracy makes the parameter learning of a deep

Q network very difficult.

These challenges were also discussed in the paper [97]. This previous study used a

knowledge-infused context-driven (KI-CD) hierarchical reinforcement learning algorithm to

learn diagnostic policies for 90 diseases, and compared their algorithm with other algorithms,

including Unified Dialogue Policy (UDP) algorithm and hierarchical reinforcement learning

(HRL) algorithm. The KI-CD algorithm got the best performance, with a success rate

(accuracy) around 0.57; success rate of the UDP was 0.342, and the success rate of HRL was

0.504. The authors state the reason for the low performance is: “the underlying huge action

space (all symptoms + all diseases + additional actions such as greeting and close), which

requires handling by a single policy.” Therefore, further exploration of new algorithms for

sequential diagnosis may focus on reducing the action space and providing a better estimation

of immediate rewards.

5.1.6 Comparison of the SDG-no-phase Algorithm with Gorry and Barnett’s

Classical Algorithm

Dr. Anthony G. Gorry and Octo G. Barnett are two pioneers in computational medicine.

Their work on computer-aided sequential diagnosis [30] is the starting point of this research

project.

In this section, I use a simple example to compare the SDG-no-phase algorithm with

Gorry and Barnett’s algorithm [30], followed by a summary table of the differences of the

two algorithms. Because the main difference between the SDG-phase algorithm and the SDG-

no-phase algorithm is whether to use phase to restrict the search of features in a smaller

space, I only compare the SDG-no-phase algorithm with Gorry and Bernett’s algorithm.

Since Gorry and Barnett’s algorithm can only handle scenarios when patients only have one

disease, in the simple example, every patient has one of the three diseases (d1, d2, and d3).

For these patients, a physician can order three tests (t1, t2, and t3).
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Gorry and Barnett’s Algorithm

In Gorry and Barnett’s approach [30], for a three-disease scenario, six misdiagnosis costs

(called decision losses in the paper) were defined: diagnosing a patient with d1 to have d2

as cost(d1 → d2), and similarly, cost(d1 → d3), cost(d2 → d1), cost(d2 → d3), cost(d3 → d1),

and cost(d3 → d2). There is also a defined knowledge base about the conditional probabilities

of P (sj|di) where s1, s2, s3, s4 are four attributes that can be observed through tests with

some testing costs (t1 → s1, t2 → s2, t3 → s3 and s4). At each decision point, the system

can use Bayes rules to get an estimated distribution of diseases based on current observed

evidence. At a particular time point, the probabilities of having d1, d2, and d3 are p1, p2,

and p3 respectively. Then, the expected cost of misdiagnosis (denoted by Q in their paper)

is the minimum value of the three values listed below:

• If making a diagnosis of d1, then the cost is p1×0+p2×cost(d2 → d1)+p3×cost(d3 → d1).

• If making a diagnosis of d2, then the cost is p1×cost(d1 → d2)+p2×0+p3×cost(d3 → d2).

• If making a diagnosis of d3, then the cost is p1×cost(d1 → d3)+p2×cost(d2 → d3)+p3×0.

If required to make a diagnosis at this time point, then the diagnosis will be the disease

that corresponds to the lowest cost among the three values. From these formulas, we can

see that Gorry and Barnett’s algorithm did not use the true disease statuses of patients in a

collected training dataset. It did not need a training dataset and instead used pi to estimate

the probability of having the disease di for a patient.

Gorry and Barnett’s algorithm chooses the next test for a given patient by comparing

the expected diagnosis values (denoted as EDC in their paper) that are associated with each

of the three test options. Calculating the EDC value for a test t1 considers possible results

of the attribute s1 that the test brings with the formula: ETC1 = C1 +
∑

k P{sk} × Qk,

where C1 is the cost of conducting test t1, and sk is a possible result of test t1 and Qk is the

expected cost of an optimal decision after using the value of sk to update the estimation of

the distribution of diseases and choose the lowest value of expected misdiagnosis costs. The

test with the lowest EDC was selected as the next test for the patient.

SDG-no-phase Algorithm

For the three-disease example, the misdiagnosis costs matrix used by the SDG algorithm
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also includes six values: M(d̄1|d1), M(d1|d̄1), M(d̄2|d2), M(d2|d̄2), M(d̄3|d3), M(d3|d̄3). The

meaning of these six values is different from those used in Gorry and Barnett’s algorithm.

M(d̄i|di) is the cost of ignoring a disease when a patient has the disease di, while M(di|d̄i)

is the cost of diagnosing a disease di when a patient does not have the disease.

When developing a sequential diagnostic model, the training dataset includes patients

for which the true disease statuses are provided. Let the total number of patients be n;

the number of patients with d1 be n1; the number of patients with d2 be n2; the number of

patients with d3 be n3. With certain clinical evidence, three Bayesian network models provide

three probabilities, p(d1|E), p(d2|E), and p(d3|E). For a patient with a true disease status

of d1, the expected misdiagnosis costs is (1 − p(d1|E)) ×M(d̄1|d1) + p(d2|E) ×M(d2|d̄2) +

p(d3|E)×M(d3|d̄3). The rational is that for this patient, three types of diagnosis mistakes

can be made: ignoring d1, concluding that the patient has d2, and concluding that the patient

has d3. The probability of making the first mistake is 1 − p(d1|E). This assumes we are

going to flip a coin with probability p(d1|E) of being “heads” (i.e., make a diagnosis of d1).

This assumption mimics the scenario that a computer agent makes a diagnosis with this

flipping coin approach. When the computer agent works, the probability of not diagnosing

di is 1 − p(d1|E) for every patient. If a patient has the disease, then the diagnosis of not

having di is a diagnostic error. Similarly, the probability of making the second mistake is

p(d2|E), and for the third mistake p(d3|E). Thus, the costs of these three mistakes are

weighted and summed up together as the expected misdiagnosis costs for a patient of which

the true disease status is d1. Since there are n1 patients with d1, the total costs of this type of

patients in the training population is: n1× [(1−p(d1|E))×M(d̄1|d1)+p(d2|E)×M(d2|d̄2)+

p(d3|E)×M(d3|d̄3)]. Similarly, the total costs of patients with d2 in the training population

is: n2×[(p(d1|E))×M(d1|d̄1)+(1−p(d2|E))×M(d̄2|d2)+p(d3|E)×M(d3|d̄3)]. And the total

costs of patients with d3 in the training population is: n3× [(p(d1|E))×M(d1|d̄1)+p(d2|E)×

M(d2|d̄2) + (1 − p(d3|E)) ×M(d̄3|d3)]. The total cost for all patients in the population is:

C(E) = n1 × [(1− p(d1|E))×M(d̄1|d1) + p(d2|E)×M(d2|d̄2) + p(d3|E)×M(d3|d̄3)] + n2 ×

[(p(d1|E))×M(d1|d̄1) + (1− p(d2|E))×M(d̄2|d2) + p(d3|E)×M(d3|d̄3)] + n3 × [(p(d1|E))×

M(d1|d̄1) + p(d2|E)×M(d2|d̄2) + (1− p(d3|E))×M(d̄3|d3)]. The SDG algorithm requires a

large number of training data, where the true disease status of each patient is known. And
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the p(di|E), the probability of making a diagnosis di diagnosis decision, is estimated by a

pre-trained Bayesian network.

In this simple example setting, four attributes can be observed through three tests (t1 →

s1, t2 → s2, t3 → s3 and s4). When the SDG algorithm needs to choose the next test among

three testing options, it compares the reductions of misdiagnosis costs and finds the largest

one, R(E, s1), R(E, s2), and R(E, s3, s4) where R(E, s1) = C(E) − C(E, s1), R(E, s2) =

C(E) − C(E, s2), and R(E, s3, s4) = C(E) − C(E, s3, s4). Since the three values have the

same C(E), the SDG algorithm actually finds the smallest value among C(E, s1), C(E, s2),

and C(E, s3, s4). Recall that the ETC1 value in Gorry and Barnett’s algorithm is calculated

using ETC1 = C1 +
∑

k P{sk} ×Qk, where C1 is the cost of conducting test t1, and sk is a

possible result of test t1 and Qk is the expected cost of an optimal decision after using the

value of sk to update the estimation of the distribution of diseases and choose the lowest value

of expected misdiagnosis costs. Differently, the SDG algorithm does not consider the cost of

conducting test t1, C1, and C(E, s1) =
∑

k

∑
x C(E, sk, x) =

∑
k[n{sk, E}×C(E, sk)] where

x refers to individual patient encounter and nsk,E is the number of encounters having the same

value of sk and E. If dividing the same n (total number of encounter), then C(E, s1)/n =∑
k proportion{sk, E} ×C(E, sk), which is similar to the second part of the ETC1 formula:∑
k P{sk} × Qk. Note that C(E, sk) is different from Qk. In SDG-no-phase and SDG-

phase algorithm, C(E, sk) = n1,sk × [(1− p(d1|E, sk))×M(d̄1|d1)+ p(d2|E, sk)×M(d2|d̄2)+

p(d3|E, sk)×M(d3|d̄3)] + n2,sk × [(p(d1|E, sk))×M(d1|d̄1) + (1− p(d2|E, sk))×M(d̄2|d2) +

p(d3|E, sk) ×M(d3|d̄3)] + n3,sk × [(p(d1|E, sk)) ×M(d1|d̄1) + p(d2|E, sk) ×M(d2|d̄2) + (1 −

p(d3|E, sk)) × M(d̄3|d3)]. While for Gorry and Bernett’s algorithm, Qk=min{p2(E, sk) ×

cost(d2 → d1) + p3(E, sk) × cost(d3 → d1), p1(E, sk) × cost(d1 → d2) + p3 × cost(d3 → d2),

p1(E, sk)× cost(d1 → d3) + p2(E, sk)× cost(d2 → d3)}.

Gorry and Barnett’s algorithm was developed in the 1960s, when medical expert systems

were manually developed with domain knowledge. The SDG algorithm considers multi-label

diagnosis scenarios, reduces the workload of defining the misdiagnosis costs matrix, and

leverages a large amount of training label for modeling and probability inference.

In summary, table 17 compares the SDG-no-phase algorithm with Gorry and Barnett’s

algorithm. Gorry and Barnett’s algorithm for sequential diagnosis can only handle the
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situation in which a patient only has one disease and a clinician only makes a diagnosis of

categorizing the patient into one disease. Even for one disease scenario, the approach of

calculating expected misdiagnosis costs is different (as shown in the simple example above).

Gorry and Barnett’s algorithm provides a sequential diagnosis path for individual patients,

while the SDG algorithm generates a sequential diagnosis tree for a population of future

patients to be diagnosed. Further discussion of population machine learning and personalized

machine learning is provided in Section 5.4.6.

Table 17: Comparisons between Gorry & Barnett’s Algorithm and SDG-no-phase Algorithm

Aspect Gorry and Barnett’s algo-

rithm

SDG-no-phase algorithm

Approach Individual model approach Population model approach

Disease number Each patient has one disease A patient can have no dis-

ease, one disease, or multi-

ple diseases

Disease probability distribu-

tion given evidence, P(di|E)

The probabilities can be

added up to 1 so this algo-

rithm may only leverage one

underlying model for proba-

bility inference. These prob-

abilities are used as an esti-

mation of how likely a pa-

tient has the disease.

The SDG algorithm uses

multiple pre-trained naive

Bayes models to estimate

the probabilities. Since the

training dataset has the true

disease status, these prob-

abilities are used to repre-

sent how likely a system

makes each diagnosis and

thus makes mistakes.

Parameters for Bayes infer-

ence

Expert-defined Learned from EHR data and

QMR knowledge
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Completeness of mistakes Does not include a mistake

that a patient with di was di-

agnosed as healthy (not hav-

ing any disease) and does

not include a mistake that

a healthy patient was diag-

nosed to as having a disease

Includes all type of mistakes

Training data Not need Needed

Calculate misdiagnosis costs

of one node

Do not need true disease

label of the patient. Di-

rectly calculate the misdiag-

nosis costs for a new patient

when identifying the diagno-

sis path.

Need true disease labels

from training data. Once

obtained a population

model, need not calculate

the misdiagnosis costs for a

new patient.

The cost of conducting a

test

Defined and considered Not included

Provide optimal diagnosis Yes, the one with the mini-

mal diagnosis cost is the op-

timal diagnosis

The developed model pro-

vides the probability estima-

tion of all potential diag-

noses. In a multi-disease

scenario, users can set up

thresholds to get a set of di-

agnoses. If assuming a sin-

gle disease scenario, users

can choose the disease with

the highest value of proba-

bilities as the final diagnosis.

Output of the algorithm Each patient gets one diag-

nosis path

One diagnostic tree for the

population
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5.2 Conclusions

The SDG-no-phase algorithm combines EHR data and knowledge about misdiagnosis

costs to develop a sequential diagnostic system. In a heart-disease diagnosis task using

real-world ED EHR data, the SDG-no-phase model is more clinically aligning than a model

learned by a classic data-driven algorithm (i.e., ML-C4.5). Knowledge about misdiagnosis

costs help drive the development of a sequential diagnostic system towards more cost-efficient

diagnosis paths, which make fewer severe mistakes.

When using a small sample size of EHR data for developing diagnostic models, medical

knowledge about the relationships between disease and clinical manifestations emphasizes

influential features and reduces noisy features. To maximize the benefits of medical knowl-

edge in the small sample size EHR scenario, balanced weights on medical knowledge and

EHR data need to be reached.

When a large amount of EHR data are available locally, medical knowledge about the

relationships between disease and clinical manifestations often has few benefits and could be

harmful for the local diagnosis task.

For sequential diagnostic modeling, knowledge about different phases in clinical workflow

help restrict diagnosis processes to strictly follow the order of phases (e.g., asking questions

about symptoms before ordering laboratory tests). Too strict restrictions lead to poor diag-

nosis performance, indicating that some relaxations are needed.

5.3 Contributions

This study has five main contributions for developing medical sequential diagnostic sys-

tems:

1. It found that the prediction performance of a disease diagnostic model could be improved

only when the real data and domain knowledge reached a balance point, too little or too

much domain knowledge might reduce the performance of the model.
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2. It developed SDG-no-phase and SDG-phase algorithm algorithms to learn sequential

diagnosis rules from multi-disease data.

3. It introduced a new approach to calculate misdiagnosis probabilities for multi-disease

sequential diagnosis. This new method can consider patient-reported information before

selecting sequential questions for diagnosis.

4. It introduced a new method to define misdiagnosis costs. It makes it possible to use the

misdiagnosis costs as a criterion to process multi-disease data.

5. It defined some new measurements to evaluate clinical alignment. (1) Use AUROC value

to evaluate Naive Bayes Model’s clinical alignment; (2) insert real patient records into

classification tree models, use clinical meaningful paths to evaluate clinical alignment.

Although the SDG algorithms were developed and tested for sequential disease diagnosis,

these algorithms may find their applications in non-biomedical domains (e.g., sequential

diagnosis for system maintenance and repair) when developing sequential decision making

systems for multi-label classification tasks with the consideration of different misclassification

costs of different mistakes. The SDG algorithm also has the option to restrict decisions in

different phases that can be used in other tasks.

5.4 Limitations and Future Work

In the last portion of this dissertation, I will discuss limitations of this research and the

future work that may arise from them.

5.4.1 Limitation 1. Use CCS Category for Disease Modeling

In this study, I merged 238 heart disease ICD-9-CM codes into 11 categories, and used

these categories as outcome variables to build models. The reason why I did so is because

there are not enough cases to build a model for 238 ICD codes separately.

The pros of this approach is that this rich data set allowed me to develop reliable models

and conduct multiple experiments to thoroughly study the effects of my introduced algo-
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rithms and the effects of retrieved domain knowledge for sequential diagnosis. However,

these designs greatly restrict the usage of the developed sequential diagnostic models. The

cons of this approach include: (1) The value of the QMR system’s medical knowledge for

EHR disease modeling has only been partially explored in this CCS category classification

setting. (2) The developed model can only distinguish among CCS categories, which will be

insufficient for real-world usage for medical education and clinical decision support purpose.

(3) Each CCS category actually includes multiple diseases (ICD codes) with different clinical

manifestations, which may increase the difficulty of getting a more accurate model.

5.4.2 Limitation 2. Only Focus on Encounters with Heart Diseases in ED

This study used heart diseases as an example to compare sequential diagnostic model-

ing strategies. The developed sequential model only focused on heart disease related CCS

category classification. This model may not be ready to be directly used in real ED setting.

Unlike specialist’s office, emergency rooms often have a mixture of patients with different

diseases in different systems. Many non-heart diseases also share some clinical manifesta-

tions with heart diseases. The developed sequential model can currently only diagnosis CCS

category diseases. If all these probabilities are low, then the patient may have other diseases.

The possibilities of having other diseases are not provided.

When physicians first meet a patient, they do not know their diagnoses. The diagnosis

process often begins with learning the patient’s chief complaint, collecting information, and

then performing diagnosis. In a preliminary study, I tried to use one chief complaint “chest

pain” to select patient encounters, and found that the selected dataset contained a very large

number of different diagnoses (many of them were not heart diseases), and most diagnoses

did not have sufficient samples for machine learning. So, in this study, I retrieved research

data based on their ICD codes and only focused on heart diseases. In this way, the number of

diseases is not too large, so that we can study and compare sequential diagnosis algorithms

in a tractable and focused manner.
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5.4.3 Limitation 3. Assumptions in SDG Algorithms

Both SDG-phase and SDG-no-phase algorithm use the same approach to calculate ex-

pected misdiagnosis costs for a population, with three assumptions: (1) The cost of misdi-

agnosis for individual patients is independent of each other. (2) For each individual patient,

the cost related to one disease is independent of the cost related to any other diseases. (3)

For each individual patient, the diagnosis of having a disease is independent of the diagnosis

of having another disease. These assumptions were made to reduce the size of misdiagnosis

matrix and simplify the estimation of misdiagnosis costs so that the costs are all additive.

However, these assumptions, especially the second and the third assumption may not

be true in real world clinical practice. For the second assumption, the cost of making two

mistakes may be not directly equal to the sum of the cost of each of two mistakes. For

example, under the second assumption, when a patient only has a disease d1, mistakenly

diagnosing that the patient only has a disease d2, the cost is M(d̄1|d1) +M(d2|d̄1). Ignoring

a disease d1 and treating the patient in a wrong direction (d2) may lead to a larger cost than

the sum of just ignoring the disease d1 or treating a healthy patient for disease d2. For the

third assumption, disease diagnosis may not be independent. Making a diagnosis of having

disease d1 may not be independent of making a diagnosis of not having disease d2, because

having disease d1 may explain away a patient’s clinical manifestations and reduce the chance

of making a diagnosis of having disease d2.

Future study may calculate misdiagnosis costs by obtaining statistical summaries from

real administrative data so that the misdiagnosis matrix can cover a large number of scenarios

with more accurate estimation of costs in real clinical practice. With a more flexible design of

the expected misdiagnosis costs, the diagnostic model can include diseases in one integrated

model to consider the relationships among diagnosis of correlated diseases.

5.4.4 Future Work on SDG-phase and SDG-no-phase Algorithms

In this project, the SDG-phase algorithm uses phase information that all features are

split into four phases. When the SDG-phase algorithm learns the model, it searches phase-1

features first. It will keep including phase-1 features in the model even if some features only
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have very low misdiagnosis cost reduction while many features in phase 2-4 can lead to much

larger reductions on misdiagnosis costs.

The disadvantage of this approach is: (1) Because the model contains too much phase-

1 features and too few phase-4 (lab test) features, the model performance is poor. The

classification capability of phase-4 features is much larger than phase 1 features. (2) Because

the number of phase 4 features is limited, the clinical alignment of SDG-phase model is worse

than SDG-no-phase model.

In the future, we plan to investigate a new SDG-phase algorithm with the following

changes: (1) requiring the reduction of misdiagnosis costs to be greater than a threshold may

help the search escape quickly from an earlier phase to explore useful features in next phase;

(2) allowing the SDG-phase algorithm to occasionally violate the phase restriction with some

heuristic penalty that is counted into the searching cost. For both changes, identifying an

optimal threshold and a heuristic penalty may need multiple rounds of experiments with

training data.

Moreover, both SDG-phase and SDG-no-phase algorithms use a greedy search strategy,

which only focuses on the immediate gain. Therefore, another future improvement of these

two algorithms could be to develop a more sophisticated score that can consider cumulative

reward and long-term effects.

5.4.5 Future Work on Incorporating Medical Knowledge into EHR Machine

Learning

The wide adoption of EHR systems provides us with massive amounts of clinical data,

while innovative machine learning algorithms and increased computational power bring us the

hope that an era of computational medicine will soon arrive. However, though it seems that

most computational models and systems are successful in research lab, it is still questionable

whether these models and systems can assist clinicians very well in real-world practice in

the near future, let alone they can act alone and completely replace clinicians. One critical

reason why physicians do not trust most computational models and systems is that they

lack an essential source [36]: medical knowledge accumulated over the course of decades of
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practice that guides physicians and their peers in real-world medical practice.

One strategy to enhance the performance of computational medicine that we have pre-

sented here is to incorporate medical knowledge into EHR machine learning. This involves

four steps: retrieving medical knowledge from multiple sources (e.g., medical books, medical

literature, and commercial website such as upToDate), representing knowledge, incorporat-

ing knowledge into EHR machine learning, and evaluating performance.

In future studies, these four steps should be integrated into one framework where per-

formance evaluation can provide a feedback loop to the adjustment of knowledge retrieval,

representation, and incorporation. This work needs the collaboration of experts in multiple

disciplines to bring together use of information retrieval techniques, natural language pro-

cessing, knowledge representation, and machine learning. Moreover, the whole development

process also must involve judgements from the users - clinicians. Beyond accuracy measure-

ment in a research lab, the final system needs to have good interpretability, actionability,

and reliability, as well as the potential for discovering new scientific knowledge. Moreover,

because medical knowledge doubles every few months [18], the final system should also be

able to automatically update using online learning.

5.4.6 Future Work on Personalized Machine Learning for Sequential Diagnosis

The SDG algorithms belong to population machine learning, which derives a single model

from a large amount of training data. With this strategy, the developed model is optimized to

perform well on average on all future individuals. However, the population machine learning

approach [104] may ignore important differences among patients, especially patients with

rare conditions.

In the future, to better capture individual differences in machine learning process, I will

try the personalized machine learning strategy [104], which aims to tailor model with the

individual patient’s clinical conditions. The developed model can optimize well for each

individual patient [14]. Briefly, for sequential diagnostic modeling, personalized machine

learning strategy can be applied when developing probability models and estimating expected

misdiagnosis costs so that personalized sequential diagnosis path can be identified for each
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individual and the individual misdiagnosis costs can be minimized.

5.4.7 Future Work on Reinforcement Learning for Sequential Diagnosis

In Section 5.1.5, we discussed why the reinforcement learning algorithm did not obtain

good performance in sequential diagnosis problems. In this section, I will review a successful

example of reinforcement learning for sequential decision making in medicine [45]. I will

discuss why this research obtained good performance and the possible implications for our

future work.

The authors developed a reinforcement learning agent that learned optimal treatment

strategies for sepsis in intensive care. Using rich EHR data from Medical Information Mart

for Intensive Care version III (MIMIC III), the agenet extracted implicit knowledge learned

optimal treatment by analyzing a group of (mostly suboptimal) treatment decisions. Tested

on the eICU Research Institute Database, the AI decisions were shown to be good treate-

ment strategies: mortality was lowest in patients for whom clinicians’ actual doses matched

the AI decisions. Main steps in developing and testing this AI agent include: (1) They

selected 48 features to observe, including demographics, Elixhauser premorbid status, vital

signs, laboratory values, fluids and vasopressors received; (2) they included up to 72 hours of

measurements taken around the estimated time of onset of sepsis. The data were split into

4-hour time periods; (3) they evaluated the actual treatments ordered by clinicians. When a

patient survived, a positive reward was given at the end of the treatment (+100), and a neg-

ative reward was given (-100) if the patient died. They calculated the average reward of each

treatment option; (4) because management of ICU patients with sepsis is extremely complex,

they only focused on medical decisions regarding total volume of intravenous fluids and max-

imum dose of vasopressors administered over each 4-hour period. The dose of intravenous

fluids was split into 5 choices, and the dose of vasopressors was also split into 5 choices. The

combination of the two treatments produced 25 possible actions. Those 25 combinations

were the action space in their reinforcement learning model; (5) they randomly chose 80%

data as training data, and 20% data as validation data. They clustered all time periods

from the training data, getting 750 clusters. In each cluster, individuals in that cluster were
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similar with respect to those 48 features. Those 750 clusters were the state space in their

reinforcement learning model; (6) they used the training data to build a reinforcement learn-

ing model (Q-learning method), and used validation data to evaluate model performance.

They repeated this step 500 times, getting 500 models. They compared the performance

of those 500 models, and chose the best model; and (7) they compared the performance

between the reinforcement learning model and the clinician’s model using one independent

test data. Under their study assumptions, they found the 95% confidence lower bound of

the AI policy consistently exceeded the 95% confidence upper bound of the clinicians’ policy.

Difference and Implication

In my study, there are 1,799 features in our data set, and each feature is binary. so

in theory, the state space is 21799, and the action space is 1, 799 plus the number of dis-

eases. The action space and state space are much larger than in their study. Future study

of sequential diagnosis using deep reinforcement learning should firstly apply some machine

learning approaches or domain knowledge to greatly reduce the action space. Moreover,

their study used training data that already contained sequential decisions while my study

did not leverage this type of data. Future studies should leverage sequential decision data

for encounters in the ED to better conduct the reinforcement learning.

Challenges and Future Directions

Deep reinforcement learning is a subfield of machine learning that leverages deep neural

networks in reinforcement learning. Deep reinforcement learning has been successfully ap-

plied in areas such as video games, robotics, natural language processing, computer vision,

as well as clinical domains.

Successfully incorporating deep reinforcement learning into sequential decision modeling

for medicine still has many challenges [34]. It is difficult to exam confounding factors’ short

term and long-term effects. Discovering new treatment approaches through reinforcement

learning with observational data is still less reliable than refining existing practices. Other

challenges include simplistic reward functions design and potential domain shifting.

Given these challenges, a few future directions include: (1) improving the design of in-
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termediate reward and final reward using probabilistic estimation approaches and utility

analyses; (2) covering more diseases and multi-labeling diseases and addressing the issue

of scalability using ensemble learning and hierarchical learning; (3) exploring causal rein-

forcement learning that combines causal inference with reinforcement learning, which deal

with data in both an interventional and counterfactual manner [41]. Causal reinforcement

learning will have the benefit of combining structural invariances of causal inference with

the sample efficiency of reinforcement learning [9].
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6.0 APPENDIX A. Heart Disease ICD Codes and the CCS Categories

Table 18: Heart Disease CCS Categories

ICD code Description CCS category

3940 Mitral stenosis 7.2.1

3941 Rheumatic mitral insufficiency 7.2.1

3942 Mitral stenosis with insufficiency 7.2.1

3949 Other and unspecified mitral valve diseases 7.2.1

3950 Rheumatic aortic stenosis 7.2.1

3951 Rheumatic aortic insufficiency 7.2.1

3952 Rheumatic aortic stenosis with insufficiency 7.2.1

3959 Other and unspecified rheumatic aortic diseases 7.2.1

3960 Mitral valve stenosis and aortic valve stenosis 7.2.1

3961 Mitral valve stenosis and aortic valve insufficiency 7.2.1

3962 Mitral valve insufficiency and aortic valve stenosis 7.2.1

3963 Mitral valve insufficiency and aortic valve insufficiency 7.2.1

3968 Multiple involvement of mitral and aortic valves 7.2.1

3969 Mitral and aortic valve diseases, unspecified 7.2.1

3970 Diseases of tricuspid valve 7.2.1

3971 Rheumatic diseases of pulmonary valve 7.2.1

3979 Rheumatic diseases of endocardium, valve unspecified 7.2.1

4240 Mitral valve disorders 7.2.1

4241 Aortic valve disorders 7.2.1

4242 Tricuspid valve disorders, specified as nonrheumatic 7.2.1

4243 Pulmonary valve disorders 7.2.1

42490 Endocarditis, valve unspecified, unspecified cause 7.2.1

42491 Endocarditis in diseases classified elsewhere 7.2.1

42499 Other endocarditis, valve unspecified 7.2.1
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7852 Undiagnosed cardiac murmurs 7.2.1

7853 Other abnormal heart sounds 7.2.1

V422 Heart valve replaced by transplant 7.2.1

V433 Heart valve replaced by other means 7.2.1

4250 Endomyocardial fibrosis 7.2.2

4251 Hypertrophic cardiomyopathy 7.2.2

42511 Hypertrophic obstructive cardiomyopathy 7.2.2

42518 Other hypertrophic cardiomyopathy 7.2.2

4252 Obscure cardiomyopathy of Africa 7.2.2

4253 Endocardial fibroelastosis 7.2.2

4254 Other primary cardiomyopathies 7.2.2

4257 Nutritional and metabolic cardiomyopathy 7.2.2

4258 Cardiomyopathy in other diseases classified elsewhere 7.2.2

4259 Secondary cardiomyopathy, unspecified 7.2.2

03282 Diphtheritic myocarditis 7.2.2

03640 Meningococcal carditis, unspecified 7.2.2

03641 Meningococcal pericarditis 7.2.2

03642 Meningococcal endocarditis 7.2.2

03643 Meningococcal myocarditis 7.2.2

07420 Coxsackie carditis, unspecified 7.2.2

07421 Coxsackie pericarditis 7.2.2

07422 Coxsackie endocarditis 7.2.2

07423 Coxsackie myocarditis 7.2.2

11281 Candidal endocarditis 7.2.2

11503 Infection by Histoplasma capsulatum, pericarditis 7.2.2

11504 Infection by Histoplasma capsulatum, endocarditis 7.2.2

11513 Infection by Histoplasma duboisii, pericarditis 7.2.2

11514 Infection by Histoplasma duboisii, endocarditis 7.2.2
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11593 Histoplasmosis, unspecified, pericarditis 7.2.2

11594 Histoplasmosis, unspecified, endocarditis 7.2.2

1303 Myocarditis due to toxoplasmosis 7.2.2

3910 Acute rheumatic pericarditis 7.2.2

3911 Acute rheumatic endocarditis 7.2.2

3912 Acute rheumatic myocarditis 7.2.2

3918 Other acute rheumatic heart disease 7.2.2

3919 Acute rheumatic heart disease, unspecified 7.2.2

3920 Rheumatic chorea with heart involvement 7.2.2

393 Chronic rheumatic pericarditis 7.2.2

3980 Rheumatic myocarditis 7.2.2

39890 Rheumatic heart disease, unspecified 7.2.2

39899 Other rheumatic heart diseases 7.2.2

4200 Acute pericarditis in diseases classified elsewhere 7.2.2

42090 Acute pericarditis, unspecified 7.2.2

42091 Acute idiopathic pericarditis 7.2.2

42099 Other acute pericarditis 7.2.2

4210 Acute and subacute bacterial endocarditis 7.2.2

4211 Acute and subacute infective endocarditis in diseases classi-

fied elsewhere

7.2.2

4219 Acute endocarditis, unspecified 7.2.2

4220 Acute myocarditis in diseases classified elsewhere 7.2.2

42290 Acute myocarditis, unspecified 7.2.2

42291 Idiopathic myocarditis 7.2.2

42292 Septic myocarditis 7.2.2

42293 Toxic myocarditis 7.2.2

42299 Other acute myocarditis 7.2.2

4230 Hemopericardium 7.2.2
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4231 Adhesive pericarditis 7.2.2

4232 Constrictive pericarditis 7.2.2

4233 Cardiac tamponade 7.2.2

4238 Other specified diseases of pericardium 7.2.2

4239 Unspecified disease of pericardium 7.2.2

4290 Myocarditis, unspecified 7.2.2

4100 Bone marrow transplant, not otherwise specified 7.2.3

41000 Acute myocardial infarction of anterolateral wall, episode of

care unspecified

7.2.3

41001 Acute myocardial infarction of anterolateral wall, initial

episode of care

7.2.3

41002 Acute myocardial infarction of anterolateral wall, subsequent

episode of care

7.2.3

4101 Acute myocardial infarction of other anterior wall 7.2.3

41010 Acute myocardial infarction of other anterior wall, episode of

care unspecified

7.2.3

41011 Acute myocardial infarction of other anterior wall, initial

episode of care

7.2.3

41012 Acute myocardial infarction of other anterior wall, subsequent

episode of care

7.2.3

4102 Acute myocardial infarction of inferolateral wall 7.2.3

41020 Acute myocardial infarction of inferolateral wall, episode of

care unspecified

7.2.3

41021 Acute myocardial infarction of inferolateral wall, initial

episode of care

7.2.3

41022 Acute myocardial infarction of inferolateral wall, subsequent

episode of care

7.2.3

4103 Acute myocardial infarction of inferoposterior wall 7.2.3

124



41030 Acute myocardial infarction of inferoposterior wall, episode of

care unspecified

7.2.3

41031 Acute myocardial infarction of inferoposterior wall, initial

episode of care

7.2.3

41032 Acute myocardial infarction of inferoposterior wall, subse-

quent episode of care

7.2.3

4104 Acute myocardial infarction of other inferior wall 7.2.3

41040 Acute myocardial infarction of other inferior wall, episode of

care unspecified

7.2.3

41041 Acute myocardial infarction of other inferior wall, initial

episode of care

7.2.3

41042 Acute myocardial infarction of other inferior wall, subsequent

episode of care

7.2.3

4105 Acute myocardial infarction of other lateral wall 7.2.3

41050 Acute myocardial infarction of other lateral wall, episode of

care unspecified

7.2.3

41051 Acute myocardial infarction of other lateral wall, initial

episode of care

7.2.3

41052 Acute myocardial infarction of other lateral wall, subsequent

episode of care

7.2.3

4106 True posterior wall infarction 7.2.3

41060 True posterior wall infarction, episode of care unspecified 7.2.3

41061 True posterior wall infarction, initial episode of care 7.2.3

41062 True posterior wall infarction, subsequent episode of care 7.2.3

4107 Subendocardial infarction 7.2.3

41070 Subendocardial infarction, episode of care unspecified 7.2.3

41071 Subendocardial infarction, initial episode of care 7.2.3

41072 Subendocardial infarction, subsequent episode of care 7.2.3
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4108 Acute myocardial infarction of other specified sites 7.2.3

41080 Acute myocardial infarction of other specified sites, episode

of care unspecified

7.2.3

41081 Acute myocardial infarction of other specified sites, initial

episode of care

7.2.3

41082 Acute myocardial infarction of other specified sites, subse-

quent episode of care

7.2.3

4109 Acute myocardial infarction of unspecified site 7.2.3

41090 Acute myocardial infarction of unspecified site, episode of care

unspecified

7.2.3

41091 Acute myocardial infarction of unspecified site, initial episode

of care

7.2.3

41092 Acute myocardial infarction of unspecified site, subsequent

episode of care

7.2.3

41406 Coronary atherosclerosis of native coronary artery of trans-

planted heart

7.2.4

4130 Angina decubitus 7.2.4

4131 Prinzmetal angina 7.2.4

4139 Other and unspecified angina pectoris 7.2.4

4111 Intermediate coronary syndrome 7.2.4

4110 Postmyocardial infarction syndrome 7.2.4

4118 Other acute and subacute forms of ischemic heart disease 7.2.4

41181 Acute coronary occlusion without myocardial infarction 7.2.4

41189 Other acute and subacute forms of ischemic heart disease,

other

7.2.4

4140 Coronary atherosclerosis 7.2.4

41400 Coronary atherosclerosis of unspecified type of vessel, native

or graft

7.2.4
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41401 Coronary atherosclerosis of native coronary artery 7.2.4

4142 Chronic total occlusion of coronary artery 7.2.4

4143 Coronary atherosclerosis due to lipid rich plaque 7.2.4

4144 Coronary atherosclerosis due to calcified coronary lesion 7.2.4

V4582 Percutaneous transluminal coronary angioplasty status 7.2.4

412 Old myocardial infarction 7.2.4

4148 Other specified forms of chronic ischemic heart disease 7.2.4

4149 Chronic ischemic heart disease, unspecified 7.2.4

V4581 Aortocoronary bypass status 7.2.4

78650 Chest pain, unspecified 7.2.5

78651 Precordial pain 7.2.5

78659 Other chest pain 7.2.5

4150 Acute cor pulmonale 7.2.6

4151 Pulmonary embolism and infarction 7.2.6

41512 Septic pulmonary embolism 7.2.6

41513 Saddle embolus of pulmonary artery 7.2.6

41519 Other pulmonary embolism and infarction 7.2.6

4160 Primary pulmonary hypertension 7.2.6

4161 Kyphoscoliotic heart disease 7.2.6

4162 Chronic pulmonary embolism 7.2.6

4168 Other chronic pulmonary heart diseases 7.2.6

4169 Chronic pulmonary heart disease, unspecified 7.2.6

4170 Arteriovenous fistula of pulmonary vessels 7.2.6

4171 Aneurysm of pulmonary artery 7.2.6

4178 Other specified diseases of pulmonary circulation 7.2.6

4179 Unspecified disease of pulmonary circulation 7.2.6

V1255 Personal history of pulmonary embolism 7.2.6

41410 Aneurysm of heart (wall) 7.2.7
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41411 Aneurysm of coronary vessels 7.2.7

41412 Dissection of coronary artery 7.2.7

41419 Other aneurysm of heart 7.2.7

4291 Myocardial degeneration 7.2.7

4292 Cardiovascular disease, unspecified 7.2.7

4293 Cardiomegaly 7.2.7

4295 Rupture of chordae tendineae 7.2.7

4296 Rupture of papillary muscle 7.2.7

42971 Acquired cardiac septal defect 7.2.7

42979 Certain sequelae of myocardial infarction, not elsewhere clas-

sified, other

7.2.7

42981 Other disorders of papillary muscle 7.2.7

42982 Hyperkinetic heart disease 7.2.7

42983 Takotsubo syndrome 7.2.7

42989 Other ill-defined heart diseases 7.2.7

4299 Heart disease, unspecified 7.2.7

4260 Atrioventricular block, complete 7.2.8

42610 Atrioventricular block, unspecified 7.2.8

42611 First degree atrioventricular block 7.2.8

42612 Mobitz (type) II atrioventricular block 7.2.8

42613 Other second degree atrioventricular block 7.2.8

4262 Left bundle branch hemiblock 7.2.8

4263 Other left bundle branch block 7.2.8

4264 Right bundle branch block 7.2.8

42650 Bundle branch block, unspecified 7.2.8

42651 Right bundle branch block and left posterior fascicular block 7.2.8

42652 Right bundle branch block and left anterior fascicular block 7.2.8

42653 Other bilateral bundle branch block 7.2.8
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42654 Trifascicular block 7.2.8

4267 Anomalous atrioventricular excitation 7.2.8

4266 Other heart block 7.2.8

42681 Lown-Ganong-Levine syndrome 7.2.8

42682 Long QT syndrome 7.2.8

42689 Other specified conduction disorders 7.2.8

4269 Conduction disorder, unspecified 7.2.8

V450 Cardiac device in situ 7.2.8

V4500 Unspecified cardiac device in situ 7.2.8

V4501 Cardiac pacemaker in situ 7.2.8

V4502 Automatic implantable cardiac defibrillator in situ 7.2.8

V4509 Other specified cardiac device in situ 7.2.8

V533 Fitting and adjustment of cardiac device 7.2.8

V5331 Fitting and adjustment of cardiac pacemaker 7.2.8

V5332 Fitting and adjustment of automatic implantable cardiac de-

fibrillator

7.2.8

V5339 Fitting and adjustment of other cardiac device 7.2.8

4270 Paroxysmal supraventricular tachycardia 7.2.9

4271 Paroxysmal ventricular tachycardia 7.2.9

42731 Atrial fibrillation 7.2.9

42732 Atrial flutter 7.2.9

42760 Premature beats, unspecified 7.2.9

42761 Supraventricular premature beats 7.2.9

42769 Other premature beats 7.2.9

42781 Sinoatrial node dysfunction 7.2.9

4272 Paroxysmal tachycardia, unspecified 7.2.9

42789 Other specified cardiac dysrhythmias 7.2.9

4279 Cardiac dysrhythmia, unspecified 7.2.9
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7850 Tachycardia, unspecified 7.2.9

7851 Palpitations 7.2.9

42741 Ventricular fibrillation 7.2.10

42742 Ventricular flutter 7.2.10

4275 Cardiac arrest 7.2.10

42820 Systolic heart failure, unspecified 7.2.11

42821 Acute systolic heart failure 7.2.11

42822 Chronic systolic heart failure 7.2.11

42823 Acute on chronic systolic heart failure 7.2.11

42830 Diastolic heart failure, unspecified 7.2.11

42831 Acute diastolic heart failure 7.2.11

42832 Chronic diastolic heart failure 7.2.11

42833 Acute on chronic diastolic heart failure 7.2.11

42840 Combined systolic and diastolic heart failure, unspecified 7.2.11

42841 Acute combined systolic and diastolic heart failure 7.2.11

42842 Chronic combined systolic and diastolic heart failure 7.2.11

42843 Acute on chronic combined systolic and diastolic heart failure 7.2.11

4280 Congestive heart failure, unspecified 7.2.11

39891 Rheumatic heart failure (congestive) 7.2.11

4281 Left heart failure 7.2.11

4289 Heart failure, unspecified 7.2.11
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7.0 APPENDIX B. CCS Category Combination Frequency

Table 19: CCS Category Frequency

Number CCS Category Count

1 d7289 19163

2 d724 12468

3 d724d7289 4602

4 d721 2226

5 d724d7289d7211 1825

6 d724d7211 1762

7 d721d7289 1342

8 d7211 1265

9 d726 1128

10 d7289d7211 973

11 d722 794

12 d723 740

13 d721d724 737

14 d721d724d7289 534

15 d722d724d7289d7211 480

16 d722d7289 404

17 d721d724d7289d7211 370

18 d723d724 363

19 d727 355

20 d724d726 329

21 d722d724d7289 319

22 d722d7289d7211 294

23 d722d724 250

24 d726d7289 239
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25 d721d724d7211 220

26 d721d7289d7211 203

27 d724d727 198

28 d727d7289 187

29 d722d724d7211 182

30 d722d7211 175

31 d724d727d7289 169

32 d721d7211 155

33 d724d726d7289 144

34 d724d726d7289d7211 141

35 d721d722d724d7289d7211 134

36 d724d726d7211 116

37 d723d724d7289 98

38 d723d7289 92

39 d726d7289d7211 89

40 d721d724d726d7289d7211 88

41 d726d7211 88

42 d721d726 80

43 d724d727d7289d7211 68

44 d721d724d727d7289 63

45 d722d724d726d7289d7211 58

46 d721d722d7289 58

47 d721d726d7289 57

48 d721d722d724d7289 54

49 d721d722 53

50 d721d724d726d7289 52

51 d721d727d7289 52

52 d721d722d7289d7211 46
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53 d721d724d727d7289d7211 43

54 d723d724d7211 42

55 d721d727 42

56 d721d724d726 42

57 d723d7211 41

58 d721d724d726d7211 40

59 d721d722d724d7211 39

60 d722d726d7289d7211 38

61 d721d726d7289d7211 36

62 d723d724d7289d7211 35

63 d721d722d724 35

64 d724d727d7211 35

65 d721d724d727 35

66 d727d7211 34

67 d727d7289d7211 32

68 d721d726d7211 30

69 d721d722d724d726d7289d7211 25

70 d722d726 23

71 d721d724d726d727d7289d7211 18

72 d721d723 18

73 d723d7289d7211 17

74 d722d724d726d7289 16

75 d722d727 15

76 d721d722d7211 15

77 d726d727 14

78 d722d724d727d7289d7211 14

79 d722d724d727d7289 14

80 d721d724d727d7211 12
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81 d721d722d726d7289d7211 12

82 d721d722d724d727d7289d7211 12

83 d722d727d7289 11

84 d722d726d7211 11

85 d721d727d7289d7211 11

86 d721d723d7289 11

87 d723d724d727 10

88 d722d726d7289 10

89 d721d723d724 10

90 d721d726d727d7289 9

91 d721d723d724d7289 9

92 d722d724d726d7211 9

93 d721d722d726d7211 9

94 d721d722d724d726d7289 9

95 d723d726 8

96 d722d727d7289d7211 8

97 d722d724d727 8

98 d722d724d726 8

99 d724d726d727 7

100 d721d722d724d726d7211 7

101 d722d724d727d7211 7

102 d723d727 6

103 d722d723 6

104 d721d726d727d7289d7211 6

105 d721d722d726 6

106 d726d727d7289d7211 5

107 d724d726d727d7211 5

108 d722d727d7211 5
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109 d724d726d727d7289 5

110 d721d724d726d727 5

111 d721d722d726d7289 5

112 d726d727d7289 5

113 d722d723d724d7289d7211 5

114 d724d726d727d7289d7211 5

115 d721d726d727 5

116 d721d723d7211 4

117 d722d723d724d7289 4

118 d721d723d724d7211 4

119 d721d723d724d7289d7211 4

120 d721d726d727d7211 4

121 d721d724d726d727d7211 3

122 d721d727d7211 3

123 d721d722d727d7211 3

124 d726d727d7211 3

125 d723d724d727d7211 3

126 d721d722d724d727 3

127 d721d722d727d7289 3

128 d721d722d727d7289d7211 3

129 d723d724d726 3

130 d723d724d727d7289 3

131 d723d727d7289 3

132 d721d723d724d727d7289 3

133 d723d726d7211 2

134 d722d723d724 2

135 d722d723d7289 2

136 d721d722d723d724d7289d7211 2
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137 d721d722d727 2

138 d721d722d724d727d7289 2

139 d722d724d726d727d7211 2

140 d721d724d726d727d7289 2

141 d723d724d727d7289d7211 2

142 d722d724d726d727d7289 2

143 d723d727d7211 2

144 d723d724d726d7289 2

145 d722d723d7211 2

146 d722d723d724d727d7289d7211 2

147 d721d722d724d726 2

148 d721d722d726d727 2

149 d721d722d724d727d7211 2

150 d721d722d724d726d727d7211 1

151 d721d722d723d726d7289d7211 1

152 d721d723d7289d7211 1

153 d721d723d724d726d727d7211 1

154 d722d723d7289d7211 1

155 d722d723d726d7289 1

156 d721d723d726d7289 1

157 d721d723d724d726d7289d7211 1

158 d721d722d723 1

159 d723d724d726d7289d7211 1

160 d721d723d726 1

161 d721d722d723d7289d7211 1

162 d722d723d724d726 1

163 d721d723d724d727d7289d7211 1

164 d723d726d7289d7211 1
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165 d723d724d726d727d7289d7211 1

166 d721d722d724d726d727d7289d7211 1

167 d721d722d724d726d727 1

168 d721d722d724d726d727d7289 1

169 d721d723d727d7289 1

170 d723d724d726d7211 1

171 d722d723d724d726d727d7289d7211 1

172 d722d726d727 1

173 d721d723d724d727 1

174 d721d723d726d7289d7211 1

175 d722d723d724d7211 1
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8.0 APPENDIX C. Features in one SDG-phase Model

Table 20: Features in the SDG-phase Model

CUI Description Semantic type Phase

C0945826 Ambulation Organism Function 1,2,3

C0002871 Anemia Disease or Syndrome 1,2,4

C0002962 Angina Pectoris Sign or Symptom 1,2

C0858277 angina symptom Sign or Symptom 1,2

C0428977 Bradycardia Finding 1,2,3,4

C2006086 caffeine use Finding 1,2

C0018800 Cardiomegaly Finding 1,2

C0008031 Chest Pain Sign or Symptom 1,2

C0009171 Cocaine Abuse Mental or Behav-

ioral Dysfunction

1,2

C0600427 Cocaine Dependence Mental or Behav-

ioral Dysfunction

1,2

C0010200 Coughing Sign or Symptom 1,2,3

C0149871 Deep Vein Throm-

bosis

Disease or Syndrome 1,2

C0012833 Dizziness Sign or Symptom 1,2

C0013404 Dyspnea Sign or Symptom 1,2,3

C0013604 Edema Pathologic Function 1,2,3

C0743393 EDEMA INCREAS-

ING

Finding 1,2

C0020473 Hyperlipidemia Disease or Syndrome 1,2,4

C1737247 Increased abdominal

girth

Finding 1,2,3

C0220870 Lightheadedness Sign or Symptom 1,2
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C0085619 Orthopnea Finding 1,2

C0030193 Pain Sign or Symptom 1,2

C0853946 Pain worsened Sign or Symptom 1,2

C0030252 Palpitations Finding 1,2,3

C0333243 Pitting edema Sign or Symptom 1,2,3

C0032285 Pneumonia Disease or Syndrome 1,2,3,4

C1998297 Recent myocardial

infarction

Finding 1,2

C0392680 Shortness of Breath Sign or Symptom 1,2

C0748648 SHORTNESS OF

BREATH PRO-

GRESSIVE

Finding 1,2

C0038990 Sweating Finding 1,2,3

C0039231 Tachycardia Finding 1,2,3

C0042487 Venous Thrombosis Pathologic Function 1,2

C0043144 Wheezing Sign or Symptom 1,2,3

139



9.0 APPENDIX D. Features in one SDG-no-phase Model

Table 21: Features in SDG-no-phase Model

CUI Description Semantic type Phase

C0001443 Adenosine Nucleic Acid 4

C0858277 angina symptom Sign or Symptom 1,2

C0003483 Aorta Body Part 2

C0003493 Aortic Diseases Disease or Syndrome 2

C0004057 Aspirin Organic Chemical 2

C0972395 Automatic Implantable

Cardioverter-Defibrillators

Medical Device 2

C2008326 cardiac catheterization mi-

tral valve prolapse

Finding 2

C2023569 cardiac catheterization pro-

cedures performed

Diagnostic Procedure 2

C0018800 Cardiomegaly Finding 1,2

C2024883 cardiovascular surgery result:

angina

Finding 2

C0054836 carvedilol Organic Chemical 2

C0085590 catheter device Medical Device 5

C0008031 Chest Pain Sign or Symptom 1,2

C0024117 Chronic Obstructive Airway

Disease

Disease or Syndrome 2

C1947999 Coreg Butoxamine HCl Organic Chemical 2

C0010055 Coronary Artery Bypass

Surgery

Therapeutic or Preventive Procedure 2

C1260596 coronary artery graft device Medical Device 2

C0687568 Coronary artery stent Medical Device 2
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C0699129 Coumadin Organic Chemical 2

C0180307 Defibrillators Medical Device 5

C0011849 Diabetes Mellitus Disease or Syndrome 2

C0011946 Dialysis procedure Therapeutic or Preventive Procedure 5

C0012265 Digoxin Organic Chemical 2

C0428224 Digoxin blood measurement Laboratory Procedure 4

C0012797 Diuresis Organ or Tissue Function 2

C0013030 Dopamine Organic Chemical 2

C0013404 Dyspnea Sign or Symptom 1,2,3

C0013604 Edema Pathologic Function 1,2,3

C2700378 Ejection fraction (finding) Finding 4

C0016860 Furosemide Organic Chemical 2

C0425583 Heart beat Organ or Tissue Function 2,3

C0018808 Heart murmur Finding 3

C0018810 heart rate Clinical Attribute 3

C0019134 heparin Organic Chemical 2

C0013801 Holter Electrocardiography Diagnostic Procedure 4

C0182920 Holter Monitors Medical Device 4

C0021925 Intubation Therapeutic or Preventive Procedure 2

C0699992 Lasix Organic Chemical 2

C0181586 Leads (device) Manufactured Object 5

C0181598 Left ventricular assist device Medical Device 2

C0225897 Left ventricular structure Body Part 3

C0220870 Lightheadedness Sign or Symptom 1,2

C0593906 Lipitor Organic Chemical 5

C0700776 Lopressor Organic Chemical 2

C0024554 Male gender Organism Attribute 2,3

C0026264 Mitral Valve Body Part 2,3
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C0017887 Nitroglycerin Organic Chemical 2

C0425452 No obstruction of airway Finding 2,3

C0232202 Normal sinus rhythm Finding 4

C0810633 Pacemakers Medical Device 2

C0030193 Pain Sign or Symptom 1,2

C0030252 Palpitations Finding 1,2,3

C2936173 Percutaneous Transluminal

Coronary Angioplasty

Therapeutic or Preventive Procedure 2

C1253937 Pericardial effusion body

substance

Body Substance 2

C0085096 Peripheral Vascular Diseases Disease or Syndrome 2

C0333243 Pitting edema Sign or Symptom 1,2,3

C0522776 Placement of stent Therapeutic or Preventive Procedure 2

C0633084 Plavix Organic Chemical 2

C0429068 PR depression Finding 4

C1847014 PULMONARY DISEASE.

CHRONIC OBSTRUC-

TIVE. SEVERE EARLY-

ONSET

Disease or Syndrome 2

C0034065 Pulmonary Embolism Pathologic Function 2

C0748126 PULMONARY EMBOLUS

HIGH PROBABILITY

Finding 4

C0020542 Pulmonary Hypertension Pathologic Function 2

C0034642 Rales Finding 3

C0034896 Rectum Body Part 5

C1565489 Renal Insufficiency Disease or Syndrome 2,4

C0003506 Replacement of aortic valve

(procedure)

Therapeutic or Preventive Procedure 2
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C0026268 Replacement of mitral valve

(procedure)

Therapeutic or Preventive Procedure 2

C1614029 Revatio Organic Chemical 2

C0520887 ST segment depression (find-

ing)

Finding 4

C0520886 ST segment elevation (find-

ing)

Finding 4

C0038257 Stent. device Medical Device 2

C0038990 Sweating Finding 1,2,3

C0080203 Tachyarrhythmia Finding 3,4

C0039231 Tachycardia Finding 1,2,3

C0699226 Tridil Organic Chemical 2
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10.0 APPENDIX E. Features in one ML-C4.5 Model

Table 22: Features in the ML-C45 Model

CUI Description Semantic type

C0907402 insulin glargine Amino Acid. Peptide. or

Protein. Hormone. Phar-

macologic Substance

C0000726 abdomen Body Location or Region

C1515974 anatomic site Body Location or Region

C0004600 back Body Location or Region

C0817096 chest Body Location or Region

C0225808 right side of heart Body Location or Region

C1186983 anatomic valve Body Part. Organ. or Or-

gan Component

C0003483 aorta Body Part. Organ. or Or-

gan Component

C0007272 carotid arteries Body Part. Organ. or Or-

gan Component

C0205076 chest wall structure Body Part. Organ. or Or-

gan Component

C0205042 coronary artery Body Part. Organ. or Or-

gan Component

C0010268 cranial nerves Body Part. Organ. or Or-

gan Component

C0013443 ear structure Body Part. Organ. or Or-

gan Component

C1305418 entire calf of leg (body struc-

ture)

Body Part. Organ. or Or-

gan Component
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C1269079 entire lower limb Body Part. Organ. or Or-

gan Component

C0018787 heart Body Part. Organ. or Or-

gan Component

C0018792 heart Atrium Body Part. Organ. or Or-

gan Component

C0022742 knee Body Part. Organ. or Or-

gan Component

C0230347 left upper arm structure Body Part. Organ. or Or-

gan Component

C0026264 mitral Valve Body Part. Organ. or Or-

gan Component

C0026639 oral mucous membrane

structure

Body Part. Organ. or Or-

gan Component

C1140618 upper extremity Body Part. Organ. or Or-

gan Component

C0042449 veins Body Part. Organ. or Or-

gan Component

C0030471 nasal sinus Body Space or Junction

C0005889 body fluids Body Substance

C0026727 mucous body substance Body Substance

C0038984 sweat Body Substance

C0042036 urine Body Substance

C0017189 gastrointestinal tract struc-

ture

Body System

C0042066 genitourinary system Body System

C0024235 lymphatic system Body System

C1123023 skin Body System

C0018810 heart rate Clinical Attribute
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C0456165 right atrial pressure Clinical Attribute

C0518766 vital signs Clinical Attribute

C0004339 auscultation Diagnostic Procedure

C0011923 diagnostic imaging Diagnostic Procedure

C0043299 diagnostic radiologic exami-

nation

Diagnostic Procedure

C0013516 echocardiography Diagnostic Procedure

C0015260 exercise stress test Diagnostic Procedure

C0013801 holter electrocardiography Diagnostic Procedure

C0034108 oximetry. Pulse Diagnostic Procedure

C0030247 palpation Diagnostic Procedure

C0039985 plain chest X-ray Diagnostic Procedure

C1306645 plain x-ray Diagnostic Procedure

C0039451 telemetry Diagnostic Procedure

C0750430 work-up Diagnostic Procedure

C0004058 allergy to aspirin Disease or Syndrome

C0002871 anemia Disease or Syndrome

C0162871 aortic aneurysm. Abdomi-

nal

Disease or Syndrome

C0003493 aortic diseases Disease or Syndrome

C0003864 arthritis Disease or Syndrome

C0008149 chlamydia Infections Disease or Syndrome

C0149871 deep vein thrombosis Disease or Syndrome

C0011849 diabetes mellitus Disease or Syndrome

C0020473 hyperlipidemia Disease or Syndrome

C0600260 lung diseases. Obstructive Disease or Syndrome

C0024796 marfan syndrome Disease or Syndrome

C0392525 nephrolithiasis Disease or Syndrome
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C0085096 peripheral vascular diseases Disease or Syndrome

C0032231 pleurisy Disease or Syndrome

C0032285 pneumonia Disease or Syndrome

C2937421 prostatic hyperplasia Disease or Syndrome

C0040034 thrombocytopenia Disease or Syndrome

C0426663 abdomen soft Finding

C2712134 actual positive comfort Finding

C1835620 alert affect Finding

C0232693 bowel sounds Finding

C0428977 bradycardia Finding

C2008326 cardiac catheterization mi-

tral valve prolapse

Finding

C0578395 chest clear Finding

C0743393 edma increasing Finding

C1827170 edema of extremity Finding

C0239340 edema of lower extremity Finding

C2700378 ejection fraction (finding) Finding

C0427692 full blood count normal Finding

C1445096 has strength Finding

C0018808 heart murmur Finding

C0578150 hemodynamically stable Finding

C0857121 hypertensive (finding) Finding

C0020649 hypotension Finding

C0237314 irregular heart beat Finding

C0425687 jugular venous engorgement Finding

C0455900 moist oral mucosa Finding

C1265570 morphology within normal

limits

Finding
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C0262581 no known drug allergy Finding

C0278005 normal bowel sounds Finding

C0232202 normal sinus rhythm Finding

C0426650 obese abdomen Finding

C0030252 palpitations Finding

C0460139 pressure (finding) Finding

C2143305 pupils equal in size, round,

reactive to light

Finding

C0034642 rales Finding

C0455899 red throat Finding

C0003813 sinus arrhythmia Finding

C0429029 ST segment Finding

C0520886 ST segment elevation (find-

ing)

Finding

C0038990 sweating Finding

C0038999 swelling Finding

C0576177 swelling of ankle joint (find-

ing)

Finding

C0080203 tachyarrhythmia Finding

C0039231 tachycardia Finding

C2203276 wine consumption Finding

C0587571 cardiology service (proce-

dure)

Health Care Activity

C0278350 ENT examination Health Care Activity

C0376405 patient non-compliance Individual Behavior

C0037369 smoking individual behavior

C0696098 blood thyroid stimulating

hormone analysis

Laboratory Procedure
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C0009555 complete blood count Laboratory Procedure

C0201973 creatine kinase measure-

ment

Laboratory Procedure

C0523631 folic acid measurement Laboratory Procedure

C0525032 international normalized ra-

tio

Laboratory Procedure

C0681827 laboratory studies Laboratory Procedure

C0023901 liver Function tests Laboratory Procedure

C0523807 oxygen saturation measure-

ment

Laboratory Procedure

C0202194 potassium measurement Laboratory Procedure

C0337443 sodium measurement Laboratory Procedure

C0555903 total protein measurement Laboratory Procedure

C0919758 vitamin D measurement Laboratory Procedure

C0023508 white blood cell count pro-

cedure

Laboratory Procedure

C0181586 leads (device) Manufactured Object

C0030163 artificial cardiac pacemaker Medical Device

C0972395 automatic implantable

cardioverter-Defibrillators

Medical Device

C0085590 catheter device Medical Device

C1260596 coronary artery graft device Medical Device

C0027524 nebulizers Medical Device

C0810633 pacemakers Medical Device

C0038257 stent. device Medical Device

C0851406 anxiety disorders and symp-

toms

Mental or Behavioral Dys-

function
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C0009171 cocaine abuse Mental or Behavioral Dys-

function

C0013146 drug abuse Mental or Behavioral Dys-

function

C0036341 schizophrenia Mental or Behavioral dys-

function

C0001443 adenosine Nucleic Acid. Nu-

cleoside. or Nu-

cleotide.Biologically Active

Substance.Pharmacologic

Substance

C0036658 esthesia Organ or Tissue Function

C0232804 renal function Organ or Tissue Function

C0014806 erythromycin Organic Chemi-

cal.Antibiotic

C0019134 heparin Organic Chemi-

cal.Biologically Active

Substance.Pharmacologic

Substance

C0965130 advair Organic Chemi-

cal.Pharmacologic Sub-

stance

C0004057 aspirin Organic Chemi-

cal.Pharmacologic Sub-

stance

C0004147 atenolol Organic Chemi-

cal.Pharmacologic Sub-

stance
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C0004259 atropine Organic Chemi-

cal.Pharmacologic Sub-

stance

C0701009 bumex Organic Chemi-

cal.Pharmacologic Sub-

stance

C0700940 cardizem Organic Chemi-

cal.Pharmacologic Sub-

stance

C0054836 carvedilol Organic Chemi-

cal.Pharmacologic Sub-

stance

C0719509 coreg Organic Chemi-

cal.Pharmacologic Sub-

stance

C0699129 coumadin Organic Chemi-

cal.Pharmacologic Sub-

stance

C0591301 cozaar Organic Chemi-

cal.Pharmacologic Sub-

stance

C0012265 digoxin Organic Chemi-

cal.Pharmacologic Sub-

stance

C1692318 docusate Organic Chemi-

cal.Pharmacologic Sub-

stance
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C0699274 ecotrin Organic Chemi-

cal.Pharmacologic Sub-

stance

C0015846 fentanyl Organic Chemi-

cal.Pharmacologic Sub-

stance

C0016860 furosemide Organic Chemi-

cal.Pharmacologic Sub-

stance

C0699992 lasix Organic Chemi-

cal.Pharmacologic Sub-

stance

C0593906 lipitor Organic Chemi-

cal.Pharmacologic Sub-

stance

C0049506 mirtazapine Organic Chemi-

cal.Pharmacologic Sub-

stance

C0026549 morphine Organic Chemi-

cal.Pharmacologic Sub-

stance

C0017887 nitroglycerin Organic Chemi-

cal.Pharmacologic Sub-

stance

C0699237 nitrol Organic Chemi-

cal.Pharmacologic Sub-

stance
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C0162712 norvasc Organic Chemi-

cal.Pharmacologic Sub-

stance

C0028978 omeprazole Organic Chemi-

cal.Pharmacologic Sub-

stance

C0633084 plavix Organic Chemi-

cal.Pharmacologic Sub-

stance

C0700777 prilosec Organic Chemi-

cal.Pharmacologic Sub-

stance

C0036656 senna Extract Organic Chemi-

cal.Pharmacologic Sub-

stance

C0074554 simvastatin Organic Chemi-

cal.Pharmacologic Sub-

stance

C0074722 sodium Bicarbonate Organic Chemi-

cal.Pharmacologic Sub-

stance

C0037707 sotalol Organic Chemi-

cal.Pharmacologic Sub-

stance

C0037982 spironolactone Organic Chemi-

cal.Pharmacologic Sub-

stance
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C0040610 tramadol Organic Chemi-

cal.Pharmacologic Sub-

stance

C0678181 zocor Organic Chemi-

cal.Pharmacologic Sub-

stance

C0015780 female Organism Attribute

C0024554 male gender Organism Attribute

C0005823 blood Pressure Organism Function

C1265876 abnormally opaque struc-

ture (morphologic abnor-

mality)

Pathologic Function

C1527304 allergic Reaction Pathologic Function

C0004144 atelectasis Pathologic Function

C0013604 edema Pathologic Function

C0019080 hemorrhage Pathologic Function

C0231274 intolerant of heat Pathologic Function

C0034063 pulmonary Edema Pathologic Function

C0034065 pulmonary Embolism Pathologic Function

C0020542 pulmonary Hypertension Pathologic Function

C0232483 reflux Pathologic Function

C0001645 adrenergic beta-Antagonists Pharmacologic Substance

C0003280 anticoagulants Pharmacologic Substance

C0304227 prescription Drugs Pharmacologic Substance

C0024477 magnesium Oxide Pharmacologic Sub-

stance.Inorganic Chemical

C0035203 respiration Physiologic Function

C0043100 weight Quantitative Concept
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C0858277 angina symptom Sign or Symptom

C0003862 arthralgia Sign or Symptom

C0004093 asthenia Sign or Symptom

C0262384 atypical chest pain Sign or Symptom

C0423636 cardiac pain Sign or Symptom

C0235710 chest discomfort Sign or Symptom

C0008031 chest pain Sign or Symptom

C2073320 chest pain occurring sud-

denly as new onset

Sign or Symptom

C0010200 coughing Sign or Symptom

C0013404 dyspnea Sign or Symptom

C0231807 dyspnea on exertion Sign or Symptom

C2073283 factors initiating chest pain Sign or Symptom

C2029900 fast heart rate (symptom) Sign or Symptom

C2242996 has tingling sensation Sign or Symptom

C0018681 headache Sign or Symptom

C0476280 musculoskeletal chest pain Sign or Symptom

C0028643 numbness Sign or Symptom

C0030193 pain Sign or Symptom

C0023222 pain in lower limb Sign or Symptom

C0239376 pain of lower extremities Sign or Symptom

C1960985 pain radiating to left side of

chest

Sign or Symptom

C1960989 pain radiating to neck Sign or Symptom

C0554990 pale - symptom Sign or Symptom

C0747199 pancreatitis sign Sign or Symptom

C0333243 pitting edema Sign or Symptom

C0008033 pleuritic pain Sign or Symptom
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C0476273 respiratory distress Sign or Symptom

C0178310 signs and symptoms of ill-

defined conditions

Sign or Symptom

C0037763 spasm Sign or Symptom

C0557875 tired Sign or Symptom

C0235218 warm skin Sign or Symptom

C0043144 wheezing Sign or Symptom

C0741847 bypass Therapeutic or Preventive

Procedure

C0007430 catheterization Therapeutic or Preventive

Procedure

C0010055 coronary artery bypass

surgery

Therapeutic or Preventive

Procedure

C0011946 dialysis procedure Therapeutic or Preventive

Procedure

C0020699 hysterectomy Therapeutic or Preventive

Procedure

C1998570 intubating Therapeutic or Preventive

Procedure

C0746818 irradiation of neck Therapeutic or Preventive

Procedure

C0188379 knee strapping Therapeutic or Preventive

Procedure

C0029216 organ Transplantation Therapeutic or Preventive

Procedure

C0747130 pacemaker placement Therapeutic or Preventive

Procedure

C1304888 pain control Therapeutic or Preventive

Procedure
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C0003506 replacement of aortic valve

(procedure)

Therapeutic or Preventive

Procedure

C1293130 stabilization Therapeutic or Preventive

Procedure

C0040861 triage Therapeutic or Preventive

Procedure

C0026724 mucous Membrane Tissue

RACE

AGE

INSURANCE

INCOME
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