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Abstract 

Facilities Accepting Oil and Gas Waste and Birthweight: 

An Exploratory Bayesian Analysis 

 

Nicholas Tedesco, MS 

 

University of Pittsburgh, 2022 

 

 

 

 

Background: Previous studies have identified links between fracking and adverse health 

outcomes such as reduced birthweight. However, none have examined the potential health effects 

of exposure to facilities accepting oil and gas waste. The purpose of this work was to investigate 

the relationship between residential proximity to facilities accepting oil and gas waste, as defined 

via a binary exposure variable, and birthweight. 

Methods: The relationship between exposure to facilities accepting oil and gas waste  

within two kilometers of the mother’s residence and birthweight was examined via both linear 

ordinary least squares and Bayesian regression. Various Bayesian priors were specified on the 

exposure coefficient to understand the effects of different distributions and parameters. Models 

were compared by looking at differences in the exposure coefficient, its 95% confidence/credible 

interval, and test set root mean squared error (RMSE).  

Results: Both the unadjusted and adjusted linear models found a negative relationship 

between proximity (exposure) and birthweight in grams (unadjusted model β = -56.87 g, 95% CI 

[-71.82 g, -41.93 g]; adjusted model β = -13.34 g, 95% CI [-25.02 g, -1.65 g], respectively). As we 

might expect, the Bayesian exposure coefficient was increasingly pulled towards its respective 

prior mean as the prior standard deviation decreased. In terms of test set RMSE, none of the 

univariate Bayesian models outperformed their corresponding linear model, but many of the 

adjusted Bayesian models outperformed their linear model counterpart.  
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Conclusion: This thesis found an association between proximity to facilities accepting oil 

and gas waste and lower average birthweight (grams). However, this association was relatively 

small and requires further support.  

Public Health Significance: This work may serve to better inform our collective 

understanding of the impacts of fracking on birth outcomes. Furthermore, no previous study has 

investigated the effects of facilities accepting oil and gas waste on birthweight.  
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1.0 Introduction 

Over the last 25 years, the American energy landscape has undergone drastic evolution, 

perhaps most notably with the expansion of hydraulic fracturing operations. In fact, from 2000 to 

2015, the number of hydraulically fractured wells in the United States increased from 23,000 to 

approximately 300,000 [1]. This rapid growth has corresponded to a range of economic benefits, 

including decreased energy costs [2] and greatly increased production of both oil and natural gas 

[1]. However, mounting evidence suggests that hydraulic fracturing may have adverse impacts on 

public health and well-being. 

1.1 Fracking and its Effects 

Hydraulic fracturing – also known as fracking – is the process of injecting large amounts 

of fluid at high pressure into dense rock in order to free trapped oil and natural gas [3]. The fluid 

used for injection typically consists of a mixture of water, sand, and various chemical additives, 

including some with potential toxicity. As one might expect, this technique raises concern over the 

quality and contamination of local air and water. According to a review from the Concerned Health 

Professionals of New York, fracking has resulted in widespread air pollution and water 

contamination that will only worsen with time [4]. Some research has found increased methane 

levels in ground and well water near fracking sites in the Marcellus Shale region of Northeastern 

America [5]. From a broader perspective, some articles have also expressed concern regarding the 

effects of fracking on the atmosphere [6]. 
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Other studies have gone one step further to investigate the potential effects that fracking 

may have on health. For example, air pollution related to fracking may cause various forms of 

irritation and respiratory illness [7]. Some fracking pollutants have also been shown to be highly 

carcinogenic [8] – although it is difficult to prove that these pollutants have an immediate and 

direct effect on human health, this may manifest through higher rates of cancer as time continues. 

Finally, fracking has been linked to various effects on birth outcomes. Multiple studies have found 

an association between proximity to fracking drilling locations and decreased birthweight [9 – 12]. 

For example, Currie et al. (2017) found that the average birthweight was 39 grams lower for babies 

whose mothers live within one kilometer of fracking sites [12].  

Most of the aforementioned studies have examined the local effects of fracking relative to 

fracking well sites. However, few have examined the effects of the waste produced from fracking 

alone. Fracking wastes – which consist of sludges/sediments, contaminated equipment or 

components, and produced waters – are classified as Technologically Enhanced Naturally 

Occurring Radioactive Material (TENORM) [13]. While there are a range of methods for 

disposing of TENORM, including reinjection deep underground, one common approach is to 

transfer these radioactive wastes to offsite waste disposal facilities. Currently, little to no research 

in the field has focused on exposure to facilities that accept radioactive waste from fracking 

operations. Therefore, the primary goal of this study was to examine the potential impact of 

residential proximity to facilities accepting oil and gas waste on birthweight.  
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1.2 Introduction to Bayesian Statistics 

Ordinary least squares (OLS) regression estimates coefficients, and thereby relationships, 

using the current dataset alone. However, this approach ignores any prior beliefs we may have 

about certain patterns in the data. In comparison, Bayesian statistics allow us to incorporate prior 

beliefs into the model fitting process, which ultimately influences our results. In this situation, 

multiple studies have found a lower average birthweight for mothers who live close to fracking 

operations. A prior specification that captures this relationship enables us to make use of previous 

data, which may improve the generalizability and application of our results. 

1.3 Objectives 

 The purpose of this project was to examine the relationship between residential proximity 

to facilities accepting oil and gas waste from fracking operations and birthweight. To accomplish 

this, a series of unadjusted and adjusted models were fit using ordinary least squares (OLS) and 

Bayesian regression. In order to better understand the impact of the prior, and to determine whether 

the prior can influence model quality, a series of Bayesian models were fit using different prior 

specifications. Models were compared using the primary coefficient of interest and its respective 

95% confidence/credible interval and were evaluated by calculating root mean squared error on a 

10% test subset of the data not used for model training. With this information in mind, the 

objectives of this work are outlined as follows:  
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1. Use linear regression (ordinary least squares) to evaluate the relationship between 

maternal residential proximity to facilities accepting oil and gas waste from fracking 

operations and birthweight. 

2. Fit various Bayesian regression models using different prior specifications and compare 

the results. Priors were only set on the relationship between maternal residence proximity 

and birthweight. 

1.4 Public Health Significance 

This work has clear importance to the field of public health. Considering the relatively 

recent and widespread emergence of fracking, current research on its potential environmental and 

health impacts is lacking. Any additional work is a valuable contribution to our collective 

understanding of fracking. Furthermore, some studies have found an association between 

residential proximity to fracking well sites and birthweight. However, no study has extended this 

work to investigate the potential impact of residential proximity to waste sites accepting oil and 

gas waste from fracking. Therefore, this work is a logical extension of the current body of research 

and may help to better inform us on the health effects of fracking.  
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2.0 Methods 

2.1 Data Source 

2.1.1  Birth Data 

All health-related data was obtained from the Bureau of Health Statistics and Research, 

Department of Health, Pennsylvania following Institutional Review Board (IRB) and Protected 

Access approvals. The inclusion criteria were live births occurring between January 1, 2010 and 

December 31, 2020 to mothers living within the following eight counties: Allegheny, Armstrong, 

Beaver, Butler, Fayette, Greene, Washington, and Westmoreland. The exclusion criteria were as 

follows: 

1. Death occurred within seven days of birth 

2. Infant suffered from serious birth defects 

3. Multiple (non-singleton) birth 

4. Unknown gestational age 

5. Gestational age < 22 weeks (pre-viability) or > 41 weeks (post-term) 

6. Birthweight missing or < 500 g 

7. Maternal residence located outside of eight-county study area or within City of Pittsburgh 

(no fracking allowed within the city) 
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2.1.2  Facilities Accepting Oil and Gas Waste 

Data on facilities accepting oil and gas waste were obtained from the Pennsylvania 

Department of Environmental Protection (PA DEP). Here, fracking waste loosely refers to 

substances such as sludge/sediment, flowback from hydraulic fracturing, and produced water 

coming from fracking well sites. Facilities were included if their disposition method, as defined 

by the PA DEP, was either landfill, public sewage treatment plant, or residual waste processing 

facility.  

2.2 Data Definitions and Preparation 

2.2.1  Predictor Variable 

The main predictor of interest in this work was residential proximity to facilities accepting 

oil and gas waste from fracking operations. This categorical exposure metric was defined as “yes” 

if the mother’s residence was within two kilometers of a candidate waste facility, and “no” if it 

was not. To determine exposure status, the distance between each maternal residence and each 

waste facility was calculated and summarized in a distance matrix. If a given health record had at 

least one waste facility within two kilometers of the mother’s residence, the record was assigned 

a positive exposure status. 
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2.2.2  Outcome Variable 

The outcome variable was birthweight (g). All records with missing birthweight values 

were dropped prior to analysis (n = 2160). A total of 183,442 records with non-missing birthweight 

values were used in the final analysis. 

2.2.3  Covariates 

Various clinical, demographic, and environmental features were included as covariates in 

the adjusted models to control for potential confounding. These covariates are listed as follows: 

gestational age, neonate sex, adequacy of prenatal care, maternal age at delivery, race, education, 

smoking status during pregnancy, pre-pregnancy body mass, parity, diagnosis of gestational 

diabetes, and receipt of WIC services. Table 1 provides more in-depth definitions for each of these 

variables.  

 

Table 1: Covariate Definitions 

Covariate Definition 

Neonate sex Neonate sex (male, female, unknown) 

Gestational age (weeks) Obstetric estimate of gestation 

Maternal age (years) Mother’s age at delivery 

Race 

Maternal single race self-designation collapsed into the following categories: 

• White: White 

• Black or African American: Black or African American 

• All other races: American Indian or Alaska Native, Asian Indian, 

Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian, 
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Native Hawaiian, Guamanian or Chamorro, Samoan, Other Pacific 

Islander, Other 

• Unknown or refused: Don’t know/Not sure, Refused 

Education 

Maternal education level collapsed into the following categories: 

• Less than High School: 8th grade or less, 9th-12th grade but no 

diploma 

• High School or GED: High School graduate or GED completed 

• Some college: Some college credit but not a degree, Associate’s 

degree 

• Bachelor’s or Graduate degree: Bachelor’s degree, Master’s degree, 

doctorate or professional degree 

• Unknown: Unknown 

 

Smoking status during 

pregnancy 

Categorical variable (yes, no, unknown) for smoking during the three months 

before pregnancy or during any trimester  

Pre-pregnancy body 

mass index (BMI; 

kg/m2) 

BMI was calculated based on the mother’s pre-pregnancy weight in pounds 

and height in feet and inches: 

     BMI = 703 * [weight] / (12*[height ft] + [height in])^2 

Then, BMI was categorized using one of two sets of criteria, depending on 

maternal age at birth. 

For births to mothers aged 20 years or younger, we used the following criteria 

based on the CDC’s recommended youth BMI-for-age cutoffs [14]. 

 

• Underweight: <5th percentile 

• Normal: 5th to <85th percentile 

• Overweight: 85th to <95th percentile 

• Obese: ≥ 95th percentile 

• Unknown: missing height and/or weight 

 

Percentile data were available for males and females at one-month age 

increments with a half-month offset. Because maternal age was available 

only in years, we used data for females corresponding to the lower bound of 
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age (e.g., for an 18-year-old mother, we used data corresponding to 216.5 

months). 

   

For births to mothers aged 21 years or older, or for births in which maternal 

age was missing, we used the following criteria based on the CDC’s 

recommended cutoffs for adults [15]: 

 

• Underweight: BMI <18.5 

• Normal: BMI ∈ [18.5, 25) 

• Overweight: BMI ∈ [25, 30) 

• Obese: BMI ≥ 30 

• Unknown: missing height and/or weight 

 

Parity 

Categorized as follows: 

• Nulliparous: no previous live births 

• Multiparous: ≥ 1 previous live birth 

 

Gestational diabetes Diagnosis of gestational diabetes during the pregnancy (yes, no, unknown). 

Adequacy of prenatal 

care utilization index 

(APNCU) 

The Adequacy of Prenatal Care Utilization (APNCU) Index [16] determines 

the adequacy of prenatal care utilization based on two parts: (1) the month in 

which prenatal care is initiated and (2) the number of prenatal care visits from 

initiation of care until delivery. The observed number of prenatal care visits 

is compared to the expected number of visits based on the schedule of 

prenatal care visits recommended by the American College of Obstetricians 

and Gynecologists (ACOG) [17]. 

The typical ACOG-recommended schedule is: 

 

• One visit every four weeks for the first 28 weeks of gestation 

• One visit every two weeks until 36 weeks of gestation 

• One visit every one week until birth 

 

The four categories of the APNCU Index are defined as follows: 
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1. Inadequate: beginning care after the fourth month of pregnancy 

(16 weeks gestation) OR receiving less than 50% of expected 

prenatal care visits 

2. Intermediate: beginning care by the fourth month of pregnancy 

AND receiving 50-79% of expected visits 

3. Adequate: beginning care by the fourth month of pregnancy AND 

receiving 80-109% of expected visits 

4. Adequate plus: beginning care by the fourth month of pregnancy 

AND receiving 110% or more of expected visits 

 

The APNCU index cannot be calculated if the number of prenatal visits 

and/or the date of the first prenatal visit is unknown. The only exception is 

that an “Inadequate” rating can be assigned if the date of the first prenatal is 

known and occurred after the fourth month of pregnancy, but the number of 

prenatal visits is unknown. If the month and year of the first prenatal visit 

was known but the day was missing, we assigned the visit date to the first of 

the month. 

 

Unknown and Inadequate were collapsed into a single category. 

Receipt of WIC services Indicates whether the mother receives WIC food (yes, no, unknown). 

Community 

socioeconomic 

deprivation 

For each community, we calculated an index of socioeconomic deprivation 

incorporating six indicators from the 2015-2019 American Community 

Survey 5-year estimates [18] from the US Census. 

 

These indicators include: 

 

• Percent less than high school education 

• Percent in poverty 

• Percent not in the labor force 

• Percent on public assistance 

• Percent does not own a vehicle 
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• Percent civilian unemployment 

 

The six indicators were standardized for direction, natural log-transformed if 

necessary, z-scored using the standard deviations for Pennsylvania, and 

summed to create the final, unitless index for each county, township, or 

census tract. The total number of communities was divided into quartiles of 

socioeconomic deprivation index. Higher values of the index reflect greater 

community socioeconomic deprivation.  

 

All continuous covariates (gestational age and maternal age) were centered prior to analysis 

for the sake of interpretability. All categorical covariates (neonate sex, adequacy of prenatal care, 

race, education, smoking status during pregnancy, pre-pregnancy body mass, parity, diagnosis of 

gestational diabetes, and receipt of WIC services) were factorized to ensure the correct reference 

category was used in modeling.  

2.3 Statistical Analysis 

2.3.1  Fundamentals of Bayesian Regression 

Regression allows us to model the relationship between a series of predictors and an 

outcome variable. More specifically, regression calculates the most optimal coefficient for each 

predictor, where each coefficient’s value determines the predictor’s contribution to the outcome. 

Mathematically, this is written as: 
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𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏: 𝑦 = 𝑋𝛽 + 𝜀 

where y is the outcome, X is the predictor matrix, beta is the coefficient vector, and epsilon is the 

error term, which represents the random error between the model and the actual data. The beta 

terms are most commonly estimated using the ordinary least squares approach, which optimizes 

the beta vector to produce the minimum residual sum of squares.   

This above process can be more generally referred to as the frequentist approach to 

regression. Frequentist regression only considers the data at hand. However, if the dataset is small, 

this may limit the accuracy of our coefficients relevant to their true population values. 

Furthermore, if we have a prior understanding of the relationship between certain predictors and 

the outcome variable, this prior knowledge cannot be incorporated into the final model.  

Bayesian regression accounts for these shortcomings by making use of prior specifications 

during coefficient calculation. To accomplish this, the Bayesian method takes the following 

distribution-based approach: 

 

 

Figure 1: Fundamentals of Bayesian Inference [19] 

 

In other words, the posterior distribution on our parameters is a balance between the 

likelihood of observing our data given the parameters and our prior belief on the parameters (the 
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distribution of the data, otherwise known as the “evidence” or “normalization” term, is included 

for the primary purpose of normalizing the data). In terms of regression, these concepts can be 

applied as follows: Bayesian regression estimates the posterior coefficient distributions by 

combining the likelihood of the current data at hand (likelihood) with our prior belief of the 

relationships in the data (prior). For more on the process of Bayesian regression, please see An 

Introduction to Bayesian Thinking [20].  

It is important to emphasize that Bayesian inference yields a posterior predictive 

distribution, as opposed to point estimates for our coefficients, that can be used to predict the 

outcome. From a conceptual standpoint, this allows us to quantify the uncertainty on our 

predictions in a much more transparent fashion. From a logistical perspective, this means we must 

sample from the distribution to obtain our predictions. There are various methods for sampling 

from the posterior predictive distribution to approximate the outcome (see Section 2.3.2). Overall, 

Bayesian regression differs from the frequentist approach in many crucial ways.  

2.3.2  Model Fitting with brms Package in R  

This project used the brms package in R [21]. brms fits a Bayesian regression model using 

the probabilistic programming language Stan. More specifically, brms generates C++ code from 

R input to fit models in Stan, then passes the results back to R for post-processing. The primary 

function in brms – brm() – fits Bayesian models using the following format: 
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Figure 2: brms::brm Function [21] 

 

The formula and data arguments are standard to typical model-fitting functions in R. 

Family specifies the distribution of the response variable – for example, using a “gaussian” family 

indicates that we are performing linear regression. The prior argument is where we list our prior 

distributions on the model parameters, which may include coefficients, standard deviation, and so 

on. In this example, we specify the same normal prior on all model coefficients by indicating “class 

= ‘b’” (where b represents beta) – if we wished to place a prior on only one coefficient, we would 

also include “coef = ‘age’” in the set_prior function.  

Finally, BRMS uses Hamiltonian Monte-Carlo (HMC) and No-U-Turn Sampling (NUTS) 

to sample from the posterior and thus approximate the outcome. As demonstrated in Figure 1, 

BRMS by default uses four Markov Chains with 2000 iterations per chain. In Monte-Carlo Markov 

Chain simulation, each iteration is a sample of the posterior distribution, where the samples within 

each chain are dependent on one another. The warmup iterations are used to allow the sampling 

density to converge to a stationary state, indicating that our samples have approximated the real 

distribution [22].  

 



 15 

2.3.3  Modeling Process 

In this thesis, a series of models were fit, compared, and evaluated. First, univariate and 

covariate-adjusted linear models were fit using the lm function in R. These were considered the 

“base” models, serving as reference points for the corresponding Bayesian models. Then, multiple 

Bayesian models were fit using the following prior specifications: 

 

Table 2: Bayesian Priors 

 

where b0 – b13 simply refers to the name of the model.  

Each prior was set on the individual coefficient between exposure and birthweight. The 

purpose of including a prior was to limit the possible values of the model coefficient to a certain 

distribution – depending on the specific prior that we use, we may influence the final coefficient 

differently. In this work, we used three distributions: the uniform, normal, and Student’s t 

distributions. The parameters of each distribution were tweaked in order to specify our confidence 

in the prior belief. For example, as the standard deviation parameter for the normal distribution 
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decreases from models b2 to b4, we are suggesting an increasing level of confidence in the belief 

that our prior mean on the exposure coefficient is -39 g. This same notion follows for the uniform 

distributions, where the parameters are lower and upper bounds, respectively, and the Student’s t-

distributions, where the degrees of freedom represent the strength of the prior.      

The primary goal of varying the prior was to see how different prior specifications impact 

the final coefficient, whether in terms of estimation, confidence, or quality. More specifically, the 

primary coefficient (exposure within 2 km) and its 95% credible interval were examined for each 

of the Bayesian models. Model quality was assessed using root mean squared error. The data were 

split at a 90:10 ratio into the training and testing groups, which were respectively used for model 

training and predictions. The purpose of this split was to evaluate how each model performs on 

“new” data, since the quality of fit relative to training data may be more reflective of overfitting 

as opposed to generalizability.    
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3.0 Results 

 

3.1 Descriptive Statistics 

3.1.1  Demographics 

Table 3 outlines the demographic breakdown of the cohort, both overall and by exposure 

categorization. All variables listed in the table are included as covariates in the adjusted regression 

models. Many of the more disadvantaged factor levels, including those for maternal education, 

WIC status, and community SES index, were present at higher proportions in the exposed group. 

Higher values of the community SES index indicate greater socioeconomic deprivation. 

 

Table 3: Participant Demographics 

 No 

(N=177696) 

Yes 

(N=5746) 

Overall 

(N=183442) 

Gestational age (weeks)    

Mean (SD) 38.7 (1.70) 38.7 (1.74) 38.7 (1.70) 

Median [Min, Max] 39.0 [22.0, 41.0] 39.0 [23.0, 41.0] 39.0 [22.0, 41.0] 

Neonate sex    

Female 86860 (48.9%) 2802 (48.8%) 89662 (48.9%) 

Male 90836 (51.1%) 2944 (51.2%) 93780 (51.1%) 

APNCU index (collapsed)    

Adequate 101686 (57.2%) 3207 (55.8%) 104893 (57.2%) 

Adequate plus 30830 (17.3%) 1012 (17.6%) 31842 (17.4%) 

Inadequate or unknown 25718 (14.5%) 867 (15.1%) 26585 (14.5%) 

Intermediate 19462 (11.0%) 660 (11.5%) 20122 (11.0%) 

Maternal age (years)    

Mean (SD) 29.1 (5.53) 27.8 (5.49) 29.1 (5.53) 

Median [Min, Max] 29.0 [13.0, 59.0] 28.0 [13.0, 52.0] 29.0 [13.0, 59.0] 

Missing 58 (0.0%) 3 (0.1%) 61 (0.0%) 
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 No 

(N=177696) 

Yes 

(N=5746) 

Overall 

(N=183442) 

Maternal race    

All other races 7080 (4.0%) 200 (3.5%) 7280 (4.0%) 

Black or African American 13782 (7.8%) 1035 (18.0%) 14817 (8.1%) 

Unknown or refused 1377 (0.8%) 67 (1.2%) 1444 (0.8%) 

White 155457 (87.5%) 4444 (77.3%) 159901 (87.2%) 

 

Maternal education (collapsed) 
   

Less than high school 12338 (6.9%) 651 (11.3%) 12989 (7.1%) 

High school or GED 38025 (21.4%) 1740 (30.3%) 39765 (21.7%) 

Some college 48433 (27.3%) 1715 (29.8%) 50148 (27.3%) 

Bachelor's or graduate degree 77973 (43.9%) 1604 (27.9%) 79577 (43.4%) 

Unknown 927 (0.5%) 36 (0.6%) 963 (0.5%) 

Received WIC    

No 126682 (71.3%) 3303 (57.5%) 129985 (70.9%) 

Unknown or not classifiable 2700 (1.5%) 79 (1.4%) 2779 (1.5%) 

Yes 48314 (27.2%) 2364 (41.1%) 50678 (27.6%) 

Maternal BMI    

Normal 68231 (38.4%) 1956 (34.0%) 70187 (38.3%) 

Obese 33203 (18.7%) 1215 (21.1%) 34418 (18.8%) 

Overweight 33029 (18.6%) 1086 (18.9%) 34115 (18.6%) 

Underweight 4641 (2.6%) 161 (2.8%) 4802 (2.6%) 

Unknown 38592 (21.7%) 1328 (23.1%) 39920 (21.8%) 

Gestational diabetes    

No 168431 (94.8%) 5451 (94.9%) 173882 (94.8%) 

Yes 9265 (5.2%) 295 (5.1%) 9560 (5.2%) 

Nulliparous    

No 103227 (58.1%) 3453 (60.1%) 106680 (58.2%) 

Unknown 260 (0.1%) 11 (0.2%) 271 (0.1%) 

Yes 74209 (41.8%) 2282 (39.7%) 76491 (41.7%) 

Smoking status    

No 141046 (79.4%) 4160 (72.4%) 145206 (79.2%) 

Unknown 1704 (1.0%) 61 (1.1%) 1765 (1.0%) 

Yes 34946 (19.7%) 1525 (26.5%) 36471 (19.9%) 

Community SES index (quartile)    

Q1 77132 (43.4%) 1201 (20.9%) 78333 (42.7%) 
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 No 

(N=177696) 

Yes 

(N=5746) 

Overall 

(N=183442) 

Q2 38761 (21.8%) 1481 (25.8%) 40242 (21.9%) 

Q3 30754 (17.3%) 663 (11.5%) 31417 (17.1%) 

Q4 31049 (17.5%) 2401 (41.8%) 33450 (18.2%) 

3.1.2  Distributions 

Figure 3 illustrates the distribution of maternal residences (blue circles) and waste facilities 

(red pins) used in this analysis. As shown in both Figure 3 and Table 3, a considerable amount of 

the maternal residences fall within two kilometers of a facility accepting oil and gas waste (N = 

5746; 3.13%). 

 

 

Figure 3: Geospatial Distribution of Maternal Residences (Blue) and Waste Facilities (Red) 
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As shown in Figure 4, the response variable (birthweight) followed a relatively normal 

distribution for both exposure categorizations.   

 

 

Figure 4: Distribution of Birthweight by Exposure Status 

3.2 Linear Models 

The results of univariate analysis indicate that mothers with homes within two kilometers 

of facilities accepting oil and gas waste had babies with a significantly lower average birthweight 

(-56.87 g) relative to those outside of the buffer zone. The coefficient estimates, confidence 

intervals, and p-values for the univariate model are summarized in Table 4.  

 

Table 4: Univariate Model Results for Exposure-Birthweight Relationship 

Coefficient Estimate 95% CI1 P 

Exposed: 2 km (Reference = No) 

Yes -56.87 -71.82, -41.93 <0.001 
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Coefficient Estimate 95% CI1 P 

Intercept 3336.28 
3333.63, 

3338.92 
<0.001 

1 CI = Confidence Interval 

 

As shown in Table 5, exposure within two kilometers remained significant after covariate 

adjustment. However, the exposed group had a less drastic lower average birthweight (-13.34 g) 

relative to the unexposed group following adjustment.  

 

Table 5: Adjusted Model Results for Exposure-Birthweight Relationship 

Coefficient Estimate 95% CI1 P 

Exposed: 2 km (Reference = No) 

Yes -13.34 
-25.02,  

-1.65 
0.0253 

Neonate Sex (Reference = Female) 

Male 135.62 
131.58, 

139.66 
<0.001 

APNCU Index, Collapsed (Reference = Adequate) 

Inadequate or 

Unknown 
-34.53 

-40.71,  

-28.35 
<0.001 

Intermediate -23.88 
-30.71,  

-17.05 
<0.001 

Adequate 

Plus 
2.43 

-3.43, 

8.3 
0.4161 

Maternal Race (Reference = White) 

Black or 

African 

American 

-

140.67 

-148.63, 

-132.71 
<0.001 

All other 

races 

-

112.27 

-122.74, 

-101.79 
<0.001 
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Coefficient Estimate 95% CI1 P 

Unknown or 

Refused 
-25.63 

-48.97,  

-2.29 
0.0314 

Maternal Education, Collapsed (Reference = Bachelor's or Graduate Degree) 

Less than 

High School 
-87.19 

-97.1,    

-77.27 
<0.001 

High School 

or GED 
-57.82 

-64.49,   

-51.15 
<0.001 

Some 

College 
-22.12 

-27.65,  

-16.58 
<0.001 

Unknown -7.05 
-35.97, 

21.87 
0.6329 

Received WIC (Reference = No) 

Yes -11.38 
-16.81,  

-5.96 
<0.001 

Unknown or 

Not Classifiable 
-27.59 

-44.52,  

-10.66 
0.0014 

Maternal BMI (Reference = Normal) 

Underweight 
-

120.19 

-133.13, 

-107.25 
<0.001 

Overweight 78.98 
73.24, 

84.72 
<0.001 

Obese 124.58 
118.75, 

130.4 
<0.001 

Unknown 26.32 
20.56, 

32.08 
<0.001 

Gestational Diabetes (Reference = No) 

Yes 76.59 
67.36, 

85.81 
<0.001 

Nulliparous (Reference = No) 

Yes 
-

127.11 

-131.51, 

-122.7 
<0.001 
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Coefficient Estimate 95% CI1 P 

Unknown -94.3 
-147.44, 

-41.17 
<0.001 

Smoking, Gestation and Three Months Prior (Reference = No) 

Yes 
-

151.32 

-156.99, 

-145.65 
<0.001 

Unknown -42.52 
-63.33,  

-21.71 
<0.001 

Community SES Index, Quartile (Reference = Q1) 

Q2 -10.46 
-15.98,  

-4.95 
<0.001 

Q3 -10.69 
-16.83,  

-4.56 
<0.001 

Q4 -31.28 
-37.89,  

-24.67 
<0.001 

 

Gestational Age 

(Weeks) 
181.13 

179.9, 

182.36 
<0.001 

Maternal Age 

(Years) 
-1.44 

-1.9,      

-0.98 
<0.001 

Intercept 3366.2 
3360.36, 

3372.05 
<0.001 

1 CI = Confidence Interval 

 

3.3 Bayesian Models 

Three types of prior distributions were used in the Bayesian analysis: uniform, normal, and 

Student’s t. Although each prior distribution had the same mean (-39 g), the strength of the 

distribution was varied by altering other distribution-specific parameters. For the uniform 

distribution, confidence in the prior belief was represented by the width of the upper and lower 

bounds (where “no prior” can be thought of as a uniform prior with infinite bounds). For the normal 
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distribution, decreasing standard deviation suggests increasing confidence in the mean. Finally, 

for the Student’s t distribution, increasing degrees of freedom results in increased confidence.  

The results for the univariate Bayesian models (named b0 – b6) are summarized in Table 

6 and illustrated in Figure 5.  In general, as the strength of the prior increased, the primary model 

coefficient (exposure within two kilometers) was increasingly pulled toward the prior mean, and 

the range of the corresponding credible interval decreased. The red line in Figure 5 represents the 

MLE estimate of the primary coefficient, as calculated through univariate linear regression. It is 

worth mentioning that b1 (prior = uniform[-40, -38]) could not be fit, since brm() does not allow 

the user to specify hard-set bounds on a continuous parameter. 

 

Table 6: Univariate Bayesian Model Results 

 Prior Coefficient 95% CI1 

b0 none -56.84 -71.55, -42.11 

b2 normal(-39, 25) -55.2 -69.75, -41.29 

b3 normal(-39, 5) -44.38 -52.58, -35.9 

b4 normal(-39, 1) -39.31 -41.25, -37.43 

b5 student_t(1, -39, 1) -43.5 -61.37, -37.11 

b6 student_t(50, -39, 1) -39.35 -41.29, -37.42 

1 CI = Credible Interval 
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Figure 5: Univariate Bayesian Coefficient Comparison 

 

As summarized in Table 7 and visualized in Figure 6, the results for the adjusted Bayesian 

models were consistent with those of the univariate models. The red line in Figure 6 represents the 

MLE estimate of the primary coefficient, as calculated through covariate-adjusted linear 

regression. Model b7 (prior = uniform[-40, -38]) could not be fit for the same reason as above.   

 

Table 7: Adjusted Bayesian Model Results 

 Prior Coefficient 95% CI1 

b7 none -13.23 -24.49, -1.84 

b9 normal(-39, 25) -14.7 -25.92, -3.14 

b10 normal(-39, 5) -28.42 -35.89, -20.82 



 26 

 Prior Coefficient 95% CI1 

b11 normal(-39, 1) -38.29 -40.26, -36.38 

b12 student_t(1, -39, 1) -17.09 -30.84, -4.01 

b13 student_t(50, -39, 1) -38.27 -40.28, -36.23 

1 CI = Confidence Interval 

 

 

Figure 6: Adjusted Bayesian Coefficient Comparison 

3.4 Model Evaluation 

Finally, all models were evaluated by calculating root mean squared error (RMSE) on the 

test set. Table 8 summarizes the results of this analysis. None of the univariate Bayesian models 
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performed better than the unadjusted model fit using standard linear regression. For the adjusted 

models, b9 – b13 all performed slightly better than m2.  

 

Table 8: Test Set RMSE 

Model Prior RMSE 

m1 NA 538.6731 

m2 NA 420.1538 

b0 none 538.6734 

b2 normal(-39, 25) 538.6762 

b3 normal(-39, 5) 538.7005 

b4 normal(-39, 1) 538.7140 

b5 student_t(1, -39, 5) 538.6876 

b6 student_t(1, -39, 1) 538.7029 

b7 none 420.1541 

b9 normal(-39, 25) 420.1525 

b10 normal(-39, 5) 420.1446 

b11 normal(-39, 1) 420.1467 

b12 student_t(1, -39, 5) 420.1516 
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Model Prior RMSE 

b13 student_t(1, -39, 1) 420.1499 
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4.0 Discussion and Conclusion 

4.1 Linear Model Results 

The predictor of interest – residential exposure to facilities accepting oil and gas waste 

within two kilometers – was found to be significant in both the unadjusted and adjusted models (P 

< 0.001 and P = 0.0253, respectively). The relationship between exposure and birthweight was 

stronger for the unadjusted model compared to the adjusted version (-56.87 g vs. -13.34 g, 

respectively). This is most likely because the adjusted case accounted for confounding by the 

covariates.  

Although exposure was determined to be significant, this may be a case where statistical 

and clinical significance are discrepant. We may consider the adjusted coefficient to be more 

representative of the relationship between exposure and birthweight – not only is this coefficient’s 

magnitude extremely slight relative to the scale of birthweight (i.e., a difference of 13 for a variable 

with a mean of approximately 3500), but the 95% confidence interval for the adjusted coefficient 

was also very close to zero (95% CI [-25.02, -1.65]). These contextual clues indicate that we should 

be careful about making definitive conclusions based on significance alone.  

On another note, every covariate was found to be highly significant (P < 0.001) in some 

regard (Table 5). The only non-significant predictors in the adjusted model were certain levels of 

factorized covariates (ex: the unknown level of collapsed maternal education, P = 0.6329). These 

results indicate that each of the chosen covariates are important to adjust for in the relationship 

between exposure to facilities accepting oil and gas waste and birthweight. It is also worth 

mentioning that the exposed group was more likely to have a lower level of maternal education, 
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receive WIC, and have a more deprived community SES index relative to the unexposed group. 

This may indicate that facilities accepting oil and gas waste are more likely to be located near 

relatively disadvantaged neighborhoods.  

4.2 Bayesian Model Results 

As evident from Tables 4 and 6, as well as Figure 5, the univariate exposure coefficient 

was increasingly pulled towards the prior mean (-39 g) as the strength of the prior distribution 

increased. For the case of no prior (b0), the univariate exposure coefficient was approximately 

equivalent to its standard linear regression counterpart. This makes sense, considering we are not 

specifying any prior belief on the given relationship! For the three normal priors (b2 – b4), the 

strength of the prior distribution, as represented through the prior’s standard deviation, had an 

obvious impact on the exposure coefficient. The exposure coefficient was increasingly pulled away 

from its standard regression counterpart and towards the prior mean as the prior standard deviation 

decreased. Furthermore, the posterior 95% credible intervals became narrower as the prior 

standard deviation decreased. These findings are extremely logical, considering that the prior 

standard deviation conceptually resembles the confidence we have in our prior belief. Finally, the 

two student t priors (b5 and b6) showed a similar trend to the normal priors. Instead of standard 

deviation, prior strength is represented by the degrees of freedom (i.e., first argument of student_t). 

Tables 5 and 7, as well as Figure 6, indicate that the results for adjusted models were very 

similar to those of the univariate models. Once again, no prior specification (b7) resulted in an 

exposure coefficient that approximated the MLE. For the normal priors (b9 – b11), as the standard 

deviation of the prior distribution decreased, the posterior exposure coefficient pulled away from 
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its MLE counterpart and towards the prior mean. The posterior 95% credible intervals for these 

coefficients also became increasingly tighter as the prior standard deviation decreased. Finally, the 

Student’s t priors (b12 and b13) showed the same general trend as in the univariate case.  

4.3 Model Evaluation 

Test set RMSE was used to evaluate model performance. As shown in Table 8, all of the 

models performed relatively well on out of sample data – the highest RMSE value was slightly 

over a half of a kilogram, which suggests that the models were fairly good at predicting 

birthweight. For the univariate batch, none of the Bayesian models were able to outperform the 

standard regression model. In fact, as the exposure coefficient was increasingly pulled away from 

the MLE and towards the prior mean, the models tended to perform slightly more poorly. This is 

intuitive, considering that we are externally influencing the model away from the data as we 

increase our strength on the prior. Therefore, we would expect models more consistent with the 

prior to be less representative of the current dataset (for more on this thought, see the limitations 

section). 

As for the adjusted set of models, RMSE surprisingly decreased as the strength of the prior 

increased. This is opposite to the trend observed in the univariate case. There could be a range of 

reasons that explain this finding – for example, perhaps this is only because the RMSE differences 

were extremely slight, making the trends very sensitive to the randomness in the data. From a more 

optimistic point of view, perhaps setting the prior allowed the results of the model to be more 

generalizable to “new” (out of sample) data. In either case, it is somewhat mysterious why the 

trends of the univariate and adjusted models were found to be opposing.  
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Overall, it is important to emphasize that because the differences in RMSE between the 

models were very small, it is difficult to draw definitive conclusions from these findings.  

4.4 Limitations 

There are many limitations to this report worth discussing. First and foremost, the 

definition of the exposure variable should be critiqued. Originally, I would have preferred to use a 

one-kilometer buffer zone for exposure, since this would be consistent with the prior as defined by 

the work of Currie et al. (2017). However, only 878 participants (of the total 183442) fell within 

one kilometer of a facility accepting oil and gas waste. In order to improve the ratio between 

exposed and unexposed, a two-kilometer buffer zone was selected. Furthermore, this definition of 

exposure only classifies in a binary fashion, thus failing to account for any differences in distance 

to the nearest facility accepting fracking waste. Perhaps future work should investigate how the 

relationships and models change when using nearest distance as the primary predictor.  

Next, the practicality of applying Bayesian regression in this context is questionable. As 

evident from this work, Bayesian regression can strongly manipulate the relationships that we 

observe in our data. This may be useful when we have limited sample size, or strong evidence that 

a given belief is valid. However, in this situation, we have a relatively large dataset that could 

stand on its own in statistical analysis, and relatively sparse evidence to support our prior belief. 

The primary purpose of employing Bayesian regression in this project was to explore the statistical 

impacts of using varied priors, as opposed to drawing concrete conclusions about the relationships 

in the Bayesian models. Nevertheless, it was interesting to see the improved RMSE values for the 

adjusted Bayesian models.  



 33 

Finally, RMSE proved to be a relatively poor metric for evaluating the data. The 

differences in RMSE across the models were extremely slight, making it difficult to say if our 

trends will hold given a replicated analysis. It is likely that the RMSE values differed so slightly 

since the primary predictor of interest that changed across the models was binary, with a small 

coefficient magnitude relative to the scale of the outcome. In other words, if the difference in 

coefficients was ~10 between two models, and the true outcome is in the range of 3500, our 

prediction error will not differ very much between the two models.   

4.5 Conclusion 

Overall, this thesis presents an association between residential exposure to facilities 

accepting oil and gas waste and reduced birthweight. Considering the small nature of this 

association, perhaps this is a case of statistical, versus clinical or practical, significance. Future 

work should consider different definitions of exposure in order to better understand this 

relationship. Furthermore, we observed that the prior has a noticeable impact on Bayesian 

regression coefficients. Interestingly, the adjusted Bayesian models had better test set RMSE 

values relative to the adjusted model fit using linear regression – this trend was opposite for the 

set of univariate models.     
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Appendix A Distance Metric and Buffer Zones 

As hinted at in the limitations section, a considerable amount of analysis and thought went 

into defining the exposure variable. In order to define exposure within two kilometers, or within 

any buffer zone distance, the distance matrix between maternal residences and waste facilities had 

to first be calculated. From this distance matrix, each mother was assigned a “minimum distance,” 

which corresponded to the distance (in kilometers) between the mother’s residence and the closest 

waste facility. Appendix Figure 1 illustrates the distribution of minimum distances across all 

observations.  

 

 
Appendix Figure 1: Distribution of Minimum Distance 
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Once each observation was assigned a minimum distance, the exposure variables were 

easily defined. A total of four exposure variables were created, corresponding to the following four 

buffer zones: one kilometer, two kilometers, three kilometers, and five kilometers. Appendix Table 

1 summarizes the exposed counts for each of these variables. Ultimately, the exposure variable 

with the two-kilometer buffer zone was chosen as a tradeoff between exposure ratio and the 

previous literature, which suggests that exposure outside of three kilometers has little impact on 

birthweight.  

 

Appendix Table 1: Exposure Count and Percent by Buffer Zone 
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Appendix B Code 

This section includes all R code used in this thesis project. This includes three main files: 

one used to generate the data and variables, one to create the descriptive statistics and figures, and 

one to run the final analyses. Each of the following subsections correspond to one of these files.  

Appendix B.1 Processing Data and Creating Variables 

--- 

title: "Capstone Data" 

output: html_document 

date: '2022-09-25' 

--- 

 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 

``` 

 

# Package and Data Loading 

 

```{r packages, echo = FALSE} 

library(geosphere) 

library(dplyr) 

``` 

 

```{r load birthData, echo=FALSE} 

birthData <- read.csv("D:\\Nick\\Capstone\\clean_birth_data.csv") 

``` 

 

```{r load waste facility data, echo = FALSE} 

wasteData <- read.csv("D:\\Data\\Raw\\DEP O&G Waste 

Facilities\\OGRE_Waste_Facilities.csv") 

``` 

 

# Data Cleaning 

 



 37 

## Filtering Columns 

 

```{r birthData columns, echo = FALSE} 

birthData <- birthData %>%  

   

  ## subset dataset to relevant variables 

  select( 

    ## birth info + outcome 

    birth_id, bweight,  

    ## mother's residence (location) 

    arcgis_lat, arcgis_long,  

    ## covariates 

    gestational_age_weeks, neonate_sex, apncu_index_collapsed, nulliparous, 

maternal_age_years, maternal_race, 

    maternal_edu_cat_collapsed, received_wic, maternal_bmi_cat, gestational_diabetes,  

    overall_smoking_gestation_and_three_months_prior, community_ses_index_quartile)      

``` 

 

```{r wasteData columns, echo = FALSE} 

wasteData <- wasteData %>% 

  rename(name = ï..WASTE_FACILITY) %>% 

  select(name, DISPOSITION_METHOD, FACILITY_ADDRESS1, FACILITY_ADDRESS2, 

FACILITY_STATE,  

         FACILITY_ZIP, FACILITY_LATITUDE, FACILITY_LONGITUDE) 

``` 

 

## Filtering Rows 

 

```{r birthData Missing Values, echo = FALSE} 

n_missing_bw <- length(birthData$bweight[(birthData$bweight == 9999)]) 

 

birthData <- birthData[!(birthData$bweight == 9999), ] 

 

print(paste0("Number of missing birthweight records: ", n_missing_bw)) 

``` 

 

```{r birthData Under 500g, echo = FALSE} 

n_small_bw <- length(birthData$bweight[(birthData$bweight < 500)]) 

 

birthData <- birthData[!(birthData$bweight == 500), ] 

 

print(paste0("Number of birthweight records under 500 g: ", n_small_bw)) 

``` 

 

```{r wasteData Disposition Method, echo = FALSE} 

## filter waste facilities to only include those with disposition methods of interest 
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wasteData <- wasteData[which(wasteData$DISPOSITION_METHOD %in% c('LANDFILL', 

'PUBLIC SEWAGE TREATMENT PLANT',  

                                                                 'RESIDUAL WASTE PROCESSING FACILITY')), ] 

 

wasteData <- wasteData[which(wasteData$FACILITY_STATE == 'PA'), ] 

``` 

 

# Calculating Metrics 

 

## Gestational Age Bins 

 

```{r Gestational Age Bins, echo = FALSE} 

birthData <- birthData %>% mutate(gest_bin = cut(gestational_age_weeks, breaks = 3)) 

``` 

 

## Residential Proximity (Distance Matrix) + Minimum Distance 

 

```{r Distance Metric, echo = FALSE} 

d <- distm(cbind(birthData$arcgis_long, birthData$arcgis_lat),  

           cbind(wasteData$FACILITY_LONGITUDE, wasteData$FACILITY_LATITUDE),  

           fun = distGeo) / 1000 

  ## distance is originally in meters, /1000 converts to km 

 

colnames(d) <- paste0('waste', 1:nrow(wasteData)) 

d <- data.frame(d) 

 

minDist <- do.call(pmin, d) 

``` 

 

## Buffer Zone Counts 

 

```{r Buffer Zone: 1 kilometer, echo = FALSE} 

d1 <- d 

 

d1[d1 <= 1] <- 1 

d1[d1 > 1] <- 0 

 

d1$count <- apply(d1, 1, sum) 

d1$exposed <- case_when((d1$count == 0) ~ 'no', TRUE ~ 'yes') 

 

table(d1$count) 

table(d1$exposed) 

``` 

 

```{r Buffer Zone: 2 kilometers, echo = FALSE} 

d2 <- d 
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d2[d2 <= 2] <- 1 

d2[d2 > 2] <- 0 

 

d2$count <- apply(d2, 1, sum) 

d2$exposed <- case_when((d2$count == 0) ~ 'no', TRUE ~ 'yes') 

 

table(d2$count) 

table(d2$exposed) 

``` 

 

```{r Buffer Zone: 3 kilometers, echo = FALSE} 

d3 <- d 

 

d3[d3 <= 3] <- 1 

d3[d3 > 3] <- 0 

 

d3$count <- apply(d3, 1, sum) 

d3$exposed <- case_when((d3$count == 0) ~ 'no', TRUE ~ 'yes') 

 

table(d3$count) 

table(d3$exposed) 

``` 

 

```{r Buffer Zone: 5 kilometers, echo = FALSE} 

d5 <- d 

 

d5[d5 <= 5] <- 1 

d5[d5 > 5] <- 0 

 

d5$count <- apply(d5, 1, sum) 

d5$exposed <- case_when((d5$count == 0) ~ 'no', TRUE ~ 'yes') 

 

table(d5$count) 

table(d5$exposed) 

``` 

 

# Creating Final Table 

 

```{r Final Table Merging and Naming, echo = FALSE} 

finalData <- cbind(birthData, minDist,  

                   d1$count, d2$count, d3$count, d5$count, 

                   d1$exposed, d2$exposed, d3$exposed, d5$exposed) 

finalData <- rename(finalData, c('count_1_km' = 'd1$count',  

                                 'count_2_km' = 'd2$count',  

                                 'count_3_km' = 'd3$count',  



 40 

                                 'count_5_km' = 'd5$count', 

                                 'exposed_1_km' = 'd1$exposed', 

                                 'exposed_2_km' = 'd2$exposed', 

                                 'exposed_3_km' = 'd3$exposed', 

                                 'exposed_5_km' = 'd5$exposed')) 

``` 

 

# Data Export  

 

```{r Export, echo = FALSE} 

write.csv(finalData, "D:\\Nick\\Capstone\\capstoneData.csv") 

``` 

Appendix B.2 Descriptive Statistics and Figures 

--- 

title: "Capstone Descriptives" 

output: 

  html_document: default 

  word_document: default 

date: "2022-09-25" 

--- 

 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 

``` 

 

# Package and Data Loading 

 

```{r package loading} 

library(ggplot2) 

library(kableExtra) 

library(table1) 

library(dplyr) 

library(flextable) 

library(gt) 

``` 

 

```{r data loading} 

capData <- read.csv("D:\\Nick\\Capstone\\capstoneData.csv") 

wasteData <- read.csv("D:\\Data\\Raw\\DEP O&G Waste 

Facilities\\OGRE_Waste_Facilities.csv") 
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``` 

 

# Data Cleaning 

 

```{r wasteData Cleaning} 

wasteData <- wasteData %>% 

  rename(name = ï..WASTE_FACILITY) %>% 

  select(name, DISPOSITION_METHOD, FACILITY_ADDRESS1, FACILITY_ADDRESS2, 

FACILITY_STATE,  

         FACILITY_ZIP, FACILITY_LATITUDE, FACILITY_LONGITUDE) 

 

wasteData <- wasteData[which(wasteData$DISPOSITION_METHOD %in% c('LANDFILL', 

'PUBLIC SEWAGE TREATMENT PLANT',  

                                                                 'RESIDUAL WASTE PROCESSING FACILITY')), ] 

 

wasteData <- wasteData[which(wasteData$FACILITY_STATE == 'PA'), ] 

``` 

 

```{r map wasteData Cleaning} 

mapData <- wasteData %>% filter(FACILITY_LATITUDE < 41.2, FACILITY_LONGITUDE < 

-78.7) 

``` 

 

```{r mapData export} 

write.csv(mapData, "D:\\Nick\\Capstone\\mapWasteData.csv") 

``` 

 

# Descriptive Stats 

 

```{r birthweight stats} 

summary(capData$bweight) 

``` 

 

```{r distance stats} 

summary(capData$minDist) 

  ## units: km 

``` 

 

# Plots 

 

```{r histogram of birthweight} 

capData %>% ggplot(aes(x = bweight)) +  

  geom_histogram() +  

  theme_bw() 

``` 
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```{r histogram of birthweight facetted by exposure status} 

capData %>% ggplot(aes(x = bweight)) +  

  geom_histogram() +  

  facet_wrap(~exposed_2_km, scales = 'free') +  

  theme_bw() 

``` 

 

```{r histogram of minDist} 

capData %>% ggplot(aes(x = minDist)) +  

  geom_histogram(bins = 40) +  

  xlab('Residential Distance to Nearest Waste Facility (km)') +  

  ylab('Count') +  

  theme_bw() 

``` 

 

# Tables 

 

```{r Exposure Table} 

capData$exposed_2_km_LAB <- case_when(capData$exposed_2_km == "no" ~ "No",  

                                      capData$exposed_2_km == "yes" ~ "Yes",  

                                      TRUE ~ capData$exposed_2_km) 

 

label(capData$gestational_age_weeks)                            <- "Gestational age" 

label(capData$neonate_sex)                                      <- "Neonate sex" 

label(capData$apncu_index_collapsed)                            <- "APNCU index (collapsed)" 

label(capData$maternal_age_years)                               <- "Maternal age" 

label(capData$maternal_race)                                    <- "Maternal race" 

label(capData$maternal_edu_cat_collapsed)                       <- "Maternal education (collapsed)" 

label(capData$received_wic)                                     <- "Received WIC" 

label(capData$maternal_bmi_cat)                                 <- "Maternal BMI" 

label(capData$gestational_diabetes)                             <- "Gestational diabetes" 

label(capData$nulliparous)                                      <- "Nulliparous" 

label(capData$overall_smoking_gestation_and_three_months_prior) <- "Smoking status" 

label(capData$community_ses_index_quartile)                     <- "Community SES index (quartile)" 

 

units(capData$gestational_age_weeks)       <- "weeks" 

units(capData$maternal_age_years)          <- "years" 

 

tb1 <- table1(~ gestational_age_weeks + neonate_sex + apncu_index_collapsed + 

                maternal_age_years + maternal_race + maternal_edu_cat_collapsed +  

                received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                overall_smoking_gestation_and_three_months_prior + community_ses_index_quartile 

| exposed_2_km_LAB,  

              data = capData) 

 

tb1 
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``` 

 

```{r save t1} 

t1flex(tb1) %>%  

  save_as_docx(path="capstone_table1.docx") 

``` 

 

```{r buffer zone table} 

exposed_1km <- as.numeric(table(capData$exposed_1_km)[2]) 

exposed_2km <- as.numeric(table(capData$exposed_2_km)[2]) 

exposed_3km <- as.numeric(table(capData$exposed_3_km)[2]) 

exposed_5km <- as.numeric(table(capData$exposed_5_km)[2]) 

 

exposed_df <- data.frame(buffer_zone_km = c(1, 2, 3, 5),  

                         exposure_count = c(exposed_1km, exposed_2km, exposed_3km, exposed_5km)) 

%>% 

  mutate(exposure_percent = round((exposure_count / nrow(capData)) * 100, 2)) 

 

exposed_df %>% 

  gt() %>% 

  cols_label(buffer_zone_km = "Buffer Zone (km)",  

             exposure_count = "Exposure Count",  

             exposure_percent = "Percent Exposed") %>% 

  cols_align( 

    align = "center",  

    columns = everything()) %>% 

  tab_options(column_labels.font.weight = 'bold') %>% 

  tab_footnote( 

        footnote = 'N = 183,442', 

        locations = cells_column_labels(columns = exposure_percent)) %>% 

    fmt_markdown(columns = everything()) 

``` 

Appendix B.3 Final Analysis 

--- 

title: "Capstone Analysis" 

output: html_document 

date: '2022-10-17' 
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--- 

 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 

``` 

 

# Package and Data Loading 

 

```{r package loading, echo = FALSE, message = FALSE, warning = FALSE} 

library(ggplot2) 

library(bayestestR) 

library(rstan) 

library(brms) 

library(caTools) 

library(dplyr) 

library(kableExtra) 

library(gt) 

library(tidyverse) 

``` 

 

```{r data loading, echo = FALSE} 

capData <- read.csv("D:\\Nick\\Capstone\\capstoneData.csv") 

``` 
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# Data Preparation 

 

## Format Data 

 

```{r Formatting Data} 

capData$neonate_sex = factor(capData$neonate_sex, levels = c('Female', 'Male')) 

capData$apncu_index_collapsed = factor(capData$apncu_index_collapsed, levels = c('Adequate', 

'Inadequate or unknown',  

                                                                                 'Intermediate', 'Adequate plus')) 

capData$nulliparous = factor(capData$nulliparous, levels = c('No', 'Yes', 'Unknown')) 

capData$maternal_race = factor(capData$maternal_race, levels = c('White', 'Black or African 

American',  

                                                                 'All other races', 'Unknown or refused')) 

capData$maternal_edu_cat_collapsed = factor(capData$maternal_edu_cat_collapsed,  

                                     levels = c('Bachelor\'s or graduate degree', 'Less than high school',  

                                                'High school or GED', 'Some college', 'Unknown')) 

capData$received_wic = factor(capData$received_wic, levels = c('No', 'Yes', 'Unknown or not 

classifiable')) 

capData$maternal_bmi_cat = factor(capData$maternal_bmi_cat, levels = c('Normal', 

'Underweight', 'Overweight', 'Obese', 'Unknown')) 

capData$gestational_diabetes = factor(capData$gestational_diabetes, levels = c('No', 'Yes')) 
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capData$overall_smoking_gestation_and_three_months_prior = 

factor(capData$overall_smoking_gestation_and_three_months_prior,  

                                                                  levels = c('No', 'Yes', 'Unknown')) 

capData$community_ses_index_quartile = factor(capData$community_ses_index_quartile, 

levels = c('Q1', 'Q2', 'Q3', 'Q4')) 

 

 

## NOTE: have to manually specify factor levels to ensure correct reference (first item in list is 

reference level) 

``` 

 

## Center Continuous Predictors 

 

```{r Center Predictors} 

# center maternal age at the mean  

capData$maternal_age_years_c <- capData$maternal_age_years - 

mean(capData$maternal_age_years, na.rm = TRUE) 

 

# center gestational age in weeks at the mean 

capData$gestational_age_weeks_c <- capData$gestational_age_weeks - 

mean(capData$gestational_age_weeks, na.rm = TRUE) 

``` 
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## Train-Test Split 

 

```{r Train-Test Split} 

set.seed(25) 

 

sample <- sample.split(capData$birth_id, SplitRatio = 0.9) 

 

train <- data.frame(subset(capData, sample == TRUE)) 

test <- data.frame(subset(capData, sample == FALSE)) 

``` 

 

# Simple Linear Regression 

 

## Checking Assumptions 

 

```{r Checking Regression Assumptions - Linearity} 

# The relationship between X and the mean of Y is linear 

 

group_means <- aggregate(train$bweight, by = list(train$exposed_2_km), FUN = mean) 

 

ggplot(data = group_means, aes(x = Group.1, y = x)) + geom_point() 

``` 
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Observations are assumed to be independent.  

 

```{r Checking Regression Assumptions - Normality} 

# For any fixed value of X, Y is normally distributed 

 

ggplot(data = train, aes(x = bweight)) +  

  geom_histogram() +  

  facet_wrap(~exposed_2_km, scales = 'free') +  

  theme_bw() 

``` 

 

```{r Checking Regression Assumptions - Equal Variance} 

var.test(bweight ~ exposed_2_km, data = train) 

``` 

 

## Fitting Univariate Model 

 

```{r Fitting Simple Univariate Model} 

m1 <- lm(data = train, 

         formula = bweight ~ exposed_2_km) 

 

summary(m1) 

``` 
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## Fitting Adjusted Model 

 

```{r Fitting Simple Adjusted Model} 

m2 <- lm(data = train, 

         formula = bweight ~ exposed_2_km +  

           # infant characteristics 

           gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

           # maternal characteristics 

           maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

           received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

           overall_smoking_gestation_and_three_months_prior +  

           # environmental characteristics 

           community_ses_index_quartile) 

 

summary(m2) 

``` 

 

# Bayesian Regression Analysis 

 

## Fitting Univariate (Unadjusted) Models 
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```{r Fitting Univariate Bayesian Model with No Prior (Infinitely Diffuse Uniform), message = 

FALSE, output = FALSE} 

b0 <- brm(formula = bweight ~ exposed_2_km,  

          data = train, 

          file = "b0", 

          seed = 123) 

``` 

 

```{r b0 Results} 

summary(b0) 

``` 

 

```{r Fitting Univariate Bayesian Model with Strong Informative Uniform Prior, message = 

FALSE, output = FALSE} 

strong_informative_uniform_prior <- c(set_prior("uniform(-38, -40)", class = "b", coef = 

"exposed_2_kmyes")) 

 

b1 <- brm(formula = bweight ~ exposed_2_km,  

          data = train, 

          file = "b1_updated2",  

          prior = strong_informative_uniform_prior, 

          seed = 123) 

``` 
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```{r b1 Results} 

summary(b1) 

``` 

 

```{r Fitting Univariate Bayesian Model with Uninformative Normal Prior, message = FALSE, 

output = FALSE} 

uninformative_normal_prior <- c(set_prior("normal(-39, 25)", class = "b", coef = 

"exposed_2_kmyes")) 

 

b2 <- brm(formula = bweight ~ exposed_2_km,  

          data = train, 

          prior = uninformative_normal_prior,  

          file = "b2", 

          seed = 123) 

``` 

 

```{r b2 Results} 

summary(b2) 

``` 

 

```{r Fitting Univariate Bayesian Model with Weak Informative Normal Prior, message = FALSE, 

output = FALSE} 
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weak_informative_normal_prior <- c(set_prior("normal(-39, 5)", class = "b", coef = 

"exposed_2_kmyes")) 

 

b3 <- brm(formula = bweight ~ exposed_2_km,  

          data = train, 

          prior = weak_informative_normal_prior,  

          file = "b3", 

          seed = 123) 

``` 

 

```{r b3 Results} 

summary(b3) 

``` 

 

```{r Fitting Univariate Bayesian Model with Strong Informative Normal Prior, message = FALSE, 

output = FALSE} 

strong_informative_normal_prior <- c(set_prior("normal(-39, 1)", class = "b", coef = 

"exposed_2_kmyes")) 

 

b4 <- brm(formula = bweight ~ exposed_2_km,  

          data = train, 

          prior = strong_informative_normal_prior,  

          file = "b4", 
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          seed = 123) 

``` 

 

```{r b4 Results} 

summary(b4) 

``` 

 

```{r Fitting Univariate Bayesian Model with Weak t Prior, message = FALSE, output = FALSE} 

weak_t_prior <- c(set_prior("student_t(1, -39, 1)", class = "b", coef = "exposed_2_kmyes")) 

 

b5 <- brm(formula = bweight ~ exposed_2_km,  

          data = train, 

          prior = weak_t_prior,  

          file = "b5.1", 

          seed = 123) 

``` 

 

```{r b5 Results} 

summary(b5) 

``` 

 

```{r Fitting Univariate Bayesian Model with Strong t Prior, message = FALSE, output = FALSE} 

strong_t_prior <- c(set_prior("student_t(50, -39, 1)", class = "b", coef = "exposed_2_kmyes")) 
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b6 <- brm(formula = bweight ~ exposed_2_km,  

          data = train, 

          prior = strong_t_prior,  

          file = "b6.1", 

          seed = 123) 

``` 

 

```{r b6 Results} 

summary(b6) 

``` 

 

## Fitting Covariate-Inclusive (Adjusted) Models 

 

```{r Fitting Adjusted Bayesian Model with No Prior (Infinitely Diffuse Uniform), message = 

FALSE, output = FALSE} 

b7 <- brm(formula = bweight ~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 
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                 # environmental characteristics 

                 community_ses_index_quartile,  

          data = train, 

          file = "b7", 

          seed = 123) 

``` 

 

```{r b7 Results} 

summary(b7) 

``` 

 

```{r Fitting Adjusted Bayesian Model with Strong Informative Uniform Prior, message = FALSE, 

output = FALSE, eval = FALSE} 

strong_informative_uniform_prior <- c(set_prior("uniform(-38, -40)", class = "b", coef = 

"exposed_2_kmyes")) 

 

b8 <- brm(formula = bweight ~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 
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                 # environmental characteristics 

                 community_ses_index_quartile,  

          data = train, 

          prior = strong_informative_uniform_prior, 

          file = "b8_updated", 

          seed = 123) 

``` 

 

```{r b8 Results, eval = FALSE} 

summary(b8) 

``` 

 

```{r Fitting Adjusted Bayesian Model with Uninformative Normal Prior, message = FALSE, 

output = FALSE} 

uninformative_normal_prior <- c(set_prior("normal(-39, 25)", class = "b", coef = 

"exposed_2_kmyes")) 

 

b9 <- brm(formula = bweight ~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  
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                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile,  

          data = train, 

          prior = uninformative_normal_prior,  

          file = "b9", 

          seed = 123) 

``` 

 

```{r b9 Results} 

summary(b9) 

``` 

 

```{r Fitting Adjusted Bayesian Model with Weak Informative Normal Prior, message = FALSE, 

output = FALSE} 

weak_informative_normal_prior <- c(set_prior("normal(-39, 5)", class = "b", coef = 

"exposed_2_kmyes")) 

 

b10 <- brm(formula = bweight ~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  
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                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile,  

          data = train, 

          prior = weak_informative_normal_prior,  

          file = "b10", 

          seed = 123) 

``` 

 

```{r b10 Results} 

summary(b10) 

``` 

 

```{r Fitting Adjusted Bayesian Model with Strong Informative Normal Prior, message = FALSE, 

output = FALSE} 

strong_informative_normal_prior <- c(set_prior("normal(-39, 1)", class = "b", coef = 

"exposed_2_kmyes")) 

 

b11 <- brm(formula = bweight ~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 
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                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile,  

          data = train, 

          prior = strong_informative_normal_prior,  

          file = "b11", 

          seed = 123) 

``` 

 

```{r b11 Results} 

summary(b11) 

``` 

 

```{r Fitting Adjusted Bayesian Model with Weak Informative t Prior, message = FALSE, output 

= FALSE} 

weak_t_prior <- c(set_prior("student_t(1, -39, 1)", class = "b", coef = "exposed_2_kmyes")) 

 

b12 <- brm(formula = bweight ~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 
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                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile,  

          data = train, 

          prior = weak_t_prior,  

          file = "b12.1", 

          seed = 123) 

``` 

 

```{r b12 Results} 

summary(b12) 

``` 

 

```{r Fitting Adjusted Bayesian Model with Right Skew Normal Prior, message = FALSE, output 

= FALSE} 

strong_t_prior <- c(set_prior("student_t(50, -39, 1)", class = "b", coef = "exposed_2_kmyes")) 

 

b13 <- brm(formula = bweight ~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 
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                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile, 

          data = train, 

          prior = strong_t_prior,  

          file = "b13.1", 

          seed = 123) 

``` 

 

```{r b13 Results} 

summary(b13) 

``` 

 

# Linear Model Summary 

 

```{r linear_model_summary function} 

linear_model_summary <- function(model_object){ 

   

  ## retrieve number of coefficients for table 

  num_coefficients <- length(coef(model_object)) 
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  ## retrieve coefficient names 

  names <- names(model_object$coefficients) 

   

  ## initialize variables 

  coef <- rep(NA, num_coefficients) 

  upper_bound <- rep(NA, num_coefficients) 

  lower_bound <- rep(NA, num_coefficients) 

  p_value <- rep(NA, num_coefficients) 

   

  ## retrieve coefficient estimate, confidence interval, and p values 

  for(i in 1:num_coefficients){ 

     

    coef[i] <- round(coef(model_object)[i], 2) 

     

    lower_bound[i] <- round(confint(object = model_object, parm = names[i], level = 0.95)[1], 2) 

    upper_bound[i] <- round(confint(object = model_object, parm = names[i], level = 0.95)[2], 2) 

     

    p_value[i] <- round(summary(model_object)$coefficients[i, 4], 4) 

     

  } 

   

  ## format p values 

  p <- case_when(p_value == 0 | p_value < 0.001 ~ "<0.001",  
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                 TRUE ~ as.character(p_value)) 

   

   

  ## create data frame for tabular output 

  df <- data.frame(Names = names,  

                   Estimate = coef,  

                   CI = paste(lower_bound, upper_bound, sep = ", "),  

                   "P" = p) %>%  

    mutate(Coefficient = case_when(Names == "exposed_2_kmyes" ~ "Yes",  

                                   Names == "(Intercept)" ~ "Intercept", 

                                   Names == "gestational_age_weeks_c" ~ "Gestational Age (Weeks)", 

                                   Names == "neonate_sexMale" ~ "Male", 

                                   Names == "apncu_index_collapsedInadequate or unknown" ~ "Inadequate 

or Unknown", 

                                   Names == "apncu_index_collapsedIntermediate" ~ "Intermediate", 

                                   Names == "apncu_index_collapsedAdequate plus" ~ "Adequate Plus", 

                                   Names == "maternal_age_years_c" ~ "Maternal Age (Years)", 

                                   Names == "maternal_raceBlack or African American" ~ "Black or African 

American", 

                                   Names == "maternal_raceAll other races" ~ "All other races", 

                                   Names == "maternal_raceUnknown or refused" ~ "Unknown or Refused", 

                                   Names == "maternal_edu_cat_collapsedLess than high school" ~ "Less than 

High School", 
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                                   Names == "maternal_edu_cat_collapsedHigh school or GED" ~ "High 

School or GED", 

                                   Names == "maternal_edu_cat_collapsedSome college" ~ "Some College", 

                                   Names == "maternal_edu_cat_collapsedUnknown" ~ "Unknown", 

                                   Names == "received_wicYes" ~ "Yes", 

                                   Names == "received_wicUnknown or not classifiable" ~ "Unknown or Not 

Classifiable", 

                                   Names == "maternal_bmi_catUnderweight" ~ "Underweight", 

                                   Names == "maternal_bmi_catOverweight" ~ "Overweight", 

                                   Names == "maternal_bmi_catObese" ~ "Obese", 

                                   Names == "maternal_bmi_catUnknown" ~ "Unknown", 

                                   Names == "gestational_diabetesYes" ~ "Yes", 

                                   Names == "nulliparousYes" ~ "Yes", 

                                   Names == "nulliparousUnknown" ~ "Unknown", 

                                   Names == "overall_smoking_gestation_and_three_months_priorYes" ~ 

"Yes", 

                                   Names == "overall_smoking_gestation_and_three_months_priorUnknown" 

~ "Unknown", 

                                   Names == "community_ses_index_quartileQ2" ~ "Q2", 

                                   Names == "community_ses_index_quartileQ3" ~ "Q3", 

                                   Names == "community_ses_index_quartileQ4" ~ "Q4", 

                                   TRUE ~ Names)) 
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  ## sort order of data frame for table 

  df <- df[, c(5, 1, 2, 3, 4)] 

  df <- df[c(2:nrow(df), 1), ] 

   

  ## final table 

  gt <- df %>% 

    gt() %>%  

    cols_hide(columns = Names) %>% 

    cols_label(CI = '95% CI') %>% 

    tab_options(column_labels.font.weight = 'bold') %>% 

    tab_row_group( 

      label = "Community SES Index, Quartile (Reference = Q1)", 

      rows = str_detect(Names, "community_ses_index_quartile")) %>%  

    tab_row_group( 

      label = "Smoking, Gestation and Three Months Prior (Reference = No)", 

      rows = str_detect(Names, "overall_smoking_gestation_and_three_months_prior")) %>%  

    tab_row_group( 

      label = "Nulliparous (Reference = No)", 

      rows = str_detect(Names, "nulliparous")) %>%  

    tab_row_group( 

      label = "Gestational Diabetes (Reference = No)", 

      rows = str_detect(Names, "gestational_diabetes")) %>%  

    tab_row_group( 
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      label = "Maternal BMI (Reference = Normal)", 

      rows = str_detect(Names, "maternal_bmi_cat")) %>%  

    tab_row_group( 

      label = "Received WIC (Reference = No)", 

      rows = str_detect(Names, "received_wic")) %>%  

    tab_row_group( 

      label = "Maternal Education, Collapsed (Reference = Bachelor's or Graduate Degree)", 

      rows = str_detect(Names, "maternal_edu_cat_collapsed")) %>%  

    tab_row_group( 

      label = "Maternal Race (Reference = White)", 

      rows = str_detect(Names, "maternal_race")) %>%  

    tab_row_group( 

      label = "APNCU Index, Collapsed (Reference = Adequate)", 

      rows = str_detect(Names, "apncu_index_collapsed")) %>%  

    tab_row_group( 

      label = "Neonate Sex (Reference = Female)", 

      rows = str_detect(Names, "neonate_sex")) %>%  

    tab_row_group( 

      label = "Exposed: 2 km (Reference = No)", 

      rows = str_detect(Names, "exposed")) %>%  

    tab_footnote( 

      footnote = 'CI = Confidence Interval', 

      locations = cells_column_labels(columns = CI)) %>% 
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    cols_align( 

      align = "center",  

      columns = c(Estimate, CI, P)) %>% 

    tab_style( 

      style = cell_text(align = "center"), 

      locations = cells_column_labels()) %>% 

    tab_style( 

      style = cell_text(align = "left", indent = px(20)), 

      locations = cells_body(columns = Coefficient,  

                             rows = !(Names %in% c("(Intercept)", "gestational_age_weeks_c", 

"maternal_age_years_c")))) %>% 

    tab_style( 

      style = "padding-right:175px;", 

      locations = cells_body(columns = Coefficient, rows = everything())) %>% 

    fmt_markdown(columns = everything())  

   

  ## return table 

  gt 

   

} 

``` 

 

```{r m1 summary} 
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linear_model_summary(m1) 

``` 

 

```{r m2 summary} 

linear_model_summary(m2) 

``` 

 

# Coefficient Summary 

 

```{r coef_summary} 

coef_summary <- function(brms_mod_list){ 

   

  ## retrieve number of models for visualization 

  num_mods <- length(brms_mod_list) 

   

  ## initialize variables 

  coef <- rep(NA, num_mods) 

  upper_bound <- rep(NA, num_mods) 

  lower_bound <- rep(NA, num_mods) 

   

  ## retrieve coefficient estimate and upper/lower credible interval bounds for each model 

  for(i in 1:num_mods){ 
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    temp_mod <- eval(as.name(brms_mod_list[i])) 

     

    coef[i] <- round(fixef(temp_mod)[2, 1], 2) 

    upper_bound[i] <- round(fixef(temp_mod)[2, 3], 2) 

    lower_bound[i] <- round(fixef(temp_mod)[2, 4], 2) 

     

  } 

   

  ## define prior (brms model list must be input in same order and with same length as priors) 

  prior <- c("none", "normal(-39, 25)", "normal(-39, 5)",  

             "normal(-39, 1)", "student_t(1, -39, 1)", "student_t(50, -39, 1)") 

   

  ## create df for table 

  df <- data.frame(model = brms_mod_list, Prior = prior,  

                   Coefficient = coef, CI = paste(upper_bound, lower_bound, sep = ", ")) 

   

  ## final table 

  df %>% 

    gt(rowname_col = 'model') %>%  

    cols_label(CI = '95% CI') %>% 

    cols_align( 

      align = "center", 

      columns = everything()) %>% 
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    tab_options(column_labels.font.weight = 'bold') %>% 

      tab_footnote( 

        footnote = 'CI = Credibility Interval', 

        locations = cells_column_labels(columns = CI)) %>% 

    fmt_markdown(columns = everything()) 

 

} 

``` 

 

```{r univariate coefficient summary} 

coef_summary(c('b0', 'b2', 'b3', 'b4', 'b5', 'b6')) 

``` 

 

```{r adjusted coefficient summary} 

coef_summary(c('b7', 'b9', 'b10', 'b11', 'b12', 'b13')) 

``` 

 

# Coefficient Visualization 

 

```{r coef_viz function} 

coef_viz <- function(reg_mod, brms_mod_list){ 

   

  ## retrieve number of models for visualization 
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  num_mods <- length(brms_mod_list) 

   

  ## initialize variables 

  coef <- rep(NA, num_mods) 

  upper_bound <- rep(NA, num_mods) 

  lower_bound <- rep(NA, num_mods) 

   

  ## retrieve coefficient estimate and upper/lower credible interval bounds for each model 

  for(i in 1:num_mods){ 

     

    temp_mod <- eval(as.name(brms_mod_list[i])) 

     

    coef[i] <- fixef(temp_mod)[2, 1] 

    upper_bound[i] <- fixef(temp_mod)[2, 3] 

    lower_bound[i] <- fixef(temp_mod)[2, 4] 

     

  } 

   

  ## create df to use in ggplot 

  df <- data.frame(model = brms_mod_list, coef = coef, upper_bound = upper_bound, 

lower_bound = lower_bound) 

   

  ## retrieve mle (linear model coefficient estimate) 
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  mle <- as.numeric(coef(reg_mod)[2]) 

   

  ## create final graph 

  df %>% ggplot() +  

    geom_point(aes(x = as.factor(reorder(model,  

                                         order(as.numeric(gsub(x = model, pattern = "b", replacement = ""))))),  

                   y = coef), size = 3, color = 'blue') +  

    geom_linerange(aes(x = as.factor(reorder(model,  

                                             order(as.numeric(gsub(x = model, pattern = "b", replacement = 

""))))),  

                       ymin = lower_bound, ymax = upper_bound), color = 'blue') +  

    geom_hline(yintercept = mle, color = 'red') +  

    scale_x_discrete(labels=c("none", "normal(-39, 25)", "normal(-39, 5)",  

                              "normal(-39, 1)", "student_t(1, -39, 1)", "      student_t(50, -39, 1)")) +  

    xlab('Prior') +  

    ylab('Coefficient Value') +  

    theme_bw() +  

    annotate("text", x = as.factor(brms_mod_list[4]), y = mle - 3,  

             label = paste0('MLE = ', as.character(round(mle, 2))), color = 'red') 

   

} 

``` 
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``’{r Coefficient Visualization: b0 - b6} 

coef_viz(m1, c('b0', 'b2', 'b3', 'b4', 'b5', 'b6')) 

``` 

 

```{r Coefficient Visualization: b7 - b13} 

coef_viz(m2, c('b7', 'b9', 'b10', 'b11', 'b12', 'b13')) 

``` 

 

# Model Evaluation 

 

```{r test_noNA} 

test_noNA <- test %>% select(c(exposed_2_km, gestational_age_weeks_c, neonate_sex, 

apncu_index_collapsed, maternal_age_years_c, maternal_race, maternal_edu_cat_collapsed, 

received_wic, maternal_bmi_cat, gestational_diabetes, nulliparous, 

overall_smoking_gestation_and_three_months_prior, community_ses_index_quartile, bweight)) 

%>% na.omit() 

``` 

 

```{r m1 rmse} 

m1_preds <- predict(m1, newdata = test) 

 

m1_rmse <- sqrt(mean((m1_preds - test$bweight)^2)) 

``` 
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```{r m2 rmse} 

m2_preds <- predict(m2, newdata = test_noNA) 

 

m2_rmse <- sqrt(mean((m2_preds - test_noNA$bweight)^2)) 

``` 

 

```{r b0 rmse} 

betas0 <- as.matrix(fixef(b0)[, 1]) 

 

X0 <- model.matrix(~ exposed_2_km, data = test) 

 

preds0 <- X0 %*% betas0 

 

rmse0 <- sqrt(mean((preds0 - test$bweight)^2)) 

``` 

 

```{r b1 rmse, eval = FALSE} 

betas1 <- as.matrix(fixef(b1)[, 1]) 

 

X1 <- model.matrix(~ exposed_2_km, data = test) 

 

preds1 <- X1 %*% betas1 
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rmse1 <- sqrt(mean((preds1 - test$bweight)^2)) 

``` 

 

```{r b2 rmse} 

betas2 <- as.matrix(fixef(b2)[, 1]) 

 

X2 <- model.matrix(~ exposed_2_km, data = test) 

 

preds2 <- X2 %*% betas2 

 

rmse2 <- sqrt(mean((preds2 - test$bweight)^2)) 

``` 

 

```{r b3 rmse} 

betas3 <- as.matrix(fixef(b3)[, 1]) 

 

X3 <- model.matrix(~ exposed_2_km, data = test) 

 

preds3 <- X3 %*% betas3 

 

rmse3 <- sqrt(mean((preds3 - test$bweight)^2)) 

``` 
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```{r b4 rmse} 

betas4 <- as.matrix(fixef(b4)[, 1]) 

 

X4 <- model.matrix(~ exposed_2_km, data = test) 

 

preds4 <- X4 %*% betas4 

 

rmse4 <- sqrt(mean((preds4 - test$bweight)^2)) 

``` 

 

```{r b5 rmse} 

betas5 <- as.matrix(fixef(b5)[, 1]) 

 

X5 <- model.matrix(~ exposed_2_km, data = test) 

 

preds5 <- X5 %*% betas5 

 

rmse5 <- sqrt(mean((preds5 - test$bweight)^2)) 

``` 

 

```{r b6 rmse} 

betas6 <- as.matrix(fixef(b6)[, 1]) 



 77 

 

X6 <- model.matrix(~ exposed_2_km, data = test) 

 

preds6 <- X6 %*% betas6 

 

rmse6 <- sqrt(mean((preds6 - test$bweight)^2)) 

``` 

 

```{r b7 rmse} 

betas7 <- as.matrix(fixef(b7)[, 1]) 

 

X7 <- model.matrix(~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile, data = test) 

 

preds7 <- X7 %*% betas7 
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rmse7 <- sqrt(mean((preds7 - test_noNA$bweight)^2)) 

``` 

 

```{r b8 rmse, eval = FALSE} 

betas8 <- as.matrix(fixef(b8)[, 1]) 

 

X8 <- model.matrix(~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile, data = test) 

 

preds8 <- X8 %*% betas8 

 

rmse8 <- sqrt(mean((preds8 - test_noNA$bweight)^2)) 

``` 

 

```{r b9 rmse} 

betas9 <- as.matrix(fixef(b9)[, 1]) 
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X9 <- model.matrix(~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile, data = test) 

 

preds9 <- X9 %*% betas9 

 

rmse9 <- sqrt(mean((preds9 - test_noNA$bweight)^2)) 

``` 

```{r b10 rmse} 

 

betas10 <- as.matrix(fixef(b10)[, 1]) 

 

X10 <- model.matrix(~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 
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                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile, data = test) 

 

preds10 <- X10 %*% betas10 

 

rmse10 <- sqrt(mean((preds10 - test_noNA$bweight)^2)) 

``` 

 

```{r b11 rmse} 

betas11 <- as.matrix(fixef(b11)[, 1]) 

 

X11 <- model.matrix(~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile, data = test) 
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preds11 <- X11 %*% betas11 

 

rmse11 <- sqrt(mean((preds11 - test_noNA$bweight)^2)) 

``` 

 

```{r b12 rmse} 

betas12 <- as.matrix(fixef(b12)[, 1]) 

 

X12 <- model.matrix(~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile, data = test) 

 

preds12 <- X12 %*% betas12 

 

rmse12 <- sqrt(mean((preds12 - test_noNA$bweight)^2)) 

``` 
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```{r b13 rmse} 

betas13 <- as.matrix(fixef(b13)[, 1]) 

 

X13 <- model.matrix(~ exposed_2_km +  

                 # infant characteristics 

                 gestational_age_weeks_c + neonate_sex + apncu_index_collapsed + 

                 # maternal characteristics 

                 maternal_age_years_c + maternal_race + maternal_edu_cat_collapsed +  

                 received_wic + maternal_bmi_cat + gestational_diabetes + nulliparous +  

                 overall_smoking_gestation_and_three_months_prior + 

                 # environmental characteristics 

                 community_ses_index_quartile, data = test) 

 

preds13 <- X13 %*% betas13 

 

rmse13 <- sqrt(mean((preds13 - test_noNA$bweight)^2)) 

``` 

 

```{r rmse df} 

## create rmse df to pipe into gt function 

rmse_df <- data.frame(Model = c('m1', 'm2', 'b0', 'b2', 'b3', 'b4', 'b5',  

                                'b6', 'b7', 'b9', 'b10', 'b11', 'b12', 'b13'), 
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                      Prior = c("NA", "NA", "none", "normal(-39, 25)", "normal(-39, 5)",  

                                  "normal(-39, 1)", "student_t(1, -39, 1)", "student_t(50, -39, 1)",  

                                  "none", "normal(-39, 25)", "normal(-39, 5)",  

                                  "normal(-39, 1)", "student_t(1, -39, 1)", "student_t(50, -39, 1)"),  

                      RMSE = c(m1_rmse, m2_rmse, rmse0, rmse2, rmse3, rmse4, rmse5,  

                               rmse6, rmse7, rmse9, rmse10, rmse11, rmse12, rmse13)) 

 

## final table 

rmse_df %>% 

  gt() %>% 

  cols_align( 

    align = "center",  

    columns = everything()) %>% 

  tab_options(column_labels.font.weight = 'bold') 

``` 
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