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Abstract 

Using Quantum Chemical Features in a Neural Network to Improve Aqueous Solubility 

Prediction 

Brett Jeffrey Ondich, MS 

University of Pittsburgh, 2022 

Aqueous solubility is a vital molecular property in numerous fields, such as drug discovery 

and material design. Accurate prediction of molecular aqueous solubility can reduce the number 

of potential candidates prior to experimental analysis. Shrinking the chemical search space can 

result in streamlining the selection process, saving valuable time and resources. Recent 

developments have increased interests in utilizing machine learning techniques to computationally 

predict aqueous solubility rather than experimentation. One such technique is the Molecular 

Attention Transformer (MAT). Transformers are a special case of graph neural networks (GNN). 

GNNs utilize inputs in the form of graphs that have data stored as nodes and edges, which can be 

thought of as atoms and bonds, respectively. An important aspect of building a GNN is determining 

which features to use as descriptors for the nodes and edges. This paper investigates the effects of 

including quantum chemical data as node features in a GNN model. The hypothesis was that by 

including this quantum data, the model will be able to better discriminate between compounds of 

high similarity and more accurately predict their aqueous solubility. However, there was no 

significant improvement in model performance when the quantum data was included in the model. 

The accuracy of the quantum data was analyzed to determine if the performance did not improve 

due to the data or the model. It was determined that the solvation models being used to compute 

the quantum data were unable to produce data at a level of accuracy to enable the model to benefit 

from the inclusion of the quantum features. Furthermore, a recently published model pretrained on 
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quantum data was compared to the base model being used to determine if including quantum 

features improves performance. The quantum model outperformed the base model, further 

showing that including quantum features should improve model performance but requires quality 

quantum data. 
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1.0 Introduction 

In this work, the use of quantum chemical data as node features in a graph neural network 

to improve the accuracy of an aqueous solubility model will be tested. It is believed that by 

including more relevant node features, the graph neural network will be able to better discern 

physically similar compounds and thus more accurately predict the aqueous solubility of the 

compound. The improved model can then be used to effectively screen potential candidates based 

on molecular aqueous solubility, which is important in fields such as drug discovery and material 

design. 

1.1 Importance 

The total chemical space has been estimated to be 10180 compounds.1 This means that the 

number of possible compounds is more than twice the number of atoms in the universe. Current 

molecular screening libraries are nowhere close to reaching this number but continue to rapidly 

increase. As the size of molecular screening libraries increase, the ability to accurately predict 

molecular properties becomes vital for fields such as drug discovery and material design. 

Based on Lipinski’s rule-of-five for oral bioavailability, the “drug-like” chemical search 

space has been estimated at 1060 organic molecules.1 Ideally, one would be able to directly measure 

the molecular properties of a given compound. However, this approach is slow and expensive. 

Pharmaceutical research and development of new molecules entails substantial investment with 

usually over 10 years until patients can access the new products.2 Couple this slow approach with 
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the fact that the overall failure rate in drug development is over 96%, including a 90% failure rate 

during clinical development3, and it is not a surprise that the mean capitalized research 

development investment to bring a new drug to market is estimated to be around $1.3 billion4. 

A few of the unfortunate consequences of this high cost of research and development are 

significantly inflated prices of the few successful drugs, which are priced in order to recoup the 

incurred cost of historical failures, and the discouraging of real innovation where the 

developmental risk is greater.3 Many of these failures could have been potentially avoided by 

accurately predicting a clinically relevant property of the compound, such as aqueous solubility. 

Thereby, narrowing down the vast chemical search space to candidates that are more likely to 

succeed. 

1.2 General Solubility Equation 

The solubility of a solid in water depends on two factors: the crystallinity of the solute and 

the interaction of the solute with water. An early attempt at predicting the aqueous solubility of a 

molecule is the general solubility equation (GSE)5, which can be used to estimate the aqueous 

solubility of a set of organic nonelectrolytes. The GSE is a simple way of estimating the aqueous 

solubility since the only inputs used are the Celsius melting point (MP) and the octanol water 

partition coefficient (Kow).5 The GSE does not use any fitted parameters and thus does not require 

a training set containing analogs of test compounds.5  

The revised GSE proposed by Jain and Yalkowsky6 utilizes five fitted parameters, 

decreasing the average absolute error from 0.56 to 0.43, resulting in a more accurate version than 

the original GSE. However, it is clear that until an adequate description of the lattice energy (or 
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the crystalline state) of the material is available, progress on predicting solubilities ab initio will 

be limited.7 The differences between crystalline and amorphous solubility can be large, which can 

have significant effects on the observed pharmacokinetics of the formulation.7 This effect is often 

used to increase the solubility of a compound during drug design.8 

1.3 Solubility Challenges 

The motivation for improving prediction capability of a molecule’s aqueous solubility for 

pharmaceutical companies can be clearly seen when Pfizer Institute for Pharmaceutical Materials 

Science & Unilever Centre for Molecular Informatics issued a challenge to the cheminformatics 

community to develop a method to better predict aqueous solubility.7 The challenge believed that 

serious deficiencies in the consistency and reliability of solubility data found in literature was one 

of the main reasons solubility is such a difficult property to predict.7  

Therefore, a training set containing the solubility values of 100 druglike molecules 

measured using a technique called chasing equilibrium (CheqSol). CheqSol produces a precipitate 

after several cycles, switching back and forth between a supersaturated and a subsaturated solution. 

The final precipitate obtained is thermodynamically driven and the solubility data are highly 

reproducible with an associated error of approximately 0.05 log units.7  

Using this high-precision set of 100 molecules as a training set, contestants attempted to 

predict the aqueous solubility of 32 novel druglike molecules. Contestants employed the entire 

spectrum of approaches, including multiple linear regression (MLR) and random forest regression 

(RFR), available at the time (2008). However, no one approach distanced itself from the other 

methods.9 
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Ten years after the initial solubility challenge, another challenge was issued to examine the 

extent to which computational methods had improved.10 One of the main differences between the 

first and second challenge was that participants were allowed to use their own training sets, as long 

as the training set did not contain any of the test molecules. The findings of the second challenge 

concluded that no improvement in the prediction of solubility is recognizable and that the new 

methods perform equally well as older ones 11, clear indication there is more work to be done. The 

challenge did not limit the participants to any particular model, but all competitors did submit 

predictions based on quantitative structure-property relationship (QSPR) approaches. The main 

type of model used were artificial neural networks, which accounted for 30% of the models 

submitted.11 

1.4 Neural Networks 

While the solubility challenge is no longer accepting entries, the challenge of predicting 

aqueous solubility is still resulting in new methods being created. A recently published machine 

learning algorithm for predicting a molecule’s aqueous solubility is SolTranNet.12 SolTranNet is 

an optimized fork of the molecule attention transformer (MAT).13 MAT is a transformer that is 

adapted to chemical molecules by augmenting the self-attention with inter-atomic distances and 

molecular graph structure.13 Transformers are a special case of graph neural network (GNN). 

A GNN utilizes graphs as inputs with nodes and edges depicting the relationship between 

a group of entities. SolTranNet is designed to create a 2D graph representation of a molecule from 

the molecule’s simplified molecular input line entry system (SMILES) representation.12 Molecules 

are transformed into a graph representation by treating the atoms as nodes and the bonds between 
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the nodes as edges. These nodes and edges can be further described using an array of descriptors, 

which can help the neural network further learn about the graph.14 Descriptors resulting from 

quantum chemical calculations could be of use improving the ability of SolTranNet to predict a 

compound’s aqueous solubility. 

1.5 Solvation Models 

Quantitative prediction of thermodynamics properties of solute molecules requires an 

accurate description of the solvent. To accomplish this, a solvation model may either have explicit  

solvent molecules or an implicit description of the solvent environment.15 Implicit, or continuum, 

denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface 

tension at the solute-solvent boundary.16 It is because of this structureless continuum, that the 

number of interacting particles and the number of degrees of freedom of a system are significantly 

reduced, considering that explicit solvent molecules can contribute over 90% of atoms in a 

simulated system. The relatively high computational cost of explicit solvent models has resulted 

in implicit solvent models remaining popular.15 The solvation model allows the quantum chemistry 

calculations to include the interactions between solvents and the quantum solute.  

Three implicit solvation models that can be used for quantum chemical calculations are the 

analytical linearized Poisson-Boltzmnn (ALPB) model, generalized Born model with surface area 

contributions (referred to as GBSA), and the solvent model based on density (SMD). The solvation 

model ALPB is a robust and efficient method to implicitly account for solvation effects in modern 

semiempirical quantum mechanics and force fields. When used to calculate hydration free energies 

of small molecules, ALPB is nearing the accuracy of more sophisticated explicitly solvated 
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approaches, with a mean absolute deviation of 1.4 kcal/mol compared to the experiment.17 The 

generalized Born models are widely used for molecular dynamics simulations of proteins and 

nucleic acids. These approaches model hydration effects and provide solvent-dependent forces 

with efficiencies comparable to molecular mechanics calculations on the solute alone18. 

The remainder of this paper will detail the methodology that was utilized to test the 

hypothesis that including quantum chemical data as node features in a neural network will improve 

the model’s ability to predict aqueous solubility. The results of the work will then be shown along 

with a discussion of the results. Finally, the conclusions that can be drawn from the results and the 

potential future work will be stated. 
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2.0 Methods 

2.1 Quantum Chemical Data Generation 

For this project, the AqSolDB 19 was the primary data set utilized for training the machine 

learning models, as it was the largest publicly available data set. AqSolDB spans a wide range of 

solubility values and is collated from differing data sets, however it was only screened for identical 

molecules and did not verify whether those solubilities were measured in buffered conditions or 

water or at what pH the measurement was taken. This is especially noteworthy as these differing 

conditions can change the measurement by orders of magnitude. Nonetheless, this dataset was 

used since it has been observed that neural network models tend to perform better with larger data 

sets, even if the data contains more noise20. Only the SMILES strings and reported solubilities (log 

S, S in mol/L) were utilized. 

From the compounds’ SMILES, a 3-dimensional structure was generated by using RDkit 

21. The conformer was initially optimized by minimizing the geometry by the application of a

molecular mechanics force field. RDkit 21 uses Merck molecular force field (MMFF) family of 

force fields 22. After the conformers are generated using distance geometry, the ETKDG method 

of Riniker and Landrum 23, which uses torsion angel preferences from the Cambridge Structural 

Database, is used to correct the conformers. Since RDkit merely provides quick 3D structures, it 

is not intended to be a replacement for a “real” conformer analysis tool. For this reason, the 

Conformer-Rotamer Ensemble Sampling Tool (CREST) 24 was utilized to generate the favored 

conformation. CREST utilizes GFN2-xTB, which is an extended semiempirical tight-binding 
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model, to provide the thermally accessible ensemble of minimum-energy structures 25, which is 

the most likely form the compounds will be in once in solution.  

Once the minimum-energy structure of the compound was determined by CREST, it was 

introduced into an implicit solvent model using the quantum chemistry program xTB 26. The 

geometry of the conformer was further optimized using xTB, which has a built-in geometry 

optimizer called approximate normal coordinate rational function optimizer (ANCopt), which uses 

a Lindh-type model Hessian to generate an approximate normal coordinate system 26. Using water 

as the solvent, the generalized Born with solvent accessible surface area contributions (GBSA) 26 

solvation model was used to calculate the following atomic quantum chemical variables: partial 

charge, coordination number, dispersion coefficient, and polarizability. The values for the atomic 

quantum chemical variables were then included as node features during training for the aqueous 

solubility prediction tool, SolTranNet 12. 

2.2 Quantum Data Accuracy Analysis 

Different combinations of solvation models and density functional were used to compute 

solvation free energies to compare to experimentally determined solvation free energies. This was 

done to determine whether the quantum chemical calculation data being used was accurate enough 

to enable the machine learning algorithm to learn and thus more accurately predict a compound’s 

aqueous solubility. Three different solvation models were compared to investigate the accuracy of 

the computed solvation free energy, GBSA and ALPB along with the universal solvation model 

based on density (SMD) 16. GBSA and ALPB were utilized in xTB, while SMD was available in 

the quantum chemistry program ORCA 27. For this, both the geometries optimized by CREST and 
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the geometries provided in the MNSOL database 28 were used to represent the two tested 

functionals, GFN2-xTB and M06-2X, respectively. The MNSol database consists of a collection 

of 3037 experimental free energies of solvation for 790 unique solutes in 92 solvents, including 

water. For SMD in ORCA, the solvation free energy was calculated by taking the difference 

between the gas-phase energy and the SMD energies.  

2.3 Published Model Comparison 

The generalization of two published models, SolTranNet and SolProp_ML 29 was also 

investigated. SolProp_ML is said to be a more robust model since it is the first modeling tool that 

can predict the solid solubility for a broad range of solvents and temperatures 29. Vermeire et al. 

utilize the ability of machine learning to transfer learn to pretrain the deep neural network on two 

databases, CombiSolv-QM and CombiSolv-Exp, and then fine tune the network with experimental 

data 30. They argue that the transfer learning approach improves the performance on higher molar 

mass solutes compared to direct training of the deep neural network on experimental data 30. The 

comparison consisted of predicting the aqueous solubility of all the compounds in the AqSolDB 

dataset and the MNSOL dataset using the two models and then comparing the computed aqueous 

solubilities to the experimentally determined aqueous solubilities. 
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3.0 Results 

3.1 Quantum Data Node Features 

The performance of SolTranNet with and without the additional quantum chemical node 

features was measured using the coefficient of determination and the root-mean-square-error 

(RMSE). The model with quantum chemical node features is referred to as quantum SolTranNet, 

while the model without quantum chemical node features is referred to as SolTranNet. The two 

models were trained for 2000 training epochs and then used to predict the aqueous solubility of a 

withheld training set. Quantum SolTranNet predicted the testing set at an RMSE of 0.926 and a 

coefficient of determination is 0.838. SolTranNet predicted with an RMSE of 0.927 and coefficient 

of determination of 0.848. The linear correlation between the computed aqueous solubilities and 

experimental aqueous solubilities of Quantum SolTranNet and SolTranNet can be seen in Figures 

1 and 2, respectively. 
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Figure 1. Comparison of aqueous solubility values predicted by Quantum SolTranNet to experimentally 

derived values. 



12 

Figure 2. Comparison of aqueous solubility values predicted by SolTranNet to experimentally derived values. 

Two other versions of SolTranNet were trained for 2000 training epochs and then used to 

predict the aqueous solubility of a withheld testing set. One version of SolTranNet included an 

additional node feature that determined how many of an atom’s heavy neighbors were halogens. 

The halogen SolTranNet model had an RMSE of 0.970 and a coefficient of determination of 0.832. 

The other version of SolTranNet was a result of a modification to the existing identity feature node. 

This node identified what element the atom was in the molecule. One element that was missing 

from the identity list was silicon, which is present in the AqSol database. The silicon SolTranNet 
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model had an RMSE of 0.949 and a coefficient of determination of 0.838. A summary of the 

performances of the four different versions of the SolTranNet model can be found in Table 1. 

Table 1. Performance of different versions of SolTranNet. 

Model 

Training Testing 

RMSE R2 RMSE R2

SolTranNet 0.953 0.829 0.927 0.848 

Quantum 

SolTranNet 
0.967 0.824 0.926 0.838 

SolTranNet w/ 

Silicon Identity 

0.908 0.851 0.949 0.838 

SolTranNet w/ 

Halogen Node 
0.919 0.849 0.970 0.832 

3.2 Quantum Data Accuracy Analysis 

The accuracy of the six different combinations of continuum solvation model and density 

functional was compared using RMSE, coefficient of determination, and mean absolute deviation. 

The solvation free energy of 291 compounds from the MNSOL database was predicted using each 

combination of solvation model and density functional. The computed solvation free energy was 

then compared to the experimentally determined solvation free energy provided in the MNSOL 

database. The SMD model performed the best when compared to the other two models, ALPB and 
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GBSA. The density functional did not seem to affect the performance of the solvation model based 

on the results shown in Table 2.  

Table 2. RMSE and R2 values for different combinations of solvation model and density functional.  

3.3 Published Model Analysis 

SolTranNet was compared to another recently published model, SolProp. Both models are 

able to predict a molecule’s aqueous solubility, but SolProp is also able to predict a molecule's 

solvation free energy. The first test of SolProp was to predict the solvation free energy of the 

compounds from the MNSOL database. The results can be seen in Figure 4. SolProp has excellent 

correlation between the predicted and experimental value with a coefficient of determination of 

0.987 and a great RMSE of 0.486. 

Solvation Model Density Functional RMSE R2  MAD 

ALPB GFN2 4.80 0.56 4.01 

ALPB M062X 4.66 0.66 5.04 

GBSA GFN2 3.48 0.51 3.29 

GBSA M062X 3.48 0.64 4.18 

SMD GFN2 1.71 0.84 3.08 

SMD M062X 1.68 0.86 3.31 



15 

Figure 3. Comparison of solvation free energies predicted by the SolProp model and the experimentally 

determined solvation free energies. 

As stated above, both models are able to predict a molecule’s aqueous solubility. Therefore, 

both models were used to predict the aqueous solubility of the molecules in the AqSol database. 

SolProp is only able to predict aqueous solubility on neutral solutes, therefore the charged solutes 

were removed from the AqSol database. SolProp predicted the aqueous solubility at a rate of 618 

ms per molecule and had a RMSE of 0.460 and coefficient of determination of 0.961. SolTranNet 

had a lower RMSE and coefficient of determination, 0.962 and 0.834, respectively, however it did 

predict at a faster rate of 5.62 ms per molecule. The strong correlation of SolProp and SolTranNet 

can be seen in Figures 5 and 6, respectively. 
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Figure 4. Comparison of aqueous solubility predicted by SolProp to experimentally derived aqueous solubility . 
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Figure 5. Comparison of aqueous solubility predicted by SolTranNet to experimentally derived aqueous 

solubility. 
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4.0 Discussion 

The similar performance of the different SolTranNet based models shown in Table 1 seems 

to indicate that including the quantum chemical node features (dispersion coefficient, coordination 

number, polarizability, and partial charge) did not improve the performance of SolTranNet. As 

shown by the solvation model analysis and the analysis conducted by others31, the likely reason 

for this is that the quantum data being generated by the solvation models is not accurate enough. 

Inaccurate data may prevent the algorithm from learning any trend in the data, thus leading to the 

algorithm to put less weight or even ignoring the feature in the vector.  

Including silicon in the identity feature also did not result in significant improvement of 

the model. There are very few elements present in the dataset that are not included in the identity 

feature. Therefore, it is very possible that the neural network had been able to learn the identity of 

these nodes without being explicitly told the identity via the feature vector. Identifying the number 

of heavy atoms that were halogens also did not improve the performance of the model. As with 

adding silicon to the identity feature, this could be because we were not telling the neural network 

anything it did not learn after numerous training epochs.  

Due to the lack of performance improvement when including quantum node features, we 

wanted to see if the quantum data that was being provided was of good quality. If the quantum 

data was not of good quality, then we should not expect to see an improvement in the model. To 

test this, we compared the solvation free energy computed by three different solvation models 

using geometries optimized by two different functionals to the experimentally determined values. 

The results of this analysis can be seen in Table 2. The hypothesis for this experiment is that if the 

solvation models are unable to accurately compute the solvation free energies, then they more than 
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likely are unable to accurately predict other quantum values, such as the ones added to the node 

features. The results in Table 2 agree with previously reported results in the sense that the SMD 

solvation model performed the best but is more than likely still not accurate enough to provide 

quantum data to improve the performance of SolTranNet. 

During this project, a model pretrained on quantum data called SolProp was published. 

SolProp is comparable to the model that we intended to develop and for that reason we wanted to 

compare it to SolTranNet. SolProp is able to predict not only aqueous solubility but also solvation 

free energy. Therefore, we first predicted the solvation free energy for the compounds in MNSOL. 

SolProp performed very well when compared to the experimental solvation free energy with 

excellent correlation. 

Then we did a comparison of the two published models, SolTranNet and SolProp_ML. 

Both models were trained on either part of or all of the AqSol database. SolProp is only able to 

predict aqueous solubility on neutral solutes and for this reason, charged solutes were removed 

from AqSol. Both models performed well, as shown in figures 3 and 4. SolTranNet ran at a speed 

100x that of the speed of SolProp, operating at a speed of 5.92 ms per molecule and SolProp 

operating at a speed of 618 ms per molecule. It was expected that SolTranNet would have a faster 

run-time performance since it was designed to be a quick tool to predict aqueous solubility but the 

overall speed increase was unexpected.  
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5.0 Conclusions 

Based on the results comparing SolTranNet to quantum SolTranNet, it seems like the 

hypothesis that inclusion of quantum data will enable the model to perform better should be 

rejected. However, looking at the results of the analysis of the solvation models, it seems likely 

that the quantum data that was used for the quantum node features was not very accurate. Coupling 

this analysis with the results provided by the comparison between SolTranNet and SolProp, it 

seems like including quantum data in an aqueous solubility model should increase performance as 

long as the quantum data is sufficiently accurate.  

While SolProp seems to do very well predicting the aqueous solubility of neutral solutes, 

it does not allow predictions for charged solutes. Salts pose a unique problem to graph neural 

networks because they and their corresponding compound have high similarity between 

descriptors but greatly vary in solubility. This is not surprising since salinization is often used to 

increase the solubility of a compound in drug design. Therefore, since salts are of interest in fields 

such as drug design, further research should be done to determine more node features to be 

included in GNN and other neural network models to increase model performance for this class of 

compound. 

Future iterations of SolTranNet may also want to implement graph level descriptors as 

well. It is at the graph level that the model may be modified to enable it to identify whether the 

compound is a salt or not. All of the current descriptors are atomic level descriptors; however, it 

could be useful to look at the molecule as a whole or look for functional groups that may not be 

identified by the current feature vector. Including MACCS keys fingerprints for example may 

improve the performance of the model. Implementing graph level descriptors would also enable 
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the model to utilize thermodynamic properties of molecules such as solvation free energy and 

solvation enthalpy, which are both used by SolProp. 
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