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Robust Estimation and Inference under Huber’s Contamination Model

Peiliang Zhang, PhD

University of Pittsburgh, 2022

Huber’s contamination model is widely used for analyzing distributional robustness when

the shape of the real underlying data distribution deviates from the assumed model. Specif-

ically, it models that the observed data are contaminated by some arbitrary unknown distri-

bution with a small fraction. In this dissertation, we study the robust regression and robust

density estimation under Huber’s contamination model.

In the regression setting, we assume that the noise has a heavy-tailed distribution and

may be arbitrarily contaminated with a small fraction under an increasing dimension regime.

We show that robust M-estimators can achieve the minimax convergence rate (except for

the intercept if the uncontaminated distribution of the noise is asymmetric). We develop

a multiplier bootstrap technique to construct confidence intervals for linear functionals of

the coefficients. When the contamination proportion is relatively large, we further provide a

bias correction procedure to alleviate the bias due to contamination. The robust estimation

and inference framework can be extended to a distributed learning setting. Specifically, we

demonstrate that a communication-efficient M-estimator can attain the centralized minimax

rate (as if one has access to the entire data). Moreover, based on this communication-

efficient M-estimator, a distributed multiplier bootstrap method is proposed only on the

master machine, which is able to generate confidence intervals with optimal widths. A

comprehensive simulation study demonstrates the effectiveness of our proposed procedures.

In the density estimation setting, we aim to robustly estimate a multivariate density

function on Rd with Lp loss functions from contaminated data. To investigate the contam-

ination effect on the optimal estimation of the density, we first establish the minimax rate

with the assumption that the density is in an anisotropic Nikol’skii class. We then develop a

data-driven bandwidth selection procedure for kernel estimators via a robust generalization

of the Goldenshluger-Lepski method. We show that the proposed bandwidth selection rule

can lead to the estimator being minimax adaptive to either the smoothness parameter or
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the contamination proportion. When both of them are unknown, we prove that finding any

minimax-rate adaptive method is impossible. Extensions to smooth contamination cases are

also discussed.

Keywords: Robust statistics; Huber’s contamination model; heavy-tailed distribution; M-

estimation; multiplier bootstrap; communication-efficient estimator; distributed infer-

ence; minimax rate; adaptive density estimation; the Goldenshluger-Lepski method.
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1.0 Introduction

1.1 Background

In this new era of data science, complex data structure, such as heterogeneity, contam-

ination and heavy-tailedness of distributions, has posed unprecedented challenges to data

analysts. Various robust statistical procedures are desired in the hope of accommodating

such complexity and extracting useful information from modern datasets. Robust statistics,

in its classical form, has been systematically studied since the seminal papers (Tukey, 1960;

Huber, 1964; Hampel, 1968); see, for instance, Huber (2004) and Hampel et al. (2011) for a

comprehensive introduction and discussion. Recently, notions from classical robust statistics

have been revived to study robustness under various modern models. Examples include high-

dimensional mean and covariance estimation (Diakonikolas et al., 2019; Lai et al., 2016; Chen

et al., 2018), regression (Gao, 2020; Prasad et al., 2020; Pensia et al., 2020), nonparametric

estimation (Liu and Gao, 2019; Chen et al., 2016), etc.

In addition to the widely used notions such as breakdown point and influence function,

Huber’s contamination model, first proposed in Huber (1964), has drawn considerable atten-

tion, as it formalizes a common setting where the distribution of the observed data deviates

from the assumed model. Formally, it is defined as

(1− ϵ)Pθ + ϵQ.

Under this model, data are drawn with probability 1− ϵ from the assumed modeling distri-

bution Pθ (with θ as the parameter of interest), and with probability ϵ to be contaminated

by some arbitrary distribution Q. The arbitrary contamination distribution Q can repre-

sent gross errors, adversarial corruption, or the outliers due to the underlying heavy-tailed

distribution. From the perspective of classical robust statistics, this model depicts a circum-

stance where the real data distribution deviates from the assumed model Pθ within a radius

of ϵ under the total variation distance, and thus desired robustness signifies insensitivity to

such small deviations from the assumptions on the data distribution. Moreover, as discussed
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in Chen et al. (2018), Huber’s contamination model actually provides a unified framework

to study the statistical efficiency and robustness simultaneously. Therefore, it gives us a

more comprehensive view on the robustness evaluation, compared to the notions like break-

down point. That being said, rigorous theoretical studies of Huber’s contamination model

have been largely missing in modern topics such as the nonparametric and high-dimensional

statistics—mainly due to its difficulty on balancing the trade-off among robustness, statisti-

cal efficiency and computation complexity—until some very recent works came up.

In the high-dimensional or increasing-dimensional setting where the dimensionality grows

with the sample size, fundamental models like normal mean and covariance estimation were

first carefully studied. Diakonikolas et al. (2016) and Lai et al. (2016) were the two pioneering

works that proposed polynomial-time robust estimators with dimension-independent error

guarantees (regarding the contamination dependence, yet still sub-optimal). Since then,

there have been a substantial number of works in theoretical computer science communities

trying to improve the results, either in computing time (polynomial or nearly-linear time) or

contamination dependence (optimal or near-optimal) (Kothari and Steurer, 2017; Charikar

et al., 2017; Diakonikolas et al., 2017, 2018; Cheng et al., 2019). Another line of research

is Chen et al. (2018) and Gao (2020), which generalized the idea of Tukey’s depth and

proved that the depth-based estimators they designed are able to achieve the optimal rate of

convergence in many statistical tasks, such as covariance matrix estimation and multivariate

regressions, yet with computation intractability issue. With advancements in robust mean

and covariance estimation, studies on robust regression began to emerge. Dalalyan and

Thompson (2019) and Sasai and Fujisawa (2020) used different techniques to prove that a

robust M-estimator with certain ℓ1 regularization is minimax rate-optimal. Klivans et al.

(2018) and Bakshi and Prasad (2020) both designed polynomial-time robust estimators (the

latter can provably achieve the optimal convergence rate) via sum-of-squares approaches

under a moment condition called hypercontractivity, while Prasad et al. (2020) provided a

general class of robust estimators via robust gradient estimation under the same condition.

More recently, Pensia et al. (2020) combined classical robust regression methods, such as

Huber regression and least trimmed squares, with a covariate filtering technique to obtain

optimal estimators under the setting where both covariates and responses are potentially

2



heavy-tailed and contaminated.

Going through all these literatures, we find that although various optimal or near opti-

mal robust estimators are provided under Huber’s contamination model, none of them have

discussed how to do statistical inference with the given estimator, which is critical in the

decision-making processes. Motivated by the absence of inference under Huber’s contami-

nation model, my first part of dissertation will focus on the statistical inference task with

contaminated data under an increasing-dimensional regression setting. We show that a ro-

bust M-estimator can achieve the optimal convegence rate (except for the intercept when

the uncontaminated distribution is asymmetric), and a valid confidence interval can be ob-

tained via a multiplier bootstrap technique. The robust estimation and inference framework

is further extended to a distributed context, where the overall data are split across multiple

machines, and communication between machines is constrained.

In the nonparametric setting, Du et al. (2018) and Gao (2020) both gave optimal esti-

mation procedures on nonparametric regression tasks, using a local binning median method

and a regression depth method, respectively. In the area of nonparametric density estima-

tion, Liu and Gao (2019) investigated the optimal convergence rates and adaptation theory

for a density on R under a pointwise loss. Chen et al. (2016) developed a general decision

theory and proposed a class of estimators based on Scheffé estimate, which are shown to be

optimal when the loss is equivalent to the total variation distance. Noticeably, the results

on the robust estimation of a multivariate density function on Rd from contaminated data

are still largely unknown. The second part of my dissertation is aimed to fill in this blank,

by establishing the optimal adaptive procedures under a general Lp (1 ≤ p <∞) loss.

1.2 Overview of the Dissertation

This dissertation studies the robust linear regression inference and robust density esti-

mation problem under Huber’s contamination model.

In Chapter 2, we study the robust estimation and inference problem for linear models

in that the increasing dimension regime. Given random design, we consider the conditional

3



distributions of error terms are contaminated by some arbitrary distribution with proportion

ϵ but otherwise can also be heavy-tailed and asymmetric. Under the setting of Huber’s

contamination model, we prove that simple robust M-estimators like Huber’s estimator can

still achieve the optimal minimax rate of convergence except for the intercept. In addition,

we generate confidence intervals for linear functionals of the coefficients by a multiplier

bootstrap technique. The non-asymptotic theoretical guarantee is established when the

necessary condition on contamination proportion ϵ = o(1/
√
n) holds, where n is the sample

size. For a larger ϵ, we further propose a debiasing procedure to reduce the potential bias

caused by contamination, and prove the validity of the debiased confidence interval as long

as ϵ = o(1).

In Chapter 3, we extend the above ideas to the distributed estimation and inference

setting. Specifically, we demonstrate that a communication-efficient M-estimator can attain

the centralized minimax rate (as if one has access to the entire data) with the distributed

contaminated data. Moreover, based on the proposed communication-efficient M-estimator,

a distributed multiplier bootstrap procedure is further developed. It can be conducted only

on the master machine, and thus incurs no extra communication costs. While this proce-

dure only bootstraps the local sample data stored on the master machine, it leverages the

information aggregated from other machines in the distributed estimation phase. Therefore,

the resulting confidence interval has the optimal width. We establish its theoretical valid-

ity under weak assumptions on the local sample size and the contamination proportion. A

comprehensive simulation study demonstrates the effectiveness of our proposed procedures.

In Chapter 4, we address the problem of density function estimation in Rd with Lp

losses (1 ≤ p < ∞) under Huber’s contamination model. We investigate the effects of

contamination proportion ϵ among other key quantities on the minimax rates of convergence

for both structured and unstructured contamination over a scale of the anisotropic Nikol’skii

classes. The corresponding adaptation theory is further studied by establishing Lp risk oracle

inequalities via a novel generalization of the Goldenshluger-Lepski method. Specifically,

we develop a data-driven bandwidth selection procedure for kernel estimators which can

lead to the estimator being minimax adaptive to either the smoothness parameter or the

contamination proportion. When both of them are unknown, we prove that it is impossible

4



to find any minimax-rate adaptive method. This illustrates the contamination effect on the

adaptation theory of density estimation.

In this dissertation, notations may differ from chapter to chapter, and will be introduced

in the first section of each chapter. Each chapter’s supplement has the same notations as

the main chapter.
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2.0 Robust Regression under Huber’s Contamination Model

2.1 Preliminaries

In this chapter, we consider a regression setting and assume that the conditional distri-

bution of the response variable y ∈ R given covariates x ∈ Rd follows Huber’s contamination

model. That is,

y = β∗
0 + x⊺β∗ + ε, ε|x ∼ (1− ϵ)F + ϵGx. (2.1.1)

Besides the independence on x, we make very few weak assumptions on the distribution F

(see Condition 2.2.2) such that F can be heavy-tailed. Under our model, the contamination

distribution Gx is arbitrary and may depend on the covariates x, which can be used to model

the adversarial manipulations of the response based on its features. We consider an increasing

dimension scheme: the dimensionality of features d can grow with the sample size (but at a

slower rate). Under this framework, the goal of this work is two folds: (i) robustly estimate

the coefficients β∗ with the optimal estimation error; (ii) build valid confidence intervals

for linear functionals of β∗ with the optimal width. We present the robust estimation and

inference results in Section 2.2 and Section 2.3, respectively. In Section 2.4, we propose a

debiased confidence interval method for cases with a large contamination proportion. Section

2.5 reports our experimental results for both estimation and confidence interval coverage and

width. The proofs for all the theoretical results are given in Appendix A.

Notations. In this and the following chapter, we use bold letters like u, A to represent

vectors and matrices. Given any two vectors u = (u1, . . . , uk)
⊺ ,v = (v1, . . . , vk)

⊺ ∈ Rk, we

define their inner product by u⊺v = ⟨u,v⟩ =
∑k

i=1 uivi. We use the notation ∥ · ∥p, 1 ≤

p < ∞ for the ℓp-norms of vectors in Rk : ∥u∥p = (
∑k

i=1 |ui|p)1/p. For k ≥ 2, Sk−1 ={
u ∈ Rk : ∥u∥2 = 1

}
denotes the unit sphere in Rk. For a positive semi-definite matrix

A ∈ Rk×k, ∥ · ∥A denotes the norm induced by A, that is, ∥u∥A = ∥A1/2u∥2,u ∈ Rk. For

any two real number a, b ∈ R, we write a ∨ b = max{a, b} and a ∧ b = min{a, b}. We use

⌊a⌋ to denote the largest integer strictly less than a. For two positive sequences {an} and
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{bn}, we write an ≲ bn or an = O (bn) if an ≤ Cbn for all n and some positive constant C

independent of n. We write an ≳ bn or an = Ω(bn) if bn ≲ an, and write an ≍ bn if an ≲ bn

and bn ≲ an. We use an = o(bn) or bn ≫ an to denote an/bn → 0 when n→ ∞.

2.2 Robust M-estimation

Assume we have access to n observations {(xi, yi)}ni=1 i.i.d. from (x, y) that follows the

linear model with contamination (2.1.1), where β∗ = (β∗
1 , . . . , β

∗
d)

⊺ represents the unknown

regression coefficients, x = (x1, . . . , xd)
⊺ is the covariate vector, and ε is the regression noise.

In the following, we denote θ∗ = (β∗
0 ,β

∗⊺)⊺, x̄ = (1,x⊺)⊺ and write the linear model as

y = x̄⊺θ∗+ ε. Under Huber’s ϵ-contamination model (2.1.1), the response y is contaminated

with probability ϵ by some arbitrary distribution Gx that could depend on x. Moreover, we

do not impose any restrictive moment conditions on the “true” underlying distribution F so

that it can model the heavy-tailed distribution. To robustly estimate the coefficients with

the contaminated and heavy-tailed errors, we consider M-estimators Ronchetti and Huber

(2009), which are defined as

θ̂τ = (β̂0,τ , β̂
⊺
τ )

⊺ ∈ argmin
θ∈Rd+1

Lτ (θ), with Lτ (θ) :=
1

n

n∑
i=1

ℓτ (yi − x̄⊺
i θ), (2.2.1)

for a given loss function ℓ(·) and a tuning parameter τ , where ℓτ (·) = τ 2ℓ(·/τ). The popula-

tion minimizer of the above loss under the distribution F is denoted by

θ∗
τ = (β∗

0,τ ,β
∗
τ
⊺)⊺ ∈ argmin

θ∈Rd+1

Ex,ε∼F{ℓτ (y − x̄⊺θ)}. (2.2.2)

M-estimators were first proposed by Huber in his seminal work Huber (1964), to study

robustness against distributional contamination. Recent research Chen and Zhou (2020); Sun

et al. (2020); Zhou et al. (2018) has demonstrated that M-estimators, like Huber estimators,

are also robust to heavy-tailed data in the sense that a sub-Gaussian type deviation bound

can be obtained, while only assuming the existence of a finite second moment. Specifically,
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they prove that when there is no contamination (ϵ = 0), under standard regularity conditions,

it holds

∥θ̂τ − θ∗∥2 ≤ ∥θ̂τ − θ∗
τ∥2︸ ︷︷ ︸

Estimation Error (Variance)

+ ∥θ∗
τ − θ∗∥2︸ ︷︷ ︸

Approximation Error (Bias)

≲

(
σ

√
d

n
+ τ

d

n

)
+
σ2

τ
,

where σ2 is the variance of F , and the loss function is Huber loss

ℓτ (x) =

x
2/2 if |x| ≤ τ,

τ |x| − τ 2/2 if |x| > τ.

(2.2.3)

Notably, a bias, resulting from the discrepancy between the population minimizer and the

true parameter, arises when the heavy-tailed distribution F is asymmetric. Under this case,

an adaptive choice of τ at the order σ
√
n/d is suggested to achieve the optimal convergence

rate O(
√
d/n).

With the presence of contamination (ϵ > 0), however, the estimation error ∥θ̂τ − θ∗
τ∥2

would also involve bias since θ∗
τ is no longer the population minimizer with contamination

distribution Gx. In other words, instead of the above error decomposition, now we have

∥θ̂τ − θ∗∥2 ≤ ∥θ̂τ − θ∗
τ∥2︸ ︷︷ ︸

Estimation Error (Variance+Contamination Bias)

+ ∥θ∗
τ − θ∗∥2︸ ︷︷ ︸

Approximation Error (Bias)

≲

(
σ

√
d

n
+ τ

d

n
+ ϵ(τ ∨ 1)

)
+
σ2

τ
,

where the new bias term ϵ(τ ∨ 1) origins from the fact that Ex,ε∼(1−ϵ)F+ϵGx∇Lτ (β
∗
F ) is non-

zero when ϵ > 0, but has a bounded norm of order ϵτ , assuming that the loss function

ℓ(·) has a bounded derivative. With τ ≍ σ(d/n + ϵ)−1/2, we get the optimized total error

O(
√
d/n+ ϵ), which is still slower than the optimal minimax error rate O(

√
d/n + ϵ) as

shown in Theorem 2.2.2 below. This exhibits the contamination effect on the robustness

theory of M-estimators.

However, if we are primarily interested in estimating the coefficients β∗, this is not the

end of the story. The following Proposition 4.3.1 reveals that under mild conditions on the

loss function ℓ(·) and the distribution F , the population minimizer θ∗
τ is unique and its

coefficient part β∗
τ coincides with β∗. In other words, for the estimation of β∗, the bias

from the approximation error ∥β∗
τ − β∗∥2 vanishes, allowing the M-estimator β̂τ to attain

an improved rate of convergence.
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Condition 2.2.1 (Globally Lipschitz and locally quadratic loss function). Let ℓ : R 7→

[0,∞) be a convex function that satisfies: (i) ℓ′(0) = 0 and |ℓ′(x)| ≤ c1 for all x ∈ R, and

(ii) ℓ′′(0) = 1 and ℓ′′(x) ≥ c2 for all |x| ≤ c3, where c1–c3 are positive constants.

Proposition 2.2.1. Assume that S = E(x̄x̄⊺) is positive definite. For a given loss function

ℓ satisfying Condition 2.2.1 and τ > 0, assume that the function α 7→ Eε∼F{ℓτ (ε− α)} has

a unique minimizer, denoted by ατ , which satisfies

Pε∼F (|ε− ατ | ≤ c3τ) > 0

where c3 is given in Condition 2.2.1. Then for θ∗
τ in (2.2.2) and θ∗, it holds

β∗
0,τ = β∗

0 + ατ and β∗
τ = β∗.

This proposition illustrates that with intercept added, the bias ατ (i.e. the approximation

error for the population minimizer θ∗
τ ) is retained only at the intercept term. It further

implies that for the M-estimator β̂τ (with intercept added), we have

∥β̂τ − β∗∥2 ≤ ∥β̂τ − β∗
τ∥2︸ ︷︷ ︸

Estimation Error (Variance+Contamination Bias)

+ ∥β∗
τ − β∗∥2︸ ︷︷ ︸

Approximation Error (= 0)

≲ σ

√
d

n
+ τ

d

n
+ ϵ(τ ∨ 1),

and thus the minimax rate O(
√
d/n+ ϵ) can be achieved now with τ ≍ 1.

Table 1: M-Estimator (e.g. Huber Estimator) Analysis

Model Bias Variance Optimal Rate

θ∗: Heavy-tail σ2/τ σ
√
d/N + τd/N

√
d/N

θ∗: Heavy-tail+Contamination σ2/τ + ϵ(τ ∨ 1) σ
√
d/N + τd/N

√
d/N + ϵ

β∗: Heavy-tail+Contamination ϵ(τ ∨ 1) σ
√
d/N + τd/N

√
d/N + ϵ

The theoretical properties of M-estimators are formally presented in Theorem 2.2.1,

under mild conditions on x and F , as summarized in Condition 2.2.2.
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Condition 2.2.2. (i) S = E(x̄x̄⊺) is positive definite. z = S−1/2x̄ is a sub-Gaussian random

vector with parameter νx. That is,

νx = sup
u∈Sd

inf{t > 0 : E exp{⟨u, z⟩2/t2} ≤ 2}.

(ii) The noise variable ε|x ∼ (1 − ϵ)F + ϵGx. F is independent of x. (iii) Assume that

the function α 7→ Eε∼F{ℓτ (ε − α)} has a unique minimizer ατ , and κτ := Pε∼F (|ε − ατ | ≤

c3τ/2) > 0, where c3 is given in Condition 2.2.1.

Theorem 2.2.1. Assume Condition 2.2.1 and Condition 2.2.2 hold. Then, for any t > 0,

with probability at least 1− 2e−t, we have

∥θ̂τ − θ∗
τ∥S ≤ C

c1τνx
c2(1− ϵ)κτ

(√d+ t

n
+ ϵ
)

(2.2.4)

as long as ϵ < cκτ and n ≥ C ′κ−2
τ (d + t), where c, C ′ > 0 are two constants depending only

on (νx, c1, c2, c3), and C is some absolute constant.

Remark 2.2.1. (i) In this theorem, we consider the prediction loss ∥·∥S, which is equivalent

to ℓ2 loss when S has bounded largest and smallest eigenvalues. Under such cases,

Theorem 2.2.1 guarantees that the M-estimator satisfies

∥β̂τ − β∗∥2 ≲
√
d

n
+ ϵ

with a sub-Gaussian type concentration bound.

(ii) (About Condition 2.2.1) Examples of the loss function satisfying Condition 2.2.1 include

Huber’s loss (2.2.3) (with c1 = c2 = c3 = 1) and various smoothed Huber loss and pseudo

Huber loss functions; see Section A.1 in the supplement.

(iii) (About Condition 2.2.2) It is easy to check that the condition that the function α 7→

Eε∼F{ℓτ (ε − α)} has a unique minimizer is satisfied in many cases, due to the globally

convex and locally strong convex property of the loss function ℓτ .
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(iv) (About the choice of τ) Theorem 2.2.1 indicates that we need κτ ≳ ϵ+
√
(d+ t)/n and

τ/κτ ≍ 1 to reach the optimal rate O(
√
d/n + ϵ). To fulfill the requirements, one can

select τ at the scale of a finite moment of the distribution F (if it exists). For example,

if F is mean zero and has a finite variance σ2, then with τ = Cσ, we have

κτ = 1− Pε∼F (|ε− ατ | > c3τ/2) ≥ 1− Eε∼F |ε− ατ |2

(c3τ/2)2
≥ 1− σ2 + α2

τ

(c3τ/2)2
≥ c > 0,

for some absolute constants C, c > 0. Here we use the fact that |ατ | ≤ σ2/{τ(1−σ2/τ 2)},

which can be shown under Huber’s loss.

Our next theorem shows that the above estimation error rate is optimal, by providing a

minimax lower bound under Huber’s contamination model.

Theorem 2.2.2. Let P = P(θ∗, ϵ, F,Gx) to denote the collection of all the joint distribu-

tions of (x, y) that follow model (2.1.1) and satisfy Condition 2.2.2, then we have

inf
θ̂

sup
θ∗∈Rd+1

sup
P (x,y)∈P

EP (x,y)∥θ̂ − θ∗∥S ≳

√
d

n
+ ϵ.

Moreover, denote P̃ = {P (x, y) ∈ P|cS ≤ λmin(S) ≤ λmax(S) ≤ CS} with constants cS, CS >

0, then we have

inf
β̂

sup
β∗∈Rd

sup
P (x,y)∈P̃

EP (x,y)∥β̂ − β∗∥2 ≳
√
d

n
+ ϵ.

Remark 2.2.2. The above information-theoretical lower bound can be seen as an applica-

tion of Theorem 5.1 in Chen et al. (2018) to the conditional distribution of y|x. The main

idea is based on the observation that Huber’s ϵ-contamination model of the form (1−ϵ)Pθ+ϵQ

can be viewed as a perturbation of the true distribution Pθ under the total variation dis-

tance at the order of ϵ. In fact, one can check that any two distributions Pθ1 , Pθ2 with

total variation bounded by ϵ/(1 − ϵ) cannot be distinguished under Huber’s contamination

model, and thus a price of L(θ1, θ2) has to be paid for estimating θ under a given loss L(·, ·).

This insight is characterized by the notion of modulus of continuity Donoho and Liu (1991);

Donoho (1994); see Section 5 of Chen et al. (2018) for more details.
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2.3 Robust Inference via Multiplier Bootstrap

2.3.1 Bahadur Representation

We start the inference with presenting a non-asymptotic Bahadur representation for θ̂τ .

To this end, we need to assume that the loss function ℓ(·)’s second derivative is Lipschitz,

which is satisfied by a large number of smooth loss functions. Yet for Huber’s loss, this is

not the case and we instead assume an anti-concentration property for the distribution F .

Condition 2.3.1. For the loss function ℓ, we assume that either of the following condition

holds. (i) ℓ′′ is L-Lipschitz and bounded: |ℓ′′(u)| ≤ c4 for any u ∈ R. (ii) The loss ℓ is

Huber’s loss. In this case, we assume that Pε∼F (a ≤ ε ≤ b) ≤ CF (b − a) for any b > a > 0

with some contant CF .

Theorem 2.3.1. Assume Condition 2.2.1, 2.2.2 and 2.3.1 hold. Denote cF = Eε∼F ℓ
′′
τ (ε−ατ ).

Then for any t ≥ 1/2, with probability at least 1− 3e−t, we have∥∥∥∥cFS1/2(θ̂τ − θ∗
τ )−

1

n

n∑
i=1

ℓ′τ (εi − ατ )zi

∥∥∥∥
2

≤ C2

(d+ t

n
+ ϵ2

)
(2.3.1)

as long as ϵ < c and n ≥ C(d+t), where zi = S−1/2x̄i and c, C, C2 are constants independent

of (d, t, n, ϵ).

The above Bahadur representation suggests that for the inference of a linear functional of

β∗: µ⊺β∗ with some given µ ∈ Rd , we may consider the following distribution approximation

√
nµ⊺(β̂τ − β∗) =

√
nλ⊺(θ̂τ − θ∗

τ ) ≈
1√
n

n∑
i=1

Ui, with

λ = (0,µ⊺)⊺, Ui := c−1
F ℓ′τ (εi − ατ )λ

⊺S−1/2zi,

and utilize the asymptotic normality of n−1/2
∑n

i=1 Ui. However, there are two problems with

this strategy:

(i) (Contamination Bias) Ui is generally not mean zero due to contamination. This is because

under the contamination distribution Gx, εi may depend on zi. It thus requires the

contamination proportion ϵ = o(1/
√
n) to make the bias

√
nEUi → 0.
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(ii) (Variance Estimation) To estimate the variance of Ui, one needs consistent estimators for

cF = Eε∼F ℓ
′′
τ (ε−ατ ), Eε∼F{ℓ′τ (εi−ατ )}2 and S−1. Consequently, it can be quite challeng-

ing to generate a trustworthy variance approximation in the presence of contamination

and in a regime of increasing dimensionality.

In light of these concerns, we first propose a multiplier bootstrap procedure, which can implic-

itly estimate the variance of Ui and thus tends to be more impervious to contamination and

more accurate with finite sample and growing dimensionality, compared to the approaches

based on asymptotic normality. See Section 3.5.2 for comparisons (under distributed setting)

in numeric experiments. To address the contamination bias issue, we develop a debiasing

technique for confidence intervals, as described in Section 2.4. The rest of this section will

be used to present the methodology and theoretical guarantee of the multiplier bootstrap

procedure.

2.3.2 Methodology of Multiplier Bootstrap

Suppose that we generate i.i.d. scalar random variables w1, . . . , wn that are independent

of the observed data Dn = {(xi, yi)}ni=1 and satisfy wi ≥ 0,E(wi) = 1, var(wi) = 1. Consider

{wi}ni=1 as random weights to each sample observation {(xi, yi)}ni=1 and define the bootstrap

loss and bootstrap estimator as

L♭
τ (θ) :=

1

n

n∑
i=1

wiℓτ (yi − x̄⊺
i θ), θ ∈ Rd+1, and

θ̂♭
τ = (β̂♭

0, β̂
♭
1, . . . , β̂

♭
d)

⊺ ∈ argmin
θ∈Rd+1

L♭
τ (θ),

respectively. Notice that conditional on the sample data Dn, the expectation of the bootstrap

loss L♭
τ (θ) is the empirical loss Lτ (θ). This implies that the robust estimator θ̂τ in the Dn-

world is a target parameter in the bootstrap world, i.e.,

θ̂τ ∈ argmin
θ

Lτ (θ) = argmin
θ

E{L♭
τ (θ)|Dn}.
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This motivates us to consider using the bootstrap estimation residual θ̂♭
τ − θ̂τ to mimic

the empirical estimation residual θ̂τ − θ∗
τ . Take the inference for β∗

j (for j = 1, . . . , d) as an

example. To estimate the q-quantile of β̂j − β∗
j

cj(q) = inf{t ∈ R : P(β̂j − β∗
j ≤ t) ≥ q},

we consider the conditional q-quantile of β̂♭
j − β̂j given Dn

c♭j(q) = inf{t ∈ R : P(β̂♭
j − β̂j ≤ t|Dn) ≥ q}.

Therefore, a (1− α) confidence interval for β∗
j can be given by

I♭
j = [β̂j − c♭j(1− α/2), β̂j − c♭j(α/2)], j = 1, . . . , d. (2.3.2)

This type of multiplier bootstrap technique was studied in Spokoiny et al. (2015); Chen

and Zhou (2020); Pan and Zhou (2021) with applications to ordinary least squares (OLS)

regression, Huber’s regression (for heavy-tailed data) and quantile regression, respectively.

In this paper, we apply it to M-estimators for contaminated data and generalize it to a

distributed context in a communication-efficient way, as demonstrated in Section 3.3.

2.3.3 Theoretical Results for Bootstrap Inference

In this section, we first derive the estimation error bound and non-asymptotic Bahadur

representation for the bootstrap estimator θ̂♭
τ . Built on that, Theorem 2.3.3 and 2.3.4 provide

the theoretical guarantee of our bootstrap procedure.

Condition 2.3.2. w1, . . . , wn are i.i.d random varibles satisfying that wi ≥ 0,E(wi) = 1,

var(wi) = 1. Let ei = wi − 1. Assume that ei is sub-Gaussian with parameter νe.

Theorem 2.3.2. Denote P∗(·) := P(·|Dn). Under Conditions 2.2.1-2.3.2, for any t ≥ 1/2,

the bootstrap estimator θ̂♭
τ satisfies that

(i) with probability (over Dn) at least 1− 4e−t,

P∗
(
∥θ̂♭

τ − θ∗
τ∥S ≤ C♭

1

(√
d+ t

n
+ ϵ

))
≥ 1− 2e−t
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(ii) with probability (over Dn) at least 1− 8e−t,

P∗

(∥∥∥cFS1/2(θ̂♭
τ − θ̂τ )−

1

n

n∑
i=1

ℓ′τ (εi − ατ )eizi

∥∥∥
2
≤ C♭

2

(
d+ t

n
+ ϵ2

))
≥ 1− 8e−t

(2.3.3)

as long as ϵ < c and n ≥ C ′(d + t)2, where C♭
1, C

♭
2, c, C

′ > 0 are constants independent of

(d, t, n, ϵ) .

By comparing the Bahadur representations of the robust estimator (2.3.1) and the boot-

strap estimator (2.3.3), we have the following approximation results:

µ⊺(β̂τ − β∗) = λ⊺(θ̂τ − θ∗
τ ) ≈ Sn :=

1

n

n∑
i=1

Ui ≈ N (EU1,
1

n
VarU1),

µ⊺(β̂♭
τ − β̂τ ) = λ⊺(θ̂♭

τ − θ̂τ ) ≈ S♭
n :=

1

n

n∑
i=1

eiUi

·|Dn≈ N (0,
1

n2

n∑
i=1

U2
i ),

When the bias EU1 is negligible to its variance n−1VarU1 i.e., ϵ = o(1/
√
n), the two normal

distributions in the above formulas are close to each other, and thus validates the distribution

approximation of the bootstrap estimator. The following theorem justifies this intuition in

the form of the Kolmogorov distance.

Theorem 2.3.3. Under Conditions 2.2.1-2.3.2, for any µ ∈ Rd, and any t ≥ 1/2, we have

sup
x∈R

∣∣∣P(µ⊺(β̂τ − β∗) ≤ x
)
− P∗

(
µ⊺(β̂♭

τ − β̂τ ) ≤ x
)∣∣∣ ≤ C

(
d+ t√
n

+
√
nϵ

)
+ 11e−t

with probability (over Dn) at least 1−14e−t, respectively, as long as ϵ < c and n ≥ C ′(d+t)2,

for some constants c, C, C ′ > 0 independent of (d, t, n, ϵ,λ, x).

Theorem 2.3.4 (Validity of bootstrap confidence intervals). Under the same conditions of

Theorem 2.3.3, for any j = 1, . . . , d, we have

sup
q∈(0,1)

∣∣∣P(β̂j − β∗
j ≤ c♭j(q)

)
− q
∣∣∣ ≤ C

(
d+ t√
n

+
√
nϵ

)
+ 28e−t,

In particular, if ϵ = o(1/
√
n), and d = o(

√
n), then we establish the validity of the bootstrap

confidence intervals for β∗
j in (2.3.2):

sup
α∈(0,1)

∣∣P (β∗
j ∈ I♭

j

)
− (1− α)

∣∣ = o(1)

as n→ ∞.
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2.4 Debiased Confidence Intervals

Theorem 2.3.4 indicates that the bootstrap confidence intervals (2.3.2) are asymptotically

valid only when the contamination proportion is small, compared to the order 1/
√
n. This

originates from the fact that a larger contamination proportion would make the bias of our

estimator exceeds its variance and thus can no longer be covered by the bootstrap confidence

intervals like (2.3.2). This motivates us to consider adding a debiasing term to the confidence

intervals to boost its coverage with larger contamination proportions.

The Bahadur representation (3.2.4) shows that the bias of our distributed estimator

µ⊺β̂τ = λ⊺θ̂τ can be characterized by |EU1| with U1 = c−1
F ℓ′τ (ε1 − ατ )λ

⊺S−1/2z1. It is easy

to check that |EU1| ≤ ϵc1τc
−1
F ∥λ⊺S−1/2∥2. Therefore, we consider estimating cF and S to

obtain an estimate of the upper bound of |EU1|. Let

ĉF =
1

n

n∑
i=1

ℓ′′τ (ε̂i), Ŝ =
1

n

n∑
i=1

x̄ix̄
⊺
i , D̃j := ϵc1τ

∥∥∥∥ 1

ĉF
λ⊺Ŝ−1/2

∥∥∥∥
2

where ε̂i = yi − x̄⊺
i θ̂τ is the residual for our M-estimator θ̂τ , and λ = (0, . . . , 0, 1, 0, . . . , 0)

is a vector in Rd+1 with only the (j + 1)-th component being 1, for 1 ≤ j ≤ d. Then D̃j

serves as an estimate of an upper bound of the contamination bias for estimating the j-th

coefficient β∗
j . This implies that we may define a debiased bootstrap confidence interval for

β∗
j as following:

Î♭
D,j =

[
β̂j − CD

(
c♭j(1− α/2) + D̃j

)
, β̂j − CD

(
c♭j(α/2)− D̃j

)]
, (2.4.1)

where CD ≥ 1 is an universal constant to be specified.

Theorem 2.4.1. Assume Conditions 2.2.1-2.3.2 hold. Further assume that the largest and

smallest eigenvalue of S are both bounded: cS ≤ λmin(S) ≤ λmax(S) ≤ CS for some constants

CS, cS. Then for any j = 1, . . . , d, any α ∈ (0, 1), any CD > 1, we have

P
(
β∗
j ∈ Î♭

D,j

)
− (1− α) ≥ −C

(√
log n

n
+ ϵ2

)
as long as ϵ ≤ c and n ≥ C ′d2 for some large enough C ′ and small enough c. Here, c, C, C ′

are independent of (n, d, ϵ).
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Remark 2.4.1. (i) The above theorem shows that the debiased bootstrap confidence in-

tervals (3.4.1) can achieve the desired coverage probability asymptotically when ϵ = o(1)

and d = o(
√
n), which relaxes the constraint on the contamination proportion, compared

with the confidence intervals without a debiasing step.

(ii) Although we construct the debiased bootstrap confidence intervals in a conservative way

by including an estimate of the upper bound of the bias, this procedure does not sacrifice

too much efficiency in the sense that the length of the resulting confidence interval is of

order O(1/
√
n+ϵ), which matches the centralized minimax rate of convergence, as shown

by Theorem 2.2.2. (Although Theorem 2.2.2 only presents a minimax lower bound for

the norm ∥ · ∥S, one can prove a lower bound O(1/
√
n + ϵ) for the sup-norm following

the same proof.)

(iii) Our numerical experiments show that selecting CD = 1 in (2.4.1) is sufficient to lead to

satisfactory coverage proportion.

As Theorem 2.4.1 can be viewed as a special case of Theorem 3.4.1 with m = 1, we only

provide a proof for Theorem 3.4.1 in Appendix B and omit the proof for Theorem 2.4.1.

2.5 Numerical Studies

2.5.1 Robust Estimation

In this section, we investigate the numerical performance of the proposed M-estimators

with contrast to the following robust estimation methods: (i) ordinary least squares (OLS);

(ii) least median squares (LMedian) (Rousseeuw, 1984); (iii) TORRENT (Bhatia et al.,

2015); (iv) RANSAC (Fischler and Bolles, 1981). TORRENT is an iterative hard-thresholding

algorithm similar to the least trimmed square (Rousseeuw, 1984; Rousseeuw and Van Driessen,

2006). As discussed in Bhatia et al. (2015) and Prasad et al. (2020), TORRENT is shown

to outperform various regularized ℓ1 algorithms for robust regression and thus we do not

consider these methods in this comparison. RANSAC is a family of algorithms widely used

in the image processing field, which use random sampling of the data to separate the inliers
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from the outliers.

For our proposed M-estimator, we employ Huber’s loss (2.2.3) and select the tuning

parameter τ via the following heuristic two-step way: (i) initially set τ = 1 and obtain the

residuals using the available data; (ii) calculate the median absolute deviation (MAD) of the

residuals and use it as the final value of τ . Ideally, this results in τ having the same scale as

the variance of the noise ε under distribution F . For TORRENT, we set the thresholding

parameter to be the contamination proportion ϵ plus 0.05 (as we find this is more robust

and performs better than using just ϵ). We also try setting it 50% for a conservative usage

of TORRENT when we don’t know the oracle ϵ. These two are denoted by TORRENT*

and TORRENT50 (in the figures below). For RANSAC, we set the minimal sample size

to be 5, and the maximum distance for residuals to be the 95% quantile of F distribution.

For least median squares (LMedian), we use a Monte Carlo type technique to draw 1000

random subsamples of 5 different points to seek an approximate solution (Rousseeuw and

Leroy, 2005).

To generate contaminated data (xi, yi) following model (2.1.1), we consider β∗
0 = 0

and β∗ = (5, 2, 1,−1,−3)⊺ (d = 5), and simulate x from standard multivariate normal

distribution N (0, Id) (Id is a d × d identity matrix). Regarding the distribution of the

noise ε, we consider the following three heavy-tailed distributions for F : (F1) t-distribution

with 1.5 degrees of freedom, denoted as t(1.5); (F2) Lognormal distribution with µ = 0

and σ = 1, i.e., the logarithm of the standard normal distribution; (F3) Pareto distribution

with shape parameter 1.5 and scale parameter 1. We investigate the following four types

of contamination distribution G: (G1) Unif(−|y0|, |y0|), where y0 = β∗
0 + x⊺β∗ + ε with

ε ∼ F , which represents the response variable without contamination; (G2) sign(y0) · F ;

(G3.1) G is a point mass at x1, where x1 is the first coordinate of x; (G3.2) G is a point

mass at 100x1. The first two contamination distributions represent contamination based on

the initial response without contamination, and the last two are about contamination based

on the covariates x. To ensure a fair comparison for the distributed M-estimator without

intercept, all of the aforementioned distributions for F and G are centered.

We fix the sample size n = 250 and explore the contamination proportion ϵ in the

range of [0, 25%]. We report the estimation error of the coefficient β∗ under the ℓ2-norm,
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i.e., ∥β̂ − β∗∥2. Figure 1 draws the estimation error versus the contamination proportion

ϵ for the following combinations of F and G: (F1,G1), (F2,G2), (F3,G3.1) and (F3,G3.2),

averaged over 100 random trials. We can see that the M-estimators (denoted as Huber)

consistently have the minimal errors across almost all the settings, except for the case where

the contamination proportion is very large (over 20%) under the distributions (F3,G3.2).

For that case, TORRENT* performs better. This is not surprising as in this setting, the

contamination distribution is 100x1, making the outliers very easy to be identified and deleted

from the estimation procedures of TORRENT, while Huber includes all the data in the

estimation. Based on the empirical findings, we may conclude that when the contamination

proportion is not very large or the contamination distributionG is not so distinguishable from

the original noise distribution F , M-estimators typically lead to higher estimation accuracy

than the methods based on detecting and excluding outliers (like TORRENT).

2.5.2 Robust Inference

This section presents the empirical performance of inference procedures with contam-

inated data. We compare the following methods: (i) OLS-norm: standard asymptotic

normal-based confidence intervals; (ii) OLS-boot: the multiplier bootstrap confidence in-

tervals based on OLS estimators; (iii) M-boot: the multiplier bootstrap confidence intervals

based on M-estimators (Algorithm 1). For the method (iii), we consider five robust loss

functions: Huber loss, two smooth-Huber losses and two pseudo-Huber losses, as presented

in Appendix A.1. We use the same way to select tuning parameter τ as in Section 2.5.1.

Following the data generation process in Section 2.5.1, we set β∗ = (5, 2, 1,−1,−3)⊺

and β∗
0 = 0 with d = 5 and n = 250, and simulate x ∼ N (0, Id). To this end, we fix the

contamination proportion ϵ = 0.1/
√
n to satisfy the condition that ϵ = o(1/

√
n), as required

by Theorem 2.3.4. We choose the contamination distribution as a point mass at the first

coordinate of x, i.e. Gx = 100x1. Under this contamination distribution, the data would

act as though the value of the first component of β∗ (i.e. β∗
1) being boosted by 100 times.

Therefore, we focus on constructing a confidence interval for β∗
1 . Regarding the distribution

F , we consider the following various distributions: (1) Standard normal N (0, 1): t)(1.5);(2)
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t-distribution with degrees of freedom 1.5; (3) Pareto distribution with scale parameter 1

and shape parameter 1.5; (4) Lognormal distribution-a logarithm of a standard normal:

Lognormal(0, 1); (5) Gamma distribution with shape parameter 5 and scale parameter 1; (6)

Weibull distribution with scale parameter 1 and shape parameter 1; (7) Pareto-t mixture:

0.5Pareto(1, 1.5)+0.5t(1.5); (8) Normal-Lognormal mixture: 0.5N (0, 1)+0.5Lognormal(0, 1).

Table 2 and 3 report the coverage and width of the 95% bootstrap confidence intervals

for β∗
1 , based on 500 random trials. From these tables, it can be seen that compared to

OLS-based methods, our robust methods generally achieve the nominal confidence level 95%

under the various heavy-tailed distributions F , with significantly smaller widths at the same

time. This indicates our proposed inference procedures enjoy the robustness and effectiveness

simultaneously.

We then consider increase the contamination proportion to ϵ = 1/
√
n and evaluate the

performance of the debiased confidence intervals (2.4.1) (with CD = 1). For simplicity,

we only consider Huber’s loss for our M-estimator. (As we notice that the performances of

pseduo-Huber loss and smooth-Huber loss are similar to Huber loss, as shown in the previous

section.)

Table 4 and 5 show the coverage and mean widths of the confidence intervals based on

500 random trials. In each table, we use OLS-norm and OLS-boot as baselines. Huber

and Debiased-Huber represent the bootstrap confidence intervals (2.3.2) and the debiased

bootstrap confidence intervals (2.4.1), respectively, with both based on Huber’s estimator.

From the coverage table, we can see that when contamination proportion ϵ increases to the

scale 1/
√
n, the coverage proportions of the bootstrap confidence intervals drop below 95%,

while the debiased the debiased bootstrap confidence intervals constantly have a coverage

probability higher than 95%. From the width table, we observe that the widths of the

debiased confidence intervals are roughly twice as large as those wihout debiasing. This is

consistent with our theory that the width of the bootstrap confidence interval is O(1/
√
n)

and the width of the debiased the bootstrap confidence interval is O(1/
√
n + ϵ) (optimal

width).
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(a) (F1,G1) (b) (F2,G2)

(c) (F3,G3.1) (d) (F3,G3.2)

Figure 1: ℓ2 estimation error versus the contamination proportion ϵ under various settings

for distribution F and G.
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Table 2: Coverage of the 95% confidence intervals for β∗
1 under various settings for distribu-

tion F when ϵ = 0.1/
√
n. The results are based on 500 random trials.

OLS-norm OLS-boot Huber PseHub I PseHub II SmthHub I SmthHub II

norm 0.884 0.978 0.95 0.954 0.956 0.952 0.96

t 0.88 0.97 0.946 0.942 0.954 0.954 0.946

pareto 0.932 0.988 0.99 0.98 0.984 0.974 0.986

lognormal 0.854 0.972 0.946 0.924 0.93 0.934 0.938

Gamma 0.852 0.972 0.952 0.946 0.95 0.948 0.938

Weibull 0.848 0.972 0.958 0.952 0.952 0.954 0.956

Pareto-t 0.906 0.976 0.966 0.968 0.972 0.966 0.964

norm-lognormal 0.868 0.98 0.952 0.958 0.962 0.954 0.96

Table 3: Mean widths of the 95% confidence intervals for β∗
1 under various settings for

distribution F when ϵ = 0.1/
√
n. The results are based on 500 random trials.

OLS-norm OLS-boot Huber PseHub I PseHub II SmthHub I SmthHub II

norm 1.508 1.513 0.2778 0.2738 0.274 0.2894 0.2761

t 2.708 2.618 0.3924 0.4033 0.4011 0.3821 0.394

pareto 62.59 42.74 0.6497 0.7582 0.7213 0.6758 0.6716

lognormal 1.74 1.88 0.2687 0.2901 0.283 0.2809 0.2731

Gamma 1.67 1.848 0.5845 0.5835 0.5787 0.6123 0.5818

Weibull 1.585 1.634 0.2034 0.2157 0.2122 0.2182 0.2051

Pareto-t 26.67 17.55 0.4967 0.5339 0.5224 0.473 0.5008

norm-lognormal 1.632 1.694 0.295 0.2971 0.2961 0.2854 0.2945
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Table 4: Coverage of 95% confidence intervals for β∗
1 under various settings for distribution

F when ϵ = 1/
√
n. The results are based on 500 random trials.

OLS-norm OLS-boot Huber Debiased-Huber

norm 0.008 0.068 0.846 0.994

t 0.048 0.106 0.888 0.998

pareto 0.506 0.542 0.95 0.998

lognormal 0.014 0.048 0.906 0.996

Gamma 0.02 0.086 0.856 0.992

Weibull 0.018 0.048 0.876 0.994

Pareto-t 0.292 0.372 0.868 0.996

norm-lognormal 0.016 0.092 0.884 0.996

Table 5: Mean widths of the 95% bootstrap confidence intervals for β∗
1 under various settings

for distribution F when ϵ = 1/
√
n. The results are based on 500 random trials.

OLS-norm OLS-boot Huber Debiased-Huber

norm 5.97 9.44 0.308 0.503

t 6.31 9.54 0.444 0.719

pareto 292 105 0.746 1.14

lognormal 5.97 9.3 0.299 0.476

Gamma 5.97 9.31 0.643 1.05

Weibull 5.92 9.33 0.225 0.362

Pareto-t 22.3 19.3 0.573 0.913

norm-lognormal 5.9 9.1 0.33 0.537
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3.0 Distributed Robust Regression Inference under Huber’s Contamination

Model

3.1 Introduction

With the advent of modern data collection techniques, statistical estimation and infer-

ence now face unprecedented challenges. The first challenge comes with data storage and

communication. In many applications like web-search (Corbett et al., 2013), data sets are

often too vast to be stored on a single machine, and thus have to be be split among numerous

machines. However, machine to machine communication can be costly, time-consuming, or

power-intensive (Fuller and Millett, 2011). Additionally, data collection from multiple sites

is common in fields like medicine (Sidransky et al., 2009; Cheng et al., 2017), where direct

data exchange is constrained due to privacy protection for individual-level information. For

such distributed data sets with communication constraints, various communication-efficient

distributed algorithms are developed for a wide range of problems in statistics (Zhang et al.,

2013; Battey et al., 2018; Lee et al., 2017; Wang et al., 2017; Jordan et al., 2019; Shi et al.,

2018; Huang and Huo, 2019; Kannan et al., 2014; Mackey et al., 2015; Wang and Dunson,

2013; Zhang et al., 2015; Zhao et al., 2016; Rosenblatt and Nadler, 2016) and optimiza-

tion Boyd et al. (2011); Duchi et al. (2011); Zhang and Xiao (2018); Shamir et al. (2014).

However, very few of them consider the presence of contamination in distributed data. In

fact, data sets that are collected from different sources are more prone to be exposed to

(unknown) contamination. This raises a new challenge and motivates us to develop a robust

communication-efficient method with distributed contaminated data.

To be more specific, we consider a regression setting and assume that the overall i.i.d.

observations {(xi, yi)}Ni=1 (that follows the linear model with contamination (2.1.1)) are dis-

tributed across m machines, and each machine has access to only a subsample with size n.

Under this framework, the main goal of this chapter is two-fold:

(i) Distributed robust estimation: We aim to propose a communication-efficient robust

estimator of β∗ that is able to achieve the optimal statistical error rate O(
√
d/N + ϵ) as
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if one has access to the entire N sample data.

(ii) Distributed inference: We want to build valid confidence intervals for linear function-

als of β∗ with the optimal width O(1/
√
N + ϵ) and the least possible communication

requirements.

In the growing body of work on distributed estimation, two main approaches have been

discussed. The first one is one-shot averaging (Zhang et al., 2013; Chen and Xie, 2014; Zhang

et al., 2015; Lee et al., 2017; Battey et al., 2018). It requires only one round of communica-

tion to average the estimators from each local machine and, thus, is communication-efficient.

However, this approach mainly fits the setting where the number of machines is small and the

local sample size is large. Specifically, it requires m = o(
√
N/d) (or equivalently n≫

√
Nd)

to achieve the optimal convergence rate. To remove this restriction, Shamir et al. (2014);

Wang et al. (2017); Jordan et al. (2019) proposed a multi-round communication approach as

an alternative. They showed that the resulting estimator can achieve the optimal rate after

O(logm/ log n) rounds of communication. However, all these works lack theoretical guaran-

tee and empirical validation in the presence of heavy-tailed errors and outlier contamination.

Our paper closes this gap by extending their approach with robust M-estimation. We extend

the M-estimation framework (developed in Chapter 2) with the multi-round communication

approach in Jordan et al. (2019) to get a robust communication-efficient estimator with the

theoretical guarantee for its statistical optimality.

With the distributed estimator, we now consider the distributed inference problem. Most

distributed inference methods are based on the asymptotic normality of the distributed

estimator Jordan et al. (2019); Huang and Huo (2019). While it is computationally fast, in

order to estimate the estimator’s variance, it typically needs a round of communication of

O(md2) bits for an precise estimate of the precision matrix of x. This raises a significantly

higher cost than that in the distributed estimation (O(md)) when the dimensionality d is

large. An alternative way is to estimate the variance using only the local sample. Though it

is communication-efficient, it is often challenging to find a robust and accurate estimate with

a (limited) local sample size, growing dimensionality, and the presence of contamination.

An alternative approach without the need for an explicit estimate of variance is resam-

pling methods like bootstrap. Note that bootstrap, though widely used in the traditional

25



centralized setting, is much less considered in the distributed environment since a naive ap-

plication generally requires hundreds of rounds of information communication. While recent

studies (Kleiner et al., 2014; Sengupta et al., 2016; Yu et al., 2020) have attempted various

techniques to adapt bootstrap to distributed data, these works impose more or less scaling

restrictions on the number of machines, and their validity under contamination is dubious.

This encourages us to develop a new distributed inference procedure that is communication-

efficient, robust to contamination, and works without stringent restrictions on the number

of machines.

Inspired by the multiplier bootstrap procedure developed in Chapter 2, we propose a

distributed multiplier bootstrap procedure to construct confidence intervals for linear func-

tionals of β∗ based on the robust estimator. This bootstrap procedure can be implemented

on a local machine (e.g. the master machine) and thus does not require further communica-

tion between machines after the distributed estimation. While it only bootstraps the local

sample data, it incorporates the global information aggregated in the distributed estimation

phase. As a result, our method can generate confidence intervals of optimal oracle width

O(1/
√
N + ϵ) without any further communication cost. We establish the theoretical validity

of our distributed bootstrap method when the local sample size is not too small (n≫ d2) and

the contamination proportion ϵ is not too large (ϵ = o(1/
√
N)) (with no restriction on m).

For cases with a larger contamination proportion, we propose debiased confidence intervals,

which can cover the potential (severe) bias caused by contamination while not losing much

statistical efficiency, as validated by our theory and experiments. For cases with smaller local

sample sizes, we conjecture that a modified version of our distributed bootstrap algorithm

may work; see the discussion section for further details.

The remainder of this chapter is organized as follows. Section 3.2 and Section 3.3 present

our distributed M-estimator and multiplier bootstrap procedure, respectively, together with

their theoretical guarantees. In Section 3.4, we extend the debiased confidence interval

method (developed in Chapter 2) to the distributed setting, for cases with a large con-

tamination proportion. Section 3.5 reports our experimental results for both estimation

and confidence interval coverage and width. We conclude with a discussion in Section 3.6.

Appendix B contains all the proofs.
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Notations. We use the same notations as Chapter 2.

3.2 Distributed M-estimator

We now consider a distributed setting where the overallN observations {(xi, yi)}Ni=1 (i.i.d.

from the contaminated linear model (2.1.1)) are randomly distributed across m machines,

which can communicate with a master machine. Assume that N = mn and each machine

has access to a subsample of n i.i.d. observations. For j = 1, . . . ,m, we use {(xi, yi)}i∈Ij
to denote the subsample data stored in the j-th machine, where Ij’s are disjoint index sets

that satisfy ∪m
j=1Ij = {1, . . . , N} and |Ij| = n.

Faced with such distributed contaminated data set, we propose a distributed robust re-

gression algorithm, by applying the iterative communication-efficient surrogate likelihood

(CSL) approach in Jordan et al. (2019) and Wang et al. (2017) to our robust M-estimation

framework, developed in Section 2.2. The idea of the CSL approach is that one can approx-

imate the higher order derivatives of the global loss by using those of the local loss, while

only the first derivative of the global loss is precisely estimated by aggregating the gradient

of each local loss. Formally, for some given initial estimator θ̄, we define the surrogate loss

function

L̃τ (θ) := L1,τ (θ)−
〈
∇L1,τ (θ̄)−∇LN,τ (θ̄),θ

〉
, (3.2.1)

where

LN,τ (θ) :=
1

N

N∑
i=1

ℓτ (yi − x̄⊺
i θ) and Lj,τ (θ) :=

1

n

∑
i∈Ij

ℓτ (yi − x̄⊺
i θ), j = 1, . . . ,m,

are the global and local loss functions, respectively. The resulting estimator is given by

θ̃τ = (β̃0,τ , β̃
⊺
τ )

⊺ ∈ argmin
θ∈Rd+1

L̃τ (θ). (3.2.2)

To calculate the surrogate loss, we need to communicate each local gradient to the master

machine to obtain∇LN,τ (θ̄), which takesO(md) bits, a much lower communication cost than

the raw data transmission (O(Nd) bits). In the following theorem, we show that compared

to the initial estimator θ̄, the estimation error of θ̃τ is improved by a factor of O(
√
d/n+ ϵ).
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Theorem 3.2.1. For r0, r
∗ > 0, define the events

E0(r0) = {∥θ̄ − θ∗
τ∥S ≤ r0} and E∗(r∗) = {∥S−1/2∇LN,τ (θ

∗
τ )∥2 ≤ r∗}.

Under Condition 2.2.1 and 2.2.2, for any t > 1/2, suppose r∗ ≲ r0 ≲
√

(d+ t)/n + ϵ, then

on the event E0(r0) ∩ E∗(r∗), the estimator θ̃τ given in (3.2.2) satisfies

∥θ̃τ − θ∗
τ∥S ≤ C

[(√
d+ t

n
+ ϵ

)
r0 + r∗

]
and

∥∥∥∥cFS1/2(θ̃τ − θ∗
τ )−

1

N

N∑
i=1

ℓ′τ (εi − ατ )zi

∥∥∥∥
2

≤ C

(√
d+ t

n
+ ϵ

)
r0

with probability at least 1 − 3e−t, as long as ϵ < c and n ≥ C ′(d + t), where c, C, C ′ are

constants independent of (N, n, d, ϵ, t).

This theorem reveals that, given an initial estimator θ̄ with statistical error O(
√
d/n+ϵ),

applying the above procedure repeatedly would eventually lead to an estimator with the error

rate r∗, which corresponds to the centralized optimal rate
√
d/N + ϵ. Specifically, denote

θ̃
(0)
τ = θ̄ to be our initial estimator. Then at iteration k = 1, 2, . . ., we may construct the

surrogate loss function using the estimator from the previous step as

L̃(k)
τ (θ) := L1,τ (θ)−

〈
∇L1,τ (θ̃

(k−1)
τ )−∇LN,τ (θ̃

(k−1)
τ ),θ

〉
,

with the resulting estimator θ̃
(k)
τ defined as

θ̃(k)
τ = (β̃0,τ , β̃

⊺
τ )

⊺ ∈ argmin
θ∈Rd+1

L̃(k)
τ (θ).

Theorem 3.2.2. Under the same conditions of Theorem 3.2.1, on the event E0(r0)∩E∗(r∗),

the T -th iterate estimator θ̃
(T )
τ satisfies

∥θ̃(T )
τ − θ∗

τ∥S ≲ r∗, and∥∥∥∥∥cFS1/2(θ̃(T )
τ − θ∗

τ )−
1

N

N∑
i=1

ℓ′τ (εi − ατ )zi

∥∥∥∥∥
2

≲

(√
d+ t

n
+ ϵ

)
r∗

with probability at least 1 − 3Te−t, for T ≥ log(r∗/r0)/ log(C(
√
(d+ t)/n + ϵ)) + 1, where

C is the same constant as in Theorem 3.2.1.
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Corollary 3.2.1. Let the initial estimator be a minimizer of the local loss L1,τ (θ), i.e.

θ̃(0) = θ̄ ∈ argminθ∈Rd+1 L1,τ (θ). Then under Condition 2.2.1 and 2.2.2, with the above

iterative procedures, the T -th iterate estimator θ̃
(T )
τ satisfies

∥θ̃(T )
τ − θ∗

τ∥S ≲

√
d+ t

N
+ ϵ, and (3.2.3)∥∥∥∥cFS1/2(θ̃(T )

τ − θ∗
τ )−

1

N

N∑
i=1

ℓ′τ (εi − ατ )zi

∥∥∥∥
2

≲

(√
d+ t

n
+ ϵ

)(√
d+ t

N
+ ϵ

)
(3.2.4)

with probability at least 1− 3(T + 1)e−t, for any t > 1/2, as long as T ≳ logm/ log(n/(d+

t)) ∨ logm/ log(1/ϵ), ϵ < c and n ≥ C ′(d + t), where c, C, C ′ are constants independent of

(N, n, d, ϵ, t).

The above theoretical results indicate that with the local M-estimator as the initializer,

after at most O(logm) rounds of communication, we can obtain an estimator that achieves

the centralized optimal convergence rate O(
√
d/N + ϵ) for the estimation of β∗. There are

other options for the initializer. One can choose the average of all the local M-estimators,

for instance, which is supposed to result in a faster convergence at the expense of one extra

round of O(md) bit communication.

3.3 Distributed Multiplier Bootstrap

In this section, we consider adapting the multiplier bootstrap procedure (presented in

Section 2.3) to the distributed setting. Assume that we have obtained an estimator achieving

the optimal rate O(
√
d/N+ϵ), say θ̃

(T )
τ (for T ≳ logm) as described in the previous section.

Recall that

θ̃(T )
τ ∈ argmin

θ∈Rd+1

L̃τ (θ), with L̃τ (θ) := L1,τ (θ)−
〈
∇L1,τ (θ̄)−∇LN,τ (θ̄),θ

〉
, θ̄ = θ̃(T−1)

τ .

For simplicity of notations, we use θ̃τ to denote θ̃
(T )
τ , and θ̄ to denote θ̃

(T−1)
τ in what follows.

A straightforward implementation of the multiplier bootstrap technique is to generate N
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random weights {wi}Ni=1 for the overall data {(xi, yi)}Ni=1 and consider the new global and

local loss weighted by the multipliers {wi}Ni=1 to be

L♭
N,τ (θ) :=

1

N

N∑
i=1

wiℓτ (yi − x̄⊺
i θ) and L♭

1,τ (θ) :=
1

n

∑
i∈I1

wiℓτ (yi − x̄⊺
i θ).

Then similar to (3.2.1), we may construct the bootstrap surrogate loss with L♭
1,τ (θ) and

L♭
N,τ (θ) as

L̃♭
τ (θ) := L♭

1,τ (θ)−
〈
∇L♭

1,τ (θ̄)−∇L♭
N,τ (θ̄),θ

〉
(3.3.1)

to get the bootstrap estimator, which is expected to be able to mimic the distribution of the

distributed estimator θ̃τ , given the same initializer θ̄. However, in this way, we have to calcu-

late the new global gradient ∇L♭
N,τ (θ̄), which calls for at least Ω(md) bits of communication

for each bootstrap iteration. To achieve a reasonable approximation accuracy, bootstrap is

typically conducted hundreds of times and thus the overall communication cost for this boot-

strap procedure would be prohibitive. To avoid this issue, we consider generating random

weights just for the local sample data stored in the master machine (i.e. {(xi, yi)}i∈I1) and

define the bootstrap surrogate loss instead as

L̃♭
τ (θ) := L♭

1,τ (θ)−
〈
∇L1,τ (θ̄)−∇LN,τ (θ̄),θ

〉
, (3.3.2)

and the resulting distributed bootstrap estimator is defined as

θ̃♭
τ = (β̃♭

0,τ , β̃
♭⊺
τ )⊺ ∈ argmin

θ∈Rd+1

L̃♭
τ (θ). (3.3.3)

Noticeably, this multiplier bootstrap procedure does not require further communication

across the machines, as the global gradient ∇LN,τ (θ̄) has been calculated in the distributed

estimation phase.

The following theorem presents the theoretical properties of the distributed bootstrap

estimator θ̃♭
τ , including an estimation error bound and a non-asymptotic Bahadur represen-

tation.
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Theorem 3.3.1. Recall that P∗(·) = P(·|DN). Under Conditions 2.2.1-2.3.2, for any t ≥ 1/2,

θ̃♭
τ defined in (3.3.3) satisfies that

P∗
(
∥θ̃♭

τ − θ∗
τ∥S ≤ C♭

(√
d+ t

n
+ ϵ

))
≥ 1− 2e−t and (3.3.4)

P∗
(∥∥∥cFS1/2(θ̃♭

τ − θ̃τ )−
1

n

∑
i∈I1

ℓ′τ (εi − ατ )eizi

∥∥∥
2
≤ C♭

(d+ t

n
+ ϵ2

))
≥ 1− 5e−t (3.3.5)

with probability (over DN) at least 1− (3T +14)e−t as long as T ≥ C logm/ log(n/(d+ t))∨

logm/ log(1/ϵ), ϵ < c and n ≥ C ′(d + t)2, where c, C, C ′, C♭ > 0 are constants independent

of (N, n, d, ϵ, t).

The Bahadur representations of the distributed estimator (3.2.4) and the distributed

bootstrap estimator (3.3.5) imply the following distribution approximations.

µ⊺(β̃τ − β∗) = λ⊺(θ̃τ − θ∗
τ ) ≈ SN :=

1

N

N∑
i=1

Ui ≈ N (EU1,
1

N
V arU1),

µ⊺(β̃♭
τ − β̃τ ) = λ⊺(θ̃♭

τ − θ̃τ ) ≈ S♭
n,1 :=

1

n

∑
i∈I1

eiUi

·|Dn≈ N (0,
1

n2

n∑
i=1

U2
i ),

where Ui := c−1
F ℓ′τ (εi − ατ )λ

⊺S−1/2zi, for i = 1, . . . , N . It’s noteworthy that the boot-

strap estimator now only has
√
n-consistency, while the distributed M-estimator enjoys

√
N -consistency (assuming that the bias is negligible). This is the price that has to be

paid for only bootstrapping a local sample (of size n). One can imagine that for the boot-

strap estimator resulting from (3.3.1), it would generate an approximation to the distribution

of N−1
∑N

i=1 eiUi, which certainly provides a better approximation to the distribution of the

distributed estimator, though with an exorbitant communication cost. This reflects the

trade-off between the communication cost and the statistical efficiency.

Though with
√
n-consistency, after a re-scaling of 1/

√
m, our proposed bootstrap esti-

mator β̃♭
τ can be used to implicitly estimate the variance of the distributed estimator β̃τ , and

thus further be able to approximate the distribution of β̃τ when the bias EU1 is negligible

to its variance i.e. ϵ = o(1/
√
N), as proved by the following theorem.
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Theorem 3.3.2. Under the same conditions of Theorem 3.3.1, for any µ ∈ Rd and any

t ≥ 1/2, it holds with probability (over DN) at least 1− (3T + 20)e−t that

sup
x∈R

∣∣∣∣P(µ⊺(β̃τ − β∗) ≤ x
)
− P∗

(
1√
m
µ⊺(β̃♭

τ − β̃τ ) ≤ x

)∣∣∣∣
≤ C

(
d+ t√
n

+
√
Nϵ

)
+ (3T + 19)e−t

for some constant C > 0 independent of (N, n, d, ϵ, t,µ, x).

The above results inspire us to define a (1−α) bootstrap confidence interval for coefficient

β∗
j , based on the distributed estimator θ̃τ := (β̃0, β̃1, . . . , β̃d) and the distributed bootstrap

estimator θ̃♭τ := (β̃♭
0, β̃

♭
1, . . . , β̃

♭
d), as

Ĩ♭
j =

[
β̃j −

1√
m
c̃♭j(1− α/2), β̃j −

1√
m
c̃♭j(α/2)

]
, j = 1, . . . , d, (3.3.6)

where c̃♭j(1 − α/2) and c̃♭j(α/2) are (1 − α/2)-quantile and (α/2)-quantile of β̃♭
j − β̃j (given

DN), respectively, which are expected to approximate those counterparts of β̃j−β∗
j well after

re-scaling, as stated by the following theorem.

Algorithm 1 Distributed Bootstrap Inference

Input: Local Sample Data Dn = {(xi, yi)}i∈I1 stored in the master machine, Global gra-

dient∇LN,τ (θ̄), estimator θ̃τ , number of bootstrap iterations B

1: for b = 1, . . . , B do

2: Generate i.i.d weight random variables {wi}ni=1 satisfying wi ≥ 0,E(wi) = 1, var(wi) =

1.

3: Obtain the bootstrap estimator θ̃♭
τ,b := (β̃♭

0,b, β̃
♭
1,b, . . . , β̃

♭
d,b) by (3.3.3).

4: end for

5: Compute the α/2- and (1− α/2)-quantile of {β̃♭
j,b − β̃j,b}Bb=1: c̃

♭
j(1− α/2) and c̃♭j(α/2).

Output: A bootstrap confidence interval of β∗
j is given as

Ĩ♭
j =

[
β̃j −

1√
m
c̃♭j(1− α/2), β̃j −

1√
m
c̃♭j(α/2)

]
, j = 1, . . . , d.
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Theorem 3.3.3 (Validity of distributed multiplier bootstrap). Under the same conditions

of Theorem 3.3.2, for j = 1, . . . , d, we have

sup
q∈(0,1)

∣∣∣∣P(β̃j − β∗
j ≤ 1√

m
c̃♭j(q)

)
− q

∣∣∣∣ ≤ C

(
d+ t√
n

+
√
Nϵ

)
+ C ′Te−t,

where C,C ′ > 0 are constants independent of (N, n, d, ϵ, t). In particular, if ϵ = o(1/
√
N),

and d = o(
√
n), then we establish the validity of the bootstrap confidence interval for β∗

j in

(3.3.6) :

sup
α∈(0,1)

∣∣∣P(β∗
j ∈ Ĩ♭

j

)
− (1− α)

∣∣∣ = o(1),

as n,N → ∞.

Remark 3.3.1 (Sample size requirement). Our proposed distributed bootstrap method re-

quires the local sample size n ≫ d2. One can imagine that the bootstrap procedure based

on (3.3.1) would only require the total sample size N ≫ d2. This is due to the fact that

this bootstrap method, by ignoring communication constraints, is nearly equivalent to the

traditional centralized data arrangement where one has access to the entire data set. For

cases where the local sample size is limited (e.g. n ≫ d2 fails) but the total sample size is

sufficient (e.g. N ≫ d2 holds), we speculate that our proposed distributed bootstrap method

may work with a slight modification. See the discussion section 3.6.

Note that Theorem 3.3.3 can be seen as a corollary of Theorem 3.3.2 and can be proved

in an exactly same manner of Theorem 2.3.4 and thus its proof is omitted.

3.4 Distributed Debiased Confidence Intervals

In this section, we present the debiased confidence interval method in the distributed

setting. Following the ideas in Section 2.4, we consider estimating cF and S to approximate

the upper bound of the bias due to contamination. To save communication cost, we only

use the local sample stored on the master machine. Let

ĉF =
1

n

∑
i∈I1

ℓ′′τ (ε̂i), Ŝ =
1

n

∑
i∈I1

x̄ix̄
⊺
i , D̃j := ϵc1τ

∥∥∥∥ 1

ĉF
λ⊺Ŝ−1/2

∥∥∥∥
2
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where ε̂i = yi − x̄⊺
i θ̃τ is the residual for our distributed robust estimator θ̃τ , and λ =

(0, . . . , 0, 1, 0, . . . , 0) is a vector in Rd+1 with only the (j + 1)-th component being 1, for

1 ≤ j ≤ d. Then D̃j serves as an estimate of an upper bound of the contamination bias for

estimating the j-th coefficient βj. This implies that we may define a distributed debiased

bootstrap confidence interval for βj as following:

Ĩ♭
D,j =

[
β̃j − CD

(
1√
m
c♭j(1− α/2) + D̃j

)
, β̃j − CD

(
1√
m
c♭j(α/2)− D̃j

)]
, (3.4.1)

where CD ≥ 1 is an universal constant to be specified.

Theorem 3.4.1. Assume Conditions 2.2.1-2.3.2 hold. Further assume that the largest and

smallest eigenvalue of S are both bounded: cS ≤ λmin(S) ≤ λmax(S) ≤ CS for some constants

CS, cS. Then for any j = 1, . . . , d, any α ∈ (0, 1), any CD > 1, we have

P
(
β∗
j ∈ Ĩ♭

D,j

)
− (1− α) ≥ −C

(√
log n

n
+ ϵ2

)
as long as ϵ ≤ c and n ≥ C ′d2 for some large enough C ′ and small enough c. Here, c, C, C ′

are independent of (N, n, d, ϵ).

3.5 Numerical Studies

3.5.1 Distributed Robust Estimation

In this section, we investigate the numerical performance of the proposed procedures and

compare the following methods: (i) global OLS estimator assuming that the entire N = mn

observations are directly available; (ii) global M-estimator using the entire N observations;

(iii) the proposed robust distributed M-estimator.

For the M-estimators, we employ Huber’s loss (2.2.3) and select the tuning parameter τ

via the following heuristic two-step way: (i) initially set τ = 1 and obtain the residuals using

the available data; (ii) calculate the median absolute deviation (MAD) of the residuals and

use it as the final value of τ . Ideally, this results in τ having the same scale as the variance

of the noise ε under distribution F . For the proposed distributed estimators, we choose the

34



initializer θ̃(0) to be the average of local estimators from each local machine, as suggested by

Jordan et al. (2019). We set the number of iteration rounds T = ⌊logm⌋ + 1, according to

our theory in Section 3.2.

To generate contaminated data (xi, yi) following model (2.1.1), we consider β∗ = 1d (a d-

dimensional vector of ones) and simulate xi from standard multivariate normal distribution

N (0, Id) (Id is a d × d identity matrix). Regarding the distribution of the noise ε, we

consider the following three heavy-tailed distributions for F : (i) t-distribution with 1.5

degrees of freedom, denoted as t(1.5); (ii) Lognormal distribution with µ = 0 and σ =

1, i.e., the logarithm of the standard normal distribution; (iii) Pareto distribution with

shape parameter 1.5 and scale parameter 1. We investigate the following four types of

contamination distribution G.

(i) G is a point mass at the first coordinate of x;

(ii) G is a point mass at the sum of each coordinate of x;

(iii) G = Unif [−|y0|, |y0|], where y0 = x⊺β∗ + ε, with ε ∼ F , is the initial response vector

without contamination.

(iv) G = sgn(y0) · F , where sgn(·) is the sign function.

The first two contamination distributions represent contamination based on covariates x, and

the last two are about contamination based on the response. To ensure a fair comparison for

the distributed M-estimator without intercept, all of the aforementioned distributions for F

and G are centered.

We report the estimation error of the coefficient β∗ under the l2-norm, i.e., ∥β̂ − β∗∥2.

Figure 2 shows the results over 100 trials, with d = 50, n = 1000, m = 100, and the contam-

ination proportion ϵ = 1/
√
N . We provide a summary of what Figure 2 revealed. First, the

global OLS estimator always performs the worst since it is not robust to either heavy-tailed

distribution or contamination. Second, Second, across all settings for various distributions

F and G, our proposed distributed M-estimator always performs nearly as well as the global

M-estimator, which has the least error and serves as the benchmark. This demonstrates that

in the distributed context, our proposed estimator inherits the effectiveness and robustness

of the centrialized M-estimator.
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Figure 2: Distributed estimation results under various types of distributions for F and G

with d = 50, n = 1000, m = 100, ϵ = 1/
√
N . Each plot represents one type of contamination

distribution G.

We then conduct a sensitivity analysis to study how the contamination proportion

and scale affect the estimation accuracy. We consider the contamination proportion ϵ ∈

{0, 0.02, 0.04, 0.06, 0.08, 0.1}, and the contamination distribution G to be a point mass at

the first coordinate of x with various scales {1, 10, 100}, denoted by G = s · x1 with

s ∈ {1, 10, 100}. In other words, under this contamination distribution, the data would

act as though the first component of β∗ had its value boosted by s + 1 times. We choose

F to be a t-distribution with 1.5 degrees of freedom, and show the results over 100 random

trials in Figure 3, with d = 50, n = 1000, m = 100. From this figure, we see that the

performance of the distributed M-estimator is almost as good as the global M-estimator.

Both of them are robust to the contamination scale, and consistently have minimal estima-

tion errors across all settings, compared to the OLS estimator. The global OLS estimator is

particularly sensitive to the contamination proportion when the contamination scale is high.
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For the scenario where the contamination scale is small (s = 1), though the estimation accu-

racy of the OLS estimator is close to M-estimators on average, its performance is very erratic.
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Figure 3: Distributed estimation results under various settings for contamination proportion

ϵ and scale s. Results for ϵ ∈ {0, 0.02, 0.04, 0.06, 0.08, 0.1} and s ∈ {1, 10, 100} are plotted

with F = t(1.5), G = s · x1 d = 50, n = 1000, m = 100. Each plot represents one type of

contamination scale for G.

At last, we study the effect of the local sample sizes n and the number of machines

m on the estimation performances of the aforementioned four methods. With a fixed

total sample size of N = 105 and m = N/n, we explore altering the local sample size

n ∈ {500, 1000, 2500, 5000, 10000}. We choose the distribution F as the logarithm of a stan-

dard normal distribution, the contamination distribution G as a point mass at 10x1, and the

contamination proportion ϵ = 1/
√
N . Figure 4 presents the results for 100 trials. We notice

that when the local sample size grows, the performance of the distributed M-estimator (with

intercept) quickly catches up to that of the global M-estimator. In fact, with the exception

of a very small local sample size n (n = 500), their results are fairly comparable. This aligns

with our theoretical analyses in Section 3.2 that the distributed M-estimator has the same

convergence rate as the global M-estimator when n ≳ d2. Additionally, this figure demon-
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strates that the distributed M-estimator without intercept is always inferior to the one with

intercept.
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Figure 4: Distributed estimation results for local sample size n ∈

{500, 1000, 2500, 5000, 10000}, with d = 50, N = 105, m = N/n, ϵ = 1/
√
N .

3.5.2 Distributed Robust Inference

We now evaluate the performance of the distributed inference procedures with contami-

nated data. We consider contrasting the following four methods: (i) M-boot: the proposed

multiplier bootstrap procedure based on the distributed M-estimator; (ii) Debias-M-boot:

the debiased bootstrap confidence intervals (3.4.1) with CD = 1; (iii) M-Normal: the asymp-

totic normal-based approach for the distributed M-estimator; (iv) OLS-Normal: the stan-

dard asymptotic normal-based method for the global OLS-estimator assuming that all N

observations are directly accessible.

The method M-Normal is based on the Bahadur representation (3.2.4), from which we

have

√
Nλ⊺(θ̃(T )

τ − θ∗
τ ) ≈

1√
N

N∑
i=1

Ui
d→ N (0,Eε∼FU

2
1 ), with Eε∼FU

2
1 = c−2

F CFλ
⊺S−1λ,
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when the contamination bias is negligible i.e., ϵ = o(1/
√
N), where Ui := c−1

F ℓ′τ (εi −

ατ )λ
⊺S−1/2zi, cF = Eε∼F ℓ

′′
τ (ε − ατ ), CF = Eε∼F{ℓ′τ (ε − ατ )}2. To save communication

costs, we use the local sample data stored on the master machine to estimate cF , CF and S

as follows:

ĉF =
1

n

∑
i∈I1

ℓ′′τ (ε̂i), ĈF =
1

n

∑
i∈I1

{ℓ′τ (ε̂i)}2, Ŝ =
1

n

∑
i∈I1

x̄ix̄
⊺
i .

where ε̂i = yi − x̄⊺
i θ̃

(T )
τ is the residual. Then a resulting (1 − α) confidence interval for the

j-th coefficient β∗
j can be given by

ĨN
j =

[
β̃j −

1√
N
Φ−1(1− α/2)σ̂j, β̃j −

1√
N
Φ−1(α/2)σ̂j

]
,with σ̂2

j = ĉ−2
F ĈF Ŝ

−1
j+1,j+1,

where Φ−1(·) represents the quantile of standard normal distribution, β̃j is the (j + 1)-th

component of θ̃
(T )
τ , Ŝ−1

j+1,j+1 is the (j + 1, j + 1)-th entry of the matrix Ŝ−1.

To generate data from model (2.1.1), we consider β∗ = 1d and x ∼ N (0, Id). We choose

F to be a t-distribution with degrees of freedom 1.5, and the contamination distribution G

to be a point mass at s · x1 with s ∈ {1, 10, 100}. Since this contamination can be viewed as

a perturbation of the first coefficient β∗
1 , we focus on constructing a confidence interval for

β∗
1 . Regarding the contamination proportion, recall that the theoretical analyses in Section

3.3 indicate that both method (i) and (iii) would require the condition ϵ = o(1/
√
N) to make

the contamination bias small enough to be covered by the confidence intervals. As a result,

we consider the contamination proportion ϵ = p/
√
N with p ∈ {0, 1/4, 1/2, 3/4, 1}.

Figure 5 presents the coverage proportions and mean widths of 95% confidence inter-

vals for β∗
1 based on 500 random trials, with d = 50, n = 1000, m = 100. According to

the coverage plots, the debiased bootstrap confidence intervals constantly have a coverage

probability higher than 95%, whereas the coverage for the other three methods decreases

when the contamination proportion ϵ increases, and falls below the nominal level 95% when

ϵ approaches 1/
√
N . This is consistent with our theory as the condition ϵ = o(1/

√
N) fails.

Compared to M-Normal, M-boot exhibits a more stable performance with a consistently

smaller decline in coverage when the contamination proportion grows, which suggests that

the bootstrap-based method is more resilient to higher contamination proportions than the
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asymptotic normal-based approach. Note that the OLS-Normal confidence intervals, despite

having decent coverage (especially when the contamination scale s is small), are generally

useless because of their excessive widths.

From the width plots, we also observe that the widths of the debiased bootstrap confi-

dence intervals grow (linearly) with the contamination proportion, while the lengths of the

ones without debiasing (M-boot and M-Normal) remain the same. This phenomenon, along

with the fact that both M-boot and M-Normal fail to reach the nominal level for higher con-

tamination proportions, supports our argument that when ϵ approaches the scale of 1/
√
N ,

the confidence intervals based on the pure variance approximation are no longer valid, and

an appropriate debiasing procedure is required to address the (substantial) bias resulting

from contamination.

3.6 Discussion

In this paper, we have presented a robust distributed estimation and inference framework

for regression with distributed contaminated data. Specifically, we show a M-estimator with

intercept, coupled with the CSL method Jordan et al. (2019) can achieve the centralized

minimax rate of convergence under Huber’s contamination model. Moreover, we design a

communication-efficient multiplier bootstrap procedure for the the distributed robust M-

estimator to construct a sharp confidence interval for each coefficient. We theoretically

justify the validity of our distributed bootstrap inference method when the local sample size

is not too small d = o(
√
n) and the contamination proportion is not too large ϵ = o(1/

√
N).

For the cases with larger contamination proportion, we further propose a debiased procedure,

using local sample data for a bias correction, which is proved to be able to generate valid

confidence intervals when contamination proportion ϵ = o(1).

For the cases with smaller local sample size, we may consider modifying our distributed
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Figure 5: Coverage probabilities (upper) and widths (lower) of 95% confidence intervals for

β∗
1 under various settings for contamination proportion ϵ and scale s. Results for ϵ = p/

√
N ,

p ∈ {0, 1/4, 1/2, 3/4, 1}, G = s · x1, s ∈ {1, 10, 100} are presented, with d = 50, n = 1000,

m = 100. Each plot represents one type of contamination scale for G. In the coverage plots,

the black horizontal line represents the nominal level 95%.
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bootstrap procedure and define the following surrogate bootstrap loss:

L̃♭
τ (θ) := L♭

1,τ (θ)−
〈
∇L♭

1,τ (θ̄)−∇L♭
N,τ (θ̄),θ

〉
, with

L♭
1,τ (θ) :=

1

n

∑
i∈I1

wiℓτ (yi − x̄⊺
i θ) and L♭

N,τ (θ) :=
1

m

m∑
j=1

w̃j

 1

n

∑
i∈Ij

ℓτ (yi − x̄⊺
i θ)

 ,

where {wi}i∈I1 and {w̃j}mj=1 are all i.i.d. copies of the weight variable and are independent

of the sample data DN . This approach may be viewed as a communication-efficient approx-

imation to the multiplier bootstrap method (3.3.1) since L̃♭
N,τ (θ) would mimic the global

bootstrap loss

L♭
N,τ (θ) =

1

N

N∑
i=1

wiℓτ (yi − x̄⊺
i θ)

well when m is large compared to n. Denote the resulting bootstrap estimator as θ̃♭
τ,new =

(β̃♭
0,τ,new, β̃

♭⊺
τ,new)

⊺, then we expect the corresponding bahadur representation would indicate

the following distribution approximation, compared to those for the distributed M-estimator

and the proposed bootstrap estimator in Section 3.3:

(Distributed M-estimator) µ⊺(β̃τ − β∗) = λ⊺(θ̃τ − θ∗
τ ) ≈ SN :=

1

N

N∑
i=1

Ui,

(Proposed bootstrap estimator) µ⊺(β̃♭
τ − β̃τ ) = λ⊺(θ̃♭

τ − θ̃τ ) ≈ S♭
n,1 :=

1

n

∑
i∈I1

eiUi,

(New bootstrap estimator) µ⊺(β̃♭
τ,new − β̃τ ) = λ⊺(θ̃♭

τ,new − θ̃τ ) ≈ S♭
m :=

1

m

m∑
j=1

ẽj
∑
i∈Ij

Ui,

where ẽj = w̃j − 1 for j = 1, . . . ,m.Therefore, we expect that this method would be suitable

to a small n large m setting. We leave the theoretical analysis for future work.
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4.0 Robust Adaptive Minimax Density Estimation under Huber’s

Contamination Model

4.1 Introduction

In this chapter, we study the density estimation problem under Huber’s contamination

model. Formally, assume that we have i.i.d. observations

X1, ..., Xn
i.i.d.∼ P (ϵ, f, G) := (1− ϵ)Pf + ϵG, (4.1.1)

where Pf is a distribution on Rd with the density of interest f , G is an arbitrary contamina-

tion distribution, and ϵ represents the contamination proportion. Under this model, for each

observation Xi, there is a probability of ϵ that it is drawn from some arbitrary contamina-

tion distribution G. Our goal is to robustly estimate the density f with the contaminated

observations.

To characterize the exact influence of contamination on the optimal estimation of the

density f , we investigate how the contamination affects the minimax rate of convergence for

estimating f . The minimax approach is based on the assumption that f belongs to a given

class of densities, and the accuracy of the estimator f̂ is measured by its maximal loss over

this density class. To this end, one needs to specify the loss function and the function class

that f is assumed to belong to. Here, we choose to use a general Lp (1 ≤ p < ∞) loss and

assume f is in an anisotropic Nikol’skii class Np,d(β0, L0), which is a natural extension of

Hölder class under Lp norm on Rd (see Section 4.2 for the precise definition of Np,d(β0, L0)).

An analogous estimation procedure and analysis can be made for the pointwise loss function

when f is assumed to be in an anisotropic Hölder class; see Section 4.6 for a discussion.

Here, β0 = (β0,1, . . . , β0,d)
′ is a vector with the jth component representing the smoothness

condition of f with respect to the jth variable. We derive the following minimax rate for

estimating the density f with contaminated observations

inf
f̂

sup
f∈Np,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ − f ∥p≍

n
− β̄0

q β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 , 1 ≤ p ≤ 2,

n
− β̄0

2 β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 , p > 2.
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Here, 1/q = 1 − 1/p, and β̄0 = 1/(
∑d

j=1 1/β0,j) represents the average smoothness level

of f . In the above formula, the first term n
− β̄0

q β̄0 +1 (or n
− β̄0

2 β̄0 +1 ) is the classical minimax

rate without contamination (Hasminskii and Ibragimov, 1990; Ibragimov and Khasminski,

1981; Ibragimov and Khas’ minskii, 1980). The second term ϵ
q β̄0

q β̄0 +1 captures the effect of

contamination on the optimal estimation of f , which depends not only on the contamination

proportion ϵ, but also on the smoothness condition of f (i.e. β0) and the specific loss function

(i.e. p) as well.

In Section 4.2, kernel estimators (Devroye, 1985; Silverman, 2018) are shown to be able

to achieve the above optimal rate. However, the optimal choice of the bandwidth requires

prior knowledge of both the smoothness parameter β0 and the contamination proportion ϵ,

which naturally leads us to consider desired adaptive estimation procedures without using

the information of β0 and ϵ. To demonstrate the difficulty of such a task, we explain below

that even if ϵ is known in advance, it is still quite challenging to find adaptive bandwidth

selection procedures (adaptive to β0 only).

(1) Adaptation in Rd is intrinsically not easy. Notice that β0 = (β0,1, . . . , β0,d)
′ is a vec-

tor and adaptation to β0 means adaptation to d parameters {β0,j}dj=1 simultaneously. As a

comparison, Liu and Gao (2019) considered the one-dimensional case (i.e. d = 1) and used

Lepski’s method (Lepskii, 1991, 1992, 1993) for adaptive estimation, which would not work

in our case as Lepski’s method essentially relies on the order topology of (totally ordered) real

numbers, and thus can only adapt to one parameter. When the data are not contaminated,

a more recent adaptive method called the Goldenshluger-Lepski method (Goldenshluger and

Lepski, 2008; Lepski and Goldenshluger, 2009; Goldenshluger and Lepski, 2011a, 2013) was

shown to be able to be adaptive to multiple parameters. But it is not robust to contamina-

tion. This leads to our second reason:

(2) Contamination brings extra complication to the analysis of adaptation theory.

• Methodologically: Classical adaptive methods like the Goldenshluger-Lepski method

only need to consider the bias and variance trade-off of (kernel) estimators. For example,

the Goldenshluger-Lepski method (Goldenshluger and Lepski, 2011a) considers selecting

the bandwidth as the minimizer of a surrogate loss composed of an approximated bias

term and an inflated variance term (called “variance majorant”). However, in our setting,
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the contamination of the data distribution would break this well-aligned bias-variance

structure and make the original surrogate loss unsuitable.

• Theoretically: Most adaptive methods require the i.i.d. (drawn from the true model-

ing distribution, e.g. Pf in our setting) assumption to make it work. This assumption

fails due to contamination. If P (ϵ, Pf , G) had a density (say p(ϵ, f, G)), then we may

pretend it to be our target density and apply the adaptive method to the contaminated

data, and then analyze the bias between p(ϵ, f, G) and the density of interest f . Unfor-

tunately, this alternative approach fails either in our case because that under Huber’s

contamination model, the contamination distribution G can be arbitrary, and thus the

overall data distribution P (ϵ, Pf , G) may not even have a density. This makes it seem

entirely impossible to adopt the analysis directly from existing adaptive methods.

In Section 4.3, we tackle those potential challenges by introducing a majorant for the

contamination term (called “contamination majorant”) and carefully balancing the trade-off

among the bias, variance, and contamination terms of kernel estimators. Our adaptive band-

width selection procedure can be seen as a robust generalization of the Goldenshluger-Lepski

method and we show that it can lead to a minimax estimator adaptive to the smoothness

parameter β0 (assuming ϵ is known). In the same spirit, we are able to develop a data-driven

procedure adaptive to ϵ (assuming β0 is known). Notice that in this case, adaption to ϵ (just

one parameter) seems to fall in the scope of Lepski’s method (Lepskii, 1991, 1992, 1993).

However, it is not straightforward to apply it as the key part of Lepski’s method is some

concentration inequality of the variance term under Lp norm (see e.g. Lemma C.3.1 in the

supplementary material, rephrased from Goldenshluger and Lepski (2011a,b)), which does

not hold any more due to the contamination effect. We use an innovative induction method

to get around this problem, which may be of independent interest.

For the case where both β0 and ϵ are unknown (or at least one component of β0 and

ϵ are unknown), we prove a surprising result that for any given target convergence rate of

the form n−R1(β0) ∨ ϵR2(β0) (with any two given positive functions R1(·) and R2(·)), there is

no data-driven procedure that can achieve this rate while being adaptive to a scale of β0

and ϵ. This phenomenon, first pointed out by Liu and Gao (2019) under the pointwise loss,

illustrates the contamination effect on the adaptation theory of density estimation.
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Finally, we briefly discuss the structured contamination case, where the contamination

distribution G is assumed to have a density g. We show that as long as g has a finite Lp norm,

the minimax rate for estimating f can be improved to the order n
− β̄0

q β̄0 +1 ∨ ϵ for p ∈ [1, 2]

and n
− β̄0

2 β̄0 +1 ∨ ϵ for p ∈ (2,∞). We further show that even with an additional smooth-

ness assumption (e.g. g also belongs to certain anisotropic Nikol’skii class Np,d(β1, L1)), the

minimax rate would not improve anymore. This implies that the smoothness of the con-

tamination density g has no effect on the optimal estimation of f . The adaptive method

is also provided for this case and shown to be minimax adaptive to β0 (we don’t consider

adaptation to ϵ here as the oracle choice of bandwidth depends on β0 only).

4.1.1 Related Works and Contribution on Robust Adaptive Bandwidth Selec-

tion

Classical minimax and adaptive minimax density estimation (without contamination)

under Lp loss functions on Rd were considered extensively in literature, see for example,

(Devroye, 1985; Devroye and Lugosi, 2012; Goldenshluger and Lepski, 2014; Hasminskii and

Ibragimov, 1990; Ibragimov and Khasminski, 1981; Ibragimov and Khas’ minskii, 1980; Tsy-

bakov, 2008), especially (Goldenshluger and Lepski, 2014) for a thorough review. However,

the adaptive minimax density estimation with contaminated data has rarely been studied,

except some very recent works (Liu and Gao, 2019; Chen et al., 2016). In this work, we

develop adaptive bandwidth selection procedures for kernel density estimators under Hu-

ber’s contamination model via a generalization of the Goldenshluger-Lepski method. The

Goldenshluger-Lepski method (Goldenshluger and Lepski, 2008; Lepski and Goldenshluger,

2009; Goldenshluger and Lepski, 2011a, 2013), as a multi-dimensional extension of Lepski’s

method (Lepskii, 1991, 1992, 1993), can be used to construct an adaptive bandwidth se-

lection procedure for kernel estimators on Rd. Specifically, in Goldenshluger and Lepski

(2011a), the authors showed that the resulting kernel estimator is minimax adaptive over a

scale of the anisotropic Nikol’skii classes. However, as discussed above, this method would

face difficulties with contaminated data, both methodologically and theoretically.

To overcome such difficulties, we treat Huber’s contamination model (4.1.1) as a two-class
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mixture model and analyze the “clean” data and “contaminated” data separately. Notice

that Huber’s contamination model (4.1.1), as a two-class mixture model, can be re-written

in the following hierarchical form

Xi|{πi = 1} ∼ Pf , Xi|{πi = 0} ∼ G, i = 1, . . . , n

where π1, . . . , πn
i.i.d.∼ Bernoulli(1 − ϵ) are latent variables, with each πi indicating whether

the sample observation Xi is drawn from Pf or G. Denote I1 = {1 ≤ i ≤ n|πi = 1} and

I0 = {1 ≤ i ≤ n|πi = 0} as the index sets for observations generated from Pf and G,

respectively. Note that the total number of observations drawn from Pf is n1 =
∑n

i=1 πi ∼

Binomial(n, 1− ϵ). As illustrated later, our approaches (see, e.g. (4.2.2)) do not rely on the

order of X1, . . . , Xn. Thus without loss of generality, we assume that I1 = {1, . . . , n1} and

I0 = {n1 + 1, . . . , n}. Then given the value of n1 (or more precisely the values of {πi}ni=1),

we have

X1, ..., Xn1

i.i.d.∼ Pf , Xn1+1, ..., Xn
i.i.d.∼ G. (4.1.2)

By conditioning on these latent variables {πi}ni=1, we can separately consider the clean obser-

vations (generated from Pf ) from the contaminated ones (generated from G). Our strategy

is to apply the technique of the Goldenshluger-Lepski method to the clean observations

{X1, . . . , Xn1}, while the contaminated part is separately treated and eventually controlled

by a term called contamination majorant. This is analogous to the variance majorant in

the Goldenshluger-Lepski method (Goldenshluger and Lepski, 2011a,b), which bounds the

variance of kernel estimators uniformly, as summarized in Lemma C.3.1. However, the

variance majorant itself is a statistic relying on the whole data set for p ∈ (2,∞); thus, it

is also bothered by the contamination effect. We show that this contamination effect can

be covered by our predefined contamination majorant. With the help of the contamination

majorant, we generalize Lemma C.3.1 under Huber’s contamination model (see Lemma

C.4.1 for further details).

To summarize, we construct a novel contamination majorant term and add it to the

original surrogate loss to characterize the effect of contamination on the kernel estimators.

From the methodological perspective, we make the new surrogate loss a good proxy of the
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actual loss with contaminated data. Theoretically, by analyzing Huber’s contamination

model hierarchically, we can utilize the results of non-robust Goldenshluger-Lepski method

and prove that our new bandwidth selection method can lead to minimax estimators with

contaminated data. In what follows, we always consider model (4.1.2) conditioning on n1 or

equivalently {πi}ni=1.

4.1.2 Organization and Notation

The rest of the chapter is organized as follows. In Section 4.2, we establish the minimax

rate of the density estimation under Huber’s contamination model by deriving the upper

bound and lower bound, respectively. In Section 4.3, we develop new data-driven procedures

to select the bandwidth of kernel estimators when either β0 or ϵ is known, and prove the

impossibility of adaptive methods when neither of them is known. We further provide the

results of the structured contamination case, including the minimax rates and adaptive

methods in Sections 4.4 and 4.5, respectively. We draw the conclusion in Section 4.6 by

discussing how to apply the ideas and techniques we develop in this paper to the case under

the pointwise loss function. Proofs of all the results are given in the supplementary material.

Notations. We introduce a few notations that will be used in this chapter. For a, b ∈ R,

let a ∨ b = max{a, b} and a ∧ b = min{a, b}. We use a+ to denote max{a, 0}. For a positive

real number a, ⌊a⌋ is the largest integer strictly less than a. For two vectors β0, β1 ∈ Rd,

we write β0 ≤ β1 to represent that every component of β0 is smaller than or equal to that

of β1. For two probability measures P1, P2 on a σ-algebra F , their total variation distance

is defined as TV(P1, P2) = supA∈F |P1(A) − P2(A)|. We use 1(·) to denote the indicator

function. For two positive sequences {an} and {bn} , we write an ≲ bn or an = O (bn) if

an ≤ Cbn for all n and some positive constant C independent of n, and write an ≍ bn if

an ≲ bn and bn ≲ an. We want to remind the readers that in this chapter, we use P and E

to represent probability and expectation, instead of P and E as used in Chapter 2 and 3.
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4.2 Minimax Rate under Huber’s Contamination Model

Assume that we observe X1, ..., Xn from contamination model (4.1.1). Our goal is to

estimate f with the contaminated data {Xi}, and the accuracy of estimators is measured by

the Lp (1 ≤ p <∞) loss. In this work, f is assumed to be in an anisotropic Nikol’skii class,

which is defined as the following.

Definition 4.2.1. Let p ∈ [1,∞), β = (β1, . . . , βd)
′, βj > 0, and L > 0. We say that a

function f : Rd → R belongs to the anisotropic Nikol’skii class Np,d(β, L) if

(i) ∥D(k)
j f∥p ≤ L, for k = 0, . . . , ⌊βj⌋, j = 1, . . . , d;

(ii) for all j = 1, . . . , d and all z ∈ R,{∫ ∣∣∣D(⌊βj⌋)
j f (t1, . . . , tj + z, . . . , td)−D

(⌊βj⌋)
j f (t1, . . . , tj, . . . , td)

∣∣∣p dt}1/p

≤ L|z|βj−⌊βj⌋.

Here D
(k)
j f denotes the kth-order partial derivative of f with respect to the variable

tj, and ∥f∥p represents the Lp norm of f . If βj is an integer, then assumption (ii) im-

plies that f ’s partial derivative D
(⌊βj⌋)
j f is Lipschitz with respect to Lp norm. The function

classes Np,d(β, L) were first considered in approximation theory by Nikol’skii (see for exam-

ple, (Nikol’skii, 2012)). The minimax density estimation problem for such function classes

was solved by Ibragimov and Khasminski (Hasminskii and Ibragimov, 1990; Ibragimov and

Khasminski, 1981; Ibragimov and Khas’ minskii, 1980). The adaptive estimation over func-

tion classes Np,d(β, L) was considered later in (Goldenshluger and Lepski, 2011a).

We further define Pp,d(β, L) := {f : Rd → R|f ≥ 0,
∫
f = 1, f ∈ Np,d(β, L)} to denote

the set of density functions that are in some anisotropic Nikol’skii class Np,d(β, L).

Theorem 4.2.1. Assume that f ∈ Pp,d(β0, L0), where β0 = (β0,1, . . . , β0,d)
′. Let 1/β̄0 =∑d

j=1 1/β0,j, 1/q = 1− 1/p. If β̄0 ≥ 1/p, then the minimax rate is

inf
f̂

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ − f ∥p≍

n
− β̄0

q β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 , 1 ≤ p ≤ 2

n
− β̄0

2 β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 , p > 2.

(4.2.1)
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The first term n
− β̄0

q β̄0 +1 (or n
− β̄0

2 β̄0 +1 ) is the classical minimax rate without contamination.

The second term ϵ
q β̄0

q β̄0 +1 captures the effect of contamination on the optimal estimation of f .

The way it depends on β0 implies that the smoother f is, the smaller the contamination effect

is. Thus, the smoothness parameter β0 of f can also be an indicator of the robustness of the

optimal estimation of f . Some special cases: (1) p = 1: n
− β̄0

q β̄0 +1 is of order O(1), which shows

the phenomenon that smoothness alone is not sufficient to guarantee consistency of density

estimators in L1(Rd), as discussed in (Ibragimov and Khasminski, 1981). The term ϵ
q β̄0

q β̄0 +1

becomes ϵ, which matches the general lower bound for L1 loss under Huber’s contamination

model, provided by (Chen et al., 2016). (2) p = 2: the minimax rate (4.2.1) is of order

n
− β̄0

2 β̄0 +1 ∨ ϵ
2 β̄0

2 β̄0 +1 , which indicates that the phase transition boundary occurs at ϵ ≍ n−1/2. In

other words, if the contamination proportion ϵ is lower than the level n−1/2 asymptotically,

then the contamination would not affect the minimax rate. If ϵ is above this level, then no

density estimator can achieve the classical minimax rate as the contamination term ϵ
2 β̄0

2 β̄0 +1

is dominant in the minimax rate (4.2.1). Therefore, to achieve the classical minimax rate,

there can be (approximately) at most nϵ ≍ n1/2 contaminated observations.

We then briefly discuss how we establish the upper and lower bounds of (4.2.1), re-

spectively in the following subsections. The detailed proof is given in Section C.2 of the

supplementary material.

4.2.1 Upper Bound

The minimax rate (4.2.1) can be achieved by a kernel density estimator that takes the

form

f̂h(x) =
1

nVh

n∑
i=1

K

(
x−Xi

h

)
=

1

n

n∑
i=1

Kh(x−Xi), (4.2.2)

where h = (h1, . . . , hd) is the bandwidth vector, K : Rd → R is some kernel function, Vh =∏d
j=1 hj, u/v for u, v ∈ Rd represents the coordinate-wise division, and Kh(·) = V −1

h K(·/h).

In this setting, we consider a family of kernels satisfying the following assumptions:

• (K1) K(t) :=
∏d

j=1Kj(tj), Kj : R → R is some kernel function on R.
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• (K2) For all j = 1, . . . , d, Kj is a kernel of order lj = ⌊βj⌋ and
∫
|u|βj |Kj(u)|du < ∞.

That is, for any j = 1, . . . , d,∫
R
Kj = 1,

∫
R
usKj(u)du = 0,∀1 ≤ s ≤ ⌊βj⌋,

∫
R
|u|βj |Kj(u)|du ≤ LK <∞

• (K3) For any j = 1, . . . , d, ∥Kj∥1 ∨ ∥Kj∥2 ∨ ∥Kj∥p ∨ ∥Kj∥∞ ≤ LK <∞.

We use the notation Kβ(LK) to denote the collection of all the kernels satisfying (K1)-(K3).

Remark. Given some β, it is not hard to find a kernel in Kβ(LK). For example, let K0(u)

be a bounded and compactly supported function on R and
∫
K0(u)du = 1. Following

(Kerkyacharian et al., 2001), for some integer l ≥ max1≤j≤d βj we define

Kl(u) =
l∑

k=1

(
l

k

)
(−1)k+1 1

k
K0

(u
k

)
, K(t) =

d∏
j=1

Kl(tj).

It is easy to check such kernel Kl satisfies (K1) – (K3) with some constant LK .

Theorem 4.2.2. Under the assumptions of Theorem 4.2.1, for a kernel estimator f̂h (4.2.2)

with some kernel K ∈ Kβ(LK) for some β ≥ β0, we have

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂h − f ∥p≤ C

{
d∑

j=1

h
β0,j

j + (nVh)
−1/(q∨2) + ϵV

−1/q
h

}
, (4.2.3)

for any h such that 0 < Vh ≤ 1, ϵ ≤ C0 < 1 and n ≥ C1, where C0, C1 are two absolute

constants, and C is a constant depending only on L0, LK , C0.

Remark. By choosing hj ≍ n
− β̄0

β0,j((q∨2)β̄0+1) ∨ϵ
q β̄0

β0,j(qβ̄0+1) , we immediately obtain that the kernel

estimator f̂h(x) can achieve the minimax rate (4.2.1). Noticeably, the optimal choice of

the bandwidth depends on not only the smoothness parameter β0, but the contamination

proportion ϵ as well. We will discuss how to adaptively choose the bandwidth in Section 4.3.
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Remark. The first two terms
∑d

j=1 h
β0,j

j and (nVh)
−1/(q∨2) in (4.2.3) are the classical upper

bounds for the bias and variance of the kernel estimator, respectively, when assuming there

is no contamination, i.e. {Xi}ni=1
i.i.d.∼ Pf . The last term ϵV

−1/q
h reflects the contamination

effect on the kernel density estimation.

To be more specific, we introduce the following notations to denote the bias and vari-

ance parts of the kernel estimator f̂h. For 1 ≤ m ≤ n, assume X1, ..., Xm
i.i.d.∼ pX (the

density of clean observations), and define the bias and variance term of the kernel estimator

1
m

∑m
i=1Kh(Xi − x) as:

Bh(pX , t) := EpXKh(t−X)− pX(t) =

∫
Rd

Kh(t− x)pX(x)dx− pX(t), (4.2.4)

ξh,m(pX , t) :=
1

m

m∑
i=1

[Kh(t−Xi)− EpXKh(t−X)]. (4.2.5)

Recall that Huber’s contamination model (4.1.1) can be rewritten as (4.1.2) for the analysis

of kernel estimators, conditioning on n1 or equivalently {πi}ni=1. With the notations (4.2.4)-

(4.2.5) and setting m = n1, we can have the following decomposition of the Lp loss of the

kernel estimator (4.2.2)

∥f̂h − f∥p ≤
∥∥∥∥ 1n

n1∑
i=1

(Kh(t−Xi)− f)

∥∥∥∥
p

+

∥∥∥∥ 1n
n∑

i=n1+1

(Kh(t−Xi)− f)

∥∥∥∥
p

≤ n1

n

(
∥Bh(f, t)∥p + ∥ξh,n1(f, t)∥p

)
+
n− n1

n

(
∥Kh∥p + ∥f∥p

)
.

(4.2.6)

Under the setting of Theorem 4.2.2, it can be shown that

• Bias term:

∥Bh(f, t)∥p ≲
d∑

j=1

h
β0,j

j .

• Variance term:

EP (ϵ,f,G) ∥ξh,n1(f, t)∥p ≲ (nVh)
−1/(q∨2).

• Contamination term:

EP (ϵ,f,G)
n− n1

n

(
∥Kh∥p + ∥f∥p

)
≲ ϵV

−1/q
h .
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4.2.2 Lower Bound

In (Chen et al., 2018), a general lower bound is provided for Huber’s ϵ-contamination

model. Given a general statistical experiment {Pθ, θ ∈ Θ} under Huber’s contamination

model P (ϵ, θ, Q) = (1− ϵ)Pθ + ϵG, a key quantity, called modulus of continuity, is defined as

ω(ϵ,Θ) = sup {L (θ1, θ2) : TV (Pθ1 , Pθ2) ≤ ϵ/(1− ϵ); θ1, θ2 ∈ Θ} ,

where L(·, ·) is the loss function. This definition of modulus of continuity dates back to

(Donoho, 1994; Donoho and Liu, 1991), and (Chen et al., 2018) shows that the optimal

estimation error rate can be generally lower bounded by this quantity with the following

theorem.

Lemma 4.2.3 (Theorem 5.1 in (Chen et al., 2018)). Suppose there is some M(0) such that

inf
θ̂
sup
θ∈Θ

sup
Q

PP (ϵ,θ,Q){L(θ̂, θ) ≥ M(ϵ)} ≥ c

holds for ϵ = 0. Then for any ϵ ∈ [0, 1], it holds that M(ϵ) ≍ M(0) ∨ ω(ϵ,Θ).

The intuition behind the above result is that Huber’s ϵ-contamination model P (ϵ, θ, G)

can be treated as a perturbation of the true distribution Pθ under the total variation distance

at the order of ϵ. In fact, any two distributions Pθ1 , Pθ2 with total variation bounded by

ϵ/(1 − ϵ) cannot be distinguished under Huber’s contamination model. That is, we can

always find two distributions G1, G2 such that Pθ1 − Pθ2 =
ϵ

1−ϵ
(G2 −G1), i.e. P (ϵ, θ1, G1) =

P (ϵ, θ2, G2). Therefore, a price of L(θ1, θ2) has to be paid for the estimation of θ.

In our setting, we can show that ω(ϵ,Θ) ≳ ϵ
q β̄0

q β̄0 +1 and establish the following lower

bound.

Theorem 4.2.4. Under the assumptions of Theorem 4.2.1, we have

inf
f̂

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ − f ∥p≳ n
− β̄0

(q∨2) β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 .
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Remark. Specifically, we consider the following construction of two densities f0, f1. Choose

a density f0 ∈ Pp,d(β0, L0/2) bounded away from zero, and let

f1(x) = f0(x) + γV
β̄0 − 1

p

h

d∏
j=1

ϕ0

(xj
hj

)
,

where hj = ϵ
q β̄0

β0,j(q β̄0 +1) , ϕ0 : R → R is an infinitely differentiable function with the support

[−1, 1] and satisfies
∫
ϕ0 = 0. By setting γ sufficiently small, one can obtain that f1 ∈

Pp,d(β0, L0) and TV(Pf0 , Pf1) ≤ ϵ
1−ϵ

, and thus, ω(ϵ,Θ) ≥ ∥f1 − f0∥p ≍ ϵ
q β̄0

q β̄0 +1 .

4.3 Adaptive Density Estimation

In this section, we discuss the adaptive density estimation under Huber’s contamination

model. To this end, we focus on how to adaptively select the bandwidth of the kernel es-

timator to make it achieve the optimal minimax rate (4.2.1). As we mentioned in Remark

4.2.1, the optimal choice of the bandwidth requires a prior knowledge of both the smooth-

ness parameter β0 and the contamination proportion ϵ. Therefore, there are three cases of

adaptation to be investigated.

(1) Only the smoothness parameter β0 is unknown;

(2) Only the contamination proportion ϵ is unknown;

(3) Neither β0 nor ϵ is known.

For the first two cases where only one parameter is unknown, we develop adaptive band-

width selection procedures and prove the resulting kernel estimators can achieve the minimax

rate in Sections 4.3.1 and 4.3.2. Regarding the last case, in Section 4.3.3 we prove that it is

impossible to obtain an adaptive method that achieves the optimal minimax rate. In fact,

this negative results still holds even if only one component of the β0 and ϵ are unknown. This

phenomenon, first pointed out by (Liu and Gao, 2019), illustrates the intrinsic challenges in

the analysis of adaptation theory under Huber’s contamination model.
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4.3.1 Adaptation to the Smoothness Parameter Only

4.3.1.1 Bandwidth Selection in One-dimensional Case

Before we introduce our adaptive bandwidth selection procedure, let’s start with a simple

case when d = 1. Theorem 4.2.2 tells us that a kernel estimator f̂h(x) =
1
n

∑n
i=1Kh(Xi − t)

with bandwidth h can have the following convergence rate:

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂h − f ∥p≲ hβ0 + (nh)−1/(q∨2) + ϵh−1/q.

In order to minimize the above upper bound to achieve the optimal rate (4.2.1), the

optimal bandwidth h∗ should satisfy h∗β0 ≍ (nh∗)−1/(q∨2)+ ϵh∗−1/q. Although β0 is unknown

to us, we can utilize the information of ϵ and choose h∗ to be the largest h such that

hβ0 ≲ (nh)−1/(q∨2) + ϵh−1/q, intuitively. This intuition can be formalized by the following

selection rule, known as Lepski’s adaptive method (Lepskii, 1991):

ĥ := max

{
h ∈ H : ∥f̂h − f̂l∥p ≤ C0

(
1

(nl)1/(q∨2)
+

ϵ

l1/q

)
,∀h ≥ l ∈ H

}
,

where H is some (discrete) bandwidth collection set containing h∗ and C0 is a sufficiently

large constant. The proof strategy of Lepski’s adaptive method can be simply described

in two stages: (1) we first show that the selected bandwidth ĥ is larger than the oracle

bandwidth h∗ with high probability; (2) then conditional on this event, by the definition of

ĥ, we have

E∥f̂ĥ − f∥p ≤ E∥f̂ĥ − f̂h∗∥p + E∥f̂h∗ − f∥p ≲ h∗β0 + (nh∗)−1/(q∨2) + ϵh∗−1/q.

While Lepski’s method is a smart way to select the optimal bandwidth without knowing

β0, this method essentially relies on the order topology of R, the set h belongs to. More

specifically, the analysis critically utilizes the monotone property of each term in the conver-

gence rate (i.e. the bias term hβ0 is increasing with h, while the variance term (nh)−1/(q∨2)

and contamination term ϵh−1/q are decreasing). In contrast, this method can be questionable

for the multi-dimensional case since in Rd the bias term now becomes
∑d

j=1 h
β0,j

j while the

variance and contamination terms are monotonic in Vh =
∏d

j=1 hj. Because Rd is not totally
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ordered, there is no way to arrange the relative order of each component of the bandwidth h

in advance when we do not know each β0,j. This indicates the difficulty in the adaptation the-

ory when considering a scale of the anisotropic density classes (i.e. β0 is essentially a vector),

compared to the isotropic density classes (i.e. β0 is essentially a scalar). In the next section,

we show how to overcome this difficulty by adopting the idea of the Goldenshluger-Lepski

method (Goldenshluger and Lepski, 2011a).

4.3.1.2 Selection Procedure in Multi-dimensional Case

Intuition. Before we formally state our selection procedure, we would like to discuss some

intuition behind it. We start with introducing a family of auxiliary estimators below, which

play a key role in the Goldenshluger-Lepski method.

f̂h,l(t) :=
1

n

n∑
i=1

[Kh ∗Kl](t−Xi), ∀h, l ∈ H,

where ”∗” stands for the convolution on Rd, and H is a bandwidth collection set containing

the optimal bandwidth h∗. A key observation (Goldenshluger and Lepski, 2011a) is that one

can approximate the bias term of f̂h (i.e.
∑d

j=1 h
β0,j

j ) using that of f̂h,l − f̂l, as indicated by

the following proposition.

Proposition 4.3.1. For any h ∈ H, we have

sup
l∈H

∥Ef [Kh ∗Kl](t−X)− EfKl(t−X)∥p ≤ ∥K∥1 ∥EfKh(t−X)− f(t)∥p ,

for any kernel K with ∥K∥p ∨ ∥K∥1 <∞, and density f with ∥f∥p <∞.

Proposition 4.3.1 suggests that we may consider using R̂h,p := supl∈H ∥f̂h,l − f̂l∥p as a

surrogate loss (as a proxy for the actual Lp loss ∥f̂h− f∥p), and then select the bandwidth ĥ

to be the minimizer of R̂h,p over H. It turns out that in this way, only the bias term of f̂h is

well approximated, while the variance and contamination term would be out of control. To

fix this issue with contaminated observations, following the intuition of the Goldenshluger-

Lepski method, we propose the following modification to R̂h,p. Define the modified surrogate

loss as

R̂
(0)
h,p := sup

l∈H

{
∥f̂h,l − f̂l∥p −

[
Var(f̂h,l) + Var(f̂l)

]
−
[
C(f̂h,l) + C(f̂l)

]}
+
+
[
Var(f̂h) + C(f̂h)

]
,
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where Var(f̂l) (resp. Var(f̂h,l)), C(f̂l) (resp. C(f̂h,l)) represent the variance term and con-

tamination term of f̂l (resp. f̂h,l), that need to be specified later. The high-level intuition is

that

R̂
(0)
h,p ≈ sup

l∈H

[
Bias(f̂h,l)− Bias(f̂l)

]
+
+
[
Var(f̂h) + C(f̂h)

]
(i)
≈ Bias(f̂h) + Var(f̂h) + C(f̂h)

(ii)
≈ ∥f̂h − f∥p.

Here Bias(f̂h), Var(f̂h), C(f̂h) represent the bias, variance and contamination terms of f̂h

respectively. The intuition for the approximation (i) follows from Proposition 4.3.1, and (ii)

follows from the decomposition of ∥f̂h − f∥p shown in (4.2.6).

Selection Rule. Now we formally state our bandwidth selection rule by specifying the

variance term and contamination term of f̂l and f̂h,l.

Define

R̂
(1)
h,p := sup

l∈H

[ ∥∥∥f̂h,l − f̂l

∥∥∥
p
− 2mp(h, l)− (2 + 128Dp)mϵ,p(h, l)

]
+

+ 2m∗
p(h) + (2 + 128Dp)m

∗
ϵ,p(h),

(4.3.1)

where Dp = 0 for p ∈ [1, 2] and 15p/(log p) for p ∈ (2,∞). Then the selected bandwidth ĥ

is defined by

ĥ := arg inf
h∈H

R̂
(1)
h,p. (4.3.2)

In the definition of (4.3.1), mp(h, l) and m
∗
p(h) are the variance terms. One can under-

stand mp(h, l) as the surrogate of Var(f̂h,l)+Var(f̂l), and m
∗
p(h) as the surrogate of Var(f̂h).

Similarly, mϵ,p(h, l) and m∗
ϵ,p(h) are the contamination terms, and one can treat mϵ,p(h, l)

and m∗
ϵ,p(h) as the surrogates of C(f̂h,l) + C(f̂l) and C(f̂h) respectively. Now we give the

formal definition of these terms.

• Contamination terms:

mϵ,p(h, l) := (∥K∥1 + 1)∥K∥p{ϵV −1/q
l + ϵ(Vh ∨ Vl)−1/q}, ∀h, l ∈ H,

m∗
ϵ,p(h) := sup

l∈H
mϵ,p(l, h), ∀h ∈ H.
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• Variance terms:

mp(h, l) := dp(Kh ∗Kl) + dp(Kl), ∀h, l ∈ H,

m∗
p(h) := sup

l∈H
mp(l, h), ∀h ∈ H.

The function ds(U) (where s ∈ [1,∞), and U is a function Rd → R) is defined by

ds(U) :=

rs(U) s ∈ [1, 2],

r̂s(U) s ∈ (2,∞),

where

rs(U) := Csn
1/s−1 ∥ U ∥s, s ∈ [1, 2], (4.3.3)

with Cs = 128 for s ∈ [1, 2) and C2 = 25/3; for s ∈ (2,∞),

r̂s(U) := 32Ds

{
n−1/2

(∫ [
1

n

n∑
i=1

U2(t−Xi)

]s/2
dt

)1/s

+ 2n1/s−1 ∥ U ∥s
}
∨ 32n−1/2 ∥ U ∥2,

(4.3.4)

with Ds = 15s/ log s.

Remark. The variance terms were proposed in (Goldenshluger and Lepski, 2011a), which

considers r̂s(U) as an empirical counterpart of rs(U, pX) for s ∈ (2,∞):

rs(U, pX) := 32Ds

{
n−1/2

(∫ [∫
U2(t− x)pX(x)dx

]s/2
dt

)1/s

+ 2n1/s−1 ∥ U ∥s
}
∨ 32n−1/2 ∥ U ∥2,

(4.3.5)

where pX is the density function of Xi under the setting that X1, . . . , Xn
i.i.d.∼ pX . Notice that

this setting no longer holds with the presence of contamination. However, in our setting, we

may consider r̂s(U) as a contaminated empirical version of rs(U, f).
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Remark. The term mp(h, l) is called the majorant function for the variance term of f̂h,l and

f̂l. To be more specific, we define the bias and variance parts of the convolution kernel

estimator 1
m

∑m
i=1[Kh ∗Kl](x −Xi) based on X1, ..., Xm

i.i.d.∼ pX as the following (similar to

(4.2.4)-(4.2.5))

Bh,l(pX , t) := EpX [Kh ∗Kl](t−X)− pX(t) =

∫
Rd

[Kh ∗Kl](t− x)pX(x)dx− pX(t),

ξh,l,m(pX , t) :=
1

m

m∑
i=1

[[Kh ∗Kl](t−Xi)− EpX [Kh ∗Kl](t−X)].

Under the setting where X1, . . . , Xn
i.i.d.∼ pX without contamination, it is shown in (Golden-

shluger and Lepski, 2011a) that (see also Lemma C.3.1 in the supplementary material)

EpX sup
l∈H

[∥ ξl,n(pX , t) ∥p −dp(Kl)]+ ≤ δn,p, (4.3.6)

EpX sup
(h,l)∈H×H

[∥ ξh,l,n(pX , t) ∥p −dp(Kh ∗Kl)]+ ≤ δ̃n,p, (4.3.7)

where δn,p, δ̃n,p are two small terms decaying exponentially with n, and thus are negligible

compared to the terms in the rate (4.2.3). Therefore, one can see that mp(h, l) “majo-

rates” ∥ξh,l,n(pX , t)∥p+ ∥ξl,n(pX , t)∥p uniformly. However, in our setting with the presence of

contamination, (4.3.6) and (4.3.7) do not hold anymore, due to the following two reasons.

(1) Under Huber’s contamination model (4.1.1), the data distribution may not have a density

as the contamination distribution G can be arbitrary.

(2) For p ∈ (2,∞), dp(·) = r̂p(·), which, by its definition (4.3.4), relies on the whole data set

and thus is also affected by contamination.

To get around issue (1), we treat pure observations and contaminated observations separately.

In particular, under (4.1.2) conditioning on n1, X1, . . . , Xn1

i.i.d.∼ Pf and we consider applying

(4.3.6) and (4.3.7) to ∥ξh,l,n1(f, t)∥p and ∥ξl,n1(f, t)∥p, respectively. Regarding issue (2), we

characterize the contamination effect by the term mϵ,p(h, l) and prove the following key fact

in Lemma C.4.1

ĒP (ϵ,f,G) sup
l∈H

[
∥ξl,n1(f, t)∥p + ∥ξh,l,n1(f, t)∥p − 2mp(h, l)− 128Dpmϵ,p(h, l)

]
+

≲ δn,p + δ̃n,p,
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where Ē(·) = E{(·)1(n−n1

n
< 2ϵ)} (noting that the event {n−n1

n
< 2ϵ} holds with high

probability). This can be viewed as a robust version of (4.3.6) and (4.3.7) with the presence

of contamination. Therefore, in our setting, 2mp(h, l) + 128Dpmϵ,p(h, l) is the majorant

function for the variance terms ∥ξh,l,n1(f, t)∥p + ∥ξl,n1(f, t)∥p.

Remark. We can treat mϵ,p(h, l) as the majorant function for the contamination terms of f̂h,l

and f̂l, in the sense that the following inequality holds with high probability (see ( C.4.7)

for further details).

n− n1

n

(
∥ Kh ∗Kl ∥p + ∥ Kl ∥p

)
≤ 2mϵ,p(h, l).

The left side of the above inequality arises from the presence of the contaminated data

{Xn1+1, . . . , Xn}. Similar to the term n−n1

n
(∥Kh∥p + ∥f∥p), which represents the contami-

nation term in the decomposition of ∥f̂h − f∥p shown in (4.2.6), it characterizes the con-

tamination term in the decomposition of ∥f̂h,l − f̂l∥ in the surrogate loss R̂
(1)
h,p (see ( C.4.4)).

The above inequality tells us that the contamination effect on the kernel estimators can

be controlled by the contamination majorant mϵ,p(h, l). Coincidentally, the contamination

effect on the variance majorant mp(h, l) (dp(·) for p ∈ (2,∞)) can be also accounted for by

this contamination majorant mϵ,p(h, l), as we discussed in the above remark.

Remark. The definitions of rs(U) and rs(U, pX) are closely related to the following two

inequalities.

E

∣∣∣∣ m∑
i=1

ξi

∣∣∣∣p ≤ 2
m∑
i=1

E|ξi|p, ∀p ∈ [1, 2], (4.3.8)

E

∣∣∣∣ m∑
i=1

ξi

∣∣∣∣p ≤ ( 15p

log p

)p

max

{( m∑
i=1

Eξ2i

)p/2

,
m∑
i=1

E|ξi|p
}
, ∀p ∈ (2,∞), (4.3.9)

where ξi are centered independent random variables. The first inequality (Bahr-Esseen

inequality) can be found in (von Bahr et al., 1965). The second one is a version of Rosenthal’s

inequality that can be found in Section 2 of (Masaon, 2009). The constant 15p/ log p is the

best-known constant in the Rosenthal’s inequality shown in (Johnson, 1985).

The above two inequalities are usually used to establish the upper bound for the vari-

ance term of kernel estimators. Under Huber’s contamination model, we can use these two
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inequalities to bound ∥ξh,n1(f, t)∥p in (4.2.5), by considering model (4.1.2). To see their con-

nections with the definition of rs(U) and rs(U, pX), just notice that under a general setting

X1, . . . , Xn
i.i.d.∼ pX , for p ∈ [1, 2],

EpX ∥ξh,n(f, t)∥p
(Jensen)

≤

(∫
EpX

∣∣∣∣∣ 1n
n∑

i=1

ξi(t)

∣∣∣∣∣
p

dt

)1/p
(4.3.8)

≤ Cn1/p−1∥Kh∥p = C ′rp(Kh),

where ξi(t) = Kh(t−Xi)−EpXKh(t−Xi). Similarly, one can show that EpX ∥ξh,n(f, t)∥p ≤

Crp(Kh, pX) for p ∈ (2,∞).

4.3.1.3 Theoretical Guarantees

Hereafter, we always consider the bandwidth collection of the form (if not specified

otherwise) H :=
⊗d

j=1

[
hmin
j , hmax

j

]
. Denote Vmin :=

∏d
j=1 h

min
j , Vmax :=

∏d
j=1 h

max
j . The

kernel estimator with the bandwidth selected by the rule (4.3.2) achieves the minimax rate

(4.2.1), as shown in the following theorem.

Theorem 4.3.2. Let f̂h be a kernel estimator with some kernel K ∈ Kβ(LK) being Lipschitz

and compactly supported. Let the bandwidth ĥ be defined in (4.3.2).

(i) For p ∈ [1, 2), let hmin
j = 1/n, hmax

j = 1 for j = 1, . . . , d. For any class Pp,d(β0, L0) such

that β0 ≤ β, we have

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ĥ − f ∥p≲ n
− β̄0

q β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 .

(ii) For p ∈ [2,∞), we assume 1/
√
n ≤ Vmax ≤ c1/(log n)

p/2, Vmin ≥ c2/n. Here c1, c2 are

some constants depending on LK , d, p only. We further assume that any f ∈ Pp,d(β0, L0)

is uniformly bounded. Then for any ϵ ≲ (log n)−
p(β̄0 +1)−1

2 , and any class Pp,d(β0, L0) such

that β0 ≤ β, we have

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ĥ − f ∥p≲ n
− β̄0

2 β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 .
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Remark. (i) The optimal bandwidth h∗ needs to be contained in H to make this adaptive

method achieve the optimal minimax rate. One can check that h∗ ∈ H is satisfied

when we choose H =
[
1
n
, 1
]d

for p ∈ [1, 2). But for p ∈ [2,∞), noting that Vh∗ ≍

n
− 1

(q∨2) β̄0 +1 ∨ ϵ
q

q β̄0 +1 , we need to further assume

ϵ
q

q β̄0 +1 ≲ (log n)−p/2, i.e. ϵ ≲ (log n)−
p(β̄0 +1)−1

2

to guarantee h∗ ∈ H. This is why we add this extra assumption in (ii) of Theorem 4.3.2.

(ii) The bandwidth collection can be replaced by any subset of H as long as it contains

the optimal bandwidth h∗. For example, for p ∈ [1, 2), we may choose H = {h =

(h1, . . . , hd) ∈ (0, 1]d : hj = 2−kj , kj = 0, . . . , log2 n, j = 1, . . . , d} and the resulting kernel

estimator is still adaptive minimax optimal.

(iii) For p ∈ [2,∞), we need the assumption that f is uniformly bounded, which is required

for the proof of the Goldenshluger-Lepski method (Goldenshluger and Lepski, 2011a)

even without contamination. Moreover, (Goldenshluger and Lepski, 2014) points out

that the condition β̄0 > 1/p implies that any f ∈ Np,d(β0, L0) is uniformly bounded.

4.3.2 Adaptation to the Contamination Proportion Only

4.3.2.1 Bandwidth Selection

In this case, we assume the contamination proportion ϵ is unknown while the smoothness

parameter β0 = (β0,1, · · · , β0,d)′ is known. (If any one component of β0 is also unknown, then

there is no adaptive estimator as shown in Section 4.3.3.) Recall in the previous section, we

introduce ∥f̂h,l − f̂l∥p to approximate the bias of f̂h. Since β0 is given now, we can explicitly

write down the exact bias bound. Therefore, using supl∈H ∥f̂h,l − f̂l∥p in the surrogate loss

would be meaningless. Instead, we consider supl∈H ∥f̂h,l − f̂h∥p and define the surrogate loss

as

R̂
(2)
h,p := sup

l∈H

[∥∥∥f̂h,l − f̂h

∥∥∥
p
−mb(l)

]
+

+mb(h), (4.3.10)
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and select the bandwidth ĥ by

ĥ := arg inf
h∈H

R̂
(2)
h,p. (4.3.11)

In the definition of (4.3.10), mb(l) (resp. mb(h)) serves as the majorant function for the

bias term of f̂l (resp. f̂h) and is defined as:

mb(l) := ∥K∥1CL(2LK)
d

d∑
j=1

l
β0,j

j , ∀l ∈ H,

where CL is an arbitrary constant larger than L0.

Remark. The intuition behind the selection procedure is that

R̂
(2)
h,p ≈ sup

l∈H

[(
Bias(f̂h,l)− Bias(f̂h)

)
− Bias(f̂l) + Var(f̂h,l) + Var(f̂h) + C(f̂h,l) + C(f̂h)

]
+

+ Bias(f̂h)

(i)
≈ sup

l∈H

[
Var(f̂h,l) + Var(f̂h) + C(f̂h,l) + C(f̂h)

]
+ Bias(f̂h)

(ii)
≈ Var(f̂h) + C(f̂h) + Bias(f̂h) ≈ ∥f̂h − f∥p,

where our intuition for the approximation is based on Proposition 4.3.1, and the fact that

we can view Kh ∗Kl as a kernel with bandwidth h ∨ l in the sense that

Var(f̂h,l) ≲ (n(Vh ∨ Vl))−1/(q∨2), C(f̂h,l) ≲ ϵ(Vh ∨ Vl)−1/q.

Theorem 4.3.3. Given β0, let f̂h be a kernel estimator with some kernel K ∈ Kβ(LK) for

some β ≥ β0. Assume K is Lipschitz and compactly supported. Let the bandwidth ĥ be

defined in (4.3.11).

(i) For p ∈ [1, 2), let hmin
j = 1/n, hmax

j = 1 for j = 1, . . . , d. For any ϵ ≤ 1/4, we have

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ĥ − f ∥p≲ n
− β̄0

q β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 . (4.3.12)

(ii) For p ∈ [2,∞), we assume 1/
√
n ≤ Vmax ≤ c1/(log n)

p/2, Vmin ≥ c2/n. Here c1, c2 are

some constants depending on LK , d, p only. We further assume that f ∈ Pp,d(β0, L0) is

uniformly bounded. Then for any ϵ ≲ (log n)−
p(β̄0 +1)−1

2 , we have

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ĥ − f ∥p≲ n
− β̄0

2 β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 . (4.3.13)
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4.3.2.2 An Alternative Approach Based on Lepski’s Method

Given the smoothness parameter β0, once we know the oracle scalar Vh∗ , we immediately

have the oracle h∗ = (V
β̄0 /β0,1

h∗ , . . . , V
β̄0 /β0,d

h∗ )′. Therefore, the bandwidth selection in this case

is similar to that in the one-dimensional setting as discussed in Section 4.3.1.1 since we only

need to select Vh∗ , a one-dimensional parameter. By Theorem 4.2.2 we know for any h with

Vh ≤ 1,

EP (ϵ,f,G)∥f̂h − f∥p ≲
d∑

j=1

h
β0,j

j + ϵV
−1/q
h + (nVh)

−1/(q∨2).

Intuitively, Vh∗ should be the smallest Vh such that ϵV
−1/q
h +(nVh)

−1/(q∨2) ≤
∑d

j=1 h
β0,j

j holds.

Therefore, we can adopt Lepski’s method for one-dimensional setting to get the oracle Vh∗

and then h∗. More specifically, define

H =

{(
V

β̄0
β0,1

h , . . . , V
β̄0
β0,d

h

)′ ∣∣∣∣Vh =
1

2k
, k = [− log2 Vmax,− log2 Vmin] ∩ N

}
, (4.3.14)

where Vmax = 1, Vmin = 1/n for p ∈ [1, 2); Vmax = c1/(log n)
p/2, Vmin = c2/n for p ∈ [2,∞).

Here c1, c2 are some constants depending on LK , d, p only. Finally, we obtain the bandwidth

as

ĥ := min

{
h ∈ H : ∥f̂h − f̂l∥p ≤

c0
d

d∑
j=1

l
β0,j

j = c0V
β̄0
l , ∀l ≥ h, l ∈ H

}
, (4.3.15)

where l ≥ h is equivalent to Vl ≥ Vh, and c0 is a constant depending on L0, LK , p, d.

Theorem 4.3.4. Let f̂h be a kernel estimator with some kernel K ∈ Kβ(LK) being Lipschitz

and compactly supported, for some β ≥ β0. Let the bandwidth ĥ be defined in (4.3.15) and

H be defined in (4.3.14). Then (i) (4.3.12) holds for any ϵ ≤ 1/4; and (ii) (4.3.13) holds

for any ϵ ≲ (log n)−
p(β̄0 +1)−1

2 , assuming that f ∈ Pp,d(β0, L0) is uniformly bounded.
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Remark. To analyze the Lepski’s method, it is central to establish certain concentration

inequality for the variance term ∥ξh,n(f, t)∥p defined in (4.2.5). We summarize a non-robust

version of this result in our Lemma C.3.1, following Lemmas 1 and 2 of (Goldenshluger

and Lepski, 2011a). However, we cannot directly apply Lemma C.3.1 in our setting as for

p ∈ (2,∞) it involves r̂p(Kh), which uses the whole data set including the contaminated

part, by its definition (4.3.4). Unlike the case for the adaptation to β0, we cannot use

the contamination majorant mϵ,p(h, l) to control the contamination effect now. Instead, we

develop an innovative induction method to get around this issue. The detailed proof is given

in Section C.5 of the supplementary material.

4.3.3 Adaptation to Both the Smoothness Parameter and the Contamination

Proportion

In the most general case where neither smoothness parameter β0 nor contamination

proportion ϵ is accessible, adaptive estimation is a much harder task. Inspired by the negative

result in (Liu and Gao, 2019), in this section we demonstrate that it is impossible to construct

a general rate adaptive estimator for our model. To this end, we start with the following

definition which formulates the meaning of being rate adaptive in our specific setting.

Definition 4.3.1. Given two positive functions R1(·), R2(·) : Rd → R+, an estimator f̂ is

called (R1(·), R2(·))-rate adaptive with respect to the parameter set Θ = {θ1, . . . , θm} ⊂

Θ0 = {β0,1, . . . , β0,d, ϵ}, if there exist some constants C0, C1, . . . , Cm such that for any n ≥ 1,

any θj ≤ Cj, j = 1, . . . ,m, we have

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ − f ∥p≤ C0

(
n−R1(β0) ∨ ϵR2(β0)

)
.

For the minimax rate with R1(β0) = β̄0 /[(q ∨ 2) β̄0+1], R2(β0) = β̄0 /(q β̄0+1), it is

shown in Section 4.3.1 that there exists some estimator that is (R1(·), R2(·))-rate adap-

tive with respect to {β0,1, β0,2, . . . , β0,d}. In addition, Section 4.3.2 reveals the existence of

(R1(·), R2(·))-rate adaptive estimator with respect to {ϵ}. However, in searching for rate

adaptive estimators with respect to a parameter set containing both ϵ and some component
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of β0, the following theorem shows that such a goal is impossible for any given rate functions

R1(·) and R2(·).

Theorem 4.3.5. For any two positive functions R1(·) and R2(·), and any j = 1, . . . , d,

there is no estimator that is (R1(·), R2(·))-rate adaptive with respect to {β0,j, ϵ}. Con-

sequently, there is no estimator that is (R1(·), R2(·))-rate adaptive with respect to Θ0 =

{β0,1, β0,2, . . . , β0,d, ϵ}.

Remark. The above theorem says that when both the contamination proportion and the

smoothness parameter (even just one component) are unknown, there is no rate adaptive

estimator for any target convergence rate of the form n−R1(β0)∨ ϵR2(β0). This is stronger than

the well-known negative results for the classical adaptive estimation under pointwise loss.

The classical adaptive estimation theory (Brown and Low, 1996) states that no estimator

can adaptively achieve the minimax rate under pointwise loss over a scale of Hölder classes.

Nevertheless, some estimators (Lepski and Spokoiny, 1997) can still adaptively achieve the

minimax rate up to a logarithm factor.

Remark. The result of Theorem 4.3.5 is based on the fact that Huber’s contamination model

has no constraint on the contamination distribution, and thus it is possible to represent the

same distribution in two classes indexed by two quite different sets of parameters (β0, ϵ)

and (β̃0, ϵ̃). To be more specific, we may construct a distribution P (ϵ, Pf , G) = P (ϵ̃, P̃f , G̃)

with Pf ∈ Pp,d(β0, L0), P̃f ∈ Pp,d(β̃0, L0). This specific identifiability issue of these two sets

of parameters under Huber’s contamination model makes the adaptive estimation to both

parameters β0 and ϵ impossible. See Section C.6 in the supplementary material for complete

proof.

4.4 Minimax Rate with Structured Contamination

In this section, we assume the contamination distribution G has a density g with a finite

Lp norm. That is, g ∈ Lp,d(L1) for some L1, where Lp,d(L1) := {f : Rd → R|f ≥ 0,
∫
f =

1, ∥f∥p ≤ L1}. With this mild additional restriction on G, the minimax rate becomes quite
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different from (4.2.1).

Theorem 4.4.1. Under the above setting, we have the following minimax rate:

inf
f̂

sup
f∈Pp,d(β0,L0)
g∈Lp,d(L1)

Ep(ϵ,f,g) ∥ f̂ − f ∥p≍

n
− β̄0

q β̄0 +1 ∨ ϵ, 1 ≤ p ≤ 2

n
− β̄0

2 β̄0 +1 ∨ ϵ, p > 2,

(4.4.1)

where p(ϵ, f, g) is used to denote the density (1− ϵ)f + ϵg.

4.4.1 Upper Bound

The minimax rate (4.4.1) can be achieved by a kernel density estimator f̂h with some

K ∈ Kβ0(LK). We show that

Bias(f̂h) :=∥ Epϵ f̂h − f ∥p≲
d∑

j=1

h
β0,j

j + ϵ,

Var(f̂h) := Epϵ ∥ f̂h − Epϵ f̂h ∥p≤ (nVh)
−1/(q∨2),

where pϵ represents p(ϵ, f, g). Choosing hj ≍ n
− β̄0

β0,j((q∨2) β̄0 +1) , we obtain the minimax rate

(4.4.1).

Remark. Notice that in this case with structured contamination, we can utilize the smooth-

ness of the contamination distribution G, and treat the contaminated distribution as a whole

with a single density pϵ. In contrast, under Huber’s contamination model, we separate the

contaminated distribution into the clean part and the contaminated part, as shown in (4.2.6).

4.4.2 Lower Bound

Regarding the lower bound of (4.4.1), we focus on the second term ϵ and consider

f̃(x) = f(x) + ϵγϕ(x),

g̃(x) = g(x)− (1− ϵ)γϕ(x).

Here, we choose some functions f ∈ Pp,d(β0, L0/2), g ∈ Lp,d(L1/2), and the function ϕ

is infinitely differentiable satisfying
∫
ϕ = 0. If γ is sufficiently small, we also have f̃ ∈

Pp,d(β0, L0), g̃ ∈ Lp,d(L1). Since it is impossible to distinguish between these two densities

(1− ϵ)f + ϵg and (1− ϵ)f̃ + ϵg̃, an error of order ∥ f̃ − f ∥p≍ ϵ cannot be avoided.
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4.4.3 Extension to Smooth Contamination Density

For the structured contamination case, a common assumption on the contamination

distribution G is that its density g is in a smooth function class similarly defined as the

true density f , but with a possibly different smoothness parameter. That is, we assume

g ∈ Pp,d(β1, L1) for some β1 and L1. The following theorem reveals a surprising result that

the minimax rate does not depend on β1 and remains the same as the rate (4.4.1).

Theorem 4.4.2. Assume g ∈ Pp,d(β1, L1), we have the following minimax rate:

inf
f̂

sup
f∈Pp,d(β0,L0)
g∈Pp,d(β1,L1)

Ep(ϵ,f,g) ∥ f̂ − f ∥p≍

n
− β̄0

qβ̄0+1 ∨ ϵ, 1 ≤ p ≤ 2

n
− β̄0

2β̄0+1 ∨ ϵ, p > 2.

(4.4.2)

Remark. By comparing three minimax rates (4.2.1), (4.4.1) and (4.4.2), the difference be-

tween structured and unstructured (i.e. arbitrary) contamination cases is essentially de-

termined by the existence of the density of contamination distribution. In particular, the

smoothness of the contamination density makes no difference with respect to the minimax

rate.

4.5 Adaptation with Structured Contamination

As there is little difference in the estimation results between the two assumptions on

the contamination density g in the last section, we just take g ∈ Lp,d(L1) as an example to

discuss the adaptive method. One can check that the procedure can be applied to the case

where g ∈ Pp,d(β1, L1) without any modification.

To achieve the minimax rate (4.4.1), we need to select the bandwidth hj ≍ n
− β̄0

β0,j((q∨2) β̄0 +1) ,

which only requires the prior knowledge of the smoothness parameter β0. Notice that the

choice of bandwidth does not depend on the contamination proportion ϵ; hence it is not

surprising to see the classical adaptive procedure of the non-robust Goldenshluger-Lepski

method (Goldenshluger and Lepski, 2011a) works in our case too. With a little modification

of the proof in (Goldenshluger and Lepski, 2011a), we can show that this procedure leads to
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a minimax estimator. For completeness, we briefly describe the adaptive selection procedure

below.

We select the bandwidth by

ĥ = arg inf
h∈H

R̂h,p, where R̂h,p := sup
l∈H

[∥ f̂h,l − f̂l ∥p −mp(h, l)]+ +m∗
p(h), (4.5.1)

where mp(h, l) and m∗
p(h) are defined in Section 4.3.1. We summarize the main results in

the following theorem.

Theorem 4.5.1. Let f̂h be a kernel estimator with some kernel K ∈ Kβ(LK) being Lipschitz

and compactly supported. Let the bandwidth ĥ be defined in (4.5.1).

(i) For p ∈ [1, 2), let hmin
j = 1/n, hmax

j = 1 for j = 1, . . . , d. For any class Pp,d(β0, L0) with

β0 ≤ β, we have

sup
f∈Pp,d(β0,L0)
g∈Lp,d(L1)

Ep(ϵ,f,g) ∥ f̂ĥ − f ∥p≲ n
− β̄0

q β̄0 +1 ∨ ϵ.

(ii) For p ∈ [2,∞), we assume 1/
√
n ≤ Vmax ≤ c1/(log n)

p/2, Vmin ≥ c2/n. Here c1, c2

are some constants depending on LK , d, p only. We further assume that f, g are both

uniformly bounded. Then for any class Pp,d(β0, L0) with β0 ≤ β, we have

sup
f∈Pp,d(β0,L0)
g∈Lp,d(L1)

Ep(ϵ,f,g) ∥ f̂ĥ − f ∥p≲ n
− β̄0

2 β̄0 +1 ∨ ϵ.

Remark. (i) In the above theorem, we assume the contamination density g is uniformly

bounded for p ∈ [2,∞). It is due to the requirement of the Goldenshluger-Lepski

method. Notice that in Section 4.3 under Huber’s contamination model, we only adopt

the Goldenshluger-Lepski method to the “clean” data, while for the structured contam-

ination case, we apply it to the whole data set. This is why we only need to assume f

is uniformly bounded under Huber’s contamination model, but need to assume both f

and g are uniformly bounded for the structured contamination case.

(ii) Noticeably, the lower bound of the minimax rate (4.4.1) still holds with this additional

boundedness assumption. In fact, one can choose both g0 and ϕ uniformly bounded in

the proof of Theorem 4.4.1.
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4.6 Discussion: An extension to the Pointwise Loss

In this work, we constrain our focus on Lp loss functions, establish the minimax rates, and

develop new adaptive bandwidth selection procedures under Huber’s contamination model.

It is worthwhile to point out that this framework can be naturally extended to the pointwise

loss setting:

L(f̂ , f) = |f̂(x0)− f(x0)|, for some x0 ∈ Rd,

with f being assumed in a general anisotropic smooth function class with parameter β0 ∈ Rd.

We briefly discuss here how we can apply the ideas and techniques developed in this work

and (Goldenshluger and Lepski, 2014) to construct bandwidth selection procedures adaptive

to β0 (one can develop adaptive methods with respect to ϵ similarly), and get the pointwise

oracle inequality under Huber’s contamination model.

We still need to introduce the convolution auxiliary estimator to approximate the bias.

For the variance terms, instead of using the majorant functions dp(·) and mp(·, ·), we define

new majorant functions D(·) andM(·), which were considered in (Goldenshluger and Lepski,

2014):

Dh(x) =

√
xA(Kh, x) log n

nVh
+
c log n

nVh
, h ∈ H,

where c > 0 is a constant to be specified, and

A(Kh, x) =

∫
|Kh(x− t)| f(t)dt.

Similarly, define

Dh,l(x) =

√
xA(Kh ∗Kl, x) log n

n(Vh ∨ Vl)
+

c log n

n(Vh ∨ Vl)
, h, l ∈ H.

As Dh(x) and Dh,l(x) rely on the unknown density f , we also introduce the empirical

counterparts D̂h(x) and D̂h,l(x) via replacing A(U, x) by Â(U, x) := 1
n

∑n
i=1 |U(x−Xi)| (for

U = Kh or Kh ∗Kl). At last, we define

Mh,l(x) = Dh,l(x) +Dl(x), M∗
h(x) = sup

l∈H
Ml,h(x);

M̂h,l(x) = D̂h,l(x) + D̂l(x), M̂∗
h(x) = sup

l∈H
M̂l,h(x).
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In (Goldenshluger and Lepski, 2014), the authors have shown that without contamina-

tion, if we pick the bandwidth h by

ĥ = arg inf
h∈H

R̂h(x), where R̂h(x) := sup
l∈H

[|f̂h,l(x)− f̂l(x)| − M̂h,l(x)]+ + M̂∗
h(x),

then one can get the pointwise oracle inequality below

|f̂ĥ(x)− f(x)| ≤ C inf
h∈H

{∥Bh(f, ·)∥∞ +M∗
h(x)}+ ζ(x), ∀x ∈ Rd,

where the remainder ζ(x) > 0 is small in the sense that

Efζ(x) ≤ Cn−1/2, ∀x ∈ Rd, and

∫
Rd

Efζ(x)dx ≤ Cn−1/2.

Notice that in the above selection rule, M̂h,l(x) and M̂∗
h(x) represent the majorant func-

tions of the variance terms Var(f̂h,l) + Var(f̂l) and Var(f̂h), respectively. Under Huber’s

contamination model, we introduce the following majorant functions for the contamination

terms:

Mϵ,h,l(x) := C(∥K∥∞ + 1){ϵV −1
l + ϵ(Vh ∨ Vl)−1},

M∗
ϵ,h(x) := sup

l∈H
Mϵ,l,h(x),

when ϵ is known and the smooth parameter β0 is unknown. We believe that similar to

(4.3.1), a surrogate loss function given in the following form:

R̂
(1)
h (x) := sup

l∈H

[ ∣∣∣f̂h,l(x)− f̂l(x)
∣∣∣− 2M̂h,l(x)−Mϵ,h,l(x)

]
+
+ 2M̂∗

h(x) +M∗
ϵ,h(x),

with a selected bandwidth ĥ = arg infh∈H R̂
(1)
h (x) would lead to some optimal estimator

adaptive to smoothness parameter β0 given ϵ. (e.g. minimax in some anisotropic Hölder

class.) Similar modifications can be made for the adaptive procedure with respect to ϵ,

given β0.
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Appendix A Supplement to Chapter 2

A.1 Examples of Robust Loss Functions

We list some smoothed Huber loss and pseudo Huber loss functions that satisfy Condition

2.2.1.

1. (Pseudo-Huber loss I): ℓ(x) =
√
1 + x2 − 1, x ∈ R. By direct calculations,

ℓ′(x) =
x√

1 + x2
and ℓ′′(x) =

1

(1 + x2)3/2
.

Then Condition 2.2.1 holds with c1 = 1, c2 = (1 + c2)−3/2 and c3 = c for any c > 0.

2. (Pseudo-Huber loss II): ℓ(x) = log{(ex+e−x)/2}, x ∈ R. The first and second derivatives

are, respectively,

ℓ′(x) =
ex − e−x

ex + e−x
and ℓ′′(x) =

4

(ex + e−x)2
.

Hence, Condition 2.2.1 holds with c1 = 1, c2 = 4(ec + e−c)−2 and c3 = c for any c > 0.

3. (Smoothed Huber loss I):

ℓ(x) =

x
2/2− |x|3/6 if |x| ≤ 1,

|x|/2− 1/6 if |x| > 1.

The first and second derivatives are

ℓ′(x) =

x− sign(x) · x2/2 if |x| ≤ 1,

sign(x)/2 if |x| > 1,

ℓ′′(x) =

1− |x| if |x| ≤ 1,

0 if |x| > 1.

Condition 2.2.1 is then satisfied with c1 = 1/2, c2 = 1− c and c3 = c for any 0 < c < 1.
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4. (Smoothed Huber loss II):

ℓ(x) =

x
2/2− x4/24 if |x| ≤

√
2,

(2
√
2/3)|x| − 1/2 if |x| >

√
2.

The first and second derivatives are

ℓ′(x) =

x− x3/6 if |x| ≤
√
2,

(2
√
2/3) sign(x) if |x| >

√
2,

ℓ′′(x) =

1− x2/2 if |x| ≤
√
2,

0 if |x| >
√
2.

Condition 2.2.1 holds with c1 = 2
√
2/3 and c2 = 1− c2/2 and c3 = c for any 0 < c <

√
2.

A.2 Proofs

A.2.1 Proof of Proposition 2.2.1

Let θ̃∗ := (β∗
0 + ατ ,β

∗⊺)⊺. It suffices to show that θ̃∗ is the unique minimizer of the

function L(θ) := Ex,ε∼F{ℓτ (y − x̄⊺θ)}. For any θ = (β0,β
⊺)⊺, we know

L(θ) = ExEε∼F ℓτ (ε+ (β∗
0 − β0) + x⊺(β∗ − β))

≥ ExEε∼F ℓτ (ε− ατ ) = L(θ̃∗)

The inequality is due to the fact that ατ is the unique minimizer of the function α 7→

Eε∼F{ℓτ (ε − α)}. This indicates that θ̃∗ is a minimizer of L(θ). Notice that ∇2L(θ̃∗) =

Eε∼F ℓ
′′
τ (ε − ατ )S is positive definite as Eε∼F ℓ

′′
τ (ε − ατ ) ≥ c2Pε∼F (|ε − ατ | ≤ c3τ) > 0. This

fact and the convexity of L(θ) imply that θ̃∗ is the unique minimizer of L(θ). Then by

definition, θ∗
τ = θ̃∗ = (β∗

0 + ατ ,β
∗⊺)⊺.
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A.2.2 Proof of Theorem 2.2.1

Given r > 0, define the local parameter set Θr = {θ ∈ Rd+1 : ∥θ − θ∗
τ∥S ≤ r}. For

any prespecified r > 0, we can always find an intermediate estimator θ̂τ,η = θ∗
τ + η(θ̂τ − θ∗

τ )

for some η ∈ [0, 1] such that ∥θ̂τ,η − θ∗
τ∥S ≤ r. In fact, if θ̂τ ∈ Θr, we simply take η = 1;

otherwise, we let η = r/∥θ̂τ − θ∗
τ∥S such that ∥θ̂τ,η − θ∗

τ∥S = r. As Lτ (θ) is convex in θ, by

Lemma F.2 in Fan et al. (2018), we have

〈
∇Lτ (θ̂τ,η)−∇Lτ (θ

∗
τ ) , θ̂τ,η − θ∗

τ

〉
≤ η

〈
∇Lτ (θ̂τ )−∇Lτ (θ

∗
τ ) , θ̂τ − θ∗

τ

〉
= η

〈
−∇Lτ (θ

∗
τ ) , θ̂τ − θ∗

τ

〉
≤
∥∥S−1/2∇Lτ (θ

∗
τ )
∥∥
2

∥∥∥θ̂τ,η − θ∗
τ

∥∥∥
S

(A.2.1)

The proof then boils down to establish an upper bound on

∥S−1/2∇Lτ (θ
∗
τ )∥2 =

∥∥∥∥ 1n
n∑

i=1

ℓ′τ (εi − ατ )zi

∥∥∥∥
2

(A.2.2)

and a lower bound for

⟨∇Lτ (θ)−∇Lτ (θ
∗
τ ),θ − θ∗

τ ⟩/∥θ − θ∗
τ∥2S (A.2.3)

uniformly over θ ∈ Θr, where zi := S−1/2x̄i are isotropic random vectors.

First we bound ( A.2.2) from above. Let ξi = ℓ′τ (εi − ατ ), i = 1, . . . , n, be i.i.d. random

variables from ξ := ℓ′τ (ε − ατ ). Since ατ is the unique minimizer of α 7→ Eε∼F{ℓτ (ε − α)},

we have Eε∼F{ℓ′τ (ε− ατ )} = 0. We first decompose ∥S−1/2∇Lτ (θ
∗
τ )∥2 into two parts:

∥S−1/2∇Lτ (θ
∗
τ )∥2 ≤

∥∥∥∥ 1n
n∑

i=1

{ξizi − E(ξizi)}
∥∥∥∥
2

+ ∥E(ξz)∥2.
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Under the error-contamination model that ε|x ∼ (1 − ϵ)F + ϵGx, noticing that F is inde-

pendent of x, we have

∥E(ξz)∥2 = ∥E {E [(ξz)|x]}∥2

=
∥∥E{z(1− ϵ)Eε|x∼F [ℓ

′
τ (ε− ατ )|x] + zϵEε|x∼Gx [ℓ

′
τ (ε− ατ )|x]

}∥∥
2

=
∥∥E{zϵEε|x∼Gx [ℓ

′
τ (ε− ατ )|x]

}∥∥
2

= sup
u∈Sd

E
{
u⊺zϵEε|x∼Gx [ℓ

′
τ (ε− ατ )|x]

}
≤ ϵc1τ sup

u∈Sd
E|u⊺z| ≤ ϵc1τ sup

u∈Sd

(
E|u⊺z|2

)1/2
= ϵc1τ.

Denote γ := 1
n

∑n
i=1{ξizi − E(ξizi)}. To bound ∥γ∥2 = supu∈Sd u

⊺γ, by a standard cov-

ering argument, we can find a (1/2)-net N1/2 of Sd with
∣∣N1/2

∣∣ ≤ 5d+1 such that ∥γ∥2 ≤

2maxu∈N1/2
u⊺γ. For every u ∈ Sd, note that u⊺γ =

∑n
i=1 (ξiu

⊺zi − Eξiu⊺zi), and ξiu
⊺zi

are i.i.d. sub-Gaussian variables with parameter c1τνx. Then by Hoeffding’s inequality and

taking a union bound, we get

P (∥γ∥2 > δ) ≤ exp

{
(d+ 1) log 5− C

n(δ/2)2

(c1τνx)2

}
,

where C is some absolute constant. Combing the bound for ∥E(ξz)∥2, we obtain that with

probability at least 1− e−t,

∥S−1/2∇Lτ (θ
∗
τ )∥2 ≤ Cνxc1τ

(√
d+ t

n
+ ϵ

)
, (A.2.4)

for some (new) absolute constant C. Here, we use the fact that 1 = supu∈Sd(E|u⊺z|2)1/2 ≤

C0νx for some universal constant C0.

Next we prove that the restricted strong convexity property ( A.2.3) holds with high

probability. For any r > 0, define the event

Ei = {|εi − ατ | ≤ c3τ/2} ∩
{
|⟨x̄i,θ − θ∗

τ ⟩|
∥θ − θ∗

τ∥S
≤ c3τ

2r

}
,
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where c3 > 0 is as in Condition 2.2.1. By Proposition 2.2.1 and the convexity of ℓτ , we have

⟨∇Lτ (θ)−∇Lτ (θ
∗
τ ),θ − θ∗

τ ⟩ =
1

n

n∑
i=1

{ℓ′τ (yi − x̄⊺
i θ

∗
τ )− ℓ′τ (yi − x̄⊺

i θ)}x̄
⊺
i (θ − θ∗

τ )

≥ 1

n

n∑
i=1

{
ℓ′τ (εi − ατ )− ℓ′τ (εi − ατ − x̄⊺

i (θ − θ∗
τ ))}x̄

⊺
i (θ − θ∗

τ )IEi .

On Ei, note that |yi − x̄⊺
i θ| ≤ |εi − ατ | + |x̄⊺

i (θ − θ∗
τ )| ≤ c3τ for all θ ∈ Θr. Since ℓ′′τ (u) =

ℓ′′(u/τ) ≥ c2 for |u| ≤ c3τ , it follows that

⟨∇Lτ (θ)−∇Lτ (θ
∗
τ ),θ − θ∗

τ ⟩ ≥
c2
n

n∑
i=1

⟨x̄i,θ − θ∗
τ ⟩2IEi

for all θ ∈ Θr. To smooth IEi as a function of θ, for any R > 0, we define

φR(u) =



u2 if |u| ≤ R
2
,

(u−R)2 if R
2
≤ u ≤ R,

(u+R)2 if −R ≤ u ≤ −R
2
,

0 if |u| > R,

and ψR(u) = I(|u| ≤ R).

Under this notation, since φR(u) ≤ u2I(|u| ≤ R), we have

⟨∇Lτ (θ)−∇Lτ (θ
∗
τ ),θ − θ∗

τ ⟩

≥ c2g(θ) :=
c2
n

n∑
i=1

φc3τ∥δ∥S/(2r)(⟨x̄i, δ⟩)ψc3τ/2(εi − ατ ) (A.2.5)

for δ = θ − θ∗
τ and θ ∈ Θr. Note that φR satisfies φR(u) ≥ u2I(|u| ≤ R/2). Therefore,

Eg(θ) ≥ E
{
⟨x̄, δ⟩2I{|⟨x̄, δ⟩| ≤ c3τ∥δ∥S/(4r)}ψc3τ/2(ε− ατ )

}
≥ (1− ϵ)Pε∼F (|ε− ατ | ≤ c3τ/2) · E⟨x̄, δ⟩2I{|⟨x̄, δ⟩| ≤ c3τ∥δ∥S/(4r)} − ϵE⟨x̄, δ⟩2

≥ (1− ϵ)κτ · [E⟨x̄, δ⟩2 − E⟨x̄, δ⟩2I{|⟨x̄, δ⟩| > c3τ∥δ∥S/(4r)}]− ϵE⟨x̄, δ⟩2

≥ (1− ϵ)κτ ·
{
∥δ∥2S − (4r)2

(c3τ)2∥δ∥2S
E⟨x̄, δ⟩4

}
− ϵ∥δ∥2S.
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As z = S−1/2x̄ is a sub-Gaussian random vector with parameter νx, it holds E⟨x̄,u⟩4 =

E⟨z,S1/2u⟩4 ≤ C4
0ν

4
x∥u∥4S for some absolute constant C0, ∀u ∈ Rd+1. Substituting these

estimates into the above inequality yields

Eg(θ) ≥
{
(1− ϵ)κτ

[
1− C4

0ν
4
x

(
4r

c3τ

)2]
− ϵ

}
∥θ − θ∗

τ∥2S ≥ 1

2
(1− ϵ)κτ∥θ − θ∗

τ∥2S (A.2.6)

for all θ ∈ Θr as long as τ ≥ (8C2
0ν

2
x/c3)r and ϵ/(1 − ϵ) ≤ κτ/4. For the stochastic term

g(θ)− Eg(θ), we define

∆r := sup
θ∈Θr

|g(θ)− Eg(θ)|
∥θ − θ∗

τ∥2S
(A.2.7)

Notice that ∆r can be written in the form of

∆r = sup
θ∈Θr

∣∣∣∣∣ 1n
n∑

i=1

fθ(x̄i, εi)− Efθ(x̄i, εi)

∣∣∣∣∣ ,
with

fθ(x̄i, εi) = φc3τ/(2r) (⟨x̄i, δ/∥δ∥S⟩)ψc3τ/2(εi − ατ ),

where δ = θ−θ∗
τ and we use the fact that (1/c2)φR/c(u) = φR(u/c). As fθ(x̄i, εi) is bounded

by (c3τ/2r)
2, by McDiarmid’s Inequality, we have

P(∆r − E∆r > t) ≤ exp

{
− 2nt2

(c3τ/2r)4

}
. (A.2.8)

For the bound of E∆r, we can introduce independent Rademacher random variables ẽ1, . . . , ẽn

and apply the symmetrization inequality to get

E∆r ≤ 2E

[
sup
θ∈Θr

∣∣∣∣∣ 1n
n∑

i=1

ẽifθ(x̄i, εi)

∣∣∣∣∣
]
.
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To further bound E∆r, we rewrite fθ(x̄i, εi) = φc3τ/(2r) (⟨x̄i, δ/∥δ∥S⟩ · χi) with χi = ψc3τ/2(εi−

ατ ) ∈ {0, 1}. Since φR is R-Lipschitz, by Talagrand’s contraction principle (see, e.g. Theo-

rem 4.12 in Ledoux and Talagrand (2013)), we have

E∆r ≤ 2
c3τ

r
E

[
sup
θ∈Θr

∣∣∣∣∣ 1n
n∑

i=1

ẽi⟨x̄i, δ/∥δ∥S⟩χi

∣∣∣∣∣
]

≤ 2
c3τ

r
E
∥∥∥∥ 1n

n∑
i=1

ẽiχizi

∥∥∥∥
2

≤ 2
c3τ

r

{
E
(
1

n

n∑
i=1

ẽiχizi

)⊺(
1

n

n∑
i=1

ẽiχizi

)}1/2

≤ 2
c3τ

r

(
E

1

n2

n∑
i=1

z⊺
i zi

)1/2

= 2
c3τ

r

√
d+ 1

n

Combing the above bound of E∆r with (A.2.8), we get that with probability at least 1−e−t,

∆r ≤ 2
c3τ

r

√
d+ 1

n
+

c23τ
2

4
√
2r2

√
t

n
. (A.2.9)

Combining ( A.2.5)–( A.2.7) and ( A.2.9), we conclude that with probability at least 1−e−t,

uniformly for all θ ∈ Θr, we have

⟨∇Lτ (θ)−∇Lτ (θ
∗
τ ),θ − θ∗

τ ⟩ ≥
c2
4
(1− ϵ)κτ∥θ − θ∗

τ∥2S (A.2.10)

for n ≥ 64.5(1− ϵ)−2κ−2
τ [(c3τ/r)

2 ∨ (c3τ/r)
4] (d+ t+ 1).

With the probabilistic bounds ( A.2.4) and ( A.2.10) in hand, we can plug them in the

basic inequality ( A.2.1) to get that with probability at least 1− 2e−t,∥∥∥θ̂τ,η − θ∗
τ

∥∥∥
S
≤ 4Cνxc1τ

c2(1− ϵ)κτ

(√
d+ t

n
+ ϵ

)
:= r0,

as long as τ ≥ (8C2
0ν

2
x/c3)r and ϵ/(1 − ϵ) ≤ κτ/4 and n ≥ 64.5(1 − ϵ)−2κ−2

τ [(c3τ/r)
2 ∨

(c3τ/r)
4](d + t + 1). Pick r = c3τ/(8C

2
0ν

2
x), then for ϵ < cκτ and n ≥ C ′κ−2

τ (d + t), with

c, C ′ > 0 satisfying that c < 1/5, C ′ > 8 · 64.5[(8C2
0ν

2
x)

2 ∨ (8C2
0ν

2
x)

4] (such that ϵ/(1 − ϵ) ≤

κτ/(5 − κτ ) ≤ κτ/4 and n ≥ 64.5(1 − ϵ)−2κ−2
τ [(c3τ/r)

2 ∨ (c3τ/r)
4](d + t + 1)), we get that

with probability at least 1− 2e−t,∥∥∥θ̂τ,η − θ∗
τ

∥∥∥
S
≤ r0 ≤

4Cνxc1τ

c2(1− ϵ)

(√
1

C ′ + c

)
< r,

for some sufficiently large C ′ and some sufficiently small c, both depending only on (νx, c1, c2, c3).

This implies that θ̂τ ∈ Θr and thus θ̂τ,η = θ̂τ , which gives us that ∥θ̂τ − θ∗
τ∥S ≤ r0 with

probability at least 1− 2e−t. This proves the stated result.
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A.2.3 Proof of Theorem 2.2.2

We only show the second term ϵ in the lower bound. We use Le Cam’s two point test-

ing method and try to construct two distributions P1(x, y) = P (θ∗
1, ϵ, F1, Gx,1), P2(x, y) =

P (θ∗
2, ϵ, F2, Gx,2) with ∥θ∗

1 − θ∗
2∥S ≍ ϵ and P1(y|x) = P2(y|x) with a positive probabil-

ity. First, we choose θ∗
1,θ

∗
2 such that ∥θ∗

1 − θ∗
2∥S = ϵ, and F1 = F2 = N (0, 1). Then

Pi(y|x) = (1− ϵ)N (x̄⊺θ∗
i , 1)+ ϵGx,i for i = 1, 2 and some Gx,1, Gx,2 to be specified later. We

define an event

Ax :=

{
∥x̄⊺(θ∗

1 − θ∗
2)∥2 ≤

2ϵ

1− ϵ

}
.

By Pinsker’s inequality, on this event Ax, we always have

TV(N (x̄⊺θ∗
1, 1),N (x̄⊺θ∗

2, 1)) ≤
√

1

2
KL(N (x̄⊺θ∗

1, 1)||N (x̄⊺θ∗
2, 1))

=

√
1

4
∥x̄⊺(θ∗

1 − θ∗
2)∥

2
2 ≤

ϵ

1− ϵ
.

Then by the same argument in the proof of Theorem 5.1 in Chen et al. (2018), we know

there exists two distributions Gx,1, Gx,2 (conditional on x) such that

(1− ϵ)N (x̄⊺θ∗
1, 1) + ϵGx,1 = (1− ϵ)N (x̄⊺θ∗

2, 1) + ϵGx,2.

That is P1(y|x) = P2(y|x) on the event Ax. Therefore, we can get

inf
θ̂

sup
θ∗∈Rd+1

sup
P (x,y)∈P

EP (x,y)∥θ̂ − θ∗∥S

≥ 1

2
inf
θ̂

(
EP1(x,y)∥θ̂ − θ∗

1∥S + EP2(x,y)∥θ̂ − θ∗
2∥S
)

≥ 1

2
inf
θ̂
Ex

[
I(Ax) ·

(
EP1(y|x)∥θ̂ − θ∗

1∥S + EP2(y|x)∥θ̂ − θ∗
2∥S
)]

≥ 1

2
ExI(Ax) ∥θ∗

1 − θ∗
2∥S =

1

2
∥θ∗

1 − θ∗
2∥S P(Ax)

≥ 1

2
∥θ∗

1 − θ∗
2∥S

(
1− E ∥x̄⊺(θ∗

1 − θ∗
2)∥

2
2

4ϵ2/(1− ϵ)2

)

=
1

2
∥θ∗

1 − θ∗
2∥S

(
1− ∥θ∗

1 − θ∗
2∥

2
S

4ϵ2/(1− ϵ)2

)
=
ϵ

2

(
1− (1− ϵ)2

4

)
≳ ϵ.

The lower bound for ℓ2 estimation error of β∗ can be proved in a similar manner, by choosing

θ∗
1 = (0,β∗

1
⊺)⊺,θ∗

2 = (0,β∗
2
⊺)⊺.
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A.2.4 Proof of Theorem 2.3.1

We introduce the following lemma, which will lead to the result of Theorem 2.3.1 imme-

diately and will be also used in other proofs.

Lemma A.2.1. Under the same condition of Theorem 2.3.1, for any r > 0, we have

sup
θ∈Θr

∥∥S−1/2 {∇Lτ (θ)−∇Lτ (θ
∗
τ )− Eℓ′′τ (ε− ατ )x̄x̄

⊺(θ − θ∗
τ )}
∥∥
2
≤ C3

(
r2 + ϵr + r

√
d+ t

n

)
(A.2.11)

with probability at least 1 − e−t, as long as n ≥ C4(d + t) and t ≥ 1/2, where Θr = {θ ∈

Rd+1 : ∥θ − θ∗
τ∥S ≤ r} and C3, C4 are some constants depending only on (c4, νx, CF , L, τ).

Let θ = θ̂τ in ( A.2.11) (note that∇Lτ (θ̂τ ) = 0) and denote r0 as the bound of ∥θ̂τ−θ∗
τ∥S

in (2.2.4) of Theorem 2.2.1, then we have∥∥∥∥∥S−1/2

{
1

n

n∑
i=1

ℓ′τ (εi − ατ )x̄i − [Eℓ′′τ (ε− ατ )x̄x̄
⊺] (θ̂τ − θ∗

τ )

}∥∥∥∥∥
2

≤ C3

(
r20 + ϵr0 + r0

√
d+ t

n

)

with probabilty at least 1− 3e−t. It is easy to check that∥∥∥cFS1/2(θ̂τ − θ∗
τ )− S−1/2 [Eℓ′′τ (ε− ατ )x̄x̄

⊺] (θ̂τ − θ∗
τ )
∥∥∥
2

= ϵ
∥∥∥S−1/2

[
E
{
Eε|x∼F ℓ

′′
τ (ε− ατ )x̄x̄

⊺ − Eε|x∼Gxℓ
′′
τ (ε− ατ )x̄x̄

⊺
}]

(θ̂τ − θ∗
τ )
∥∥∥
2

≤ 2c4ϵ sup
u∈Sd

[
E
∥∥u⊺S−1/2x̄x̄⊺S−1/2

∥∥
2

] ∥∥∥S1/2(θ̂τ − θ∗
τ )
∥∥∥
2

= 2c4ϵ sup
u∈Sd

sup
v∈Sd

[E |u⊺zz⊺v|]
∥∥∥S1/2(θ̂τ − θ∗

τ )
∥∥∥
2

≤ 2c4ϵ sup
u∈Sd

sup
v∈Sd

(
E |u⊺z|2 E |v⊺z|2

)1/2 ∥θ̂τ − θ∗
τ∥S

≤ 2c4ϵ∥θ̂τ − θ∗
τ∥S = 2c4ϵr0.

(A.2.12)

Here, we use the fact that |ℓ′′(u)| ≤ c4 for any u ∈ R (c4 = 1 for Huber’s loss). As

r0 ≤ C(
√

d+t
n

+ ϵ) with probability at least 1− 2e−t by Theorem 2.2.1 for some constant C

depending only on (νx, κτ , c1, c2, c3), we obtain that (2.3.1) holds with probability at least

1− 3e−t.
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A.2.5 Proof of Lemma A.2.1

Denote B(θ) := S−1/2 {∇Lτ (θ)−∇Lτ (θ
∗
τ )− Eℓ′′τ (ε− ατ )x̄x̄

⊺(θ − θ∗
τ )}. Our idea is to

bound ∥EB(θ)∥2 and ∥B(θ)− EB(θ)∥2 uniformly for θ ∈ Θr.

Step 1: Bound supθ∈Θr
∥EB(θ)∥2. Standard calculation shows that

E∇Lτ (θ)− E∇Lτ (θ
∗
τ ) = E {[ℓ′τ (ε− ατ + x̄⊺(θ∗

τ − θ))− ℓ′τ (ε− ατ )] (−x̄)}

= E
∫ 1

0

ℓ′′τ (ε− ατ + tx̄⊺(θ∗
τ − θ))x̄x̄⊺(θ − θ∗

τ ) dt.

Therefore,

∥EB(θ)∥2 = sup
u∈Sd

E
∫ 1

0

[ℓ′′τ (ε− ατ + tx̄⊺(θ∗
τ − θ))− ℓ′′τ (ε− ατ )]u

⊺S−1/2x̄x̄⊺(θ − θ∗
τ ) dt

Under Conditions 2.3.1 (i), ℓ′′ is L-Lipschitz, and thus ℓ′′τ is L/τ -Lipschitz, then we have

∥EB(θ)∥2 ≤ (L/τ) sup
u∈Sd

E|u⊺S−1/2x̄| · |x̄⊺(θ − θ∗
τ )|2

≤ (L/τ) sup
u∈Sd

E|u⊺z| · |z⊺S1/2(θ − θ∗
τ )|2

≤ (L/τ) sup
u∈Sd

(
E|u⊺z|2 · E|z⊺S1/2(θ − θ∗

τ )|4
)1/2

≤ (L/τ) sup
u∈Sd

(
∥u∥22 · C4

0ν
4
x∥S1/2(θ − θ∗

τ )∥42
)1/2

≤ (L/τ)C2
0ν

2
x∥θ − θ∗

τ∥2S ≤ (L/τ)C2
0ν

2
xr

2, ∀θ ∈ Θr,

(A.2.13)

where we use the fact that z⊺v is sub-Gaussian with parameter νx∥v∥2 for any v ∈ Rd+1.

Under Conditions 2.3.1 (ii), ℓ is Huber’s loss, then ℓ′′τ (u) = I(|u| ≤ τ). Since |I(|ε−ατ+t∆| ≤

τ)− I(|ε−ατ | ≤ τ)| ≤ I(||ε−ατ | − τ | ≤ |∆|) for any t ∈ [0, 1] with ∆ := x̄⊺(θ−θ∗
τ ), we get

∥EB(θ)∥2 ≤ sup
u∈Sd

E
{
I(||ε− ατ | − τ | ≤ |∆|)|u⊺S−1/2x̄∆|

}
≤ sup

u∈Sd
(1− ϵ)E

{
Pε∼F (||ε− ατ | − τ | ≤ |∆|) |u⊺S−1/2x̄∆|

}
+ ϵE|u⊺S−1/2x̄∆|

≤ sup
u∈Sd

(1− ϵ)4CFE{|u⊺z|∆2}+ ϵE|u⊺z∆|
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Similar to the derivation in ( A.2.13), we have supu∈Sd E{|u⊺z|}∆2 ≤ C2
0ν

2
xr

2. Also, we

have supu∈Sd E|u⊺z∆| ≤ supu∈Sd

(
E |u⊺z|2 E

∣∣z⊺S1/2(θ − θ∗
τ )
∣∣2)1/2 ≤ ∥θ − θ∗

τ∥S ≤ r for any

θ ∈ Θr. Therefore, under Conditions 2.3.1 (ii), we get

∥EB(θ)∥2 ≤ 4CFC
2
0ν

2
xr

2 + ϵr, ∀θ ∈ Θr. (A.2.14)

Step 2: Bound supθ∈Θr
∥B(θ)−EB(θ)∥2. Denote δ := S1/2(θ−θ∗

τ ). Then we can write

B(θ)− EB(θ) = S−1/2 {∇Lτ (θ)−∇Lτ (θ
∗
τ )} − ES−1/2 {∇Lτ (θ)−∇Lτ (θ

∗
τ )} ,

with

S−1/2 {∇Lτ (θ)−∇Lτ (θ
∗
τ )} =

1

n

n∑
i=1

[ℓ′τ (εi − ατ − z⊺
i δ)− ℓ′τ (εi − ατ )] (−zi).

Denote B̄(δ) := B(θ)− EB(θ). Then B̄(0) = 0, EB̄(δ) = 0, ∀δ ∈ Rd+1, and

∇δB̄(δ) =
1

n

n∑
i=1

[ℓ′′τ (εi − ατ − z⊺
i δ)ziz

⊺
i − Eℓ′′τ (εi − ατ − z⊺

i δ)ziz
⊺
i ] .

In addition, for any u,v ∈ Sd and λ ∈ R, using the inequality |ez − 1− z| ≤ z2e|z|/2 for all

z ∈ R, we have

E exp
{
λ
√
nu⊺∇δB̄(δ)v

}
≤

n∏
i=1

[
1 +

c24λ
2

n
E
{
(u⊺ziv

⊺zi)
2 + (E |u⊺zv⊺z|)2

}
e
c4

|λ|√
n
(|u⊺ziv

⊺zi|+E|u⊺zv⊺z|)
]
,

where c4 is the bound of ℓ′′ in the Conditions 2.3.1 (i). For Huber’s loss, c4 = 1. Notice that

E|u⊺zv⊺z| ≤
(
E(u⊺z)2E(v⊺z)2

)1/2
= 1,

and

E(|u⊺zv⊺z|2 + 1)e
c4

|λ|√
n
(|u⊺zv⊺z|+1) ≤ e

c4
|λ|√
nE(|u⊺zv⊺z|2 + 1)e

c4
|λ|
2
√
n
(|u⊺z|2+|v⊺z|2)

≤ e
c4

|λ|√
n

{(
E|u⊺z|4ec4

|λ|√
n
|u⊺z|2 · E|v⊺z|4ec4

|λ|√
n
|v⊺z|2

)1/2
+
(
Eec4

|λ|√
n
|u⊺z|2 · Eec4

|λ|√
n
|v⊺z|2

)1/2}
≤ e

c4
|λ|√
n

{
sup
u∈Sd

E|u⊺z|4ec4
|λ|√
n
|u⊺z|2

+ sup
u∈Sd

Eec4
|λ|√
n
|u⊺z|2

}
.
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Since z is a sub-Gaussian vector with parameter νx, we know that for all λ such that

|λ| ≤
√
n/(2c4ν

2
x), we always have Eec4

|λ|√
n
|u⊺z|2 ≤ 2 and E|u⊺z|4ec4

|λ|√
n
|u⊺z|2 ≤ (E|u⊺z|8 ·

Ee2c4
|λ|√
n
|u⊺z|2

)1/2 ≤ (C8
0ν

8
x · 2)1/2 =

√
2C4

0ν
4
x for all u ∈ Sd with some universal constant C0.

Therefore, for all |λ| ≤
√
n/(2c4ν

2
x) and all θ ∈ Rd+1, we have

E exp
{
λ
√
nu⊺∇δB̄(δ)v

}
≤

n∏
i=1

[
1 +

c24λ
2

n
e
c4

|λ|√
n

(√
2C4

0ν
4
x + 2

)]
≤ exp

{
c24λ

2e1/(2ν
2
x)
(√

2C4
0ν

4
x + 2

)}
=: exp{C2λ2/2},

with C2 = 2c24e
1/(2ν2x)

(√
2C4

0ν
4
x + 2

)
. Then by Theorem A.3 in Spokoiny (2013), we have

P

(
sup

δ∈Bd+1(r)

∥
√
nB̄(δ)∥2 ≥ 6Cr

√
4(d+ 1) + 2t

)
≤ e−t, (A.2.15)

for any t ≥ 1/2 and any r > 0, if n ≥ 8c24ν
4
x(4(d+ 1) + 2t).

Combing ( A.2.13)-( A.2.15), we obtain that with probability at least 1− e−t,

sup
θ∈Θr

∥B(θ)∥2 ≤ C ′

(
r2 + ϵr + r

√
d+ t

n

)

with some constant C ′ = C ′(c4, νx, CF , L, τ).

A.2.6 Proof of Theorem 2.3.2

The key of the proof is the following lemma, which gives an bound of the difference

between ∇Lτ (θ) and ∇L♭
τ (θ) so that we can apply the results about ∇Lτ (θ), like local

strong convexity to the bootstrap case.

Lemma A.2.2. Let

ξ♭(θ) := S−1/2
(
∇L♭

τ (θ)−∇Lτ (θ)
)
=

1

n

n∑
i=1

eiℓ
′
τ (εi − ατ − x̄⊺

i (θ − θ∗
τ ))(−S−1/2x̄i),

(A.2.16)

83



then under Condition 2.2.1-2.3.2, with probability (over Dn) at least 1− 2e−t, the following

inequalities hold simultaneously.

(i)

P∗

(
sup
θ∈Θr

∥∥ξ♭(θ)− ξ♭(θ∗
τ )
∥∥
2
≤ Cr

√
d+ t

n

)
≥ 1− e−t (A.2.17)

(ii)

P∗

(
∥ξ♭(θ∗

τ )∥2 ≤ Cτ

√
d+ t

n

)
≥ 1− e−t (A.2.18)

(iii)

P∗

(
sup
θ∈Θr

∥ξ♭(θ)∥2 ≤ C(r + τ)

√
d+ t

n

)
≥ 1− 2e−t (A.2.19)

as long as n ≥ (d+ t)2, where C is a constant only depending on (c1, c4, νx, νe).

We first apply Lemma A.2.2 to prove Theorem 2.3.2, leaving the proof of Lemma A.2.2

at the end.

Proof of Theorem 2.3.2 (i): Recall that Θr = {θ ∈ Rd+1 : ∥θ − θ∗
τ∥S ≤ r}, where

θ∗
τ = argminθ Ex,ε∼F{ℓτ (y − x̄⊺θ)}. For any prespecified r > 0, we use a similar way as we

do in the proof of Theorem 2.2.1 to find an intermediate estimator θ̂♭
τ,η = θ∗

τ + η(θ̂♭
τ − θ∗

τ )

for some η ∈ [0, 1], such that ∥θ̂♭
τ,η − θ∗

τ∥S ≤ r. That is, if θ̂♭
τ ∈ Θr, we simply take η = 1;

otherwise, we let η = r/∥θ̂♭
τ − θ∗

τ∥S such that ∥θ̂♭
τ,η − θ∗

τ∥S = r. As L♭
τ (θ) is convex in θ (by

non-negativity of wi), applying Lemma F.2 in Fan et al. (2018), we have

〈
∇L♭

τ (θ̂
♭
τ,η)−∇L♭

τ (θ
∗
τ ) , θ̂

♭
τ,η − θ∗

τ

〉
≤ η

〈
∇L♭

τ (θ̂
♭
τ )−∇L♭

τ (θ
∗
τ ) , θ̂

♭
τ − θ∗

τ

〉
= η

〈
−∇L♭

τ (θ
∗
τ ) , θ̂

♭
τ − θ∗

τ

〉
≤
(∥∥S−1/2∇Lτ (θ

∗
τ )
∥∥
2
+
∥∥ξ♭(θ∗

τ )
∥∥
2

) ∥∥θ̂♭
τ,η − θ∗

τ

∥∥
S
.
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By ( A.2.4) and Lemma A.2.2 (ii), we obtain that with probability at least 1− 3e−t,

P∗

(〈
∇L♭

τ (θ̂
♭
τ,η)−∇L♭

τ (θ
∗
τ ) , θ̂

♭
τ,η − θ∗

τ

〉
≤ Cτ

(√
d+ t

n
+ ϵ

)∥∥θ̂♭
τ,η − θ∗

τ

∥∥
S

)
≥ 1− e−t,

where C is a constant only depending on (c1, c4, νx, νe). On the other hand, notice that〈
∇L♭

τ (θ̂
♭
τ,η)−∇L♭

τ (θ
∗
τ ) , θ̂

♭
τ,η − θ∗

τ

〉
≥
〈
∇Lτ (θ̂

♭
τ,η)−∇Lτ (θ

∗
τ ) , θ̂

♭
τ,η − θ∗

τ

〉
−
∥∥ξ♭(θ̂♭

τ,η)− ξ♭(θ∗
τ )
∥∥
2

∥∥θ̂♭
τ,η − θ∗

τ

∥∥
S
.

By the local strong convexity of Lτ (θ) ( A.2.10) and Lemma A.2.2 (i), we obtain that

with probability at least 1− 3e−t,

P∗

(〈
∇L♭

τ (θ̂
♭
τ,η)−∇L♭

τ (θ
∗
τ ) , θ̂

♭
τ,η − θ∗

τ

〉
≥ α

∥∥θ̂♭
τ,η − θ∗

τ

∥∥2
S
− C ′r

√
d+ t

n

∥∥θ̂♭
τ,η − θ∗

τ

∥∥
S

)
≥ 1− e−t,

(A.2.20)

where α := c2
4
(1− ϵ)κτ and C ′ is a constant only depending on (c1, c4, νx, νe). Combing the

above results together, we get that with probability at least 1− 4e−t,

P∗

(∥∥θ̂♭
τ,η − θ∗

τ

∥∥
S
≤ C ′′ τ + r

α

(√
d+ t

n
+ ϵ

))
≥ 1− 2e−t,

where C ′′ is a constant only depending on (c1, c4, νx, νe). Pick r = c3τ/(8C
2
0ν

2
x) as what we

do in the proof of Theorem 2.2.1, then for any sufficiently large n and small ϵ, we must have

r♭0 := C ′′(τ +r)α−1
(√

(d+ t)/n+ ϵ
)
< r, which implies that η = 1 and θ̂♭

τ,η = θ̂♭
τ , and thus,

the above bound r♭0 holds for θ̂♭
τ . This proves the stated result.

Proof of Theorem 2.3.2 (ii): Recall that ξ♭(θ) = S−1/2
(
∇L♭

τ (θ)−∇Lτ (θ)
)
as de-

fined in ( A.2.16). Then ξ♭(θ∗
τ ) = − 1

n

∑n
i=1 ℓ

′
τ (εi−ατ )eizi. Denote that S̃ = Eℓ′′(ε−ατ )x̄x̄

⊺.

We first show that with probability at least 1− 8e−t,

P∗
(∥∥∥S−1/2S̃(θ̂♭

τ − θ̂τ ) + ξ♭(θ∗
τ )
∥∥∥
2
≤ C

(
d+ t

n
+ ϵ2

))
≥ 1− 6e−t. (A.2.21)
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for some constant C independent of (d, t, n, ϵ). In fact, noting that ∇L♭
τ (θ̂

♭
τ ) = 0 and

∇Lτ (θ̂τ ) = 0, we have

ξ♭(θ̂τ ) = S−1/2
(
∇L♭

τ (θ̂τ )−∇Lτ (θ̂τ )
)
= S−1/2∇L♭

τ (θ̂τ ) = S−1/2
(
∇L♭

τ (θ̂τ )−∇L♭
τ (θ̂

♭
τ )
)
.

Therefore, ∥∥∥S−1/2S̃(θ̂♭
τ − θ̂τ ) + ξ♭(θ∗

τ )
∥∥∥
2

≤
∥∥∥S−1/2

{
S̃(θ̂♭

τ − θ̂τ ) +∇L♭
τ (θ̂τ )−∇L♭

τ (θ̂
♭
τ )
}∥∥∥

2
+
∥∥ξ♭(θ̂τ )− ξ♭(θ∗

τ )
∥∥
2

≤
∥∥∥S−1/2

{
S̃(θ̂♭

τ − θ̂τ ) +∇Lτ (θ̂τ )−∇Lτ (θ̂
♭
τ )
}∥∥∥

2

+
{∥∥ξ♭(θ̂τ )− ξ♭(θ∗

τ )
∥∥
2
+
∥∥ξ♭(θ̂♭

τ )− ξ♭(θ̂τ )
∥∥
2

}
:=Γ1 + Γ2.

Denote that ∆(θ) := ∥S−1/2{S̃(θ − θ∗
τ ) + ∇Lτ (θ) − ∇Lτ (θ

∗
τ )}∥2. Then clearly, we have

Γ1 ≤ ∆(θ̂♭
τ ) + ∆(θ̂τ ). By Lemma A.2.1 ( A.2.11), we know that with probability at least

1− e−t,

sup
θ∈Θr

∆(θ) ≤ C3

(
r2 + ϵr + r

√
d+ t

n

)

Then using the bound of ∥θ̂τ − θ∗
τ∥S and ∥θ̂♭

τ − θ∗
τ∥S, given by Theorem 2.2.1 and 2.3.2 (i),

we have

P∗
(
Γ1 ≤ C ′

(
d+ t

n
+ ϵ2

))
≥ 1− 3e−t

with probability at least 1− 6e−t, for some constant C ′ independent of (d, t, n, ϵ).

As for Γ2, by Triangle inequality, we have Γ2 ≤ 2
∥∥ξ♭(θ̂τ )− ξ♭(θ∗

τ )
∥∥
2
+
∥∥ξ♭(θ̂♭

τ )− ξ♭(θ∗
τ )
∥∥
2
.

Then by applying Lemma A.2.2 (i), with r = max{r0, r♭0} in ( A.2.17), where r0, r
♭
0 are the

bounds of ∥θ̂τ − θ∗
τ∥S and ∥θ̂♭

τ − θ∗
τ∥S, given respectively by Theorem 2.2.1 and Theorem

2.3.2 (i), we have

P∗
(
Γ2 ≤ C ′′

(
d+ t

n
+ ϵ2

))
≥ 1− 3e−t
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with probability at least 1− 8e−t, for some constant C ′′ independent of (d, t, n, ϵ). Combing

the above bounds for Γ1 and Γ2, we have shown ( A.2.21). Comparing ( A.2.21) and the

desired result (2.3.3), it suffices to show that with probability at least 1− 6e−t,

P∗
(∥∥∥S−1/2

(
S̃− cFS

)
(θ̂♭

τ − θ̂τ )
∥∥∥
2
≤ C

(
d+ t

n
+ ϵ2

))
≥ 1− 2e−t

In fact, by a exact same argument as ( A.2.12) in the proof of Theorem 2.3.1 (just replacing

θ̂τ − θ∗
τ by θ̂♭

τ − θ̂τ ), we can get∥∥∥S−1/2
(
S̃− cFS

)
(θ̂♭

τ − θ̂τ )
∥∥∥
2
≤ 2c4ϵ∥θ̂♭

τ − θ̂τ∥S.

Notice that ∥θ̂♭
τ − θ̂τ∥S ≤ ∥θ̂♭

τ − θ∗
τ∥S + ∥θ̂♭

τ − θ∗
τ∥S ≲

√
(d+ t)/n+ ϵ with high probability.

We are done.

A.2.7 Proof of Lemma A.2.2

(i) Denote B̄♭(δ) := ξ♭(θ)− ξ♭(θ∗
τ ) with δ := S1/2(θ − θ∗

τ ). Then B̄
♭(0) = 0, E∗B̄♭(δ) =

0,∀δ ∈ Rd+1, where E∗(·) = E(·|Dn). It is easy to check that

∇δB̄
♭(δ) =

1

n

n∑
i=1

eiℓ
′′
τ (εi − ατ − z⊺

i δ)ziz
⊺
i .

By the sub-Gaussian property of {ei}ni=1, we know that there exists a universal constant C0

such that for any u,v ∈ Sd and λ ∈ R,

E∗ exp
{
λ
√
nu⊺∇δB̄

♭(δ)v
}

≤
n∏

i=1

exp

{
c24λ

2

n
C2

0ν
2
e (u

⊺zi)
2(v⊺zi)

2

}
≤ exp{C2M4(z)λ

2/2},

where C = c4C0νe, M4(z) := supu∈Sd
1
n

∑n
i=1(u

⊺zi)
4. Then by a conditional version of

Theorem A.3 in Spokoiny (2013), we have

P∗
(

sup
δ∈Bd+1(r)

∥
√
nB̄♭(δ)∥2 ≥ 6C

√
M4(z)r

√
4(d+ 1) + 2t

)
≤ e−t, (A.2.22)

for any t ≥ 1/2. Then it remains to show that M4(z) ≤ C ′ν4x with probability at least

1 − e−t for some absolute constant C ′. It is easy to check that ( 1
n

∑n
i=1(u

⊺zi)
4)1/4 ≤
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( 1
n

∑n
i=1(v

⊺zi)
4)1/4 + ∥u − v∥2(M4(z))

1/4 for any u,v ∈ Sd. Therefore, if we take a (1/2)

-net N1/2 of Sd with
∣∣N1/2

∣∣ ≤ 5d+1, we will get

M4(z) ≤ 24 max
u∈N1/2

1

n

n∑
i=1

(u⊺zi)
4.

As z is a sub-Gaussian vector with parameter νx, we know supu∈Sd E(u⊺z)4 ≤ C4
0ν

4
x and

E exp

{
1

4C2
0ν

2
x

|(u⊺z)4 − E(u⊺z)4|1/2
}

≤ E exp

{
1

4C2
0ν

2
x

[
(u⊺z)2 + (E(u⊺z)4)1/2

]}
≤ e1/4

(
E exp

{
(u⊺z)2

ν2x

})1/4

≤ (2e)1/4 ≤ 2,

assuming that C0 ≥ 1. This implies that ∥(u⊺z)4 − E(u⊺z)4∥Ψ1/2
≤ 16C4

0ν
4
x for any u ∈ Sd,

where the Ψ1/2-norm is defined as ∥Y ∥Ψr = inf {C > 0 : E exp(|Y |/C)r ≤ 2}. Then by (3.6)

of Adamczak et al. (2011) and taking a union bound, we obtain

P

(
max

u∈N1/2

1

n

n∑
i=1

[(u⊺zi)
4 − E(u⊺zi)

4] ≥ t

)
≤ exp

{
(d+ 1) log 5− cmin

[
nt2

b2
,

(
nt

b

)1/2
]}

,

where b := ∥(u⊺z)4 − E(u⊺z)4∥Ψ1/2
≤ 16C4

0ν
4
x and c is a univeral constant. This further

implies that with probability at least 1− 2e−t,

2−4M4(z) ≤ sup
u∈Sd

E(u⊺z)4 + c′ν4x

(√
d+ t

n
+

(d+ t)2

n

)
≤ c′′ν4x, (A.2.23)

for some (new) universal constant c′, c′′, as long as n ≥ (d+ t)2.

(ii) Noting that ξ♭(θ∗
τ ) =

1
n

∑n
i=1 eiℓ

′
τ (εi−ατ )(−zi) and ei is sub-Gaussian with parameter

νe, by Hoeffding’s inequality and a standard ϵ-net argument, we know

P∗

(
∥ξ♭(θ∗

τ )∥2 ≤ Cc1τνe
√
M2(z)

√
d+ t

n

)
≥ 1− e−t,

where C is some absolute constant and c1 is the bound of |ℓ′(·)| in Condition 2.2.1, and

M2(z) := supu∈Sd
1
n

∑n
i=1(u

⊺zi)
2. Then we just need to show that M2(z) ≤ C ′ν2x with

probability at least 1 − e−t for some absolute constant C ′. As z is a sub-Gaussian vector
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with parameter νx, we know that supu∈Sd E(u⊺z)2 ≤ C2
0ν

2
x and (u⊺z)2 is sub-exponential.

Then by Bernstein’s inequality and a standard ϵ-net argument, we get

P

(
max

u∈N1/2

1

n

n∑
i=1

[(u⊺zi)
2 − E(u⊺zi)

2] ≥ t

)
≤ exp

{
(d+ 1) log 5− cnmin

[
t2

ν4x
,
t

ν2x

]}
,

with some absolute constant c. Note that M2(z) ≤ 4maxu∈N1/2
n−1

∑n
i=1(u

⊺zi)
2. This

implies that with probability at least 1− e−t,

M2(z) ≤ 4 sup
u∈Sd

E(u⊺z)2 + c′ν2x

(√
d+ t

n
+
d+ t

n

)
≤ c′′ν2x,

for some (new) universal constant c′, c′′, as long as n ≥ (d+ t).

(iii) is a direct consequence of (i) and (ii).

A.2.8 Proof of Theorem 2.3.3

For any µ ∈ Rd, let λ = (0,µ⊺)⊺. Noting that µ⊺(β̂τ − β∗) = λ⊺(θ̂τ − θ∗
τ ) and µ⊺(β̂♭

τ −

β̂τ ) = λ⊺(θ̂♭
τ − θ̂τ ), it suffices to show that

sup
x∈R

∣∣∣P(λ⊺(θ̂τ − θ∗
τ ) ≤ x

)
− P∗

(
λ⊺(θ̂♭

τ − θ̂τ ) ≤ x
)∣∣∣ ≤ C

(
d+ t√
n

+
√
nϵ

)
+ 11e−t.

Define

Sn :=
1

n

n∑
i=1

1

cF
ℓ′τ (εi − ατ )λ

⊺S−1/2zi, S♭
n :=

1

n

n∑
i=1

1

cF
ℓ′τ (εi − ατ )λ

⊺S−1/2eizi

where cF = Eε∼F ℓ
′′
τ (ε− ατ ). By Theorem 2.3.1, we know∣∣∣λ⊺(θ̂τ − θ∗

τ )− Sn

∣∣∣ ≤ ∥∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥∥
2

· C2

(
d+ t

n
+ ϵ2

)
(A.2.24)

with probability at least 1 − 3e−t, for any sufficiently large n and small ϵ. Similarly, by

Theorem 2.3.2 (ii), we know

P∗
(∣∣∣λ⊺(θ̂♭

τ − θ̂τ )− S♭
n

∣∣∣ ≤ ∥∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥∥
2

· C♭
2

(
d+ t

n
+ ϵ2

))
≥ 1− 8e−t (A.2.25)

with probability at least 1− 8e−t, for any sufficiently large n and small ϵ.
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Denote Ui = cF
−1ℓ′τ (εi − ατ )λ

⊺S−1/2zi. As Sn is in a re-scaled form of a sum of i.i.d.

variables Ui, and

ρ := E|Ui − EUi|3 ≤ 23E|Ui|3 ≤ 23
(
C0c1τνx

∥∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥∥
2

)3

<∞ (A.2.26)

for some universal constant C0. Then by Berry-Esseen Theorem (see e.g. Tyurin (2011)),

we get

sup
x∈R

∣∣∣∣P(√
n

σ
(Sn − ESn) ≤ x

)
− Φ(x)

∣∣∣∣ ≤ ρ

σ3
√
n
, (A.2.27)

where Φ(·) is the CDF of standard normal distribution, and σ2 := Var(Ui). It is easy to

check that

EU2
i ≥ (1− ϵ)E

{
1

c2F
(λ⊺S−1/2z)2Eε|x∼F [(ℓ

′
τ (ε− ατ ))

2|x]
}

= (1− ϵ)σ2
F

∥∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥∥2
2

,

(A.2.28)

with σ2
F := Eε∼F{(ℓ′τ (ε− ατ ))

2}, and

|EUi| =
∣∣∣∣E{ 1

cF
λ⊺S−1/2z

(
(1− ϵ)Eε|x∼F [ℓ

′
τ (ε− ατ )|x] + ϵEε|x∼Gx [ℓ

′
τ (ε− ατ )|x]

)}∣∣∣∣
(∗)
=

∣∣∣∣E{ 1

cF
λ⊺S−1/2z

(
ϵEε|x∼Gx [ℓ

′
τ (ε− ατ )|x]

)}∣∣∣∣
≤ c1τϵ

(
E

1

c2F
(λ⊺S−1/2z)2

)1/2

= ϵc1τ

∥∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥∥
2

,

(A.2.29)

where (∗) follows from the fact that F is independent of x and Eε∼F ℓ
′
τ (ε−ατ ) = 0. Therefore,

one can check that for small enough ϵ (any ϵ ≤ c = c(c1, τ, cF , σF )), it holds

1

4
σ2
F

∥∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥∥2
2

≤ σ2 ≤ EU2
i ≤ c21τ

2

∥∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥∥2
2

. (A.2.30)

Then by ( A.2.26)-( A.2.30), we have

sup
x∈R

∣∣∣∣P (Sn ≤ x)− Φ

(√
n

σ
(x− EU1)

)∣∣∣∣ ≤ ρ

σ3
√
n
≤ C3

1√
n
, (A.2.31)
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where C3 = σ−3
F (4C0c1τνx)

3. Similarly, for S♭
n = 1

n

∑n
i=1 eiUi, let ρ̂ := 1

n

∑n
i=1 E∗|eiUi|3 =

E|e|3 1
n

∑n
i=1 |Ui|3 < ∞, and σ̂2 := 1

n

∑n
i=1 E∗|eiUi|2 = 1

n

∑n
i=1 U

2
i . Then by a conditional

version of Berry-Esseen Theorem, we get

sup
x∈R

∣∣∣∣P∗
(√

n

σ̂
S♭
n ≤ x

)
− Φ(x)

∣∣∣∣ ≤ ρ̂

σ̂3
√
n
, (A.2.32)

with probability 1. Then we use standard concentration inequality to show |ρ̂−E|ei|3E|Ui|3| ≲

1/
√
n and |σ̂2 − σ2| ≲ 1/

√
n+ ϵ, both with high probability. In fact, as z is a sub-Gaussian

vector with parameter νx, we know that Ui is sub-Gaussian with parameter νu := c1τνx∥λ̃∥2,

where λ̃⊺ := cF
−1λ⊺S−1/2. This implies E|Ui|3 ≤ (C0νu)

3, and

E exp

{
1

4C2
0ν

2
u

∣∣∣∣|Ui|3 − E|Ui|3
∣∣∣∣2/3
}

≤ E exp

{
1

4C2
0ν

2
u

[
|Ui|2 + (E|Ui|3)2/3

]}

≤ e1/4
(
E exp

{
U2
i

ν2u

})1/4

≤ (2e)1/4 ≤ 2,

assuming that C0 ≥ 1. This further implies that ∥|Ui|3 −E|Ui|3∥Ψ2/3
≤ (2C0νu)

3 for any u ∈

Sd, where the Ψ2/3-norm is defined as ∥Y ∥Ψr = inf {C > 0 : E exp(|Y |/C)r ≤ 2}(r = 2/3).

Then by (3.6) of Adamczak et al. (2011), we obtain

P

(∣∣∣∣∣ 1n
n∑

i=1

[|Ui|3 − E|Ui|3]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−cmin

[
nt2

b2
,

(
nt

b

)2/3
]}

,

where b = ∥|Ui|3 − E|Ui|3∥Ψ2/3
≤ (2C0νu)

3 and c is some universal constant. Therefore, we

obtain that with probability at least 1− 2e−t,

ρ̂ ≤ E|e1|3E|U1|3 + c′(C3
0ν

3
u)

(√
t

n
+
t3/2

n

)
≤ C ′ν3eν

3
u = C ′ν3e (c1τνx∥λ̃∥2)3 (A.2.33)

as long as n ≥ t2, where c′, C ′ are two absolute constants. Then we start to bound |σ̂2−σ2|.

Obviously, U2
i is sub-exponential with ∥U2

i − EU2
i ∥Ψ1 ≤ C∥U2

i ∥Ψ1 ≤ Cc21τ
2ν2x∥λ̃∥22 for some

universal constant C. Therefore, by Bernstein’s inequality,

P

(∣∣∣∣∣ 1n
n∑

i=1

[U2
i − EU2

i ]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−cnmin

[
t2

B2
,
t

B

]}
, (A.2.34)
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with some absolute constant c, and B = ∥U2
i − EU2

i ∥Ψ1 . Since |σ2 − EU2
1 | = |EU1|2 ≤

(ϵc1τ∥λ̃∥2)2 by ( A.2.29), we get that with probability at least 1− 2e−t,

|σ̂2 − σ2| ≤ c′(c1τ∥λ̃∥2)2(ν2x ∨ 1)2

(
ϵ2 +

√
t

n
+
t

n

)
≤ C4∥λ̃∥22

(
ϵ2 +

√
t

n

)
, (A.2.35)

as long as n ≥ t, where c′ is a universal constant, and C4 := 2c′c21τ
2(νx ∨ 1)2. Therefore, by

( A.2.30), ( A.2.33) and ( A.2.35), we get an upper bound of ρ̂ and a lower bound of σ̂ with

high probability, then we can bound the right side of ( A.2.32) and get

sup
x∈R

∣∣∣∣P∗ (S♭
n ≤ x

)
− Φ

(√
n

σ̂
x

)∣∣∣∣ ≤ C5
1√
n
, (A.2.36)

with probability at least 1−4e−t, where C5 is a constant only depending on (c1, τ, νx, νe, σF ).

At last, we introduce Lemma A.7 in Spokoiny et al. (2015) to bound the Kolmogorov distance

between two mean-zero normal distributions with variance σ2
1 and σ2

2:

sup
x∈R

∣∣∣∣Φ( x

σ1

)
− Φ

(
x

σ2

)∣∣∣∣ ≤ 1

2

∣∣∣∣σ2
1

σ2
2

− 1

∣∣∣∣ , (A.2.37)

if |σ2
1/σ

2
2−1| ≤ 1/2. By ( A.2.30) and ( A.2.35), we know |σ̂2/σ2−1| ≤ C6(ϵ

2+
√
t/n) ≤ 1/2,

for sufficiently large n and small ϵ, where C6 := 4C4/σ
2
F = 8c′c21τ

2(νx ∨ 1)2/σ2
F . Therefore,

we know that with probability at least 1− 2e−t

sup
x∈R

∣∣∣Φ(x
σ̂

)
− Φ

(x
σ

)∣∣∣ ≤ C6

(
ϵ2 +

√
t

n

)
. (A.2.38)

Combing the above results, we finally get that for any x ∈ R,

P
(
λ⊺(θ̂τ − θ∗

τ ) ≤ x
)

≤ P
(
Sn ≤ x+ C2∥λ̃∥2

(
d+ t

n
+ ϵ2

))
+ 3e−t (by ( A.2.24))

≤ Φ

(√
n

σ

(
x+ C2∥λ̃∥2

(
d+ t

n
+ ϵ2

)
− EU1

))
+
C3√
n
+ 3e−t (by ( A.2.31))

≤ Φ

(√
n

σ

(
x− C♭

2∥λ̃∥2
(
d+ t

n
+ ϵ2

)))
+
C3√
n
+ 3e−t

+

√
n√

2πσ

(
(C2 + C♭

2)∥λ̃∥2
(
d+ t

n
+ ϵ2

)
+ |EU1|

)
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where the last inequality is due to the anti-concentration inequality of standard normal:

|Φ(a)− Φ(b)| ≤ |b− a|/
√
2π. Since σ ≥ (σF/2)∥λ̃∥2 by ( A.2.30) and |EU1| ≤ ϵc1τ∥λ̃∥2 by

( A.2.29), we get

P
(
λ⊺(θ̂τ − θ∗

τ ) ≤ x
)

≤ Φ

(√
n

σ

(
x− C♭

2∥λ̃∥2
(
d+ t

n
+ ϵ2

)))
+
C3√
n
+ C ′

2

√
n

(
d+ t

n
+ ϵ

)
+ 3e−t

≤ Φ

(√
n

σ̂

(
x− C♭

2∥λ̃∥2
(
d+ t

n
+ ϵ2

)))
+
C3√
n
+ C ′

2

√
n

(
d+ t

n
+ ϵ

)
+ C6

(
ϵ2 +

√
t

n

)
+ 3e−t (w.p.≥ 1− 2e−t, by ( A.2.38))

≤ P∗
(
S♭
n ≤ x− C♭

2∥λ̃∥2
(
d+ t

n
+ ϵ2

))
+
C3 + C5√

n
+ C ′

2

√
n

(
d+ t

n
+ ϵ

)
+ C6

(
ϵ2 +

√
t

n

)
+ 3e−t (w.p.≥ 1− 6e−t, by ( A.2.36))

≤ P∗
(
λ⊺(θ̂♭

τ − θ̂τ ) ≤ x
)
+
C3 + C5√

n
+ C ′

2

√
n

(
d+ t

n
+ ϵ

)
+ C6

(
ϵ2 +

√
t

n

)
+ 11e−t (w.p.≥ 1− 14e−t, by ( A.2.25))

≤ P∗
(
λ⊺(θ̂♭

τ − θ̂τ ) ≤ x
)
+ C

(
d+ t√
n

+
√
nϵ

)
+ 11e−t (w.p.≥ 1− 14e−t),

for some constant C independent of (d, t, n, ϵ, x,λ). By a similar argument, we can show the

opposite way.

A.2.9 Proof of Theorem 2.3.4

By Theorem 2.3.3, we know there exists an event Et satisfying P(Et) ≥ 1− 14e−t, and on

this event Et, we have

sup
x∈R

∣∣∣P(β̂j − β∗
j ≤ x

)
− P∗

(
β̂♭
j − β̂j ≤ x

)∣∣∣ ≤ ∆t := C

(
d+ t√
n

+
√
nϵ

)
+ 11e−t.
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We first show that on this event Et, for any q ∈ (0, 1), we always have

cj(q −∆t) ≤ c♭j(q) ≤ cj(q +∆t). (A.2.39)

In fact, one can check that on the event Et,

P∗
(
β̂♭
j − β̂j ≤ cj(q +∆t)

)
≥ P

(
β̂j − β∗

j ≤ cj(q +∆t)
)
−∆t ≥ (q +∆t)−∆t = q.

Recall the definition of the q-quantile function c♭j(q), the above implies that cj(q+∆t) ≥ c♭j(q).

Similarly, for any δ > 0,

P∗
(
β̂♭
j − β̂j ≤ cj(q −∆t)− δ

)
≤ P

(
β̂j − β∗

j ≤ cj(q −∆t)− δ
)
+∆t < (q −∆t) + ∆t = q,

which implies that cj(q −∆t)− δ < c♭j(q), for any δ > 0, and thus, cj(q −∆t) ≤ c♭j(q). With

( A.2.39) in hand, we start to derive the bound of |P(β̂j − β∗
j ≤ c♭j(q))− q|. First, we have

P
(
β̂j − β∗

j ≤ c♭j(q)
)
− q ≥ P

(
β̂j − β∗

j ≤ cj(q −∆t)
)
− P(Ec

t )− q

≥ (q −∆t)− 14e−t − q = −∆t − 14e−t.

Similarly,

P
(
β̂j − β∗

j ≤ c♭j(q)
)
− q ≤ P

(
β̂j − β∗

j ≤ cj(q +∆t)
)
+ P(Ec

t )− q

≤ P
(
β̂j − β∗

j ≤ cj(q +∆t)− δ
)
+ L(δ) + P(Ec

t )− q

< (q +∆t) + L(δ) + 14e−t − q = ∆t + L(δ) + 14e−t, ∀δ > 0,

where L(δ) := supx∈R P
(∣∣∣β̂j − β∗

j − x
∣∣∣ ≤ δ

)
is the Lévy concentration function of the ran-

dom variable β̂j−β∗
j . Here, we introduce L(δ) just to avoid the case that the CDF of β̂j−β∗

j

is not continuous at the point cj(q+∆t). To prove the stated result in Theorem 2.3.4, it just

remains to properly bound L(δ). This is achievable as by Bahadur representation of β̂j − β∗
j

(see Theorem 2.3.1), it is close to Sn := 1
n

∑n
i=1 Ui with Ui = c−1

F ℓ′τ (εi−ατ )λ
⊺S−1/2zi, where

λ = (0, . . . , 0, 1, 0, . . . , 0)(the (j + 1)-th component is 1), as defined in the proof of Theorem

2.3.3. And thus it can be approximated by a re-scaled normal random variable and we can
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use the anti-concentration property of the normal distribution. Formally, by ( A.2.24) and

( A.2.31) in the proof of Theorem 2.3.3, for any x ∈ R, we have

P
(∣∣∣β̂j − β∗

j − x
∣∣∣ ≤ δ

)
≤ P

(
|Sn − x| ≤ δ + C2∥λ̃∥2

(
d+ t

n
+ ϵ2

))
+ 3e−t

≤ Φ

(√
n

σ

{
x− EU1 + δ + C2∥λ̃∥2

(
d+ t

n
+ ϵ2

)})
− Φ

(√
n

σ

{
x− EU1 − δ − C2∥λ̃∥2

(
d+ t

n
+ ϵ2

)})
+

2C3√
n
+ 3e−t

≤ 2
√
n√

2πσ
C2δ +

2
√
n√

2πσ
C2∥λ̃∥2

(
d+ t

n
+ ϵ2

)
+

2C3√
n
+ 3e−t,

where λ̃ := cF
−1S−1/2λ and σ2 := Var(U1). Since σ ≥ (σF/2)∥λ̃∥2 by ( A.2.30), where

σ2
F := Eε∼F [(ℓ

′
τ (ε− ατ ))

2], we then get

L(δ) ≤ 2
√
n√

2πσ
C2δ + C ′

(
d+ t√
n

+
√
nϵ2
)
+ 3e−t, (A.2.40)

where C ′ is a constant decided by C2, C3 and σF . Combing all the above results, we finally

obtain that for any q ∈ (0, 1),∣∣∣P(β̂j − β∗
j ≤ c♭j(q)

)
− q
∣∣∣ ≤ ∆t + inf

δ>0
L(δ) + 14e−t ≤ C

(
d+ t√
n

+
√
nϵ

)
+ 28e−t.
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Appendix B Supplement to Chapter 3

B.1 Proof of Theorem 3.2.1

For any r > 0, we can find an intermediate estimator θ̃τ,η = θ∗
τ + η(θ̃τ − θ∗

τ ) with some

η ∈ [0, 1] such that θ̃τ,η ∈ Θr := {θ ∈ Rd+1 : ∥θ − θ∗
τ∥S ≤ r}. In fact, if θ̃τ ∈ Θr, we may

pick η = 1 and θ̃τ,η = θ̃τ ; otherwise, let η = r/∥θ̃τ − θ∗
τ∥S and thus ∥θ̃τ,η − θ∗

τ∥S = r. As

L̃τ (θ) is convex (since L1,τ (θ) is convex), by Lemma F.2 in Fan et al. (2018), we have

〈
∇L̃τ (θ̃τ,η)−∇L̃τ (θ

∗
τ ) , θ̃τ,η − θ∗

τ

〉
≤ η

〈
∇L̃τ (θ̃τ )−∇L̃τ (θ

∗
τ ) , θ̃τ − θ∗

τ

〉
= η

〈
−∇L̃τ (θ

∗
τ ) , θ̃τ − θ∗

τ

〉
≤
∥∥∥S−1/2∇L̃τ (θ

∗
τ )
∥∥∥
2

∥∥∥θ̃τ,η − θ∗
τ

∥∥∥
S
.

To bound ∥S−1/2∇L̃τ (θ
∗
τ ) ∥2, we define BN(θ) and B1(θ) as follows:

BN(θ) := S−1/2 (∇LN,τ (θ)−∇LN,τ (θ
∗
τ ))− cFS

1/2(θ − θ∗
τ ), (B.1.1)

B1(θ) := S−1/2 (∇L1,τ (θ)−∇L1,τ (θ
∗
τ ))− cFS

1/2(θ − θ∗
τ ), (B.1.2)

where cF = Eε∼F ℓ
′′
τ (ε− ατ ). By ( A.2.11) and ( A.2.12), we have

sup
θ∈Θr

∥BN(θ)∥2 ≤ C ′
3r

(
r + ϵ+

√
d+ t

N

)
and sup

θ∈Θr

∥B1(θ)∥2 ≤ C ′
3r

(
r + ϵ+

√
d+ t

n

)
(B.1.3)

with probability at least 1 − 2e−t, as long as n ≥ C4(d + t) and t ≥ 1/2, where C ′
3, C4 are

some constants depending only on (c4, νx, CF , L, τ). Therefore, we can get∥∥∥S−1/2∇L̃τ (θ
∗
τ )
∥∥∥
2

=
∥∥S−1/2

(
∇L1,τ (θ

∗
τ )−∇L1,τ (θ̄) +∇LN,τ (θ̄)−∇LN,τ (θ

∗
τ ) +∇LN,τ (θ

∗
τ )
)∥∥

2

≤
∥∥B1(θ̄)

∥∥
2
+
∥∥BN(θ̄)

∥∥
2
+
∥∥S−1/2∇LN,τ (θ

∗
τ )
∥∥
2

≤ 2C ′
3r0

(
r0 + ϵ+

√
d+ t

n

)
+ r∗,

(B.1.4)
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on the events E0(r0) ∩ E∗(r∗), with probability at least 1− 2e−t. On the other hand, notice

that ∇L̃τ (θ̃τ,η) − ∇L̃τ (θ
∗
τ ) = ∇L1,τ (θ̃τ,η) − ∇L1,τ (θ

∗
τ ). Then by ( A.2.10), we know that

with probability at least 1− e−t,

inf
θ∈Θr

⟨∇L̃τ (θ)−∇L̃τ (θ
∗
τ ),θ − θ∗

τ ⟩ ≥
c2
4
(1− ϵ)κτ∥θ − θ∗

τ∥2S, (B.1.5)

as long as τ ≥ (8C2
0ν

2
x/c3)r and ϵ/(1 − ϵ) ≤ κτ/4 and n ≥ 64.5(1 − ϵ)−2κ−2

τ [(c3τ/r)
2 ∨

(c3τ/r)
4](d + t + 1). Pick r = c3τ/(8C

2
0ν

2
x), then for ϵ < cκτ and n ≥ C ′κ−2

τ (d + t),

where c, C ′ > 0 are two constants depending only on (νx, c3), we obtain that on the events

E0(r0) ∩ E∗(r∗),

∥∥θ̃τ,η − θ∗
τ

∥∥
S
≤ 4

c2(1− ϵ)κτ

[
2C ′

3r0

(
r0 + ϵ+

√
d+ t

n

)
+ r∗

]
:= r̃0 (B.1.6)

with probability at least 1− 3e−t. For r∗ ≲ r0 ≲
√

(d+ t)/n+ ϵ, we would get

r̃0 ≲

(√
d+ t

n
+ ϵ

)
r0 + r∗ ≲ r0 < r,

and thus, by the definition of θ̃τ,η, we must have θ̃τ,η = θ̃τ . This proves the first result. As

for the proof of second result, we observe that∥∥∥cFS1/2(θ̃τ − θ∗
τ )− S−1/2

(
∇L̃τ (θ̃τ )−∇L̃τ (θ

∗
τ )
)∥∥∥

2

=
∥∥∥cFS1/2(θ̃τ − θ∗

τ )− S−1/2
(
∇L1,τ (θ̃τ )−∇L1,τ (θ

∗
τ )
)∥∥∥

2
=
∥∥∥B1(θ̃τ )

∥∥∥
2
.

Also, using the fact that ∇L̃τ (θ̃τ ) = 0, we can get∥∥∥cFS1/2(θ̃τ − θ∗
τ ) + S−1/2∇LN,τ (θ

∗
τ )
∥∥∥
2

≤
∥∥∥cFS1/2(θ̃τ − θ∗

τ ) + S−1/2∇L̃τ (θ
∗
τ )
∥∥∥
2
+
∥∥∥S−1/2

(
∇L̃τ (θ

∗
τ )−∇LN,τ (θ

∗
τ )
)∥∥∥

2

≤
∥∥∥B1(θ̃τ )

∥∥∥
2
+
∥∥B1(θ̄)−BN(θ̄)

∥∥
2

≤ sup
θ∈Θr̃0

∥B1(θ)∥2 + sup
θ∈Θr0

∥B1(θ)∥2 + sup
θ∈Θr0

∥BN(θ)∥2

≲

(√
d+ t

n
+ ϵ

)
r0,

with the same probability, under the condition that r∗ ≲ r0 ≲
√

(d+ t)/n+ ϵ.
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B.2 Proof of Theorem 3.2.2

First, by Theorem 3.2.1, we obtain that on the event E0(r0) ∩ E∗(r∗), the estimator

θ̃
(1)
τ satisfies

∥θ̃(1)
τ − θ∗

τ∥S ≤ C

[(√
d+ t

n
+ ϵ

)
r0 + r∗

]
:= r1 (B.2.1)

and ∥∥∥∥cFS1/2(θ̃(1)
τ − θ∗

τ )−
1

N

N∑
i=1

ℓ′τ (εi − ατ )zi

∥∥∥∥
2

≤ C

(√
d+ t

n
+ ϵ

)
r0

with probability at least 1− 3e−t, where C is a constant independent of (N, n, d, ϵ, t). Then

for sufficiently large n and small ϵ, we have r∗ ≲ r1 ≲ r0 ≲
√

(d+ t)/n + ϵ. Also, ( B.2.1)

implies that θ̃
(1)
τ ∈ Θr1 with probability at least 1− 3e−t. Then again by Theorem 3.2.1, we

get that on the event E1(r1)∩E∗(r∗)(where E1(r1) := {θ̃(1)
τ ∈ Θr1}), the estimator θ̃

(2)
τ satisfies

∥θ̃(2)
τ − θ∗

τ∥S ≤ C

[(√
d+ t

n
+ ϵ

)
r1 + r∗

]
:= r2

and ∥∥∥∥cFS1/2(θ̃(2)
τ − θ∗

τ )−
1

N

N∑
i=1

ℓ′τ (εi − ατ )zi

∥∥∥∥
2

≤ C

(√
d+ t

n
+ ϵ

)
r1

with probability at least 1 − 3e−t. It is easy to see that r∗ ≲ r2 ≲ r0 ≲
√

(d+ t)/n + ϵ.

Therefore, by repeatedly using Theorem 3.2.1 at iteration k = 3, . . . , T , we finally get that

on the event ET−1(rT−1) ∩ E∗(r∗)(where ET−1(rT−1) := {θ̃(T−1)
τ ∈ ΘrT−1

}), the estimator

θ̃
(T )
τ satisfies

∥θ̃(T )
τ − θ∗

τ∥S ≤ C

[(√
d+ t

n
+ ϵ

)
rT−1 + r∗

]
:= rT (B.2.2)

and ∥∥∥∥cFS1/2(θ̃(T )
τ − θ∗

τ )−
1

N

N∑
i=1

ℓ′τ (εi − ατ )zi

∥∥∥∥
2

≤ C

(√
d+ t

n
+ ϵ

)
rT−1 (B.2.3)

with probability at least 1−3e−t. By induction, it is easy to check that rT = γT r0+C
1−γT

1−γ
r∗

with γ := C(
√

(d+ t)/n + ϵ). For T ≥ log(r∗/r0)/ log(C(
√

(d+ t)/n + ϵ)) + 1, we have

rT ≲ rT−1 ≲ r∗. Plugging this in ( B.2.2) and ( B.2.3), we show that the inequalities stated

in Theorem 3.2.2 hold with probability at least 1− 3Te−t by taking a union bound for each

iteration.
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B.3 Proof of Corollary 3.2.1

By Theorem 2.2.1, we can get that for the initial estimator θ̃
(0)
τ = θ̄ ∈ argminθ∈Rd+1 L1,τ (θ),

the event E0(r0) = {θ̄ ∈ Θr0} holds with probability at least 1−2e−t, with r0 ≲
√
(d+ t)/n+

ϵ. Also, by ( A.2.4), we get that the event E∗(r∗) = {∥S−1/2∇LN,τ (θ
∗
τ )∥2 ≤ r∗} holds with

probability at least 1−e−t, with r∗ ≲
√

(d+ t)/N+ ϵ. Then using the results from Theorem

3.2.2, we can immediately get (3.2.3) and (3.2.4).

B.4 Proof of Theorem 3.3.1

Similar to what we did in the proof of Theorem 2.3.2, we start by defining the following

key quantities which characterize the difference between the bootstrap losses and the original

losses (for L̃♭
τ (θ) and L♭

1,τ (θ), respectively):

ξ̃♭(θ) := S−1/2
(
∇L̃♭

τ (θ)−∇L̃τ (θ)
)

and ξ♭1(θ) := S−1/2
(
∇L♭

1,τ (θ)−∇L1,τ (θ)
)
.

By the definition of L̃♭
τ (θ), we know that ξ̃♭(θ) = ξ♭1(θ) for any θ ∈ Rd+1. Then applying

Lemma A.2.2 on ξ♭1(θ), we can get the following properties about L̃♭
τ (θ) hold with probability

at least 1− 2e−t:

P∗

(
sup
θ∈Θr

∥∥∥ξ̃♭(θ)− ξ̃♭(θ∗
τ )
∥∥∥
2
≤ Cr

√
d+ t

n

)
≥ 1− e−t, (B.4.1)

and

P∗

(
∥ξ̃♭(θ∗

τ )∥2 ≤ Cτ

√
d+ t

n

)
≥ 1− e−t, (B.4.2)

as long as n ≥ (d+ t)2, where C is a constant only depending on (c1, c4, νx, νe). Then we are

ready to prove the stated results in Theorem 3.3.1.

Proof of (3.3.4): We still first define an intermediate estimator for some pre-specified

r > 0: θ̃♭
τ,η = θ∗

τ +η(θ̃
♭
τ −θ∗

τ ) with η = min{r/∥θ̃♭
τ −θ∗

τ∥S, 1}. That is, if θ̃♭
τ ∈ Θr, then η = 1

and θ̃♭
τ,η = θ̃♭

τ ; otherwise, η = r/∥θ̃♭
τ − θ∗

τ∥S and ∥θ̃♭
τ,η − θ∗

τ∥S = r. Under this construction,
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we always have θ̃♭
τ,η ∈ Θr. As L̃♭

τ (θ) is convex (since each wi ≥ 0 and L♭
1,τ (θ) is convex), by

Lemma F.2 in Fan et al. (2018), we have

〈
∇L̃♭

τ (θ̃
♭
τ,η)−∇L̃♭

τ (θ
∗
τ ) , θ̃

♭
τ,η − θ∗

τ

〉
≤ η

〈
∇L̃♭

τ (θ̃
♭
τ )−∇L̃♭

τ (θ
∗
τ ) , θ̃

♭
τ − θ∗

τ

〉
= η

〈
−∇L̃♭

τ (θ
∗
τ ) , θ̃τ − θ∗

τ

〉
≤
(∥∥∥S−1/2∇L̃τ (θ

∗
τ )
∥∥∥
2
+
∥∥∥ξ̃♭(θ∗

τ )
∥∥∥
2

)∥∥θ̂τ,η − θ∗
τ

∥∥
S
.

By ( B.1.4) in the proof of Theorem 3.2.1, we know that

∥∥∥S−1/2∇L̃τ (θ
∗
τ )
∥∥∥
2
≤ 2C ′

3r0

(
r0 + ϵ+

√
d+ t

n

)
+ r∗,

on the events E0(r0) ∩ E∗(r∗), with probability at least 1− 2e−t, where C ′
3 is some constant

depending only on (c4, νx, CF , L, τ). Recall that the initial estimator θ̄ = θ̃
(T−1)
τ , then by

the proof of Theorem 3.2.2 and Corollary 3.2.1, we know that the events E0(r0)∩E∗(r∗) hold

with r0 ≲ r∗ ≲
√

(d+ t)/N + ϵ with probability at least 1− 3(T +1)e−t. Then combing this

fact with ( B.4.2), we obtain that

P∗

(〈
∇L̃♭

τ (θ̃
♭
τ,η)−∇L̃♭

τ (θ
∗
τ ) , θ̃

♭
τ,η − θ∗

τ

〉
≤ C̃

(√
d+ t

n
+ ϵ

)∥∥∥θ̂♭
τ,η − θ∗

τ

∥∥∥
S

)
≥ 1− e−t,

with probability at least 1− (3T + 7)e−t, for some constant C̃ independent of (N, n, d, ϵ, t).

On the other hand, notice that〈
∇L̃♭

τ (θ̃
♭
τ,η)−∇L̃♭

τ (θ
∗
τ ) , θ̃

♭
τ,η − θ∗

τ

〉
≥
〈
∇L̃τ (θ̃

♭
τ,η)−∇L̃τ (θ

∗
τ ) , θ̃τ,η − θ∗

τ

〉
−
∥∥∥ξ̃♭(θ̃♭

τ,η)− ξ̃♭(θ∗
τ )
∥∥∥
2

∥∥∥θ̃♭
τ,η − θ∗

τ

∥∥∥
S
.

By the local strong convexity of L̃τ (θ) ( B.1.5) and the inequality ( B.4.1), we obtain

that if we pick r = c3τ/(8C
2
0ν

2
x), then with probability at least 1− 3e−t,

P∗

(〈
∇L̃♭

τ (θ̃
♭
τ,η)−∇L̃♭

τ (θ
∗
τ ) , θ̃

♭
τ,η − θ∗

τ

〉
≥ α

∥∥∥θ̃♭
τ,η − θ∗

τ

∥∥∥2
S
− Cr

√
d+ t

n

∥∥∥θ̃♭
τ,η − θ∗

τ

∥∥∥
S

)
≥ 1− e−t,
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as long as ϵ < c and n ≥ C ′(d+ t)2, where α := c2
4
(1− ϵ)κτ and c, C, C ′ are constants inde-

pendent of (N, n, d, ϵ, t). Combing the above results together, we get that with probability

at least 1− (3T + 10)e−t,

P∗

(∥∥∥θ̃♭
τ,η − θ∗

τ

∥∥∥
S
≤ C♭

(√
d+ t

n
+ ϵ

))
≥ 1− 2e−t,

for some constant C♭ independent of (N, n, d, ϵ, t). For sufficiently large n and small ϵ, we

always have C♭
(√

(d+ t)/n+ ϵ
)
< r := c3τ/(8C

2
0ν

2
x), which indicates that θ̃♭

τ,η = θ̃♭
τ and

thus the above property is also true for θ̃♭
τ .

Proof of (3.3.5): Using the fact that ∇L̃♭
τ (θ̃

♭
τ ) = 0 and ∇L̃τ (θ̃τ ) = 0, we can get

ξ̃♭(θ̃τ ) = S−1/2
(
∇L̃♭

τ (θ̃τ )−∇L̃τ (θ̃τ )
)
= S−1/2∇L̃♭

τ (θ̃τ ) = S−1/2
(
∇L̃♭

τ (θ̃τ )−∇L̃♭
τ (θ̃

♭
τ )
)
.

Therefore,∥∥∥cFS1/2(θ̃♭
τ − θ̃τ ) + ξ̃♭(θ∗

τ )
∥∥∥
2

≤
∥∥∥cFS1/2(θ̃♭

τ − θ̃τ ) + S−1/2
(
∇L̃♭

τ (θ̃τ )−∇L̃♭
τ (θ̃

♭
τ )
)∥∥∥

2
+
∥∥∥ξ̃♭(θ̃τ )− ξ̃♭(θ∗

τ )
∥∥∥
2

≤
∥∥∥cFS1/2(θ̃♭

τ − θ̃τ ) + S−1/2
(
∇L̃τ (θ̃τ )−∇L̃τ (θ̃

♭
τ )
)∥∥∥

2

+
(∥∥∥ξ̃♭(θ̃♭

τ )− ξ̃♭(θ̃τ )
∥∥∥
2
+
∥∥∥ξ̃♭(θ̃τ )− ξ̃♭(θ∗

τ )
∥∥∥
2

)
:= Γ1 + Γ2.

Notice that ∇L̃τ (θ̃τ )−∇L̃τ (θ̃
♭
τ ) = ∇L1,τ (θ̃τ )−∇L1,τ (θ̃

♭
τ ). And recall the definition of B1(θ)

( B.1.2) and the bound of B1(θ) ( B.1.3), then we can get

Γ1 ≤
∥∥B1(θ̃τ )

∥∥
2
+
∥∥B1(θ̃

♭
τ )
∥∥
2
≤ C ′

3r

(
r + ϵ+

√
d+ t

n

)

with probability at least 1 − 2e−t, as long as n ≥ C4(d + t) and t ≥ 1/2, where C ′
3, C4

are some constants depending only on (c4, νx, CF , L, τ), and r is an upper bound for ∥θ̃τ −

θ∗
τ∥S ∨ ∥θ̃♭

τ − θ∗
τ∥S to be specified. Using the bound (3.3.4) for θ̃♭

τ and the bound (3.2.3) for

θ̃τ = θ̃
(T )
τ in Corollary 3.2.1, we get

P∗
(
Γ1 ≤ C̃ ′

(
d+ t

n
+ ϵ2

))
≥ 1− 2e−t
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with probability at least 1− (3T +12)e−t, for some constant C̃ ′ independent of (N, n, d, ϵ, t).

As for Γ2, note that Γ2 ≤ 2
∥∥∥ξ̃♭(θ̃τ )− ξ̃♭(θ∗

τ )
∥∥∥
2
+
∥∥∥ξ̃♭(θ̃♭

τ )− ξ̃♭(θ∗
τ )
∥∥∥
2
. Then by ( B.4.1) with

r as an upper bound for ∥θ̃τ − θ∗
τ∥S ∨ ∥θ̃♭

τ − θ∗
τ∥S, we can similarly get

P∗
(
Γ2 ≤ C̃ ′′

(
d+ t

n
+ ϵ2

))
≥ 1− 3e−t

with probability at least 1− (3T +14)e−t, for some constant C̃ ′′ independent of (N, n, d, ϵ, t).

Combing the above results and using the fact that ξ̃♭(θ∗
τ ) = ξ♭1(θ

∗
τ ) = − 1

n

∑
i∈I1 ℓ

′
τ (εi−ατ )eizi,

we prove (3.3.5).

B.5 Proof of Theorem 3.3.2

We employ a strategy akin to the one we used to prove Theorem 2.3.3. For any µ ∈ Rd,

let λ = (0,µ⊺)⊺. Then it suffices to show that

sup
x∈R

∣∣∣∣P(λ⊺(θ̃τ − θ∗
τ ) ≤ x

)
− P∗

(
1√
m
λ⊺(θ̃♭

τ − θ̃τ ) ≤ x

)∣∣∣∣ ≤ C

(
d+ t√
n

+
√
Nϵ

)
+ (3T + 19)e−t.

Define

SN :=
1

N

N∑
i=1

1

cF
ℓ′τ (εi − ατ )λ

⊺S−1/2zi, S♭
1 :=

1

n

∑
i∈I1

1

cF
ℓ′τ (εi − ατ )λ

⊺S−1/2eizi

where cF = Eε∼F ℓ
′′
τ (ε−ατ ). By the Bahadur representations of θ̃τ (3.2.4) and θ̃♭

τ (3.3.5), we

know ∣∣∣λ⊺(θ̃τ − θ∗
τ )− SN

∣∣∣ ≤ ∥λ̃∥2 · C̃

(√
d+ t

N
+ ϵ

)(√
d+ t

n
+ ϵ

)
(B.5.1)

and

P∗
(∣∣∣λ⊺(θ̃♭

τ − θ̃τ )− S♭
1

∣∣∣ ≤ ∥λ̃∥2 · C♭

(
d+ t

n
+ ϵ2

))
≥ 1− 5e−t (B.5.2)

with probability at least 1− (3T + 14)e−t, where λ̃⊺ = c−1
F λ⊺S−1/2, and C̃, C♭ are constants

independent of (N, n, d, ϵ, t,λ).
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Denote Ui := c−1
F ℓ′τ (εi − ατ )λ

⊺S−1/2zi, for i = 1, . . . , N , and σ2 := Var(Ui), σ̂
2 :=

1
n

∑
i∈I1 E

∗|eiUi|2 = 1
n

∑
i∈I1 U

2
i . By the normal approximation results about SN ( A.2.31)

and S♭
1 ( A.2.36) from the proof of Theorem 2.3.3, we know

sup
x∈R

∣∣∣∣∣P (SN ≤ x)− Φ

(√
N

σ
(x− EU1)

)∣∣∣∣∣ ≤ C3
1√
N
, (B.5.3)

and

sup
x∈R

∣∣∣∣P∗ (S♭
1 ≤ x

)
− Φ

(√
n

σ̂
x

)∣∣∣∣ ≤ C5
1√
n
, (B.5.4)

with probability at least 1 − 4e−t, where C3 and C5 is a constant only depending on

(c1, τ, νx, νe, σF ). Denote

rN := C̃

(√
d+ t

N
+ ϵ

)(√
d+ t

n
+ ϵ

)
, and rn := C♭

(
d+ t

n
+ ϵ2

)
.

For any λ ∈ Rd+1 and any x ∈ R, we have

P
(
λ⊺(θ̃τ − θ∗

τ ) ≤ x
)

≤ P
(
SN ≤ x+ ∥λ̃∥2 · rN

)
+ (3T + 14)e−t (by ( B.5.1))

≤ Φ

(√
N

σ

(
x+ ∥λ̃∥2 · rN − EU1

))
+

C3√
N

+ (3T + 14)e−t (by ( B.5.3))

≤ Φ

(√
n

σ

(√
mx− ∥λ̃∥2 · rn

))
+

C3√
N

+ (3T + 14)e−t

+
1√
2πσ

(√
N
(
∥λ̃∥2 · rN + |EU1|

)
+
√
n∥λ̃∥2 · rn

)
,

where the last inequality is due to the anti-concentration inequality of standard normal:

|Φ(a)− Φ(b)| ≤ |b− a|/
√
2π. Since σ ≥ (σF/2)∥λ̃∥2 by ( A.2.30) and |EU1| ≤ ϵc1τ∥λ̃∥2 by

( A.2.29), we get

P
(
λ⊺(θ̃τ − θ∗

τ ) ≤ x
)
≤ Φ

(√
n

σ

(√
mx− ∥λ̃∥2 · rn

))
+ (3T + 14)e−t + C̃ ′

(√
Nϵ+

d+ t√
n

)
,
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for some constant C̃ ′ independent of (N, n, d, ϵ, t,λ, x). By ( A.2.38), ( B.5.2) and ( B.5.4),

we get

Φ

(√
n

σ

(√
mx− ∥λ̃∥2 · rn

))
≤ Φ

(√
n

σ̂

(√
mx− ∥λ̃∥2 · rn

))
+ C6

(
ϵ2 +

√
t

n

)
(w.p.≥ 1− 2e−t, by ( A.2.38))

≤ P∗
(
S♭
1 ≤

√
mx− ∥λ̃∥2 · rn

)
+ C5

1√
n
+ C6

(
ϵ2 +

√
t

n

)
(w.p.≥ 1− 6e−t, by ( B.5.4))

≤ P∗
(
λ⊺(θ̃♭

τ − θ̃τ ) ≤
√
mx
)
+ C5

1√
n
+ C6

(
ϵ2 +

√
t

n

)
+ 5e−t (w.p.≥ 1− (3T + 20)e−t, by ( B.5.2)).

Therefore, we finally obtain that

P
(
λ⊺(θ̃τ − θ∗

τ ) ≤ x
)
≤ P∗

(
λ⊺(θ̃♭

τ − θ̃τ ) ≤
√
mx
)
+ C

(√
Nϵ+

d+ t√
n

)
+ (3T + 19)e−t

with probability at least 1− (3T +20)e−t. By a similar argument, we can show the opposite

direction of the above inequality, which completes the proof.

B.6 Proof of Theorem 3.4.1

We begin with introducing the following lemma, which gives the approximation error of

D̃j.

Lemma B.6.1. Under the same conditions of Theorem 3.4.1, for any λ ∈ Rd+1, we have∣∣∣∣∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥
2
−
∥∥∥ 1

ĉF
λ⊺Ŝ−1/2

∥∥∥
2

∣∣∣∣ ≤ C∥λ∥2

(√
d+ t

n
+ ϵ

)
, (B.6.1)

with probability at least 1−(3T +8)e−t, for some constant C independent of (d, t, N, n, ϵ,λ).
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We leave the proof of this lemma at the end of this proof. Now we start to prove

Theorem 3.4.1. We decompose it into three main steps.

Step 1: Following the proof of Theorem 3.3.2, denote

rN := C̃

(√
d+ t

N
+ ϵ

)(√
d+ t

n
+ ϵ

)
and rn := C♭

(
d+ t

n
+ ϵ2

)
as the bound in ( B.5.1) and ( B.5.2) respectively. For any λ ∈ Rd+1, denote λ̃⊺ =

c−1
F λ⊺S−1/2. By comparing the CDF of λ(θ̃τ − θ∗

τ ) and λ(θ̃♭
τ − θ̃τ ), we can get

P
(
λ⊺(θ̃τ − θ∗

τ ) ≤ x
)

≤ P
(
SN ≤ x+ ∥λ̃∥2 · rN

)
+ (3T + 14)e−t (by ( B.5.1))

≤ Φ

(√
N

σ

(
x+ ∥λ̃∥2 · rN − EU1

))
+

C3√
N

+ (3T + 14)e−t (by ( B.5.3))

≤ Φ

(√
N

σ̂

(
x+ ∥λ̃∥2 · rN − EU1

))
+

C3√
N

+ C6

(
ϵ2 +

√
t

n

)
+ (3T + 14)e−t (w.p.≥ 1− 2e−t, by ( A.2.38))

≤ P∗
(
S♭
n ≤

√
m
(
x+ ∥λ̃∥2 · rN − EU1

))
+

C3√
N

+
C5√
n

+ C6

(
ϵ2 +

√
t

n

)
+ (3T + 14)e−t (w.p.≥ 1− 6e−t, by ( B.5.4))

≤ P∗
(
λ⊺(θ̃♭

τ − θ̃τ ) ≤
√
m
(
x+ ∥λ̃∥2 · rN − EU1

)
+ ∥λ̃∥2 · rn

)
+

C3√
N

+
C5√
n

+ C6

(
ϵ2 +

√
t

n

)
+ (3T + 19)e−t (w.p.≥ 1− (3T + 20)e−t, by ( B.5.2)).

Denote

∆t =
C3√
N

+
C5√
n
+ C6

(
ϵ2 +

√
t

n

)
+ (3T + 19)e−t, Rt = ∥λ̃∥2(rN + rn/

√
m).

Then from the above derivation results, we know there exists some event Et such that P(Et) ≥

1− (3T + 20)e−t and on this event, the following two inequalities hold simultaneously.

P
(
λ⊺(θ̃τ − θ∗

τ ) ≤ x
)
≤ P∗

(
1√
m
λ⊺(θ̃♭

τ − θ̃τ ) ≤ x+Rt − EU1

)
+∆t,

P
(
λ⊺(θ̃τ − θ∗

τ ) ≤ x
)
≥ P∗

(
1√
m
λ⊺(θ̃♭

τ − θ̃τ ) ≤ x−Rt − EU1

)
−∆t.
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From now on, we focus on the inference for the coefficient β∗
j (for j = 1, . . . , d) and let

λ⊺ = (0, . . . , 0, 1, 0, . . . , 0)(the (j+1)-th component is 1). We claim that on the event Et, for

any q ∈ (0, 1), we always have

c̃j(q −∆t) ≤ c̃♭j(q)/
√
m+Rt + EU1. (B.6.2)

In fact, for any δ > 0, on this event Et,

P∗
(

1√
m
(β̃♭

j − β̃j) ≤ c̃j(q −∆t)−Rt − EU1 − δ

)
≤ P

(
β̃j − β∗

j ≤ c̃j(q −∆t)− δ
)
+∆t < q −∆t +∆t = q,

which implies that c̃j(q−∆t)−Rt−EU1−δ < c̃♭j(q)/
√
m, for any δ > 0, and thus c̃j(q−∆t) ≤

c̃♭j(q)/
√
m+Rt + EU1.

Step 2: In this step, we show that for any CD > 1, any q ∈ (1/2, 1),

Rt + |EU1| ≤ (CD − 1)c̃♭j(q)/
√
m+ CDD̃j (B.6.3)

holds with high probability. In fact, by ( A.2.29) and Lemma B.6.1, we have

|EU1| ≤ ϵc1τ

∥∥∥∥ 1

cF
λ⊺S−1/2

∥∥∥∥
2

≤ D̃j + Cϵc1τ

(√
d+ t

n
+ ϵ

)
≤ CD + 1

2
D̃j,

with probability at least 1− (3T + 8)e−t, as long as n ≥ C ′(d+ t) and ϵ ≤ c for some large

enough C ′ and small enough c. The last inequality above follows the fact that by Lemma

B.6.1, D̃j ≥ ϵc1τ(∥λ̃∥2 − δt) with δt = C(
√
(d+ t)/n + ϵ), and ∥λ̃∥2 = ∥c−1

F λ⊺S−1/2∥2 ≥

c−1
4

√
CS ≳ δt, and thus D̃j ≳ ϵ∥λ̃∥2 ≳ ϵδt.

We then bound Rt. Recall the definition of rN and rn. We know that

Rt ≤ (C̃ + C♭)∥λ̃∥2
{
d+ t√
Nn

+ ϵ

(√
d+ t

n
+ ϵ

)}
:= Rt,1 +Rt,2

Clearly, we have Rt,2 ≤ CD−1
2
D̃j for large enough n and small enough ϵ. Then it remains

to show that Rt,1 ≤ (CD − 1)c̃♭j(q)/
√
m with high probability. This is true because Rt,1 ≲

1/
√
N ≍ c̃♭j(q)/

√
m when n ≳ (d+ t)2. Formally, by ( B.5.2) and ( B.5.4), we have

P∗
(
λ⊺(θ̃♭

τ − θ̃τ ) ≤ x
)
≤ Φ

(√
n

σ̂

(
x+ ∥λ̃∥2rn

))
+ 5e−t +

C5√
n
,
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when conditioning on the event Et. This indicates that

c̃♭j(q) ≥
(
Φ−1 (q −∆′

t)− ∥λ̃∥2rn
)
· σ̂√

n
,

with ∆′
t := 5e−t+C5/

√
n. Picking t = C ′′ log n for some large enough C ′′, then for any fixed

q ∈ (1/2, 1), we can have

1√
m
c̃♭j(q) ≥

[
Φ−1

(
q

2
+

1

4

)
− ∥λ̃∥2rn

]
· σ̂√

N
≥ Φ−1

(
q

2
+

1

4

)
σ̂

2
√
N

≥ 1

CD − 1
Rt,1,

as long as n ≥ C ′(d+ t)2 and ϵ ≤ c for some large enough C ′ and small enough c. Combing

the bounds for Rt,1, Rt,2 and |EU1|, we have shown that ( B.6.3) holds when conditioning on

the event Et with t = C ′′ log n.

Step 3: Using the results ( B.6.2) and ( B.6.3) from the last two steps, we can have

P
(
β̃j − β∗

j ≤ CDc̃
♭
j(q)/

√
m+ CDD̃j

)
− q ≥ P

(
β̃j − β∗

j ≤ c̃j(q −∆t)
)
− q − P(Ec

t )

≥ (q −∆t)− q − P(Ec
t ) = −∆t − P(Ec

t ).
(B.6.4)

Regarding the other direction, one can similarly show that

c̃♭j(q)/
√
m ≤ c̃j(q +∆t) +Rt − EU1, (Step 1)

Rt + |EU1| ≤ −(CD − 1)c̃♭j(q)/
√
m+ CDD̃j, (Step 2)

for any q ∈ (0, 1/2). Therefore, CDc̃
♭
j(q)/

√
m ≤ c̃j(q +∆t) + CDD̃j, which implies

q − P
(
β̃j − β∗

j ≤ CDc̃
♭
j(q)/

√
m− CDD̃j

)
≥ q − P(β̃j − β∗

j ≤ c̃j(q +∆t))− P(Ec
t )

≥ q − P(β̂j − β∗
j ≤ c̃j(q +∆t)− δ)− L(δ)− P(Ec

t ).

≥ −∆t − L(δ)− P(Ec
t ),

where L(δ) := supx∈R P
(∣∣∣β̃j − β∗

j − x
∣∣∣ ≤ δ

)
is the Lévy concentration function of the ran-

dom variable β̃j − β∗
j . In order to avoid the usage of Lévy concentration function (which

relies on the Bahadur representation and thus requires a more stringent condition on ϵ), we

can actually show

Rt + |EU1| ≤ −(CD − 1)c̃♭j(q) + C̃DD̃j
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for some 1 < C̃D < CD in step 2. Therefore, we can instead have

q − P
(
β̂j − β∗

j ≤ CDc̃
♭
j(q)/

√
m− CDD̃j

)
≥q − P(β̂j − β∗

j ≤ c̃j(q +∆t)− (CD − C̃D)D̃j)− P(Ec
t )

≥q − (q +∆t)− P(Ec
t ) = −∆t − P(Ec

t ).

(B.6.5)

Let q = 1 − α/2 in ( B.6.4) and q = α/2 in ( B.6.5), respectively, and choose t = C ′′ log n.

This completes the proof.

Proof of Lemma B.6.1 We bound |ĉF − cF | and ∥Ŝ−1 − S−1∥2 subsequently, where

∥ · ∥2 is the spectral norm.

Step 1: Bound |cF − ĉF |. Let R(θ) := n−1
∑

i∈I1 ℓ
′′
τ (yi − x̄⊺

i θ). Then ĉF = R(θ̃τ ) and

cF = Eε∼FR(θ
∗
τ ). Depending on whether the loss function is Huber’s loss, we consider two

cases.

Case 1: The loss function is Huber’s loss and Condition 2.3.1 (ii) holds.

Under this case, by triangular inequality, we have

|ĉF − cF | ≤ sup
θ∈Θr

|R(θ)− ER(θ)|+ |ER(θ)− ER(θ∗
τ )|+ |ER(θ∗

τ )− Eε∼FR(θ
∗
τ )|

:= Γ1 + Γ2 + Γ3,

where θ̃τ is assumed to be in Θr := {θ : ∥θ− θ∗
τ∥S ≤ r} for some r > 0. The last term Γ3 is

easy to bound as we notice that Γ3 = |ϵExEε|x∼Gxℓ
′′
τ (εi − ατ )| ≤ ϵ. To bound Γ2, note that

ℓ is Huber loss and ℓ′′τ (u) = I(|u| ≤ τ). Therefore,

Γ2 ≤ sup
θ∈Θr

|EI(|ε− ατ + x̄⊺(θ∗
τ − θ)| ≤ τ)− EI(|ε− ατ | ≤ τ)|

≤ sup
θ∈Θr

EI
(∣∣|ε− ατ | − τ

∣∣ ≤ |x̄⊺(θ∗
τ − θ)|

)
≤ ϵ · 1 + (1− ϵ) sup

θ∈Θr

Eε∼F I(||ε− ατ | − τ | ≤ |x̄⊺(θ∗
τ − θ)|)

≤ ϵ+ 4CF sup
θ∈Θr

E|x̄⊺(θ∗
τ − θ)| ≤ ϵ+ 4CF sup

θ∈Θr

∥θ∗
τ − θ∥S ≤ ϵ+ 4CF r.

Here we use the anti-concentration inequality for distribution F under Condition 2.3.1 (ii).
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Regarding Γ1, as ℓ
′′
τ is bounded by 1, then by McDiarmid’s Inequality, we know that

P(Γ1 − EΓ1 > t) ≤ exp
{
−2nt2

}
.

For the bound of EΓ1, it is easy to check that the VC dimension of the function class

Fτ :=
{
fθ(εi, x̄i) = I(|εi − ατ + x̄⊺

i (θ
∗
τ − θ)| ≤ τ)|θ ∈ Θr

}
is no larger than Cd for some

absolute constant C. Then by a standard VC dimension argument (see e.g. Theorem 8.3.23

in Vershynin (2018)), we have EΓ1 ≤ C
√
d/n for some (new) absolute constant C ′. Thus,

Γ1 ≤ C
√
(d+ t)/n with probability at least 1 − e−t, for some (new) absolute constant C.

Combing the above bounds for Γ1,Γ2,Γ3 (noting that r ≲
√

(d+ t)/N + ϵ with probability

at least 1− 3(T + 1)e−t by Corollary 3.2.1), we can obtain that

|ĉF − cF | ≤ C

(√
d+ t

n
+ ϵ

)
,

with probability at least 1−(3T +4)e−t, for some constant C independent of (d, t, N, n, ϵ,λ).

Case 2: The loss function is not Huber’s loss and Condition 2.3.1 (i) holds. Under this

case, we utilize the Lipschitz property of ℓ′′(·) and decompose |ĉF − cF | as follows:

|ĉF − cF | ≤
∣∣∣R(θ̃τ )−R(θ∗

τ )
∣∣∣+ |R(θ∗

τ )− ER(θ∗
τ )|+ |ER(θ∗

τ )− Eε∼FR(θ
∗
τ )|

:= Γ1 + Γ2 + Γ3,

As ℓ′′τ (·) is L/τ -Lipschitz, we have

Γ1 ≤
L

τn

∑
i∈I1

|x̄⊺
i (θ̃τ − θ∗

τ )| ≤
L

τ
∥θ̃τ − θ∗

τ∥SM1(z), with M1(z) = sup
u∈Sd

1

n

∑
i∈I1

|u⊺zi|.

Since {zi}i∈I1 are i.i.d. sub-Gaussian vectors, we know that M1(z) ≤ C supu∈Sd E|u⊺z| ≤ C

with probability at least 1−e−t for some absolute constant C when n ≳ (d+t). To bound Γ2,

just notice that R(θ∗
τ ) = n−1

∑
i∈I1 ℓ

′′
τ (εi − ατ ) and ℓ

′′
τ (·) is bounded by c4 under Condition

2.3.1 (i), and thus by Bernstein’s inequality, we have

Γ2 ≤ Cc4

(√
t

n
+
t

n

)
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with probability at least 1− 2e−t for some absolute constant C. Similar to Case (i), Γ3 can

be bounded by ϵc4 as Γ3 = |ϵExEε|x∼Gxℓ
′′
τ (εi − ατ )| ≤ ϵc4. Combing the above bounds with

the bound for ∥θ̃τ − θ∗
τ∥S in Corollary 3.2.1), we have

|ĉF − cF | ≤ C

(√
d

N
+

√
t

n
+ ϵ

)
≤ C

(√
d+ t

n
+ ϵ

)

with probability at least 1−(3T +6)e−t, for some constant C independent of (d, t, N, n, ϵ,λ).

Step 2: Bound ∥Ŝ−1 − S−1∥2. As {zi}ni=1 are i.i.d sub-Gaussian random vectors with

parameter νx, then by a standard ϵ-net argument and Bernstein’s inequality, we can get

∥Ŝ− S∥2 ≤ C0ν
2
x∥S∥2

√
d+ t

n
,

with probability at least 1− 2e−t, for some absolute constant C0 (assuming that n ≥ d+ t).

By Weyl’s inequality, we know that

λmin(Ŝ) ≥ λmin(S)− C0ν
2
xλmax(S)

√
d+ t

n
≥ 1

2
λmin(S) > 0,

with probability at least 1−2e−t, as long as n ≥ 4C2
0C

2
Sν

4
x(d+t)/c

2
S. Therefore, Ŝ is invertible

with probability at least 1− 2e−t. Noticing that Ŝ−1 − S−1 = Ŝ−1(S− Ŝ)S−1, we can get

∥Ŝ−1 − S−1∥2 ≤ ∥Ŝ−1∥2∥Ŝ− S∥2∥S−1∥2 ≤ 2C0ν
2
x

λmax(S)

λmin(S)2

√
d+ t

n

with probability at least 1− 2e−t.

Step 3: Bound |∥λ̃∥2 − ∥̂̃λ∥2|, where λ̃ := (c−1
F λ⊺S−1/2)⊺,

̂̃
λ := (ĉ−1

F λ⊺Ŝ−1/2)⊺.

∣∣∣∥λ̃∥22 − ∥̂̃λ∥22∣∣∣ = ∣∣∣λ⊺
(
c−2
F S−1 − ĉ−2

F Ŝ−1
)
λ
∣∣∣

≤ ∥λ∥22
[∣∣c−2

F − ĉ−2
F

∣∣ ∥S−1∥2 + ĉ−2
F ∥S−1 − Ŝ−1∥2

]
≤ C∥λ∥22

(1 + κ(S))

λmin(S)

(√
d+ t

n
+ ϵ

)
,

with probability at least 1 − (3T + 8)e−t, where κ(S) = λmax(S)/λmin(S) is the condition

number of S, and C is an constant independent of (d, t, N, n, ϵ,λ). Here, we use the fact that
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c4 ≥ cF ≥ c2Pε∼F (|ε− ατ | ≤ c3τ) > c2κτ > 0. Noticing that ∥λ̃∥2 ≥ c−1
F ∥λ∥2/

√
λmax(S), we

can obtain that

∣∣∥λ̃∥2 − ∥̂̃λ∥2∣∣ ≤ 1

∥λ̃∥2

∣∣∥λ̃∥22 − ∥̂̃λ∥22∣∣ ≤ Cc4∥λ∥2
√
κ(S)(1 + κ(S))√

λmin(S)

(√
d+ t

n
+ ϵ

)
,

with probability at least 1 − (3T + 8)e−t. Notice that κ(S) ≤ CS/cS and λmin(S) ≥ cS and

we are done.
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Appendix C Supplement to Chapter 4

This section provides all the proofs for Chapter 4. We first prove two lemmas in Section

C.1 on the general upper bounds of the bias and variance terms of kernel estimators,

which will be used to prove the minimax rates. In Section C.2, we provide proofs for

Theorems 4.2.1, 4.4.1, 4.4.2. Next, we move to prove theorems on the results of our adaptive

procedures. Section C.3 provides a proof of Theorem 4.5.1 using a key lemma, Lemma

C.3.1, in the analysis of our adaptation theory. Then in Section C.4, we prove Proposition

4.3.1, and Theorems 4.3.2, 4.3.3, two main results of our adaptive procedures with arbitrary

contamination. In Section C.5, we further prove Theorem 4.3.4 with a novel iterative trick to

illustrate how Lepski’s method on R can be modified to give a selection procedure adaptive

to the contamination fraction ϵ. In the end, in Section C.6, we provide a proof of Theorem

4.3.5 to show that adaptation to both β0 and ϵ is impossible.

C.1 Two Lemmas about bias and variance of kernel estimators

Before we get into the proofs of the theorems for minimax rates, we summarize the

general upper bounds for bias and variance terms of the kernel estimator in the following

lemmas. Though the results of these two lemmas are well-known in the non-parametric

density estimation community, we still include the proofs here for completeness. Recall that

the notations for bias and variance terms of the kernel estimator are given in (4.2.4)-(4.2.5).

Lemma C.1.1 (Bias). If pX ∈ Np,d(β, L), K is a kernel in Kβ(LK), then for any p ∈ [1,∞),

∥Bh(pX , t)∥p ≤ LLd
K

d∑
j=1

h
βj

j . (C.1.1)

Lemma C.1.2 (Variance). (i) For any number p ∈ [1, 2] and any density pX on Rd, we

have

EpX∥ξh,n(pX , t)∥p ≤
Cp

(nVh)
1
q

,
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where Vh =
∏d

j=1 hj, Cp = 21+
1
p∥K∥p, and 1/q = 1− 1/p.

(ii) For any number p ∈ (2,∞) and any density on Rd pX ∈ Lp,d(M), we have

EpX∥ξh,n(pX , t)∥p ≤
Cp

(nVh)
1
2

,

where Cp = 8Dp(M ∨ 1)
p−2

2(p−1) (∥K∥p ∨ ∥K∥2), and Dp =
15p
log p

.

Proof of Lemma C.1.1.

∥Bh(pX , t)∥p =
∥∥∥∥∫

Rd

Kh(t− x)pX(x)dx− pX(t)

∥∥∥∥
p

=

∥∥∥∥∫
Rd

K(u)
(
pX(t− uh)− pX(t)

)
du

∥∥∥∥
p

.

Here, pX(t−uh) = pX
(
t1−u1h1, . . . , td−udhd

)
and the integral

∫
Rd(·)du =

∫
Rd(·)du1 . . . dud.

For j = 1, . . . , d, let

∆j(u, t) := pX

(
(t1 − u1h1), . . . , (tj−1 − uj−1hj−1), (tj − ujhj), tj+1, . . . , td

)
−pX

(
(t1 − u1h1), . . . , (tj−1 − uj−1hj−1), tj, tj+1, . . . , td

)
.

Then pX(t − uh) − pX(t) =
∑d

j=1 ∆j. If pX ∈ Np,d(β, L), then by Taylor’s expansion, we

have

∆j(u, t) =

lj−1∑
k=1

(−ujhj)k

k!
D

(k)
j pX

(
(t1 − u1h1), . . . , (tj−1 − uj−1hj−1), tj, tj+1, . . . , td

)
+

(−ujhj)lj
(lj − 1)!

∫ 1

0

(1− τ)lj−1D
(lj)
j pX

(
(t1 − u1h1), . . . , (tj−1 − uj−1hj−1),

(tj − τujhj), tj+1, . . . , td

)
dτ,

where lj = ⌊βj⌋. For a kernel K ∈ Kβ(LK), we know

K(u) =
d∏

j=1

Kj(uj),

∫
R
ukjKj(uj)duj = 0, ∀k = 1, . . . , lj.

Therefore, with the notation below,

∆̃j(u, t) :=

lj∑
k=1

(−ujhj)k

k!
D

(k)
j pX

(
(t1 − u1h1), . . . , (tj−1 − uj−1hj−1), tj, tj+1, . . . , td

)
,
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we must have ∫
Rd

K(u)∆̃j(u, t)du = 0. (C.1.2)

Furthermore, denote

∆pX ,j(τ, u, t) :=D
(lj)
j pX

(
(t1 − u1h1), . . . , (tj−1 − uj−1hj−1), (tj − τujhj), tj+1, . . . , td

)
−D

(lj)
j pX

(
(t1 − u1h1), . . . , (tj−1 − uj−1hj−1), tj, tj+1, . . . , td

)
,

then we have

∆j(u, t)− ∆̃j(u, t) =
(−ujhj)lj
(lj − 1)!

∫ 1

0

(1− τ)lj−1∆pX ,j(τ, u, t)dτ.

Applying twice Minkowski’s integral inequality and using ( C.1.2) and the fact that pX ∈

Np,d(β, L), we have∥∥∥∥∫
Rd

K(u)∆j(u, t)du

∥∥∥∥
p

=

∥∥∥∥∫
Rd

K(u)(∆j − ∆̃j)(u, t)du

∥∥∥∥
p

=

{∫
Rd

∣∣∣∣ ∫
Rd

K(u)(∆j − ∆̃j)(u, t)du

∣∣∣∣pdt
} 1

p

≤
∫
Rd

{∫
Rd

∣∣∣∣K(u)(∆j − ∆̃j)(u, t)

∣∣∣∣pdt
} 1

p

du

≤
∫
Rd

|K(u)| |ujhj|
lj

(lj − 1)!

∫ 1

0

(1− τ)lj−1

{∫
Rd

∣∣∣∣∆pX ,j(τ, u, t)

∣∣∣∣pdt
} 1

p

dτdu

≤
∫
Rd

|K(u)| |ujhj|
lj

lj!

(
L|ujhj|βj−lj

)
du

≤ h
βj

j L

∫
Rd

|K(u)||uj|βjdu ≤ LLd
Kh

βj

j .

Noting that pX(t − uh) − pX(t) =
∑d

j=1 ∆j(u, t), we get ( C.1.1) by summing the above

bound over j = 1, . . . , d.
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Proof of Lemma C.1.2. (i) For simplicity, we write E[·] to represent EpX [·] in this proof.

Let ξi(t) = Kh(t−Xi)−E[Kh(t−Xi)], then ξh,n(pX , t) =
1
n

∑n
i=1 ξi(t). It is known for centered

independent random variables ξ1, ..., ξn, the Bahr-Esseen inequality (4.3.8) holds. Therefore,

we have

E∥ξh,n(pX , t)∥p =
1

n
E

(∫
Rd

∣∣∣ n∑
i=1

ξi(t)
∣∣∣pdt) 1

p (∗)
≤ 1

n

(∫
Rd

E
∣∣∣ n∑
i=1

ξi(t)
∣∣∣pdt) 1

p

(∗∗)
≤ 21/p

n

(∫
Rd

n∑
i=1

E
∣∣∣ξi(t)∣∣∣pdt) 1

p

=
21/p

n

(∫
Rd

nE
∣∣∣Kh(t−X1)− EKh(t−X1)

∣∣∣pdt) 1
p

,

where (∗) is due to Jensen’s inequality, and (∗∗) follows from (4.3.8). By Jensen’s inequality

(a+ b)p ≤ 2p−1(ap + bp),∀a, b ≥ 0, p ≥ 1, we know

E
∣∣∣Kh(t−X1)− EKh(t−X1)

∣∣∣p ≤ 2p−1
(
E
∣∣∣Kh(t−X1)

∣∣∣p + ∣∣∣EKh(t−X1)
∣∣∣p)

≤ 2pE
∣∣∣Kh(t−X1)

∣∣∣p.
Combining the above two inequalities, we get

E∥ξh,n(pX , t)∥p ≤
21+

1
pn

1
p

n

(∫
Rd

E
∣∣∣Kh(t−X1)

∣∣∣pdt) 1
p

=
21+

1
p

n
1
q

(
E

∫
Rd

∣∣∣Kh(t−X1)
∣∣∣pdt) 1

p

=
21+

1
p

n
1
q

(
E

∫
Rd

∣∣∣Kh(t)
∣∣∣pdt) 1

p

=
21+

1
p∥K∥p

(nVh)
1
q

.

(ii) For p ∈ (2,∞), let Dp = 15p/ log p. By Rosenthal inequality (4.3.9), we have

E∥ξh,n(pX , t)∥p =
1

n
E

(∫
Rd

∣∣∣ n∑
i=1

ξi(t)
∣∣∣pdt) 1

p

≤ 1

n

(∫
Rd

E
∣∣∣ n∑
i=1

ξi(t)
∣∣∣pdt) 1

p

≤ 2Dp

n

(∫
Rd

n∑
i=1

E
∣∣∣ξi(t)∣∣∣pdt) 1

p

+
2Dp

n

(∫
Rd

( n∑
i=1

Eξ2i (t)
)p/2

dt

) 1
p

:= Γ1 + Γ2.

From the proof for (i), we know Γ1 ≤ 4Dp∥K∥p(nVh)−1/q. For Γ2, we have
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Γ2 ≤
2Dp

n1/2

(∫
Rd

(
EK2

h(t−X1)
)p/2

dt

) 1
p

=
2Dp

n1/2
∥K2

h ∗ pX∥
1/2
p/2

≤ 2Dp

n1/2
∥K2

h∥
1/2
1 ∥pX∥1/2p/2 =

2Dp

(nVh)1/2
∥K∥2∥pX∥1/2p/2. (by Young’s inequality)

For a density function pX , by Hölder’s inequality, we know ∥ pX ∥p/2≤∥ pX ∥
p−2
p−1
p . Therefore,

for a density pX ∈ Lp,d(M),

Γ2 ≤
2Dp

(nVh)1/2
∥K∥2M

p−2
2(p−1) ,

E∥ξh,n(pX , t)∥p ≤ Γ1 + Γ2 ≤
1

2
Cp(

1

(nVh)1/q
+

1

(nVh)1/2
) ≤ Cp

1

(nVh)1/2
,

where Cp = 8Dp(M ∨ 1)
p−2

2(p−1) (∥K∥p ∨ ∥K∥2).

C.2 Proofs of Theorems 4.2.1, 4.4.1, 4.4.2

C.2.1 Proof of Theorem 4.2.1

Proof of Theorem 4.2.1. (i) Upper bound (i.e. Proof of Theorem 4.2.2) For

simplicity, we write Pϵ = P (ϵ, f, G). In light of (4.2.6), we just need to appropriately bound

the bias term, variance term and the contamination term respectively. Bias term: For any

kernel K ∈ Kβ(LK) with β ≥ β0 (and thus K ∈ Kβ0(2LK)), by Lemma C.1.1, we have

∥Bh(f, t)∥p ≤ L0(2LK)
d

d∑
j=1

h
β0,j

j .

Contamination term: For any kernel K ∈ Kβ(LK), a direct calculation shows that

EPϵ

n− n1

n

(
∥Kh∥p + ∥f∥p

)
≤
(
V

−1/q
h ∥K∥p + L0

)
EPϵ

n− n1

n
≤ ϵ

(
V

−1/q
h Ld

K + L0

)
.

Variance term: By Lemma C.1.2, we know

EPϵ

[
∥ξh,n1(f, t)∥p |n1

]
= Ef

[
∥ξh,n1(f, t)∥p |n1

]
≤ Cp(n1Vh)

−1/(q∨2),
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where Cp = 21+1/pLd
K for p ∈ [1, 2] and Cp = 8Dp(L0 ∨ 1)

p−2
2(p−1)Ld

K with Dp = 15p
log p

for

p ∈ (2,∞). Then it suffices to bound En
−1/(q∨2)
1 . Recall that n1 ∼ Binomial(n, 1 − ϵ), by

Bernstein inequality (e.g. Theorem 2.8.4 in Vershynin (2018)), we have

n1

n
≥ (1− ϵ)− 2

√
log n

n

√
ϵ(1− ϵ)− 2

3

log n

n
≥ 1− ϵ

2

with probability at least 1−n−1, when n/ log n ≥ max{8/3(1−C0), 64C0/(1−C0)}. There-

fore,

En
−1/(q∨2)
1 ≤

(
n
1− ϵ

2

)−1/(q∨2)

+ n−1 ≤
(

2

1− C0

+ 1

)
n−1/(q∨2),

for any ϵ ≤ C0 < 1. Combining the above bounds, with C = (L0∨1)(Ld
K∨1)(2d+8Dp

3−C0

2−C0
+

2), we obtain that

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G)∥f̂h − f∥p ≤ C

{
d∑

j=1

h
β0,j

j + (nVh)
−1/(q∨2) + ϵV

−1/q
h

}
,

for any ϵ ≤ C0 < 1, and any n such that n/ log n ≥ max{8/3(1− C0), 64C0/(1− C0)}.

Finally, by choosing hj ≍ n
− β̄0

β0,j(2β̄0+1) ∨ ϵ
q β̄0

β0,j(qβ̄0+1) , we achieve the upper bound n
− β̄0

2β̄0+1 ∨

ϵ
q β̄0

qβ̄0+1 .

(ii) Lower bound (i.e. Proof of Theorem 4.2.4) We only show how to obtain the

second term of the lower bound ϵ
q β̄0

q β̄0 +1 . Choose a function f0 ∈ Pp,d(β0, L0/2) bounded away

from 0 (i.e. ∃γ0 > 0 s.t. f0(x) ≥ γ0 > 0,∀x ∈ Rd), and a function ϕ0 : R → R, which

is infinitely differentiable, has a compact support and satisfies
∫
ϕ0 = 0. (For example,

ϕ0(u) = ue
− 1

1−u2 1{|u| ≤ 1}. ) Let

f1(x) = f0(x) + γV
β̄0 − 1

p

h

d∏
j=1

ϕ0

(xj
hj

)
,

where hj = ϵ
q β̄0

β0,j(q β̄0 +1) , Vh =
∏d

j=1 hj = ϵ
q

q β̄0 +1 . If β̄0 ≥ 1
p
, we can choose γ sufficiently small

(when γ ≤ γ0/∥ϕ0∥d∞) such that f1 is also a density function.

Denote ϕ(x) = γV
β̄0 − 1

p

h

∏d
j=1 ϕ0

(
xj

hj

)
. If γ is sufficiently small, we have the following

three facts about ϕ:
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(a) For k = 0, . . . , ⌊β0,j⌋, j = 1, . . . , d,

∥ D(k)
j ϕ ∥p= γV

β̄0
h h−k

j ∥ϕ0∥d−1
p ∥D(k)

j ϕ0∥p ≤ γ∥ϕ0∥d−1
p ∥D(k)

j ϕ0∥p ≤
L0

2
.

Here, we have used the inequality V
β̄0
h h−k

j ≤ V
β̄0
h h

−β0,j

j = 1.

(b) For j = 1, . . . , d, denote lj = ⌊β0,j⌋. Then we have{∫
Rd

∣∣∣D(lj)
j ϕ (t1, . . . , tj + z, . . . , td)−D

(lj)
j ϕ (t1, . . . , tj, . . . , td)

∣∣∣p dt}1/p

= γV
β̄0 − 1

p

h

(∏
k ̸=j

h
1
p

k ∥ϕ0∥p

){∫
R

∣∣∣∣h−lj
j

(
ϕ
(lj)
0

(
tj + z

hj

)
− ϕ

(lj)
0

(
tj
hj

))∣∣∣∣p dtj}1/p

= γV
β̄0
h h

−lj
j ∥ϕ0∥d−1

p

{∫
R

∣∣∣∣ϕ(lj)
0

(
u+

z

hj

)
− ϕ

(lj)
0 (u)

∣∣∣∣p du}1/p

≤ γ∥ϕ0∥d−1
p V

β̄0
h h

−lj
j Cp,lj

∣∣∣∣ zhj
∣∣∣∣β0,j−lj

= γ∥ϕ0∥d−1
p V

β̄0
h h

−β0,j

j Cp,lj |z|
β0,j−lj = γ∥ϕ0∥d−1

p Cp,lj |z|
β0,j−lj ≤ L0

2
|z|β0,j−lj .

Here, Cp,lj =∥ ϕ(lj+1)
0 ∥p ∨2 ∥ ϕ(lj)

0 ∥p, and we have used the fact that

∥ ϕ(lj)
0 (·+ t)− ϕ

(lj)
0 (·) ∥p ≤∥ ϕ(lj+1)

0 ∥p |t| ∧ 2 ∥ ϕ(lj)
0 ∥p

≤ (∥ ϕ(lj+1)
0 ∥p ∨2 ∥ ϕ(lj)

0 ∥p)|t|βj−lj .

(c) ∫ ∣∣∣∣1− ϵ

ϵ
ϕ

∣∣∣∣ = 1− ϵ

ϵ
γV

β̄0 +
1
q

h ∥ ϕ0 ∥d1= (1− ϵ)γ ∥ ϕ0 ∥d1≤ 2.

Note that (a) and (b) imply f1 ∈ Pp,d(β0, L0). In addition, (c) implies that TV(Pf0 , Pf1) =

1/2∥ϕ∥1 ≤ ϵ
1−ϵ

. Therefore, by Theorem 4.2.3, we obtain

inf
f̂

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ − f ∥p≳ ω(ϵ,Θ) ≥ ∥f1 − f0∥p = γV
β̄0
h ∥ ϕ0 ∥dp≍ ϵ

q β̄0
q β̄0 +1 ,

which completes our proof of lower bound.
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C.2.2 Proofs of Theorems 4.4.1-4.4.2

Proofs of Theorems 4.4.1-4.4.2. (i) Upper bound We only show the upper bound

for rate (4.4.1) in Theorem 4.4.1, where g ∈ Lp,d(L1). Then the upper bound for rate (4.4.2)

in Theorem 4.4.2 naturally holds as Pp,d(β1, L1) is a subclass of Lp,d(L1). For simplicity, we

write pϵ = p(ϵ, f, g) in what follows. Clearly, we have

Epϵ ∥ f̂h − f ∥p ≤ Epϵ ∥ f̂h − Epϵ f̂h ∥p + ∥ Epϵ f̂h − f ∥p

:= var(f̂h) + bias(f̂h),

where

bias(f̂h) =
∥∥EpϵKh(t−X)−

(
(1− ϵ)f(t) + ϵg(t)

)
− ϵ
(
f(t)− g(t)

)∥∥
p

≤ ∥Bh((1− ϵ)f + ϵg, t)∥p + ϵ∥f − g∥p

≤ (1− ϵ)∥Bh(f, t)∥p + ϵ∥Bh(g, t)∥p + ϵ∥f − g∥p.

By assumptions, f ∈ Np,d(β0, L0), K is a kernel in Kβ0(LK), then Lemma C.1.1 tells us

that for any p ∈ [1,∞),

∥Bh(f, t)∥p ≤ L0L
d
K

d∑
j=1

h
β0,j

j . (C.2.1)

For g ∈ Lp,d(L1), by Young’s inequality, we can get

ϵ∥Bh(g, t)∥p ≤ ϵ
(∥∥Kh ∗ g

∥∥
p
+
∥∥g∥∥

p

)
≤ ϵ
(∥∥Kh

∥∥
1

∥∥g∥∥
p
+
∥∥g∥∥

p

)
= ϵ
(∥∥K∥∥

1
+ 1
)∥∥g∥∥

p
≤ ϵ(Ld

K + 1)L1.
(C.2.2)

( C.2.1), ( C.2.2) and the fact ∥f − g∥p ≤ ∥f∥p + ∥g∥p ≤ L0 +L1 give us an upper bound of

the bias term:

bias(f̂h) ≤ C

( d∑
j=1

h
β0,j

j + ϵ

)
, (C.2.3)
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where constant C = (L0 + L1)(L
d
K + 2). For the variance term, Lemma C.1.2 implies an

upper bound for pX = pϵ = (1− ϵ)f + ϵg:

var(f̂h) = Epϵ∥ξh,n(pϵ, t)∥p ≤

C
′
p(nVh)

−1/q, p ∈ [1, 2],

C ′
p(nVh)

−1/2, p ∈ (2,∞),

(C.2.4)

where C ′
p = 21+1/pLd

K for p ∈ [1, 2] and C ′
p = 8DpL

d
K(L0 + L1 + 1)

p−2
2(p−1) for p ∈ (2,∞),

Dp =
15p
log p

.

( C.2.3) and ( C.2.4) give us the upper bound for kernel estimator f̂h:

Ep(ϵ,f,g)∥f̂h − f∥p ≲


∑d

j=1 h
β0,j

j + ϵ+ (nVh)
−1/q, p ∈ [1, 2]∑d

j=1 h
β0,j

j + ϵ+ (nVh)
−1/2, p ∈ (2,∞).

Choosing hj ≍ n
− β̄0

β0,j(q β̄0 +1) (for 1 ≤ p ≤ 2) or n
− β̄0

β0,j(2 β̄0 +1) (for p > 2), we get the upper

bound n
− β̄0

q β̄0 +1 ∨ ϵ (for 1 ≤ p ≤ 2) or n
− β̄0

2 β̄0 +1 (for p > 2).

(ii) Lower bound We only show the lower bound for rate (4.4.2) in Theorem 4.4.2, where

g ∈ Pp,d(β1, L1). Then the lower bound for rate (4.4.1) in Theorem 4.4.1 can be established

immediately since Pp,d(β1, L1) is a subclass of Lp,d(L1). Again, we just show the second

term ϵ in (4.4.2), as the first term is the classical minimax rate. We consider the following

functions:

f1(x) = f0(x) + ϵγϕ(x),

g1(x) = g0(x)− (1− ϵ)γϕ(x).

Here, we choose some functions f0 ∈ Pp(β0, L0/2), g0 ∈ Pp(β1, L1/2), both bounded away

from zero; and some function ϕ(x) :=
∏d

j=1 ϕ0(xj), where ϕ0 : R → R is infinitely differen-

tiable, has a compact support and satisfies
∫
ϕ0 = 0. (For example, ϕ0(u) = ue

− 1
1−u2 1{|u| ≤

1}. ) For any β ∈ R+, denote l = ⌊β⌋. Then we have

∥ ϕ(l)
0 (·+ t)− ϕ

(l)
0 (·) ∥p≤∥ ϕ(l+1)

0 ∥p |t| ∧ 2 ∥ ϕ(l)
0 ∥p≤ (∥ ϕ(l+1)

0 ∥p ∨2 ∥ ϕ(l)
0 ∥p)|t|β−l. (C.2.5)

Consequently, it is easy to verify f1 ∈ Pp(β0, L0), g1 ∈ Pp(β1, L1) with a sufficiently small γ.
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Given the constructed f1 and g1, we have

inf
f̂

sup
f∈Pp(β0,L0)
g∈Pp(β1,L1)

Ep(ϵ,f,g) ∥ f̂ − f ∥p ≥ inf
f̂

1

2
(Ep(ϵ,f0,g0) ∥ f̂ − f0 ∥p +Ep(ϵ,f1,g1) ∥ f̂ − f1 ∥p)

≥ 1

2
∥ f0 − f1 ∥p≍ ϵ.

The second inequality holds because under our construction, p(ϵ, f0, g0) = p(ϵ, f1, g1).

C.3 Proof of Theorem 4.5.1

This proof is mainly based on the proofs of Theorems 1 and 2 in (Goldenshluger and

Lepski, 2011a). We start with a key lemma from Lemmas 1 and 2 of (Goldenshluger and

Lepski, 2011a) below. Later, we also need this lemma in the proofs of Theorems 4.3.2 and

4.3.3.

Lemma C.3.1 ((Goldenshluger and Lepski, 2011a)). Assume X1, ..., Xn
i.i.d.∼ pX . Assume

that the kernel K satisfies the conditions:

(K1) K is Lipschitz: |K(x)−K(y)| ≤ LK |x− y|,∀x, y ∈ Rd.

(K2) K is compactly supported. Without loss of generality, we assume supp(K) ⊆

[−1/2, 1/2]d.

(K3) ∃k∞ <∞ such that ∥ K ∥∞≤ k∞.

Let H =
⊗d

j=1

[
hmin
j , hmax

j

]
, Vmin =

∏d
i=1 h

min
i , Vmax =

∏d
i=1 h

max
i , AH =

∏d
j=1[1 ∨

log
(
hmax
j /hmin

j

)
], and BH = [1 ∨ log2 (Vmax/Vmin)]. Under the assumptions (K1) – (K3),

the following two inequalities hold with δn,s and δ̃n,s specified later.

EpX sup
h∈H

[∥ ξh,n(pX , t) ∥s −ds(Kh)]+ ≤ δn,s, (C.3.1)

EpX sup
(h,l)∈H×H

[∥ ξh,l,n(pX , t) ∥s −ds(Kh ∗Kl)]+ ≤ δ̃n,s. (C.3.2)

• (i) For s ∈ [1, 2), n ≥ 42s/(2−s), ( C.3.1)-( C.3.2) hold with

δn,s := C1A2
Hn

1/s exp

{
− 2n2/s−1

37

}
, δ̃n,s := C̃1A4

Hn
1/s exp

{
− 2n2/s−1

37

}
.
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• (ii) For s = 2, let pX ∈ D∞ :=

{
f : R → R

∣∣∣∣ ∥ f ∥∞≤ L∞ < ∞
}
. Assume 8[L2

∞Vmax +

4n−1/2] ≤ 1, then ( C.3.1)-( C.3.2) hold with

δn,2 := C2A2
Hn

1/2 exp

{
− 1

16[L2
∞Vmax + 4n−1/2]

}
,

δ̃n,2 := C̃2A4
Hn

1/2 exp

{
− 1

16[L2
∞Vmax + 4n−1/2]

}
.

• (iii) For s ∈ (2,∞), assume that pX ∈ D∞, n ≥ c0,1, nVmin > c0,2, Vmax ≥ 1/
√
n, then (

C.3.1)-( C.3.2) hold with

δn,s := C3A2
HBHn

1/2 exp

{
− C4

L∞V
2/s
max

}
, δ̃n,s := C̃3A4

HBHn
1/2 exp

{
− C̃4

L∞V
2/s
max

}
.

In addition, for any H1 ⊆ H and H2 ⊆ H,

EpX sup
h∈H1

r̂s(Kh) ≤ (1 + 8Ds) sup
h∈H1

rs(Kh, pX) + ζn,s, (C.3.3)

EpX sup
(h,l)∈H1×H2

r̂s(Kh ∗Kl) ≤ (1 + 8Ds) sup
(h,l)∈H1×H2

rs(Kh ∗Kl, pX) + ζ̃n,s, (C.3.4)

where ζn,s := C5A2
HBHn

(s−2)/2s exp

{
−C6bn,s

}
, ζ̃n,s := C̃5A4

HBHn
(s−2)/2s exp

{
−C̃6bn,s

}
,

bn,s := n4/s−1 if s ∈ (2, 4) and bn,s := [L∞V
4/s
max]−1 if s ∈ [4,∞). The constants Ci, C̃i, i =

1, ..., 6 and c0,2 depend on LK , k∞, d, s only, while c0,1 depends also on L∞.

Proofs of Theorem 4.5.1. With the lemma above, we are ready to prove Theorem 4.5.1.

Our strategy is to show

1◦ ∥∥∥f̂ĥ − f
∥∥∥
p
≤ inf

h∈H

{
4R̂h,p +

∥∥∥f̂h − f
∥∥∥
p

}
,

where R̂h,p and ĥ are defined in (4.5.1).
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2◦ For p ∈ [1, 2),

inf
h∈H

sup
f∈Pp(β0,L0)
g∈Pp(β1,L1)

Ep(ϵ,f,g)R̂h,p ≲ n
− β̄0

q β̄0 +1 ∨ ϵ. (C.3.5)

For p ∈ [2,∞),

inf
h∈H

sup
f∈Pp(β0,L0)
g∈Pp(β1,L1)

Ep(ϵ,f,g)R̂h,p ≲ n
− β̄0

2 β̄0 +1 ∨ ϵ. (C.3.6)

In fact, 1◦ is a direct result from the definition of R̂h,p and ĥ. For any l ∈ H, we have∥∥∥f̂ĥ − f
∥∥∥
p
≤
∥∥∥f̂ĥ − f̂ĥ,l

∥∥∥
p
+
∥∥∥f̂ĥ,l − f̂l

∥∥∥
p
+
∥∥∥f̂l − f

∥∥∥
p
.

For any l ∈ H, we have∥∥∥f̂ĥ − f̂ĥ,l

∥∥∥
p
≤
[∥∥∥f̂l,ĥ − f̂ĥ

∥∥∥
p
−mp(l, ĥ)

]
+

+mp(l, ĥ)

≤ R̂l,p +m∗
p(ĥ) ≤ R̂l,p + R̂ĥ,p ≤ 2R̂l,p,

and ∥∥∥f̂ĥ,l − f̂l

∥∥∥
p
≤
[∥∥∥f̂ĥ,l − f̂l

∥∥∥
p
−mp(ĥ, l)

]
+

+mp(ĥ, l)

≤ R̂ĥ,p +m∗
p(l) ≤ R̂ĥ,p + R̂l,p ≤ 2R̂l,p.

Therefore, we get ∥∥∥f̂ĥ − f
∥∥∥
p
≤ 4R̂l,p +

∥∥∥f̂l − f
∥∥∥
p
, ∀l ∈ H.

For 2◦, we can obtain an upper bound for ER̂h,p using the upper bounds for bias and variance

parts of the kernel estimator with kernel Kh and Kh ∗Kl in Lemmas C.1.1, C.1.2 and C.3.1.

Recall that we use pϵ to denote p(ϵ, f, g) for simplicity. For any h ∈ H, by the bias-

variance decomposition, we can get

EpϵR̂h,p ≤ sup
l∈H

∥Bh,l(pϵ, t)−Bl(pϵ, t)∥p + Epϵ sup
l∈H

[
∥ξl,n(pϵ, t)∥p − dp(Kl)

]
+

+ Epϵ sup
l∈H

[
∥ξh,l,n(pϵ, t)∥p − dp(Kh ∗Kl)

]
+
+ Epϵm

∗
p(h).
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For the first term above, by Proposition 4.3.1, we have

sup
l∈H

∥Bh,l(pϵ, t)−Bl(pϵ, t)∥p ≤ ∥K∥1 ∥Bh(pϵ, ·)∥p . (C.3.7)

For any h ∈ H, f ∈ Pp(β0, L0), g ∈ Lp,d(L1), kernel K ∈ Kβ(LK) with β ≥ β0 (and thus

K ∈ Kβ0(2LK)), we have

∥Bh(pϵ, t)∥p ≤ (1− ϵ) ∥Bh(f, t)∥p + ϵ ∥Bh(g, t)∥p ≤ C

(
d∑

j=1

h
β0,j

j + ϵ

)
,

where C is some constant only depending on L0, L1, LK . (e.g. C can be (L0+L1)(2
dLd

K+1);

see ( C.2.1)-( C.2.3).)

To control the second and third terms, by Lemma C.3.1 (it is easy to check all the

assumptions are satisfied), we have

Epϵ sup
l∈H

[
∥ξl,n(pϵ, t)∥p − dp(Kl)

]
+
≤ δn,p, Epϵ sup

l∈H

[
∥ξh,l,n(pϵ, t)∥p − dp(Kh ∗Kl)

]
+
≤ δ̃n,p

for all large enough n and all p ∈ [1,∞).

Next we bound the last term Epϵm
∗
p(h). For p ∈ [1, 2], we know for any h ∈ H,

Epϵm
∗
p(h) = m∗

p(h) = rp(Kh) + sup
l∈H

rp(Kh ∗Kl) = Cpn
−1/q

(
∥Kh∥p + sup

l∈H
∥Kh ∗Kl∥p

)
≤ Cpn

−1/q

(
∥Kh∥p + sup

l∈H
∥Kl∥1∥Kh∥p

)
= Cpn

−1/q (1 + ∥K∥1) ∥Kh∥p ≤ C (nVh)
−1/q

(C.3.8)

for some constant C = CpL
d
K(1 + Ld

K). Therefore, for any p ∈ [1, 2], h ∈ H, f ∈ Pp(β0, L0),

g ∈ Pp(β1, L1) (or just Lp,d(L1)), we have

EpϵR̂h,p ≤ C

(
d∑

j=1

h
β0,j

j + (nVh)
−1/q + ϵ

)
+ δn,p + δ̃n,p ≲

d∑
j=1

h
β0,j

j + (nVh)
−1/q + ϵ

as the terms δn,p and δ̃n,p can be negligible if we assume Vmax ≤ c1/(log n)
p/2 for a sufficiently

small constant c1 in Theorem 4.5.1 (ii) (when p = 2). Therefore, based on the bounds of

four terms in the upper bound of EpϵR̂h,p, choosing hj = h∗j ≍ n
− β̄0

β0,j(q β̄0 +1) (noting that the
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oracle bandwidth h∗ is contained in H), we get ( C.3.5).

For p ∈ (2,∞), by ( C.3.3)-( C.3.4) in Lemma C.3.1, we get

Epϵm
∗
p(h) ≲ rp(Kh, pϵ) + sup

l∈H
rp(Kh ∗Kl, pϵ) + ζn,s + ζ̃n,p.

Again, the terms ζn,p and ζ̃n,p are negligible if we assume Vmax ≤ c1/(log n)
p/2 for a sufficiently

small constant c1. Some standard calculation shows for any h ∈ H,

rp(Kh, pϵ) ≲ n−1/2∥K2
h ∗ pϵ∥

1/2
p/2 ∨ n

−1/q∥Kh∥p ∨ n−1/2∥Kh∥2

≤ n−1/2∥Kh∥2∥pϵ∥1/2p/2 ∨ (nVh)
−1/q∥K∥p ∨ (nVh)

−1/2∥K∥2

≍ (nVh)
−1/2.

(C.3.9)

Here we have used Minkowski’s integral inequality (or Young’s convolution inequality) to

get ∥f1 ∗ f2∥s ≤ ∥f1∥1∥f2∥s for any s ∈ [1,∞). Similarly, for any h, l ∈ H, we can get

sup
l∈H

rp(Kh ∗Kl, pϵ) ≲ sup
l∈H

n−1/2(Vh ∨ Vl)−1/2 ≤ (nVh)
−1/2 (C.3.10)

as long as we notice that ∥Kh ∗ Kl∥s ≤ ∥Kl∥1∥Kh∥s = ∥K∥1∥Kh∥s for any s ∈ [1,∞) and

any h, l ∈ H. Combining the above inequalities, we finally get

EpϵR̂h,p ≲
d∑

j=1

h
β0,j

j + (nVh)
−1/2 + ϵ.

Choosing hj = h∗j ≍ n
− β̄0

β0,j(2 β̄0 +1) (notice that the oracle bandwidth h∗ is contained in H),

we get ( C.3.6). Combining the results in 1◦ and 2◦, we complete the proof of Theorem

4.5.1.
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C.4 Proofs of Proposition 4.3.1, Theorem 4.3.2 and Theorem 4.3.3

C.4.1 Proof of Proposition 4.3.1

Proof of Proposition 4.3.1. Standard calculation shows that

∥Ef [Kh ∗Kl](X − t)− EfKl(X − t)∥p

= ∥(Kh ∗Kl) ∗ f −Kl ∗ f∥p
(i)
= ∥Kl ∗ (Kh ∗ f)−Kl ∗ f∥p

(ii)

≤ ∥Kl∥1 ∥Kh ∗ f − f∥p = ∥K∥1 ∥EfKh(t−X)− f(t)∥p ,

where (i) is due to Fubini’s theorem and (ii) is due to Young’s inequality.

C.4.2 Proofs of Theorem 4.3.2 and Theorem 4.3.3

The proof of these two theorems follows the same strategy as the proof of Theorem 4.5.1:

1◦ First we prove ∥∥∥f̂ĥ − f
∥∥∥
p
≤ inf

h∈H

{
4R̂

(i)
h,p +

∥∥∥f̂h − f
∥∥∥
p

}
, i = 1, 2. (C.4.1)

2◦ For i = 1, 2, we show

inf
h∈H

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G)R̂
(i)
h,p ≲ n

− β̄0
q β̄0 +1 ∨ ϵ

q β̄0
q β̄0 +1 , for p ∈ [1, 2). (C.4.2)

inf
h∈H

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G)R̂
(i)
h,p ≲ n

− β̄0
2 β̄0 +1 ∨ ϵ

q β̄0
q β̄0 +1 , for p ∈ [2,∞). (C.4.3)
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Proof of Theorem 4.3.2. As we discussed, it suffices to show ( C.4.1)–( C.4.3) hold

for R̂
(1)
h,p. To prove ( C.4.1), we first notice that for any l ∈ H, we have the following

decomposition of ∥f̂ĥ − f∥p:∥∥∥f̂ĥ − f
∥∥∥
p
≤
∥∥∥f̂ĥ − f̂ĥ,l

∥∥∥
p
+
∥∥∥f̂ĥ,l − f̂l

∥∥∥
p
+
∥∥∥f̂l − f

∥∥∥
p
.

By the definition of R̂
(1)
h,p (4.3.1) and ĥ (4.3.2), it is easy to check that for any l ∈ H,∥∥∥f̂ĥ − f̂ĥ,l

∥∥∥
p
≤
[∥∥∥f̂l,ĥ − f̂ĥ

∥∥∥
p
− 2mp(l, ĥ)− (2 + 128Dp)mϵ,p(l, ĥ)

]
+

+ 2mp(l, ĥ) + (2 + 128Dp)mϵ,p(l, ĥ)

≤ R̂
(1)
l,p + 2m∗

p(ĥ) + (2 + 128Dp)m
∗
ϵ,p(ĥ) ≤ R̂

(1)
l,p + R̂

(1)

ĥ,p
≤ 2R̂

(1)
l,p ,

and ∥∥∥f̂ĥ,l − f̂l

∥∥∥
p
≤
[∥∥∥f̂ĥ,l − f̂l

∥∥∥
p
− 2mp(ĥ, l)− (2 + 128Dp)mϵ,p(ĥ, l)

]
+

+ 2mp(ĥ, l) + (2 + 128Dp)mϵ,p(ĥ, l)

≤ R̂
(1)

ĥ,p
+ 2m∗

p(l) + (2 + 128Dp)m
∗
ϵ,p(l) ≤ R̂

(1)

ĥ,p
+ R̂

(1)
l,p ≤ 2R̂

(1)
l,p .

Therefore, we obtain ∥∥∥f̂ĥ − f
∥∥∥
p
≤ 4R̂

(1)
l,p +

∥∥∥f̂l − f
∥∥∥
p
, ∀l ∈ H.

To obtain the desired results in 2◦, we consider Huber’s contamination model in the

form (4.1.2). Our overall idea is to decompose the kernel estimator into two parts: the part

consisting of the “clean” observations generated from the density f , and the part consisting

of the contaminated observations generated from G. We try to get the desired results for

the first part by applying Lemmas C.1.1 - C.3.1, and give the second part a bound related
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to the contamination proportion ϵ. Following this idea, we first decompose ∥ f̂h,l − f̂l ∥p as

follows:∥∥∥f̂h,l − f̂l

∥∥∥
p
≤ n1

n

∥∥∥∥∥ 1

n1

n1∑
i=1

(
[Kh ∗Kl](t−Xi)− Ef [Kh ∗Kl](t−X)

)∥∥∥∥∥
p

+
n1

n

∥∥∥∥∥ 1

n1

n1∑
i=1

(
Kl(t−Xi)− EfKl(t−X)

)∥∥∥∥∥
p

+
n1

n

∥∥∥∥Ef [Kh ∗Kl](t−X)− EfKl(t−X)

∥∥∥∥
p

+

∥∥∥∥ 1n
n∑

i=n1+1

[Kh ∗Kl](t−Xi)

∥∥∥∥
p

+

∥∥∥∥ 1n
n∑

i=n1+1

Kl(t−Xi)

∥∥∥∥
p

≤ ∥ξh,l,n1(f, t)∥p + ∥ξl,n1(f, t)∥p + ∥Bh,l(f, t)−Bl(f, t)∥p

+
n− n1

n

(
∥ Kh ∗Kl ∥p + ∥ Kl ∥p

)

(C.4.4)

for any h, l ∈ H, any p ∈ [1,∞). Applying Bernstein’s inequality (e.g. Theorem 2.8.4 in

Vershynin (2018)) to n−n1

n
, we get

P

(
n− n1

n
≥ 2ϵ

)
≤ exp{−1

4
nϵ}. (C.4.5)

Knowing that P (n−n1

n
≥ 2ϵ) is “small”, we consider

EPϵR̂
(1)
h,p = EPϵ

(
R̂

(1)
h,p :

n− n1

n
< 2ϵ

)
+ EPϵ

(
R̂

(1)
h,p :

n− n1

n
≥ 2ϵ

)
(C.4.6)

and mainly focus on the first term. Here for simplicity, we write Pϵ = P (ϵ, f, G) and will use

the notation Ē(·) = E
(
· : n−n1

n
< 2ϵ

)
:= E{(·)1(n−n1

n
< 2ϵ)} in what follows. Conditional

on the event {n−n1

n
< 2ϵ}, we have

n− n1

n

(
∥ Kh ∗Kl ∥p + ∥ Kl ∥p

)
≤ 2ϵ

(
(Vh ∨ Vl)−1/q + V

−1/q
l

)
(∥K∥1 + 1)∥K∥p = 2mϵ,p(h, l).

(C.4.7)

Therefore, by ( C.4.4), ( C.4.7) and the definition of R̂
(1)
h,p (4.3.1), we get, for any h ∈ H,

EPϵ

(
R̂

(1)
h,p :

n− n1

n
< 2ϵ

)
≤ sup

l∈H
∥Bh,l(f, t)−Bl(f, t)∥p + ĒPϵ sup

l∈H

[
∥ξl,n1(f, t)∥p

− 2dp(Kl) + ∥ξh,l,n1(f, t))∥p − 2dp(Kh ∗Kl)− 128Dpmϵ,p(h, l)

]
+

+ 2ĒPϵm
∗
p(h) + (2 + 128Dp)m

∗
ϵ,p(h).

(C.4.8)
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It is easy to check that

m∗
ϵ,p(h) = sup

l∈H
mϵ,p(l, h) ≤ 2(Ld

K + 1)2ϵV
−1/q
h , ∀h ∈ H, (C.4.9)

sup
l∈H

∥Bh,l(f, t)−Bl(f, t)∥p ≤ ∥K∥1 ∥Bh(f, t)∥p ≤ 2dL0L
2d
K

d∑
j=1

h
β0,j

j , ∀h ∈ H, (C.4.10)

for any f ∈ Np,d(β0, L0) and any K ∈ Kβ(LK) with β0 ≤ β (see Proposition 4.3.1 and

Lemma C.1.1, and notice that K ∈ Kβ0(2LK)).

Deriving the bounds for the remaining terms in ( C.4.8) is more involved , as we cannot

directly apply the results in Lemma C.3.1 to ξl,n1(f, t) and ξh,l,n1(f, t). We use ( C.3.1)

as an example to elaborate this point. Recall that the term dp(Kh) in ( C.3.1) (plug-in

s = p) , equals r̂p(Kh) for p ∈ (2,∞), which, by its definition (4.3.4), utilizes the whole data

set {X1, . . . , Xn} (including the contaminated data) and thus does not align with ξl,n1(f, t)

(defined for only the clean data generated from Pf ) in our setting. We take into account

the existence of contamination and generalize Lemma C.3.1 to get the following lemma. Its

proof is left at the end of this proof.

Lemma C.4.1. Under the conditions of Theorem 4.3.2, for any p ∈ [1,∞), any h ∈ H, we

have

(i)

ĒPϵ sup
l∈H

[
∥ξl,n1(f, t)∥p − 2dp(Kl) + ∥ξh,l,n1(f, t)∥p − 2dp(Kh ∗Kl)

− 128Dpmϵ,p(h, l)

]
+

≲ δn,p + δ̃n,p,

where δn,p, δ̃n,p are defined in Lemma C.3.1.

(ii)

ĒPϵm
∗
p(h) ≲

(nVh)
−1/q , p ∈ [1, 2]

(nVh)
−1/2 + ϵV

−1/q
h , p ∈ (2,∞).
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Combining the bounds ( C.4.8)-( C.4.10) with Lemma C.4.1, we obtain that for any

p ∈ [1,∞), h ∈ H,

EPϵ

(
R̂

(1)
h,p :

n− n1

n
< 2ϵ

)
≲

d∑
j=1

h
β0,j

j + ϵV
−1/q
h + (nVh)

−1/(q∨2) ,

since the terms δn,p and δ̃n,p are negligible if we assume Vmax ≤ c1/(log n)
p/2 for a sufficiently

small constant c1 for p ∈ (2,∞).

On the other hand, on the event {n−n1

n
≥ 2ϵ}, we may just derive some general upper

bounds of R̂
(1)
h,p for any h ∈ H since we know that P (n−n1

n
≥ 2ϵ) is “small”. It is easy to

check that for any p ∈ [1,∞), any h, l ∈ H, the following inequalities hold.

∥f̂l∥p =

∥∥∥∥∥ 1n
n∑

i=1

Kl(t−Xi)

∥∥∥∥∥
p

≤ ∥Kl∥p ≤ V
−1/q
l ∥K∥p,

∥f̂h,l∥p ≤ ∥Kh ∗Kl∥p ≤ (Vh ∨ Vl)−1/q∥K∥1∥K∥p,

dp(Kh) ≲ n−1

∥∥∥∥ n∑
i=1

K2
h(t−Xi)

∥∥∥∥1/2
p/2

∨ n−1/q∥Kh∥p ∨ n−1/2∥Kh∥2,

≤ n−1/2∥Kh∥p ∨ n−1/q∥Kh∥p ∨ n−1/2∥Kh∥2 ≍ n−1/2V
−1/q
h ∨ (nVh)

−1/(q∨2),

dp(Kh ∗Kl) ≲ n−1/2(Vh ∨ Vl)−1/q ∨ [n(Vh ∨ Vl)]−1/(q∨2),

m∗
p(h) = sup

l∈H
dp(Kh ∗Kl) + dp(Kh) ≲ n−1/2V

−1/q
h ∨ (nVh)

−1/(q∨2).

Therefore, for any p ∈ [1,∞), any h ∈ H, we have

R̂
(1)
h,p ≤ sup

l∈H

(∥∥∥f̂h,l∥∥∥
p
+
∥∥∥f̂l∥∥∥

p

)
+ 2m∗

p(h) + (2 + 128Dp)m
∗
ϵ,p(h)

≲ sup
l∈H

V
−1/q
l + n−1/2V

−1/q
h + (nVh)

−1/(q∨2) + ϵV
−1/q
h ≲ n1/q,

where we have used Vmin ≳ 1/n. Then by ( C.4.6), we have for any ϵ ≥ 8 logn
qn

,

EPϵR̂
(1)
h,p ≲

d∑
j=1

h
β0,j

j + ϵV
−1/q
h + (nVh)

−1/(q∨2) + n1/q exp

{
−1

4
nϵ

}

≲
d∑

j=1

h
β0,j

j + ϵV
−1/q
h + (nVh)

−1/(q∨2) , ∀h ∈ H.
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Choosing h ≍ h∗ where h∗j ≍ n
− β̄0

β0,j((q∨2) β̄0 +1) ∨ ϵ
q β̄0

β0,j(qβ̄0+1) , we achieve the desired bounds (

C.4.2) and ( C.4.3) for R̂
(1)
h,p. Here, it remains to check if the oracle bandwidth h∗ is contained

in H. In fact, one can check the condition h∗ ∈ H is naturally satisfied for p ∈ [1, 2). But

for p ∈ [2,∞), we need to further assume

ϵ
q

q β̄0 +1 ≲ (log n)−p/2, i.e. ϵ ≲ (log n)−
p(β̄0 +1)−1

2 ,

to guarantee Vh∗ ≍ n
− 1

(q∨2) β̄0 +1 ∨ ϵ
q

q β̄0 +1 ≲ Vmax ≲ (log n)−p/2 and thus h∗ ∈ H.

For the case when ϵ < 8 logn
qn

, one can show that there always exists some distribution G̃

such that

(1− ϵ)Pf + ϵG = (1− 8

q

log n

n
)Pf +

8

q

log n

n
G̃.

(e.g. pick G̃ := c(n)−ϵ
c(n)

Pf +
ϵ

c(n)
G, c(n) = 8 logn

qn
.) Therefore, we can equivalently think of the

contamination proportion as 8
q
logn
n

(with a different contamination distribution G̃). Similarly,

we can get

inf
h∈H

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G)R̂
(1)
h,p ≲ n

− β̄0
(q∨2) β̄0 +1 ∨

(
8 log n

qn

) q β̄0
q β̄0 +1

≍ n
− β̄0

(q∨2) β̄0 +1 ≲ n
− β̄0

(q∨2) β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 ,

(C.4.11)

which completes our proof.

Proof of Lemma C.4.1. (i) We define the following quantities with n replaced by n1 in

(4.3.3)-(4.3.5). Let

r̄s(U) := Csn
1/s−1
1 ∥ U ∥s, s ∈ [1, 2], (C.4.12)

where Cs = 128 for s ∈ [1, 2) and C2 = 100/3. When s ∈ (2,∞), we set

r̄s(U, pX) := 32Ds

{
n
−1/2
1

(∫ [∫
U2(t− x)pX(x)dx

]s/2
dt

)1/s

+ 2n
1/s−1
1 ∥ U ∥s

}
∨ 32n

−1/2
1 ∥ U ∥2,

(C.4.13)
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¯̂rs(U) := 32Ds

{
n
−1/2
1

(∫ [
1

n1

n1∑
i=1

U2(t−Xi)

]s/2
dt

)1/s

+ 2n
1/s−1
1 ∥ U ∥s

}
∨ 32n

−1/2
1 ∥ U ∥2 .

(C.4.14)

Define

d̄s(U) :=

r̄s(U), s ∈ [1, 2]

¯̂rs(U), s ∈ (2,∞).

(C.4.15)

Conditional on the event {n−n1

n
< 2ϵ}, we have n1 > (1−2ϵ)n ≥ n/2 assuming ϵ ≤ 1/4. (One

can check that our proof is valid as long as ϵ ≤ C < 1, though some very mild modification

might be needed.) Then for p ∈ [1, 2], by Lemma C.3.1, we have

ĒPϵ sup
l∈H

[
∥ξl,n1(f, t)∥p − 2dp(Kl)

]
+
≤ Ēf sup

l∈H

[
∥ξl,n1(f, t)∥p − d̄p(Kl)

]
+
≤ Ēδn1,p ≍ δn,p,

given the fact that d̄p(Kl) < 2dp(Kl) (for p ∈ [1, 2]) and δn1,p ≍ δn,p if we know n/2 < n1 ≤ n.

Similarly, we have

ĒPϵ sup
l∈H

[
∥ξh,l,n1(f, t)∥p − 2dp(Kh ∗Kl)

]
+
≲ δ̃n,p.

For p ∈ (2,∞), conditional on {n−n1

n
< 2ϵ}, for any l ∈ H, we have

2dp(Kl) = 2r̂p(Kl) = 32Dp

{
2n−1

∥∥∥∥∥
n∑

i=1

K2
l (t−Xi)

∥∥∥∥∥
1/2

p/2

+ 2 · 2n1/s−1 ∥ Kl ∥p
}
∨ 32 · 2n−1/2 ∥ Kl ∥2

≥ 32Dp

{
n−1
1

∥∥∥∥∥
n∑

i=1

K2
l (t−Xi)

∥∥∥∥∥
1/2

p/2

+ 2n
1/s−1
1 ∥ Kl ∥p

}
∨32n−1/2

1 ∥ Kl ∥2

≥ ¯̂rp(Kl)− 32Dpn
−1
1

∥∥∥∥ n∑
i=n1+1

K2
l (t−Xi)

∥∥∥∥1/2
p/2

≥ ¯̂rp(Kl)− 32Dp(n/2)
−1(n− n1)

∥∥K2
l

∥∥1/2
p/2

(as
√
n− n1 ≤ (n− n1))

≥ ¯̂rp(Kl)− 128Dpϵ∥Kl∥p ≥ ¯̂rp(Kl)− 128Dpϵ(Vl)
−1/q∥K∥p.
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Similarly, for any h, l ∈ H, we have

2dp(Kh ∗Kl) ≥ ¯̂rp(Kh ∗Kl)− 128Dpϵ∥Kh ∗Kl∥p

≥ ¯̂rp(Kl)− 128Dpϵ(Vl ∨ Vh)−1/q∥K∥1∥K∥p.

Therefore, for any h ∈ H, we obtain

ĒPϵ sup
l∈H

[
∥ξl,n1(f, t)∥p − 2dp(Kl) + ∥ξh,l,n1(f, t))∥p − 2dp(Kh ∗Kl)− 128Dpmϵ,p(h, l)

]
+

≤ Ēf sup
l∈H

[
∥ξl,n1(f, t)∥p − ¯̂rp(Kl)

]
+
+ Ēf sup

l∈H

[
∥ξh,l,n1(f, t)∥p − ¯̂rp(Kh ∗Kl)

]
+

≤ Ēδn1,p + Ēδ̃n1,p ≍ δn,p + δ̃n,p.

(ii) For p ∈ [1, 2], similar to ( C.3.8), we know for any h ∈ H,

ĒPϵm
∗
p(h) = m∗

p(h) ≲ (nVh)
−1/q .

For p ∈ (2,∞) and any h ∈ H,

ĒPϵdp(Kh) = ĒPϵ r̂p(Kh) ≲ n−1ĒPϵ

∥∥∥∥∥
n∑

i=1

K2
h(t−Xi)

∥∥∥∥∥
1/2

p/2

+ n−1/q∥Kh∥p + n−1/2∥Kh∥2

≤ Ēfn
−1/2
1

∥∥∥∥ 1

n1

n1∑
i=1

K2
h(t−Xi)

∥∥∥∥1/2
p/2

+ n−1ĒG

∥∥∥∥ n∑
i=n1+1

K2
h(t−Xi)

∥∥∥∥1/2
p/2

+ (nVh)
−1/q∥K∥p + (nVh)

−1/2∥K∥2

≲ Ēf
¯̂rp(Kh) + Ē

n− n1

n
∥K2

h∥
1/2
p/2 + (nVh)

−1/2

(a)

≲ rp(Kh, f) + ζn,p + ϵ∥Kh∥p + (nVh)
−1/2

(b)

≲ (nVh)
−1/2 + ϵV

−1/q
h .
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Here, (a) is due to the fact that Ēf
¯̂rp(Kh) ≲ rp(Kh, f)+ ζn,p by ( C.3.3) from Lemma C.3.1;

(b) follows from rp(Kh, f) ≲ (nVh)
−1/2 by ( C.3.9). Similarly, for any h ∈ H, we have

ĒPϵ sup
l∈H

dp(Kh ∗Kl) ≲ Ēf sup
l∈H

¯̂rp(Kh ∗Kl) + sup
l∈H

ϵ∥(Kh ∗Kl)
2∥1/2p/2 + sup

l∈H
n−1/2(Vh ∨ Vl)−1/2

(c)

≲ sup
l∈H

rp(Kh ∗Kl, f) + ζ̃n,p + sup
l∈H

ϵ∥Kh ∗Kl∥p + sup
l∈H

n−1/2(Vh ∨ Vl)−1/2

(d)

≲ sup
l∈H

n−1/2(Vh ∨ Vl)−1/2 + sup
l∈H

ϵ(Vh ∨ Vl)−1/q

≲ (nVh)
−1/2 + ϵV

−1/q
h .

Here, (c) follows from Ēf supl∈H
¯̂rp(Kh ∗ Kl) ≲ supl∈H rp(Kh ∗ Kl, f) + ζ̃n,p by ( C.3.4) in

Lemma C.3.1; (d) holds because rp(Kh ∗Kl, f) ≲ n−1/2(Vh ∨ Vl)−1/2 by ( C.3.9)–( C.3.10).

Therefore, we finally get

ĒPϵm
∗
p(h) = ĒPϵdp(Kh) + ĒPϵ sup

l∈H
dp(Kh ∗Kl) ≲ (nVh)

−1/2 + ϵV
−1/q
h , ∀h ∈ H, (C.4.16)

which completes our proof of the lemma.

Proof of Theorem 4.3.3. As mentioned in Section C.4.2, it suffices to show ( C.4.1)-(

C.4.3) hold for R̂
(2)
h,p.

1◦. By the triangular inequality, we have∥∥∥f̂ĥ − f
∥∥∥
p
≤
∥∥∥f̂ĥ − f̂ĥ,l

∥∥∥
p
+
∥∥∥f̂ĥ,l − f̂l

∥∥∥
p
+
∥∥∥f̂l − f

∥∥∥
p
, ∀l ∈ H.

By the definitions of R̂
(2)
h,p and ĥ, we obtain that for any l ∈ H,∥∥∥f̂ĥ − f̂ĥ,l

∥∥∥
p
≤
[∥∥∥f̂ĥ,l − f̂ĥ

∥∥∥
p
−mb(l)

]
+

+mb(l) ≤ R̂
(2)

ĥ,p
+mb(l) ≤ R̂

(2)

ĥ,p
+ R̂

(2)
l,p ≤ 2R̂

(2)
l,p ,

and∥∥∥f̂ĥ,l − f̂l

∥∥∥
p
≤
[∥∥∥f̂l,ĥ − f̂l

∥∥∥
p
−mb(ĥ)

]
+

+mb(ĥ) ≤ R̂
(2)
l,p +mb(ĥ) ≤ R̂

(2)
l,p + R̂

(2)

ĥ,p
≤ 2R̂

(2)
l,p .

Combining the above inequalities, we achieve ( C.4.1) for R̂
(2)
h,p.

2◦. Similar to ( C.4.4), for any p ∈ [1,∞), any h, l ∈ H, we have the following decompo-

sition of ∥ f̂h,l − f̂h ∥p:
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∥∥∥f̂h,l − f̂h

∥∥∥
p
≤ n1

n

∥∥∥∥∥ 1

n1

n1∑
i=1

(
[Kh ∗Kl](t−Xi)− Ef [Kh ∗Kl](t−X)

)∥∥∥∥∥
p

+
n1

n

∥∥∥∥∥ 1

n1

n1∑
i=1

(
Kh(t−Xi)− EfKh(t−X)

)∥∥∥∥∥
p

+
n1

n

∥∥∥∥Ef [Kh ∗Kl](t−X)− EfKh(t−X)

∥∥∥∥
p

+

∥∥∥∥ 1n
n∑

i=n1+1

[Kh ∗Kl](t−Xi)

∥∥∥∥
p

+

∥∥∥∥ 1n
n∑

i=n1+1

Kh(t−Xi)

∥∥∥∥
p

≤ ∥ξh,l,n1(f, t)∥p + ∥ξh,n1(f, t)∥p + ∥Bh,l(f, t)−Bh(f, t)∥p

+
n− n1

n

(
∥ Kh ∗Kl ∥p + ∥ Kh ∥p

)
.

(C.4.17)

By Proposition 4.3.1 and the result of Lemma C.1.1, we have

∥Bh,l(f, t)−Bh(f, t)∥p ≤ ∥K∥1 ∥Bl(f, t)∥p

≤ ∥K∥1L0(2LK)
d

d∑
j=1

l
β0,j

j ≤ mb(l), ∀h, l ∈ H,

for any f ∈ Np,d(β0, L0) and K ∈ Kβ(LK) with β0 ≤ β (and thus K ∈ Kβ0(2LK)). Therefore,

by the definition of R̂
(2)
h,p, we have

EPϵR̂
(2)
h,p ≤ EPϵ sup

l∈H
[∥ξh,l,n1(f, t)∥p + ∥ξh,n1(f, t)∥p]

+ EPϵ sup
l∈H

n− n1

n

(
∥ Kh ∗Kl ∥p + ∥ Kh ∥p

)
+mb(h), ∀h ∈ H.

Notice that for any p ∈ [1,∞), h ∈ H, it holds

EPϵ sup
l∈H

n− n1

n

(
∥ Kh ∗Kl ∥p + ∥ Kh ∥p

)
= ϵ
(
sup
l∈H

∥ Kh ∗Kl ∥p + ∥ Kh ∥p
)

≤ ϵ
(
sup
l∈H

∥ Kl ∥1∥ Kh ∥p + ∥ Kh ∥p
)
≲ ϵV

−1/q
h .

In Lemma C.1.2, let pX = f , then for any p ∈ [1,∞), h ∈ H, we have

EPϵ∥ξh,n1(f, t)∥p = E

{
Ef

[
∥ξh,n1(f, t)∥p

∣∣∣∣n1

]}
≲ (nVh)

−1/(q∨2).

It remains to obtain an upper bound of EPϵ supl∈H∥ξh,l,n1(f, t)∥p. Using the results of Lemma

C.3.1 and the concentration inequality on n1 ( C.4.5), we can get the following lemma.
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Lemma C.4.2. For any h ∈ H, any ϵ ∈ [0, 1/4], we have

EPϵ sup
l∈H

∥ξh,l,n1(f, t)∥p ≲ (nVh)
−1/(q∨2) + n1/q exp

{
−1

4
nϵ

}
.

Combining the above inequalities, we obtain that when ϵ > 8 logn
qn

,

EPϵR̂
(2)
h,p ≲

d∑
j=1

h
β0,j

j + ϵV
−1/q
h + (nVh)

−1/(q∨2) + n1/q exp

{
−1

4
nϵ

}

≲
d∑

j=1

h
β0,j

j + ϵV
−1/q
h + (nVh)

−1/(q∨2) , ∀h ∈ H.

Choosing h ≍ h∗(h∗ ∈ H is guaranteed by ϵ ≲ (log n)−
p(β̄0 +1)−1

2 ) where h∗j ≍ n
− β̄0

β0,j((q∨2) β̄0 +1) ∨

ϵ
q β̄0

β0,j(qβ̄0+1) , we get ( C.4.2) and ( C.4.3) for R̂
(2)
h,p.

When ϵ ≤ 8 logn
qn

, similar to what we did in the proof of Theorem 4.3.2, we can find some

distribution G̃ such that

(1− ϵ)Pf + ϵG = (1− 8

q

log n

n
)Pf +

8

q

log n

n
G̃

(e.g. pick G̃ := c(n)−ϵ
c(n)

Pf +
ϵ

c(n)
G, c(n) = 8 logn

qn
). Therefore, we may equivalently think of the

contamination proportion as 8
q
logn
n

(with a different contamination distribution G̃), and still

get ( C.4.2) and ( C.4.3) for R̂
(2)
h,p (see ( C.4.11)).

Proof of Lemma C.4.2. We consider

EPϵ sup
l∈H

∥ξh,l,n1(f, t)∥p =EPϵ

(
sup
l∈H

∥ξh,l,n1(f, t)∥p :
n− n1

n
< 2ϵ

)
+ EPϵ

(
sup
l∈H

∥ξh,l,n1(f, t)∥p :
n− n1

n
≥ 2ϵ

)
We remind the readers of the notation Ē(·) = E

(
· : n−n1

n
< 2ϵ

)
:= E{(·)1(n−n1

n
< 2ϵ)}.

Recall the definition of r̄s(U), r̄s(U, pX), ¯̂rs(U), d̄s(U) in ( C.4.12)-( C.4.15) for all s ∈ [1,∞).
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Conditional on the event {n−n1

n
< 2ϵ}

(
⊆ {n/2 ≤ n1 ≤ n}

)
, by Lemma C.3.1 (i) and

(ii), for any p ∈ [1, 2], any h ∈ H, we have

ĒPϵ sup
l∈H

∥ξh,l,n1(f, t)∥p ≤ Ēf sup
l∈H

[∥ξh,l,n1(f, t)∥p − r̄p(Kh ∗Kl)]+ + sup
l∈H

r̄p(Kh ∗Kl)

≤ Ēδ̃n1,p + sup
l∈H

Cp(n/2)
−1/q∥Kl∥1∥Kh∥p

≍ δ̃n,p + (nVh)
−1/q.

For any p ∈ (2,∞), any h ∈ H, we have

ĒPϵ sup
l∈H

∥ξh,l,n1(f, t)∥p ≤ Ēf sup
l∈H

[
∥ξh,l,n1(f, t)∥p − ¯̂rp(Kh ∗Kl)

]
+
+ Ēf sup

l∈H
¯̂rp(Kh ∗Kl)

≲ Ēδ̃n1,p + Ē sup
l∈H

r̄p(Kh ∗Kl, f) + Ēζ̃n1,p (by ( C.3.2) and ( C.3.4))

≍ δ̃n,p + sup
l∈H

rp(Kh ∗Kl, f) + ζ̃n,p

≲ δ̃n,p + (nVh)
−1/2 + ζ̃n,p. (by ( C.3.10))

For p ∈ [2,∞), if we set Vmax ≤ c1/(log n)
p/2 for a sufficiently small constant c1, then the

terms δ̃n,p and ζ̃n,p will be dominated by (nVh)
−1/(q∨2). Therefore, we have

ĒPϵ sup
l∈H

∥ξh,l,n1(f, t)∥p ≲ (nVh)
−1/(q∨2), ∀h ∈ H.

Notice that

sup
l∈H

∥ξh,l,n1(f, t)∥p = sup
l∈H

∥∥∥∥∥ 1

n1

n1∑
i=1

(
[Kh ∗Kl](t−Xi)− Ef [Kh ∗Kl](t−X)

)∥∥∥∥∥
p

≤ sup
l∈H

∥Kh ∗Kl∥p + sup
l∈H

∥Ef [Kh ∗Kl](t−X)∥p

≤ sup
l∈H

∥Kh ∗Kl∥p + sup
l∈H

∥Kh ∗Kl∥p ∥f∥1 (by Young’s inequality)

≤ 2 sup
l∈H

∥Kl∥1 ∥Kh∥p ≲ V
−1/q
h ≲ n1/q, ∀h ∈ H.

The above inequalities and the concentration inequality on n1 ( C.4.5) yield the result in

Lemma C.4.2.
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C.5 Proof of Theorem 4.3.4

Proof of Theorem 4.3.4. Let h∗ be the oracle bandwidth. We know h∗j ≍ n
− β̄0

β0,j((q∨2)β̄0+1)∨

ϵ
q β̄0

β0,j(qβ̄0+1) for j = 1, . . . , d, and Vh∗ ≍ n
− 1

(q∨2)β̄0+1 ∨ ϵ
q

q β̄0 +1 . Then under the assumption

ϵ ≲ (log n)−
p(β̄0 +1)−1

2 , we can guarantee that h∗ ∈ H, which is defined in (4.3.14). Our

strategy is to prove ĥ ≤ h∗ (i.e. Vĥ ≤ Vh∗) with high probability, then conditional on event

{ĥ ≤ h∗}, it is easy to show E ∥ f̂ĥ − f ∥p≲ E ∥ f̂h∗ − f ∥p by the definition of ĥ (4.3.15).

The proof of P (ĥ > h∗) being “small” relies essentially on the concentration inequalities

in Lemma C.3.1. In order to use the results in Lemma C.3.1 (requiring the existence of

density), we consider Huber’s contamination model in the form (4.1.2).

We will use P̄ and Ē to denote probability and expectation conditional on the event

{n−n1

n
< 2ϵ}. That is, Ē(·) = E{(·)1(n−n1

n
< 2ϵ)} (as defined before), P̄ (·) = E{1(·)1(n−n1

n
<

2ϵ)}.

For any p ∈ [1,∞), any bandwidth h > 0, we always have the following decomposition

of ∥ f̂h − f ∥p:

∥ f̂h − f ∥p ≤
∥∥∥∥ 1n

n1∑
i=1

(
Kh(t−Xi)− EfKh(t−X)

)∥∥∥∥
p

+

∥∥∥∥n1

n

(
EfKh(t−X)− f(t)

)∥∥∥∥
p

+

∥∥∥∥n1

n
f − f

∥∥∥∥
p

+

∥∥∥∥ 1n
n∑

i=n1+1

Kh(t−Xi)

∥∥∥∥
p

≤∥ ξh,n1(f, t) ∥p + ∥ Bh(f, t) ∥p +
n− n1

n

(
∥ f ∥p + ∥ Kh ∥p

)
By Lemma C.1.1, for any kernel K ∈ Kβ(LK) with β ≥ β0 (and thus K ∈ Kβ0(2LK)), we

know

∥Bh(f, t)∥p ≤ L0(2LK)
d

d∑
j=1

h
β0,j

j = L02
dLd

KdV
β̄0
h , ∀h ∈ H.

Conditional on the event {n−n1

n
< 2ϵ}, we have

n− n1

n

(
∥ f ∥p + ∥ Kh ∥p

)
≤ 2ϵ

(
L0 + Ld

KV
−1/q
h

)
.
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Then for any h, l ∈ H, h ≤ l, we have

∥ f̂h − f̂l ∥p≤∥ f̂h − f ∥p + ∥ f − f̂l ∥p≤∥ ξh,n1(f, t) ∥p + ∥ ξl,n1(f, t) ∥p +C0(V
β̄0
l + ϵV

−1/q
h ),

where C0 = 8d · 2d(L0 ∨ 1)(Ld
K ∨ 1). By the definition of ĥ, we know

P̄ (ĥ > h∗) ≤ P̄

(
∃l ≥ h∗, l ∈ H s.t. ∥ f̂h∗ − f̂l ∥p> c0V

β̄0
l

)
.

Noting that ϵV
−1/q
h∗ ≤ V

β̄0
h∗ ≤ V

β̄0
l for any l ≥ h∗, we have

P̄ (ĥ > h∗) ≤
∑

l≥h∗,l∈H

P̄

(
∥ ξl,n1(f, t) ∥p + ∥ ξh∗,n1(f, t) ∥p>

c0
2
V

β̄0
l

)
,

whenever C0 ≤ c0/4. Notice that (nVl)
−1/(q∨2) ≤ (nVh∗)−1/(q∨2) ≤ V

β̄0
h∗ ≤ V

β̄0
l for any l ≥ h∗;

hence, we have

P̄ (ĥ > h∗) ≤ 2|H|P̄max, P̄max := max
l≥h∗,l∈H

P̄

(
∥ ξl,n1(f, t) ∥p>

c0
4
(nVl)

−1/(q∨2)
)
.

It is not straightforward to use Lemma C.3.1 to bound P̄max as it involves r̂p(Kl) for p ∈

(2,∞), which, by its definition (4.3.4), relies on the whole data set {X1, . . . , Xn} (including

the contaminated data) and thus does not align with ξl,n1(f, t) (defined for only the clean

data generated from Pf ) in our setting. We use some iterative trick to get rid of r̂p(Kl) and

show the final bound of P̄max in the following lemma. Its proof is left at the end.

Lemma C.5.1. Under the conditions of Theorem 4.3.4, we have P̄max ≲ n−2/q.

Using this lemma, we get the following bound conditional on the event {n−n1

n
< 2ϵ}:

Ē ∥ f̂ĥ − f ∥p ≤ Ē(∥ f̂ĥ − f ∥p: ĥ ≤ h∗) + Ē(∥ f̂ĥ − f ∥p: ĥ > h∗)

(i)

≤ Ē(∥ f̂ĥ − f̂h∗ ∥p: ĥ ≤ h∗) + Ē(∥ f̂h∗ − f ∥p: ĥ ≤ h∗)+

Ē{(∥ Kĥ ∥p + ∥ f ∥p)1(ĥ > h∗)}
(ii)

≤ c0V
β̄0
h∗ + E ∥ f̂h∗ − f ∥p +(Ld

Kn
1/q + L0)P̄ (ĥ > h∗)

≲ V
β̄0
h∗ + ϵV

−1/q
h∗ + (nVh∗)−1/(q∨2) + n1/q|H|P̄max

(iii)

≲ n
− β̄0

(q∨2) β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1 .
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In (i) and (ii), we have used the fact that ∥ f̂ĥ − f ∥p≤∥ Kĥ ∥p + ∥ f ∥p≤ Ld
KV

1/q

ĥ
+ L0 ≤

Ld
Kn

1/q+L0 for ĥ ∈ H. (iii) is due to that n1/q|H|P̄max ≲ log n ·n−1/q ≲ n
− β̄0

(q∨2) β̄0 +1 . Finally,

we get

E ∥ f̂ĥ − f ∥p ≤ E

(
∥ f̂ĥ − f ∥p:

n− n1

n
< 2ϵ

)
+ E

(
∥ f̂ĥ − f ∥p:

n− n1

n
≥ 2ϵ

)
≲ n

− β̄0
(q∨2) β̄0 +1 ∨ ϵ

q β̄0
q β̄0 +1 + (Ld

Kn
−1/q + L0)P

(
n− n1

n
≥ 2ϵ

)
≲ n

− β̄0
(q∨2) β̄0 +1 ∨ ϵ

q β̄0
q β̄0 +1 + n1/q exp{−1

4
nϵ} (by ( C.4.5))

≲ n
− β̄0

(q∨2) β̄0 +1 ∨ ϵ
q β̄0

q β̄0 +1

for any ϵ > 8 logn
qn

. If ϵ ≤ 8 logn
qn

, similar to what we did at the end of the proofs of Theorems

4.3.2 and 4.3.3, we can find some distribution G̃ such that

(1− ϵ)Pf + ϵG = (1− 8

q

log n

n
)Pf +

8

q

log n

n
G̃.

(e.g. pick G̃ := c(n)−ϵ
c(n)

Pf + ϵ
c(n)

G, c(n) = 8 logn
qn

.) Thus we may equivalently treat the

contamination proportion as 8
q
logn
n

and still get the above result (similar to ( C.4.11)).

Proof of Lemma C.5.1. Recall the definition of r̄s(U), r̄s(U, pX), ¯̂rs(U), d̄s(U) in (

C.4.12)-( C.4.15) for all s ∈ [1,∞). In this proof, all the inequalities are conditional on

{n−n1

n
< 2ϵ} ⊂ {n/2 ≤ n1 ≤ n} (assuming that ϵ ≤ 1/4) and we will use the condition

{n/2 ≤ n1 ≤ n} from place to place.

(i) For any p ∈ [1, 2], any l ∈ H, we know r̄p(Kl) ≤ 128n
−1/q
1 ∥Kl∥p ≤ 256Ld

K(nVl)
−1/q,

conditional on {n−n1

n
< 2ϵ} ⊂ {n/2 ≤ n1 ≤ n}. If 256Ld

K < c0/8, then

P̄max ≤ max
l≥h∗,l∈H

P̄

(
∥ ξl,n1(f, t) ∥p −r̄p(Kl) >

c0
8
(nVl)

−1/q

)
≤ max

l≥h∗,l∈H

8

c0
(nVl)

1/qĒf sup
l∈H

[∥ ξl,n1(f, t) ∥p −r̄p(Kl)]+ ≤ n1/qĒδn1,p ≍ n1/qδn,p ≲ n−2/q.

(ii) For p ∈ (2,∞), we will first assume p ∈ (2, 4] and illustrate our main idea through

the proof for this simple case and then use the same idea to deal with the general case where

p ∈ (2m, 2m+1] for any m ∈ N.
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(a) p ∈ (2, 4]. From the definition ( C.4.13) of r̄s(U, pX), we know for any s ∈ (2,∞),

function U and density pX , the following inequality holds

r̄s(U, pX) ≤ 256Ds

{
n−1/2∥U2 ∗ pX∥1/2s/2 ∨ n

1/s−1∥U∥s ∨ n−1/2∥U∥2
}

≤ 256Ds

{
n−1/2∥U2∥1/21 ∥pX∥1/2s/2 ∨ n

1/s−1∥U∥s ∨ n−1/2∥U∥2
}

≤ 256Ds(∥pX∥1/2s/2 ∨ 1)
{
n1/s−1∥U∥s ∨ n−1/2∥U∥2

}
.

(C.5.1)

Then for r̄p(Kl, f), since ∥ f ∥1/2p/2≤∥ f ∥
p−2

2(p−1)
p ≤ L0 ∨ 1, we know

r̄p(Kl, f) ≤ Cp(nVl)
−1/2,

where Cp = 256DpL
d
K(L0 ∨ 1). If Cp ≤ c0/8, then for any l ∈ H,

P̄

(
∥ ξl,n1(f, t) ∥p>

c0
4
(nVl)

−1/2

)
≤P̄
(

∥ ξl,n1(f, t) ∥p −¯̂rp(Kl) >
c0
16

(nVl)
−1/2

)
+ P̄

(
¯̂rp(Kl)− r̄p(Kl, f) >

c0
16

(nVl)
−1/2

)
:= Γl,0 + Γl,1.

(C.5.2)

By Lemma C.3.1 (iii), we know for any p ∈ (2,∞),

Γl,0 ≤
16

c0
(nVl)

1/2Ēf sup
l∈H

[∥ ξl,n1(f, t) ∥p −¯̂rp(Kl)]+ ≲ n1/2Ēδn1,p ≍ n1/2δn,p. (C.5.3)

For the second term Γl,1, by the definition of ¯̂rp(Kl), r̄p(Kl, f), we have

¯̂rp(Kl)− r̄p(Kl, f) ≤ 32Dpn
−1/2
1

∣∣∣∣∣
∥∥∥∥ 1

n1

n1∑
i=1

K2
l (t−Xi)

∥∥∥∥1/2
p/2

−
∥∥∥∥EfK

2
l (t−X)

∥∥∥∥1/2
p/2

∣∣∣∣∣
≤ 64Dpn

−1/2

∥∥∥∥ 1

n1

n1∑
i=1

[
K2

l (t−Xi)− EfK
2
l (t−X)

] ∥∥∥∥1/2
p/2

.

(C.5.4)

Define

ξ
(1)
l,n1

(f, t) :=
1

n1

n1∑
i=1

[
K2

l (t−Xi)− EfK
2
l (t−X)

]
.

Then for any p ∈ (2,∞), we have

Γl,1 ≤ P̄

(
∥ξ(1)l,n1

(f, t)∥p/2 > c
(1)
0 V −1

l

)
, (C.5.5)

141



where c
(1)
0 :=

(
c0

210Dp

)2
.

Notice that ξ
(1)
l,n1

(f, t) represents the variance part for the kernel estimator 1
n1

∑n1

i=1K
2
l (Xi−t)

with the kernel K2. (We possibly need to multiply K2 by a normalization constant C =

1/
∫
K2 to make it a real kernel. But one can easily check that this normalization constant

won’t affect any following result since we essentially only care about the asymptotic rates in

the following bounds. Therefore, for simplicity, we still use K2 to denote the kernel CK2.)

Also, when p ∈ (2, 4], p/2 ∈ (1, 2]; hence, we can use Lemma C.3.1 (i) or (ii) directly (with-

out involving ¯̂rp/2(K
2
l )) to get a bound related to ∥ ξ(1)l,n1

(f, t) ∥p/2. It is easy to check the

kernel K2 still satisfies the assumptions (K1) and (K2) in Lemma C.3.1 (with some new

parameters LK , k∞ though). Therefore, for any l ∈ H, we have

P̄

(
∥ξ(1)l,n1

(f, t)∥p/2 > c
(1)
0 V −1

l

)
≤ P̄

(
∥ξ(1)l,n1

(f, t)∥p/2 − r̄p/2(K
2
l ) >

c
(1)
0

2
V −1
l

)
≤ 2Vl

c
(1)
0

Ē sup
l∈H

[
∥ξ(1)l,n1

(f, t)∥p/2 − r̄p/2(K
2
l )
]
+

≲ Ēδn1,p/2 ≍ δn,p/2.

Here we have used the fact that for p ∈ (2, 4],

r̄p/2(K
2
l ) ≤ 128n

2/p−1
1 ∥K2

l ∥p/2 ≤ 256L2d
Kn

2/p−1V
2/p−2
l ≤ c

(1)
0

2
V −1
l ,

whenever 256L2d
K ≤ c

(1)
0

2
and nVl ≥ 1. Therefore, we get

P̄max ≤ max
l≥h∗,l∈H

{Γl,0 + Γl,1} ≲ n1/2δn,p + δn,p/2 ≲ n−2/q,

as Vmax ≤ c1/(log n)
p/2 and we can make δn,p = o(n−3) by setting c1 sufficiently small.

For p ∈ (2, 4), δn,p/2 ≍ exp{−Cn4/p−1} decays exponentially with n. For p = 4, Vmax ≤

c1/(log n)
p/2 ≤ c1/ log n and we can make δn,p/2 = δn,2 = o(n−2/q) by setting c1 sufficiently

small.

(b) More generally, for any p ∈ (2,∞), we may assume that p ∈ (2m, 2m+1] for some in-

teger m ≥ 1. We will show
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1◦ For any l ∈ H, any p ∈ (2m,∞), we have

P̄

(
∥ ξl,n1(f, t) ∥p>

c0
4
(nVl)

−1/2

)
≲ n1/2δn,p + δn,p/2 + . . .+ δn,p/2m−1

+ P̄

(
∥ ξ(m)

l,n1
(f, t) ∥p/2m> c

(m)
0

n2m−1−1

V 2m−1

l

)
,

(C.5.6)

where

ξ
(k)
l,n1

(f, t) :=
1

n1

n1∑
i=1

[K2k

l (t−Xi)− EfK
2k

l (t−X)],

and c
(k+1)
0 :=

(
c
(k)
0

256D
p/2k

)2

, for k ≥ 1 and c
(1)
0 :=

(
c0

210Dp

)2
as defined before.

2◦ For any l ∈ H, any p ∈ (2m, 2m+1], we have

P̄

(
∥ ξ(m)

l,n1
(f, t) ∥p/2m> c

(m)
0

n2m−1−1

V 2m−1

l

)
≲ δn,p/2m .

Note that with 1◦ and 2◦, one can immediately obtain the following inequality with Vmax ≤

c1/(log n)
p/2 for a sufficiently small c1,

P̄max ≲ n1/2δn,p + δn,p/2 + . . .+ δn,p/2m−1 + δn,p/2m ≲ n−2/q.

Thus, it suffices to show 1◦ and 2◦.

Proof of 1◦: For m = 1, by ( C.5.2), ( C.5.3) and ( C.5.5) in (a), we actually have shown

that for any p ∈ (2,∞),

P̄

(
∥ ξl,n1(f, t) ∥p>

c0
4
(nVl)

−1/2

)
≤ Γl,0 + Γl,1 ≲ n1/2δn,p + P̄

(
∥ξ(1)l,n1

(f, t)∥p/2 > c
(1)
0 V −1

l

)
.

Assume that ( C.5.6) holds for any p ∈ (2k,∞) (the case m = k and k ≥ 1). Then if we can

show for any p ∈ (2k+1,∞) (the case m = k + 1),

P̄

(
∥ ξ(k)l,n1

(f, t) ∥p/2k> c
(k)
0

n2k−1−1

V 2k−1

l

)
≲ δn,p/2k + P̄

(
∥ ξ(k+1)

l,n1
(f, t) ∥p/2k+1> c

(k+1)
0

n2k−1

V 2k
l

)
,

(C.5.7)
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then by induction on m, ( C.5.6) holds for any p ∈ (2m,∞) and any integer m ≥ 1. Thus,

it suffices to show ( C.5.7) holds for any p ∈ (2k+1,∞). Noticing that p/2k ∈ (2,∞), by (

C.5.1), we have

r̄p/2k
(
K2k

l , f
)
≤ 256Dp/2k(∥f∥

1/2

p/2k+1 ∨ 1)

{
n

2k

p
−1
∥∥∥K2k

l

∥∥∥
p/2k

∨ n−1/2
∥∥∥K2k

l

∥∥∥
2

}
≤ 256Dp/2k(L0 ∨ 1)

{
(nVl)

2k

p
−1V 1−2k

l ∥K∥2
k

p ∨ (nVl)
−1/2V 1−2k

l ∥K∥2
k

2k+1

}
≤ 256Dp/2k(L0 ∨ 1)(LK ∨ 1)dp(nVl)

−1/2V 1−2k

l .

Here, we have used the fact ∥f∥s/2 ≤ ∥f∥
s−2
s−1
s ≤ ∥f∥s ∨ 1 for any s > 2 and any density f

with ∥f∥s <∞. With 256Dp/2k(L0 ∨ 1)(LK ∨ 1)dp ≤ c
(k)
0 /2 and nVl ≥ 1, we have

P̄

(∥∥∥ξ(k)l,n1
(f, t)

∥∥∥
p/2k

> c
(k)
0

n2k−1−1

V 2k−1

l

)
≤P̄
(

∥ ξ(k)l,n1
(f, t) ∥p/2k −¯̂rp/2k

(
K2k

l

)
>
c
(k)
0

4

n2k−1−1

V 2k−1

l

)
+ P̄

(
¯̂rp/2k

(
K2k

l

)
− r̄p/2k

(
K2k

l , f
)
>
c
(k)
0

4

n2k−1−1

V 2k−1

l

)
:= Γl,k + Γl,k+1.

By Lemma C.3.1 (iii), we know for any p ∈ (2k+1,∞),

Γl,k ≤
4

c
(k)
0

V 2k−1

l

n2k−1−1
Ēf sup

l∈H

[
∥ ξ(k)l,n1

(f, t) ∥p/2k −¯̂rp/2k
(
K2k

l

)]
+
≲ Ēδn1,p/2k ≍ δn,p/2k . (C.5.8)

For Γl,k+1, similar to ( C.5.4), we have

¯̂rp/2k
(
K2k

l

)
− r̄p/2k

(
K2k

l , f
)

≤ 64Dp/2kn
−1/2

∥∥∥∥ 1

n1

n1∑
i=1

[
K2k+1

l (t−Xi)− EfK
2k+1

l (t−X)
] ∥∥∥∥1/2

p/2k+1

= 64Dp/2kn
−1/2

∥∥∥ξ(k+1)
l,n1

(f, t)
∥∥∥1/2
p/2k+1

.

Therefore,

Γl,k+1 ≤ P̄

(
64Dp/2kn

−1/2
∥∥∥ξ(k+1)

l,n1
(f, t)

∥∥∥1/2
p/2k+1

>
c
(k)
0

4

n2k−1−1

V 2k−1

l

)
≤ P̄

(∥∥∥ξ(k+1)
l,n1

(f, t)
∥∥∥
p/2k+1

> c
(k+1)
0

n2k−1

V 2k
l

)
,
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where c
(k+1)
0 :=

(
c
(k)
0

256D
p/2k

)2

.

Proof of 2◦: For p ∈ (2m, 2m+1], we know p/2m ∈ (1, 2], and thus we may introduce

r̄p/2m
(
K2m

l

)
and then use the results in Lemma C.3.1 (i) or (ii). Notice that

r̄p/2m
(
K2m

l

)
≤ 128n

2m

p
−1

1

∥∥K2m

l

∥∥
p/2m

≤ 256n
2m

p
−1 ∥Kl∥2

m

p

≤ 256(LK ∨ 1)dp(nVl)
2m

p
−1V 1−2m

l ≤ 256(LK ∨ 1)dpV 1−2m

l .

Therefore, with 256(LK ∨ 1)dp ≤ c
(m)
0 /2, by Lemma C.3.1 (i) or (ii), we have

P̄

(∥∥∥ξ(m)
l,n1

(f, t)
∥∥∥
p/2m

> c
(m)
0

n2m−1−1

V 2m−1

l

)
≤ P̄

(∥∥∥ξ(m)
l,n1

(f, t)
∥∥∥
p/2m

− r̄p/2m
(
K2m

l

)
>
c
(m)
0

2

n2m−1−1

V 2m−1

l

)
≤ 2

c
(m)
0

V 2m−1

l

n2m−1−1
Ēf sup

l∈H

[∥∥∥ξ(m)
l,n1

(f, t)
∥∥∥
p/2m

− r̄p/2m
(
K2m

l

)]
+

≲ Ēδn1,p/2m ≍ δn,p/2m ,

which completes the proof of the lemma.

C.6 Proof of Theorem 4.3.5

Proof of Theorem 4.3.5. We prove it by contradiction. Assume that for some j ∈

{1, . . . , d} and some positive functions R1(·) and R2(·), there exists an estimator f̂ that is

(R1(·), R2(·))-rate adaptive with respect to {β0,j, ϵ}. For simplicity, we assume j = 1. From

the Definition 4.3.1, we know that there exist three constants C0, C1, C2 such that for any

β0,1 ≤ C1, ϵ ≤ C2, n ≥ 1, we have

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ − f ∥p≤ C0

(
n−R1(β0) ∨ ϵR2(β0)

)
. (C.6.1)

For any β0,1, β̃0,1 ≤ C1, we pick a function f0 ∈ Pp(β0, L0/2) ∩ Pp(β̃0, L0/2), where

β̃0 = (β̃0,1, β0,2, . . . , β0,d)
′. For example, we can choose f0(x) = γd0

∏d
j=1 ϕ0(γ0xj) where ϕ0

145



is some infinitely differentiable density function on R with a compact support and γ0 is a

sufficiently small number.

Let

g0(x) =
1

ϵ
γd0V

¯̃
β0− 1

p

h

d∏
j=1

ϕ0

(γ0xj
hj

)
,

where hj = ϵ
q
¯̃
β0

β̃0,j(q
¯̃
β0+1) and Vh =

∏d
j=1 hj = ϵ

q

q
¯̃
β0+1 .

It is easy to check that g0 is a density function on Rd and ϵg0 ∈ Np,d(β̃0, L0/2) (similar to

part (a) or (b) in the proof of Theorem 4.2.4) if γ0 is sufficiently small. Let

f̃0 = (1− ϵ)f0 + ϵg0.

Then f̃0 is a density function in Pp(β̃0, L0). By our construction, we actually get

P (ϵ, f0, G0) = P (0, f̃0, G̃0),

where G0 = Pg0 and G̃0 is an arbitrary distribution on Rd. Notice that f0 ∈ Pp(β0, L0) and

f̃0 ∈ Pp(β̃0, L0). Consequently, we have

sup
f∈Pp,d(β0,L0)

G

EP (ϵ,f,G) ∥ f̂ − f ∥p + sup
f∈Pp,d(β̃0,L0)

G

EP (0,f,G) ∥ f̂ − f ∥p

≥ EP (ϵ,f0,G0) ∥ f̂ − f0 ∥p +EP (0,f̃0,G̃0)
∥ f̂ − f̃0 ∥p

≥ ∥f0 − f̃0∥p ≥ ∥ϵg0∥p − ∥ϵf0∥p = γ
d/q
0 ∥ϕ0∥dp(ϵ

q
¯̃
β0

q
¯̃
β0+1 − ϵ) ≥ c0ϵ

q
¯̃
β0

q
¯̃
β0+1

for all ϵ small enough (say all ϵ ≤ C3) and c0 =
1
2
γ
d/q
0 ∥ϕ0∥dp is an independent constant. Then

by ( C.6.1), we must have

c0ϵ
q
¯̃
β0

q
¯̃
β0+1 ≤ 2C0

(
n−R1(β0) ∨ ϵR2(β0) ∨ n−R1(β̃0)

)
for any β0,1, β̃0,1 ≤ C1, n ≥ 1, ϵ ≤ C2 ∧ C3. But this is impossible, as we notice that

q
¯̃
β0

q
¯̃
β0 + 1

=
q

q +
∑

j≥2 1/β0,j + 1/β̃0,1

and thus, for some given β0, we can always choose a small enough β̃0,1 and a small enough

ϵ such that c0ϵ
q
¯̃
β0

q
¯̃
β0+1 > 2C0ϵ

R2(β0). Then for some large enough n, we also have c0ϵ
q
¯̃
β0

q
¯̃
β0+1 >

2C0n
−R1(β0) ∨ n−R1(β̃0) for some fixed β0,β̃0 and ϵ.
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