
Contributions to Neural Theorem Proving

by

Jesse Michael Han

B.Sc., University of California, Los Angeles, 2015

M.Sc., McMaster University, 2018

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF MATHEMATICS

This dissertation was presented

by

Jesse Michael Han

It was defended on

April 7, 2023

and approved by

Thomas Hales, Mellon Professor Mathematics

Kiumars Kaveh, Professor of Mathematics

Bogdan Ion, Associate Professor of Mathematics

Jeremy Avigad, Professor of Philosophy (Carnegie Mellon University)

ii

Copyright © by Jesse Michael Han

2023

iii

Contributions to Neural Theorem Proving

Jesse Michael Han, PhD

University of Pittsburgh, 2023

In this dissertation we present several contributions to the nascent field of neural theorem

proving, i.e. deep learning-driven automated theorem proving over large libraries of formalized

mathematics. We work primarily with the Lean theorem prover along with its standard

mathematical library, mathlib. We focus on addressing the issue of data scarcity for training

autoregressive language models to perform high-level reasoning steps at the same level of

abstraction as humans. Labeled data for imitation learning of human proof steps is extremely

scarce as formal mathematics libraries require years of concentrated effort by human specialists

to be built. We show that this paucity of data can be addressed by (1) extracting data

from mathlib’s low-level proof artifacts, (2) synthesizing those low-level proof artifacts from a

language model, and (3) creating new training data from autonomous proof attempts in an

expert iteration loop. We demonstrate an application of these kinds of techniques to achieve

state-of-the-art performance on solving formalized Olympiad-level mathematics problems.

iv

Table of Contents

Preface . xiii

1.0 Introduction . 1

2.0 Background . 3

2.1 Formal theorem proving . 3

2.1.1 Systems for formal theorem proving 3

2.2 Deep learning and generative language modeling 5

2.2.1 Autoregressive sequence modeling 5

2.2.2 Transformer language models . 6

2.3 Prior and related work . 8

2.4 Conclusion . 10

3.0 Data augmentation using proof artifacts 11

3.1 Proof artifact co-training for theorem proving with language models 11

3.1.1 Introduction . 11

3.1.2 Background and related work . 12

3.1.2.1 The LeanStep datasets and machine learning environment 15

3.1.2.2 Machine learning environment 16

3.1.3 Experiments . 18

3.1.4 Discussion . 22

3.1.5 Acknowledgments . 24

3.2 Synthetic proof term data augmentation 24

3.2.1 Introduction and background . 24

3.2.1.1 Comparison to related work 25

3.2.2 Methodology . 26

3.2.2.1 Bootstrap Datasets . 26

3.2.2.2 Creating Synthetic Datasets 27

3.2.3 Experimental Setup . 28

v

3.2.3.1 Splitting the Bootstrap Data 28

3.2.3.2 Proof Term Language Modelling Experiments 29

4.0 Statement curriculum learning and applications to Olympiad theorem

proving . 36

4.0.1 Introduction . 36

4.0.1.1 miniF2F benchmark . 38

4.0.1.2 Contribution . 38

4.0.2 Related Work . 39

4.0.3 Formal Environment . 40

4.0.3.1 lean-gym . 40

4.0.3.2 Proof datasets extraction 42

4.0.4 Expert Iteration . 42

4.0.4.1 Model . 42

4.0.4.2 Pre-Training . 42

4.0.4.3 Training objectives . 43

4.0.4.4 Bootstrapping . 45

4.0.4.5 Iterated sampling and training 47

4.0.4.6 Expert iteration on mathlib-train 48

4.0.5 Statement curriculum learning . 51

4.0.5.1 Synthetic inequality generator 51

4.0.5.2 Expert iteration on synthetic inequality statements 52

4.0.6 Targeting miniF2F . 53

4.0.6.1 Formalization effort . 53

4.0.6.2 Transfer to miniF2F . 54

4.0.6.3 Results . 56

4.0.7 Discussion . 56

4.0.7.1 Model Size . 56

4.0.7.2 Qualitative analysis of proofs 58

4.0.7.3 Limitations . 59

5.0 Conclusions . 61

vi

A.1 Additional materials for section 3.1 . 63

A.1.1 Additional background for PACT 63

A.2 Datasets for section 3.1 . 65

A.2.1 Pre-training datasets . 65

A.2.2 Dataset sizes . 66

A.2.3 Example datapoints . 67

A.3 Experiments for section 3.1 . 71

A.3.1 Chained tactic prediction . 71

A.3.2 Theorem naming case study . 73

A.3.3 Test set evaluation breakdown by module 76

A.3.4 Baseline description . 76

A.3.5 Computational resource estimates 78

A.4 Example proofs for section 3.1 . 79

A.4.1 lie_algebra.morphism.map_bot_iff 79

A.4.2 primrec.of_equiv . 79

A.4.3 real.tan_eq_sin_div_cos . 80

A.4.4 sym2.is_diag_iff_proj_eq . 81

A.4.5 norm_le_zero_iff . 81

A.5 Additional materials for chapter 4 . 82

A.5.1 Lean-gym . 82

A.5.2 Synthetic inequalities . 83

A.5.2.1 List of inequality composition theorems 83

A.5.2.2 Examples of synthetic inequalities 84

A.5.3 ND = 0 NS = 0 . 84

A.5.4 ND = 0 NS = 4 . 85

A.5.5 ND = 4 NS = 4 . 86

A.5.6 Example proofs from mathlib-train 87

A.5.7 comap_eq_of_inverse . 88

A.5.8 sum_range_sub_sum_range . 89

A.5.9 prod_inv_distrib . 90

vii

A.5.10 Example proofs from minif2f-{test,valid,curriculum} 91

A.5.10.1 imo_1961_p1 . 91

A.5.10.2 imo_1964_p2 . 93

A.5.10.3 aime_1990_p15 . 94

A.5.10.4 mathd_train_algebra_217 96

A.5.10.5 amc12b_2020_p6 . 97

A.5.10.6 mathd_algebra_140 . 98

A.5.10.7 aime_1984_p1 . 100

A.5.10.8 aopsbook_v2_c8_ex1 . 101

A.5.10.9 mathd_numbertheory_447 103

Bibliography . 104

viii

List of Tables

1 Test loss, test perplexity, and test accuracy (if appropriate) of the best model

checkpoint trained on each dataset. 35

2 Test loss, test perplexity, and test accuracy of the best model checkpoint trained

on each dataset with different levels of dropout. "Bootstrap X" rows indicate

test performance after training on cond_train_bootstrap. "Augmented X" rows

indicate test performance after training on cond_train_aug. "X Gap" rows

are computed by taking the absolute difference between "Augmented X" and

"Bootstrap X". 35

3 Mix and source of data involved in the updated WebMath pre-training. 43

4 Performance of θ0 and θ1 on mathlib-valid and miniF2F-valid compared to PACT

Lean GPT-f as reported in [1, 2]. All models have the same architecture. θ0

is sampled using cumulative logprob priority best-first search. θ1 is sampled

using best-first search based on the proofsize objective. We report our setup

(d = 512 expansions and e = 8 tactic samples per expansions) as well as the

setups used in [1, 2] to control for compute. We also report the performance of θ1

on mathlib-valid when trained using the outcome objective from [3] as an ablation

of our proposed proofsize objective. 46

5 Performance of θ1 (value-function based search), θmathlib
9 (expert iterated on

mathlib-train) and θfull
9 (expert iterated on our full curriculum) on mathlib-{valid,

test} and miniF2F-{valid, test}. All proof searches are run with d = 512 and e = 8. 57

6 Counting the number of semicolon-chained tactics predicted by our models that

appear in successful proofs. Each column headed by a number n; indicates the

number of times that a suggestion appeared with n occurrences of ‘;’. 72

ix

List of Figures

1 Auto-regressive objectives used for each task described in subsubsection 3.1.2.1.

Placeholders represented with brackets (such as <TacticState>) are substi-

tuted by the context-completion pairs from each datasets in the prompts above.

Each task is presented to the model with its respective keyword (PROOFSTEP,

NEXTLEMMA,...). We wrap the completions of mix1 tasks (with apply(...) and

exact(...) respectively) as a hint that they are related to the respective Lean

tactics; this is not directly possible for the other tasks. 20

2 Comparison of pre-training and co-training on mix-1 and mix-2. We use > to

separate distinct pre-training phases and + associatively indicates that a co-

training mixture. As an example, WebMath > mix2 > mix1 + tactic signifies

a model successively pre-trained on WebMath then mix2 and finally co-trained

as a fine-tuning step on mix1 and tactic. Columns mix1, mix2, tactic report

the optimal validation loss achieved on these respective datasets. We provide

a detailed description of experiment runtime and computing infrastructure in

section A.2. “Tokens elapsed” means the number of tokens the model was trained

on. 31

3 Validation losses achieved in the pre-training and co-training setups without

WebMath pre-training. See Figure 2 for a description of the columns and the

models nomenclature used. †Due to technical constraints, we are unable to

provide pass-rates for some of the models. We use > to separate distinct pre-

training phases and + associatively indicates that a co-training mixture. “Tokens

elapsed” means the number of tokens the model was trained on. 32

x

4 Validation losses and pass-rates achieved for various model sizes using PACT.

See Figure 2 for a description of the columns. The setup used is WebMath >

mix1 + mix2 + tactic. We use > to separate distinct pre-training phases and +

associatively indicates that a co-training mixture. “Tokens elapsed” means the

number of tokens the model was trained on. 33

5 As sampling temperature is increased, both typecheck pass rate and similarity of

each type-correct generated example to the most similar training example (i.e.

"max cosine similarity") decreases. Note that the mean "max cosine similarity"

is the average observed max cosine similarity across the type-correct generated

examples with a given temperature. 34

6 pass@1 (plain) and pass@8 (dotted) for mathlib-valid and minif2f-valid when

running eight expert iterations with St set to be the statements in mathlib-train.

The x-axis is log-scaled. It corresponds to the indices of the θk models and serves

as a good proxy to compute (the amount of test-time and train-time compute per

iteration being fixed). The y-axis is scaled linearly and simply shifted between

the two graphs (spans an equal range). 49

7 Cumulative pass rate for our expert iteration loop as well as a sample only loop

where we skip re-training the model between iterations. The adjusted compute

line is computed by fitting the sample only curve and shifting it to approximate

a setup where we would focus all the additional compute used by expert iteration

(sampling training data from mathlib-train as well as re-training models at each

iteration) towards running proof searches against mathlib-valid. 49

8 Cumulative pass rate for our expert iteration loop as well as a sample only loop

where we skip re-training the model between iterations. Pass rates are reported

for each value of ND (pooling together 0 ≤ NS ≤ 7). 53

xi

9 Top: cumulative pass rate on miniF2F-valid for our expert iteration loop using our

full curriculum (mathlib-train, synth-ineq and miniF2F-curriculum) compared to

the expert iteration loop from section subsubsection 4.0.4.6. The total number of

attempts per iteration in our full loop is 25k+5.6k+8∗327 ≈ 33.2k, which means

the total compute deployed is higher than in the mathlib-train only loop (25k). We

therefore also report in dotted a mathlib-train only loop, taking a = 2, whose total

number of attempts per iteration is ≈ 50k. Bottom: pass@1 (plain) and pass@8

(dotted) for our expert iteration loop using our full curriculum (mathlib-train,

synth-ineq and miniF2F-curriculum) compared to the expert iteration loop from

section subsubsection 4.0.4.6. 55

10 A sample of correct top-1 guesses by our best model wm-to-tt-m1-m2 on the

theorem naming task. We performed this experiment on the future-mathlib

evaluation set, which comprises entirely unseen theorems added to mathlib only

after we last extracted training data. 74

11 A sample of incorrect guesses by our best model wm-to-tt-m1-m2 on the theorem

naming task. We performed this experiment on the future-mathlib evaluation

set, which comprises entirely unseen theorems added to mathlib only after we

last extracted training data. Most of the top-8 guesses displayed in the above

table are very similar to the ground truth, in some cases being equivalent up to

permutation of underscore-separated tokens. Note that for the first example, the

concept of ordnode was not in the training data whatsoever and all predictions

are in the syntactically similar ordinal namespace. 75

12 A breakdown of theorem proving success rate on the test set for wm-to-tt-m1-m2,

wm-to-tt-m1, wm-to-tt, and the tidy baseline across top-level modules in Lean’s

mathlib. We see that wm-to-tt-m1-m2 mostly dominates wm-to-tt-m1 and the

models trained using PACT dominate the model wm-to-tt trained on human

tactic proof steps. 77

xii

Preface

I started this journey with the dream that one day human mathematicians would work

alongside artificially intelligent ones. I saw a future where machines would search for proofs

at a planetary scale, eventually going beyond proof search to synthesize compelling definitions

and abstractions in a self-reinforcing loop, and where one day mathematics would become a

shared, formally verified, and mostly autonomous computational construct, like the operating

system of a mainframe computer whose details are hidden from the end users. This dream is

not as far-fetched as it may seem at first. After all, machines already perform many tasks

that were once done by human beings, and they are only getting closer to the remainder.

This dream is still well within the realm of possibility, to which the contributions presented

in this dissertation hopefully bring us a few steps closer.

Along the way, I have benefitted and grown tremendously from the guidance and mentor-

ship of many remarkable individuals. Jeremy Avigad was always warm and encouraging and

played a pivotal role in organizing the formal verification research community in Pittsburgh.

I am grateful to Floris van Doorn and Mario Carneiro, who taught me the ins and outs of

theorem proving in Lean and how to think like a proof engineer. Floris was an invaluable

collaborator as we formalized the independence of CH in Lean. Simon Hudon, who remains

one of the most talented engineers I have ever met, was always generous with his time, energy,

and ideas, and taught me the value of curiosity and rapid prototyping for research. I am

similarly grateful to Reid Barton for the occasional late-night conversations that gave me the

sense of watching a mathematician fifty years from the future at play.

I am also grateful to the mentors who took a chance on me as I found my way to the

bleeding edge of research in artificial intelligence and automated reasoning. John Harrison

generously advised my research on applying neural networks to SAT solvers during the months

I spent with the AWS Automated Reasoning group. Dan Selsam taught me the craft of

automated theorem proving over the course of a summer-long apprenticeship spent building

ARC and IMO geometry solvers in Haskell, and led by example with lion-hearted tenacity.

Christian Szegedy, Markus Rabe, and Tony Wu taught me how to think like an AI researcher

xiii

and were invaluable advisors as I explored neural theorem proving in Lean. Stan Polu taught

me the value of speed, execution, and focus as we built out the formal math research program

at OpenAI. Igor Babuschkin taught me the value of simplicity and being restlessly ambitious

in engineering and research. Ilya Sutskever taught me the value of conviction in an idea

compounded over time.

Finally, I would not be the researcher or person I am today without the support of my

advisor, Tom Hales. His persistence, clarity of thought, and insistence on excellence have

long served as a model for mine. Thank you, Tom—for giving me license to set and pursue

my own research agenda, for unwaveringly supporting my work no matter how audacious the

timelines or goals, and for supplying the courage for a lifetime of impossibly ambitious tasks.

xiv

1.0 Introduction

Neural theorem proving is a newly developing field at the intersection of machine learning

and automated theorem proving. The goal of neural theorem proving is to endow theorem

provers with powerful deep learning models that can automatically generate human-level

proofs for formalized mathematical theorems.

Theoretical advances in neural theorem proving are being driven by a number of exciting

recent developments in machine learning. On the one hand, there has been a dramatic

increase in the performance of neural networks for natural language processing tasks such as

machine translation, text classification, and question answering. On the other hand, there

has been a resurgence of interest in neural networks for automated theorem proving, driven

in part by the success of deep learning models in other areas of AI.

The goal of this dissertation is to present several contributions to the nascent field of

neural theorem proving. We work primarily with the Lean theorem prover along with its

standard mathematical library, mathlib. We focus on addressing the issue of data scarcity for

training autoregressive language models to perform high-level reasoning steps at the same

level of abstraction as human proof engineers. The quality of deep learning models (for a fixed

architecture) is a function of compute and training data quality — ImageNet, for example,

has over a million images in its training set for the far less reasoning-intensive task of image

classification. We show that the paucity of human-written data in formal theorem proving

can be addressed in three ways.

1. Extracting data from mathlib’s low-level proof artifacts. As part of the proof-checking

process in Lean, the higher-level tactic commands used by a human formalized are

compiled to a far more detailed proof artifact which is verified by Lean’s kernel. These

low-level proof artifacts can be analyzed in various ways to extract alternate proofs and

reformulations of the original proof which provide a rich source of related training data.

We show that adding these kinds of data can have a massive impact on theorem proving

performance of a neural theorem prover powered by a generative language model.

2. Synthesizing low-level proof artifacts from a language model. While one can obtain a very

1

large number of datapoints via the above method, it is still fundamentally constrained by

the number of high-level proofs supplied by a human. We show that one can simply train

a generative language model on the distribution of all low-level proof terms extracted from

mathlib and sample new syntactically correct and kernel-verified low-level proof terms

from this model and that they provide training data which is helpful for a generative

language model on theorem proving tasks.

3. Creating new training data from autonomous proof attempts in an expert iteration loop.

We introduce an expert iteration methodology called statement curriculum learning which

bootstraps a neural theorem prover by iteratively running the latest version of that prover

against a stationary distribution of theorem statements and using any newly discovered

proofs as training data to train the next version of the prover. We show that interleaving

proof search with model training proves significantly more theorems than a stationary

model performing proof search alone.

Finally, we demonstrate an application of these kinds of techniques to achieve state-of-

the-art performance on a benchmark of formally stated theorem statements derived from

math Olympiad competitions.

2

2.0 Background

In this chapter we review the necessary background for the rest of the thesis.

2.1 Formal theorem proving

Formal theorem proving refers to the practice of programming in a computer language

which allows for computer-readable specifications of mathematical theorems and computer-

verifiable representations of proofs [4].

2.1.1 Systems for formal theorem proving

There are various software packages implementing formal verification systems that can be

applied to the verification of mathematical proofs. We discuss several prominent ones that

have served as the starting point for various neural theorem provers. In this dissertation we

focus on the Lean 3 theorem prover, which implements a dependent type theory.

• The Lean theorem prover is a functional programming language that allows for easy

writing of correct and maintainable code [5]. It can also be used as an interactive theorem

prover. Some features of Lean include type inference, first-class functions, powerful data

types, pattern matching, type classes, extensible syntax, hygienic macros, dependent

types, metaprogramming framework, multithreading, and verification [6]. The Lean

project was launched in 2013 by Leonardo de Moura at Microsoft Research and is hosted

on GitHub. The latest version, Lean 4, was released on January 4, 2021. We emphasize

that this dissertation focuses on neural theorem proving in the Lean 3 theorem prover [6].

Lean’s foundations comprise a dependent type theory along with the calculus of inductive

constructions, a countable hierarchy of non-cumulative universes, and quotient types [7].

For an elementary introduction to dependent type theory, we refer the user to the textbook

by Barthe and Coquand [8]. We also refer to [7] which gives a rigorous syntactic definition

3

of Lean’s precise type theory and which demonstrates an equiconsistency result between

Lean’s type theory and ZFC extended with a hierarchy of countably many Grothendieck

universes.

A few other formal theorem proving systems (not at all inclusive) include:

• HOL Light is a proof assistant and computer program designed to help users prove

theorems in higher order logic [9]. It is based on a formulation of simple type theory

with equality as the only primitive constant, and uses the OCaml programming language.

It is distinguished by its clean and simple design and small logical kernel. Despite this,

it provides powerful proof tools and has been applied to formalizing mathematics and

industrial verification [10, 11].

• Coq is a formal proof management system with a language to write mathematical

definitions, executable algorithms, and theorems, as well as an environment for developing

machine-checked proofs. It is free and open-source, with development largely supported

by INRIA, a French national research institute. It has also been applied to formalizing

mathematics and industrial verification [12, 13].

• Metamath is a formal language used for archiving, verifying, and studying mathematical

proofs. It is based on set theory and first-order logic, and has been used to formalize more

than 23,000 proofs from mathematics. Metamath has been used to develop databases of

proved theorems in fields such as logic, set theory, number theory, algebra, topology, and

analysis [14].

For further background, we refer the reader to surveys on formal verification in mathe-

matics [4, 15].

To give more intuition about theorem proving in Lean, we emphasize that any type

theory, Lean included, is built around a collection of (well-formed) expressions. These are

strings of symbols which have been produced by a finite sequence of expression formation

rules, and are therefore trees of subexpressions. All expressions have a type, which is another

expression. Lean is equipped with a countable non-cumulative hierarchy of (Grothendieck)

universes, with a type Prop of propositions at the bottom. Mathematical assertions like

theorems are translated into Lean by specifying a type of type Prop, and to supply a proof

4

of that theorem is to supply an expression whose type is that proposition. Lean is proof-

irrelevant, meaning that any two proofs of a given proposition (i.e. expressions belonging

to the same propositional type) are definitionally equivalent. Many provers, such as Lean,

support a mode of working where the theorem to be proved is presented as a “goal” that

is transformed by applying “tactics” in a backward fashion [16]. From the perspective of

expression synthesis, this corresponds to transforming a “metavariable” with the original

type through the application of “tactic” metaprograms, producing sub-metavariables, and

repeating this process until there are no metavariables remaining. We refer the reader to the

thesis of Ayers for a more detailed exposition on proof assistants and how partial proofs are

handled with metavariables in Lean [17].

2.2 Deep learning and generative language modeling

2.2.1 Autoregressive sequence modeling

Autoregressive sequence modeling is a type of machine learning that is used to predict the

next value in a sequence. This is based on the assumption that future values in a sequence

can be predicted based on the past. In autoregressive sequence modeling, the output of the

model at time t is a function of the input at time t and the outputs at all previous time

steps. This makes it well suited for tasks such as language modeling, where the next word in

a sentence is predicted based on the previous words.

Formally, given a probability distribution D on X∗, the set of all finite sequences on a set

X, we define an autoregressive sequence model M of D to be a function M : X∗ → (X → [0, 1])

which assigns a probability distribution over X to any finite sequence (x1, . . . , xN) which is

an approximation of the true conditional probability distribution D(xN+1|x1, . . . , xN). Using

M, we can define a joint probability distribution over all finite sequences using the chain rule

of conditional probability:

PM(x0, . . . , xN) = M(∅)(x0) ·M((x0))(x1) · · ·M((x0, . . . , xN−1))(xN)

which approximates D over X∗.

5

For example, X could be set of all Unicode characters so that X∗ is the set of all strings

of Unicode characters, and D could be a probability distribution supported only on strings

which have appeared on the Internet or published in a paper on the arXiv. When the

target D is derived from language, we call any model M thus defined an autoregressive

language model. Of particular interest to us are distributions D supported on strings which

represent statements and proofs of theorems in a formal theorem proving system like Lean,

and autoregressive sequence models thereof. In this thesis, we focus especially on modeling

the distribution Dtactic of strings, defined to be the set of all strings of the form p :: s (a prefix

p concatenated with a suffix s), with a prefix which is a string representation of a tactic state

from the Lean theorem prover and a suffix which is a string representation of the next tactic

application. For more on tactics in Lean, we refer the reader to subsection 3.1.2.

In this dissertation we focus on the problem of approximating Dtactic using causal decoder-

only transformer language models. We now turn to discussing transformer language models,

which currently underlie the state of the art in autoregressive sequence modeling.

2.2.2 Transformer language models

In a nutshell, transformers are deep learning models that use the mechanism of self-

attention. We will define these terms momentarily. They are used primarily in natural

language processing and computer vision. Transformers were introduced in 2017 and have

become the model of choice for many natural language processing (NLP) problems. The

transformer architecture was first proposed in the paper “Attention Is All You Need” [18]. It

is designed to solve sequence-to-sequence tasks while handling long-range dependencies with

ease and is now the basis of many state-of-the-art methods in natural language processing.

In this dissertation, we focus on (causal) decoder-only transformers (which we refer to

simply as transformers). These are precisely autoregressive sequence models for a fixed length.

Formally, given a sequence length L, a hidden dimension D, a depth N , a transformer is a

function Tθ from sequences of length N over a finite set of tokens X to a sequence of length N

of probability distributions over X. The transformer Tθ is parametrized by a set parameters

θ which we learn through stochastic gradient descent [19, 20] (SGD) on training data. It

6

operates roughly as follows. Let (x1, . . . , xL) be the input sequence. We apply a learnable

function e : X → RD to represent each sequence element as an embedding in RD. We also

add a learnable positional encoding [pos1, . . . , posL] ∈ RL×D to [e(x1), . . . , e(xL)].

We then transform the embeddings [e(x1), . . . , e(xL)] by applying N different learnable

transformer blocks
(
Bi : i ∈ {1, . . . , N} : RL×D → RL×D

)
to [e(x1), . . . , e(xL)] in sequence,

producing a final set of embeddings

[x̂1, . . . , x̂n] := BN(BN−1(. . . B1(E))), where E := [e(x1), . . . , e(xn)].

We apply a learnable feedforward network which is just a function unembed : RD → R|X|

row-wise to [x̂1, . . . , x̂n] to produce an array in RL×|X|. Each row Xk of this array defines a

function X → R which can be converted to a probability distribution Pk using the softmax

function

softmax(x)i =
exi∑
j e

xj

and each probability Pk is precisely the conditional probability distribution over tokens X

given the previous elements x1, . . . , xk−1 of the sequence.

Given a corpus X⃗ of training data, we train the parameters of a transformer via SGD to

minimize the categorical cross-entropy loss1 between the conditional probability Pk emitted

by T at position k and the categorical distribution for the true label X⃗k (i.e. the discrete

probability distribution with all mass concentrated at the kth position) conditioned on

X⃗1, . . . , X⃗k−1, simultaneously at all positions k.

We refer the reader to [18] for more detail on transformer blocks and the applications of

the transformer architecture to natural language processing.

Generative language models build with transformer architectures have recently been the

focus of much work deep learning and natural language processing, in light of remarkable emer-

gent abilities (e.g. multi-task learning [21, 22], in-context metalearning [23], and predictable

scaling with data and compute [24]) when training at large scale (e.g. with hidden dimension

D in the thousands dozens of layers N , billions of trainable parameters and hundreds of
1The cross entropy loss between two discrete probability distributions P and Q on a finite set X is defined

as: L(P,Q) = −
∑

x∈X P (x) logQ(x). The categorical cross entropy loss is the special case where P is zero for
all but one x ∈ X, so minimizing the categorical cross entropy is equivalent to maximizing the log-likelihood
of the true label.

7

billions to trillions worth of tokens of training data scraped from the internet [23]). In this

dissertation we focus on taking such large pre-trained models and adapting them to modeling

the distribution Dtactic of strings representing proof-states and proof-steps from the Lean

theorem prover.

2.3 Prior and related work

The work in [25] demonstrated the utility of language models for learning to perform tasks

requiring mathematical reasoning. They train and evaluate language models on a collection

of different tasks but do not directly attempt transfer to the task of theorem proving. The

GPT-f (i.e. generative pre-training for formal math) work [26] was the first result to directly

demonstrate the utility of language models for theorem proving. The language modelling

task for GPT-f was based around reproducing individual proof steps in Metamath proofs.

After training such a model, it could be used to perform a tree-based proof search. Generated

proof steps which were invalid could be filtered out with the use of a formal verifier, similar

to our use of the Lean kernel to filter proofs that fail typechecking.

In [27, 28], first-order theorem provers are trained from scratch with procedurally generated

theorems. The forward proposer which generates theorems samples randomly from the

available axioms at each step and does not leverage a learned model. INT [29] procedurally

generates synthetic inequality-based theorems to systematically investigate out-of-distribution

generalization. LIME [30] procedurally generates examples for three classes of tasks (deduction,

abduction, and induction) and uses them to pre-train transformer models before finetuning

on other tasks. The authors demonstrate this is a useful replacement for more expensive

natural language pre-training tasks, however it does not enable the production of formal

mathematical data.

Another category of work focuses on synthesizing conjectures [31, 32]. However, the

existence of proofs for the generated conjectures cannot be guaranteed and must be found

via search. Also, several works re-train models using alternative proofs found by trained

models [26, 33, 34, 35]. However this doesn’t enable discovery of new theorems, only variant

8

proofs of existing theorems, hence cannot fundamentally alleviate problem of data scarcity in

automated theorem proving.

Prior work by Wang and Deng [36] was the first to demonstrate the utility of a neural

generator of synthetic training data for theorem proving. The generator is limited by the

requirement that new hypotheses are produced by explicit substitution and in order to avoid

generating "meaningless theorems" new hypotheses are required be identical to part of an

existing proof tree.

Other machine learning and neural theorem provers for tactic-based interactive theorem

provers take one of two approaches to tactic generation. TacticToe [37] for HOL4 and

Tactician [38] for Coq use k-NN to select similar tactics in the training set and apply

modifications to the result, e.g. swapping the tactic variables with those found in the local

context. HOList/DeepHOL [39, 40, 41] for HOL Light; TacticZero [42] for HOL4; and

CoqGym/ASTactic [43] and ProverBot9001 [44] for Coq hard-code the DSL (i.e. domain-

specific language) for every tactic command. The model chooses a tactic command, and

then fills in the tactic arguments using specialized argument selectors (such as a lemma

selector, a local hypothesis selector, and/or a variable selector). None of these selectors

currently synthesize arbitrary terms, which prevents the overall tactic synthesis procedure

from constructing tactics with proof terms, such as @norm_eq_zero α _ g, or directly proving

an existential, e.g. ∃ (x : R), x + 3 = 0, by supplying the witnessing term -3.

Language models have also been explored in the first-order ITP (i.e. interactive theorem

prover) Mizar for conjecturing and proof synthesis [45]. While their work shows the promise

of such approaches, is not intended as a complete end-to-end theorem prover. For Meta-

math, which does not use tactics, language modeling approaches have been quite successful.

Holophrasm [46], MetaGen [47], and GPT-f [48] all use RNNs (i.e. recurrent neural networks)

or transformers to generate proof steps. Indeed, we build on the work of Metamath GPT-f [48]

(MM GPT-f).

9

2.4 Conclusion

We can frame the central problem of neural theorem proving with autoregressive language

models as follows. How do we (1) use recent advances in generative language modeling to

induce powerful proposal distributions over proof-steps conditioned on proof-states, and (2)

design algorithms that can apply such distributions to human-level proof synthesis?

We will spend the remainder of this dissertation addressing both points. We will present

various data augmentation methods to produce better proposal distributions over proof-steps

using large generative language model, an implementation of a neural best-first search for

theorem proving in Lean itself, and demonstrate a concrete application to state-of-the-art

theorem proving performance on a benchmark of Olympiad-level mathematics problems.

10

3.0 Data augmentation using proof artifacts

3.1 Proof artifact co-training for theorem proving with language models

Labeled data for imitation learning of theorem proving in large libraries of formalized

mathematics is scarce, as such libraries require years of concentrated effort by human

specialists to be built. This is particularly challenging when applying large transformer

language models to tactic prediction, because the scaling of performance with respect to

model size is quickly disrupted in the data-scarce, easily-overfitted regime. We propose PACT

(Proof Artifact Co-Training), a general methodology for extracting abundant self-supervised

data from kernel-level proof terms for joint training alongside the usual tactic prediction

objective. We apply this methodology to Lean, a proof assistant host to some of the most

sophisticated formalized mathematics to date. We instrument Lean with a neural theorem

prover driven by a transformer language model and show that PACT improves theorem

proving success rate on a held-out suite of test theorems from 32% to 48%.

Some material in section appears in the paper [49], published at ICLR 2022, and this

work is joint with Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu.

3.1.1 Introduction

Deep learning-driven automated theorem proving in large libraries of formalized mathe-

matics (henceforth “neural theorem proving”) has been the focus of increased attention in

recent years. Labeled data for imitation learning of theorem proving is scarce—formalization

is notoriously labor-intensive, with an estimated cost of 2.5 man-years per megabyte of for-

malized mathematics [50], and complex projects require years of labor from human specialists.

Within a fixed corpus of (possibly unproven) theorem statements, it is possible to augment a

seed dataset of human proofs with new successful trajectories using reinforcement learning or

expert iteration. However, for some large models this can be quite computationally intensive,

and without a way to expand the curriculum of theorems, the agent will inevitably saturate

11

and suffer from data starvation.

Data scarcity is a particularly thorny obstruction for applying large language models

(LLMs) to neural theorem proving. LLMs have achieved spectacular success in data-rich

regimes such as plain text [23], images [51], and joint text-image modeling [52]. The

performance of decoder-only transformers has been empirically shown to obey scaling power

laws in model and data size [53]. However, existing datasets of human proof steps for neural

theorem proving are extremely small and exist at scales at which overfitting occurs extremely

rapidly, disrupting the scaling of performance with respect to model size [54].

We make two contributions towards addressing the problem of data scarcity in the context

of formal mathematics. First, we introduce PACT, a general methodology for extracting self-

supervised auxiliary tasks for jointly training a language model alongside a tactic prediction

objective for interactive theorem proving. Second, we present LeanStep, a collection of

datasets and a machine learning environment for the Lean 3 theorem prover with support for

PACT, supervised learning of tactic prediction, theorem proving evaluation, and reinforcement

learning.

We train large language models on these data and demonstrate that PACT significantly

improves theorem proving success rate. We then embark on a careful study of the effects of

pre-training vs. co-training and show that PACT combined with WebMath pre-training [48]

achieves the best validation loss and theorem proving success rate. Finally, on an out-of-

distribution collection of thousands of theorems (some involving novel definitions) added to

Lean’s mathematical library after we extracted our train/test data, we achieve a theorem

proving success rate of 37%, suggesting strong generalization and usefulness at the frontier of

formalized mathematics.

3.1.2 Background and related work

Lean is an interactive theorem prover and functional programming language [55]. It has

an extremely active community and is host to some of the most sophisticated formalized

mathematics in the world, including scheme theory [56], forcing [57], perfectoid spaces [58],

and condensed mathematics [59]. Lean’s foundational logic is a dependent type theory called

12

the calculus of inductive constructions [60]. This design means that terms, types and proofs

are all represented with a single datatype called an expression. A proof term is a Lean

expression whose type is a proposition, i.e. a theorem. This proof term serves as a checkable

artifact for verifying the proposition. Lean uses a small, trusted kernel to verify proof terms.

The primary repository of formalized mathematics in Lean is mathlib [61]. At the time of

writing, 140 contributors have added almost 500,000 lines of code; mathlib contains over

46,000 formalized lemmas backed by over 21,000 definitions, covering topics such as algebraic

geometry, computability, measure theory, and category theory. The range of topics and the

monolithic, unified organization of mathlib make it an excellent foundation for a neural

theorem proving dataset.

In a tactic-based interactive theorem prover (ITP) such as Lean, a proof is a list of tactics,

i.e. small proof-term-generating programs. Tactics can be simple one-word commands, e.g.

refl (the tactic which invokes a check for definitional equality), or be composed of many

nested parts, e.g.

simpa [le_antisymm_iff, norm_nonneg] using @norm_eq_zero α _ g

Here the brackets enclose a list of simplifier rules (which often are just lemmas from the

library), and @norm_eq_zero α _ g is a proof term applying the lemma norm_eq_zero to the

local variables α and g.

We remark that our tactic generator is able to synthesize tactics of any form found in

mathlib including, for example, the simpa example above as a one line proof to a test theorem,

even though the string @norm_eq_zero does not occur in our dataset. (See more examples in

section A.4.) We leave as future work the possibility of re-integrating specialized components,

e.g. lemma selection, found in other works (possibly as, say, a source of additional prompts

for the language model). Directly applying generative language modeling to tactic generation

allows this setup to be considerably simplified.

Whereas MM GPT-f [48] trained primarily on the Metamath proof step objective (i.e.

guessing the next lemma to be applied to a goal, which is similar to our NEXTLEMMA task

in subsubsection 3.1.2.1), we co-train on a diverse suite of self-supervised tasks extracted from

Lean proof terms and demonstrate significant improvements in theorem proving performance

13

when doing so. This is our main result.

Besides theorem proving, a number of recent papers have shown that language models,

especially transformers, are capable of something like mathematical and logical reasoning in

integration [62], differential equations [63], Boolean satisfiability [64], and inferring missing

proof steps [65].

A closely-related vein of work has shown that pre-training transformers on data engineered

to reflect inductive biases conducive to mathematical reasoning is beneficial for downstream

mathematical reasoning tasks [66, 67]. Our work both builds on and departs from these ideas

in several ways. Unlike skip-tree training (c.f. [66]), which focuses solely on predicting masked

subterms of theorem statements, PACT derives its self-supervised training data from far more

complex proofs. Unlike LIME [67], which uses purely synthetic data and is presented as a

pre-training methodology, our self-supervised tasks are extracted from non-synthetic human

proofs. Moreover, we show that not only are transformers capable of performing well on

auxiliary tasks gathered from low-level proof artifact data, but that we can directly leverage

this low-level data by jointly training a language model to greatly improve its performance at

high-level theorem proving.

The idea of mining low-level proof artifacts was previously explored by Kaliszyk and

Urban in the context of automated lemma extraction [68, 69]. It has also been previously

observed that training on fully elaborated Coq terms [70] helps with a downstream theorem

naming task. However, similar to previous work on skip-tree training, their dataset focuses

solely on theorem statements, i.e. types, does not cover the far more complex proof terms,

and does not evaluate the effect of such training on theorem proving evaluations.

While there exist environments and datasets for other formal mathematics libraries [71,

65, 72, 73], LeanStep is the first and only tactic proof dataset for the Lean theorem prover.

This makes available a large set of formal mathematical data to researchers covering a diverse

and deep spectrum of pure mathematics. Moreover, LeanStep is unique in that it contains

both high-level human-written tactics as well as kernel-level proof terms, which enables the

extraction of self-supervised tasks for PACT (subsubsection 3.1.2.1).

14

3.1.2.1 The LeanStep datasets and machine learning environment

Tactics in Lean are metaprograms [6], which can construct Lean expressions, such as

proof terms. A tactic state which tracks the list of open goals and other metadata (like the

partial proof term constructed so far) is threaded through each tactic invocation. Lean has

special support for treating tactics as an extensible domain-specific language (DSL); this

DSL is how Lean is typically used as an interactive theorem prover. The DSL amounts to a

linear chain of comma-separated invocations. The Lean proof step task is to predict the next

tactic given this goal state. We refer the reader to subsection A.1.1 for examples and further

explanation.

Our human tactic proof step dataset consists of source-target pairs of strings, one for

each tactic invocation in the Lean core library and in mathlib. The source string is the

pretty-printed tactic state. The target string is the tactic invocation as entered by a human

author of the source code. This data is gathered by hooking into the Lean parser and Lean’s

compilation process. We refer to the task of predicting the next human tactic proof step

given a tactic state as the proofstep objective.

In this section, we describe the PACT task suite and how data for these tasks are

extracted.

For every proof term τ , we record the type Γ of τ , its name nm, and a list ps of all premises

(i.e. named references to other lemmas in the library) which are used in τ . We then recurse

through τ , tracking a list bs of bound variables which we update whenever navigating into

the body of a λ-expression. At every subterm τ ′ ⊆ τ we record τ ′, its type Γ′, the current

state of bs, and the following data:

1. A tactic state, where the goal is set to be Γ′ and the list of hypotheses in the local context

is set to be the list bs, i.e. those bound variables in scope at τ ′.

2. A partial proof term, i.e. τ with τ ′ masked out.

3. A premise selection bitmask, i.e. Boolean labels for every p in ps indicating whether p is

used in τ ′.

4. A local context bitmask, i.e. similar Boolean labels for every b in bs indicating whether b

is used in τ ′.

15

5. An optional next lemma: if the first step of τ ′ is to apply a premise p in ps, we record p.

Whenever we record a term, we record both pretty-printed and far more explicit fully

elaborated versions of it. The fully elaborated terms explicitly display enormous amounts of

type information which are usually silently inferred by Lean. From these data, we assemble

the following language modeling tasks:

1. Next lemma prediction. Given the tactic state, predict the next lemma to be applied.

2. Proof term prediction. Given the tactic state, predict the entire proof term τ ′.

3. Skip-proof. Given the partial proof term, predict the masked subterm τ ′.

4. Type prediction. Given the partial proof term, predict the type Γ′ of the masked

subterm τ ′.

5. Tactic state elaboration. Given the tactic state, predict the fully elaborated tactic

state.

6. Proof term elaboration. Given τ , predict the fully elaborated version of τ .

7. Premise classification. Given the tactic state and a premise p ∈ ps, predict either

<TRUE> or <FALSE> according to the premise selection bitmask.

8. Local context classification. Given the tactic state (which consists of a list of local

assumptions bs and the goal Γ′), predict the sublist of bs which is true on the local

context bitmask.

9. Theorem naming. Given the type Γ of the top-level proof term τ , predict the name nm.

We remark that our next lemma prediction task is precisely the low-level PROOFSTEP

objective studied in [48], and our skip-proof task superficially resembles, but is much more

difficult than the skip-tree task studied in [66], as proof terms tend to be far more complex

than the syntax trees of theorem statements.

3.1.2.2 Machine learning environment

We instrument Lean for automatic theorem proving with a language model, including

utilities for:

16

1. setting the runtime environment at a particular theorem (ensuring proofs are never

circular),

2. serializing the tactic state as environment observations for a theorem-proving agent,

3. exposing Lean’s parser to re-parse strings emitted by a language model into tactic

invocations, and

4. executing and capturing the results of the re-parsed tactics, enabling the recording of

trajectories for expert iteration and reinforcement learning.

In addition to this general instrumentation, we implement a generic best-first search

algorithm for theorem proving; it forms the basis for our evaluations and is written entirely

in Lean itself. The algorithm is parametrized by an oracle (Ω : tactic_state → list

(string × float)) that accepts a tactic state and returns a list of strings and heuristic

scores. The search is controlled by a priority queue of search nodes, which consist of a tactic

state (i.e. a partial proof) and search metadata. In the outer loop of the algorithm—which

continues until either the theorem is completely proved (i.e. no goals are remaining on the

current node), the priority queue is empty (i.e. the search has failed), or a pre-set timeout

or budget of iterations is exceeded—we pop a node off the queue, serialize the associated

tactic state and use it to query the oracle, producing a list of candidates cs : list (string

× float). We then loop over the candidates cs to produce a list of new search nodes, by

re-parsing each string into a tactic and adding a new node if the parsed tactic advances the

proof without raising errors. These new search nodes are then re-inserted into the queue in

order of decreasing priority and the search continues. We optionally constrain the search

by enforcing maximum width and depth limits wmax and dmax that guard insertion into the

queue. When considering nodes for insertion, any node whose depth exceeds dmax is ignored,

and all nodes are ignored if the queue size is strictly larger than wmax. Due to the flexibility

in assigning heuristic scores and in choosing the maximum width and depth hyperparameters,

our algorithm is quite general—for example, it reduces to (1) a greedy depth-first search

when wmax = 0, and (2) a naïve breadth-first search when heuristic scores are identical and

wmax = dmax =∞.

17

3.1.3 Experiments

In all of our experiments, we use decoder-only transformers similar to GPT-3 [23]. Unless

mentioned otherwise, all of our models have 24 layers with dmodel = 1536 and 24 heads,

accruing to 837M trainable parameters. They are also pre-trained on WebMath [48] for 72B

tokens. We use the standard BPE encoding [23], a batch size of 512 and a learning rate of

0.00025 with a cosine schedule and a 100-step ramp-up.

We use an 80-5-15 train-validation-test split. We split all datapoints deterministically

by theorem name, by hashing each name to a float in (0, 1). This ensures, for example, that

proof steps used to prove a test theorem never appear in the training data and vice-versa.

When fine-tuning a model we load its saved parameters but re-initialize the optimizer.

We start each training for a fixed number of tokens (defining the cosine schedule) and record

the number of tokens consumed as we reach a minimal validation loss. We use the minimum

validation loss snapshot to evaluate each model on our held-out test set.

We partition our datasets into three groups:

1. tactic: the dataset described in subsubsection 3.1.2.1.

2. mix1: the union of the PACT tasks next lemma prediction and proof term predic-

tion (subsubsection 3.1.2.1), selected because of their close relation to tactic.

3. mix2: all other datasets described in subsubsection 3.1.2.1.

This grouping is motivated by the impossibility to ablate each dataset separately given our

compute budget. They nonetheless enable us to study the effect of tasks that are very close

to the tactic objective in comparison to others. Our choice of next lemma prediction

and proof term prediction for mix1 is motivated by the observation that these tasks are

closely related to the theorem proving objective: a proof can be given entirely in terms

of a sequence of lemmas to apply (as in Metamath), or the proof can be finished in one

step by supplying the entire proof term. Despite their logical similarity to the PROOFSTEP

objective, we nevertheless use different keywords in the prompt to the model to disambiguate

(NEXTLEMMA and PROOFTERM) from (PROOFSTEP) because the data is noisy and represents a

significant distribution shift: during pretty-printing, subtrees of proof terms beyond a certain

depth are dropped entirely, there is generally no guarantee that they can be re-parsed, and

18

the data is much more verbose than what humans typically supply in source code.

We run theorem-proving evaluations on our held-out test set, comprising 3071 theorems.

Since the split was conducted by theorem name, the proofs of these theorems never appear

in the training data. For each theorem in the test set, we set the runtime environment to

the location where the theorem is proved in the source code, preventing the use of theorems

defined later in mathlib and ensuring that we never derive circular proofs. We compare

against existing proof automation In Lean by also evaluating the tactics refl, which attempts

to prove statements via definitional equality, and tidy, which conducts a greedy depth-first

search using a fixed list of tactics at each step. We re-implement tidy as a special case of

our best-first search algorithm using an oracle which always emits the same list of tactics,

and so henceforth refer to it as tidy-bfs. In all of our experiments, we use a maximum

width of wmax = 16, a maximum depth of dmax = 128, a maximum budget of 512 iterations

of the outer loop, a timeout of 5 seconds per tactic execution, and a global timeout of 600

seconds per theorem. Because sampling completions from our models is much slower (≈ 1

second) than querying the constant tidy-bfs oracle (instantaneous), the tidy-bfs search

runs many more iterations than gptf before timeout.

We report the pass-rate (i.e. percentage of theorems proved) from the randomly-chosen

held-out test set, following [46], [74], and others. We provide an alternative pass-rate at the

end of this section, using theorems added to mathlib after our dataset was collected. We

average over three evaluation runs when reporting the pass rate.

We first study the effects of pre-training versus co-training with the mix1 and mix2

datasets. We pre-train using the methodology described above (potentially pre-training

first on WebMath, and then on a PACT dataset in sequence). For co-training, we simply

concatenate and shuffle the datasets together without applying any particular weight to a

given dataset.

The main results are presented in Figure 2. Pre-training exhibits an effective transfer

from mix-1 and/or mix-2 but the best result is achieved by co-training with both these

datasets. With this setup, we are able to train for much longer (71B tokens vs 22B+18B for

the best pre-training setup) before overfitting on the PROOFSTEP task. We hypothesize that

PACT regularizes overfitting to the PROOFSTEP task while still imparting useful knowledge to

19

tactic

tactic proof steps GOAL <TacticState> PROOFSTEP <Tactic>

mix1

next lemma prediction

proof term prediction

GOAL <TacticState> NEXTLEMMA apply (<NextLemma>)

GOAL <TacticState> PROOFTERM exact (<ProofTerm>)

mix2

skip proof

type prediction

tactic state elaboration

proof term elaboration

premise classification

RESULT <MaskedProofTerm> SKIPPROOF <ProofTerm>

RESULT <MaskedProofTerm> PREDICTTYPE <Type>

GOAL <TacticState> ELABGOAL <ElaboratedTacticState>

PROOFTERM <ProofTerm> ELABPROOFTERM <ElaboratedProofTerm>

GOAL <TacticState> CLASSIFYPREMISE <Premise> <True|False>

local context classification

theorem naming

GOAL <TacticState> CLASSIFYLOCALS <LocalsList>

TYPE <Type> NAME <Name>

Figure 1: Auto-regressive objectives used for each task described in subsubsection 3.1.2.1.

Placeholders represented with brackets (such as <TacticState>) are substituted by the

context-completion pairs from each datasets in the prompts above. Each task is presented to

the model with its respective keyword (PROOFSTEP, NEXTLEMMA,...). We wrap the completions

of mix1 tasks (with apply(...) and exact(...) respectively) as a hint that they are related

to the respective Lean tactics; this is not directly possible for the other tasks.

20

the model due to large amounts of mutual information, and that this is the main driver of

increased performance.

Next, we ablate the effect of WebMath pre-training (instead starting with a model pre-

trained on the same English language mix as GPT-3). As expected, co-trained models suffer

from a performance drop without Webmath pre-training. but we were more interested in

measuring the effect on pre-trained models on mix-1 and mix-2, as they may not benefit

from WebMath as much due to the two successive pre-training steps.

We report the optimal validation losses in Figure 3. WebMath appears as substantially

beneficial even in the sequential pre-training setup. This indicates that PACT is not a

replacement for WebMath pre-training, but rather a complementary method for enhancing the

performance of language models for theorem proving.

We rule out the possibility that the benefits from PACT come from simply regularizing

our models on the scarce tactic data alone. We checked that a WebMath > tactic model

trained with 15% residual dropout achieved a minimum validation loss of 1.01 and 33.6%

pass rate, far below the 48.4% PACT pass rate.

Finally, we study how performance scales with respect to model size. We use the best

training setup reported in Figure 2, WebMath > mix1 + mix2 + tactic. The 837m model

is our main model. The 163m and 121m models respectively have 12 and 6 layers, with

dmodel = 768. The learning rates are respectively adjusted to 0.0014 and 0.0016.

As demonstrated by Figure 4, performance is highly correlated with model size, with

larger models generally achieving better generalization even in the overfitted regime. We

leave as future work a careful study of how evaluation performance is affected when scaling

to multi-billion parameter models, as well as the feasibility of deploying them for interactive

use by Lean users.

In the five-week period that separated our last dataset extraction and the writing of

the material in this section, mathlib grew by 30K lines of code, adding 2807 new theorems.

Evaluating our models on these new theorem statements gives a unique way to assess their

capability to assist humans in formalizing proofs and to test their generalization to completely

unseen theorems and definitions. This evaluation set also addresses one of the weaknesses of

using a random split of theorems from a formal mathematics library, namely that the split is

21

non-chronological; e.g. test theorems can appear as lemmas in proofs of train theorems.

We call this temporally held-out test set future-mathlib and evaluate our best model

as well as the refl and tidy-bfs baselines on it. In contrast to evaluation on our test split,

the refl baseline (simply attempting a proof by the refl tactic) closes 328 proofs (11.6%),

demonstrating an important skew towards trivial boilerplate lemmas generally defined to

provide alternate interfaces to new definitions. The tidy-bfs baseline closed 611 proofs

(21.8%), and our best model wm-tt-m1-m2 closed 1043 proofs (37.1%), proving 94% of the

refl lemmas. We attribute the weaker performance to heavy distribution shift: by the

nature of the dataset, the future-mathlib theorems frequently involve new definitions and

concepts which the model was never exposed to during training. Nevertheless, the success

rate remains high enough to suggest strong generalization and usefulness at the frontier of

formalized mathematics.

3.1.4 Discussion

In Lean, multiple tactic commands can be chained together using semicolons. Our data

pipeline treats these tactic chains as a single sequence in our training data, and they are

occasionally predicted by the model. Such chained tactic applications are difficult for human

formalizers to synthesize on their own, as they require reasoning about the semantics of

multiple tactics in sequence and their effects on the tactic state, and the examples present

in the training data are usually optimized by hand from longer, less succinct proofs. We

observed that PACT significantly boosts the capability of our models to successfully predict

longer chained tactic applications. This occurs despite the fact that the tactic chaining idiom

is specific to the tactic proofstep dataset and does not appear in the PACT data whatsoever.

We supply more detail in subsection A.3.1.

We also evaluate our best PACT model (wm-to-tt-m1-m2) on the theorem naming

task, using the theorem statements and human-supplied names from the future-mathlib

evaluation set. It achieved 20% acc@1, 27% acc@10, and 30% acc@16. (Here, acc@N

means the estimated likelihood that at least one out of N attemped independent tries is an

exact match to the ground truth.) An inspection of its outputs reveals that even when its

22

predictions diverge from the ground truth, they are often idiomatic and semantically correct

alternatives. We supply more detail in subsection A.3.2.

Lean’s mathlib [61] is a rapidly growing open source library of formal mathematics

which has grown considerably in size each year for the past four years.1 Our work has been

welcomed by members of this community, with Lean power users describing some of the new

proofs found by GPT-f as “nontrivial” and “clever”. More than one-third of the proofs found

by our models are shorter and produce smaller proof terms (sometimes by several orders of

magnitude) than the ground truth. Manually inspecting a small, non-cherry picked sample of

these shorter proofs has led to nineteen GPT-f co-authored commits to mathlib, some of

which reduce proof term sizes and theorem compilation times by an order of magnitude (see

section A.4).

There are many elaborations on the training data, training methodology, and tree

search wrapping lean-gptf which can be reasonably expected to improve its performance

at theorem proving. Our dataset can be synthetically augmented using similar methods

as [48]. Our dataset could be cleaned further, and proofs minimized. Merely making the

decoded rewrites robust by only using the largest prefix of successful rewrites significantly

boosts the success rate of suggested rewrites. In a similar vein, predicted lemmas generated

as arguments to unsuccessful tactic applications could be cached and re-used as hints for

an intermittently-queried hammer. The increased success rate of chained tactic predictions

mentioned above shows the feasibility of having language models perform multiple reasoning

steps in a single query, potentially improving the efficiency of the proof search. From the

experiments described in subsection 3.1.3, it is clear that the composition of the dataset used

for co-training significantly affects performance on theorem proving. Although we uniformly

sampled across all co-training tasks, it would be interesting to optimize a dynamic mixture

schedule, perhaps annealing towards a desired task.
1See https://leanprover-community.github.io/mathlib_stats.html for up-to-date statistics on

mathlib’s size and growth over time.

23

https://leanprover-community.github.io/mathlib_stats.html

3.1.5 Acknowledgments

We thank the members of the Lean community, in particular Kevin Buzzard, Simon

Hudon, Johan Commelin, Mario Carneiro, Bhavik Mehta, and Gabriel Ebner for their valuable

feedback on our work. We are indebted to Markus Rabe and Christian Szegedy for many

hours of helpful discussion. We also thank Daniel Selsam, Tom Hales, and Josef Urban for

feedback on earlier drafts of the material in this section.

3.2 Synthetic proof term data augmentation

Imitation learning for the task of formal theorem proving is bottlenecked by the limited

size of existing libraries of formalized mathematics. We propose SPT-Aug (Synthetic Proof

Term Augmentation), a methodology for using samples from trained language models in

conjunction with the Lean kernel to generate novel training examples. In particular, we train

language models to generate Lean proof terms unconditionally, then we sample from such

models to generate collections of proof term candidates. Using the Lean kernel to identify

typecorrect (i.e. successfully typecheckable using the Lean kernel) proof term candidates and

infer corresponding types, we create novel training examples for conditional and unconditional

proof term language modeling. When used to augment existing datasets, these generated

training examples are shown to improve the perplexity of both conditional and unconditional

proof term language modeling on a held-out test set.

Some material in this section appears in [75], published in the proceedings of AITP 2022,

and the work in this section is joint with Joseph Palermo and Johnny Ye.

3.2.1 Introduction and background

We remind the reader that a Lean "proof term" is a representation of a mathematical

proof. Lean proof terms are represented with a datatype called an expression. Expressions

are inductively defined and can be traversed with tree-traversal algorithms. The Lean kernel

provides a mechanism to verify that provided expressions are well-formed and type-correct.

24

In the case that provided expressions are well-formed and type-correct, Lean also provides a

mechanism to infer their type. Note that by the Curry-Howard correspondence, the type

of a proof is effectively a theorem statement for that proof [76]. Lean expressions can be

converted into pretty-printed strings using utilities provided by the Lean metaprogramming

framework [77]. Other utilities enable parsing pretty-printed strings back into expressions. In

some cases cases, a pretty-printed string may lack sufficient context to be parsed back into a

Lean expression due to insufficiency of the pretty-printing mechanism (todo: cite). However,

in practice pretty-printed strings are still a useful representation of Lean expressions and

have been used successfully as a representation for training language models [49]. The Lean

mathematical standard library mathlib is the primary repository of formalized mathematics in

Lean [78]. It contains a growing repository of tens of thousands of theorems and lemmas across

a diverse range of mathematical domains including algebra, analysis, geometry, probability

theory, and many others. It is used in this work as the basis from which to construct datasets

for training language models.

3.2.1.1 Comparison to related work

In section 3.1, we demonstrate how to construct many auxiliary tasks (not directly related

to the theorem proving task) for language model training and showed that jointly training

on these additional tasks lead to transfer learning for the task of theorem proving. INT

[29] procedurally generates synthetic inequality-based theorems to systematically investigate

out-of-distribution generalization. By contrast, in our work we use a learned model along

with the Lean kernel to generate arbitrary proofs and theorems in Lean’s higher order logic.

A recent survey [79] provides an overview of the subfield of data augmentation strategies for

natural language processing and classifies its methods into the categories: rule-based, example

interpolation, and model-based. Our work is most similar to other model-based techniques

such G-DAUG [80], which involves generating synthetic examples using pre-trained language

models, and selecting according to several criteria the most useful candidate examples to use

for fine-tuning. Our work is distinguished by the use of unconditional sampling to generate

examples for both conditional and unconditional modelling and also the use of the Lean

25

kernel to filter synthetic examples.

3.2.2 Methodology

3.2.2.1 Bootstrap Datasets

In order to use trained language models to generate new candidate training examples we

must first create an initial "bootstrap" dataset from which a first model can be trained. Our

examples for conditional proof term language modelling have the form:

THEOREM <theorem> PROOF <proof> EOT

By contrast our examples for unconditional proof term language modelling have the form:

PROOF <proof> EOT

Thus to generate conditional examples we require theorem-proof pairs while to generate

unconditional examples we require only proofs. We represent theorems and proofs as pretty-

printed strings.

We extract a dataset of proofs and corresponding theorems by processing the declarations

in mathlib. Each declaration in mathlib has a value and a type. By the Curry-Howard

correspondance [76], a value corresponds to a proof and a type corresponds to a theorem

statement for the proof.

Proof expressions can be traversed to identify unique sub-expressions which, themselves,

are also valid proofs[81]. We use such a traversal to extract a larger dataset than would

otherwise be obtained. This is implemented as a depth-first tree traversal: a proof expression

is provided as input. However, before running the traversal on an expression, we ensure that,

when pretty-printed, it has a length less than 4096 characters. This is an optional step that

reduces the run-time of the data processing pipeline and, also, prevents the sub-proofs of

extremely long proofs from dominating the dataset.

At each step in the traversal we 1) test if the expression is a valid proof by using

tactic.is_proof, 2) we convert it into a pretty-printed string, 3) we ensure the length of the

pretty-printed string is below the required threshold of 4096 characters. If conditions 1 and 3

are met, the pretty-printed string and its type universe variables are serialized for downstream

processing.

26

After serializing the proof strings and the corresponding type universe variables, we

replace the type universe variables in the proof strings with a canonical set which do not

appear in mathlib (i.e. u_1001, u_1002, etc...). The purpose of this is to simplify later

parsing, as our parser requires specifying the set of type universe variables up-front.

Subsequently, we parse and typecheck all the serialized proofs to ensure that pretty-

printing has not rendered them invalid. If the typecheck passes then we also extract the

proof’s type (i.e. theorem statement) from the Lean kernel’s output and serialize that as well.

Finally, we construct conditional and unconditional training examples from the serialized

theorem-proof pairs.

3.2.2.2 Creating Synthetic Datasets

Once a language model has been trained on a dataset of unconditional training examples

then it can be prompted with "PROOF" to induce it to generate a synthetic proof. We sample

from such language models repeatedly to generate proof candidates. After accumulating a

large batch of proof candidates we parse and typecheck them, and if the typecheck is successful

we also extract the corresponding type. The output of this process are theorem-proof pairs

which can be used to produce additional synthetic examples of the form described in section

3.1.

In addition to examples that match the format of the bootstrap dataset examples, we

also generate a new type of example from proof candidates regardless of whether or not they

have passed typechecking:

NON_TYPECHECKED_PROOF <non_typechecked_proof> EOT

These examples are useful in evaluating the relative utility of examples that have been

verified to be type-correct examples vs. examples that are merely type-correct with some

probability. In other words, these examples are useful in determining the importance of the

typecheck filter provided by the Lean kernel for improving the quality of the synthetic data.

27

3.2.3 Experimental Setup

3.2.3.1 Splitting the Bootstrap Data

We split our bootstrap dataset into train, validation and test sets. We do so firstly by

splitting on declaration names. However, we found it was also necessary to apply a further

filter to our validation and test sets to remove examples deemed too similar to training

examples. The reason for this is that although declarations are themselves unique, the

sub-proofs extracted from them which comprise the source for the training examples are not

necessarily unique and may be shared across declarations either in whole or in part.

To apply a further filter, we use cosine similarity with a TF-IDF [82] embedding to find

the most similar training example to each validation/test example. Note that the the most

similar training example is whichever training example maximizes cosine similarity to the

validation/test example in question. We then compute the Levenstein distance between each

validation/test example and the most similar example in the training set. Thus, we remove

any validation or test example (xtest) for which:

levenstein_distance(xtest, argmaxxtrain
cosine_similarity(xtest, xtrain))

length(xtest)
< threshold (1)

In our experiments we set the threshold to 0.15. This setting was determined after we found

empirically that relaxing the threshold led to overfitting.

Our initial split of declaration names into train:validation:test sets is done at a ratio

of 650:175:175, producing 207,194 train examples, 55,470 validation examples and 54,964

test examples. After the additional filtering step, 11,145 validation examples and 10,233

test examples remain. Note that each example can be represented in either conditional or

unconditional form since a theorem-proof pair is available for each. For reference, note that

we name the bootstrap training sets as follows:

• cond_train_bootstrap: bootstrap dataset containing conditional training examples

• uncond_train_bootstrap: bootstrap dataset containing unconditional training exam-

ples

28

3.2.3.2 Proof Term Language Modelling Experiments

For these experiments, we train language models using fairseq [83]. We utilize fairseq’s

implementation of GPT2 [22] with approximately 2B parameters (the so-called "big" size).

We also utilize fairseq’s implementation of the "gpt2" byte pair encoder. We set max-tokens

to 1536 and batch size to 512. We optimize parameters using SGD with a fixed learning rate

of 0.01 and set patience to 100 epochs. We use a default value of 0.1 for dropout.

We train baseline models using the cond_train_bootstrap and uncond_train_bootstrap

datasets. Recall that we use models trained on unconditional datasets to generate proof

candidates. In particular we use the baseline model trained on uncond_train_bootstrap to

sample over 20M unique proof candidates.

We sample proof candidates using beam search [84]. The temperature hyperparameter

used for beam search is inversely proportional to typecheck pass rate and similarity of type-

correct generated proofs to the training set (see Figure 1). Ideally we would want a high

typecheck pass rate and low similarity of generated examples to the training set. Thus there

is a trade-off to navigate between typecheck pass rate and diversity in the generated data.

It’s unclear how to navigate this tradeoff without generating many datasets with different

parameter settings and comparing their relative utilities. For this study we set temperature

to 1.3 and use a beam size of 5.

From the set of unique generated candidates, 1.57 % or 352,469 unique proofs passed

typecheck. Note that typecheck pass rate is also effected by the number of unique proof

candidates generated because the greater the number of previously generated proof candidates

the more unlikely a proof candidate needs to be in order to be unique.

By combining the original bootstrap datasets (namely, cond_train_bootstrap and

uncond_train_bootstrap) with these generated examples we construct new augmented

datasets. These augmented datasets are controlled for size by augmenting either by # of

additional examples or # of additional characters.

• cond_train_aug: cond_train_bootstrap with +100% conditional typechecked (weighted

by # of additional examples)

• uncond_train_non_tc_aug: uncond_train_bootstrap with +100% unconditional

29

non-typechecked (weighted by # of additional characters)

• uncond_train_half_tc_aug: uncond_train_bootstrap with +50% unconditional

non-typechecked and +50% unconditional typechecked (weighted by # of additional

characters)

• uncond_train_tc_aug: uncond_train_bootstrap with +100% unconditional type-

checked (weighted by # of additional characters)

Note that we weight the additional unconditioned examples by counting characters because

the unconditioned examples comprise both typechecked and non-typechecked proofs, and the

average length of non-typechecked proofs tends to be longer. In particular we find an average

length of 275 characters for non-typechecked proof candidates vs. an average length of 162

characters for proofs that passed typecheck (see appendix for more details).

In both the conditional and unconditional case we find that training on the augmented

datasets results in lower final loss. In the unconditional case we find that better loss is

achieved for training sets in which a higher percentage of the augmented data is type-correct.

This demonstrates the utility of the Lean kernel in filtering out invalid samples before training.

However, it’s important to keep in view the fact that since only a small percentage of synthetic

proofs pass typecheck, in practice we can expect the best results to be achieved by simply

training on all generated examples since such a dataset would be much larger.

We investigate how much of the improvement in loss associated with training on an

augmented dataset is accounted for by an increase in regularization that can be achieved

with dropout. To do this we train models on cond_train_bootstrap and cond_train_aug

with successively higher levels of dropout (incrementing by 0.1), until increasing dropout no

longer improves the best achieved validation loss.

We find that while test performance is improved by increasing dropout from our baseline

value of 0.1, optimal performance is achieved at a value of 0.3. Notably, even with optimized

dropout we observe a significant performance advantage from training on the augmented

dataset.

30

Tokens

Model elapsed mix1 mix2 tactic Pass-rate

Baselines

refl 1.1%

tidy-bfs 9.9%

WebMath > tactic 1B 1.02 32.2%

Pre-training

WebMath > mix1 11B 0.08

WebMath > mix2 16B 0.08

WebMath > mix1 + mix2 22B 0.11 0.08

WebMath > mix1 > tactic 1B 1.00 39.8%

WebMath > mix1 + mix2 > tactic 1B 0.97 44.0%

Co-training (PACT)

WebMath > mix1 + tactic 18B 0.08 0.94 40.0%

WebMath > mix2 + tactic 75B 0.09 0.93 46.0%

WebMath > mix1 + mix2 + tactic 71B 0.09 0.09 0.91 48.4%

Pre-training and co-training

WebMath > mix2 > mix1 + tactic 18B 0.08 0.93 46.9%

Figure 2: Comparison of pre-training and co-training on mix-1 and mix-2. We use >

to separate distinct pre-training phases and + associatively indicates that a co-training

mixture. As an example, WebMath > mix2 > mix1 + tactic signifies a model successively

pre-trained on WebMath then mix2 and finally co-trained as a fine-tuning step on mix1 and

tactic. Columns mix1, mix2, tactic report the optimal validation loss achieved on these

respective datasets. We provide a detailed description of experiment runtime and computing

infrastructure in section A.2. “Tokens elapsed” means the number of tokens the model was

trained on.

31

Tokens Tokens

Model budget elapsed mix1 mix2 tactic Pass-rate†

Baselines

tactic 32B 1B 1.59 —

Pre-training

mix1 32B 20B 0.12

mix2 32B 25B 0.10

mix1 + mix2 32B 27B 0.13 0.10

mix1 > tactic 32B 1B 1.26 —

mix1 + mix2 > tactic 32B 1B 1.16 —

Co-training

mix1 + tactic 32B 27B 0.11 1.12 —

mix2 + tactic 96B 75B 0.10 1.02 40.4%

mix1 + mix2 + tactic 96B 71B 0.10 0.11 1.07 —

Pre-training and co-training

mix2 > mix1 + tactic 32B 26B 0.11 1.09 —

Figure 3: Validation losses achieved in the pre-training and co-training setups without WebMath

pre-training. See Figure 2 for a description of the columns and the models nomenclature used.
†Due to technical constraints, we are unable to provide pass-rates for some of the models. We

use > to separate distinct pre-training phases and + associatively indicates that a co-training

mixture. “Tokens elapsed” means the number of tokens the model was trained on.

32

Tokens Tokens

Model budget elapsed mix1 mix2 tactic Pass-rate

121m 96B 82B 0.13 0.10 1.23 35.1%

163m 96B 80B 0.12 0.09 1.11 39.8%

837m 96B 71B 0.09 0.09 0.91 48.4%

Figure 4: Validation losses and pass-rates achieved for various model sizes using PACT. See

Figure 2 for a description of the columns. The setup used is WebMath > mix1 + mix2 +

tactic. We use > to separate distinct pre-training phases and + associatively indicates that a

co-training mixture. “Tokens elapsed” means the number of tokens the model was trained on.

33

Figure 5: As sampling temperature is increased, both typecheck pass rate and similarity of

each type-correct generated example to the most similar training example (i.e. "max cosine

similarity") decreases. Note that the mean "max cosine similarity" is the average observed

max cosine similarity across the type-correct generated examples with a given temperature.

34

Dataset Test Loss Test Perplexity Test Accuracy

cond_train_bootstrap 1.252 2.38 9.72%

cond_train_aug 1.122 2.18 16.92%

uncond_train_bootstrap 1.744 3.35 N/A

uncond_train_non_tc_aug 1.721 3.30 N/A

uncond_train_half_tc_aug 1.714 3.28 N/A

uncond_train_tc_aug 1.701 3.25 N/A

Table 1: Test loss, test perplexity, and test accuracy (if appropriate) of the best model

checkpoint trained on each dataset.

Dropout: 0.1 Dropout: 0.2 Dropout: 0.3 Dropout: 0.4
Bootstrap Loss 1.252 1.147 1.091 1.088
Augmented Loss 1.122 1.043 1.008 1.013
Loss Gap 0.13 0.104 0.083 0.075
Bootstrap Perplexity 2.38 2.21 2.13 2.13
Augmented Perplexity 2.18 2.06 2.01 2.02
Perplexity Gap 0.2 0.15 0.12 0.11
Bootstrap Accuracy 9.72% 11.47% 12.97% 14.2%
Augmented Accuracy 16.92% 18.29% 20.82% 19.37%
Accuracy Gap 7.2% 6.82% 7.85% 5.17%

Table 2: Test loss, test perplexity, and test accuracy of the best model checkpoint trained on

each dataset with different levels of dropout. "Bootstrap X" rows indicate test performance

after training on cond_train_bootstrap. "Augmented X" rows indicate test performance

after training on cond_train_aug. "X Gap" rows are computed by taking the absolute

difference between "Augmented X" and "Bootstrap X".

35

4.0 Statement curriculum learning and applications to Olympiad theorem

proving

In this chapter, we explore the use of expert iteration in the context of language modeling

applied to formal mathematics. We show that, at the same compute budget, expert iteration–

by which we mean proof search interleaved with learning–dramatically outperforms proof

search only. We also observe that, when applied to a collection of formal statements of

sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of

increasingly difficult problems, without the need for associated ground-truth proofs. Finally,

by applying this expert iteration to a manually curated set of problem statements, we achieve

state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging

problems drawn from high school olympiads.

Some material in this section appears in the paper [85], which was submitted to ICLR

2022. The work in this section is joint with Stanislas Polu, Kunhao Zheng, Mantas Baksys,

Igor Babuschkin, and Ilya Sutskever.

4.0.1 Introduction

Deep learning has found success in many domains, such as language [86, 87, 88], vision

[89, 90], and image generation [91, 92]. However, there is one domain where deep learning

has not yet enjoyed a comparable success: tasks that require planning and symbolic reasoning.

The exception to this are two-player games [93, 94, 95, 96], in which deep learning systems

exhibit a considerable degree of reasoning, especially when trained with self-play combined

with a search procedure, such as Monte Carlo Tree Search (MCTS) [97]. Even so, the

reasoning abilities achieved are limited due to the relatively narrow scope of games.

Theorem proving in interactive proof assistants, or formal mathematics, appears as

an interesting game-like domain to tackle due to its increased scope. Like games, formal

mathematics has an automated way of determining whether a trajectory (i.e. a proof) is

successful (i.e. formally correct). However, the vast scope of formal mathematics means that

36

any strong reasoning result obtained in it will be more meaningful than comparable results

in games (e.g. finding proofs to mathematical conjectures), and could even be applicable to

important practical problems (e.g. software verification).

However, tackling formal mathematics involves two main challenges that we must address

in order to continue making progress:

• Infinite action space: not only does formal mathematics have an extremely large search

space (like Go for example), it also has an infinite action space. At each step of proof

search, the model must choose not from a well-behaved finite set of actions, but a complex

and infinite set of tactics, potentially involving exogenous mathematical terms that have

to be generated. For instance, generating a mathematical statement to be used as a

witness1 or a cut2.

• No direct self-play setup In formal mathematics, a prover is not playing against

an opponent but against a set of statements to prove. When faced with a statement

that is just too hard, there is no obvious reframing of the formal mathematics setup

that will let the prover generate intermediary easier statements to tackle first. This

asymmetry prevents naive application of the symmetric self-play algorithms commonly

used in 2-player games.

There are two main differences between reinforcement learning and formal mathematics

that make a naive application of the former to the latter unlikely to succeed. Past work

proposed to address the infinite action space problem by sampling from a language model [3].

This section focuses on the second problem and our basis for addressing it is the observation

that the key role of self-play is to provide an unsupervised curriculum. We propose instead

to supply auxiliary sets of problem statements (without requiring proofs) of varying difficulty.

We empirically show that, when the difficulty of these auxiliary problems is varied enough,

a simple expert iteration procedure is able to solve a curriculum of increasingly difficult

problems, eventually generalizing to our target distribution. We show that this works with

both automatically-generated and manually-curated auxiliary distributions of problems and

leverage this to achieve state-of-the-art on the miniF2F benchmark. Our results suggest
1A witness is an object used in certain “there exists an x ...” proofs.
2A cut is the introduction and the chaining of a lemma in the middle of a proof.

37

that continuous self-improvement in formal mathematics can potentially be reduced to the

problem of generating such sets of formal statements, which we have done in part manually

in this work, but could eventually be scaled in the future with more automation (such as

more domain-specific statements generator or even informal to formal machine translation).

4.0.1.1 miniF2F benchmark

The reason we target the miniF2F [2] benchmark in this work is threefold. The benchmark

consists of 244 validation and 244 test formalized statements of mathematical problems from

various competitions.

• We believe this benchmark to be a better measure of mathematical reasoning compared

to a library-derived split, which, due to how formalization is done by humans, generally

includes numerous technical lemmas which are not necessarily reasoning-intensive.

• Restricting the problem domain to competition mathematics allow us to work against a

fixed and self-contained knowledge base generally well-covered by existing formal libraries.

Solving these problems generally do not require the introduction of new mathematical

concepts.

• Proof for problems from math competitions are extremely scarce in formal mathematics

libraries (which focus on generic theorems and lemmas rather than specific problem

statements), which makes MiniF2F a challenging benchmark for neural theorem provers

and an ideal test-bed for the expert iteration methodology studied in this section.

4.0.1.2 Contribution

Our contributions are the following:

• We present lean-gym, a simple REPL interface for interacting with the Lean theorem

prover.

• We propose an expert iteration methodology for GPT-f [3] which uses proofs generated

by our models as training data to iteratively improve their performance.

38

• We demonstrate that, at fixed compute budget, expert iteration outperforms proof search

only.

• We present a synthetic inequality generator and study how expert iteration finds and

solves a curriculum of increasingly difficult problems from a set of generated statements

of various difficulty.

• We present a manually curated set of formalized problem statements and leverage it to

achieve state-of-the-art performance on the miniF2F benchmark.

4.0.2 Related Work

Our work strongly relies on, and can be seen as a natural continuation of the work

presented in the original GPT-f paper [3] which studies the use of language models to

generate tactics, the PACT paper [49] which applies GPT-f to Lean and studies the benefits

from co-training on self-supervised objectives, and the miniF2F benchmark [2].

Early applications of deep learning to formal mathematics focused primarily on premise

selection and proof guidance. DeepMath [98] explored the use of CNNs and RNNs to

predict whether a premise is useful to demonstrate a given conjecture. Their results were

later improved with FormulaNet [99] by the use of graph neural networks, reminiscent of

NeuroSAT [100]. Proof guidance consists in selecting the next clause to process inside

an automated theorem prover. Loos et al. [101] investigated the use of models similar to

DeepMath’s for proof guidance and demonstrated a significant uplift on the Mizar library.

More recently [102] demonstrated the potential of deep learning techniques to be competitive

with E prover’s heuristics when applied to resolution calculus while training on fully synthetic

data.

Early applications of deep learning to formal mathematics focused primarily on premise

selection and proof guidance. DeepMath [98] explored the use of CNNs and RNNs to

predict whether a premise is useful to demonstrate a given conjecture. Their results were

later improved with FormulaNet [99] by the use of graph neural networks, reminiscent of

NeuroSAT [100]. Proof guidance consists in selecting the next clause to process inside

an automated theorem prover. Loos et al. [101] investigated the use of models similar to

39

DeepMath’s for proof guidance and demonstrated a significant uplift on the Mizar library.

More recently [102] demonstrated the potential of deep learning techniques to compete with

E prover’s heuristics when applied to resolution calculus while training on fully synthetic

data.

HOList [74] proposes a formal environment based on HOL Light. They achieve their

best performance [40] with a GNN model designed for premise selection and the use of

exploration. The same team studied the use of a skip-tree objective with transformers on

formal statements [103], demonstrating, along with GPT-f [3], the potential of leveraging

transformers for formal reasoning. GamePad [104] and CoqGymn/ASTactic [105] introduce

environments based on the Coq theorem prover. ASTactic generates tactics as programs by

sequentially expanding a partial abstract syntax tree. Urban et al. [106] studied the capability

of GPT-2 to produce useful conjectures for the Mizar library and IsarStep [107] explored the

synthesis of intermediate propositions in

4.0.3 Formal Environment

We choose Lean [55, 108] as our formal environment. Lean benefits from high-level tactics

which were shown to be beneficial in the context of the miniF2F benchmark [2]–Lean proofs

are typically 10x shorter than Metamath’s. Also, Lean has recently received a lot of attention

from the mathematical community, thanks to projects such as the Perfectoid Spaces [109] and

the Liquid Tensor experiment [110], and benefits from a vibrant community of hundreds of

contributors to its main mathematical library called mathlib. We refer to the PACT paper’s

Background section [1] for a detailed introduction to Lean in the context of neural theorem

proving.

4.0.3.1 lean-gym

In the PACT paper [1], proof search is performed by the Lean runtime using the

LeanStep environment, with a generic backend interface to models. While easy to use–one

just needs to plug in their model–this approach makes it difficult to alter and iterate on

the search procedure. This is because it is programmed in Lean (which is not designed or

40

intended for cluster-wide parallelized I/O intensive tasks), and the coupling of the search

procedure with the Lean runtime introduces challenges when scaling to a large number of

parallel workers.

To solve these issues we implemented lean-gym3 – a simple REPL interface over the

standard input/output implemented in Lean directly. lean-gym presents the following API:

• init-search: declaration→ tactic_state. Takes a declaration name (a theorem name

from the loaded library) and initializes a search while setting the run-time environment at

that particular declaration. It returns the initial tactic state along with a fresh search_id

and tactic_state_id.

• run_tac: (tactic_state, tactic)→ tactic_state. Takes a search_id and a tactic_state_id

to identify a tactic state, as well as a tactic string to apply to it. It returns a new tactic

state and its associated tactic_state_id.

Using lean-gym is virtually equivalent to opening a Lean editor at a specific theorem,

deleting its proof and interacting with Lean to reconstruct it. Appendix subsection A.5.1

provides an example in-terminal execution trace.

Providing a REPL interface over the standard input/output makes it very easy to integrate

lean-gym from any programming language. Writing a wrapper in Python, as an example,

only takes a few dozen lines of code. Since lean-gym is a Lean program, managing the loaded

libraries is done directly using Lean’s own infrastructure (using leanpkg.toml), making it

quite straightforward to have access to both mathlib and miniF2F statements from the same

lean-gym instance.

Note that lean-gym is stateful, meaning that distributing proof searches on multiple

lean-gym instances requires tracking which instance is associated with which proof search. In

practice, we were able to scale the use of lean-gym to thousands of cores running thousands

of proof searches in parallel. Finally, lean-gym’s REPL interface is blocking, preventing

inner-proof search parallelization, though this limitation can probably be removed in the

future.
3https://github.com/openai/lean-gym

41

https://github.com/openai/lean-gym

4.0.3.2 Proof datasets extraction

We rely on the proof extraction methodology presented in the PACT paper [1] to extract

human tactic proof steps from mathlib (the tactic dataset) as well as the various other

proof artifacts (mix1 and mix2 datasets). We also extract mathlib-{train,valid,test}, the set

of statements from mathlib along the split proposed in [1] (the validation and test splits of

tactic, mix1, mix2 being aligned with mathlib-{valid, test} as the splits are determined

by declaration name hashes (across all data sources including proof-term mining) as opposed

to individual proof steps or data-points).

4.0.4 Expert Iteration

Expert iteration was introduced in [94] and broadly consists in iteratively training models

on improvements of their previously sampled trajectories, to achieve continuous improvement.

In this section we present our expert iteration methodology, including the models and

pre-training strategies we rely on.

4.0.4.1 Model

We use decoder-only transformers similar to GPT-3 [86]. Throughout this section we

focus on a model with 36 layers and 774 million trainable parameters (referred to as the

700m model in the GPT-f paper [3]).

4.0.4.2 Pre-Training

We pre-train our models successively on GPT-3’s post-processed version of CommonCrawl

(for 300B tokens) and an updated version of WebMath [3] (for 72B tokens) whose mix is

presented in table Table 3.

As demonstrated in table Table 3, we empirically up-weighted (compared to their token

size) parts of WebMath with high-quality mathematical content while making sure they

don’t overfit (despite running more than one epochs for some of them). We also included

42

Dataset Size Mix

Github Python 179 GB 25%

arXiv Math 10 GB 25%

Math StackExchange 2 GB 25%

PACT mix2 28 GB 17%

Math Overflow 200 M 5%

ProofWiki 30 M 2%

PlanetMath 25 M 1%

Table 3: Mix and source of data involved in the updated WebMath pre-training.

PACT mix2 directly in the WebMath pre-training to avoid having to sequence more than

two pre-training phases to prepare Lean models.

4.0.4.3 Training objectives

We rely on two conditional language modeling objectives to train our models. The

proofstep objective, introduced in [3], consists in generating a PROOFSTEP (a Lean tactic) given

a GOAL (a Lean tactic state). We also condition this objective on the current DECLARATION

(a Lean theorem name), which remains the same throughout a proof search.

DECL <DECLARATION> GOAL <GOAL> PROOFSTEP <PROOFSTEP>

The rationale for conditioning on the declaration name is to hint our models on the

position of the current declaration in the mathlib library. It can be considered as a weak proxy

signal for the large amount of information not shown to the model (the full environment

consisting of the available imports and currently open declarations such as module names,

notations, declared instances, etc.). The declaration name lets models at least in principle

memorize and then retrieve some of that information, knowing that lean-gym raises an error

43

if a theorem or definition that is not available in the environment associated with the current

declaration is used by tactics generated by our models. Also note that conversely to [3] and

like [1] GOAL is not necessarily a single goal but a Lean tactic state, which possibly comprises

multiple goals.

We depart from [3] and use a proofsize objective to guide our proof searches, which consists

in generating one token that represents a proof size estimate bucket for the current goal

(Lean tactic state).

DECL <DECLARATION> GOAL <GOAL> PROOFSIZE <PROOFSIZE_BUCKET_TOKEN>

For a given goal g, either the goal was proved as part of the proof search and we denote its

proof size (the number of tactic applications (compounded Lean tactics counting as one)) as

ps(g), or the goal was not proved in which case we assign the goal to a bucket that virtually

represents "infinite" proof sizes.

We use eleven buckets B = 0...10 and compute the proofsize bucket b(g) for a goal g

by assigning infinite proof sizes to bucket 0, all proof sizes over 20 to bucket 1 and linearly

projecting proof sizes lower than 20 on the remaining buckets 2, ..., 10 (10 being the bucket

for the shortest proof sizes). In practice, when training and sampling from the model, we

map B to the tokens ’A’...’K’.

To value goals as we run proof searches, we sample the proofsize bucket token and record

the logits pb(g) for each viable bucket and use them to get a weighted average with the

following formula:

v(g) =
1

#B

∑
b∈B

pb(g).b

As an example, if the model assigns p0 = 1 (hence pb ̸=0 = 0) then v(g) = 0. Conversely if

the model assigns p10 = 1 (10 being the bucket for the shortest proof sizes) then v(g) = 1.

The rationale for using this proofsize objective instead of the outcome objective described

in [3] is that (1) it achieves better performance compared to the outcome objective (see

table Table 4), and (2) it prioritizes goals that potentially lead to shorter proofs during

proof search, creating an intrinsic incentive for the system to converge towards shorter proofs.

Similarly to [3] we favor this token-based approach to the introduction of a separate value head

44

to keep the overall architecture simple. This way the proofsize objective can be implemented

by simply augmenting the training dataset and without any architectural change.

4.0.4.4 Bootstrapping

Bootstrapping consists in the steps required to train an initial model on both the proofstep

objective and the proofsize objective.

Given a pre-trained model on WebMath, we fine-tune it on the tactic dataset extracted

from mathlib as well as the proof artifacts dataset mix1 as described in [1]. This initial

model, which we denote θ0 is solely trained on the proofstep objective. We use the validation

splits of the tactic and m1 datasets to early-stop training. Note that this is our only use of

mathlib-valid to influence the training process throughout this section.

To generate data for the proofsize objective, we use θ0 to sample proofs for statements

from mathlib-train. For each statement from mathlib-train (25k) we attempt a = 1 proof

searches using the cumulative logprob priority search described in [3] (which does not require

a trained value function) using d = 512 expansions and e = 8 samples per expansion. We

denote the set of successful proof searches created in this process as S0.

Using S0 we generate dataset D0 by concatenating:

• The initial tactic dataset (proofstep objective)

• A deduplicated set of proofsteps extracted from the proofs in S0 (proofstep objective)

• A deduplicated set of proofsize tuples (goals and proofsize) extracted from the full proof

searches in S0 (proofsize objective)

Note that the full proof searches in S0 include goals that are visited but eventually remain

unproved, which provides useful negative examples for the trained value function (even if

these negatives may include provable goals that simply were not prioritized by the search).

Also note that S0 doesn’t include failed proof searches (which would contain only negative

examples and no proofstep objective data).

We fine-tune θ0 on D0 for exactly one epoch (no use of validation data for early-stopping)

to obtain our initial model θ1 trained on both the proofstep objective and the proofsize

objective.

45

θ0 is used in our expert iteration setup as base model to fine-tune from at each iteration,

and θ1 is our first iterated model or mathlib bootstrapped model trained on both objectives.

Model d e pass@1 pass@8

mathlib-valid

PACT [1] 512 16 48.4%

θ0 ([1] setup) 512 16 48.5% 57.6%

θ0 512 8 46.7% 57.5%

θ1 512 8 56.3% 66.3%

θ1 (outcome objective [3]) 512 8 55.6% 65.9%

miniF2F-valid

PACT [2] 128 16 23.9% 29.3%

θ0 ([2] setup) 128 16 27.6% 31.8%

θ0 512 8 28.4% 33.6%

θ1 512 8 28.5% 35.5%

θ1 (outcome objective [3]) 512 8 28.3% 34.7%

Table 4: Performance of θ0 and θ1 on mathlib-valid and miniF2F-valid compared to PACT

Lean GPT-f as reported in [1, 2]. All models have the same architecture. θ0 is sampled using

cumulative logprob priority best-first search. θ1 is sampled using best-first search based on

the proofsize objective. We report our setup (d = 512 expansions and e = 8 tactic samples

per expansions) as well as the setups used in [1, 2] to control for compute. We also report

the performance of θ1 on mathlib-valid when trained using the outcome objective from [3] as

an ablation of our proposed proofsize objective.

We report in Table 4 the pass rates of θ0 and θ1 on mathlib-valid and miniF2F-valid

and compare with previously reported pass rates for equivalent amounts of compute. As

reported in [3], training a value function to guide search greatly improves the pass rates

of θ1 on mathlib-valid (see [3] for an ablation of the value function). Interestingly, the gap

between θ0 and θ1 on miniF2F-valid is not as significant, demonstrating that training a value

46

function on proofs sampled from mathlib-train has limited transfer to miniF2F-valid. The

main differences with [2], potentially explaining the gap on minif2f-valid (27.6% vs 23.9%),

consists in the new pre-training described in section subsubsection 4.0.4.2 as well as the use

of a more recent mathlib checkpoint for the mix1, mix2 and tactic datasets.

4.0.4.5 Iterated sampling and training

Our expert iteration process takes as input:

• A set of formal statements St .

• A function a : St −→ N indicating the number of proof search attempts to run per

statement at each iteration.

• A base model θ0 to fine-tune from at each iteration.

• A mathlib bootstrapped model θ1 trained on both objectives.

Each iteration k consists in sampling proof searches for statements in St using θk, filtering

successful proof searches Sk to extract a new dataset Dk, and fine-tuning θ0 on it to obtain

θk+1, on which we can iterate. To sample proof searches from St we use the best-first search

described in [3] with the value function described in section subsubsection 4.0.4.3. We attempt

a(s ∈ St) proof searches for each statement s with d = 512 expansions and e = 8 samples per

expansion. We denote the set of successful proof searches for iteration k as Sk.

Using Sk we generate datasets Dk by concatenating:

• The initial tactic dataset (proofstep objective)

• A deduplicated set of proofsteps extracted from the proofs in
⋃

1≤i≤k Sk (proofstep objec-

tive)

• A deduplicated set of proofsize tuples (goals and proofsize) extracted from the full proof

searches in
⋃

1≤i≤k Sk (proofsize objective)

Note that we use a global deduplication across iterations for both proofsteps and proofsize

tuples which we found to be important to maintain the stability of the expert iteration

procedure. This global deduplication is somewhat equivalent for each statement to growing

a unique proof tree by aggregating all the proof searches that have been run for it across

47

iterations. This virtual proof tree accumulates a growing number of positive proof paths

as well as a growing number of visited goals that remain unproven. We use these goals as

negative examples for the proofsize objective, labeling them with an infinite proofsize. Positive

goals are deduplicated keeping the minimum proof sizes across proof searches.

Finally θk is obtained by fine-tuning θ0 for exactly one epoch on Dk. Note that the initial

tactic dataset is included in each Dk, despite θ0 being already trained on it (along with

mix1). We found this repetition to be beneficial overall (as it adds the mathlib extracted

proofsteps to our deduplicated per statements virtual proof trees) despite it leading to a

slight overfit on the tactic dataset in terms of validation loss.

4.0.4.6 Expert iteration on mathlib-train

In this section we propose to set St to the statements in mathlib-train, run our expert

iteration process with it and report performance on both mathlib-valid and miniF2F-valid.

Performance is reported in terms of pass rate (percentage of successful proof searches) as

a function of the number of attempts per statement, noted pass@k where k is the number

of attempts per statement at test time. To reduce noise in these metrics we generally run

more than k attempts at test time (generally 32 to compute pass@1 and pass@8), averaging

across attempts as needed to obtain a smoother pass@k value.

Given the large number of statements in mathlib-train (25k) we uniformly set a = 1 and

use θ0 and θ1 as described in section subsubsection 4.0.4.4 and report pass@1 and pass@8

across 8 iterations in Figure 6. The pass@1 on mathlib-valid goes from 56.3% for θ1 to 62.6%

for θ9. The performance steadily improves and follows a clear logarithmic scaling law on

mathlib-valid. It is also notable that, initially, transfer to out-of-distribution minif2f-valid

appears limited but eventually kicks in as we reach better performance on mathlib-valid. This

demonstrates that the expert iteration process does not just overfit to mathlib but also leads

to improved performance on out-of-distribution statements.

We define the cumulative pass rate at iteration k as the pass rate consisting of all proof

searches up to iteration k (necessarily monotonic in k). Since we set a = 16 for evaluation

on mathlib-valid and minif2f-valid at each iteration, the cumulative pass rate at iteration

48

� � � � � � � � �
��

��

��

��

� � � � � � � � �

��

��

��

SDVV#�

SDVV#�

PDWKOLE�YDOLG PLQLI�I�YDOLG

Figure 6: pass@1 (plain) and pass@8 (dotted) for mathlib-valid and minif2f-valid when

running eight expert iterations with St set to be the statements in mathlib-train. The x-axis

is log-scaled. It corresponds to the indices of the θk models and serves as a good proxy to

compute (the amount of test-time and train-time compute per iteration being fixed). The

y-axis is scaled linearly and simply shifted between the two graphs (spans an equal range).

� � � � � � � � �
��

��

��

��

��

��

� � � � � � � � �
��

��

��

��

��

��

([SHUW�LWHUDWLRQ

6DPSOH�RQO\

$GMXVWHG�FRPSXWH

PDWKOLE�YDOLG PLQLI�I�YDOLG

Figure 7: Cumulative pass rate for our expert iteration loop as well as a sample only loop where

we skip re-training the model between iterations. The adjusted compute line is computed

by fitting the sample only curve and shifting it to approximate a setup where we would

focus all the additional compute used by expert iteration (sampling training data from

mathlib-train as well as re-training models at each iteration) towards running proof searches

against mathlib-valid.

49

k can be seen as a noisy ensembled pass@16k (multiple models (θk), no averaging). In

Figure 7, we report this cumulative pass rate for two iteration loops, our normal one and a

sampling-only loop where we skip re-training the model between iterations and solely sample

from θ1. This directly compares test-time compute scaling (scaling proof search attempts) to

expert iteration scaling (interleaved training on new data sampled from mathlib-train) and

provides a very clear visualization of the gains of expert iteration. For a fair comparison, we

also report an adjusted compute line which approximates the test-time performance we would

get at each iteration if we were to focus all the additional compute used by expert iteration

(sampling proofs from mathlib-train as well as re-training models at each iteration) towards

solely running proof searches against mathlib-valid.

As shown by Figure 7, the scaling exponent of expert iteration is substantially higher

than the scaling exponent associated with solely scaling test-time compute (running more

proof searches), demonstrating the clear benefit of expert iteration. We’ll denote the fully

iterated model from this section as θmathlib
9 .

Even in the presence of ground-truth proofs for each of the statements in mathlib-train

(tactic dataset), expert iteration generates data that further improves the performance of

the model. The number of statements proved in mathlib-train goes from 17390 (67.8%) at

iteration 1 to 19476 (76.0%) at iteration 9, while the average proof length of these statements

goes from 4.8 to 4.0. We hypothesize that this continuously improving performance through

expert iteration stems from two effects: (1) the model finding new original proofs for the

same statements and (2) the model closing marginally harder statements at each iteration –

which in turn provides more useful training data for the next iteration. By iteration 9, the

model is trained on more than 90% generated data. We present in Appendix subsection A.5.6

a few examples of original proofs found by our models on mathlib-train compared with their

ground-truth versions.

To verify our hypothesis that expert iteration is capable of closing a curriculum of

increasingly difficult problems out of a set of problem statements, and that this capability is

independent of having access to ground-truth proofs, we propose in the next section to study

expert iteration applied to a synthetic dataset of statements, without ground-truth proofs,

and for which we have fine-grained control on the difficulty of each statement.

50

4.0.5 Statement curriculum learning

In this section we focus on running expert iteration on synthetic statements generated by

an inequality generator. The use of synthetic statements enables us to control the difficulty of

each statement to present evidence that expert iteration can hill-climb the intrinsic difficulty

gradient of the resulting set of statements. In particular, we show that, at fixed compute

budget, expert iteration eventually closes proofs of hard statements that remain completely

out of reach of simply sampling proof searches without interleaved training.

4.0.5.1 Synthetic inequality generator

We designed a synthetic inequality statement generator for Lean in the spirit of the

INT [111] generator. We give concrete examples and more details in subsubsection A.5.2.2.

The generator consists of three phases:

The first phase consists in generating seed expressions for which we track the sign.

We start by initializing an expression set E composed of tuples of expressions and sign

constraints, by generating nv variable names (letters) assumed strictly positive as well as

nn integers (for which we know the sign). For NS rounds, we compose elements of E using

unary (log(·), log(1/·), sqrt(·)) or binary operations (+,−,×, /,∧,max,min) for which we

can deduce the sign based on the sign condition of the input expression(s) and re-inject

the resulting expression and sign constraint in E. This produces a set E of signed seed

expressions of size nv + nn +NS.

The second phase consists in generating inequalities from well known inequality theorems

(AM-GM, Trivial inequality, Cauchy-Schwarz, Bernoulli, Young, Hölder) taking as input

to these theorems expressions from E based on the sign constraints required for each

theorem. We finally compose these inequalities ND times using the theorems detailed in

Appendix subsection A.5.2. The resulting inequality is a composed inequality of depth ND

based on nv + nn +NS seed expressions.

We finally post-process these inequalities so that they are parsable by Lean and run them

through Lean’s simp tactic for a final simplification.

ND and NS together control for the difficulty of the resulting inequality. ND controls

51

depth of composition, while NS controls for obfuscation as it increases the complexity of the

input expressions to the composed inequalities. We report in Appendix subsection A.5.2

examples of generated inequalities for various values of ND and NS.

Using this generator we generate a curriculum of 5600 inequality statements (for which

we don’t have proofs), 100 for each values of 0 ≤ NS ≤ 7 and 0 ≤ ND ≤ 6 (taking nn = 4

and randomly sampling 2 ≤ nv ≤ 8 at each generation). We denote this set of statements as

synth-ineq.

To bootstrap our models capabilities on this specific task, we also generate 100 statements

of low difficulty (ND = 1 and NS = 5) and formalize a proof for each of these statements. We

refer to this dataset as synth-ineq-train. In the rest of this section we adjunct this training

dataset to the tactic dataset used to train our models.

4.0.5.2 Expert iteration on synthetic inequality statements

In this section we propose to set St to the union of the statements in mathlib-train and

synth-ineq. Again, we uniformly set a = 1 and use θ0 and θ1 as described in section subsub-

section 4.0.4.4, except that they are now also trained on synth-ineq-train.

Similarly to the previous section, we report in Figure 8 the cumulative pass rate for

two loops, our standard expert iteration loop, and a proof search only loop where we don’t

interleave training between iterations. The pass rates are reported split by values of ND

(pooling together 0 ≤ NS ≤ 7) which we found to be the main driver for difficulty.

Despite the challenging nature of these synthetic inequalities, Figure 8 demonstrates that

expert iteration is capable of climbing the intrinsic curriculum induced by synth-ineq. In

particular, expert iteration is capable of closing 6 problems of difficulty ND = 6 without

having been provided with any seed ground-truth proof for this difficulty level. Note that

difficulty ND = 6 remains completely out of reach of simply scaling the number of attempts

per statements (the sample only loop remaining stuck at 0 for ND = 6).

This confirms on our synthetic statements dataset synth-ineq that not only expert iteration

is capable of climbing the curricula occurring in a set of statements, but this process also

enables the emergence of new capabilities without the need for ground-truth proofs (ability

52

� � � � � � � � �
�

��

��

��

��

��

� � � � � � � � �
�

��

��

��

��

���

�

�

�

�

�

�

([SHUW�LWHUDWLRQ 6DPSOH�RQO\

Figure 8: Cumulative pass rate for our expert iteration loop as well as a sample only loop

where we skip re-training the model between iterations. Pass rates are reported for each

value of ND (pooling together 0 ≤ NS ≤ 7).

to close, highly challenging, deeply composed inequalities).

4.0.6 Targeting miniF2F

Motivated by the results from Section subsection 4.0.5, we curated and manually formalized

a set of math exercises to target miniF2F. miniF2F statements being quite out of distribution

compared to the distribution of statements present in mathlib (which typically includes

generic theorems and lemmas but very few exercises), we hypothesized that if the difficulty

of this set of statements was made varied enough, expert iteration could potentially leverage

it to effectively shift our models’ distribution closer to miniF2F ’s, and in turn, improve their

eventual performance on it.

4.0.6.1 Formalization effort

We manually formalized 327 statements drawn from the following sources:

• AOPS Books [112, 113]: 302 examples and exercises. The books are classic problem

solving textbooks for students in grades 7-12 preparing for contests such as AMCs and

53

AIMEs. We skipped problems that were too challenging to formalize due to missing

infrastructure in mathlib or non-suitable format for formalization (see section Formalization

effort and challenges in [2]).

• MATH [114] dataset: 25 problems. All problems were drawn from the train split of

the dataset, focusing on difficulty-5 problems (miniF2F only contains problems from the

test split).

We refer to [2] for more details on the formalization procedure and the typical time

needed for it as these problems were formalized in similar conditions. We denote this set of

statements as miniF2F-curriculum and verified (based on problem provenance and manual

inspection of statements) that it had an empty intersection with miniF2F-{test,valid}.

4.0.6.2 Transfer to miniF2F

In this section we propose to set St to the union of the statements in mathlib-train,

synth-ineq and miniF2F-curriculum. We uniformly set a = 1 on mathlib-train and synth-ineq

and a = 8 on miniF2F-curriculum and use θ0 and θ1 as described in section subsection 4.0.5.

Similarly to previous sections, we report in Figure 9 (left) the cumulative pass rate

on miniF2F-valid of our full curriculum expert iteration loop and compare them with the

mathlib-train only expert iteration from section subsubsection 4.0.4.6. Since more compute

is deployed in our full-curriculum loop (more statements) we also report a mathlib-train

only loop taking a = 2. At the end of the expert iteration, 100 out of the 327 statements

from miniF2F-curriculum end up being closed, suggesting a lack of density in our manually

formalized set of statement.

We also report in Figure 9 (right) the pass@1 and pass@8 for our full curriculum expert

iteration loop. The steady improvement on miniF2F-valid shows that the expert iteration

procedure we propose does not overfit on the statements that compose the curriculum it uses.

Despite the potential inefficiency of our curriculum, the improved performance associated

with its use demonstrates, as hypothesized, an effective transfer between miniF2F-curriculum,

synth-ineq and miniF2F-valid through expert iteration. We’ll denote the fully iterated model

from this section as θfull
9 .

54

� � � � � � � � �

��

��

PDWKOLE�D �

PDWKOLE�D �

IXOO

PLQLI�I�YDOLG

� � � � � � � � �

��

��

��

SDVV#��PDWKOLE

SDVV#��IXOO

SDVV#��PDWKOLE

SDVV#��IXOO

PLQLI�I�YDOLG

Figure 9: Top: cumulative pass rate on miniF2F-valid for our expert iteration loop using

our full curriculum (mathlib-train, synth-ineq and miniF2F-curriculum) compared to the

expert iteration loop from section subsubsection 4.0.4.6. The total number of attempts per

iteration in our full loop is 25k + 5.6k + 8 ∗ 327 ≈ 33.2k, which means the total compute

deployed is higher than in the mathlib-train only loop (25k). We therefore also report in

dotted a mathlib-train only loop, taking a = 2, whose total number of attempts per iteration

is ≈ 50k. Bottom: pass@1 (plain) and pass@8 (dotted) for our expert iteration loop using

our full curriculum (mathlib-train, synth-ineq and miniF2F-curriculum) compared to the

expert iteration loop from section subsubsection 4.0.4.6.

55

4.0.6.3 Results

We report in table Table 5 the pass rates on mathlib-{valid, test} and miniF2F-{valid,

test} for the models trained in previous sections, namely θ1, θmathlib
9 , and θfull

9 . We achieve

a 47.3% pass rate (using a = 64 attempts) on miniF2F-valid and a 36.6% pass rate on

miniF2F-test, substantially improving from the previous state-of-the-art [2].

These results include the resolution of twenty-six AMC124 problems, six AIME5 problems

and two problems adapted from the IMOs6. Out of these statements, four AMC12 prob-

lems (amc12b_2020_p5, amc12a_2009_p9, amc12a_2003_p24, amc12b_2003_p17), two AIME

problems (aime_1984_p1, aime_1990_p4), and two IMO-adapted problems (imo_1961_p1,

imo_1964_p2) are uniquely solved by expert iterated models, the two IMO-adapted and the

two AIME problems being uniquely solved by θfull
9 . We provide a selection of the proofs found

by our models for these statements in Appendix subsection A.5.10.

Note that one of the IMO-adapted problems solved from miniF2F-valid, imo_1961_p17,

is a much weaker version of the informal problem8 as it provides the conditions asked to

be determined by the original question and requires instead a proof of only one side of the

original equivalence (see section Formalization effort and challenges in [2]).

Also, we achieve a higher than 75% pass rate (using a = 64 attempts) on mathlib-{valid,

test} (a new state-of-the-art as well) suggesting that our models have the potential to be

effectively leveraged as proof assistants in the formalization efforts associated with mathlib.

4.0.7 Discussion

4.0.7.1 Model Size

Throughout this section, we used a single model size (774m trainable parameters). We

briefly experimented with different model sizes (not reported in this section) and found that

model size scaling is not as straightforward as in the case of unsupervised learning [24]. We
4https://www.maa.org/math-competitions/amc-1012
5https://www.maa.org/math-competitions/invitational-competitions
6https://www.imo-official.org/
7https://github.com/openai/miniF2F/blob/v1/lean/src/valid.lean
8https://artofproblemsolving.com/wiki/index.php/1961_IMO_Problems/Problem_1

56

https://www.maa.org/math-competitions/amc-1012
https://www.maa.org/math-competitions/invitational-competitions
https://www.imo-official.org/
https://github.com/openai/miniF2F/blob/v1/lean/src/valid.lean
https://artofproblemsolving.com/wiki/index.php/1961_IMO_Problems/Problem_1

Model pass@1 pass@8 pass@64

mathlib-valid

PACT [1] 48.4% - -

θ1 56.3% 66.3% 72.0%

θmathlib
9 62.6% 70.7% 75.8%

θfull
9 61.7% 69.8% 75.3%

mathlib-test

θ1 56.5% 66.9% 73.7%

θmathlib
9 63.0% 71.5% 77.1%

θfull
9 62.9% 71.6% 76.3%

miniF2F-valid

PACT [2] 23.9% 29.3% -

θ1 28.5% 35.5% 41.2%

θmathlib
9 31.3% 38.3% 44.1%

θfull
9 33.6% 41.2% 47.3%

miniF2F-test

PACT [2] 24.6% 29.2% -

θ1 25.9% 31.1% 33.6%

θmathlib
9 27.2% 33.0% 35.2%

θfull
9 29.6% 34.5% 36.6%

Table 5: Performance of θ1 (value-function based search), θmathlib
9 (expert iterated on mathlib-

train) and θfull
9 (expert iterated on our full curriculum) on mathlib-{valid, test} and miniF2F-

{valid, test}. All proof searches are run with d = 512 and e = 8.

found that bigger models are better, in the sense that they consistently exhibit higher pass@1.

But, they are also much more expensive to sample from. And despite their pass@1 being

57

higher, it is often the case that for a fixed amount of compute, sampling more attempts from

a smaller model leads to a better final performance.

For the compute budget we had available, we estimated the model size we used to be

a compelling trade-off. We leave as future work a more thorough study of these dynamics

to better understand the different compute frontiers involved. Indicatively, with our 774m

parameters model, running a full expert iteration to train θfull
9 required about 2000 A100 days

of compute. Running one full proof search (a = 1 d = 512 e = 8) when properly parallelized,

requires on average about 0.1 A100 hour of compute.

4.0.7.2 Qualitative analysis of proofs

In this section we provide qualitative insights in the nature of the proofs found by our

models, which we believe are useful to build a better intuition of their capabilities beyond

pass rate numbers. Throughout this section, we refer to statements and solutions found by

our models that are presented in Appendix subsection A.5.10 along with comments describing

the specificity of each proof.

First, we observe that a large number of olympiad problems that are designed to be

computationally challenging for humans are rendered trivial for our models through the use of

Lean tactics. As an example, mathd_numbertheory_447 which is not necessarily considered

straightforward for humans, can be closed in Lean by a simple refl (proof found by our

models).

In recent years, Lean’s mathlib community has developed high-powered tactics such

as linarith/nlinarith (solves (non)linear inequalities), norm_num (normalizes numerical

expressions), simp (simplifies goals and hypotheses) and ring (normalizes expressions in a

ring). These tactics can be used with arguments to guide their underlying search procedure.

As mentioned in [2], we confirm here that our models acquire advanced capabilities to leverage

these high-level tactics by providing exogenous arguments which are not present in the

current tactic state. The generation of these exogenous arguments through language modeling

seems to require a non-trivial amount of mathematical intuition. The problems imo_1964_p2,

imo_1961_p1 and aime_1990_p15 are good examples of such uses.

58

We have also observed a number of proofs that require multiple non-trivial reasoning

steps through the use of lower-level tactics such as use, have, or by_cases that generally

involve producing a witness or chaining implications, requiring the generation of context

specific exogenous terms. These interesting reasoning steps are structurally different from

simple normalization, simplification and rewriting of hypotheses or goals because they heavily

rely on our models ability to generate meaningful cuts or witnesses. This capability is, in our

opinion, the most exciting stepping stone towards solving more challenging mathematical

problems. See, aopsbook_v2_c8_ex1, amc12b_2020_p6 and mathd_train_algebra_217 for

examples of such proofs.

More generally, we also observe that proofs generated by our models have a distinctive

style compared to proofs formalized by humans. This stems in part from the model’s

capability to leverage high-level tactics in a way that is challenging for humans as discussed

in this section (e.g. one-liners such as nlinarith [sq_nonneg (x - y), sq_nonneg (y

- z)] where humans would generally decompose the problem in a less machine-like way).

Additionally, as a result of our search procedure and despite the bias towards shorter proofs

introduced by our value function, extraneous proofsteps (such as reversion/introduction of

hypotheses, or no-op rewrites) are often interleaved with useful ones, which rarely happens in

human formalizations.

4.0.7.3 Limitations

Despite our models’ capability, as discussed in section subsubsection 4.0.7.2, to generate

cuts and witnesses, we believe that their current main limitation lies in their inability

(under our proposed search procedure) to chain more than two or three non-trivial steps of

mathematical reasoning, preventing them from consistently (instead of exceptionally) solving

challenging olympiad problems. We’ve been repeatedly impressed by the complexity of some

of the proofsteps generated by our models. But, proofs requiring many of such reasoning steps

remain beyond our current compute horizon. Even if we solved a few challenging olympiad

problems, which is in itself very encouraging, we are still very far from being competitive

with the brightest students in these competitions.

59

While our models have demonstrated some capabilities to generate cuts, the cuts they

generate are often shallow (they involve only a few proofsteps and don’t necessarily deeply

change the structure of the proof). We believe that studying language models’ ability to

generate cuts, and designing search procedures that leverage that capability (related ideas

can be found in [115]), are interesting avenues of research to alleviate this limitation.

60

5.0 Conclusions

In section 3.1 we presented PACT, a method for extracting additional training data for

a language-model based neural theorem prover from low-level proof artifacts. There is a

sense in which PACT is merely an application of the well known principle that compute

in the form of search should be exchanged for training signal whenever possible. In Lean,

typeclass inference relies on a backtracking Prolog-style search; the elaborator performs search

to disambiguate overloaded notation and infer types; Lean tactics have complex semantics

precisely because they can perform search to find subproofs automatically. The work done by

these subroutines is preserved in the proof artifacts, and PACT can be viewed as a way of

extracting this information offline for more training signal.

We have presented PACT as one way of addressing the data scarcity issue for learning

theorem proving from human tactic scripts in proof assistant libraries. Another well-studied

solution for this is expert iteration and reinforcement learning. In the setting of HOL Light,

and under the assumption of a hardcoded finite action space of tactics, [40] in conjunction with

supervised seed data was able to achieve up to 70% proof success rate on the HOList theorem

proving task. Similarly, in a set-up much closer to ours, MM GPT-f [48] demonstrated the

feasibility of expert iteration when using generative language models for theorem proving.

Within a fixed corpus of theorems (and hence proof terms), PACT and RL are funda-

mentally constrained by a lack of exploration. As the performance of the theorem proving

agent improves, it will eventually saturate and become starved for data, at which point

its curriculum will need to be expanded. Although self-supervised methods such as PACT

represent a way to significantly improve the data-efficiency of reinforcement learning loops over

existing theorem prover libraries, the development of continuously self-improving and infinitely

scalable neural theorem provers remains contingent on sufficiently powerful exploration and

automated curriculum generation.

We can view the other contributions in this dissertation as steps in those directions. In

section 3.2, we proposed a new method, SPT-Aug, for generating novel training examples

for language models in the formal theorem proving domain by synthesizing entirely new

61

proof terms, and using Lean’s kernel to filter for the typecorrect terms and extract their

type (i.e. the theorem being proved). This method is shown to improve the perplexity of

both conditional and unconditional proof term language modeling on a held-out test set.

The result also withstands an ablation of the regularizing effect of simply mixing in a large

quantity of related data. We see SPT-Aug as a promising direction for further research in

this domain. We remark that that the unconditional version of SPT-Aug gives a method

for sampling new theorem statements alongside the proofs, an ingredient which is missing

from both PACT (section 3.1 and statement curriculum learning, which operates against a

fixed curriculum of theorems (chapter 4)). Future elaborations of this method could focus

on incorporating SPT-Aug into a neural theorem proving loop to improve performance on

theorem proving rather than just perplexity scores on held-out data. Another immediate

extension of SPT-Aug applicable to the methods in chapter 4 would to sample types instead

and use these in conjunction with some kind of filtering to seed an expert iteration loop for

statement curriculum learning.

We presented an expert iteration procedure for GPT-f [3] called statement curriculum

learning in chapter 4. This procedure is capable of solving a curriculum of increasingly difficult

problems out of a set of formal statements of sufficiently varied difficulty. We achieved new

state-of-the-art results on the miniF2F benchmark (derived from math Olympiad problems)

and discussed proofs generated by our models, including proofs for multiple challenging

olympiad problems. Our results suggest that the lack of self-play in the formal mathematics

setup can be effectively compensated for by automatically as well as manually curated sets

of formal statements, which are much cheaper to formalize than full proofs. Finally, we

hope that the statement curriculum learning methodology we presented in this work will

help accelerate progress in automated reasoning, especially if scaled with future progress in

automated generation and curation of formal statements.

62

A.1 Additional materials for section 3.1

A.1.1 Additional background for PACT

Lean’s fundamental logic is a dependent type theory called the calculus of inductive

constructions [60]. This design means that terms (4, x+ y, f), types (N, list Z, α→ β) and

proofs are all represented with a single datatype called an expression. Given an environment

of available constants and definitions and a context Γ of variables, Lean can infer a type

α for each well-formed expression t. A proof term is a Lean expression whose type is a

proposition–this proof term serves as a checkable artifact for verifying the proposition. Lean

uses a small, trusted kernel to verify proof terms.

Tactics in Lean are metaprograms [6], which can construct Lean expressions, such as

terms. A tactic state which tracks the list of open goals and other metadata is threaded

through each tactic invocation. Lean has special support for treating tactics as an extensible

DSL; this DSL is how Lean is typically used as an interactive theorem prover. The DSL

amounts to a linear chain of comma-separated invocations. The process of interactive proving

is mediated through Lean’s language server, which presents the context and type for the

current goal in the proof to the user, dependent on where their cursor is in the source text.

The tactic prediction task is to predict the next tactic given this goal state. We extract

supervised training data for this task by extracting all human-supplied proof steps from

Lean’s mathlib.

The tactic state is an object threaded through each invocation of a tactic. The tactic state

maintains, among other things, a context of metavariables—placeholders in which expressions

will later be substituted. At each point of the proof, one or more of these metavariables are

selected as the goal of the current tactic state. As the proof progresses, there are multiple

values to be found.

Consider this (modified) example of a tactic proof from the library.

theorem int.sub_ne_zero_of_ne : ∀ (a b : Z), a ̸= b -> a - b ̸= 0 :=
begin

intros a b h hab,
apply h,
apply int.eq_of_sub_eq_zero hab,

63

end

Each tactic line modifies the proof state, which we explicitly annotate below with comments

between each tactic.

theorem int.sub_ne_zero_of_ne : ∀ (a b : Z), a ̸= b -> a - b ̸= 0 :=
begin

-- ⊢ ∀ (a b : Z), a ̸= b → a - b ̸= 0
intros a b h hab,
-- a b : Z,
-- h : a ̸= b,
-- hab : a - b = 0
-- ⊢ false
apply h,
-- a b : Z,
-- h : a ̸= b,
-- hab : a - b = 0
-- ⊢ a = b
apply int.eq_of_sub_eq_zero hab,
-- no goals

end

Our proofstep objective is to predict the tactic applied to a given tactic state.

Lean stores this proof internally as a proof term:

theorem int.sub_ne_zero_of_ne : ∀ (a b : Z), a ̸= b → a - b ̸= 0 :=
λ (a b : Z) (h : a ̸= b), id (λ (hab : a - b = 0), h (int.eq_of_sub_eq_zero hab))

Since this proof term is just stored internally as a tree, any branch of this term tree can

be removed, to create a hole _, for example:

λ (a b : Z) (h : a ̸= b), id (λ (hab : a - b = 0), h _)

Lean will automatically provide a list of both the local context and the type of a term needed

to fill that hole as shown below. Notice this is the same as a tactic state we saw from the

term proof above.

a b : Z,
h : a ̸= b,
hab : a - b = 0
⊢ a = b

Using this methodology of following proof term trees, we can mine low level proof data for

every node of a term proof to produce the PACT dataset described in Section 3.1.2.1.

64

A.2 Datasets for section 3.1

A.2.1 Pre-training datasets

We pre-train our models on WebMath, as described in [48]. All models, including both the

WebMath pre-trained models and the models used in ablations that were not pre-trained on

WebMath, were first pre-trained on the mix used by GPT-3 [23]. This mix includes filtered data

from CommonCrawl, WebText2, Book1, Book2, and Wikipedia. WebMath’s data set includes

Python-only GitHub data, as well as arXiv and Math StackExchange.

From these datasets, a potential risk for test-set contamination (presence of mathlib)

exists for the crawled datasets, namely CommonCrawl, WebText2, and (in case of a filtering bug)

Python-only GitHub. The other datasets (in particular arXiv and Math StackExchange)

may contain short references of mathlib code but in shape and forms that would not lead to

effective contamination.

To assess the contamination risk related with the crawled datasets, we searched CommonCrawl,

WebText2, arXiv, Python-only GitHub, and Math StackExchange for test theorems. For

example, given the test theorem nat.div_eq_sub_div we searched for any occurrences of

the string div_eq_sub_div. Of over 3000 test theorem names, we found 595 which occurred

in the datasets. Many instances were innocuous, but some were in Lean files, and in some

cases there was a proof of a test theorem. There were also 160 additional test theorems with

no underscore in their name, which we did not check, but whose name is likely to be found in

the datasets. (There is no need to check for training theorems since they are already in the

training data and it would not constitute contamination.) We re-calculated the pass-rates

of the results in Figure 2 omitting these 755 test theorems. This decreases the reported

pass-rates slightly, ranging from 0.6 to 1.1 percentage points. The adjusted pass-rate of our

best model WebMath > mix1 + mix2 + tactic is 47.4%, a decrease of 1 percentage point.

Our main results still hold even with the adjusted pass-rates.

We also looked at the results for 1,350 and 544 test theorems, respectively, added to Lean

and mathlib after April 18, 2020, and September 11, 2020. These theorems were part of

the originally extracted data, unlike the theorems in future-mathlib. The pass-rates for

65

the WebMath > mix1 + mix2 + tactic model on these restricted sets of test theorems are

45.6% and 43.3%, respectively.

We also looked for the following Metamath specific and HOL specific strings in CommonCrawl,

WebText2, and Python-only GitHub:

Metamath:
"(ph -> A = C)"
"(ph -> A R C)"
"(sqrt ‵ 2) e/ QQ"

HOL:
"apply (rule "
"apply (drule "

We found 0 occurrence of the Metamath-related strings but interestingly found a non-

negligible amount of HOL-related documents, which does not constitute a test-set contamina-

tion but potentially benefits the downstream tasks studied in this section.

While our results show a significant benefit to pre-training on WebMath, it is unclear

exactly how pre-training helps. Since Lean’s theorem names are made of coded mathematical

phases, e.g. affine.simplex.dist_circumcenter_eq_circumradius, it is not unreasonable

to suspect that important statistical connections are extracted from math sources. It is even

possible that simple instances of auto-formalization or ITP translation are happening. There

is prior work [116, 117, 118] suggesting that both of these are possible. From the point of

view of a lean-gptf end-user, any such extraction of prior, publicly available data is useful

and helpful. Nonetheless, our results are of a different nature than other AI for theorem

proving research which do not use data outside of a given theorem proving library. This

should be taken into account in any future comparisons and benchmarks.

A.2.2 Dataset sizes

• tactic: ≈128K examples.

• mix1

– Next lemma prediction: ≈2.5M examples

– Proof term prediction: ≈2.9M examples

• mix2

66

– Skip-proof: ≈1.7M examples

– Type-prediction: ≈1.7M examples

– Tactic state elaboration: ≈346K examples

– Proof term elaboration: ≈1.0M examples

– Premise classification: ≈9.3M examples

– Local context classification: ≈2.0M examples

– Theorem naming: ≈32K examples.

A.2.3 Example datapoints

We present datapoints extracted from a toy example, namely the proof of the Peirce

identity, viz.

lemma peirce_identity {P Q :Prop} : ((P → Q) → P) → P :=
begin

apply or.elim (em P),
intros h _,
exact h,
tauto!

end

From this, we can extract four tactic datapoints (i.e. human-generated tactic proof

steps):

-- GOAL P Q : Prop ⊢ ((P → Q) → P) → P PROOFSTEP apply or.elim (em P)
-- GOAL P Q : Prop ⊢ P → ((P → Q) → P) → P P Q : Prop ⊢ ¬P → ((P → Q) →

P) → P PROOFSTEP intros h _
-- GOAL P Q : Prop, h : P, α̌ : (P → Q) → P ⊢ P P Q : Prop ⊢ ¬P → ((P → Q) →

P) → P PROOFSTEP exact h
-- GOAL P Q : Prop ⊢ ¬P → ((P → Q) → P) → P PROOFSTEP tauto!

In contrast, we can extract dozens of raw PACT datapoints. Due to space constraints,

we list a representative sample of four such datapoints, from each of which we can derive the

nine self-supervised auxiliary PACT tasks studied in our present work. For example, proof

term prediction is precisely predicting the "proof_term" given the concatenation of "hyps",

"⊢", and the "goal", skip-proof is predicting the "proof_term" given "result", etc.

DATAPOINT:

67

{ "decl_nm":"peirce_identity",
"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) → P"],
["α̌_1", "¬(P → Q)"]],

"hyps_mask":[true, false, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a → b) ↔ a ∧
¬b"],

["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a) (right : b), C
_) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a], (a → b) →
¬a ∨ b"],

["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) → (∀ (h :
b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],

"decl_premises_mask":[false, false, true, false, false, false, false, false,
false],

"goal":"∀ {b : Prop} [_inst_1 : decidable P], ¬(P → b) ↔ P ∧ ¬b",
"proof_term":"decidable.not_imp",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P), h) (λ (α̌
: ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌_1).dcases_on (λ (α̌_1
: ¬(P → Q)), ((PREDICT Q (classical.prop_decidable P)).mp α̌_1).dcases_on (λ
(α̌_1_left : P) (α̌_1_right : ¬Q), absurd α̌_1_left α̌)) (λ (α̌_1 : P), absurd α̌
_1 α̌))",

"next_lemma":["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a
→ b) ↔ a ∧ ¬b"],

"goal_is_prop":true,
"verbose_proof_term":"@decidable.not_imp P",
"verbose_goal":"∀ {b : Prop} [_inst_1 : decidable P], ¬(P → b) ↔ P ∧ ¬b",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (@decidable.not_or_of_imp (P → Q) P
(classical.prop_decidable (P → Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)),
(@iff.mp (¬(P → Q)) (P ∧ ¬Q) (PREDICT Q (classical.prop_decidable P)) α̌
_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌))
(λ (α̌_1 : P), @absurd P P α̌_1 α̌))"}

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) → P"],

68

["α̌_1", "¬(P → Q)"]],
"hyps_mask":[false, true, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a → b) ↔ a ∧
¬b"],

["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a) (right : b), C
_) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a], (a → b) →
¬a ∨ b"],

["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) → (∀ (h :
b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],

"decl_premises_mask":[false, false, false, false, false, false, false, false,
false],

"goal":"Prop",
"proof_term":"Q",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P), h) (λ (α̌
: ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌_1).dcases_on (λ (α̌_1
: ¬(P → Q)), (decidable.not_imp.mp α̌_1).dcases_on (λ (α̌_1_left : P)
(α̌_1_right : ¬Q), absurd α̌_1_left α̌)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["Q", "Prop"],
"goal_is_prop":false,
"verbose_proof_term":"Q",
"verbose_goal":"Prop",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (@decidable.not_or_of_imp (P → Q) P
(classical.prop_decidable (P → Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)),
((@decidable.not_imp P PREDICT (classical.prop_decidable P)).mp α̌_1).dcases_on
(λ (α̌_1_left : P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌)) (λ (α̌_1 : P),
@absurd P P α̌_1 α̌))"}

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) → P"],
["α̌_1", "¬(P → Q)"]],

"hyps_mask":[true, true, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a → b) ↔ a ∧

69

¬b"],
["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",
"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a) (right : b), C
_) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a], (a → b) →
¬a ∨ b"],

["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) → (∀ (h :
b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],

"decl_premises_mask":[false, false, true, false, false, false, false, false,
false],

"goal":"∀ [_inst_1 : decidable P], ¬(P → Q) ↔ P ∧ ¬Q",
"proof_term":"decidable.not_imp",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P), h) (λ (α̌
: ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌_1).dcases_on (λ (α̌_1
: ¬(P → Q)), ((PREDICT (classical.prop_decidable P)).mp α̌_1).dcases_on (λ
(α̌_1_left : P) (α̌_1_right : ¬Q), absurd α̌_1_left α̌)) (λ (α̌_1 : P), absurd α̌
_1 α̌))",

"next_lemma":["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a
→ b) ↔ a ∧ ¬b"],

"goal_is_prop":true,
"verbose_proof_term":"@decidable.not_imp P Q",
"verbose_goal":"∀ [_inst_1 : decidable P], ¬(P → Q) ↔ P ∧ ¬Q",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (@decidable.not_or_of_imp (P → Q) P
(classical.prop_decidable (P → Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)),
(@iff.mp (¬(P → Q)) (P ∧ ¬Q) (PREDICT (classical.prop_decidable P)) α̌
_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q), @absurd P P α̌_1_left α̌))
(λ (α̌_1 : P), @absurd P P α̌_1 α̌))"}

DATAPOINT:

{ "decl_nm":"peirce_identity",

"decl_tp":"∀ {P Q : Prop}, ((P → Q) → P) → P",
"hyps":[["P", "Prop"], ["Q", "Prop"], ["α̌", "¬P"], ["α̌_1", "(P → Q) → P"],
["α̌_1", "¬(P → Q)"]],

"hyps_mask":[false, false, false, false, false],
"decl_premises":[["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["absurd", "∀ {a b : Prop}, a → ¬a → b"],
["decidable.not_imp", "∀ {a b : Prop} [_inst_1 : decidable a], ¬(a → b) ↔ a ∧
¬b"],

["iff.mp", "∀ {a b : Prop}, (a ↔ b) → a → b"],
["and.dcases_on",

70

"∀ {a b : Prop} {C : a ∧ b → Prop} (n : a ∧ b), (∀ (left : a) (right : b), C
_) → C n"],
["decidable.not_or_of_imp", "∀ {a b : Prop} [_inst_1 : decidable a], (a → b) →
¬a ∨ b"],

["or.dcases_on",
"∀ {a b : Prop} {C : a ∨ b → Prop} (n : a ∨ b), (∀ (h : a), C _) → (∀ (h :
b), C _) → C n"],
["em", "∀ (p : Prop), p ∨ ¬p"],
["or.elim", "∀ {a b c : Prop}, a ∨ b → (a → c) → (b → c) → c"]],

"decl_premises_mask":[false, false, false, false, false, false, false, false,
false],

"goal":"Π (a : Prop), decidable a",
"proof_term":"classical.prop_decidable",
"result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P), h) (λ (α̌
: ¬P) (α̌_1 : (P → Q) → P), (decidable.not_or_of_imp α̌_1).dcases_on (λ (α̌_1
: ¬(P → Q)), (decidable.not_imp.mp α̌_1).dcases_on (λ (α̌_1_left : P)
(α̌_1_right : ¬Q), absurd α̌_1_left α̌)) (λ (α̌_1 : P), absurd α̌_1 α̌))",

"next_lemma":["classical.prop_decidable", "Π (a : Prop), decidable a"],
"goal_is_prop":false,
"verbose_proof_term":"classical.prop_decidable",
"verbose_goal":"Π (a : Prop), decidable a",
"verbose_result":"λ {P Q : Prop}, (em P).elim (λ (h : P) (α̌ : (P → Q) → P),
h) (λ (α̌ : ¬P) (α̌_1 : (P → Q) → P), (@decidable.not_or_of_imp (P → Q) P
(PREDICT (P → Q)) α̌_1).dcases_on (λ (α̌_1 : ¬(P → Q)), ((@decidable.not_imp
P Q (PREDICT P)).mp α̌_1).dcases_on (λ (α̌_1_left : P) (α̌_1_right : ¬Q),
@absurd P P α̌_1_left α̌)) (λ (α̌_1 : P), @absurd P P α̌_1 α̌))"}

A.3 Experiments for section 3.1

A.3.1 Chained tactic prediction

Individual Lean tactics are chained together with commas. However, the Lean interactive

tactic DSL also includes a number of other tactic combinators for creating composite tactics.

A frequently used combinator is the infix semicolon t; s which will perform the tactic t and

then apply the tactic s to each of the resulting subgoals produced by t. Our data pipeline

for human tactic proof steps treats these semicolon-chained tactics as a single string for the

language modeling objective. Thus, our models learn to occasionally emit multiple-step tactic

predictions using semicolons. For example, wm-to-tt-m1-m2 solved the following lemma in

71

category theory with a single prediction chaining four tactics in a row:

theorem category_theory.grothendieck.congr
{X Y : grothendieck F} {f g : X −→ Y} (h : f = g) :
f.fiber = eq_to_hom (by subst h) ≫ g.fiber :=

begin
rcases X; rcases Y; subst h; simp

end

We can measure the sophistication of predicted tactics by considering the number of

successful proofs on the evaluation set that have a composite form using semicolon-chaining.

Appendix A.3.1 shows that training with PACT in addition to human-made tactics causes

longer semicolon-chained tactics to be successfully predicted during theorem proving. This

is remarkable because the semicolon idiom is specific to the tactic DSL and does not occur

in the PACT data whatsoever. And yet, the co-training causes longer and more frequent

successful composite tactic predictions.

Model 1; 2; 3; 4; Mean
wm-to-tt 215 49 2 0 1.199
wm-to-tt-m1 186 39 5 1 1.225
wm-to-tt-m1-m2 328 82 12 3 1.271

Table 6: Counting the number of semicolon-chained tactics predicted by our models that

appear in successful proofs. Each column headed by a number n; indicates the number of

times that a suggestion appeared with n occurrences of ‘;’.

72

A.3.2 Theorem naming case study

73

Correct top-1 guesses

Theorem statement

∀ {α : Type u_1} {β : Type u_2} [_inst_1 : decidable_eq α]
[_inst_2 : decidable_eq β] (s : finset α) (t : finset β),
s.product t = s.bUnion
(λ (a : α), finset.image (λ (b : β), (a, b)) t)

Ground truth finset.product_eq_bUnion

Theorem statement

∀ {α : Type u_1} {β : Type u_2} [_inst_1 : topological_space α]
[_inst_2 : topological_space β] {f : α → β},
quotient_map f → function.surjective f

Ground truth quotient_map.surjective

Theorem statement
∀ {α : Type u_1} {β : Type u_2} (f : α → option β)
(x : option α), x.pbind (λ (a : α) (_x : a ∈ x), f a) = x.bind f

Ground truth option.pbind_eq_bind

Figure 10: A sample of correct top-1 guesses by our best model wm-to-tt-m1-m2 on the theorem naming task. We performed

this experiment on the future-mathlib evaluation set, which comprises entirely unseen theorems added to mathlib only after

we last extracted training data.

74

Incorrect guesses

Theorem statement
∀ {α : Type u_1} (t : ordnode α) (x : α),
t.dual.find_min′ x = ordnode.find_max′ x t

Guesses (top 8)
ordinal.find_min′_eq, ordinal.find_min′_eq_max′, ordinal.find_min′_def,
ordinal.find_min′_eq_max, ordinal.find_min′, ordinal.dual_find_min′,
ordinal.find_min′_gt, ordinal.find_min′_q

Ground truth ordnode.find_min′_dual

Theorem statement

∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3}
{f : filter α} {h : set α → set β} {m : γ → β}
{l : filter γ}, filter.tendsto m l (f.lift′ h) ↔
∀ (s : set α), s ∈ f → (∀f (a : γ) in l, m a ∈ h s)

Guesses (top 8) filter.tendsto_lift′_iff, filter.tendsto_lift′_def

Ground truth filter.tendsto_lift′

Figure 11: A sample of incorrect guesses by our best model wm-to-tt-m1-m2 on the theorem naming task. We performed this

experiment on the future-mathlib evaluation set, which comprises entirely unseen theorems added to mathlib only after we

last extracted training data. Most of the top-8 guesses displayed in the above table are very similar to the ground truth, in

some cases being equivalent up to permutation of underscore-separated tokens. Note that for the first example, the concept of

ordnode was not in the training data whatsoever and all predictions are in the syntactically similar ordinal namespace.

75

We included theorem naming as part of the PACT task suite. By mathlib convention,

theorem names are essentially snake-cased, natural language summaries of the type signature

of a theorem, and so the theorem naming task is analogous to a formal-to-informal translation

task. We evaluate the ability of our best model (in terms of theorem proving success

rate) wm-to-tt-m1-m2 on its ability to guess theorem names on the completely unseen

future-mathlib set of theorems. The distribution shift inherent in the future-mathlib

dataset particularly impacts the theorem naming task, because many of the ground-truth

names will involve names for concepts that were only defined in mathlib after we extracted

our training data.

On the approximately 2.8K future-mathlib theorems, we queried wm-to-tt-m1-m2 for

up to N = 16 candidates. We order these candidates into a list xs by decreasing cumulative

log-probability and calculate the top-K accuracy by checking if any of the first K candidates

of xs match the ground truth exactly. The model wm-to-tt-m1-m2 was able to achieve 20.1%

top-1 accuracy, 21.1% top-3 accuracy, 26.7% top-10 accuracy, and 30.0% top-16 accuracy.

We display a sample of correct top-1 guesses (Figure 10) and a sample of failed guesses in

(Figure 11). We note that the failed guesses, while containing no syntactic matches, are both

semantically reasonable and syntactically very similar to the ground truth.

A.3.3 Test set evaluation breakdown by module

Lean’s mathlib is organized into top-level modules, which roughly organize theorems into

mathematical subject area. In Figure 12, we break down the evaluation results on our test

set between our PACT-trained models wm-to-tt-m1-m2 and wm-to-tt-m1 and our baselines

wm-to-tt and tidy. We see that full PACT mostly dominates over co-training on just the

mix1 tasks over all subject areas, and that wm-to-tt-m1 dominates the model wm-to-tt

trained on human tactic proof steps only.

A.3.4 Baseline description

The tidy backend is determined by a constant oracle

Ω : tactic_state → list (string × float)

76

lo
gi

c

al
ge

br
a

or
de

r

da
ta

ca
te

go
ry

_t
he

or
y

co
nt

ro
l

gr
ou

p_
th

eo
ry

co
m

bi
na

to
ric

s

to
po

lo
gy

lin
ea

r_
al

ge
br

a

se
t_

th
eo

ry

an
al

ys
is

ge
om

et
ry

dy
na

m
ics

co
m

pu
ta

bi
lit

y

nu
m

be
r_

th
eo

ry

m
ea

su
re

_t
he

or
y

fie
ld

_t
he

or
y

rin
g_

th
eo

ry

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Test Set Evaluation Breakdown By Modules
wm-to-tt-m1-m2 (PACT full)
wm-to-tt-m1 (PACT mix1 only)
wm-to-tt (tactic step only)
tidy (baseline)

Figure 12: A breakdown of theorem proving success rate on the test set for wm-to-tt-m1-m2,

wm-to-tt-m1, wm-to-tt, and the tidy baseline across top-level modules in Lean’s mathlib.

We see that wm-to-tt-m1-m2 mostly dominates wm-to-tt-m1 and the models trained using

PACT dominate the model wm-to-tt trained on human tactic proof steps.

77

which always returns the same list of tactics, namely:

meta def tidy_default_tactics : list (string × float) :=
list.map (flip prod.mk 0.0) [

"refl"
, "exact dec_trivial"
, "assumption"
, "tactic.intros1"
, "tactic.auto_cases"
, "apply_auto_param"
, "dsimp at ∗"
, "simp at ∗"
, "ext1"
, "fsplit"
, "injections_and_clear"
, "solve_by_elim"
, "norm_cast"

]

Unlike the gptf backend, which generates a list of candidates in parallel independently,

tidy enjoys the advantage that the list of tactics it emits is carefully chosen and ordered

in order to optimize the proof search—this is based on the “waterfall” technique of the

human-style automated theorem prover described in [119].

A.3.5 Computational resource estimates

For each evaluation loop over the test set, we distributed the theorems over a pool

of 32 CPU workers whose inference requests were load-balanced over 4 V100 GPUs. Each

evaluation required ≈10 hours with ≈30% GPU utilization. We observed that our evaluation

was bottlenecked by inference and in practice, we hosted up to three evaluation loops at

once on a VM with 80 logical cores without achieving full CPU utilization. In addition to

the wall-clock timeout of 600s, we also limited the proof search to a logical timeout of 512

iterations, where one iteration corresponds to a single expansion of a node of the BFS search

tree. In practice, so much time was spent either blocked on inference or performing the tactic

executions in the inner loop of each iteration that we rarely exceeded the logical timeout,

usually exceeding the wall-clock timeout instead.

Fine-tuning on our largest dataset mix1 + mix2 + tactic required 26 hours using 64

A100 GPUs exhibiting high FP16 usage, totalling an estimated ≈1.5K A100(FP16)-hours.

78

This gives an estimated cost of 17.33 A100(FP16)-hours per billion elapsed tokens during

training. We note that when calculating the number of elapsed tokens for training, we

overestimate the actual number of tokens effectively trained on by summing full context

windows (in this case, 2048 tokens).

A.4 Example proofs for section 3.1

Lean’s mathlib is one of the most active open-source software projects in the world.

More than one-third of the proofs found by our models are shorter and produce smaller proof

terms than the ground truth, leading to dozens of GPT-f co-authored commits to mathlib.

We examine some of the proofs found by our models in more detail.

A.4.1 lie_algebra.morphism.map_bot_iff

This proof produces a proof term which is 4X smaller than the original:

lemma map_bot_iff : I.map f = ⊥ ↔ I ≤ f.ker :=
by { rw ← le_bot_iff, apply lie_ideal.map_le_iff_le_comap }

The original, human-written proof is much longer, viz.

lemma map_bot_iff : I.map f = ⊥ ↔ I ≤ f.ker :=
begin

rw le_ker_iff, unfold lie_ideal.map, split; intros h,
{ rwa [eq_bot_iff, lie_submodule.lie_span_le, set.image_subset_iff,
lie_submodule.bot_coe] at h,},

{ suffices : f ′′ I = ↑(⊥ : lie_ideal R L′), { rw [this,
lie_submodule.lie_span_eq], },
ext x, rw [lie_submodule.bot_coe, set.mem_singleton_iff, set.mem_image],
split,
{ rintros ⟨y, hy, hx⟩, rw ← hx, exact h y hy, },
{ intros hx, use 0, simp [hx], }, },

end

A.4.2 primrec.of_equiv

This proof produces a proof term which is 12X smaller than the original:

79

theorem of_equiv {β} {e : β ≃ α} :
by haveI := primcodable.of_equiv α e; exact
primrec e :=

by letI : primcodable β := primcodable.of_equiv α e; exact encode_iff.1
primrec.encode

The author of the original proof and maintainer of that package commented:

encode_iff.1 primrec.encode is clever, it’s a way to translate primrec across an equiv-
alence when the encode function is defined as encode x = encode (e x) where e is the
isomorphism.

As far as they knew, this trick was never used before in the computability package.

A.4.3 real.tan_eq_sin_div_cos

This proof demonstrates our model’s library knowledge and ability at premise selection.

This lemma takes a trigonometric identify over the complex numbers and translates it to the

corresponding identity over the reals.

lemma real.tan_eq_sin_div_cos (x : R) : tan x = sin x / cos x :=
begin

rw ← of_real_inj,
simp only [complex.tan_eq_sin_div_cos, of_real_sin, of_real_cos, of_real_div,
of_real_tan]

end

Our model was able to predict this entire list of simp lemmas in one shot. Note that the

lemma complex.tan_eq_sin_div_cos in this list is the complex number version of the result,

i.e. ∀ (x : C), tan x = sin x / cos x. The previous human-written version of the proof

did not use the more general version of the lemma on complex numbers, demonstrating our

model’s ability to find more general cases of lemmas. We contrast this with the human-written

ground truth, which is more complex and performs a case analysis using the complex cosine:

lemma tan_eq_sin_div_cos : tan x = sin x / cos x :=
if h : complex.cos x = 0 then by simp [sin, cos, tan, ∗, complex.tan,

div_eq_mul_inv] at ∗

else
by rw [sin, cos, tan, complex.tan, ← of_real_inj, div_eq_mul_inv, mul_re];
simp [norm_sq, (div_div_eq_div_mul _ _ _).symm, div_self h]; refl

80

A.4.4 sym2.is_diag_iff_proj_eq

The proof of this lemma is longer than the ground truth and was not contributed to

mathlib, but we describe it here because the proof is original and includes a nontrivial

instantiation of an existential quantifier.

theorem sym2.is_diag_iff_proj_eq (z : α × α) :
is_diag JzK ↔ z.1 = z.2 :=

begin
intros,
simp only [is_diag, prod.ext_iff, quot.exists_rep, iff_true, not_true,
eq_self_iff_true],
simp [diag], split,
{ rintros ⟨y, hy⟩, cases hy; refl },
intro h, cases z, existsi z_snd,
cases h, refl,

end

Before existsi z_snd, the goal state is

z_fst z_snd: α
h: (z_fst, z_snd).fst = (z_fst, z_snd).snd
⊢ ∃ (y : α), (y, y) ≈ (z_fst, z_snd)

This goal state never appeared in mathlib.

A.4.5 norm_le_zero_iff

The following proof is remarkable because it uses fewer tactic steps and takes a different

route to the proof than the ground truth, uses a complex idiom simpa [...] using @..., and

was predicted in one shot.

lemma norm_le_zero_iff {α : Type u_1} [_inst_1 : normed_group α]
{g : α} : ||g|| ≤ 0 ↔ g = 0 :=

by { simpa [le_antisymm_iff, norm_nonneg] using @norm_eq_zero α _ g }
-- ground truth:
-- by { rw[←dist_zero_righbt!],
-- exact dist_le_zero }

The lemmas supplied between the square brackets are used to simplify the main goal. The

lemma supplied after the keyword using can further simplify the lemmas supplied between

the square brackets. The @ modifier makes all arguments explicit. The string @norm_eq_zero

81

never appeared in our training data but the prediction includes the correct number of correctly

typed arguments, and even replaces the second argument with a placeholder _, correctly

guessing that it can be inferred by the elaborator. Finally, this again showcases the strength

of our models as premise selectors: all three lemmas le_antisymm_iff, norm_nonneg, and

norm_eq_zero were not used in the human-supplied proof but are necessary for this proof.

Moving forward, we hope that our neural theorem provers will continue to find ways to

improve mathlib and assist in creating new proofs. More generally, we hope neural theorem

proving will one day be become a routine part of the formalization workflow.

A.5 Additional materials for chapter 4

A.5.1 Lean-gym

Below is an example in-terminal trace demonstrating the use of lean-gym’s REPL

interface:

$ lean --run src/repl.lean

["init_search", ["int.prime.dvd_mul", ""]]

{

"error":null,

"search_id":"0",

"tactic_state":"⊢ ∀ {m n : Z} {p : N}, nat.prime p →

↑p | m * n → p | m.nat_abs ∨ p | n.nat_abs",

"tactic_state_id":"0"

}

...

["run_tac",["1","1","apply (nat.prime.dvd_mul hp).mp"]]

{

"error":null,

"search_id":"1",

82

"tactic_state":"m n : Z, p : N, hp : nat.prime p, h : ↑p | m * n

⊢ p | m.nat_abs * n.nat_abs",

"tactic_state_id":"2"

}

...

A.5.2 Synthetic inequalities

A.5.2.1 List of inequality composition theorems

Below is the list of theorem names from mathlib that we use to compose inequalities

together. These names are references to theorems in mathlib1. One third of the time, we only

transform the current composed inequality with one of the following theorems:

• neg_le_neg

• inv_le_inv

• mul_self_le_mul_self

• div_le_one_of_le

We otherwise compose the current composed inequality with a newly generated inequality

using the following theorems:

• mul_le_mul

• add_le_add

• div_le_div

• mul_le_mul_of_nonneg

• le_mul_of_ratio

1https://www.github.com/leanprover-community/mathlib/

83

https://www.github.com/leanprover-community/mathlib/

A.5.2.2 Examples of synthetic inequalities

We give examples of synthetic inequalities as mentioned in subsubsection 4.0.5.1 generated

by composing the above theorems.

A.5.3 ND = 0 NS = 0

Compositions
AmGm a b (67:R) ((1:R)/(10:R))

((1:R)/(10:R)) ((8:R)/(10:R))

Statement

theorem synthetic_ineq_nb_seed_var_0_depth_0_p_1

(a b : R)

(h0 : 0 < a)

(h1 : 0 < b) :

(67:R) ^ ((8:R) / (10:R)) * b ^ (10:R)−¹ *

a ^ (10:R)−¹ ≤ (8:R) / (10:R) * (67:R) +

(10:R)−¹ * a + b * (10:R)−¹ := sorry

84

A.5.4 ND = 0 NS = 4

Compositions Sqnonneg a ((a) + ((-68:R)))

Statement

theorem synthetic_ineq_nb_seed_var_4_depth_0_p_4

(a b : R)

(h0 : 0 < a)

(h1 : 0 < b) :

(2:R) * (a * (a + -(68:R))) ≤

(a + -(68:R)) ^ 2 + a ^ 2 := sorry

85

A.5.5 ND = 4 NS = 4

Compositions

AddLeAdd

Bernoulli 99 c

AddLeAdd

SelfDivConst ((a) / (f)) 6

LeMulOfRatio

SelfDivConst c 70

DivLeDiv

Cauchy ((a) / (f)) d c (log (((59:R) + f)))

Young ((a) / (f)) a ((3:R)/(2:R)) ((3:R)/(1:R))

Statement

theorem synthetic_ineq_nb_seed_var_4_depth_4_p_13

(a b c d e f : R)

(h0 : 0 < a)

(h1 : 0 < b)

(h2 : 0 < c)

(h3 : 0 < d)

(h4 : 0 < e)

(h5 : 0 < f) :

(1:R) + (99:R) * c + (a / f / (6:R) + a * (a / f) /

((d ^ 2 + a ^ 2 / f ^ 2) *

(real.log ((59:R) + f) ^ 2 + c ^ 2))) ≤

((a / f) ^ ((3:R) / (2:R)) / ((3:R) / (2:R)) +

a ^ 3 / (3:R)) /

(real.log ((59:R) + f) * d + a / f * c) ^ 2 *

(c / (c / (70:R))) + a / f + (c + (1:R)) ^ 99 := sorry

86

A.5.6 Example proofs from mathlib-train

In this section, we present original proofs found by our models from mathlib-train,

compared with their ground-truth version.

87

A.5.7 comap_eq_of_inverse

Statement

lemma comap_eq_of_inverse

{f : filter α} {g : filter β}

{ϕ : α → β} (ψ : β → α) (eq : ψ ◦ ϕ = id)

(hϕ : tendsto ϕ f g) (hψ : tendsto ψ g f) :

comap ϕ g = f :=

Ground-truth

begin

refine

((comap_mono $

map_le_iff_le_comap.1 hψ).trans _).antisymm

(map_le_iff_le_comap.1 hϕ),

rw [comap_comap, eq, comap_id],

exact le_rfl

end

Model proof

begin

refine

le_antisymm _ (filter.map_le_iff_le_comap.1 hϕ),

refine λ s hs, _,

rw mem_comap,

use [ψ −¹' s, hψ hs],

rw [← preimage_comp, eq, preimage_id]

end

88

A.5.8 sum_range_sub_sum_range

Statement

lemma sum_range_sub_sum_range

{α : Type*} [add_comm_group α]

{f : N → α} {n m : N} (hnm : n ≤ m) :∑
k in range m, f k -

∑
k in range n, f k =∑

k in (range m).filter (λ k, n ≤ k), f k :=

Ground-truth

begin

rw [← sum_sdiff (@filter_subset _ (λ k, n ≤ k) _

(range m)), sub_eq_iff_eq_add,

← eq_sub_iff_add_eq, add_sub_cancel'],

refine finset.sum_congr

(finset.ext $ λ a, 〈λ h, by simp at *; finish,

λ h, have ham : a < m :=

lt_of_lt_of_le (mem_range.1 h) hnm,

by simp * at *〉)

(λ _ _, rfl)

end

Model proof

begin

rw [← sum_Ico_eq_sub _ hnm],

congr,

apply finset.ext,

simp [Ico.mem, *],

tauto

end

89

A.5.9 prod_inv_distrib

Statement
lemma prod_inv_distrib : (

∏
x in s, (f x)−¹) =

(
∏

x in s, f x)−¹ :=

Ground-truth

begin

classical,

by_cases h : ∃ x ∈ s, f x = 0,

{ simpa [prod_eq_zero_iff.mpr h, prod_eq_zero_iff]

using h },

{ push_neg at h,

have h' := prod_ne_zero_iff.mpr h,

have hf : ∀ x ∈ s, (f x)−¹ * f x = 1 := λ x hx,

inv_mul_cancel (h x hx),

apply mul_right_cancel' h',

simp [h, h', ← finset.prod_mul_distrib,

prod_congr rfl hf] }

end

Model proof

begin

classical; induction s using

finset.induction_on with a s has ih,

{ simp, },

simp only [has, prod_insert has, mul_inv_rev'],

finish

end

90

A.5.10 Example proofs from minif2f-{test,valid,curriculum}

We present in this section proofs found by our models from minif2f-{test,valid,curriculum},

demonstrating some of the capabilities emerging from our training procedure.

A.5.10.1 imo_1961_p1

Natural language Solve the system of equations:

x+ y + z = a

x2 + y2 + z2 = b2

xy = z2

where a and b are constants. Give the conditions that a and b must satisfy so that

x, y, z (the solutions of the system) are distinct positive numbers. Note: the formalized

statement in miniF2F is a weaker problem as it focuses on the second part of the question,

providing the actual conditions, and asking for a proof that the requirement entails them.

Model proof

theorem imo_1961_p1

(x y z a b : R)

(h0 : 0 < x ∧ 0 < y ∧ 0 < z)

(h1 : x ̸= y)

(h2 : y ̸= z)

(h3 : z ̸= x)

(h4 : x + y + z = a)

(h5 : x^2 + y^2 + z^2 = b^2)

(h6 : x * y = z^2) :

0 < a ∧ b^2 < a^2 ∧ a^2 < 3 * b^2 :=

begin

revert_all,

intros,

rw mul_comm,

91

split,

{ nlinarith [sq_nonneg (x - y), sq_nonneg (y - z)], },

split,

{ nlinarith [sq_nonneg (z - 1)], },

revert h3 h4,

field_simp [mul_comm a b],

rw [mul_comm, ← h5],

contrapose!,

rw mul_comm at h6,

rw mul_comm,

intro h,

nlinarith [sq_nonneg (x - y), sq_nonneg (y - z)]

end

Comments The model is able to close this problem by splitting into cases, contraposing

for the last case and using nlinarith, which adds some heuristics to an implementation

of Fourier Motzkin elimination. It must be noted that the arguments for the first two

nlinarith uses are not necessary, however the [sq_nonneg (x - y), sq_nonneg (y -

z)] argument provided on the last line is crucial to close the goal and are completely

exogenous (present in no form in the tactic state before).

92

A.5.10.2 imo_1964_p2

Natural language Suppose a, b, c are the sides of a triangle. Prove that

a2(b+ c− a) + b2(c+ a− b) + c2(a+ b− c) ≤ 3abc

Model proof

theorem imo_1964_p2

(a b c : R)

(h0 : 0 < a ∧ 0 < b ∧ 0 < c)

(h1 : c < a + b)

(h2 : b < a + c)

(h3 : a < b + c) :

a^2 * (b + c - a) + b^2 * (c + a - b) + c^2 * (a + b - c)

≤ 3 * a * b * c :=

begin

nlinarith [sq_nonneg (b - a), sq_nonneg (c - b),

sq_nonneg (a - c), sq_nonneg (c - a)]

end

Comments The model is able to close an IMO problem in one-line. It correctly provides

exogenous arguments to nlinarith, which are necessary to close the goal. Note that

either one of the last two arguments in the sequence [sq_nonneg (b - a), sq_nonneg

(c - b), sq_nonneg (a - c), sq_nonneg (c - a)] can be omitted.

93

A.5.10.3 aime_1990_p15

Natural language Find ax5 + by5 if the real numbers a, b, x, and y satisfy the equations

ax+ by = 3,

ax2 + by2 = 7,

ax3 + by3 = 16,

ax4 + by4 = 42.

Note: the formalized statement in miniF2F provides the answer and asks for a proof of

it.

Model proof

theorem aime_1990_p15

(a b x y : R)

(h0 : a * x + b * y = 3)

(h1 : a * x^2 + b * y^2 = 7)

(h2 : a * x^3 + b * y^3 = 16)

(h3 : a * x^4 + b * y^4 = 42) :

a * x^5 + b * y^5 = 20 :=

begin

revert_all,

intros a b x y h3 h1 h2 h4,

ring_nf at h1 h2,

rw ← sub_eq_zero at h1,

nlinarith [sq_nonneg (x - y), sq_nonneg (a + b - 2),

sq_nonneg (x + y - (2:R)), sq_nonneg (a - b - 2)]

end

94

Comments The model is able to close a challenging AIME problem by providing cru-

cial exogenous arguments sq_nonneg (x - y) and sq_nonneg (x + y - (2 : R)) to

nlinarith, which are required to close the goal (while the other two can be removed).

95

A.5.10.4 mathd_train_algebra_217

Natural language Let f(x) = Ax+B and g(x) = Bx+ A, where A ̸= B.

If f(g(x))− g(f(x)) = B − A, what is A+ B? Note: the formalized statement in our

curriculum provides the answer and asks for a proof of it.

Model proof

theorem mathd_train_algebra_217

(a b : R)

(f g : R → R)

(h0 : ∀ x, f x = a * x + b)

(h1 : ∀ x, f x = b * x + a)

(h2 : a ̸= b)

(h3 : ∀ x, f (g x) - g (f x) = b - a) :

a + b = 0 :=

begin

revert_all,

intros a b,

intros f g,

contrapose!,

rintro 〈h0, 〈h1, h2〉〉,

use (0 : R),

simp only [sub_eq_iff_eq_add, h0, mul_zero] at *,

simp only [*, zero_add],

norm_num at h0

end

Comments The model is able to close the goal by contraposing, supplying a witness by

the use of use (0 : R) and finally leveraging the simp and norm_num. This example

demonstrates the model’s ability to chain multiple non-trivial steps of reasoning including

the generation of witnesses.

96

A.5.10.5 amc12b_2020_p6

Natural language For all integers n ≥ 9, the value of

(n+ 2)!− (n+ 1)!

n!

is always which of the following?

(A) a multiple of 4 (B) a multiple of 10 (C) a prime number

(D) a perfect square (E) a perfect cube.

Model proof

theorem amc12b_2020_p6

(n : N)

(h0 : 9 ≤ n) :

∃ x : N, (x:R)^2 = (nat.factorial (n + 2) -

nat.factorial (n + 1)) / nat.factorial n :=

begin

revert_all,

intros n hn,

use n + 1,

field_simp [nat.factorial_ne_zero, pow_succ'],

ring_exp

end

Comments The model exhibits here its ability to implicitly interpret factorial expressions

by guessing the correct answer with the use of use n + 1 and straightforwardly proving

its claim right after.

97

A.5.10.6 mathd_algebra_140

Natural language The expression 24x2 − 19x− 35 can be written as (Ax− 5)(2Bx+ C),

where A, B, and C are positive numbers. Find AB−3C. Note: the formalized statement

in miniF2F provides the answer and asks for a proof of it.

Model proof

theorem mathd_algebra_140

(a b c : R)

(h0 : 0 < a ∧ 0 < b ∧ 0 < c)

(h1 : ∀ x, 24 * x^2 - 19 * x - 35 =

(((a * x) - 5) * ((2 * (b * x)) + c))) :

a * b - 3 * c = -9 :=

begin

revert_all,

rintro a b c h1,

rw mul_comm,

rw ←sub_eq_zero,

field_simp,

rw sub_eq_add_neg,

rw ← eq_neg_iff_add_eq_zero,

rw [mul_comm, ← sub_eq_add_neg, sub_eq_add_neg,

← sub_eq_add_neg],

rw ←sub_eq_zero,

simp only [mul_add, neg_mul_eq_neg_mul_symm, mul_comm,

add_left_comm],

norm_num,

simp only [pow_two],

intro h0,

rw ← sub_eq_zero,

linarith [h1.2, h1.1, h0 3, h0 1, h0 2]

98

end

Comments The model mostly "struggles" to make progress up to the last line. There, it

presents us with the idea to specialize the statement given in h1 (which became h0 in

the process of the proof) at three consecutive natural numbers 1, 2, 3 which closes the

goal with nlinarith. This proof is interesting as it demonstrates the model’s ability to

evaluate symbolic expressions implicitly.

99

A.5.10.7 aime_1984_p1

Natural language Find the value of a2 + a4 + a6 + a8 + . . . + a98 if a1, a2, a3 . . . is an

arithmetic progression with common difference 1, and a1 + a2 + a3 + . . . + a98 = 137.

Note: the formalized statement in miniF2F provides the answer and asks for a proof of

it.

Model proof

theorem aime_1984_p1

(u : N → Q)

(h0 : ∀ n, u (n + 1) = u n + 1)

(h1 :
∑

k in finset.range 98, u k.succ = 137) :∑
k in finset.range 49, u (2 * k.succ) = 93 :=

begin

revert_all,

simp [finset.sum_range_succ],

ring,

simp [pow_succ, mul_comm, add_left_comm, add_assoc],

simp [two_mul],

rintro p,

revert p,

simp [add_comm],

intros p hp,

simp [hp], ring_nf,

intros,

nlinarith

end

Comments The model finds a rather short proof of the statement compared to typical

human formalizations (link).

100

https://gist.github.com/MantasBaksys/3efd5c0d42f440d16c09076db42822f2

A.5.10.8 aopsbook_v2_c8_ex1

Natural language Consider the sequence { n
n+1

} = 1
2
, 2

3
, 3

4
, etc. Prove that this sequence

tends to 1 as n→∞

Model proof

theorem aopsbook_v2_c8_ex1

(u : N → R)

(h0 : ∀ n, u n = n / (n + 1)) :

filter.tendsto u filter.at_top (N 1) :=

begin

revert_all,

simp [← nnreal.coe_one],

norm_cast,

intros,

revert h0,

assume h,

simp [tendsto_const_nhds, ← nnreal.coe_one, h],

revert u,

assume f,

norm_num,

rw tendsto_iff_norm_tendsto_zero,

assume H,

convert tendsto_norm_zero.comp

tendsto_one_div_add_at_top_nhds_0_nat,

funext n,

have h0 : (((n:R) + 1) : R) ̸= 0,

{ norm_cast, exact n.succ_ne_zero, },

rw H,

field_simp [h0, norm_neg],

ring,

101

rw [← sub_eq_zero],

simp [← sub_eq_zero],

simp [sub_eq_add_neg],

end

Comments An interesting example of a generated have statement, denoted by h0, which

is introduced as a cut in order to simplify the expression containing divisions by using

field_simp[h0, norm_neg] at a later step.

102

A.5.10.9 mathd_numbertheory_447

Natural language What is the sum of the units digits of all the multiples of 3 between 0

and 50? Note: the formalized statement in miniF2F provides the answer and asks for a

proof of it.

Model proof

theorem mathd_numbertheory_447 :∑
k in finset.filter (λ x, 3|x)

(finset.erase (finset.range 50) 0), (k % 10) = 78 :=

begin

refl

end

Comments Because the predicate λ x, 3|x is registered as decidable over N, we can state

the problem by using finset.filter, which is computable. Hence, refl is able to close

the goal.

103

Bibliography

[1] Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu.
Proof artifact co-training for theorem proving with language models. arXiv preprint
arXiv:2102.06203, 2021.

[2] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system
benchmark for formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110,
2021.

[3] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated
theorem proving. arXiv preprint arXiv:2009.03393, 2020.

[4] Thomas C. Hales. Formal proof. Notices of the AMS, 55(11):1370–1380, 2008.

[5] The Lean theorem prover authors. The Lean theorem prover authors.

[6] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo
de Moura. A metaprogramming framework for formal verification. Proc. ACM
Program. Lang., 1(ICFP):34:1–34:29, 2017.

[7] Mario Caneiro. The type theory of Lean.

[8] Gilles Barthe and Thierry Coquand. An introduction to dependent type theory. In
Gilles Barthe, Peter Dybjer, Luís Pinto, and João Saraiva, editors, Applied Semantics,
International Summer School, APPSEM 2000, Caminha, Portugal, September 9-15,
2000, Advanced Lectures, volume 2395 of Lecture Notes in Computer Science, pages
1–41. Springer, 2000.

[9] John Harrison. HOL Light: An Overview. In International Conference on Theorem
Proving in Higher Order Logics, pages 60–66. Springer, 2009.

[10] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison,
Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat
Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason M.
Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef
Urban, Ky Khac Vu, and Roland Zumkeller. A formal proof of the kepler conjecture.
CoRR, abs/1501.02155, 2015.

[11] John Harrison. Formal verification in industry. Intel Corporation, 1999.

[12] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François
Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, et al.
A machine-checked proof of the odd order theorem. In International Conference on
Interactive Theorem Proving, pages 163–179. Springer, 2013.

104

[13] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: formal verification of
an operating-system kernel. Commun. ACM, 53(6):107–115, 2010.

[14] Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for Pure
Mathematics, 2019. http://us.metamath.org/downloads/metamath.pdf.

[15] Jeremy Avigad. Understanding, formal verification, and the philosophy of mathematics.
Journal of the Indian Council of Philosophical Research, 27:161, 2010.

[16] Jeremy Avigad and John Harrison. Formally verified mathematics. Commun. ACM,
57(4):66–75, 2014.

[17] Edward Ayers. A Tool for Producing Verified, Explainable Proofs. PhD thesis, Univer-
sity of Cambridge, 2022.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[19] J. Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression
function. Annals of Mathematical Statistics, 23:462–466, 1952.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[21] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. URL https://s3-us-west-2. amazon-
aws. com/openai-assets/researchcovers/languageunsupervised/language understanding
paper. pdf, 2018.

[22] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

[23] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato,

105

Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws
for neural language models. arXiv preprint arXiv:2001.08361, 2020.

[25] Markus N. Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Language
modeling for formal mathematics. CoRR, abs/2006.04757, 2020.

[26] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated
theorem proving. CoRR, abs/2009.03393, 2020.

[27] Eser Aygün, Zafarali Ahmed, Ankit Anand, Vlad Firoiu, Xavier Glorot, Laurent
Orseau, Doina Precup, and Shibl Mourad. Learning to prove from synthetic theorems.
CoRR, abs/2006.11259, 2020.

[28] Vlad Firoiu, Eser Aygün, Ankit Anand, Zafarali Ahmed, Xavier Glorot, Laurent
Orseau, Lei Zhang, Doina Precup, and Shibl Mourad. Training a first-order theorem
prover from synthetic data. CoRR, abs/2103.03798, 2021.

[29] Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger B. Grosse. INT: an inequality
benchmark for evaluating generalization in theorem proving. CoRR, abs/2007.02924,
2020.

[30] Yuhuai Wu, Markus N. Rabe, Wenda Li, Jimmy Ba, Roger B. Grosse, and Christian
Szegedy. LIME: learning inductive bias for primitives of mathematical reasoning.
CoRR, abs/2101.06223, 2021.

[31] Karel Chvalovskỳ, Thibault Gauthier, and Josef Urban. First experiments with data
driven conjecturing. 2019.

[32] Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments.
CoRR, abs/2005.14664, 2020.

[33] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Mirek Olsák. Reinforcement
learning of theorem proving. CoRR, abs/1805.07563, 2018.

[34] Jan Jakubuv and Josef Urban. Hammering Mizar by learning clause guidance. CoRR,
abs/1904.01677, 2019.

[35] Bartosz Piotrowski and Josef Urban. Atpboost: Learning premise selection in binary
setting with ATP feedback. CoRR, abs/1802.03375, 2018.

[36] Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate
theorems. CoRR, abs/2002.07019, 2020.

106

[37] Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael
Norrish. Tactictoe: Learning to prove with tactics. J. Autom. Reason., 65(2):257–286,
2021.

[38] Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. The tactician - A seamless,
interactive tactic learner and prover for coq. In Christoph Benzmüller and Bruce R.
Miller, editors, Intelligent Computer Mathematics - 13th International Conference,
CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture
Notes in Computer Science, pages 271–277. Springer, 2020.

[39] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart
Wilcox. Holist: An environment for machine learning of higher order logic theorem
proving. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 454–463. PMLR, 2019.

[40] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, and Christian Szegedy. Learning to
reason in large theories without imitation. CoRR, abs/1905.10501, 2019.

[41] Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy.
Graph representations for higher-order logic and theorem proving. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 2967–2974. AAAI Press, 2020.

[42] Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. Tacticzero: Learn-
ing to prove theorems from scratch with deep reinforcement learning. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, 2021.

[43] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof
assistants. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 6984–6994. PMLR, 2019.

[44] Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul, and Sorin Lerner. Generating
correctness proofs with neural networks. In Koushik Sen and Mayur Naik, editors,
Proceedings of the 4th ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, MAPL@PLDI 2020, London, UK, June 15, 2020, pages
1–10. ACM, 2020.

[45] Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In
Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics
- 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020,

107

Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 315–323.
Springer, 2020.

[46] Daniel Whalen. Holophrasm: a neural automated theorem prover for higher-order
logic. CoRR, abs/1608.02644, 2016.

[47] Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate
theorems. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[48] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated
theorem proving. CoRR, abs/2009.03393, 2020.

[49] Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas
Polu. Proof artifact co-training for theorem proving with language models. CoRR,
abs/2102.06203, 2021.

[50] Freek Wiedijk. The De Bruijn factor, 2000.

[51] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. Open-
Review.net, 2021.

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural lan-
guage supervision. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763.
PMLR, 2021.

[53] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob
Jackson, Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy,
Benjamin Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John
Schulman, Dario Amodei, and Sam McCandlish. Scaling laws for autoregressive
generative modeling. CoRR, abs/2010.14701, 2020.

[54] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws
for neural language models. CoRR, abs/2001.08361, 2020.

108

[55] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and
Jakob von Raumer. The Lean theorem prover (system description). In Amy P. Felty
and Aart Middeldorp, editors, Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings,
volume 9195 of Lecture Notes in Computer Science, pages 378–388. Springer, 2015.

[56] Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon Fernández Mir,
and Scott Morrison. Schemes in Lean. Experimental Mathematics, 0(0):1–9, 2021.

[57] Jesse Michael Han and Floris van Doorn. A formal proof of the independence of the
continuum hypothesis. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 353–366. ACM, 2020.

[58] Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising perfectoid spaces. In
Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,
LA, USA, January 20-21, 2020, pages 299–312. ACM, 2020.

[59] Peter Scholze. Liquid tensor experiment. https://xenaproject.wordpress.com/
2020/12/05/liquid-tensor-experiment/, 2020. Formalization available at https:
//github.com/leanprover-community/lean-liquid.

[60] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the
calculus of constructions. In Michael G. Main, Austin Melton, Michael W. Mislove,
and David A. Schmidt, editors, Mathematical Foundations of Programming Semantics,
5th International Conference, Tulane University, New Orleans, Louisiana, USA, March
29 - April 1, 1989, Proceedings, volume 442 of Lecture Notes in Computer Science,
pages 209–228. Springer, 1989.

[61] mathlib. The lean mathematical library. In Jasmin Blanchette and Catalin Hritcu,
editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages
367–381. ACM, 2020.

[62] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[63] François Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathe-
matical computations from examples. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

[64] Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, and
Bernd Finkbeiner. Teaching temporal logics to neural networks. In 9th International

109

https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://github.com/leanprover-community/lean-liquid
https://github.com/leanprover-community/lean-liquid

Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021.

[65] Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark
for high-level mathematical reasoning. In International Conference on Learning
Representations, 2021.

[66] Markus Norman Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathemat-
ical reasoning via self-supervised skip-tree training. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[67] Yuhuai Wu, Markus N. Rabe, Wenda Li, Jimmy Ba, Roger B. Grosse, and Christian
Szegedy. LIME: learning inductive bias for primitives of mathematical reasoning.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages 11251–11262. PMLR, 2021.

[68] Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of
lemmas. J. Symb. Comput., 69:109–128, 2015.

[69] Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Lemmatization for stronger reasoning
in large theories. In Carsten Lutz and Silvio Ranise, editors, Frontiers of Combining
Systems - 10th International Symposium, FroCoS 2015, Wroclaw, Poland, September
21-24, 2015. Proceedings, volume 9322 of Lecture Notes in Computer Science, pages
341–356. Springer, 2015.

[70] Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. Deep generation of
coq lemma names using elaborated terms. In Nicolas Peltier and Viorica Sofronie-
Stokkermans, editors, Automated Reasoning - 10th International Joint Conference,
IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of
Lecture Notes in Computer Science, pages 97–118. Springer, 2020.

[71] Cezary Kaliszyk, François Chollet, and Christian Szegedy. Holstep: A machine learning
dataset for higher-order logic theorem proving. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[72] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A
learning environment for theorem proving. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[73] Cezary Kaliszyk and Josef Urban. Mizar 40 for Mizar 40. J. Autom. Reason., 55(3):245–
256, 2015.

110

[74] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart
Wilcox. Holist: An environment for machine learning of higher-order theorem proving
(extended version). CoRR, abs/1904.03241, 2019.

[75] Joseph Palermo, Edward Ye, and Jesse Michael Han. Synthetic proof term data
augmentation for theorem proving with language models. In Proceedings of the 7th
Conference on Artificial Intelligence and Theorem Proving, 2022. To appear.

[76] William A Howard. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

[77] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo
de Moura. A metaprogramming framework for formal verification. Proc. ACM
Program. Lang., 1(ICFP), August 2017.

[78] The mathlib Community. The Lean mathematical library. In Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2020, page 367–381, New York, NY, USA, 2020. Association for Computing Machinery.

[79] Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko
Mitamura, and Eduard H. Hovy. A survey of data augmentation approaches for NLP.
CoRR, abs/2105.03075, 2021.

[80] Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ronan
Le Bras, Ji-Ping Wang, Chandra Bhagavatula, Yejin Choi, and Doug Downey. Gener-
ative data augmentation for commonsense reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages 1008–1025, Online, November
2020. Association for Computational Linguistics.

[81] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean Theorem Prover (System Description). In Amy P Felty and Aart
Middeldorp, editors, Automated Deduction - CADE-25, pages 378–388, Cham, 2015.
Springer International Publishing.

[82] Juan Ramos et al. Using tf-idf to determine word relevance in document queries.
In Proceedings of the first instructional conference on machine learning, volume 242,
pages 29–48. Citeseer, 2003.

[83] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling.
CoRR, abs/1904.01038, 2019.

[84] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neu-
ral networks. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence,
and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 3104–3112, 2014.

111

[85] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin,
and Ilya Sutskever. Formal mathematics statement curriculum learning. arXiv preprint
arXiv:2202.01344, 2022.

[86] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[87] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[88] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

[89] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervision. arXiv preprint
arXiv:2103.00020, 2021.

[90] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114.
PMLR, 2019.

[91] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. arXiv preprint
arXiv:2102.12092, 2021.

[92] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4401–4410, 2019.

[93] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

[94] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815, 2017.

[95] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.

112

Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680,
2019.

[96] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev,
et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

[97] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[98] Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén, François Chollet,
and Josef Urban. DeepMath—deep sequence models for premise selection. In Advances
in Neural Information Processing Systems, pages 2235–2243, 2016.

[99] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem
proving by deep graph embedding. In Advances in Neural Information Processing
Systems, pages 2786–2796, 2017.

[100] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L Dill. Learning a sat solver from single-bit supervision. arXiv preprint
arXiv:1802.03685, 2018.

[101] Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network
guided proof search. arXiv preprint arXiv:1701.06972, 2017.

[102] Vlad Firoiu, Eser Aygun, Ankit Anand, Zafarali Ahmed, Xavier Glorot, Laurent
Orseau, Lei Zhang, Doina Precup, and Shibl Mourad. Training a first-order theorem
prover from synthetic data. arXiv preprint arXiv:2103.03798, 2021.

[103] Markus N Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical
reasoning via self-supervised skip-tree training. arXiv preprint arXiv:2006.04757, 2020.

[104] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A
learning environment for theorem proving. arXiv preprint arXiv:1806.00608, 2018.

[105] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof
assistants. arXiv preprint arXiv:1905.09381, 2019.

[106] Josef Urban and Jan Jakubův. First neural conjecturing datasets and experiments.
arXiv preprint arXiv:2005.14664, 2020.

[107] Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C Paulson. Modelling high-level mathe-
matical reasoning in mechanised declarative proofs. arXiv preprint arXiv:2006.09265,
2020.

113

[108] Lean theorem prover. https://leanprover.github.io/about/.

[109] Kevin Buzzard, Johan Commelin, and Patrick Massot. Lean perfectoid spaces. https:
//leanprover-community.github.io/lean-perfectoid-spaces/, 2019.

[110] Peter Scholze. Liquid tensor experiment. https://xenaproject.wordpress.com/
2020/12/05/liquid-tensor-experiment/, 2020.

[111] Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, and Roger Grosse. Int: An inequal-
ity benchmark for evaluating generalization in theorem proving. arXiv preprint
arXiv:2007.02924, 2020.

[112] Sandor Lehoczky and Richard Rusczyk. The Art of Problem Solving, Volume 1: the
Basics. ISBN:978-0-9773045-6-1.

[113] Sandor Lehoczky and Richard Rusczyk. The Art of Problem Solving, Volume 2: and
Beyond. ISBN:978-0-9773045-8-5.

[114] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving
with the math dataset. arXiv preprint arXiv:2103.03874, 2021.

[115] Konrad Czechowski, Tomasz Odrzygóźdź, Marek Zbysiński, Michał Zawalski, Krzysztof
Olejnik, Yuhuai Wu, Lukasz Kucinski, and Piotr Miłoś. Subgoal search for complex
reasoning tasks. Advances in Neural Information Processing Systems, 34, 2021.

[116] Thibault Gauthier and Cezary Kaliszyk. Sharing HOL4 and HOL light proof knowledge.
In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume
9450 of Lecture Notes in Computer Science, pages 372–386. Springer, 2015.

[117] Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural
translation of informal to formal mathematics. In Florian Rabe, William M. Farmer,
Grant O. Passmore, and Abdou Youssef, editors, Intelligent Computer Mathematics -
11th International Conference, CICM 2018, Hagenberg, Austria, August 13-17, 2018,
Proceedings, volume 11006 of Lecture Notes in Computer Science, pages 255–270.
Springer, 2018.

[118] Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, and Josef Urban. Exploration
of neural machine translation in autoformalization of mathematics in Mizar. In
Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,
LA, USA, January 20-21, 2020, pages 85–98. ACM, 2020.

[119] M. Ganesalingam and W. T. Gowers. A fully automatic theorem prover with human-
style output. J. Autom. Reason., 58(2):253–291, 2017.

114

https://leanprover.github.io/about/
https://leanprover-community.github.io/lean-perfectoid-spaces/
https://leanprover-community.github.io/lean-perfectoid-spaces/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Test loss, test perplexity, and test accuracy (if appropriate) of the best model checkpoint trained on each dataset.
	2. Test loss, test perplexity, and test accuracy of the best model checkpoint trained on each dataset with different levels of dropout. "Bootstrap X" rows indicate test performance after training on cond_train_bootstrap. "Augmented X" rows indicate test performance after training on cond_train_aug. "X Gap" rows are computed by taking the absolute difference between "Augmented X" and "Bootstrap X".
	3. Mix and source of data involved in the updated WebMath pre-training.
	4. Performance of 0 and 1 on mathlib-valid and miniF2F-valid compared to PACT Lean GPT-f as reported in han2021proof,zheng2021minif2f. All models have the same architecture. 0 is sampled using cumulative logprob priority best-first search. 1 is sampled using best-first search based on the proofsize objective. We report our setup (d=512 expansions and e=8 tactic samples per expansions) as well as the setups used in han2021proof,zheng2021minif2f to control for compute. We also report the performance of 1 on mathlib-valid when trained using the outcome objective from polu2020generative as an ablation of our proposed proofsize objective.
	5. Performance of 1 (value-function based search), 9mathlib (expert iterated on mathlib-train) and 9full (expert iterated on our full curriculum) on mathlib-{valid, test} and miniF2F-{valid, test}. All proof searches are run with d=512 and e=8.
	6. an-etd-1.cpt

	List of Figures
	1. Auto-regressive objectives used for each task described in subsubsection 3.1.2.1. Placeholders represented with brackets (such as <TacticState>) are substituted by the context-completion pairs from each datasets in the prompts above. Each task is presented to the model with its respective keyword (PROOFSTEP, NEXTLEMMA,...). We wrap the completions of mix1 tasks (with apply(...) and exact(...) respectively) as a hint that they are related to the respective Lean tactics; this is not directly possible for the other tasks.
	2. Comparison of pre-training and co-training on mix-1 and mix-2. We use > to separate distinct pre-training phases and + associatively indicates that a co-training mixture. As an example, WebMath > mix2 > mix1 + tactic signifies a model successively pre-trained on WebMath then mix2 and finally co-trained as a fine-tuning step on mix1 and tactic. Columns mix1, mix2, tactic report the optimal validation loss achieved on these respective datasets. We provide a detailed description of experiment runtime and computing infrastructure in section A.2. ``Tokens elapsed'' means the number of tokens the model was trained on.
	3. Validation losses achieved in the pre-training and co-training setups without WebMath pre-training. See Figure 2 for a description of the columns and the models nomenclature used. Due to technical constraints, we are unable to provide pass-rates for some of the models. We use > to separate distinct pre-training phases and + associatively indicates that a co-training mixture. ``Tokens elapsed'' means the number of tokens the model was trained on.
	4. Validation losses and pass-rates achieved for various model sizes using PACT. See Figure 2 for a description of the columns. The setup used is WebMath > mix1 + mix2 + tactic. We use > to separate distinct pre-training phases and + associatively indicates that a co-training mixture. ``Tokens elapsed'' means the number of tokens the model was trained on.
	5. As sampling temperature is increased, both typecheck pass rate and similarity of each type-correct generated example to the most similar training example (i.e. "max cosine similarity") decreases. Note that the mean "max cosine similarity" is the average observed max cosine similarity across the type-correct generated examples with a given temperature.
	6. pass@1 (plain) and pass@8 (dotted) for mathlib-valid and minif2f-valid when running eight expert iterations with St set to be the statements in mathlib-train. The x-axis is log-scaled. It corresponds to the indices of the k models and serves as a good proxy to compute (the amount of test-time and train-time compute per iteration being fixed). The y-axis is scaled linearly and simply shifted between the two graphs (spans an equal range).
	7. Cumulative pass rate for our expert iteration loop as well as a sample only loop where we skip re-training the model between iterations. The adjusted compute line is computed by fitting the sample only curve and shifting it to approximate a setup where we would focus all the additional compute used by expert iteration (sampling training data from mathlib-train as well as re-training models at each iteration) towards running proof searches against mathlib-valid.
	8. Cumulative pass rate for our expert iteration loop as well as a sample only loop where we skip re-training the model between iterations. Pass rates are reported for each value of ND (pooling together 0 NS 7).
	9. Top: cumulative pass rate on miniF2F-valid for our expert iteration loop using our full curriculum (mathlib-train, synth-ineq and miniF2F-curriculum) compared to the expert iteration loop from section subsubsection 4.0.4.6. The total number of attempts per iteration in our full loop is 25k + 5.6k + 8*327 33.2k, which means the total compute deployed is higher than in the mathlib-train only loop (25k). We therefore also report in dotted a mathlib-train only loop, taking a=2, whose total number of attempts per iteration is 50k. Bottom: pass@1 (plain) and pass@8 (dotted) for our expert iteration loop using our full curriculum (mathlib-train, synth-ineq and miniF2F-curriculum) compared to the expert iteration loop from section subsubsection 4.0.4.6.
	10. A sample of correct top-1 guesses by our best model wm-to-tt-m1-m2 on the theorem naming task. We performed this experiment on the future-mathlib evaluation set, which comprises entirely unseen theorems added to mathlib only after we last extracted training data.
	11. A sample of incorrect guesses by our best model wm-to-tt-m1-m2 on the theorem naming task. We performed this experiment on the future-mathlib evaluation set, which comprises entirely unseen theorems added to mathlib only after we last extracted training data. Most of the top-8 guesses displayed in the above table are very similar to the ground truth, in some cases being equivalent up to permutation of underscore-separated tokens. Note that for the first example, the concept of ordnode was not in the training data whatsoever and all predictions are in the syntactically similar ordinal namespace.
	12. A breakdown of theorem proving success rate on the test set for wm-to-tt-m1-m2, wm-to-tt-m1, wm-to-tt, and the tidy baseline across top-level modules in Lean's mathlib. We see that wm-to-tt-m1-m2 mostly dominates wm-to-tt-m1 and the models trained using PACT dominate the model wm-to-tt trained on human tactic proof steps.

	Preface
	1.0 Introduction
	2.0 Background
	2.1 Formal theorem proving
	2.1.1 Systems for formal theorem proving

	2.2 Deep learning and generative language modeling
	2.2.1 Autoregressive sequence modeling
	2.2.2 Transformer language models

	2.3 Prior and related work
	2.4 Conclusion

	3.0 Data augmentation using proof artifacts
	3.1 Proof artifact co-training for theorem proving with language models
	3.1.1 Introduction
	3.1.2 Background and related work
	3.1.2.1 The LeanStep datasets and machine learning environment
	3.1.2.2 Machine learning environment

	3.1.3 Experiments
	3.1.4 Discussion
	3.1.5 Acknowledgments

	3.2 Synthetic proof term data augmentation
	3.2.1 Introduction and background
	3.2.1.1 Comparison to related work

	3.2.2 Methodology
	3.2.2.1 Bootstrap Datasets
	3.2.2.2 Creating Synthetic Datasets

	3.2.3 Experimental Setup
	3.2.3.1 Splitting the Bootstrap Data
	3.2.3.2 Proof Term Language Modelling Experiments

	4.0 Statement curriculum learning and applications to Olympiad theorem proving
	4.0.1 Introduction
	4.0.1.1 miniF2F benchmark
	4.0.1.2 Contribution

	4.0.2 Related Work
	4.0.3 Formal Environment
	4.0.3.1 lean-gym
	4.0.3.2 Proof datasets extraction

	4.0.4 Expert Iteration
	4.0.4.1 Model
	4.0.4.2 Pre-Training
	4.0.4.3 Training objectives
	4.0.4.4 Bootstrapping
	4.0.4.5 Iterated sampling and training
	4.0.4.6 Expert iteration on mathlib-train

	4.0.5 Statement curriculum learning
	4.0.5.1 Synthetic inequality generator
	4.0.5.2 Expert iteration on synthetic inequality statements

	4.0.6 Targeting miniF2F
	4.0.6.1 Formalization effort
	4.0.6.2 Transfer to miniF2F
	4.0.6.3 Results

	4.0.7 Discussion
	4.0.7.1 Model Size
	4.0.7.2 Qualitative analysis of proofs
	4.0.7.3 Limitations

	5.0 Conclusions
	A.1 Additional materials for section 3.1
	A.1.1 Additional background for PACT

	A.2 Datasets for section 3.1
	A.2.1 Pre-training datasets
	A.2.2 Dataset sizes
	A.2.3 Example datapoints

	A.3 Experiments for section 3.1
	A.3.1 Chained tactic prediction
	A.3.2 Theorem naming case study
	A.3.3 Test set evaluation breakdown by module
	A.3.4 Baseline description
	A.3.5 Computational resource estimates

	A.4 Example proofs for section 3.1
	A.4.1 lie_algebra.morphism.map_bot_iff
	A.4.2 primrec.of_equiv
	A.4.3 real.tan_eq_sin_div_cos
	A.4.4 sym2.is_diag_iff_proj_eq
	A.4.5 norm_le_zero_iff

	A.5 Additional materials for chapter 4
	A.5.1 Lean-gym
	A.5.2 Synthetic inequalities
	A.5.2.1 List of inequality composition theorems
	A.5.2.2 Examples of synthetic inequalities

	A.5.3 ND=0 NS=0
	A.5.4 ND=0 NS=4
	A.5.5 ND=4 NS=4
	A.5.6 Example proofs from mathlib-train
	A.5.7 comap_eq_of_inverse
	A.5.8 sum_range_sub_sum_range
	A.5.9 prod_inv_distrib
	A.5.10 Example proofs from minif2f-{test,valid,curriculum}
	A.5.10.1 imo_1961_p1
	A.5.10.2 imo_1964_p2
	A.5.10.3 aime_1990_p15
	A.5.10.4 mathd_train_algebra_217
	A.5.10.5 amc12b_2020_p6
	A.5.10.6 mathd_algebra_140
	A.5.10.7 aime_1984_p1
	A.5.10.8 aopsbook_v2_c8_ex1
	A.5.10.9 mathd_numbertheory_447

	Bibliography

