
Relating changes in cortical state to circuit structure and dynamics

by

Matthew P. Getz

B.S., B.A., University of Florida, 2012

M.S., City College of New York, 2016

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Matthew P. Getz

It was defended on

November 30th 2022

and approved by

Marlene Cohen, Ph.D, Professor, Neuroscience

Bard Ermentrout, Ph.D, Professor, Mathematics

Matthew Smith, Ph.D, Associate Professor, Biomedical Engineering, Carnegie Mellon

University

John Maunsell, Ph.D, Professor, Neurobiology, University of Chicago

Committee Co-Chair: Caroline Runyan, Ph.D, Assistant Professor, Neuroscience

Dissertation Advisor & Committee Co-Chair: Brent Doiron, Ph.D, Professor, Mathematics

ii



Copyright c© by Matthew P. Getz

2022

iii



Relating changes in cortical state to circuit structure and dynamics

Matthew P. Getz, PhD

University of Pittsburgh, 2022

Variability in neural activity is often tied to cognitive or behavioral substrates, yet in

linking neural dynamics to behavior, most theoretical work has ignored changing cortical

state. In this dissertation I will present two pieces of work which seek to explicitly relate

cortical state changes to circuit structure and dynamics. We find the role of inhibitory

interneurons appears to be a unifying theme in the interaction between cognitive variables

and neural dynamics.

In the first part we ask what circuit properties underlie how cortical state affects infor-

mation flow through a neural network. We find that for a linear decoder’s performance to

change as a function of state, it must be restricted to a subset of the population. Curiously,

the decoder’s performance change is shaped not by the population of cells being decoded but

rather the collection of cells which project to the decoded population. This result has an

interesting implication: understanding information flow through cortical circuits may rest

on understanding inhibitory interneuron response properties.

In the second part I will turn to the correlation between normalization and attention and

argue that, despite being a conspicuous relationship between a cognitive variable (attention)

and a circuit-dynamic variable (normalization), it nevertheless is insufficient to adequately

constrain circuit models. We instead find other correlated heterogeneities better constrain

mechanistic models of attention and in particular point to the necessity of strongly recur-

rent networks in constructing these relationships. We then demonstrate network properties

which support this collection of correlated heterogeneities showing how these depend on the

structure of inhibition.
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18 Näıve analysis of inhibitory connectivity effects . . . . . . . . . . . . . . . . . . 89

19 Anticorrelated JEE satisfies constraints . . . . . . . . . . . . . . . . . . . . . . . 90

ix



Preface

This dissertation reflects a snapshot in time of work that has been ongoing for many

years. While this document has my name at the top, it is in fact the product of many

generous individuals supporting both the work and myself. Any successes in this document

are shared with many others; mistakes and failures are my own.

I am deeply grateful to have had such a wonderful committee to shepherd me through

school. Foremost to my advisor Brent Doiron for taking me on as a student. I credit

most of what I know about how theoretical neuroscience works, from the actual grind to

general knowledge, to him, and appreciate his providing a [highly unfiltered] lens to see

academia through; to Marlene Cohen and Matt Smith, for being immensely supportive and

insightful advisors in their own rights, regularly offering advice, encouragement, and unique

perspectives; to Bard Ermentrout, for teaching me applied math and for being a truly singular

source of inspiration and an endless source of entertainment, sometimes constructive; to

Caroline Runyan, for her immediate and enthusiastic encouragement; and to John Maunsell,

for accepting me as a community member and being incredibly attentive to my requests

despite having [as far as I can tell] no skin in the game save his own curiosity.

I am grateful to the many members of the Doiron lab who offered support and cama-

raderie throughout my time in Pittsburgh and Chicago. Despite his curmudgeonly ways Jeff

Dunworth helped me immensely in figuring out how to be a lab member, and in debugging

code and math. Chengcheng Huang has been a constant fixture throughout my time in grad

school. I learned a lot from her, and enjoyed all the time we’ve spent together. Hannah

Bos, Mike Leone, and Jay Pina were all instrumental in my development, as well as good

friends outside the lab. Danielle Rager was a wonderful counterpoint in all aspects, and

I enjoyed our interactions crossing from programming to films. Tevin Rouse was a great

intellectual companion, especially during the lockdowns, and kept me on my toes with his

persistent inquisitiveness. Following the lab’s move to Chicago, Olivia Gozel and Gregory

Handy became my closest colleagues. I’ve enjoyed many discussions and outings with them,

and they have assisted me with many thankless tasks, and for that, I thank them. I am

x



fortunate to have learned how to do better science from all of these individuals, but also to

have spent much time out of lab enjoying other activities together and in so doing, learning

what makes a truly wonderful scientific community.

I am grateful to the communities both in Pittsburgh and Chicago who accepted and

aided me through multiple unique experiences. I am particularly thankful for Katy Friason

and Pati Stan for their outstanding friendship. Doug Ruff’s encyclopedic knowledge helped

me get off the ground in visual neuroscience, and his unflagging support helped me grow

significantly.

I am incredibly thankful to the many individuals outside my academic circles who helped

in this journey, most importantly Elaine Wilson and Mirna Turina.

Despite not fully knowing what I’d gotten myself into, my parents Ken and Katy were

unquestioning and unlimited in their assistance of me in this endeavor. Together with my

brother Michael, and grandmothers Linda and Jean, all have offered me a vast amount of

support in their own ways throughout this process. I cannot say if I’d have made it to this

point without them.

I am fortunate to say that I owe a debt of gratitude to many others whose names would

be too numerous to list. I hope I don’t fail to insure they know.

xi



1.0 Introduction

The notion of cognition embodies the often complex operations performed by the brain

which endow an organism with rich functional capabilities. It encapsulates the familiar sense

of thinking in terms of decision-making, planning, remembering, perceiving; but also taking

action - moving. In this way cognition and behavior are bound in a continual loop. The

importance of this relationship for understanding activity in the brain was evinced by Simon

and Kaplan in the early 90’s: ”Cognitive science, defined as the study of intelligence and

its computational processes, can be approached ... [by studying] human (or animal) intelli-

gence, seeking to abstract a theory of intelligent processes from the behavior of intelligent

organisms” [134]. On the other hand, uncovering the ”computational processes” underlying

cognition (or ”intelligence”) depends on understanding how neural activity is structured. As

put by Sejnowski and Churchland, ”Once it became evident that the operations of the brain

were essential for thoughts and actions, discovering the biological basis for mental functions

was an abiding objective” [130].

In general relating mental functions to biological processes is a hard problem. There are

myriad neuron species [85, 143, 39], cortical and subcortical regions [40, 52] and layers to

consider, with neural circuits themselves constantly undergoing changes in their activity and

connectivity across temporal and spatial scales through learning. One way to progress is to

recognize that there are different levels of organization: observing a single neuron’s activity

will not explain the ability of someone riding a bicycle. Instead, the activity of groups of

neurons needs to be considered. But is that enough? The problem now becomes how to build

relations across levels. In bridging from neurons and circuits to behavior, this thesis focuses

on what might be construed as an important intermediate level: the state of a circuit.

A working definition of a circuit’s state (and that which we use with more formality in

Chapter 2) is its operating point. Importantly, changes in the operating point of a circuit

are intimately related both to an organism’s actions and a circuit’s activity. Many of these

changes are due to the state of the animal [70], or controlled through cognitive processes.

The importance of incorporating state context into uncovering structure-function relation-
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ships is illustrated by lower animals: the complete circuit diagram of both the nematode

Caenorhabditis elegans and the stomatogastric ganglion of the crab are known, yet it is still

unclear how exactly activity in these circuits maps to the organism’s behavior due in part to

the large variety of ways in which the state of the circuits can be modified [87, 75]. Therefore

a critical step in aligning neural activity with behavior lies in developing a deeper under-

standing of the way in which state affects neural activity. In the context of much theoretical

work, this explicit step has been largely absent. The content of this thesis articulates two

studies which have sought to make progress in this regard.

1.1 Cortical states of arousal and attention

Activation of sensory receptors elicits activity in neural impulses that are carried from

an organism’s periphery to its central nervous system (excluding animals with nerve nets or

similar). The classical view of cortical neural responsiveness thus derives from the constella-

tion of such stimulus-driven impulses to which a cortical neuron responds. However, it is well

known that signals endogenous to the brain can affect neural activity as well, independently

of any stimulus drive. These may arise through feedback signals from higher-order cortical

areas to lower ones [155, 72], or from midbrain and brainstem neuromodulatory structures

like the locus coeruleus and basal forebrain, with diffuse projections throughout cortex [58].

Among the many effects of feedback drive and neuromodulation are changes in synaptic

efficacy, neural baseline firing rates, covariability in pairwise neural activity, and cellular

response gain [57, 41] (mechanisms of state modulation are discussed in section 1.2).

Early observations of cortical activity uncovered two clearly differentiable states: sleep,

or low arousal, in which low frequency oscillatory activity dominates throughout cortex; and

the awake state, characterized by high-frequency asynchronous activity [111]. In general,

cortical state is defined along a continuum between these two extremes [57]. We now focus

on two particular mechanisms of state modulation, arousal and attention. Each of these is

well-studied in the electrophysiological and neuroimaging literature, with clearly defined be-

havioral and physiological correlates which make linking neural activity to behavior possible
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in both situations.

1.1.1 Arousal

Arousal can be thought of as a general sense of alertness. Particularly in the context

of medically-induced anesthesia, the oscillatory frequency of low-pass filtered signals across

cortex has been used to quantify arousal states [17]. Given the highly desynchronized nature

of activity during active wakefulness, however, a different measure is needed to capture global

arousal states. Experiments in awake, behaving, animals have identified pupil diameter

as a reliable measure of an animal’s alertness [93]. Pupil diameter affords an excellent

metric to capture arousal state because it is easily measured throughout the experiment, is

continuous in time and can thus be related to temporally correlated neural activity. In this

way, experiments have shown that arousal state is related to an animal’s ability to detect a

change in an auditory tone sequence in a non-monotonic fashion [92]. This is likely familiar

to the reader: if one is barely awake on the one hand or manic on the other, it is hard

to detect subtle changes in one’s environment, whereas a moderate level of arousal state is

most consistent with nuanced engagement with the external world. Having experimental

access to a mouse’s arousal state enabled a suite of interesting discoveries at the neuronal

level. It was shown that inhibitory interneurons in visual cortex were a particular target of

neuromodulatory action as a function of arousal [102], leading to disinhibition of excitatory

pyramidal cells which resulted in gain modulation of those excitatory cells [45]. These

experiments were thereby able to establish a link between the cortical state of an animal, its

behavior, and its coincident neural activity.

1.1.2 Attention

In contrast to arousal which induces a global state change across cortex, attention can

affect circuits in a localized fashion. Perceptually, attention acts to select relevant stimuli

in either a top-down - endogenous - fashion in which an organism chooses to what or where

to deploy attentional resources, or in a bottom-up - exogenous - fashion, also referred to

as attentional capture [21]. Attentional capture is marked by surprising selection-dominant
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stimuli which draw one’s focus to an object or area. As an experimental paradigm, attention

has been critical in bridging across cortical state, behavior, and neural computation. Non-

human primate studies in which monkeys must perform a visual change-detection task have

shown that when a monkey’s attention is cued to a stimulus more likely to change on a

given trial, the monkey’s ability to discriminate changes in the angle of an oriented grating

increases [24]. Furthermore, electrophysiological recordings have revealed that on average,

the gain and firing rates of neurons encoding the relevant stimulus increase with attention

[144, 91], and shared variability between neurons within a cortical region decrease [24, 120].

On the other hand, correlated variability has been shown to increase across hierarchically

distinct, connected cortical regions [121], suggesting that attention facilitates communication

between brain areas as well [74].

Endogenous covert (that is, without eye movement) attention can be deployed to spatial

locations or stimulus features (or both simultaneously). We will largely concern ourselves

with the former, but there are important distinctions between the two which merit mention-

ing. Attending to a location in visual space affects the activity of cortical neurons whose

receptive fields represent that location. On the other hand, feature attention affects neu-

rons tuned to the relevant stimulus feature, across hemispheres [25]. Additionally, while

spatial and feature attention have been shown to scale neural tuning functions in a contrast-

invariant way [91, 144], there is evidence that feature attention may sharpen population

response curves [89].

The scaling of neural responses with attention has generally been attributed to a change

in response gain. The nature of this gain change has been debated insofar as its effect on a

neuron’s contrast response function (CRF). Some evidence supported a leftward translation

along the contrast axis of the CRF, indicative of a change in neural sensitivity [116]. Other

reports pointed to a multiplicative scaling of the CRF (response gain), possibly with a

vertical translation in the CRF as well (activity gain). Naturally, as with much of biology,

the answer seems to be a bit of everything [152], however response gain appears to be the

more consistent, robust effect [90]. A consistent descriptor across these conditions, however,

is that attention acts like a contrast controller since neural responses under attention appear

similar to changing stimulus contrast in a neuron- and stimulus-specific fashion (Figure

4



1a). Emphasis should be placed on the phrase acts like because attention is not a contrast

amplifier in a physiological sense; experimental evidence does not support this claim [78].

An apparent limitation in the gain control framework of attention arises from studies in

which multiple stimuli were presented within a recorded neuron’s receptive field (RF). Given

the large RFs of higher order visual neurons, it is possible to fit spatially distinct stimuli

within one, and to differentially cue attention to different RF locations (Figure 1b). In

general, cueing attention to one stimulus in the RF reduces the effect of the second stimulus

on the rate response. This led to the proposed biased competition model in which stimuli

within a RF are effectively competing for a cell’s responsiveness [114]. While this model falls

short of a complete characterization, its emphasis on the mutually antagonistic effects of

multiple stimuli in a neuron’s RF is an important one [90]. A better model depends on the

principle of normalization which we review in Section 1.3 and link to attention in Chapter

3.

Many anatomical regions have been identified which contribute to visual attention. Neu-

roimaging evidence, together with stimulation experiments in primate frontal cortices, sup-

ports a top-down view of attentional control in which the source of attentional effects lies

in fronto-parietal regions such as prefrontal cortex. Subcortical regions like the superior col-

liculus and pulvinar of the thalamus have also been implicated in attentional control. All of

these anatomical areas (frontal, parietal, visual, thalamic) have been associated to constitute

a distributed ”attention network” [43].

While it does not feature in this thesis, it bears noting that a body of literature has

identified a prominent role for oscillatory activity in attentional processes, hypothesizing

that rhythms in the theta frequency band alternately lock attention on (high activity phase)

or enable it to switch (low activity phase) [42]. There is at least cursory relevance in this

observation: we have already discussed the characterization of cortical state in terms of the

frequency and scale of correlated activity [57]. Neuromodulation is additionally implicated

in the modification of LFP oscillatory activity in cortex [142]. It would seem an appropriate

future direction to ask to what extent these ideas can be brought under the framework

described in this work.
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Figure 1: Network activity in the context of attention and normalization a Illustration of

spatial attention effects from a network model (details in Chapter 3). Black dashed ovals

represent a neural receptive field (RF). Inset gabors indicate the driving stimulus; surround-

ing dashed orange circles indicate location of attentional focus. Solid black curve is network

response in absence of attention, solid orange curve is attended response. b Illustration of

attention in the context of two stimuli within the RF with conventions as in (a). Dashed

black curve is 45o stimulus alone (equivalent to solid black curve in (a)).
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1.2 Control of cortical state

The use of anesthetics in humans and animals is an example of cortical state control

[17]. Analogous to the discovery and study of neural tuning properties, the use of anesthesia

has enabled researchers to consider the differences between anesthetized and awake brain

states on circuit function [36]. Of course, anesthesia is a largely unnatural perturbation of

brain state. As we argued above, understanding the function of neural circuits depends on

relating natural behaviors to cellular processes [76]. Accordingly, recent work in rodents has

focused on uncovering endogenous state controllers in the context of awake behavior [11].

Two primary forms of state control are neuromodulation and cortical feedback. We give a

brief description of each, which motivates the work in the following chapters.

1.2.1 Neuromodulatory processes

The simplistic, stimulus-driven feedforward view of neural responsiveness considered in

the previous section involves only one form of direct, local, synaptic transmission through

neurotransmitters like glutamate and γ-aminobutyric acid (GABA) which act on a fast,

millisecond timescale through ionotropic receptors on the postsynaptic cell. However, neu-

romodulators like serotonin (5-hydroxytryptamine; 5-HT), acetylcholine (ACh), and nore-

pinephrine (NE) can have a distributed effect on neurons within a given cortical region

[87, 142]. Neuromodulation can alter a wide suite of biophysical properties of neurons, includ-

ing synaptic efficacies [141]. Neuromodulatory effects are also slower, mediated (with some

exceptions, such as ACh’s action on ionotropic nicotinic receptors [29]) through metabotropic

receptors. Depending on the task in which an animal is engaged, this separation of timescales

implies that the effects of neuromodulation can be considered constant over a timeframe in

which stimuli are inducing rapid changes in neural activity.

Neuromodulation is also generally diffuse, with targets throughout all of cortex, in con-

trast to the highly localized nature of synaptic transmission. Hence, in addition to being

constant in time, for local circuits, neuromodulatory effects can be assumed constant over

space. Brainstem and midbrain nuclei serve as the major sources of neuromodulatory input
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to cortex. For example, the locus coeruleus in the brainstem is a major source of noradren-

ergic outputs, while the basal forebrain is a primary source of cholinergic projections [17].

Both may play a role in affecting visual processing in rodents during running. Noradrenaline

in visual cortex has been shown to enhance response gain and reduce firing rate variability,

consistent with effects observed during locomotion [106]. Yet another recent study impli-

cated cholinergic inputs from the basal forebrain in modulating gain in visual cortex during

locomotion [45].

1.2.2 Cortical feedback

In further contrast to the feedforward processing view of cortex, it is well known that

there exist long-range, interregional feedback projections throughout cortex. While far less-

characterized, these feedback signals have nevertheless been shown to affect processing at

early stages of sensory systems [139, 140]. Given that feedback activity is synaptic in nature,

it can be much more spatially targeted. Two recent studies illustrate both the power and

specificity of feedback connections. Zagha et al. [155] explored the role of primary motor

(M1) cortex in modulating activity in primary somatosensory (S1) cortex. They showed that

M1 stimulation caused activation of S1 neurons in a layer-dependent fashion and independent

of thalamus, implicating direct feedback projections in the process. Further, they showed

that representations of complex whisker manipulations were more accurately decoded from

S1 in the presence of M1 activation, demonstrating the ability of feedback activity to affect

processing. In rodent primary visual (V1) cortex, Keller et al. [72] uncovered the existence

of what they term a feedback receptive field (fbRF) through the use of inverse images. These

images were full-screen with portions excised. Excitatory neurons in V1 layer 2/3 showed a

response field that was larger than the classical feedforward RF. Importantly, it was shown

that the fbRF of a given V1 cell arises from higher order visual areas with RFs that are

offset relative to the cell in V1. In this way, neural activity is modulated by the context

in which a stimulus is embedded. Again, we see that feedback projections strongly affect

neural responsiveness by controlling the state of cortical circuits in a more localized fashion.

What this very brief description of two different modulatory processes in the brain -
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Figure 2: Modeling cortical state controllers a Illustration of possible modeled gain control

in a recurrent circuit: localized through feedback projections (top right, dashed outlines) or

through diffuse neuromodulation (bottom right, dashed outlines). b Illustration of altered

synaptic efficacy through e.g., neuromodulatory mechanisms.
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neuromodulation and corticortical feedback - illustrates is just how ubiquitous they are. Yet,

their effect on neural circuits has been largely left out of models which look to understand

neural representations, encoding, and decoding process (section 1.4). Interpreting these

models has nevertheless relied on animal studies in which behavioral and brain states are

changing, suggesting that drawing mechanistic conclusions from these models may be limited

without considering what processes in the brain are different across states. This section also

highlights how we can incorporate the effects of modulatory processes on circuits: we can

first assume they operate on a sufficiently slow timescale that from one state to the next the

effect of a modulus may be justifiably assumed constant. The exact implementation of the

modulus will depend on the nature of the modeled process (Figure 2). Changes in cellular

gain can arise from both feedback projections and neuromodulation in either a spatially

diffuse or localized fashion (Figure 2a) whereas synaptic weights can also change through

neuromodulatory processes (Figure 2b).

1.3 Normalization as a nonclassical neural response property

Determining how cortical state affects neural activity depends on an understanding of

neural response properties generally. Early experimental descriptions of neural responsive-

ness were often performed in anesthetized animals, thereby (perhaps inadvertently) control-

ling for cortical state [64]. Foundational descriptions of neural tuning to stimulus features

[12] and responsiveness as a function of stimulus contrast were then established [129]. Many

of these basic properties could be captured reasonably well with a simple linear summation

model in which thalamic inputs combine to determine cortical response properties [64, 98].

However it soon became apparent that this basic conceptualization couldn’t capture the full

repertoire of cortical neuron responses. A nonlinear, multi-stage model was introduced which

incorporated divisive normalization to the linear summation step [59]. That is, after passing

an input term through a rectified power function (in which the power typically equalled two),

the response was then divided by the sum of a constant term and the sum of other model

unit outputs (e.g., equation 37). This normalization stage readily explained many of the
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peculiarities of stimulus-conditioned responses.

Normalization encapsulates the broad concept that neural activity is determined by the

net activity across a distributed neural population. This involvement of local population

activity explains contrast response saturation, surround suppression, and cross orientation

suppression, among other phenomena, in single neurons. Classically, neurons respond to

stimuli presented within their receptive fields (RFs) and are silent to isolated stimuli beyond

their RF. Surround suppression is the effect when stimuli larger than the RF induce a reduc-

tion in firing rates. This effect is tuning-dependent; an annulus in the surround will exert

a maximal effect when aligned to the neuron’s preferred orientation, and minimally when

aligned to the neuron’s null orientation [22]. Another tuning-dependent property is cross-

orientation suppression. Cross-orientation suppression is the effect whereby the presence of

a secondary non-optimal stimulus in a cell’s RF often causes a reduction in the response

relative to optimal stimulus presented alone (Figure 1b, compare dashed black line (single

stimulus) and solid black line (two stimuli) at 45o. Cross-orientation suppression is discussed

in more detail in section 3.2) [119]. Contrast response saturation has been shown both the-

oretically [105] and experimentally [135] to depend on recurrent inputs. Further, attention’s

ability to amplify the saturation point of a neuron’s response is further evidence that it

is not a biophysical constraint but rather a network property. Hence, what normalization

really brings to the fore and makes explicit in terms of a descriptive model (section 3.2) is

the dependence of neural response properties on the local network structure in addition to

feedforward inputs.

1.4 Neural encoding and decoding

In isolation, neurons are very reliable: current drive which is not so strong as to induce

adaptation or depolarization block will trigger spikes whenever threshold is reached. However

the source of this current drive is important - synapses are highly malleable, and may vary

in the extent to which they affect postsynaptic voltage changes. Embedded in a network, in

vivo, neural activity becomes highly variable [154]. Neurons communicate through spikes,
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but the rate at which spikes are emitted by a cell is recorded as a key variable of information

encoded by that cell. Typically, this variable is inferred through repeated presentation

of a salient stimulus during recording of a neuron’s activity, and subsequent averaging of

this activity over stimulus presentations. In the context of a stimulus parameterized by a

continuous variable - for example, the orientation of a bar in a two-dimensional plane - the

firing rate of a neuron sensitive (or: tuned) to that stimulus can exhibit continuous deviation

proportional to the stimulus parameter [64]. This has been taken as evidence of a neuron’s

encoded representation. What is clear in the modern view is that what we can at best

say is that the neuron’s expected activity encodes a particular variable. When a neuron’s

activity is observed for each presented stimulus, what is in fact observed is a probability

distribution over firing rates as a function of the stimulus (see section ??). A cell’s encoding

of a particular stimulus variable must have practical relevance to an organism. Given the

hierarchical structure of cortical connectivity, this relevance can be envisioned as a cell’s

representation being decodable by a downstream region. But given the variability in activity

from stimulus presentation to presentation (or, trial to trial), how does a downstream area

cope with this stochasticity?

One solution is redundancy - have more than one neuron carry the same information

and average across neurons [48, 47]. Another is to encode variables in a distributed fashion,

where neural activity spans a lower dimensional subspace. Both of these solutions depend

on populations of neurons to code stimulus variables, not neurons in isolation. Further,

cortical circuits are highly recurrent, that is, interconnected within and across cortical layers.

The idea of a neuron in isolation coding for a particular component of the external world

might only make sense if the collection of inputs to that neuron are weak and considered

statistically independent, which is known not to be the case [111]. Population coding depends

on understanding interactions between cells, the nature of their interconnections, and, by

extension, the structure of shared variability [145].

In seeking to link neural dynamics to behavioral actions, neuroscientists have long used

statistical estimation tools to approximate the extent to which information can be read out

from a population of cells thereby limiting (or facilitating) behavioral performance [103, 132]

(Appendix A.3). This derives in part from psychophysical experiments which define behav-
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ioral performance by an animal’s ability to discriminate two subtly different stimuli. One can

consider an observation of a stimulus as a sample from some underlying probability distribu-

tion conditioned on the stimulus s. To measure an observer’s ability to differentiate between

these distributions, a commonly used metric of discriminability is d′, defined as the difference

in the estimated means of the distributions divided by the standard deviation (assuming the

variances are the same; see Appendix A.3) [54, 136]. Intuitively, the activity of neural circuits

should relate to the capacity of an organism to perform and action accurately, albeit to some

level of abstraction. In this vein d′ has been applied to neural population responses as well

[136, 24]. d′ is in turn related to another measure frequently used in the analysis of neural

population coding, Fisher information (FI). FI has proven a highly useful tool for studying

the properties of neural tuning that affect discriminability [132], and how noise in population

activity affects coding [65] (see next section). FI also determines the Cramér-Rao bound,

which places a limit on the accuracy of unbiased decoders (Appendix A.3). This fact enables

a natural interpretation of FI in terms of ”readout” by higher cortical areas, in a feedforward

processing view of the brain. Downstream neurons attempting to decode a signal carried by

their synaptic inputs will be more accurate if the feedforward connections have a higher FI.

Consistently, various studies have developed biologically-motivated constructs to implement

decoding schemes which can approach these bounds [108, 32]. Intriguingly, experimental

studies have shown that neurons often encode stimulus representations with either the same

[16] or a higher fidelity than an organism is able to functionally report [137]. This suggests

that other factors in an organism’s central nervous system conspire to bound information

flow. In order to address a potential explanation, we must first discuss the role of correlated

variability in affecting neural codes.

1.4.1 The effect of noise correlations on neural codes

As introduced above, despite a neuron’s reliability under controlled inputs, neural re-

sponses are highly variable in vivo, even to repeated presentations of the exact same stimu-

lus. From a neural coding perspective, if this variability is sufficiently small or uncorrelated

across cells it can be averaged out over a large enough population. However, if fluctuations
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are correlated across cells, they cannot be averaged away and will result in a degradation of

information [156]. To illustrate this point, consider the signal to noise ratio of a population

of N statistically identical cells with mean signal µ and variance σ2 [156]. Then the popula-

tion signal to noise ratio (SNR), defined by the ratio of the mean response to the standard

deviation, is given by

SNR =
Nµ

σ
√
N + cN(N − 1)

(1)

where c ∈ [0, 1] is the correlation in the signals. If c = 0 then the population is completely

uncorrelated and the SNR grows with increasing population size like
√
N times the SNR of

an individual unit. However if c > 0 then the SNR saturates since

SNR =
Nµ

σ
√
N + cN(N − 1)

N→∞−−−→ µ

σ
√
c
. (2)

While overly simplistic, this example captures an important point which has occupied the

field for decades: what is the effect of correlated variability on population codes?

Abbott and Dayan [1] later showed that in a population of neurons with translation-

invariant tuning curves, FI would increase with both the size of the population and with

certain structures of covariability; only with limited range correlations did they find that

correlations would hamper FI. Even so, for a sufficiently large population the length constant

of the correlations would need to increase as well to limit information. While this particular

solution would need to be finely tuned, it pushed forward the search for how the structure

of correlated variability impacted population codes.

Recent work has identified the existence of general coding bounds [97, 69]. Termed dif-

ferential correlations [97], they are correlations whose structure matches the derivative of the

stimulus tuning function. The trouble with this correlation function is that it induces coor-

dinated shifts in the representation of the stimulus by the population. Since the variability

is thus aligned to the coding direction, it cannot be averaged out and therefore bounds the

information readout. While the existence of these correlations is currently a topic of debate

[123, 67, 137], as we discuss in Chapter 2, modulation of information flow with cortical state

only makes sense if this bound is not saturated in an unmodulated context. This prediction

only arises from the explicit consideration of brain state in studying information flow.

14



1.5 E/I networks

We will use standard excitatory-inhibitory (E/I) rate networks to address the questions

in this thesis, the general form of which is given by:

τE
drE(t)

dt
= −rE(t) + fE

(∑
E

JEErE(t) +
∑
I

JEIrI(t) + sE(t)

)
(3)

τI
drI(t)

dt
= −rI(t) + fI

(∑
E

JIErE(t) +
∑
I

JIIrI(t) + sI(t)

)
. (4)

This class of model characterizes neural activity in terms of firing rates rE, rI as a function f

of recurrent inputs J and feedforward inputs s. Since neural activity is encoded in discrete

spike events, this model is necessarily both an assumption and an abstraction. Nevertheless,

one can think of neurons as encoding a stimulus variable s(t) in their firing rate, and a

firing rate in turn as representing the probability of a spike occurring in some small time

window. In this way, the average activity over a population of cells represents information

about the stimulus [48, 47]. A model of neural firing rates is hence appropriate to consider

neural encoding and decoding questions which do not take fine temporal codes on the order

of spike times into account. Additionally, the electrophysiological studies which motivate

much of our work analyze activity in terms of spike counts over disjoint temporal windows

or trial-average activity of a particular neuron (again, over spike counts) [24, 101, 150]. In

this case as well, rate models are suitable to describe the relevant dynamics captured by

these datasets (a more substantial review of their derivation is included in Appendix A.1).

1.6 Outline

The evidence we have presented shows that the brain does not operate in a static regime

[28]. In order to understand the neural bases underlying behavior it is necessary to take

cortical state into account. However, most previous modeling studies have not, and that is

where this work comes in. Chapter 2 considers the fact that on constrained laboratory tasks,

an animal’s performance changes as a function of cortical state. Using Fisher information
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(FI), an information theoretic measure, as a proxy for performance, we formally show that

one may derive conditions under which FI changes as a function of cortical state. From this,

we are able to then anticipate which neural circuit mechanisms underlie these changes. In

Chapter 3 we sought to constrain mechanisms of a well-studied state modulator: attention.

We use the fact that attentional affects on a cell are correlated with normalization effects

on a cell. Within this context, we formulate a simple model description to determine which

experimental observations afford the best model constraints. We then use these constraints

to argue that the relationship between normalization and attention depends on the circuit

structure in which a neuron is embedded.

16



2.0 Subpopulation Codes Permit Information Modulation Across Cortical

States

This chapter has been published as a preprint [50].

2.1 Overview

Cortical state is modulated by myriad cognitive and physiological mechanisms. Yet it is

still unclear how changes in cortical state relate to changes in neuronal processing. Previous

studies have reported state dependent changes in response gain or population-wide shared

variability, motivated by the fact that both are important determinants of the performance

of any population code. However, if the state-conditioned cortical regime is well-captured

by a linear input-output response (as is often the case), then the linear Fisher information

(FI) about a stimulus available to a decoder is invariant to state changes. In this study we

show that by contrast, when one restricts a decoder to a subset of a cortical population,

information within the subpopulation can increase through a modulation of cortical state. A

clear example of such a subpopulation code is one in which decoders only receive projections

from excitatory cells in a recurrent excitatory/inhibitory (E/I ) network. We demonstrate the

counterintuitive fact that when decoding only from E cells, it is exclusively the I cell response

gain and connectivity which govern how information changes. Additionally, we propose a

parametrically simplified approach to studying the effect of state change on subpopulation

codes. Our results reveal the importance of inhibitory circuitry in modulating information

flow in recurrent cortical networks, and establish a framework in which to develop deeper

mechanistic insight into the impact of cortical state changes on information processing in

these circuits.
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2.2 Introduction

Cortical circuits encode information about stimulus or action variables in their population

activity [126]. These circuits then act on other cortical, musculoskeletal or endocrine systems

to drive behavior. Studying cortical processing as an information transmission problem

is a useful step toward relating neuronal activity and behavioral responses [104, 112, 76].

Theories of population coding require an understanding of both the sensitivity of trial-

averaged stimulus tuning [132] and the structure of population-wide trial-to-trial variability

[1, 9, 73]. Any changes in these two measures of neuronal response must be considered in

order to evaluate whether the stimulus information available to a decoder of the population

has increased or decreased. Such analysis has helped interpret experimental observations;

for instance attention, well known to improve behavior in complex visual tasks [107], has

been found to increase firing rates and neural selectivity while decreasing pairwise noise

correlations along the visual pathway [91, 89, 24, 120, 110]. These effects are therefore taken

to coincide with an attention-mediated improvement in information processing [142].

Biologically-motivated models of neuronal circuits define a network’s state as the dynami-

cal regime in which it is operating [62]. Top-down modulatory processes engaged during shifts

in attention or arousal induce changes in the state of a cortical network through processes

such as neuromodulation, feedback projections, and synaptic rearrangement [44, 93, 57, 87].

Any shift in network state will affect how a network responds to stimuli, observed as a

shift in trial averaged tuning as well as response variability. Uncovering network mecha-

nisms which enable cognitive processes like attention to improve behavioral performance

must therefore take network state into account. Yet prior studies of information processing

have focused on parametric models that are agnostic to underlying circuit mechanisms, so

that any shift in tuning is made without considering a concomitant shift in variability (or

vice versa) [132, 6, 9, 69, 1, 65]. There thus remains a gap in our mechanistic understanding

of the way in which information changes as a function of cortical state.

In this study we explore how changes in cortical state affect information processing in

neural circuits. We find that in any circuit, the information available to a linear decoder

is invariant to network state when the decoder reads out from the entire population [68].

18



However, in many cases only a subset of the neurons project to a given decoder: inhibitory

neurons have predominantly local projections [143] while excitatory neurons are often sub-

divided based on their outward projections [133, 151]. From the vantage of information

processing we label this a subpopulation code. We show that when a network’s state is

modulated then the information available to a linear decoder of a subpopulation code is

malleable. Intriguingly, we also find that the information encoded in a subpopulation does

not explicitly depend on the activity and connectivity within the subpopulation. Rather, it

is only those neurons within the circuit which connect to the projection cells that directly

shape information flow. We thereby demonstrate that it may not be possible to draw signifi-

cant conclusions on state dependent cortical processing without a more complete view of the

network in question. Towards this end, we provide a framework for a circuit dissection that

exposes how modulations of cortical state impact information processing in neural circuits.

2.3 Results

There are a vast array of mechanisms through which the brain modulates cortical network

state. Two of those commonly studied, neuromodulators and feedback projections, can

both uniquely affect circuit dynamics, from cellular excitability to transient synaptic weight

changes [87, 57]. The neuronal correlates of these state changes are shifts in the firing rate,

neuronal sensitivity, and correlations of populations of neurons. In relating these changes

in neural response statistics to behavior we are really asking how a modulus influences

cortical processing. Fisher information (FI) provides a means of addressing this question

as it measures a decoder’s ability to discriminate between two stimuli. It has been argued

that in the regime in which sensory cortex lives, linear FI is equivalent to FI (and this likely

extends to other areas of cortex as well, where linear decoders have best fit the relationship

of neural activity to behavior) [117, 73]. We therefore focus on linear FI in this work, which

is given by

FI =
dr

dθ

T

Σ−1 dr

dθ
. (5)
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Here dr
dθ

is the population response gain (change in rate for a change in a stimulus parameter

θ) and Σ is the covariance matrix of the population response.

Now consider a recurrently coupled network of excitatory (E) and inhibitory (I) popu-

lations (Figure 3a) with dynamics described by

τiṙi = −ri(t) + fi

(∑
j

Jijrj(t) + I0,i(θ, t)

)
, (6)

I0,i(θ, t) = b+ sext(θ) + σi(
√

1− cζi(t) +
√
cζc(t)). (7)

Here i is the index of a unit in the E or I population, b is baseline input for all cells

(potentially heterogeneous but assumed constant for simplicity), sext(θ) is an external drive

that depends on the stimulus parameter θ, Jij is the connection weight from unit j to unit

i, ri is the firing rate of unit i in the network, fi is the transfer function of unit i, ζi is noise

private to unit i, ζc is noise common to all units in the network and c scales the amount

of shared variability (Eq. 18). We restrict our analysis to steady-state responses in which

for sufficiently small input noise, the responses of the firing rate vector r can be linearized

around the operating point (Figure 3c) [31]. Equation 6 then becomes:

τδṙ = −δr(t) + L · (J · δr(t) + I0(θ, t)) (8)

where δr are the dynamics of the response around the steady-state solution and L is the

linearization matrix about the steady state rate (Eq. 17; [35]).

In the context of this system, a network modulation is a change in the steady-state rate

without a change in stimulus input (sext). We therefore define a modulation as a perturbation

which changes the operating point of a network for a fixed stimulus (illustrated in Figure

3c). The space of perturbations is thus restricted to the space of network parameters (see

also Figure 4a); some aspect of the network is changing such that we must relinearize about

a new steady-state response. In this study we will consider moduli of two types: additive

changes to the top-down input current (representative of cortical feedback [72]) or transient

synaptic weight changes (e.g. neuromodulator-induced synaptic plasticity [87, 142]).

Previous modeling studies have captured the effects of attention on the response statistics

of cortical circuits with a change in the top-down input drive to the network [68, 49, 63].
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We introduced a similar top-down drive to a model recurrent E/I network to induce a state

change (see Methods: Ring network). This modulus resulted in significant changes to the

network response to a fixed stimulus: by contrast to the unmodulated network (state U),

in the modulated network (state M) firing rates decreased across the excitatory population

(Figure 3b) resulting in a decrease in the squared gain of the population (Figure 3d) and

decorrelation across E cells (Figure 3e). Given that these statistics define FI, we expect

these dramatic changes to the network’s response statistics to affect information flow in this

circuit. What we instead observed is that FI is invariant to this modulation (Figure 3f).

We show in the next section (Eq. 10) that this is true for all possible moduli under our

definition. This not only apparently contradicts the necessity that behavioral improvements

would be reflected in enhanced information processing in cortex but also questions the effect

of these neural response statistics on cortical processes more generally.

2.3.1 Modulation can improve information flow in subpopulation codes

In order to develop intuition for the invariance of FI to modulation we turn to an E/I

network with a single E and single I unit (Figure 4a). The responses rE and rI to an input

stimulus s and a perturbation s+ δs can be described as a joint probability distribution over

the rates (the top row of Figure 4b). When a modulation is applied, the shape and center

of the response distributions for s and s+ δs both vary in E-I firing rate space (Figure 4b,

purple ellipses). For instance, modulation could induce a rotation of the distributions in

rE-rI space (Figure 4b, state M), or change the correlations between rE and rI (Figure 4b,

state M’). Overall discriminability between s and s + δs does not change in either of these

scenarios, however, since the total overlap of the distributions does not change. Hence the

decoding error is constant across network state which is consistent with the result of the full

network model described above (Figure 3f).

This would seem to suggest that modulation of cortical circuits is functionally insignifi-

cant, and that optimization for sensory discrimination should act on other mechanisms, such

as feedforward thalamic inputs. However until now, we have made a tacit assumption that

all neurons encode the stimulus variable. Yet from the standpoint of a downstream cortical
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Figure 3: Changes in network activity do not imply changes in information. a Network

schematic. Units are arranged on a ring indexed by θ where position on the ring corresponds

to that unit’s preferred value of θ. Red units are excitatory and blue are inhibitory. Size of

connection line indicates strength of connection. Not all connections are shown. b. Firing

rates for the excitatory network units across time in the unmodulated (U) and modulated

(M) states. c. Illustration of the effect of state changes on the input/output response for

a single unit in the excitatory population before (green) and after (purple) modulation. d.

Fit of the squared gain across the E population in a nonlinear model (solid lines) with a

linear theory (black dashed lines). e. Fit of integrated cross-covariance relative to a single E

unit (with preferred orientation θ0) with a linear theory. Colors as in (b). f. Plot of Fisher

information as a function of modulation.
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area only those neurons which project to it will matter in the readout. In particular, we

know from anatomical studies that excitatory (pyramidal) neurons are the dominant pro-

jection cells in cortex. Hence information read out of a population by downstream areas

must be predominantly conveyed through excitatory pathways [124]. Since our decoder is

functionally equivalent to a downstream region decoding an upstream signal, we therefore

reconsider the same problem by decoding from the excitatory population alone. This corre-

sponds to a projection of the joint rE/rI firing rate distribution onto the rE axis (Figure 4b,

bottom row). Similarly to the joint distributions, the distributions of excitatory firing rates

can change significantly with state as well. Critically, we observe a decrease in the overlap

of the rE distributions with modulation (decrease in the error), indicating an increase in the

discriminability in the E population following each modulation. Thus, while FI for the full

network is invariant to state modulation, we see that FI restricted to the E population alone

can change with state.

To formalize the arguments above in terms of FI, we define external stimuli for this E/I

network as sext,E = kEs, sext,I = kIs in equation 7, where kα is a sensitivity term which scales

the size of a feedforward stimulus drive to population α ∈ {E, I}. Then the linear FI for the

full E/I network is given by [68]:

FI(Pext, Pnet) =
σ2
Ik

2
E + σ2

Ek
2
I − 2σEσIkEkIc

σ2
Eσ

2
I (1− c2)

= FI(Pext). (9)

This equation is independent of all network parameters (Pnet), depending only on the external

input parameters, Pext (Figure 4a). Since we have defined a modulation to only affect

the network state (and consequently only impact network parameters Pnet), FI for the full

population must be invariant to modulation.

This result is true in general for any network size; linear FI reduces to a simple form

which depends only on the input gain and input covariance since the output gain and output

covariance depend on the network linearization in the same way which subsequently cancels

(see Methods). Thus, in a linearized system, FI reduces to:

FI = ΦTΣ−1
extΦ, (10)
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Figure 4: Projection to lower dimensions allows for improved discrimination with modula-

tion a. Illustration of E/I circuit parameters, partitioned into external input parameters

(Pext; not affected by modulation) and network parameters (Pnet; subject to change through

modulation). b. (Top row) 95th percentile distributions of idealized steady state rates at

contrasts s and s + δs for unmodulated (green) and modulated (purple) networks. A de-

coder reading out from the full network (top left) has access to the joint rE/rI distribution.

Modulation of a linear model does not change discriminability in high dimensions because

the overlap (error) between the joint rE/rI distributions over s and s + δs does not change

from U to M or M’. (Bottom row) Projection of the joint rE/rI distribution onto the rE axis

is the same as a decoder restricted to observing only the E population (bottom left). The

state changes in the rE/rI space permit increased discriminability in the E population due

to decreased overlap of the distributions.
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where Σext is the input covariance matrix and Φ = dsext

dθ
is the input gain, that is, the

derivative of the stimulus input with respect to the tuning parameter θ. Since equation 10

is simply the N -dimensional analogue of equation 9 and similarly depends only on Pext, this

result explains the invariance of FI to modulation for any network (as in Figure 3d).

We now seek an expression for FI in terms of only the E population consistent with a

readout restricted to projection neurons. For the two-unit E/I network, the information

read out from the E population alone is defined as [68]:

FIE =
G2
E

VE
(11)

where GE = drE
ds

is the gain and VE is the variance of the E population. This expression is

the information analogue to a projection of the readout onto the rE axis. Because it involves

restricting readout to a subset of the population we refer to this as subpopulation coding.

After some algebra we can write FIE as

FIE(Pext, Pnet) =
(kE − kIx)2

(σIx− σEc)2 + σ2
E(1− c2)

= FIE(Pext, x(Pnet)), (12)

where x = LIJEI
1+LIJII

. It is now apparent that the information in this subpopulation does depend

on network state through the variable x, which is a function of the network parameters Pnet.

Therefore FIE can change with modulation (compare equations 12 and 9). Surprisingly,

equation 12 reveals that this dependence on network state comes only from LI , JEI and

JII ; that is, the information gleaned from the E population depends only on inputs to the

network, together with the linearization of the I population and the I connectivity (Figure

5a, blue), but not explicitly on either the E gain or excitatory recurrent connections (Figure

5a, gray). Said differently, it is only those units which project into the readout population

dictate the extent to which information readout changes with network state.

From the view of a linear decoder restricted to the E population, the recurrent network

can be reduced to a feedfoward inhibition model, where E receives inputs I0,e from external

sources, and −x · I0,i from the I population (Figure 5b) [86]. Here, x is the effective coupling

from the inhibitory to the excitatory population (Figure 5b). Hence the effective stimulus

gain of the E population is d
ds

(I0,e − xI0,i) = kE − kIx and the variance of the effective
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total input is Var(I0,e − xI0,i) = (σIx − σEc)2 + σ2
E(1 − c2), which are the numerator and

denominator of FIE (Eq. 12), respectively.

The effective coupling parameter x affects both the gain and the variance of the E

population responses (Eq. 12; [86]). First suppose that the I population does not receive

signal input, meaning that kI = 0. Then FIE can change only through the denominator,

corresponding to the variance of the effective input. FIE is maximized at x = σE
σI
c, when the

correlated noise from I population cancels the correlated component of the input noise to

E population and minimizes the variance of the total input (Figure 5c, top). We refer to a

modulation which pushes x closer to this value as correlation canceling. When there is no

correlation in the inputs to E and I populations (c = 0), I merely contributes noise to E

through σIx. In this case, FIE is maximal when x = 0, meaning that there is no projection

from I to E.

By contrast, when I receives signal input (kI > 0), I has a subtractive effect on the

E stimulus response since I projects the same signal to E with a negative sign (Figure

5b). Therefore modulating the gain is now weighted against affecting variability to enhance

information. For x small, reducing x further to minimize the subtractive impact on the E

response is optimal, even if correlations are large (Figure 5c, bottom). As a result we label

our network as being in the gain reduction regime. However, this brings up an important

constraint since network inhibition plays an important stabilizing role as well. Thus, any

changes in x must ensure network stability as well (Figure 5c, hatched region). Note that

while we have reduced the information dependence to a single network hyper-parameter, x,

the network’s stability depends on all of the network parameters Pnet.

The above analysis of a two-unit network corresponds to a homogeneous neuron popula-

tion with identical tuning dependence on a stimulus variable. Next, we consider a population

of neurons with distributed tuning preference over the encoded range of a stimulus variable,

such as orientation.
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Figure 5: Changes in FIE depend only on inputs to E. a. Illustration of the network

parameters that affect FIE in the network described in Figure 4 (blue). Network parameters

which do not affect FIE are in gray. Pext has been split into E- and I-specific external inputs

(PE
ext and P I

ext, respectively). b. Reduced network model. FIE depends only on feedforward

inputs to E. c. FIE as a function of x(JEI , JII , LI) and c. Red hatched region indicates

unstable solution for a single choice of parameters Pnet. (top) kI = 0; xmax = σEc
σI
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kI = 1; xmax =
σ2
E−σEσIc
σEσIc−σ2

I
. Stability line for parameters LE = 10, JEE = 0.18, JIE = 0.24.

27



2.3.2 Subpopulation codes with distributed tuning

We return to a recurrent network in which N excitatory units connect to N inhibitory

units (as in Figure 3a). A stimulus such as an oriented visual grating is now given by sext(θ)

with each unit’s preferred tuning parameter corresponding to a particular orientation θ.

We again consider FIE as in the previous section, a decoder observing only the E popu-

lation, which for a collection of N excitatory units takes the form (Methods)

FIE = (ΦE −XΦI)
T [ΣE

ext − ΣC
extX

T −XΣC
ext +XΣI

extX
T ]−1(ΦE −XΦI) (13)

where Φα is the input gain Φ restricted to population α ∈ {E, I}, Σα
ext is the input covariance

matrix to α and ΣC
ext denotes the input covariance between E and I, and X = JEI(L

−1
I +

JII)
−1 is the effective coupling matrix from the inhibitory to the excitatory population

(Figure 5b). Equation 13 is simply the N -dimensional analogue of equation 12, thereby

confirming that our preceding analysis extends to arbitrary dimension in FIE. What again

distinguishes FI from FIE is that the former depends only on the structure of the input

statistics to the network whereas the latter depends additionally on those network parameters

restricted to the I population, LI ,JEI and JII . In particular, if we look back at the ring

network which motivated this study (Figure 3), FIE now increases.

By expanding the dimension of our recurrent network we have expanded the space of

possible moduli. A complete characterization of the whole parameter space is out of the

scope of this work, we are interested here in whether the mechanisms for increasing FIE

observed in the two-unit E/I network relate to phenomena observable in the N -dimensional

network, namely gain modulation and correlation cancellation. We model a neuromodulatory

effect as a transient rescaling in synaptic weights, JEI [87] (Figure 6ai,aii; blue connections).

Reducing JEI here diminishes the effective projection from I to E thereby disinhibiting E.

We again see that the net input gain and covariance to the E population produces FIE. To

understand the impact each has on FIE we changedX in equation 13 from unmodulated (XU)

to modulated (XM) in either the net input gain (ΦE −XΦI) or the covariance term (ΣE
ext−

ΣC
extX

T − XΣC
ext + XΣI

extX
T ) alone while keeping the other X’s fixed in the unmodulated

state. Both substitutions result in increased FIE (Figure 6b), with a change in the gain term
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resulting in an approximate three-fold increase and a change in the covariance resulting in an

approximate doubling of information. What this illustrates is that both gain and covariance

changes play significant roles in improving information readout. Furthermore, their joint

effect is multiplicative, as the net increase in FIE with modulation is almost six-fold.

We now explore the mechanism by which X increases gain and decreases covariance. In

our framework external inputs to the network do not change with a state modulation by

assumption, thus the E input gain ΦE and input covariance ΣE
ext are fixed across modulation

(Figure 6ci,ei). Since JEI decreases in magnitude, the suppression of signal gain from I

inputs (XΦI) is reduced (Figure 6cii) leading to an increase in the net E input gain (Figure

6d). Additionally, this modulation resulted in a reduction of the projected I covariance,

that is, the variability in E due to the I to E connection (Figure 6eii). In particular, the

modulation of the projected I covariance results in the partial cancellation of correlations

and a net reduction in E variability (Figure 6f). These joint improvements in signal and noise

therefore combined nonlinearly to induce the increase in FIE (Figure 6b). In conclusion, the

two-unit model accurately anticipated how modulation can affect population codes through

a combined effect on the effective gain and covariance.

Previous information-theoretic studies have identified a source of correlated variability,

termed differential correlations, which causes information to saturate in a population [97, 69].

The differential correlation imposes an upper bound on the efficacy of population codes. As

we show in the Supplemental, differential correlations limit FIE as well. However, modula-

tion can still increase information in a neural population provided the system has not yet

saturated the bound (Figure 9). Recent studies have attempted to estimate information-

limiting correlations in primary visual cortex in mouse and monkey, arguing for the presence

of differential correlations which bound the information encodable by the neural population

[96, 66]. However a powerful recent study recording from tens of thousands of neurons across

thousands of trials did not find evidence for information saturation in mouse V1 [137]. All of

these studies have considered the collective activity of V1 as the full population, encoding an

oriented visual grating, say, and relating it to behavioral performance. Previous anatomical

experiments have shown that feedforward projections from V1 are rather segmented into

partially overlapping patches [124]. In our view, a decoder would represent the downstream
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area connected to a particular upstream patch. This partitioning of cortical areas could

explain how, even in the presence of information-limiting correlations, neural processing can

be kept away from the information saturation bound and therefore modulated with network

state.

2.3.3 The implications of subpopulation codes for divergent cortical pathways

The results we have described thus far are not unique to a partitioning of E/I networks

by excitatory and inhibitory neurons. Rather, they are defined in terms of readout (or:

observed) and non-readout (unobserved) populations. Given the extensive branching of

corticocortical projections, this differentiation is relevant for pathways diverging from within

the same cortical area to project to disjoint downstream targets. In this way, local recurrent

connections or parallel yet interconnected pathways can influence one another’s information

processing.

The benefits of our framework in analyzing information flow through the circuit can

be seen by considering two recurrently connected E populations stabilized by a single I

population (Figure 7ai,bi). A decoder reading out from both E populations is equivalent to

FIE computed in the preceding sections. As before, FIE is invariant to changes in E activity

and to all E connections. This can easily be seen from equation 13 applied to this network

in which X =

xE1I

xE2I

 =

 LIJE1I

1+LIJII
LIJE2I

1+LIJII

. What this formulation nicely reveals is that the

components of X are simply the two x’s for the subnetworks E1/I and E2/I (see effective

connectivity diagrams, Figure 7aii axes). In particular, each component of X is the effective

projection from I into each element E1, E2 of the readout population. Similar to the case of

only one E population (Figure 5), if we examine the information landscape with the chosen

parameter set, reducing xE1I and xE2I would lead to an increase in information, consistent

with a disinhibitory mechanism (Figure 7aii). For example, movement toward the xE1I axis

would be achieved by weakening the I → E2 connection (the alternative of changing LI

or JII would of course affect both xE1I and xE2I). However it must be ensured that this

modulation does not lead to instabilities in the network, a condition which again depends

on all network parameters Pnet (red region, Figure 7aii).
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Figure 6: Modulation affects inputs to E. a. Network schematic of modulation via changes

in synaptic strength. b. FIE for unmodulated (green), modulated (mod.), modulated with

changes in gain only (∆Φ) and modulated with changes in covariance only (∆Σ). c-f. 0o is

chosen to be the unit whose preferred orientation matches the peak of the stimulus. c. (i)

External input gain to E units is constant with modulation. (ii) I inputs to E are scaled

by X and depend on modulation (light blue). Schematics as in Figure 5b indicate which

network elements determine the plotted values above and below. d. Net external input gain

to E before (green) and after (purple) modulation. e (i) Illustration of a row from the input

covariance to E. (ii) The effective input noise from I to E, −ΣC
extX

T −XΣC
ext + XΣI

extX
T ,

before (dark blue) and with (light blue) modulation. f. Total input covariance to E. Colors

as in (d).
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Now suppose E1 and E2 project to different targets, and consider the downstream decoder

reading out from only E1 (Figure 7bi). In this case we want to analyze FIE1 and X =(
xE1E2 xE1I

)
now becomes effective couplings from E2 and I. The two components of X,

xE1E2 and xE1I , are composed of all effective paths from populations E2 and I, respectively,

to E1 (Figure 7bii axis diagrams; Eqs. 24, 25). In this case, FIE1 is high when xE1E2 and

xE1I are both large or small (Figure 7bii). Therefore, information of the E1 population can

be increased by jointly increasing or decreasing xE1E2 and xE1I , which can be achieved by, for

example, strengthening or weakening JE1E2 and JE1I (Figure 10). Note that there is a region

of inaccessible values of xE1E2 and xE1I (Figure 7bii, white region), due to the restrictions

Dale’s law places on the signs of the connection weights (i.e. JαE ≥ 0; see Supplemental

Material). Similarly, the parameter space for FIE is restricted to positive values of xE1I

and xE2I (Figure 7aii). The inaccessible region of xs depends on connection strengths and

cellular gains (Figure 8).

In a general network of multiple units, we find that X comprises all paths through

the unobserved units together with all projections to each readout unit (Figure 7c and

Supplemental Material). The analysis is similar to previous works which decompose the

network response covariance into structural motifs [145, 128].

In sum, the modulation of information flow in cortical networks is affected by all input

connections to the readout population. This poses a thornier issue for populations projecting

to divergent targets than for E networks with the same decoder since activity along one

pathway can influence information flow along another connected path. As we speculate in

the Discussion, this result could motivate compartmentalization, or clustering, of activity in

cortex.

2.3.4 Parametric considerations in the theory of subpopulation codes

While we have thus far argued for the biological importance of our theory, it has a

mathematical benefit as well. In order to understand the effect of modulation on information

flow in a network, traditional analysis would require knowledge of all network parameters.

For a network of N units this is N(N + 1) different parameters if we consider all possible
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Figure 7: Information flow through E subpopulation a. (i) Network schematic. Dashed lines

illustrate which connections were varied in computing stability bounds in (ii). Readout is

from both E1 and E2. (ii) FIE for xE1I and xE2I for fixed input covariance and stimulus.

Axes show the effective connections which comprise each x. Red region indicates instability.

b. (i) As in (ai) for readout from only E1. (ii) As in (aii) where the white region indicates

inaccessible values of xE1E2 and xE1I for the chosen parameter set. c. Illustration of the

general form of elements of X. A generic network is shown (grey) with only a subset of units

available to the decoder (grey dashed circles). Two elements of X are illustrated in terms of

the pathways through the network which contribute to them (green).
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connections (N2) and each unit’s stimulus-response linearization (N). In our theory, however,

if readout is restricted to m of the N total units one must only understand how modulation

affects m(N − m) parameters, the number of elements in X. This can offer a significant

advantage. For instance, in the preceding example we reduced the relevant parameter space

from 12 to 2 when decoding from E1.

Other considerations such as system stability will yet demand full knowledge of the

system. In spite of this, our theory still affords some benefit (Figure 8). We return to the

question of decoding from E1 in the same network as in the preceding section (Figure 7) by

varying four connection strengths (JE1E2 , JIE2 , JE1I and JE2I ; Figure 8ai). If we look at how

FIE1 changes when viewed as a function of these four connection strengths, both the stability

boundaries and the information landscapes change across panels (Figure 8aii). Describing

a consistent theory for how modulation can enhance information flow in this context would

be exceedingly difficult; there are still five unexplored connections. By contrast the same

parameter changes replotted in terms of xE1E2 and xE1I show a different picture (Figure

8bi): the information space is invariant, and only stability and accessibility boundaries

change (Figure 8bii). Given that a modulation can drive a change either within or across

plots, this representation affords a much clearer picture of how to modulate the network

once network stability is taken into account. We comment, however, that the connection

parameters we manipulated here still offer a peek behind the curtain; without knowledge of

which connectivity parameters most influence X it would not have necessarily been a priori

obvious to consider JE1E2 vs. JE1I , and one might have had to explore all nine connectivity

values to arrive at the same conclusion.

2.4 Discussion

In this study we explored how information within a neural population changes as a func-

tion of cortical state. We have shown that for cortical state to affect information flow in a

neural circuit, a linear decoder must only observe a subset of the complete neural population,

consistent with cortical anatomy in which only a subset of neurons project to downstream
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Figure 8: Parametric benefits of the theory. a. (i) Schematic of the network. Dashed lines

represent connections varied within and across plots (stability boundaries computed as in

Figure 7). (ii) FIE as a function of varying connectivities (J ’s) for a semi-naive surf of J-

space. Red regions indicate instability. Direct connections from E2 and I to E1 were varied

within a plot. Connections between E2 and I were varied across plots. b. (i) Illustration of

connections contributing to xE1E2 and xE1I with varied connections dashed. (ii) Same data

and arrangement as in (aii) plotted as a function of xE1E2 and xE1I . Central plot in (aii) and

(bii) is same parameter set as Figure 7bii.
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targets [55]. Moreover, we observed the counter-intuitive result that under changes in cor-

tical state, it is only those neurons which are not decoded from (i.e. do not project to a

downstream region) that shape linear readout from a neural population that does project

downstream. This suggests a strong role for inhibition in shaping information flow in cortex,

a view which is gaining broad support [61]. Furthermore, we showed that subpopulation

linear Fisher information depends only on the structure of the external (e.g. thalamocor-

tical) inputs to the network, together with the non-readout connections and input/output

linearization, effectively reducing subpopulation codes to a feedforward circuit.

In the ring model with distributed tuning, we assumed that any current modulation is

independent of the tuning preference of neurons (Figure 3). While tuning-dependent modu-

lation has been used to model selective attention [37, 82], it trivially adds information to the

network. Specifically, denoting current modulation as M(θ), we would have Φ = dsext

dθ
+ dM

dθ
.

Hence, in this work we only considered modulations that do not trivially introduce infor-

mation to the network, such as transient synaptic weight changes and tuning-independent

current modulation.

Throughout this study we largely focused on a classic E/I dichotomy in which excita-

tory neurons conveys information to downstream regions while inhibitory neurons solely act

locally. However our analysis proved relevant to other common circuit motifs such as those

in which local excitatory cells shape projection cell output or divergent projection cells mu-

tually interact. As an example, intracortical pyramidal neurons in motor cortex innervate

corticostriatal cells which project from motor cortex to various subcortical and peripheral

targets [133]. Additionally, deep layers of cortex are also the source of reciprocal connections

between divergent projection neurons: corticothalamic neurons which project subcortically

and intratelencephalic neurons which project within cortex [56]. Given the high divergence of

cortical projection pathways and the preponderance of clustered network architectures across

cortex, our results support an information-processing benefit to a clustered organization [84].

By limiting the interaction between neural clusters performing distinct computations, the

brain could achieve better control over the degree to which activity in one cluster affects the

information flow in another.

Previous studies have considered readout from only the excitatory neurons [86, 99, 68].
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However these studies either did not explore the impact of modulation on the decoder [86]

or considered only homogeneous tuning inputs [68], leaving open the question of whether

and how these results extended to networks with distributed tuning. A recent study [99]

explored the coding capacity of inhibitory neurons, thus comparing E vs. I information,

and examined how changes in E/I connectivity (JEI , JIE) affected information content in

E and I populations separately. Our results clarify why varying these connections was the

only way to affect information in their network: their use of a linear system fixed the cellular

gain (L in our theory), and the only other terms the effective connectivity (X) depend on

are the J ’s.

The effects of state modulation on neural circuits are highly diverse, capable of adjusting

a range of properties from cell-intrinsic - such as excitability and neurotransmitter release

[51, 87] - to population-wide, such as oscillatory activity and noise correlations [142]. The

mechanisms underlying state changes are equally diverse, involving many classes of neuro-

modulator and different sources of feedback drive [57]. Neuromodulators can be broadly

distributed, such as cholinergic projections from midbrain to cortex, or highly specific, like

dopaminergic targeting of individual cortical layers [141, 142]. This seemingly endless flex-

ibility poses a challenge for determining how these moduli relate to neural processing. Our

theory goes some way towards identifying the circuit components which are actually affecting

neural processing. For example, we found that reducing the synaptic strength between I and

E can increase gain and decrease covariance in excitatory units. These effects are mirrored

by acetylcholine (ACh), which has been shown to reduce synaptic efficacy of intracortical

connections [142].

Neuromodulation can affect the responsiveness of neurons in many ways that our model

does not capture, for example, by reducing burst spiking and altering firing adaptation [57].

Of course, the omission of a spiking mechanism is a clear limitation of rate models, and future

work should address the way in which modulation of spiking properties affects neural coding

across states. Our choice of firing rate models are nevertheless able to capture the main effects

observed in many experimental paradigms such as primate electrophysiology experiments in

which analysis is performed on spike counts [24], or calcium imaging experiments [138]. In

fact, we anticipate that the spatially broad recording capacity of modern calcium imaging,
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together with neural subtype indicators will provide the data our model has identified as

important to understanding the circuit mechanisms of information modulation, namely, the

activity of local (largely inhibitory) interneurons.

Our results also highlight the general difficulty in assigning a functional role to specific

network components in affecting information flow. If we consider an arbitrary connection

JEI this can emerge in multiple paths from the non-readout to the readout population,

thereby affecting multiple values in X (Supplemental Material; Figure 10). Similarly, the

linearization Lα of unit α contributes to all values of X in which connections from unit α are

present. These issues are natural consequences of the recurrent nature of cortical circuits. In

spite of this, the ability to map a recurrent circuit to an effectively feedforward model with an

interpretable hyperparameter, X, will facilitate uncovering the mechanics of state-dependent

information modulation.

Understanding how neural processing depends on brain state is a major goal in systems

neuroscience [35]. Even in simple subcortical systems like the crab stomatogastric ganglion

in which the full connectivity structure is known, a modulus’s effect on circuit dynamics is

still difficult to generalize as it depends upon the relationship between the network state

and the nature of the modulus [88]. Expanding to cortical circuits of much larger size poses

a daunting challenge, however, our theory significantly reduces the space of parameters

which need to be measured, as well as provides a degree of interpretability by representing

information flow in terms of effective pathways within a network. Our results highlight the

importance of locally projecting neurons in shaping the information in neurons that project

to downstream areas.

2.5 Methods

2.5.1 Linear theory

We considered a linearization of a nonlinear firing rate model (equation 6). For sufficiently

small noise, equation 6 can be linearized around the steady state rate, with fluctuations in
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rate around the operating point given by an N -dimensional extension of traditional linear

response theory:

τδṙ = Wδr +Dζ, (14)

W =

−1 + LEJEE −LEJEI

LIJIE −1− LIJII

 , (15)

D = Tn

LEσE
√

1− c 0 LEσE
√
cBE

0 LIσI
√

1− c LIσI
√
cBI

 (16)

where ζ is the (N + ν)-dimensional vector of external input noise (here ν = 1 is the dimen-

sion of the shared external input variability), W is an N × N matrix of effective weights,

D is N × (N + ν) matrix which scales the noise terms, Bα is the Nα × ν matrix which

determines the input covariance structure, σα is the amplitude of the noise to a given unit,

τ =

τE1 0

0 τI1

 where 1 is the Nα × Nα identity matrix. Lα is the diagonal matrix of

derivatives of the transfer function at the steady state rate whose ith diagonal element is

given by

Li =
dfi
dθ

(∑
j

Jij r̄ + Î0,i(θ)
)
, (17)

with r̄ the steady-state solution to equation 6 and Î0,i(θ) = b + sext(θ). In order to avoid

injecting pure white noise into the system, we consider a temporally smoothed noise process

τnζ̇i = −ζi +
√
τnξi (18)

where ξn is a white noise process and i is an index over all possible noise sources. Conse-

quently, Tn is a time-scaling constant given by Tn =
√

2τn. This linearized stochastic system

then enables us to estimate the full covariance matrix of the spatially extended model [46].

In particular, the covariance matrix is given by Σ = W−1D(W−1D)T . It should be noted we

have written the connectivity parameters J as positive values; the negative sign of inhibition

is made explicit in the dynamical equations and carried through the relevant derivations.
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2.5.2 Gain calclulation

The population response gain is given in general by the derivative of a population’s

response with respect to an input parameter. In the reduced E/I model we have sext,α = kαs

such that G = dr̄
ds

. In the ring network, the parameter of interest is the angular variable θ

such that G = dr̄
dθ

= LdI
dθ

= L(dsext

dθ
+ dM

dθ
+ Jdr̄

dθ
) = L(dsext

dθ
+ dM

dθ
) + LJG =⇒ G =

(1−LJ)−1L(dsext

dθ
+ dM

dθ
) = (−W−1)L(dsext

dθ
+ dM

dθ
). Here we have let I equal the argument of

f in equation 6. We have generalized this derivation with the inclusion of a current modulus

M(θ) such that I = J · r + I0 + M(θ) where I0 is given by equation 7; a transient weight

change would simply affect J. Finally, letting Φ = dsext

dθ
+ dM

dθ
we arrive at the following

compact expression: G = −W−1LΦ.

2.5.3 Fisher information analysis

2.5.3.1 Full FI

As mentioned above we write the (long time) covariance matrix Σ = (W−1D)(W−1D)T =

W−1DDT (W−1)T . Notice that we can rewriteD such thatD = LDext whereDextD
T
ext = Σext.

Hence, we have

Σ = W−1DDT (W−1)T = W−1LΣextL(W−1)T . (19)

The linear Fisher information (FI) is thus given by

GTΣ−1G = −ΦTLT (W−1)T (W TL−1Σ−1
extL

−1W (−W−1LΦ) (20)

= ΦTΣ−1
extΦ (21)

since L = LT .

2.5.3.2 FIE derivation

We computed FI for the E population similarly by calculating FIE = GT
EΣ−1

E GE as

follows. Partitioning the input covariance matrix into a block structure such that Σext =
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ΣE
ext ΣC

ext

ΣC
ext ΣI

ext

 and applying equation 19 leads to

ΣE = Ω−1LE[ΣE
ext − ΣC

extLI((−JEI)W
−1
II )T − (−JEI)W

−1
II LIΣ

C
ext

+ JEIW
−1
II LIΣ

I
extLI(JEIW

−1
II )T ](Ω−1LE)T (22)

where Ω = WEE−WEIW
−1
II WIE and we have made use of the fact that WEI = −LEJEI . By

a similar argument we have that

GE = −Ω−1LE

(
1 −JEIW

−1
II LI

)ΦE

ΦI

 . (23)

Plugging these two expressions into the FIE equation at the beginning of this section and

identifying the term X = −JEIW
−1
II LI = −JEI(−1−LIJII)

−1LI gives the final equation 13.

2.5.4 Subpopulation codes in general: FIα

The derivation shown above in the section ”FIE derivation” is flexible to shifts in the

block structure. Thus for any subpopulation α of the full network the same arguments apply

for a partitioning of the inputs with the mappings E → α and I → U where the unobserved

network elements are denoted by U .

2.5.4.1 Derivation of X for divergent E populations

Here we derive X for FIE and FIE1 in the two recurrently connected E populations and

single I population (Figure 7). From equation 13 we have that, for FIE, X =

JE1I

JE2I

 (L−1
I +

JII)
−1 =

xE1I

xE2I

 where, since LI and JII are scalars, xE1I =
LIJE1I

1+LIJII
and xE2I =

LIJE2I

1+LIJII
.

We now derive FIE1 after the preceding section. Let U = {E2, I}. Then for E1 readout,

X = JE1U(WUU)−1LU =
(
xE1E2 xE1I

)
where

xE1E2 =
(JE1E2(−1− LIJII)LE2 − JE1IwIE2LE2)

det(WUU)
=
LE2JE1E2wII − LIJE1ILE2JIE2

wE2E2wII − wE2IwIE2

(24)
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U M M’

JEE 0.975 0.769 4.74

JIE 0.25 0.018 0.416

JEI 0.25 0.018 0.208

JII 0 0.206 0

LE 5/8 5/8 1/5

LI 8/5 8/5 5

Table 1: Parametric solutions to Figure 4

and

xE1I =
(−JE1E2wE2ILI + JE1I(−1 + LE2JE2E2)LI)

det(WUU)
=
−LE2JE1E2LIJE2I + LIJE1IwE2E2

wE2E2wII − wE2IwIE2

.

(25)

Here we have written wαβ to denote the individual elements of the W matrix for this net-

work, defined in equation 15 (for analysis of this network see: Supplemental Material). In

particular, wαβ = −δαβ + LαJαβ where δ is the Kronecker delta function.

2.5.5 Model parameters

2.5.5.1 E/I network (Figure 4)

The response distributions were given by r = −W−1LI and Σ = (W−1L)Σext(W
−1L)T .

Here we used the W notation defined along with equation 15. Letting A = −W−1L with

superscripts to denote the relevant figure panel in which the parameter set was used, we

have: AU =

.5 −.8

.8 .5

, AM =

.94 −.01

.01 .94

, AM
′

=

.4 −.4

.8 .5

. Input drive I =

7

2

;

δI =

 2

0.5

; input covariance Σext =

2 0

0 2

. Additionally, L’s and J ’s which also solve

the equations are given in Table 1.
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2.5.5.2 Ring network (Figures 3 and 6)

The ring model consisted of NE = 180 E units and NI = 180 I units where location on

the ring corresponded to a unit’s preferred tuning θ. Parameters were derived in part from

Rubin et al. [118].

For all units the transfer function is threshold quadratic: f = kbI0cm+ . Here k = 0.04

and m = 2. The stimulus is a wrapped gaussian with amplitude cα: sext(θ) = cαg(θ; θ0, σext)

where

g(θ; θ0, σext) = kext

∞∑
n=−∞

exp

(
−(θ − θ0 +Nn)2

2σ2
ext

)
. (26)

The baseline input b = 10, kext = 40 and the stimulus was centered at θ0 = 90o. Modulation

was introduced as a uniform current bias M(θ) = µ so that I = I0 +µα with µE = −1, µI = 2

(Figure 3), µE = −2, µI = 4 (Figure 9). Modulation in Figure 6 was modeled as a change in

connectivity weight (see Table 2).

Connectivity decayed with distance, given by g(θ; θα, σαβ) with σαβ = 32o for all α, β ∈

{E, I}. Note in the figures, angles were expressed in radians.

The input covariances partitioned as in equation 22 were given by: Σγ
ext = cγg(0, σγ), γ ∈

{E, I, C} (see Table 2).

2.5.5.3 E1/E2 network (Figures 7, 8)

We used equation 13 to generate the plots of FIE vs. x. Input variance was 0.003025

while input covariance was 0.00242. To compute the stability boundaries in Figures 7 and

8, unless varied explicitly in the Figure, weights were set to wE1E1 = wE2E2 = 0.5, wII =

−2, wE2E1 = 1, wIE1 = wIE2 = −wE2I = 1.4 (wαβ notation defined in Methods: Derivation

of X for divergent E populations).

2.6 Supplemental Material

Here we provide detail of the analyses of divergent excitatory pathways (Figure 7, 8)

including stability and accessibility bounds, a discussion of differential correlations in our
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Value Units Figure

τE 20 msec 3, 6

τI 10 msec 3, 6

τn 1 msec 3, 6

JEI 0.023 3

0.03 6M

0.043 6

JEE 0.044 3

0.027 6

JIE 0.042 3

0.03 6

JII 0.018 3

0.042 6

σE 1

σI 1

σext 30o

40o 6

σE 30o

cE 0.1

σI 20o

cI 0.5

σC 30o

cC 0.2

Table 2: Superscript M in the Figure value denotes the value to which a parameter changed

with modulation.
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model [97, 69] and a brief description of the general decomposition of X into paths through

the network (Figure 7).

2.6.1 Impact of low-rank variability on modulation of subpopulation codes

Numerous experimental studies have demonstrated that the covariance structure in cor-

tical circuits contains a significant low-rank component [63]. We therefore consider a covari-

ance matrix which decomposes into full and low-rank components Σ = Σ0 + εvvT . Here Σ0

is full-rank and v is an N -dimensional vector. We denote the elements of v which act on the

E population by the vector vE. Computing FIE for this covariance structure results in (see:

Supplemental, FIE for low-rank covariance)

FIE = I0

(
1− ε

1 + ε〈vE, vE〉
(|vE|cos(ψΦ,v))

2
)

(27)

where ψΦ,v denotes the angle between Φ and v. We have defined 〈x, y〉 = xTΣ−1
0 y and

I0 = ΦT (Σ0)Φ. Thus we see two potential (nontrivial) mechanisms for enhancing information

flow: through changes in I0 or by reducing cos(ψΦ,v). As the numerical results explored

yielded either parallel or orthogonal vectors, we focus here only on the first mechanism. In

particular, let v be the simplest case: the unit vector (Figure 9A, top). A modulation in the

form of a constant input bias to all cells in the network model described in the previous section

reduces correlations for nearby units while slightly increasing correlations for dissimilarly

tuned units (Figure 9B, solid lines, green to magenta). This modulation results in a linear

increase in FIE as a function of I0 (Figure 9C, solid line, green to magenta).

Equation 27 allows us to additionally consider an important case for v. It has been shown

that the nature of correlated variability which limits information in a neural network is that

which causes a shift in the population’s response in the direction of the encoded variable

[97]. These are called differential correlations as for a population response r they take the

form of r′ = dr
dθ

(other studies have often used the notation f instead of r [97]). To this end

consider a network in the presence of differential correlations such that v = Φ and equation

27 simplifies to

FIE =
I0

1 + εI0

. (28)
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Figure 9: Differential correlations in subpopulation codes a. Input correlation structures. b.

Output correlations for two different structures of input variability. Green: unmodulated;

purple: modulated. c. Corresponding changes in FIE for correlations in (b). Dashed line:

differential correlations; solid line: non-differential correlations. ε in equation 28 was 0.3.

Thus, as I0 → ∞, information in subpopulation codes saturates to 1
ε

(compare curves in

Figure 9C). To see how differential correlations affect modulation of subpopulation codes we

introduced vα = Φα into our model network (Figure 9A, bottom). The same modulation

applied to this network resulted in an almost identical change in correlations (Figure 9B,

dashed lines, green to magenta). However despite the similarities in the output correlation

structures (Figure 9B), the E-population readout, as well as the change in the readout,

differs significantly (Figure 9C, dashed line, green to magenta). Thus it is not enough to

know how the firing rate statistics of a network change with modulation. Instead, one must

understand the nature of the output projections of the network in question, together with

its inputs, to get the full picture of how modulation is affecting information flow.

In summary, subpopulation codes can be modulated in the presence of information-

limiting correlations as long as the network has not saturated the 1
ε

bound. Away from

saturation, the results of our previous analyses for population codes hold. This is because

I0 is still subject to the modulatory effects described above.
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2.6.2 FIE for low-rank covariance

Here we specify a low-rank component of the input covariance such that Σext = Σ0 +vvT

and again denote vα the elements of v which act on population α. Then

FIE =φT [ΣE
0 − ΣC

0 X
T −XΣC

0 +XΣI
0X

T

+ ε(vEv
T
E − vEvTI XT −XvIvTE +XvIv

T
I X

T )]−1φ
(29)

=φT [Σ0 + ε(vE −XvI)(vE −XvI)T ]−1φ (30)

=φTΣ−1
0 φ− ε

1 + εψTΣ−1
0 ψ

(ψTΣ−1
0 φ)2 (31)

=〈φ, φ〉 − ε

1 + ε〈ψ, ψ〉
〈ψ, φ〉2 (32)

=I0 −
ε

1 + ε〈ψ, ψ〉
(|φ||ψ|cos(θφ,ψ))2 (33)

where ψ = vE −XvI and we denoted φ = ΦE −XΦI . As above we let 〈x, y〉 = xTΣ−1
0 y and

I0 = φTΣ−1
0 φ.

With the substitution vα = Φα we have in the last equation above that ψ = φ and

cos(θφ,φ) = 1 which results in equation 28.

2.6.3 Analysis of Divergent Excitatory Pathways

Here we expand our discussion of the E1 − E2 − I network described in Figure 7. In

particular we outline the stability conditions analyzed and limitations on attainable values

of x1 and x2. We remind the reader of the system dynamics:

δṙ =


−1 + LE1JE1E1 LE1JE1E2 −LE1JE1I

LE2JE2E1 −1 + LE2JE2E2 −LE2JE2I

LIJE1E1 LIJE1E2 −1− LIJII


︸ ︷︷ ︸

W=−1+LJ

δr + LI. (34)

X for a linear decoder restricted to population E1 then has components

xE1E2 =
LE2JE1E2wII + LIJE1ILE2JIE2

wE2E2wII + wE2IwIE2

, (35)

xE1I =
LE2JE1E2LIJE2I − LIJE1IwE2E2

wE2E2wII + wE2IwIE2

. (36)
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Value Units

τE 20 msec

τI 10 msec

τn 1 msec

JEI 0.03

JEE 0.03

JIE 0.03

JII 0.029

σCE 0.515

σDE 0.5

σCI 0.515

σDI 0.5

σext 30o

σE 30o

cE 0.1

σI 20o

cI 0.5

σC 30o

cC 0.2

Table 3: Figure 9 Parameters. Variable superscript C denotes constant modulation case, D

denotes differential correlation case.
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where wαβ is the element of W given by wαβ = −δαβ + LαJαβ with δ the Kronecker delta

function and α, β ∈ {E1, E2, I}. Since we have assumed our system is in a steady-state

and linearizable regime we can apply the Routh-Hurwitz stability criteria to our linearized

network (see Appendix A.2.1), which requires three conditions be satisfied (note we have not

assumed a sign for any of the wαβ’s):

1. a2 = −wE1E1 − wE2E2 − wII > 0

2. a0 = wE1E1(wE2IwIE2 − wE2E2wII) + wE1E2(wE2E1wII − wE2IwIE1) + wE1I(wE2E2wIE1 −

wE2E1wIE2) > 0

3. a2[wE1E1(wE2E2 + wII) + wE2E2wII − (wE1E2wE2E1 + wE1IwIE1 + wE2IwIE2)] > a0.

Next we prove bounds on x1 and x2 for given parameter sets. We will use the following

shorthand: xE = LE2JE1E2/wE2E2 , xI = LIJE1I/wII and xβα = LαJβα/wαα, α, β ∈ {E2, I}

(i.e. the x’s written for the corresponding monosynaptic connections). Finally, to make the

notation clearer we write xE1E2 = x1 and xE1I = x2. First we prove the general claim that

x1, x2 cannot both be negative. More precisely, x1 < 0 =⇒ x2 ≥ 0 and x2 < 0 =⇒ x1 ≥ 0.

Rearranging terms in equations 35 and 36 we can write:

xE1E2 = x1 =
xE − xIxIE2

1− xE2IxIE2

,

xE1I = x2 =
xI − xExE2I

1− xE2IxIE2

.

Note that xI ≥ 0 since xI =
−LIJE1I

−1−LIJII
=

LIJE1I

1+LIJII
≥ 0, and similarly for xE2I . By contrast, xE

is unrestricted.

We will consider two cases. For readability we write xE2I = a, xIE2 = b. In this way

x1 =
xE − xIb

1− ab
, x2 =

xI − xEa
1− ab

.

Case 1: 1− ab > 0. First let b ≥ 0. Then

x1 < 0 =⇒ xE < xIb =⇒ xEa < xIab < xI =⇒ x2 > 0

x2 < 0 =⇒ xI < xEa =⇒ xIb < xEab < xE =⇒ x1 > 0
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where the last inequality follows from the assumption that 1 > ab. Now suppose b < 0. But

then x1 ∝ xE +xI |b| < 0 ⇐⇒ xE < 0 =⇒ x2 ∝ xI −xEa = xI + |xE|a > 0. Clearly x2 < 0

requires xE > 0 so this condition is immediate.

Case 2: 1− ab < 0. Note that this assumption is true iff a, b > 0 since a ≥ 0.

x1 < 0 =⇒ xE > xIb =⇒ xEa > xIab > xI =⇒ x2 > 0

x2 < 0 =⇒ xI > xEa =⇒ xIb > xEab > xE =⇒ x1 > 0

where now the last inequality follows from the assumption that 1 < ab.

The above arguments illustrate parameter-independent bounds on x1 and x2 for this par-

ticular system. However there are also parameter-dependent bounds on x1 and x2 (Figure

8, variability in the white regions). The main text focused on bounds due to restrictions on

the connection (J) values; these arise from the fact that excitation and inhibition necessarily

have positive and negative values, respectively. Equations 35 and 36 share the same denom-

inator, which we denote d. In each panel in Figure 7 we varied only JE1I and JE1E2 (see also

Figure 10). Thus equations 35 and 36 can be written in the form:

x1 =
LE2wII
d

JE1E2 +
LE2LIJIE2

d
JE1I ,

x2 =
LE2LIJE2I

d
JE1E2 −

LIwE2E2

d
JE1I .

For sake of illustration assume that d > 0 (the same argument holds under reversal of signs).

Then for JE1E2 = 0, x1 ≥ 0, x2 ≤ 0 and x2 = −LIwE2E2

LE2
wIE2

x1, which is a lower bound for x2 in

the region where x1 > 0. Notice with our assumption that d is positive, a similar argument

letting JE1I = 0 leads only to bounds on x1 ≤ 0, x2 ≥ 0 (since wII ≤ 0). Thus we see how

the E2 − I connectivity places additional constraints on the accessible values of X under

modulation of connection strength (observe the white regions in Figure 8 for x1 ≥ 0, x2 ≤ 0

and x1 ≤ 0, x2 ≥ 0).

Different bounds will result from varying different parameters. For example, since the

cellular gain, Lα, is non-negative its minimum value is 0. Letting LI = LE2 = ε in equations
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a b

Figure 10: X components as a function of connectivity. a. xE1E2 as a function of JE1E2 , JE1I .

Black dashed line corresponds to 0 contour; gray dashed line is 0 contour of panel (b). b.

Same as (a) for xE1I ; gray dashed line is now 0 contour of panel (a). Region bounded by

dashed lines is where xE1E2 , xE1I are jointly positive.

35 and 36 it can be shown that x1 < 0, δ > x2 ≥ 0 for some δ which depends on ε in the

parameter regime used in Figure 7. In particular, the assumption of LI , LE2 small leads to

the terms in equations 35 and 36 with w’s dominating. These values would in turn cross

the J-induced boundary, but do not violate our conclusions since Lα was assumed fixed in

Figure 7.

2.6.4 X as paths through the network

As discussed above, in full generality X = JOUW
−1
UULU where O is the observed (readout)

population, U the unobserved population. We recall that WUU = −1 + LUJUU . Assuming

boundedness of WUU we have the expansion −(1− LUJUU) = −
∑∞

k=0(LUJUU)k =⇒ X =

−JOU
∑∞

k=0(LUJUU)kLU . Since LUJUU are the effective connection strengths in the network,

(LUJUU)k denotes the kth step through the unobserved population [128], and consequently

X is comprised of all paths through the unobserved population and their projections to the

observed population (JOU). This expansion has been used before to decompose the structure
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of the response covariance in a neural network [145, 13].

The final panel in Figure 7 additionally derives from this expansion in the following way:

consider the ij element of X where i is the index of a decoded unit and j is an undecoded unit.

Then Xij = Lj
∑

k JikW
−1
kj = Lj

∑
k Jik(−

∑
p(LJ)pkj). In the final sum the kjth element is

all the p-step ways to reach element k from element j, and in turn, the readout neuron i.
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3.0 Constraints on mechanistic models of attention

3.1 Overview

Attentional modulation of neural activity in visual cortex has been shown to relate to cell-

or network-intrinsic properties through the phenomenon of response normalization [101]. In

this study we seek a mechanistic description for this relationship. We focus on the correlation

between neuron-to-neuron heterogeneity in attentional effects and across-neuron heterogene-

ity in normalization. Interestingly, we find that, despite being a conspicuous relationship

between a cognitive variable (attention) and a circuit-dynamic variable (normalization), it

nevertheless is insufficient to adequately constrain circuit models. We instead find that by

considering correlations between the heterogeneities in absolute changes in rate with at-

tention and normalization better constrain mechanistic models of attention. In particular,

these constraints point to the necessity of strongly recurrent networks in constructing these

relationships. We then demonstrate network properties which support this collection of cor-

related heterogeneities, showing how these depend on the structure of inhibition. This work

aims to utilize these known relationships between circuit dynamics (normalization) and a

cognitive process (attention) to constrain possible models of attentional effects on circuit

activity and the dynamical state of cortex.

3.2 Introduction

Experimental studies of nonhuman primates performing a visual task in which their at-

tention is differentially allocated have provided a wealth of insight into attentional processes.

Intracortical electrode recordings in primate visual areas MT and V4 during these tasks have

identified changes in neural activity which relate to different attentional states [90]. These

changes depend in a nuanced way on the type and spatial organization of the stimuli used,

and the nature of attentional cueing [25]. When attention is directed to a spatial location
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within a recorded neuron’s receptive field, the neural response gain to gabor stimuli presented

at that location tends to increase tuning curves in a contrast-invariant manner [91]. When

stimuli are presented alone, this results in either a shift or rescaling in the contrast-response

function of the neuron [152]. If multiple or overlapping stimuli are presented, however, the

neural response becomes a nonlinear function of the inputs. The nature of this nonlinearity

has been shown to relate to a property called response normalization.

Cross-orientation suppression provides a prominent example of normalization. A neuron

driven by a single gabor at its preferred orientation responds maximally while an orthogonal

gabor might elicit very little response from the neuron. Superimposing both (or, presenting

both stimuli within the neuron’s receptive field at spatially distinct locations) often causes

a reduction in firing rate [119]. Cross-orientation suppression can be captured using a de-

scriptive model in which the rates are fit to an equation of the form

r =
w1c1 + w2c2

c1 + c2 + σ
(37)

where ci is the contrast and wi weights the relative contribution of the ith stimulus, and σ is

a constant which controls the contrast saturation rate [19]. Response normalization of this

and related forms is highly successful at fitting responses to visual cortical cells [59, 20].

The observation that attention affects contrast response functions which are well-described

by the normalization model led to the suggestion that attention and normalization are re-

lated [115]. This idea can be implemented by simply including a term α in equation 37 to

differentially weight the attended stimulus; for example attending to the first stimulus can

be written r = (αw1c1 + w2c2)/(αc1 + c2 + σ). Indeed, this extension captures well activity

recorded in both MT and V4 in attended and unattended conditions [77, 101, 149]. Modifi-

cations to this fundamental descriptive model have been able to explain further attentional

effects by tweaking the component parts as a function of attention or stimulus conditions,

speaking to the robust generality of this model [100, 122]. While this flexibility is a boon to

fitting experimental data, it can limit the model’s effectiveness at constraining mechanistic

descriptions of attention. Namely, this modeling framework falls short of describing how

attention arises from, or interacts with, the fundamental building blocks of circuits: neurons

and synapses.
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Models attempting to provide an understanding of the mechanism of action of attention

in cortical circuits have generally incorporated a knowledge of cortical architecture and re-

sponsiveness. There is a rich history of cortical circuit models capable of capturing the neural

dynamics of visual cortical areas [10, 146, 80]. Because spatial attention scales tuning curves

in a contrast-invariant fashion, these recurrent network models have formed the founda-

tion of attentional models recapitulating this result through modulation of gain parameters

[26, 37, 82]. Yet these models also exploit a degree of flexibility in their implementation

of attention, incorporating it however necessary to match the desired experimental observa-

tions. One potential remedy is akin to a brute-force search: match as many experimental

observations as possible with a single model type. This approach has been taken recently

in the service of explaining how the normalization model of attention described above could

manifest through circuit-specific mechanisms [82]. Recurrent networks have been shown

able to intrinsically induce normalization through strong inhibitory feedback together with

strong recurrent excitation [5, 118]. This model was then extended to incorporate attention,

demonstrating extensive agreement with many experimental observations [82]. However, it is

possible that disparate model types could also adequately explain the data. This approach

leaves open the question of what neural or circuit properties are required to match these

observations.

In an attempt to address this more rigorously, we again focus on the normalization model

of attention. A key observation from the studies of Lee and Maunsell [77] and Ni et al. [101]

was that the effect of both normalization and attention is highly heterogeneous across cells,

and positively correlated. This positive correlation implied that neurons strongly affected by

normalization were also more strongly affected by attention. The success of the descriptive

model (equation 37) in capturing both effects suggests that there is a shared underlying

mechanism at either a cellular or circuit level which explains both their heterogeneity and

correlation. In contrast to a brute-force approach, we instead start by asking what model

constraints can be derived from this single observation that normalization and attention

response heterogeneities are correlated.

To this end we begin with a phenomenological model of a neuron in which cellular het-

erogeneities of the input-output function alone are responsible for the observed correlation,
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finding that the normalization-attention relationship is in fact not a good model constraint.

Instead, we consider the observation that the absolute magnitude of change in rates with at-

tention is also correlated with normalization, and argue this affords a better set of restrictions

on the model. From this, we are able to show that under certain assumptions a saturating

input-output function is necessary to capture the data. We take this as evidence that the

normalization-attention relationship depends on the network structure since neural transfer

functions are expansive in cortex, not saturating [109]. Finally, we consider how this new set

of experimental data constrains a network model in which normalization emerges from the

circuit structure [5, 118], showing that a model with synaptic scaling best reflects the data.

By using correlated response heterogeneities to constrain models, this work thus establishes a

circuit framework from which to develop a deeper understanding of the mechanism of action

of attention in cortex.

3.3 Results

Experimental studies of attention and normalization have predominantly been conducted

in nonhuman primates performing a visual change-detection task. Consistently, the moti-

vation for this work is a key result from Ni et al. [101] in which attention was deployed

to either a preferred or null stimulus while both were present in the receptive field (RF) of

a visual neuron in area MT (Figure 11). Normalization was measured in this experiment

by cueing the monkey to attend to a grating outside the recorded neuron’s receptive field

oriented between the preferred and null stimuli (Figure 11). These five stimulus conditions

enable the defining of two metrics, a normalization modulation index (NMI) reflecting how

much a neuron’s rate is affected by the presence of a superimposed null stimulus, and an

attentional modulation index (AMI), capturing the changing in firing rate associate with

attention being cued to the preferred or null stimulus within the neuron’s receptive field.

Consistent with this study, we define the following:

NMI =
rp − rx

(rp − rn) + (rx − rn)
(38)

56



where rp, rn, and rx are the firing rates of a given neuron in response to its preferred (θp),

null (θn), and both (θx) stimuli together, respectively; and

AMI =
rpx − rnx
rpx + rnx

(39)

where rpx and rnx denote the response of a cell when both stimuli are present (subscript x) and

attention was cued to either the preferred (superscript p) or null (superscript n) stimulus

in the receptive field, respectively. While not entirely consistent with the literature, for

simplicity of exposition we will use the term plaid to refer to the situation in which both

stimuli are in the RF simultaneously. Strictly speaking use of this term implies overlapping

stimuli, but the effect of a true plaid and spatially distinct stimuli presented within a single

neuron’s RF simultaneously are similar [113]. Additionally, it should be noted that some

studies use slightly different metrics to measure normalization and attention; we consider

any discrepancies in the Appendix.

3.3.1 The NMI-AMI relationship is insufficient to constrain a simple neural

model

Neurons themselves are highly diverse, with phenotypic variation within and across

classes [53]. It is therefore plausible that the reason NMI and AMI are correlated is rooted

in a cell itself. Probing this possibility, we consider cellular heterogeneities in the context of

a phenomenological rate model of a collection of single neural units. To make this precise,

for neuron i let its trial-averaged firing rate r be described by

ṙi = −ri + φ(b+ µA + sext) (40)

where φ is any monotonically increasing function, b is a baseline offset and sext a stimulus

input. µA is an attentional bias with A = n signifying attention to the null stimulus and

A = p denoting attending to the preferred stimulus. Since neural activity in experimental

data is computed spanning stimulus presentation we focus on the steady-state solution (i.e.,

ṙi = 0) of equation 40 [101]. The phenomenological nature of this model allows some

freedom to address what properties the model must contain to correlate NMI and AMI.
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Figure 11: Experimental measurements of normalization and attention a Schematic illus-

tration of stimulus organization relative to a recorded neuron’s receptive field (RF; dashed

ellipse). Gabors schematize stimulus positioning relative to the RF. θs indicate stimulus

orientations describing a hypothetical neuron’s preferred (θp) and null (θn), as well as the

plaid organization (θx). b As in (a) for attention conditions. Dashed orange circles indicate

the locus of attention cued on a given experiment, with µ indicating whether the neuron’s

preferred (µp) or null (µn) stimulus is attended. c Normalization-attention relationship from

single-unit recordings in primate area MT. (c) Reprinted from Ni et al. [101] with permission

from Elsevier.
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We will therefore choose a simple yet flexible function class for φ : φ(I) = kbIcm+ where I

represents the collective input. Additionally, the exact interpretation of sext is loose; at this

juncture, neuron i may be considered as a sample of a random function from the class of

functions defined by the foregoing equations. In this context, sext may capture feedforward-

or recurrent-like connections.

The model needs to fulfill three requirements to capture the data (Figure 11): it must

be heterogeneous in both NMI and AMI, and it must positively correlate the two indices.

In what follows we will present a largely intuitive argument; mathematical justification can

be found in the Methods. First, we must assume normalization is inherited since there is

no other mechanism by which this model could induce it. While required in this context,

inherited normalization in fact has precedent even in V1 [7]; higher order visual cortex also

likely receives normalized inputs from earlier regions since V1 exhibits normalized responses.

Since we are interested in how cellular heterogeneities alone might induce the relationship,

we make precise one central assumption: heterogeneities should exist only at the level of

the single unit under consideration. If we assume that heterogeneities in attention and

normalization are both inherited in this model then they must themselves be correlated; a

priori this says that attentional processes have some knowledge of the normalization capacity

of a cell. In the present context, we find this implausible. Letting the inputs sp, sn and sx

map to the respective rates rp, rn and rx, this assumption implies that we are fixing an

ordering sn < sx < sp such that sx − sn and sp − sx are constant for all cells (Figure 12).

Similarly, the magnitude of the attentional effects |µn−sx|, |µp−sx| are constant across cells.

In order to ease the narrative, we will suppose that the baseline b is the dominant source

of heterogeneity across cells with each other parameter varying only slightly. The definition

of NMI can be seen to describe a ratio of intervals, or distances, in rate space: rp−rx, rp−rn
and rx−rn. Consequently, if b is the only heterogeneous model parameter then for NMI to be

heterogeneous φ cannot be linear (m = 1). This follows from the fact that a linear φ preserves

distances from input to output; as the input distances are assumed constant across cells, this

would result in a homogeneous NMI (Figure 12). By contrast, for a nonlinear φ (m 6= 1)

input distances are scaled in a b-dependent manner, resulting in a heterogeneous NMI (Figure

12). For completeness, we consider the implications of m strongly heterogeneous elsewhere,
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Figure 12: Phenomenological model of normalization and attention a Schematic illustration

of setup. b acts as a left/right translation of the inputs sext. φ defines the mapping from

inputs to rates. µ describes the attentional condition, implemented as an additive input

bias. rAs reports the firing rate, where the subscript denotes the stimulus presentation and

the superscript is the attentional target. b Intuitive illustration of a linear transfer func-

tion’s insensitivity to heterogeneity in b (left) as the distances depend only on k and d. In

contrast, a nonlinear transfer function differentially scales input distances (right, d 7→ d(b)).

This differential scaling enables nonlinear functions to induce heterogeneous responses and

by extension, heterogeneities in normalization. c Model simulations illustrating that both

expansive (top) and saturating (bottom) model regimes recapitulate the desired relation-

ship. All model parameters were sampled from independent Gaussian distributions with

Var(b) >> Var(y) where y ∈ {m, sx, sp}. rn was manually set to zero, in approximation of

experimental data.
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demonstrating that additional requirements are necessary (Supplemental material).

Ni et al. observed that in their experiment, when the subject was attending to the

preferred stimulus of a plaid, firing rates of the recorded neuron increased to approximately

match the rate when the preferred stimulus is presented alone, whereas attending to the null

stimulus decreases rates relative to the plaid alone [101]. Consistent with this, in equation 40

we take µn < 0 such that sn < µn+sx < sx and µp > 0 such that µp+sx ≈ sp. Following the

logic above for heterogeneous b, we can see that in this case as well if φ is linear then AMI

will be homogeneous whereas if φ is nonlinear then AMI will be heterogeneous. Therefore

heterogeneous b and m 6= 1 together satisfy the first two requirements. By symmetry in

the attentional and normalization effects, as well as in their indices, we further contend that

NMI and AMI will be positively correlated. Numerical analysis confirms this statement for

both m > 1 and m < 1 (Figure 12).

These results justify at least two conclusions. On the one hand, they show that it is

possible to explain the NMI-AMI relationship with cellular heterogeneities alone. On the

other, it illustrates the fact that two very different classes of model are capable of satisfying

this particular correlated heterogeneity: a model with a saturating nonlinearity, and a model

with an expansive nonlinearity. Because of this, the NMI-AMI relationship is in fact not a

good constraint on our model.

3.3.2 Absolute changes in rates with attention better constrain a simple model

We next turned to a dataset recorded in visual area V4 with a monkey performing a

similar task [150]. In this study a selectivity index was computed for each cell in addition to

a normalization index. The selectivity index captured the extent to which a neuron’s activity

in response to its preferred stimulus differed from its response to the null. It was shown

that for sufficiently high selectivity, a gradient of attentional effects exists as a function of

normalization (Figure 13). In particular, the change in rates with attention to the preferred

(respectively, null) stimulus increases (decreases) in absolute magnitude relative to the plaid

alone for increasing normalization index (Figure 13). (This study used a slightly different

metric for normalization; we show in the Appendix that it reflects a similar trend to the NMI
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used here, hence we continue our analysis with NMI.) Mathematically, this says that the

derivative of the input-output function φ should increase together with NMI (Figure 13ci).

Since NMI decreases with increasing b (Methods), dφ/dI must decrease with increasing b

(Figure 13cii). As this describes a saturating function, it implies m < 1 (Figure 13).

This result therefore shows that considering the absolute change in rates with attention

provides a good constraint on our model, since it is able to distinguish between two function-

ally distinct input-output regimes. Interestingly, we find that a saturating response function

best captures the observed data. In interpreting this result, we need to make concrete what

φ represents. A neuron in cortex essentially has two distinct functions through which inputs

map to outputs: its neuronal transfer function, which specifies how changes in input current

are converted to firing rates, and its stimulus-response function, a more conceptual relation-

ship between a continuous stimulus parameter and the firing rate it evokes. It is known from

intracellular recordings that neural transfer functions are expansive whereas neural response

functions saturate [109]. For this reason, we interpret our result that the input-output func-

tion in our simple model must saturate as evidence that the correlations between attentional

effects and normalization are network-determined. We can therefore update our conclusion

from the previous section to say that, in the absence of evidence to the contrary, cellular

heterogeneities alone are insufficient to explain attention-normalization relationships. We

next turn to a full circuit model to explore the implications of these refined experimental

constraints.

3.3.3 A heterogeneous network model reveals synaptic constraints

There is evidence that the origin of normalization effects in cortical circuits may come

either through feedforward [7] or through recurrent mechanisms [4]. Although not mutually

exclusive, recent modeling work has shown that normalization emerges naturally in corti-

cal models placed in an inhibition-stabilized regime (ISN) [5]. Furthermore, experimental

evidence supports the claim that cortex is inhibition-stabilized [3, 125]. We use a network

framework dubbed the stabilized supralinear network (SSN) [118]. In an SSN, neural trans-

fer functions are expansive while excitatory rates saturate well below any refractory period
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Figure 13: Absolute changes in attentional firing rates provide a useful model constraint a, b

Relationship between a normalization index (Methods) and selectivity showing for sufficiently

high selectivity, attending preferred increases rates more (a), and attending null decreases

rates more (b) for stronger normalizing cells. c (i) Summary schematic of trends in (a), red

line, and (b), blue line, collapsed along the selectivity axis. (ii) Schematic demonstrating

the relationship between the derivative of φ at sx and the change in rates with additive

attention. d Model simulation results for the analogous criteria. Values sampled from same

distributions as Figure 12. (a,b) Adapted by permission from Springer Nature: Nature Neu-

roscience Attention-related changes in correlated neuronal activity arise from normalization

mechanisms, Verhoef and Maunsell (2017) [150].
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effects, consistent with both our derived requirement, as well as experimental observations

[118]. In this framework connections are sufficiently strong that as the amplitude of feed-

forward inputs increases, network activity transitions from a feedforward-driven non-ISN

regime to one dominated by recurrent activity. This latter regime depends on inhibition

stabilization, which induces saturation in the excitatory response [147]. Thus, this model

can be read as testing the hypothesis that heterogeneities in circuit architecture account for

the normalization-attention relationships.

We therefore consider a circuit model in which N excitatory (E)/inhibitory (I) pairs

are organized around a ring (Figure 14). The location of an E/I pair corresponds to their

preferred stimulus orientation θ of a visual grating. The dynamics of a single unit on the

ring are given by

τ ṙi = −ri + f(Jir + µα(θA) + sext(θj)) (41)

Stimuli are modeled as a wrapped Gaussian cg(θ, σ) centered at orientation θj with width

σ. Attention µα is modeled as an excitatory bias to E cells and is also a wrapped Gaussian

centered at orientation θA with α ∈ {E, I}. θA matches the stimulus being attended (σA =

σ), with amplitude cA generally much less than c (Figure 14). Following previous work we

take f(I) = kbIc2+ [118].

Synaptic connections follow a Gaussian profile as a function of position θ and weights

are chosen to place the network in an ISN [118]. In order to induce heterogeneities in the

responses there are in principle a vast number of ways to do so. We chose to sample certain

connection weights from a random function thereby testing the hypothesis that the distri-

bution of synaptic inputs is sufficient to explain the data. Additionally, this choice tacitly

assumes that relative to cellular heterogeneities, the variability in a neuron’s inputs is much

larger and thereby determines a neuron’s stimulus response properties to a greater degree.

Procedurally, we independently sample each I → E connection (JEI) from a Gaussian dis-

tribution with mean centered on the nonrandom connection profile, and threshold at zero

such that weights cannot change sign (Figure 14).

NMI and AMI are computed following equations 38, 39 and in a manner consistent

with the experimental setup. For example, to calculate a neuron j’s response in the attend

preferred condition, the plaid stimulus sext(θ) = c(g(θj, σext)+g(θj+N/2, σext)) and the atten-
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tional bias µA(θA, σA) are presented simultaneously and neuron j’s firing rate rpx is recorded.

We see that in this network again, NMI and AMI are both heterogeneous and positively cor-

related (Figure 14). More importantly, we see that the additional constraints are met in this

network (Figure 14): for increasing NMI, the increase (respectively, decrease) in rates with

attention shows an upward (respectively, downward) trend. Therefore, a sufficient condition

to meet the experimental criteria is for inhibitory inputs to be heterogeneous across stimulus

orientations.

3.3.4 Synaptic scaling is required for robust agreement with constraints

A naive explanation of normalization in the context of a plaid stimulus is that the

orthogonal stimulus in recruiting a source of inhibition that was not driven by the preferred

stimulus alone. Neurons which do not normalize would simply not have this same pool of

orthogonally tuned inhibitory sources. The results of the preceding section suggest that

this could be a plausible explanation. By targeting the excitatory units in the network, the

attentional bias we have chosen would serve to further amplify these effects. Attention to the

null stimulus would drive further inhibitory recruitment, whereas attending to the preferred

would override the additional suppression. We probe these ideas further by reconsidering

the nature of the synaptic heterogeneity.

We start by testing the minimal hypothesis that heterogeneity in orthogonal sources of

inhibition is sufficient to recapture the data. To do this, we randomly sample the weights

JEI with a modified mean. For each neuron i, the mean is then the sum of the original

distance-dependent connectivity profile, plus an additional orthogonal component: JEiI =

JEIg(θi, σEI) + δg(θi + N/2, σortho) with σortho < σEI (Figure 15). Here δ itself is a random

variable scaling the amplitude of the orthogonal component. Each weight is again sampled

from a Gaussian centered at the given mean. As a sanity check, this sampling procedure

should not induce a correlation in the weights which are proximal to a given neuron and

those which are mostly orthogonal. We therefore define values JEθpref Iθpref and JEθpref Iθortho
for each neuron to summarize the total amount of inhibition local to an E neuron, and

orthogonal to an E neuron (Methods). In the present case, there is indeed no relationship
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Figure 14: Network model of normalization and attention a Schematic illustration of ring

network setup. Feedforward inputs are illustrated in black, given by cg(θ) and attentional

inputs are schematized in orange (µ(θ)). Dashed connection lines identify which weights

were randomly sampled. b Illustration of the sampled inhibitory inputs to neuron Ei. Black

line is mean and dots correspond to sampled values. c Normalization and attention indices

computed from the steady state solutions of the network firing rate recapture the right trends

in both NMI-AMI and between normalization and absolute rate changes with attention. Red

lines are linear fits to data.
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between these two values (Figure 15).

When we calculate NMI and AMI in this minimal case, we see that as before, NMI

and AMI are again strongly positively correlated (Figure 15). This would seem to match

our intuitive argument. However, when we consider the relationship between NMI and

the change in rates with attention to the preferred stimulus, this network produces the

wrong relationship, inducing a weak negative correlation (Figure 15). This follows from the

results of our sanity check - attending to the preferred stimulus recruits additional sources

of excitation localized to the area around the driven neuron (we focus only on the attend

preferred case here because the attend null follows from the same arguments). Since we

have randomized the I → E connections, one can think of this in the complement: less

localized inhibition (smaller JEθpref Iθpref ) will result in larger attentional effects. By contrast,

the magnitude of the orthogonal sources of inhibition determines the neuron’s normalization

effects, with more orthogonal inhibition (larger JEθpref Iθortho ) resulting in larger NMI. Since

these two values are uncorrelated (Figure 15) we cannot expect there to be a relationship

between the magnitude of the attentional effects and NMI. Nevertheless, this argument

suggests a way forward.

The most obvious remedy is to anti-correlate JEθpref Iθpref and JEθpref Iθortho . In this way,

stronger sources of orthogonal inhibition, which induce larger normalization indices, will

be related to weaker sources of local inhibition, resulting in larger attentional effects. We

implement this by modifying the sampled mean I → E weights with a cosine function whose

peak is aligned orthogonally to a given neuron: JEiI = JEIg(θi, σEI)+δcos(2π θi+N/2
N

) (Figure

15). The areal inhibition metrics JEθpref Iθpref and JEθpref Iθortho are now anti-correlated, as

desired (Figure 15). Again, NMI and AMI are positively correlated (Figure 15). Yet we now

see that there is a strong positive correlation between NMI and the change in rates to attend

preferred, as desired (Figure 15). Consistent with this result, if we return to the original

heterogeneous network and compute the inhibition metrics JEθpref Iθpref and JEθpref Iθortho we

also find a negative correlation (not shown). Of course, this relationship occurred by chance

through the first sampling procedure, and resampling the weights over instantiations of that

network can result in the wrong relationships between NMI and the change in rates with

attention.
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Figure 15: Network dissection of inhibitory effects on correlating heterogeneities a Schematic

illustration of different sampling conditions. A small additional bias δ with variable ampli-

tude was included from orthogonal sources of inhibition alone (i), or anti-correlated between

proximal and orthogonal sources (ii). b Confirmation and illustration of sampling procedure

in (a). Net proximal inhibitory inputs (JEθpref Iθpref ; colored pink in (a)) are uncorrelated

with net distal inhibitory inputs (JEθpref Iθortho ; colored green in (a)) in the orthogonal alone

condition (i) and anti-correlated in the second condition (ii). c Normalization and attention

indices are correlated in both cases (left), whereas only the anti-correlation condition satisfies

the normalization-attentional rates condition (right). Red lines show linear fits to data.
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3.4 Discussion

Despite decades of research, the neural circuit mechanisms of attention have largely

eluded explanation. Yet experimental evidence is not lacking. Attention has been clearly

shown to increase neural response gain, affect oscillatory activity and modulate noise correla-

tions. In turn, each of these effects has been linked to possible neural bases. Indeed, all three

can be modulated through neuromodulatory effects [142], potentially through inhibitory sub-

circuits [93]. The source of these effects has been shown to originate in frontal cortices, though

neuromodulators in the midbrain and brainstem have been shown to play an important role

as well. What we potentially have, then, is an embarrassment of riches. A means by which

to help narrow the space of explanations is required in order to make progress, and iden-

tify more targeted hypotheses. Mechanistic circuit modeling is well-positioned to fill this

void. The challenge in model development is finding the right experimental data to properly

constrain models. This is the problem we sought to address in the present study.

As outlined in the introduction, much previous theoretical work developed models which

captured aspects of attention in a general way. Many successfully reproduced important

observations. In a pessimistic vein, this could be seen as adding to the problem: a number

of plausible successful models. To allude to a popular cliché, the question becomes, which

are useful? Indeed, recent computational studies have appealed to the relationship between

normalization and attention in support of various models [115, 83]. Undoubtedly this rela-

tionship is an intriguing starting point, presenting a clear link between the neural effects of

a cognitive variable, and those of a circuit-dynamic variable which in principle need not be

related.

As a first step we considered whether a single cell-type model could provide a sufficient

level of explanation for the data. In this case we adopted a flexible phenomenological model

as opposed to a biophysically rigorous model. This parametric flexibility allowed us to inquire

whether the NMI-AMI relationship would serve as a good model constraint while abstracting

away other details. Surprisingly, we found that this experimental observation was unable to

distinguish between distinct model regimes and is therefore not a good test of model utility.

Of course one possibility is that the metrics themselves belie any effective differentiation
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between models. In point of fact, we gave an intuitive argument in section 3.3.1 that the

symmetry in the definitions of NMI and AMI implied their positive correlation. Another

possible obfuscation is that each metric is a ratio. While ratios play an important role in

comparing across distinct values, in the context of uncovering mechanisms they can hide

the driving factor. This was true in the case of attentional effects on correlations. While it

was known that attention decreases correlated variability [24], separate analysis showed that

variance changes little while covariance decreases significantly [68]. This was an important

insight as the mechanistic implications of changing covariance as opposed to variance can be

distinct. Similarly, we found that by considering a separate dataset showing a correlation

between the magnitude of attentional effects (related to the numerator of AMI) and the

strength of normalization (NMI) that we were able to find constraints on the single cell-type

model.

The additional constraints we identified led to the conclusion from the single cell-type

model that a saturating input-output function was best able to capture the data. Ultimately,

both of the limitations we identified with the NMI-AMI correlation failing as a useful con-

straint bore out: by focusing on the absolute change in firing rate with attention, we broke

the symmetry in the relationship with normalization, uncovering a condition that is satisfied

only by saturating functions. It is well known that cortical neurons operating in physi-

ologically normal range saturate far below the point at which refractoriness would play a

restricting role. This saturation is due to network effects. Accordingly, our phenomenological

analysis revealed that the correlation between attention and normalization is most probably

a network effect.

There are naturally a number of limitations in our use of such a simple phenomenological

model. The rigid assumptions on the structure of the inputs sext and the attentional effects µA

limited the scope of conclusions one is able to draw. For example, rather than incorporating

µA as an input to φ suppose that µA scaled the amplitude of φ. As discussed in more detail

in the Methods, this would lead to AMI being homogeneous. If µA itself were allowed to

vary, then this issue could be overcome. Similarly, sext served as a proxy for many different

sources of input to a neuron, including feedforward and recurrent connections, which were

made explicit in the network model. Clearly, the values sn, sp and sx will in reality vary in
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some rich way. However, if we navely allowed for sext and µA to independently vary in this

model, then for NMI and AMI to correlate these external sources would need to be correlated.

In this context, this would be a uselessly trivial conclusion. In a richer biophysical model

which carefully considered how neuromodulators or neurotransmitters affect physiological

properties of the cell perhaps this would not be the case, but we did not pursue this here.

Our use of the term ”heterogeneous” was rather loose in the model. Naturally this implies

that there is some underlying probability distribution for a given parameter. In this work,

we always assumed it to be Gaussian. It is reasonable to assume that careful estimates

of the true distributions in data may differ from our Gaussian assumption, but we don’t

expect this alone to significantly change our results. The stronger assumption in this work

was joint independence between parameters, which is not likely true in reality (though see

Supplemental material). Nevertheless, we accepted this as a simplifying assumption since a

complete characterization of possible fits to neural response profiles was beyond the scope

of this work but would be a useful direction for future inquiry.

Turning then to a network model, we showed that by introducing heterogeneity in the

synaptic connections between I and E we were able to recapture the three experimental

observations. We then further dissected this result by identifying the distribution of het-

erogeneity which was required to robustly capture the data. In this regard, we found that

inhibitory inputs proximal to a given E cell needed to be anti-correlated with those orthog-

onal to it.

There are a number of shortcomings in our choice of a ring network model [10]. Princi-

pally, the organization of E/I pairs confounds the physical location of neurons in cortex with

their stimulus tuning properties. However, it has been shown that neurons preferentially con-

nect as a function of both physical space and shared tuning preference, suggesting this is a

reasonable approximation [79]. Our implementation of attention in this model deserves some

scrutiny. As mentioned in the introduction, attention to stimulus features and attention to

regions of space function differently within the brain. By the nature of our circuit model,

attending to the preferred stimulus was indistinguishable from attending to the region of

space in which the neural population preferring that stimulus is located. Given that primate

cortex is organized in a columnar fashion with similarly tuned cells nearby one-another, this
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nevertheless appears again to be a reasonable approximation. We note that the motivating

experiments were careful to control against feature attention, instead restricting the atten-

tional paradigm to one of space [101]. Thus a more faithful model would dissociate these two

components. One means of achieving this is to organize neurons on a two-dimensional sheet

and assign each a tuning preference through some map, such as a pinwheel [71]. Future work

could implement this spatially extended model and confirm whether the present results still

hold.

One question prompted by the network analysis is whether the anti-correlation required

of the inhibitory synaptic inputs to E is plausible. Studies of synaptic plasticity mechanisms

suggest that excitatory cells exhibit synaptic scaling and homeostatic mechanisms which

can regulate the strength and number of connections with inhibitory interneurons. If certain

connections proximal to a neuron are potentiated or increase in number, say, it is conceivable

that orthogonal inputs may be down-regulated as a result. In this way an E cell could

experience anti-correlated inhibitory inputs between local and distal sources, consistent with

our prediction.

There are many natural extensions to this work. As we touched upon briefly above, a

prominent result in attentional studies is that correlated variability within a cortical region

decreases with attention [24, 150]. While we did not explore it here, we expect this to

be consistent with our conclusions as well. For if we consider again the phenomenological

model and linearize about a given operating point, the expansive input-output function will

amplify input variability with increases in rates whereas the saturating function will quench

variability. A recent study showed this held true in an analogous ring model to the one we

used here, in the context of Fano factor reduction with stimulus onset [60]. However, it is

unclear what additional model constraints may arise from incorporating this additional piece

of data. Conceivably, it could help narrow the space of viable attentional perturbations and

be a test on the one we chose here, namely, an excitatory input bias to E cells alone.

Modern techniques such as optogenetics have enabled researchers to probe the dynamics

of neural circuits through targeted manipulations of activity. If the network results derived

here are robust across datasets, they might suggest that attention is (and by extension other

cognitive variables are) useful for inferring network structure and dynamics. In this way,
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attention could serve as a natural perturbation experiment. More generally, the analysis of

correlated heterogeneities between dynamic and cognitive variables may provide a useful,

general avenue forward in linking these two regimes.

3.5 Methods

In this section we provide full details of each model described in the main text, to-

gether with derivations and claims therein. Additional analyses and figures are provided in

Supplemental material.

3.5.1 Single unit phenomenological model

Requirements for heterogeneity in normalization

Recall the definition of the noiseless firing rate r for neuron i, without attention:

ṙi = −ri + φ(b+ sext)

There are two potential sources of cellular heterogeneity: b, denoting the cellular baseline

activity (or threshold) and φ, the input-output function. We take φ(I) = kbIcm+ where I

denotes the collective inputs. Heterogeneity in φ is thus parameterized by the distributions

over k and m. k and m are both bounded below by zero. sext denotes the net inputs

to the neuron. Consistent with our assumptions that normalization is inherited and that

stimulus inputs are constant across all units implies three stimulus input terms: sn ≤ sx ≤ sp

representing input drive from the null, plaid (or, concurrently presented preferred and null

stimuli in a neuron’s receptive field, superimposed [119] or disjoint [101]), and preferred

stimulus, respectively.

We begin by fixing φ and considering the effect of variability in b on NMI, defined in

equation 38. Denote the NMI of a single unit NMIi:
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1. φ is linear (m = 1): ri = k(bi + sext). Hence NMIi = (ri)p−rx
(rp−rn)+(rx−rn)

= k
k

(bi+sp)−(bi+sx)

(bi+sp−(bi+sn))+(bi+sx−(bi+sn))
= sp−sx

(sp−sn)+(sx−sn)
for all i. This last term has no depen-

dence on bi and is therefore the same for every neuron.

2. φ is threshold quadratic (m = 2): ri = k(bi + sext)
2. We now have that NMIi =

(bi+sp)2−(bi+sx)2

((bi+sp)2−(bi+sn)2)+((bi+sx)2−(bi+sn)2)
which does depend on bi. For a given collection of

inputs sn ≤ sx ≤ sp we ask how NMI changes in the limit as b → ∞ (we have

dropped the subscript i for notational convenience). For b = 0 NMI= (rp−rn)−(rx−rn)

(rp−rn)+(rx−rn)
=

((sp)m−(sn)m)−((sx)m−(sn)m)

((sp)m−(sn)m)+((sx)m−(sn)m)
≥ 0 with equality only when sp = sx. Hence we let sp > sx =⇒

NMI|b=0 > 0. For b > 0 we consider

lim
b→∞

NMI = lim
b→∞

((b+ sp)
m − (b+ sn)m)− ((b+ sx)

m − (b+ sn)m)

((b+ sp)m − (b+ sn)m) + ((b+ sx)m − (b+ sn)m)
= lim

b→∞

∆p −∆x

∆p + ∆x

where we have defined ∆p = (b + sp)
m − (b + sn)m and similarly for ∆x. We will show

that for b increasing, NMI is decreasing for all m > 1. Notice that ∆p + ∆x > ∆p −∆x

since ∆p,∆x > 0. Further, d
db

∆p = m[(b + sp)
m−1 − (b + sn)m−1] and similarly for ∆x.

Hence we also have that d
db

(∆p + ∆x) >
d
db

(∆p −∆x). As φ is monotonically increasing,

NMI varies monotonically with b ≥ 0. From the foregoing arguments we have that the

denominator is larger, and grows faster than, the numerator, hence, NMI is decreasing.

If 0 ≤ m < 1 we must be more careful. For fixed m we have that d
db

(b+sp)
m = m

(b+sp)1−m ≤
d
db

(b+sx)
m = m

(b+sx)1−m ≤ m
(b+sn)1−m = d

db
(b+sn)m by the ordering of the inputs. What this

then implies is that in the full expression for NMI the denominator decreases faster than

the numerator. This can be seen more easily by rewriting NMI = (b+sp)m−(b+sx)m

(b+sp)m+(b+sx)m−2(b+sn)m

and hence NMI is now increasing for increasing b.

If instead rn is kept near zero then for any b limb→∞NMI = limb→∞
(b+sp)m−(b+sx)m

(b+sp)m+(b+sx)m
→ 0

for all m. This condition appears to be in general agreement with experimental data and

for that reason we implemented this condition in the main text.

Thus we have that φ must be nonlinear. Notice that if φ is threshold linear, φ =

kbbi+sextc+, then provided bi+sext < 0 for some sext we have that NMI will be heterogeneous.

However for bi + sext > 0 the results in example 1 hold. We will generally consider this to

be the case.
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The other source of potential heterogeneity is φ. If we now fix the threshold b constant

and allow φ to vary across cells, we have from the argument in example 1 above that if

φ is linear (m = 1) and k varies we have the same result (replace all k’s in the examples

with neuron-specific ki’s and the conclusion follows). Hence, provided φ is nonlinear then

heterogeneities in φ will reflect as heterogeneities in NMI. The nature of this variation can

be extrapolated from a simple example. Consider m in the range [0, 1]. We have shown

that m near 1 will approximately preserve the inherited NMI while m close to 0 will result

in rp− rx ≈ 0 for sufficiently large inputs, hence very low NMI. Taken together, NMI should

be proportional to m, and should induce a reduction in NMI relative to the inherited value.

We next show this holds in general. Without loss of generality set b = 0, and assume the

null response is 0 Hz (rn = 0). Then

NMI =
rp − rx
rp + rx

=
ksmp − ksmx
ksmp + ksmx

=
smp − smx
smp + smx

=⇒ d

dm
NMI =

(ln(sp)s
m
p − ln(sx)s

m
x )(smp + smx )− (smp − smx )(ln(sp)s

m
p + ln(sx)s

m
x )

(smp + smx )2

=
2smp s

m
x (ln(sp)− ln(sx))

(smp + smx )2
≥ 0

(42)

with equality if sp = sx or sx = 0. Hence, NMI grows as a function of m for fixed inputs, as

claimed.

Requirements for attentional heterogeneity

We now extend the previous rate model to include a term reflecting the effects of attention.

Since attentional processes have been shown to affect firing rates of neurons, we modify the

rate expression for neuron i in one of two ways, indicating the attentional modifier with the

term µA:

1. additive attention ṙi = −ri+φ(b+µA+sext) in which attention µA acts like an additional

stimulus input

2. multiplicative attention ṙi = −ri + µA · φ(b + sext) in which attention µA scales the

input-output function

75



There are additionally two attentional conditions to consider: attend preferred (µp), in

which attention is cued to the preferred stimulus while both preferred and null stimuli (plaid)

are present in a neuron’s receptive field, and attend null (µn), in which attention is cued

to the null stimulus instead. From experimental data we have that attending the preferred

stimulus increases firing rates relative to the plaid, on average returning them to the rate of

firing to the preferred stimulus alone [101]. Conversely attending null decreases firing rates

on average relative to the plaid, but is not so suppressive as to reduce firing rates to those

when the null stimulus is present alone [101, 150].

Recall that we are treating attention (like the stimulus parameters sext) as homogeneous

across cells. We now take as given that φ is nonlinear and consider two examples:

1. Suppose attention is multiplicative. For fixed φ and variable b we have

AMIi =
µp · φ(bi + sx)− µn · φ(bi + sx)

µp · φ(bi + sx) + µn · φ(bi + sx)
=
µp − µn
µp + µn

· φ(bi + sx)

φ(bi + sx)
=
µp − µn
µp + µn

for all i. This last term has no dependence on bi and AMI is therefore homogeneous

across cells. If we instead assume that φ is heterogeneous we can see from the same

argument that AMI will be invariant as well. From this, we conclude that attention

cannot be incorporated into this model in this form, given the assumptions of constant

inputs and attentional effects.

2. Now consider the additive attention model. With a heterogeneous b it follows immedi-

ately from the definition that AMI will be heterogeneous since

AMIi =
φ(bi + µp + sx)− φ(bi + µn + sx)

φ(bi + µp + sx) + φ(bi + µn + sx)

and the relationship between (ri)
p
x = φ(bi+µp+sx) and (ri)

n
x = φ(bi+µn+sx) depends on

the choice of bi. Analogously, variability in φ will also induce AMI to be heterogeneous.

This can be seen by making the substitution φ 7→ φi in the foregoing arguments.
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Figure 16: Single neuron heterogeneities in attentional models a Schematic illustration of

additive attention. b Schematic illustration of multiplicative attention.

The above arguments show that if we incorporate attention as some additive input process

(or, e.g., as a contrast change) then the previously derived nonlinear transfer function will

insure that AMI is also heterogeneous. We note that the homogeneity of attention as a

gain modulator rests of the rigidness of our assumptions; any heterogeneity in attentional

processes themselves could induce heterogeneity in AMI. While likely true in reality, our focus

here has been on uncovering necessary cellular mechanisms which may give rise to variable

attentional responses without assuming any inherited variability in attentional processes or

signals.

Requirements for NMI and AMI to be positively correlated

Given that we have conditions under which the single cell model will exhibit heterogeneity

in normalization and attention we next ask what conditions are necessary for the two to

be positively correlated [101]. In particular, given our assumption that φ is monotonic and

non-decreasing it suffices to ask whether NMI and AMI change in the same way for a given

ordering of φ or b.

If b is the dominant heterogeneity, we have already shown above that NMI decreases

with increasing b if we keep rn is close to zero. The argument for AMI is much more

straightforward. Assuming as before that µp is a positive perturbation and µn a negative
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perturbation with respect to sx

lim
b→∞

AMI =
(b+ µp + sx)

m − (b+ µn + sx)
m

(b+ µp + sx)m + (b+ µn + sx)m
≈ bm − bm

bm + bm
→ 0

and since again for b = 0, AMI > 0, AMI too is monotonically decreasing with increasing b.

Thus, AMI and NMI are positively correlated.

The above also holds true if we relax the constraint on rn ≈ 0 but fix m > 1. By contrast

if we let 0 ≤ m < 1 then NMI and AMI will be anti-correlated in this scenario. Hence, for

the additive attentional model with variable baseline and polynomial input/output function

NMI and AMI are strictly positively correlated for m > 1, whereas we can in principle

see either a positive or negative relationship between NMI and AMI with m < 1, however

experimental evidence suggests rn close to zero and thus in this condition as well we see a

positive correlation.

Now consider the model with variable φ, in particular, m heterogeneous. As we showed

above, NMI increases for increasing m. The same argument goes through for AMI since

(setting b = 0 for convenience)

d

dm
AMI =

2(µp + sx)
m(µn + sx)

m(ln(µp + sx)− ln(µn + sx))

((µp + sx)m + (µn + sx)m)2
≥ 0

Thus NMI and AMI will be positively correlated in this model as well.

Calibrating constraints from Ni et al. and Verhoef and Maunsell

Verhoef and Maunsell [150] reported rate changes as a function of neuron selectivity for

a given stimulus and attention condition (Figure 13). Roughly, the selectivity metric used

in that study is meant to capture the responsiveness of a neuron to its preferred stimulus

relative to the null stimulus. To simplify our treatment in this section, unless otherwise noted

we will consider firing rate changes with respect to the preferred stimulus (e.g. Figure 13a).

For a selectivity index above approximately 0.25, attending preferred causes an increase in

rates relative to the plaid for all normalization indices [150].

In Verhoef and Maunsell [150] normalization was quantified with a metric distinct from

NMI. In order to relate these results to the model we’re studying, we first need conditions

for proportionality of the two metrics of interest: NMI [101] and nonpreferred suppression
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[150] (we’ll call this new metric SI for suppression index ). The latter is derived from fits of

the following equation to measured firing rates:

rx =
L1 + L2

α1 + α2 + σ
(43)

with rp defined by setting α2, L2 = 0 and rn defined by setting α1, L1 = 0. After fitting these

parameters to the data, SI was defined

SI =
α2

α1 + α2

. (44)

We claim that this follows the same trend as NMI and thus using the latter is ’good enough’

to uncover the right relationships. Assume σ is sufficiently small and hence ignorable

[149]. (Experimental results show that while this is a reasonable assumption there is a

small but significant improvement in model fits obtained by incorporating σ [149].) Then

L1 = rpα1, L2 = rnα2 =⇒ rx(α1 + α2) = rpα1 + rnα2 by the above definition of rx. Write

ci = αi
α1+α2

. Then by definition c2 := SI. It follows from these definitions that

rx = c1rp + c2rn = (1− c2)rp + c2rn.

Because of the assumed ordering of sext in section 3.3.1, rx ∈ [rn, rp] from which it follows that

c2 ∈ [0, 1]. Intuitively we see that as c2 approaches 1, rx approaches rn, which corresponds to

greater normalization. Similarly, this same limit also appears as an increase in NMI towards

1. To be more precise we rearrange and solve for c2:

c2 =
rp − rx
rp − rn

.

If we compare this to the definition of NMI in equation 38, we see that while this expression

is linear in rx NMI is nonlinear in rx. In spite of this, both follow the same trend. Note that

both metrics will be zero (rx = rp) and one (rx = rn) at approximately the same inputs, the

main difference being in the scaling at intermediate values. For example, response averaging

(rx = (rp + rn)/2) yields 1
3

with NMI and 1
2

with SI. Hence, going forward, we will consider

NMI a general metric of normalization, and use the acronym interchangeably with the word

”normalization” with the understanding that some published data may be reported with a

slightly different metric.
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Incorporating constraints from Verhoef and Maunsell

The firing rate results reported in Verhoef and Maunsell [150] can be summarized in three

general points. For sufficiently high selectivity (as defined in the previous section):

1. Firing rates in response to simultaneously presented preferred and null stimuli are lower

for neurons with stronger normalization (not shown; see [150])

2. The increase in firing rate with attention to the preferred stimulus is greater for neurons

with stronger normalization (Figure 13a)

3. The change in firing rate with attention to the null stimulus is greater for neurons with

stronger normalization (Figure 13b)

In the framework of our model, the first point says that rx should be inversely proportional

to NMI. If b is the dominant source of heterogeneity then this is true for all m since NMI

decreases with increasing b. Hence, this observation is not a good constraint in the context

of variable b. We consider the case of variable m in the Supplemental.

The second point says that rnx − rx ∝ NMI, and the third point can be approximated by

|rnx − rx| ∝ NMI. Taken together, non-normalizing (low NMI) cells have higher rates and a

smaller derivative with respect to attentional changes while strongly normalizing units have

lower rates but a larger derivative with respect to attentional changes. We again look at two

cases:

1. Let φ be threshold quadratic (a specific case of m > 1) and b heterogeneous with other

parameters fixed. Then dφ
dI

= 2bIc+ where I is again a generic input. Since NMI decreases

with increasing input, this implies that a smaller NMI will correspond to a bigger changes

in rates (since changes with attention are modeled as perturbations around rx, these will

be larger when the derivative is greater), which in turn implies rpx − rx ∝ 1/NMI. This

contradicts the second data relationship and hence m > 1 fails to capture the data.

2. Now let 0 < m < 1. φ thus describes a saturating function. We now have that the

derivative dφ
dI

= b m
I1−m c+ clearly decreases with increasing rate (input). Hence, rpx − rx ∝

NMI and so a saturating function is capable of capturing the correct relationship between

normalization and rate changes with attention.
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We consider the case of m strongly heterogeneous in the Supplemental (section 3.6), where

we show that additional assumptions are required to match the experimental data.

3.5.2 Heterogeneous ring network model

We use a modified version of a previously published ring network in which contrast

response functions saturate due to strong inhibitory connections [118]. In particular, we

structure an E/I network around a ring such that each unit occupies a position which

corresponds to its preferred value of a tuning variable θ (Figure 18A). The dynamics of a

single unit are given by (rewriting equation 41)

ταṙα = −rα + κ[Iext,α + Jααrα + Jαβrβ]2+ (45)

where α, β ∈ {E, I}. Jαβ is a connectivity (weight) matrix from population β to population

α, the elements of which are given by Jαiβj . Iext,α = b+ cg(θ) +µα is the external input with

a constant baseline b for all cells, cg(θ) an external stimulus with contrast c, and µα captures

attentional effects (here attention is applied to E or I, as described below, by contrast to the

single unit model in which attention was defined relative to the stimulus). g(θ) is modeled

as a wrapped Gaussian of width σ centered at θ0:

g(θ; θ0, σ) = c0

∞∑
i=−∞

e−(θ−θ0+iN)2/2σ2

(46)

c0 is a constant which normalizes the peak of the curve to 1. Attention is delivered only

to E cells with a spatial profile which matches that of the stimulus; thus, µI = 0 and

µE = dµE · g(θ) where dµα scales the magnitude of the attentional signal [83]. In the

unattended state, µα = 0. Changes in cortical state with attention are thus captured by a

change in the operating point of the system.

Connectivity is structured in a distance-dependent manner also described by equation

46 of width σαβ. In order to induce heterogeneous response profiles in the E network,

I → E weights are randomly drawn from a Gaussian probability distribution with mean

equal to the non-variable network, that is, the connection JEiIj is drawn according to

N (g(θIj ; θEi , σEI), ση). Weights which change sign are set to zero to obey Dale’s law. This
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will inevitably affect the sampled mean of the connection weights. By contrast, all other

connections are symmetric about the ring and therefore do not vary from cell to cell. The

modifications we introduced to this procedure were described in section 3.3.4.

In section 3.3.4 we introduced two metrics to quantify inhibition localized to an E unit,

JEi,θpref Iθpref , and distal to it (i.e., from orthogonally-tuned sources), JEi,θpref Iθortho . Precisely,

each metric is the dot product of a weight vector with the inhibitory inputs to a given E

unit:

JEi,θpref Iθpref = w(i) · JEiI (47)

and

JEi,θpref Iθortho = w(i+N/2) · JEiI . (48)

where w(i) is a weighting function (vector) defined as a Gaussian centered at the ith location

on the ring: w(i) = g(θ; θi, σw). In the first equation this corresponds to the E unit and in

the latter equation orthogonal to the relevant E unit.

3.5.3 Model and Simulation Parameters

Figure 2, 3 : (m < 1) b ∼ N (0, 0.252), sn = 0, sx ∼ N (2.5, 0.12), sp ∼ N (5, 0.052), µp =

sp − sx + r1, µn = (sn − sx)/2 + r2 where r1, r2 are random variables with distribution

N (0, 0.052). rn was set equal to zero. Otherwise, rates were computed on a per-unit basis

with m sampled from N (0.3, 0.052), k = 1.

(m > 1) Same as above with the following exceptions: sx ∼ N (2, 0.012), sp ∼ N (4, 0.012), µn =

(sn − sx)/3 + r2 where r2 is as above. rn was again set equal to zero. m ∼ N (2, 0.012).

Figure 4 : Baseline model parameters follow Rubin et al. [118]. The number of E and I units,

respectively, was NE = NI = 180 := N . The scaling term of the transfer function κ = 0.04,

and τE = 20ms, τI = 10ms. Inputs were given to both E and I units, with baseline b = 5, con-

trast 30 (a.u.) and width 30o. The attentional signal had amplitude dµE ∈ [1.5, 2.5], chosen

such that E rates approximated that when the preferred stimulus alone drove the network.

Connectivity parameters were given by JEE = 0.044, JEI = 0.023, JIE = 0.042, JII = 0.018.

The connectivity width σαβ = 32o was the same for all class pairs. Heterogeneity was intro-

duced as described above with sample variance ση = 0.00252 regardless of the sample mean.
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Parameters were ultimately chosen to insure that the system settled down to a steady state

solution.

Figure 5 : Same baseline parameters as before, with the following modifications to the ran-

domization procedure. In section 3.3.4 we defined the orthogonal perturbation (rewrit-

ten in terms of single connections) JEiIj = JEIg(θj; θi, σEI) + δg(θj; θi + N/2, σortho), δ ∼

N (0.001, 0.0012), σortho = 12. This function defined the mean of the sample distribution,

from which individual connections were drawn as N (JEiIj , 0.0012). The mean of the anti-

correlation function was defined similarly: JEiIj = JEIg(θj; θi, σEI)+δcos(2π
(θj−θi)+N/2

N
), δ ∼

N (0, 0.00152) and individual connections were drawn as N (JEiIj , 0.00052).

3.6 Supplemental Material

3.6.1 Alternative solutions to phenomenological model constraints

Satisfying all constraints with heterogeneous φ

The addition of the constraints from Verhoef and Maunsell [150] placed further requirements

on how parameters of φ would need to vary in order to satisfy them. Suppose m varies. The

first stated constraint from this study was that rx goes like the inverse of NMI. We observed

in the Methods that NMI is proportional to m and thus rx is increasing with NMI. We could

fix this by allowing k to vary inversely with m. Then k(m) = k−m0 and

d

dm
rx =

d

dm
k−m0 smx = k−m0 smx (ln(sx)− ln(k0))

where we omitted the baseline term b. So if k0 > sx then rx will decay as a function of m

and thus be inversely related to NMI. Notice this would not affect the base case relationship

between NMI and AMI because they are independent of k.

To then match the attentional conditions we require that the derivative of the input-

output (I/O) function evaluated at sx grows with m (thereby correlating with NMI). Choose
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m1 < m2 and label the associated rate responses r1, r2 respectively. This implies (taking b

= 0) we require

d

dsx
(r1)x =

d

dsx
k−m1

0 sm1
x = m1k

−m1
0 sm1−1

x < m2k
−m2
0 sm2−1

x =
d

dsx
(r2)x (49)

=⇒ k0 <

(
m2

m1

) 1
m2−m1

sx (50)

Since k0 is bounded below by sx we now have an additional upper bound on k0. Therefore

while it is in principle possible to satisfy each of the constraints with dominant heterogeneity

in m, due to the finely tuned nature of the result under this model, we did not consider it

further.

m and b jointly heterogeneous

A natural third possibility in the single unit model is that m and b vary jointly. It therefore

remains to determine whether the right balance of heterogeneity in b and m could produce the

correct collection of correlated heterogeneities for any m. To this end we numerically explore

m− b and m− sx space for m > 1 and 0 < m < 1. We seek paths through m− b or m− sx
space in which the local gradient will obey the correct rate-normalization relationships. We

perform this latter manipulation to insure that our choice of sx when searching over b space

isn’t drastically affecting the nature of our conclusions.

We partition m − b space into a discrete grid (the same procedure is applied to m − sx
space, under the change b 7→ sx) such that m increments in steps of ∆m and b in steps of

∆b. For a given location on the grid (bk,mi), we compute the effect of a perturbation in the

direction of each of the vectors (∆b, 0), (0,∆m), (∆b,∆m) on the values rx, NMI, and the

derivative d
ds
φ|sx . In particular we focus only on the sign of the change for each of the three

computed values.

We focus on fitting the three criteria relating absolute rate changes to normalization. In

requiring that rx ∝ 1/NMI we check whether sign(∆rx) 6= sign(∆NMI). To assess whether

|rpx − rx| ∝ NMI and |rnx − rx| ∝ NMI, we check whether the condition sign(∆ d
ds
φ|sx) =

sign(∆NMI).

We begin by searching through m − b space. As done previously, we set rn = 0 and fix

sx, sp while varying m and b. We therefore compute NMI and the attention conditions from
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the rates rx = (b + sx)
m, rp = (b + sp)

m. We see that in no case are the two relationships

jointly satisfied for m > 1 but for m < 1, consistent with the calculations in section 3.5.1,

all perturbations in the b direction satisfy the constraints (Figure 17, red lines). In other

words: if b is the dominant heterogeneity, then the correct relationships will be satisfied.

If instead we let the x-axis correspond to the input variable sx, this describes the situation

in which the input normalization to a cell is variable. Here we fix sp, such that for fixed m,

rp is constant. On the one hand nearly all of the m− sx space for m < 1 is permissible. In

contrast, there is a narrow range in which the rate-normalization relationships are obeyed

for m > 1 provided m is the dominant heterogeneity. This is in fact consistent with the

bounds calculated in the preceding section. To see this, we note that since we have chosen

k0 = 1, sx = 1 is an upper bound (Figure 17). To calculate the lower bound, we take the

inequality given by equation 50, writing m2 = m+ ∆m, from which it follows that

k0 <

(
m+ ∆m

m

) 1
∆m

sx. (51)

Rewriting as an equality, substituting in k0 = 1 and rearranging, we find

m =
s∆m
x ∆m

1− s∆m
x

(52)

defines the lower boundary, which agrees well with the numerical calculations (Figure 17,

green line). Hence, this region is completely described by our previous calculations. These

results show again that m < 1 is the more plausible model, since uncovering the correct

relationships for m > 1 would require fine-tuning. As a consequence, this fine-tuning could

also limit the range of NMI attainable to a narrow region, which would contradict the data.

These results thus establish more completely the generality of the result that 0 ≤ m < 1.
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Figure 17: Quiver plots of valid gradients: black arrows fail at least one of the two directional

relationships rx ∝ 1/NMI, d
ds
φ|sx ∝ NMI; red arrows satisfy both. Green line in upper-

right panel shows constraint boundary calculated from equation 52. Parameter ranges:

(0 < m < 1)0.1 < m < 0.9; (m > 1)1 < m < 3; for b variable, 0.01 < b < 3; sx = 1, sp = 4;

for sx variable, 0.01 < sx < 3, sp = 4.
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3.6.2 A näıve analysis of inhibitory connectivity effects supports our circuit

dissection procedure

In section 3.3.4 we showed that by choosing the underlying statistical structure of the

I → E connectivity wisely we could uncover a network which satisfied the experimental

constraints. In this section we briefly summarize results from a much simpler, nave ap-

proach showing that the distribution of inhibition around the ring, rather than the absolute

magnitude of inhibitory inputs to an E unit, is critical to uncovering the correct circuit

architecture to support the experimental evidence.

We first compute the total I → E input, testing the hypothesis that the net amount

of inhibitory input to an E unit determines the observed effects across normalization and

attention. Indeed, calculating the total I → E connectivity for the ith E unit as
∑

j JEiIj

we see that this value is, in fact, a strong predictor of NMI and AMI (Figure 18b), thereby

implicating the heterogeneities in a neuron’s inhibitory field in its attentional and normalizing

signatures.

Now consider a proportional metric, the normalized dot product
JEiI ·~1

||JEiI ||·||~1||
, where ~1 is the

vector of all ones. We again see a strong relationship between this value and both NMI and

AMI (Figure 18c). This says something more: NMI and AMI are strongly correlated with

a broader spread of inhibition around the ring. This normalized metric is the cosine angle

between the constant vector ~1 and the weight vector JEiI . Intuitively, the more peaked JEiI ,

the more restricted its connectivity is to nearby excitatory units, by the distance-dependence

construction of the weights. This further implies that this vector and the constant vector

are closer to being orthogonal, producing a smaller value of the normalized dot product.

Conversely, a more broadly connected JEiI will have a profile that more closely resembles a

constant function around the ring, hence, a smaller angle with the vector ~1 and consequently

a larger value of the normalized dot product.

If we recall our circuit dissection analysis, we showed that a perturbation (a cosine

function) to the underlying sample mean of the inhibitory inputs to a given excitatory unit

which anti-correlates the local and distal sources of inhibition would best capture the data. If

this perturbation was large in magnitude, it served to flatten out the distribution of inhibition
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around the ring, whereas if the perturbation was small, inhibition would remain peaked.

This observation is consistent with the conclusions in this section, thereby supporting our

hand-designed approach.

3.6.3 Alternative sources of synaptic heterogeneity and E/I balance

There is a long history of models incorporating subtraction or division to explain normal-

ization mechanisms [19]. This largely motivated our exploration of monosynaptic inhibitory

synaptic sources to explain the correlated heterogeneities. Another possible explanation is

through recurrent excitation itself.

We test this by implementing the same procedure used to introduce heterogeneity in the

I → E weights in an anticorrelated fashion between local and distal and applying it instead

to the E → E weights (section 3.3.4 in the main text). Hence the inputs from all excitatory

units to the ith E unit are given by JEiE = JEEg(θi, σEE) + δcos(θi +N/2) where JEE scales

the magnitude the E → E weights, g(θ, σ) is defined in equation 46, σEE is the width

of the E → E connectivity and δ is a random variable which scales the amplitude of the

anticorrelation function. Again, this sampling procedure produces the correct relationships

as observed in data (Figure 19).

This result suggests that the driving force behind the agreement of our network model

and data is not necessarily the absolute magnitude of inhibition but the distribution of E/I

balance around the ring, though the two are often related (see section 3.6.2).

We note that the nature of our ring model is not well-suited to studying second-order and

greater synaptic effects (e.g., JIE, JII). Beyond first-order connections the network smooths

out heterogeneities of the size we considered here making expression of the relationship

between different metrics difficult to discern. A larger, spatially extended model which can

better cope with large variability across all weights may be a better test of the extent to

which second-order and higher connections affect our results.
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Figure 18: Näıve analysis of inhibitory connectivity effects a NMI and AMI are strongly

correlated. b The unweighted sum of inhibition to an E unit correlates with both NMI (top)

and AMI (bottom). c The normalized sum of inhibition to an E unit (cosine angle with the

constant vector) is more strongly correlated with both NMI and AMI. Parameters are as in

Figure 14. Red lines are linear fits to data.
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Figure 19: Anticorrelated JEE satisfies constraints a NMI and AMI. b Change in rates for

attention to the preferred stimulus location relative to the plaid vs NMI c Same as (b) for

attention to the null stimulus location. Note many values are positive. Red lines show linear

fits to the data.

90



4.0 Conclusions

The brain displays an incredible ability to perform myriad complex actions subserving

an organism’s chosen behaviors. In service of these goals, the central nervous system is

adjusting itself, or being adjusted by bodily mechanisms, across many spatial and temporal

scales. This may seem to suggest amazement at the ability of neurons to encode and represent

information in spite of all this variability; seen differently, these various cortical knobs are

a positive feature of the system, allowing for the tuning of cortical circuits across varying

contexts to subserve the rich repertoire of behavior and cognition available to an organism.

The question then is, how do these knobs interact with neural circuits, and how can we

understand the resulting effects?

In Chapter 2 we observed that changes in cortical state often accompany changes in an

animal’s ability to perform an action. In attentional conditions or for moderate levels of

arousal, this means an improved sensory perceptual ability. We represented this change in

ability with Fisher information (FI), under the assumption that information flow along the

cortical hierarchy should relate in a consistent fashion with perceptual capacity. Using linear

FI, we then formally showed that, within a circuit, there needs to be a distinction between

readout and non-readout cells for information to change due to modulation of a circuit.

Reassuringly, this coincides with known anatomy in which cortical cells may be subdivided

into locally and long-range projecting subclasses. Since locally-projecting interneurons are

largely inhibitory, this analysis further revealed the unexpected result that inhibition is the

key modulator of information flow through excitatory subnetworks. Ultimately, this work

identified circuit components whose activity needs to be studied across cortical states to

understand how information is being affected, and, by extension, how an animal’s perceptual

capacity is changing. Yet, given the general nature of this work, we could not make further

deductions about how a specific state change might be affecting the circuit. For this, we

chose to study attention.

Despite decades of intense research, the precise neural mechanisms of attention remain

unknown. In Chapter 3 we considered a compelling result in attentional research which linked
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attentional effects on cortical neurons to normalization effects of those same cells. Unfor-

tunately, we found that the normalization-attention relationship was not a good constraint

on mechanistic models of attention. Instead, we showed that observing the relationship be-

tween the absolute change in activity with attention and a cell’s degree of normalization

better constrained models. This result established the necessity of a circuit framework to

link normalization and attention. Constructing a neural network model which obeyed the

identified constraints revealed that inhibitory synaptic strengths from distal and proximal

sources onto a given E unit need to be anti-correlated to match the data.

An overriding principle which has emerged from the results presented in this work is the

central role that inhibition plays in regulating neural activity and information flow in neural

circuits as a function of cortical state. Chapter 2 revealed that FIE formally depended only

on the gain and connectivity of the inhibitory cells when considering an excitatory-inhibitory

network. Chapter 3 demonstrated the central role inhibition plays in governing the response

properties of cortical cells under attention. Why might this be a good solution for the brain,

especially given the critical role inhibition plays in preventing excess excitability?

One explanation could come from balanced networks. The theory of balance in E/I

networks was originally derived to explain asynchronous activity in cortex [148]. In it,

inhibition tracks excitation either in a precise, correlated fashion (tight balance) [111] or

on a slower timescale with uncorrelated fast fluctuations (loose balance) [148]. When in a

tightly balanced regime, networks are capable of highly efficient coding due to the quick

cancellation of excitatory signals by inhibition. In fact, tightly balanced, efficient spike-

coding networks have been shown capable of outperforming rate coding frameworks [33].

Experimental evidence supports the synaptic scaling required by balanced networks [8],

suggesting that computations in the brain depends on inhibitory tracking of excitation.

In Chapter 3 we implemented an SSN model because of its ability to capture the dissocia-

tion between expansive neural transfer functions and saturating contrast response functions.

A clear computational benefit of this type of transfer function in early sensory systems is

the amplification of weak signals. Stabilizing this activity depends on the existence of strong

recurrent inhibition which is a hallmark of the SSN framework [5, 118]. The SSN was origi-

nally devised to explain normalization through circuit mechanisms. In this regard, inhibition
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stabilized (ISN) regimes inherit the computational benefits of normalization, such as scaling

the dynamic range of firing rates [59] and removing statistical dependencies in natural signals

[127]. Additionally, while theoretically justified, there is growing experimental support that

neocortex lives in an ISN regime [3, 125].

Given the central role of inhibition in our results, it is important to point out that

there are many inhibitory interneuron subtypes in the brain [143]. One natural extension

of the present work would be to determine to what extent these different inhibitory species

play a role in the results we have described. A previous network-style model of attention

argued for the role of multiple inhibitory interneuron subtypes to explain attentional data;

one subtype received top-down projections, the other was more strongly coupled to the

excitatory units in a feedforward manner [18]. The top-down subtype was the target of

feature attention, whereas the feedforward subtype was affected by spatial attention. This

dichotomy is perhaps related to somatostatin-positive (SST) and parvalbumin-positive (PV)

subtypes. The former largely targets pyramidal cell dendrites and plays a more modulatory

role whereas PV synapses more proximally to the soma and appears to be a key stabilizer

of excitatory activity [13].

Another class of dendrite-targeting inhibitory interneurons expresses vasoactive intestinal

peptide (VIP). These neurons also inhibit SST cells. It has been shown that VIP cells

in mouse V1 are strongly activated by cholinergic projections during locomotion. Their

activation leads to inhibition of SST cells, thereby removing a source of inhibition from

pyramidal neurons [45]. In this way, VIP cells play a central role in modulating the gain

of excitatory cells during changes in arousal state. Yet later work complicated this simple

picture by exploring a richer space of visual stimuli. It was found that locomotion affects

VIP and SST cells within V1 in a nonlinear, stimulus-dependent fashion, suggesting further

studies are needed to clarify the computational role of these species across arousal states

[34].

Overall what these examples makes clear is that different classes of inhibitory interneuron

play an important and complex role in affecting neural activity across cortical states. The key

findings of this dissertation highlighted the important role of inhibition in relating cortical

state to behavior. Understanding the neural basis of cognition will depend on our ability to
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understand inhibition.
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Appendix Mathematical techniques and derivations

We include some mathematical details and derivations underlying the machinery used

in the results. Much of it is by now quite standard, but collected here for completeness and

coherence.

A.1 Firing rate models

In this section we review derivations of classical firing rate models illustrating two differ-

ent views of the model: a heuristic derivation from spiking activity, and a derivation based

on averaging activity across a homogeneous population. We can think of the former as what

we have in mind in our single-unit-like model in Chapter 3, and the latter as representative

of the network models in Chapters 2 and 3.

A.1.1 Heuristic derivation from spikes

The unit of information encoded by neurons is the action potential, or spike, which, given

their fast timescale, can be characterized as discrete events at the times which they occur. A

neuron’s activity can thus be represented as a series of delta functions, capturing its activity

in terms of a spike count up to some time point t:

n(t) =
∑
i

δ(t− ti). (53)

While exact, this representation is not often useful. A temporally discrete representation is

that of spike counts, in which time is discretized and spikes are summed within fixed time

intervals. The spike count sc over an interval T ending at time t would thus be given by

sc(t) =
∑

t−T<ti≤t

δ(t− ti). (54)
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Alternatively, one may construct a continuous variable r(t) to be the firing rate, capturing

the underlying frequency with which a neuron is emitting spikes. Following Abbott [2], the

time-continuous variable r(t) may be defined as the convolution of the spike times with some

kernel K(t):

r(t) =

∫ t

−∞
K(t− t′)n(t′)dt′. (55)

The choice of kernel will depend on the assumptions about the nature of a neuron’s firing

rate. A common choice for K(t) is the exponential function K(t) = 1
τ
e−t/τ [2]; this function

defines a low-pass filter over the spikes with decay constant τ . If one assumes that the

timescale of K(t) relative to the neural and network dynamics is slow, the measured rate

will relax to an approximate steady-state rate for a reasonably slowly-varying stimulus [2].

In this way we can replace n(t− t′) with a response function h(·) of the stimulus s(t), such

that equation 55 becomes

r(t) =

∫ t

−∞
K(t− t′)h(s(t′))dt′ (56)

which, using the exponential kernel, can be written in a differential form

τ
dr(t)

dt
= −r(t) + h(s(t)). (57)

A neuron i within a network will receive inputs from other connected cells j through con-

nections of strength Jij. Assuming inputs to a cell incorporate linearly, the total input from

all other neurons in a network is thus given by

ai =
∑
j

Jij

∫ t

−∞
K(t− t′)nj(t′)dt′. (58)

With the same choice of kernel, the activity of a cell now becomes

τ
dri(t)

dt
= −ri(t) + hi(s(t)) +

∑
j

Jijrj(t). (59)

This equation is more typically written in an analogous form in terms of the postsynaptic

voltage v. The rate can then be thought of as a filtered version of v. In this context, it is the

presynaptic rates which would affect the postsynaptic voltage. Hence we define the function

96



f(v) = r as the input-output function governing the relationship between a cell’s membrane

potential and its firing rate. Then we can write

τ
dvi(t)

dt
= −vi(t) + hi(s(t)) +

∑
j

Jijfj(vj(t)). (60)

Alternatively (and more consistent with the original work of Wilson and Cowan [153]),

one may incorporate the network input to a neuron inside the input-output function f :

τ
dri(t)

dt
= −ri(t) + fi

(∑
j

Jijrj(t) + hi(s(t))

)
. (61)

This is perhaps the more common form of a rate equation, and the one we use in the

majority of this thesis. Despite their mathematical equivalence (see: Miller and Fumarola

[95]), these two forms may represent different assumptions about the dominant timescales

of the dynamics if one is a bit more careful about distinguishing them. In this regard

we highlight an argument by Ermentrout and Terman [38], and give the kernel K some

biophysical significance as the response of a passive membrane to an input. Writing V

instead of K we have τmV̇ + V = I(t) (we have taken the membrane resistance R = 1

for simplicity), we take the input I(t) to be a decaying exponential with time constant

τd. This input could capture presynaptic activity with commensurate transmitter release,

for example. Taking V (0) = 0 the solution is then V = τd
τd−τm

(e−t/τd − e−t/τm). Now in

principle τd could vary across input cells, which would require one to define a unique Vij for

each neuron pair. Instead, we make one of two assumptions. If the postsynaptic cell alone

determines the response then V is independent of j. Consistently, if τm >> τd then we have

the approximation V ≈ 1
τm
e−t/τm which is independent of the input parameter τd. One then

arrives at equation 60 (see Ermentrout and Terman [38] for details).

By contrast suppose that the response of the postsynaptic cell is dictated only by the

presynaptic cell. Then by a similar argument, if we assume the timescale τm << τd we

can approximate the potential response V ≈ 1
τd
e−t/τd . From this we get equation 61 (with

τ 7→ τd) in that presynaptic inputs are combined before being converted to a postsynaptic

rate through the function f .
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A.1.2 Markov process derivation

Here we follow an approach taken by Bressloff [14]. Consider a homogeneous population

of neurons each of which can be in one of two states: active or silent (i.e., spiking or not

spiking). Let n define the number of active neurons in the population of size N ≥ n. For

some small time interval dt define transition rates n → n − 1 : T−(n) = n and n → n + 1 :

T+(n) = Nf(n/N). Thus the change in probability P of n active units at time t is given by

d

dt
P (n, t) = T+(n− 1)P (n− 1, t) + T−(n+ 1)P (n+ 1, t)− (T+(n) + T−(n))P (n, t) (62)

with boundary condition P (−1, t) = 0 (activity can only increase if no cells are firing). We

now define the firing rate at time t as the expected value of the activity over the population:

r(t) = E[n/N ] =
N∑
n=0

n

N
P (n, t). (63)

Therefore letting N →∞ and dropping the t for notational convenience,

∞∑
n=0

n
d

dt
P (n) =

∞∑
n=0

n[T+(n− 1)P (n− 1) + T−(n+ 1)P (n+ 1)− (T+(n) + T−(n))P (n)]

(64)

=
∞∑
n=0

n[(n+ 1)P (n+ 1)− nP (n)] (65)

+
∞∑
n=0

n[Nf((n− 1)/N)P (n− 1)−Nf(n/N)P (n)]

=
∞∑
n=0

n(n+ 1)P (n+ 1)−
∞∑
n=0

n2P (n)±
∞∑
n=0

(n+ 1)P (n+ 1) (66)

+
∞∑
n=0

nNf((n− 1)/N)P (n− 1)−
∞∑
n=0

nNf(n/N)P (n)

±
∞∑
n=0

Nf((n− 1)/N)P (n− 1)
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=
∞∑
n=0

(n+ 1)2P (n+ 1)−
∞∑
n=0

n2P (n)−
∞∑
n=0

(n+ 1)P (n+ 1)

+
∞∑
n=0

(n− 1)Nf((n− 1)/N)P (n− 1)−
∞∑
n=0

nNf(n/N)P (n)

+
∞∑
n=0

Nf((n− 1)/N)P (n− 1)

(67)

= −
∞∑
n=0

nP (n) +
∞∑
n=0

Nf(n/N)P (n) (68)

= −E[n] + E[Nf(n/N)]. (69)

Assuming that the population is in a stable asynchronous state, we interchange expectations

with f [14] to arrive at the desired equation:

d

dt
r(t) =

d

dt
E[n] = −E[n] + f(E[n]) = −r(t) + f(r(t)). (70)

The extension to M interacting homogenous populations of size Nk, k = 1, ...,M is very

similar [15, 14], with a vector now denoting the number of active neurons within one of the

M populations: ~n = (n1, ..., nM). Let wij connote the strength of interaction between popu-

lation j and i. Define the transition rates to be Tk−(~n) = nk, Tk+(~n) = Nf(
∑

j wijnj/N+hk)

where we have also now explicitly included external inputs hk to population k. The proba-

bility distribution again evolves similarly to equation 62:

d

dt
P (~n, t) =

M∑
k=1

[T+(~n−ek)P (~n−ek, t)+T−(~n+ek)P (~n+ek, t)−(T+(~n)+T−(~n))P (~n, t)] (71)

where ek is the M -dimensional vector whose kth element equals one with all other elements

zero (or: the kth vector of the standard basis in M dimensions). The modified boundary

condition is P (~n, t) = 0 if any ni = −1. This then leads to the master equation

d

dt
P (~n, t) =

M∑
k=1

[Nf
(∑

j

wij(nj + δij)/N + hk
)
P (~n− ek) + ( ~nk + 1)P (~n+ ek)

−(Nf
(∑

j

wijnj/N + hk
)

+ ~nk)P (~n)]

(72)
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where δij is the Kronecker delta. By again taking expectations as described above we arrive

at the more general form of the rate equations:

d

dt
ri(t) = −ri(t) + f

(∑
j

wijrj(t) + hi(t)

)
. (73)

A.2 Linear theory of stochastic dynamics

A.2.1 Linear stability analysis in a deterministic system

Consider a dynamical system of the form ẋ = f(x) with a fixed point at x∗. A linear

approximation of the system near the fixed point is given by d
dt

(x−x∗) = ẋ ≈ f ′(x∗)(x−x∗).

In Chapter 2 we used the Routh-Hurwitz criterion (RHC) to analyze the stability of the

E1/E2/I network which is valid for a linear system. Using the linearized form of the network

response, the RHC allowed us to rewrite the stability criteria in terms of the variables we

were surfing over [94], namely the effective connectivity weights wij. For an equation of

the form ẋ = Wx + I where x ∈ R3, W ∈ R3 × R3, write the characteristic polynomial

p(λ) = det(Iλ−W ) := a0λ
3 + a1λ

2 + a2λ+ a3 = 0 where I is the identity matrix. The RHC

says that p(λ) will have all zeros in the left half plane if all coefficients ai > 0 and if, for this

3×3 case, a1a2 > a0a3.

A.2.2 Stochastic processes in one dimension

Consider a random variable X, samples of which are drawn at time points t1, t2, .... Then

Y (t) = f(X, t) defines a stochastic process, that is, a function of the random variable X and

t, which here we take to be time.

Brownian motion (also known as white noise) is defined as a stochastic process w(X, t)

continuous in time in which for each time step δt the evolution of the state variable w: is

Gaussian with mean 0 and variance δt, is independent of the previous step, and has initial

condition w(X, 0) = 0 for all X. This process is nowhere differentiable. To see this, following
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Chorin and Hald [23] we define the variable

dw =
w(X, t+ δt)− w(X, t)

δt
. (74)

By the definition of Brownian motion dw is Gaussian with expectation 〈dw〉 = 0 and variance

Var(dw) = Var
(w(X,t+δt)−w(X,t)

δt

)
= 1

δt2
·Var(w(X, t+δt)−w(X, t)) = 1

δt
. Hence Var(dw)→∞

as δt→ 0 and thus for a fixed X the derivative exists nowhere. In what follows we will use

the expression dw to refer to the increment of Brownian motion.

A stochastic differential equation (SDE) is, informally, a differential equation together

with a stochastic part. Consider an SDE of the form

τxdx = −x(t)dt+ σdw (75)

where w is Brownian motion (Wiener process). This is the Langevin equation in physics.

Integrating through from 0 to t gives

x(t)− x(0) =
1

τx

∫ t

0

x(s)ds+
σ

τx

∫ t

0

dw. (76)

The first expression
∫ t

0
dw is called a stochastic integral. Again following Chorin and Hald

[23], the way to evaluate a stochastic integral of the form
∫ b
a
g(t)dw for an arbitrary function

g(t) is to partition the interval of integration into discrete steps a = t0 < t1 < · · · < tn = b

and approximate g(t) with a piecewise-constant function:∫ b

a

g(t)τdw ≈
n−1∑
i=0

γi(w(ti+1 − w(ti)) (77)

where γi is a constant. One then takes the limit as the width of the largest interval in the

partition goes to zero. It remains to determine how to choose γi. The Ito solution evaluates

γi at the left end of the interval, such that γi = g(ti). Alternatively, the Stratonovich solution

takes the average of the values at the endpoints of the interval: γi = 1
2
[g(ti) + g(ti+1)]. In

general these interpretations need not agree [23], but because g(t) is constant throughout

this work, there is no concern.
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An alternative derivation given by Lindner [81] sidesteps these issues by making use of

the assumptions on w. We write the Langevin equation less formally as

τxẋ = −x(t) + σw(t). (78)

In the absence of noise this is a linear, first-order ordinary differential equation (ODE) whose

solution is an exponentially decaying process with time constant τ : x(t) = x0e
−t/τx . Hence,

x(t) = x0e
−t/τx +

σ

τx

∫ t

0

e−(t−s)/τxw(s)ds. (79)

The stationary mean value can be calculated by first recalling that E[w(t)] = 0. Then

E[x(t)]t→∞ = limt→∞ x0e
−t/τx + σ

τx

∫ t
0
e−(t−s)/τx〈w(s)〉 = limt→∞ x0e

−t/τx = 0, where we let

t→∞ to remove any dependence on initial conditions.

In order to measure the variability appropriately, we use the autocorrelation function,

given by G(τ) = E[x(t)x(t + τ)]. Because neural data acquired in experiments is often

pooled across trials and summed over discrete time windows which are long relative to the

intrinsic timescale of neural dynamics, we compute the integrated variance over all time∫∞
−∞G(τ)dτ . We again follow the exposition in Lindner [81]. Since a white noise process

evolves in independent increments, E[w(t)w(t + τ)] = δ(τ) where δ(τ) is the Dirac delta

function. From the exposition following equation 79 we see that in the t → ∞ limit the

expectation E[x(t)x(t+ τ)] will only retains terms which don’t involve the initial condition

term. Hence,

E[x(t)x(t+ τ)] =

(
σ

τx

)2 ∫ t

0

e−(t−s)/τxds

∫ t+τ

0

e−(t+τ−s′)/τxE[w(s)w(s′)]ds′ (80)

=

(
σ

τx

)2 ∫ t

0

e−(t−s)/τxds

∫ t+τ

0

e−(t+τ−s′)/τxδ(s′ − s)ds′ (81)

=

(
σ

τx

)2 ∫ t

0

e−(2t+τ−2s)/τxds (82)

=

(
σ

τx

)2
τx
2

[e−τ/τx − e−(2t+τ)/τx ] −−−→
t→∞

σ2

2τx
e−τ/τx . (83)

Carrying out the same calculations for negative time lags E[x(t − τ)x(t)] gives the same

result, such that we can arrive at

G(τ) =
σ2

2τx
e−|τ |/τx (84)

from which we can compute the integral over all time lags.
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A.2.3 N-dimensional stochastic process

Such that we may model networks of neurons we extend the previous concepts to N -

dimensions. This section follows Gardiner [46]. Therefore consider a network of N units (or,

homogeneous populations) whose (possibly linearized) dynamics are given formally by

d~x(t) = −M~x(t)dt+DdW (85)

where ~x ∈ Rn,M,D ∈ Rn × Rn are constant and dW is an n-dimensional Wiener process.

Assume that the system is stable and stationary (that is, E[~x(t)] = 0).

The main object we want to calculate is the covariance matrix. The solution to these N

SDEs is the N -dimensional analogue of equation 76:

~x(t) = exp(−Mt)~x(0) +

∫ t

−∞
exp(−M(t− t′))DdW. (86)

We can compute the covariance matrix at zero time lag, E[~x(t)~xT (t)] = σ as follows. Write

Mσ + σMT =

∫ t

−∞
Mexp(−M(t− t′))DDT exp(−MT (t− t′))dt′ (87)

+

∫ t

−∞
exp(−M(t− t′))DDT exp(−MT (t− t′))MTdt′ (88)

=

∫ t

−∞

d

dt′
[exp(−M(t− t′))DDT exp(−MT (t− t′))]dt′ (89)

= DDT − limt′→−∞[exp(−M(t− t′))DDT exp(−MT (t− t′))] (90)

= DDT (91)

where the last line follows by the assumption that the system is stable such that the limit van-

ishes. Ultimately we want the integrated covariance at all time lags, as discussed previously,

so similarly to the 1-dimensional case we define the cross-covariance G(τ) = E[~x(t)~xT (t+τ)]

where for τ < 0,

G(τ) =

∫ t+τ

−∞
exp(−M(t− t′))DDT exp(−MT (t+ τ − t′))dt′ (92)

= exp(−Mτ)

∫ t+τ

−∞
exp(−M(t+ τ − t′))DDT exp(−MT (t+ τ − t′))dt′ (93)

= exp(−Mτ)σ (94)
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and for τ > 0,

G(τ) =

∫ t

−∞
exp(−M(t− t′))DDT exp(−MT (t+ τ − t′))dt′ (95)

=

[∫ t

−∞
exp(−M(t− t′))DDT exp(−MT (t− t′))dt′

]
exp(−MT τ) (96)

= σexp(−MT τ) (97)

Now we could stop here and integrate over τ to get the full covariance. But with a

little more work, a much simpler and more intuitive expression results. We now apply

the Wiener-Khinchin theorem to compute the spectrum matrix from the cross-correlation

function computed above:

S(ω) =

∫ ∞
−∞

exp(−iωτ)G(τ)dτ (98)

=

∫ ∞
0

σexp(−(iω +MT )τ)dτ +

∫ 0

−∞
exp((−iω +M)τ)σdτ (99)

= (M − iω)−1σ + σ(MT + iω)−1 (100)

Multiplying through by M − iω on the left and MT + iω on the right, we have

(M − iω)S(ω)(MT + iω) = Mσ + σMT . (101)

Substituting the result in equation 91 and rearranging we have that the spectrum matrix in

stationary state becomes

S(ω) =
1

2π
(M − iω)−1DDT (MT + iω)−1 (102)

Using the fact that the long-time covariance can be computed by evaluating the spectrum

at zero frequency we get the that the N -dimensional covariance matrix is given by

Σ = M−1DDT (MT )−1 = M−1D(M−1D)T (103)

which is the expression we have used throughout this work.

Recall that in Chapters 2, 3 we were interested in neurons with nonlinear transfer func-

tions. Fluctuations in the voltage will thus be scaled nonlinearly into fluctuations in the
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rates 1. Since in this work we were interested only in steady state responses, our system

permitted linearization of the rates as described previously. In order to make use of the

foregoing theory, we needed to assume that the noise in the system was sufficiently small as

to not perturb the system to a new steady state. In this way we can write down an equation

of the form

δṙss = −δrss(t) + L(Jδrss(t) + Iξ(t)) (104)

where L is a diagonal matrix of the linearization terms and J is the weight matrix, as defined

in Chapter 2; I0 is a signal input, Iξ(t) := ΣDdW is some noisy input, and δrss(t) = r(t)−rss
describes the evolution of r near the point rss = (1 − LJ)−1LI0, obtained by solving the

deterministic system ṙ = −r(t) + L(Jr(t) + I0) = 0. With the substitutions 1 − LJ 7→ M

and LΣd 7→ D we recover equation 85 from equation 104.

A.3 Information-theoretic analyses

Given its noisiness, neural activity can be described as a conditional probability density

in firing rate space, conditioned on a variable of interest. In the present case our variable

of interest is a stimulus. For a population of N neurons we define rate space as the N -

dimensional space of positive reals RN
+ with a point in this space determined by the firing

rates of each neuron at a given time or under a particular condition. Repeated samples

of points over trials across a fixed stimulus presentation therefore define the probability

distribution of the rates ~r conditioned on that stimulus θ, P (~r|θ). As discussed in section 1.4,

an abstraction of an animal’s behavioral capacity on a discrimination task is the decodability

of upstream population activity (carrying signal information) by downstream cortical regions

(mediating active report). In this way downstream regions must solve an estimation problem

over the upstream activity.

An estimator is a function T : Xn → Θ from the sample space of n observations to the

parameter set Θ [27]. We will mostly concern ourselves with linear estimators such that the

1In performing simulations, we consider a low-pass filtered noise term τnoiseξ̇ = −ξ(t) + σnoisedW such
that the equation for x is now τ ẋ = −x(t) + σξ. In the limit as τnoise → 0 this is exactly a Wiener process
and hence the preceding results hold. Practically, τnoise should be sufficiently small relative to τ .
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function T can be written as a weighted sum over the n observations xi (see below). If θ is

the true parameter to be estimated (say, a stimulus orientation) and θ̂ is the estimated value

(that is, the image of T (X1, ..., Xn)) then the error of the estimate is given by θ̂ − θ and

the bias is defined E[θ̂ − θ]. An unbiased estimator is one in which this expectation is zero.

It turns out (for proof see, e.g., Cover and Thomas [27]) that a lower bound on the mean

squared error of an unbiased estimator is given by the reciprocal of the Fisher information

(FI) IX(θ):

var(T ) := E[(θ̂ − E[θ̂])2] ≥ 1

IX(θ)
. (105)

FI is defined for a continuous variable θ as

IX(θ) = −
∫
P (~r|θ) ∂

2

∂θ2
logP (~r|θ)d~r (106)

We now make two observations which demonstrate the relevance of this result. First, we

show the relationship between FI and a measure of discriminability, which establishes the

utility of FI in estimating behavioral capacity. Second, we describe how a linear component

of FI (linear FI) provides a biologically plausible instantiation through synaptic weights while

providing a reasonable approximation to the full FI.

Consider a fine-discrimination task in which an animal needs to differentiate between

two stimuli, θ and θ+ ∆θ where ∆θ is a small shift along some stimulus dimension. Assume

a neural population response to each stimulus is gaussian with mean responses µ1, µ2 and

equivalent variance σ2. Then the ability to tell these two distributions apart can be captured

by the discriminability [30]

d′ =
µ2 − µ1

σ
. (107)

For an unbiased estimator, the expected difference in the means µ2− µ1 = ∆θ. Moreover, if

the decoder is optimal, its variance is given by equation 105, with equality. Hence, we can

write the discriminability as

d′ = ∆θ
√
IX(θ). (108)

For an N -dimensional population, if we assume the response to a stimulus θ is gaussian

with mean ~r and covariance Σ then equation 106 becomes [1]

IX(θ) = f ′(θ)TΣ(θ)−1f ′(θ) +
1

2
Tr
(
Σ′(θ)Σ−1(θ)Σ′(θ)Σ−1(θ)

)
(109)
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where f(θ) is the population response to θ and Σ is the population covariance. We refer to

this expression as the full FI, while the first term on the right-hand side is the linear FI.

If the covariance matrix is independent of the stimulus, then the full FI exactly equals the

linear FI. More generally, Seriés et al. [131] used a locally optimal linear decoder to bound

estimates of FI. That is, they trained a decoder to estimate the orientations of two bars

oriented ∆θ = 1o apart in a network simulation of early visual cortex. Thus for a given set

of output rates ~r they estimated the angle θ̂ = ~wT~r+ b where ~w and b are the parameters to

be fit. This is also a reasonable instantiation of a downstream neuron attempting to estimate

the stimulus angle from synaptic inputs, with the synaptic strengths represented by ~w, the

weights over the presynaptic activity. The linear FI was then approximated from the means

θ̂1, θ̂2 and variances σ2
1, σ

2
2 of the estimates:

Iestimated =
((θ̂2 − θ̂1)/∆θ)2√

(σ2
1)2 + (σ2

2)2
. (110)

The authors found that the majority of nonlinear methods did not outperform this estimate

in the context of their model, suggesting that linear FI is an appropriate representation of

the system’s information.
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structure and cellular response on spike time correlations. PLoS computational biology,
8(3):e1002408, 2012.

[146] Todd W Troyer, Anton E Krukowski, Nicholas J Priebe, and Kenneth D Miller.
Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input
tuning and correlation-based intracortical connectivity. Journal of Neuroscience,
18(15):5908–5927, 1998.

[147] Misha V Tsodyks, William E Skaggs, Terrence J Sejnowski, and Bruce L McNaughton.
Paradoxical effects of external modulation of inhibitory interneurons. Journal of neu-
roscience, 17(11):4382–4388, 1997.

[148] Carl van Vreeswijk and Haim Sompolinsky. Chaotic balanced state in a model of
cortical circuits. Neural computation, 10(6):1321–1371, 1998.

[149] Bram-Ernst Verhoef and John HR Maunsell. Attention operates uniformly throughout
the classical receptive field and the surround. Elife, 5:e17256, 2016.

[150] Bram-Ernst Verhoef and John HR Maunsell. Attention-related changes in corre-
lated neuronal activity arise from normalization mechanisms. Nature neuroscience,
20(7):969, 2017.

[151] Ross S Williamson and Daniel B Polley. Parallel pathways for sound processing and
functional connectivity among layer 5 and 6 auditory corticofugal neurons. Elife,
8:e42974, 2019.

121



[152] Tori Williford and John HR Maunsell. Effects of spatial attention on contrast response
functions in macaque area v4. Journal of neurophysiology, 96(1):40–54, 2006.

[153] Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions in localized
populations of model neurons. Biophysical journal, 12(1):1–24, 1972.

[154] Rafael Yuste. From the neuron doctrine to neural networks. Nature reviews neuro-
science, 16(8):487–497, 2015.

[155] Edward Zagha, Amanda E Casale, Robert NS Sachdev, Matthew J McGinley, and
David A McCormick. Motor cortex feedback influences sensory processing by modu-
lating network state. Neuron, 79(3):567–578, 2013.

[156] Ehud Zohary, Michael N Shadlen, and William T Newsome. Correlated neu-
ronal discharge rate and its implications for psychophysical performance. Nature,
370(6485):140–143, 1994.

122


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Parametric solutions to Figure 4
	2. Figures 3, 6 parameters
	3. Figure 9 parameters

	List of Figures
	1. Network activity in the context of attention and normalization
	2. Modeling cortical state controllers
	3. Changes in network activity do not imply changes in information
	4. Projection to lower dimensions allows for improved discrimination with modulation
	5. Changes in FIE depend only on inputs to E
	6. Modulation affects inputs to E
	7. Information flow through E subpopulation
	8. Parametric benefits of the theory of subpopulation codes
	9. Differential correlations in subpopulation codes
	10. X components as a function of connectivity.
	11. Experimental measurements of normalization and attention
	12. Phenomenological model of normalization and attention
	13. Absolute changes in attentional firing rates provide a useful model constraint
	14. Network model of normalization and attention
	15. Network dissection of inhibitory effects on correlating heterogeneities
	16. Single neuron heterogeneities in attentional models
	17. Generality of single unit results
	18. Naïve analysis of inhibitory connectivity effects
	19. Anticorrelated JEE satisfies constraints

	Preface
	1.0 Introduction
	1.1 Cortical states of arousal and attention
	1.1.1 Arousal
	1.1.2 Attention

	1.2 Control of cortical state
	1.2.1 Neuromodulatory processes
	1.2.2 Cortical feedback

	1.3 Normalization as a nonclassical neural response property
	1.4 Neural encoding and decoding
	1.4.1 The effect of noise correlations on neural codes

	1.5 E/I networks
	1.6 Outline

	2.0 Subpopulation Codes Permit Information Modulation Across Cortical States
	2.1 Overview
	2.2 Introduction
	2.3 Results
	2.3.1 Modulation can improve information flow in subpopulation codes
	2.3.2 Subpopulation codes with distributed tuning
	2.3.3 The implications of subpopulation codes for divergent cortical pathways
	2.3.4 Parametric considerations in the theory of subpopulation codes

	2.4 Discussion
	2.5 Methods
	2.5.1 Linear theory
	2.5.2 Gain calclulation
	2.5.3 Fisher information analysis
	2.5.3.1 Full FI
	2.5.3.2 FIE derivation

	2.5.4 Subpopulation codes in general: FI
	2.5.4.1 Derivation of X for divergent E populations

	2.5.5 Model parameters
	2.5.5.1 E/I network (Figure 4)
	2.5.5.2 Ring network (Figures 3 and 6)
	2.5.5.3 E1/E2 network (Figures 7, 8)


	2.6 Supplemental Material
	2.6.1 Impact of low-rank variability on modulation of subpopulation codes
	2.6.2 FIE for low-rank covariance
	2.6.3 Analysis of Divergent Excitatory Pathways
	2.6.4 X as paths through the network


	3.0 Constraints on mechanistic models of attention
	3.1 Overview
	3.2 Introduction
	3.3 Results
	3.3.1 The NMI-AMI relationship is insufficient to constrain a simple neural model
	3.3.2 Absolute changes in rates with attention better constrain a simple model
	3.3.3 A heterogeneous network model reveals synaptic constraints
	3.3.4 Synaptic scaling is required for robust agreement with constraints

	3.4 Discussion
	3.5 Methods
	3.5.1 Single unit phenomenological model
	3.5.2 Heterogeneous ring network model
	3.5.3 Model and Simulation Parameters

	3.6 Supplemental Material
	3.6.1 Alternative solutions to phenomenological model constraints
	3.6.2 A naïve analysis of inhibitory connectivity effects supports our circuit dissection procedure
	3.6.3 Alternative sources of synaptic heterogeneity and E/I balance


	4.0 Conclusions
	Appendix. Mathematical techniques and derivations
	A.1 Firing rate models
	A.1.1 Heuristic derivation from spikes
	A.1.2 Markov process derivation

	A.2 Linear theory of stochastic dynamics
	A.2.1 Linear stability analysis in a deterministic system
	A.2.2 Stochastic processes in one dimension
	A.2.3 N-dimensional stochastic process

	A.3 Information-theoretic analyses

	Bibliography

