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ABSTRACT 
 
 

To make optimal decisions and get the best outcomes, human and animal decision-makers 

must traverse an uncertain world. Uncertainty is divided into two separate types: risk and 

ambiguity. Risk describes uncertainty where the outcomes and their probabilities are known, such 

as a fair coin flip. Ambiguity is uncertainty where there is incomplete information about the 

possible outcomes and their probabilities of occurring. Decision-makers often avoid choices with 

ambiguity, even if they are objectively better than the alternatives. Our ability to make the best 

decisions given the uncertainty of our options is dependent on learning from our past decisions 

and updating our expectations accordingly. Learning which behaviors to repeat, and which to 

discontinue is dependent on learning signals from midbrain dopamine neurons. Dopamine neurons 

compute reward prediction errors and transmit this signal to various brain regions, but mostly to 

the striatum, a critical mediator of reward learning. Reward predictions errors code the difference 

between the reward that was actually received and the reward that was expected. Expected value 

estimates in dopamine neuron signals incorporate the probability and size of rewards. However, it 

is not known whether dopamine neurons code uncertainty independent from expected value. The 

results of this body of work are threefold. First, we determined that higher uncertainty, when 

independent from the expected value of the cue, decreased learning and autonomic responses, and 

minimized the absolute magnitude of dopamine neuron reward prediction error responses. Second, 
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we determined that animals differentiate between ambiguous and risky choice options that have 

the same expected value. Choice behavior illustrated that ambiguity preferences vary based on 

expected value. This result is the first to demonstrate that decision-makers have value-dependent 

ambiguity preferences, like they do risk preferences. Finally, we characterized the functional and 

anatomical diversity of neurons in the striatum, specifically medium spiny neurons, which are a 

key relay station between dopamine neurons and the cortico-basal ganglia-thalamo-cortical 

circuits that mediate sophisticated behavior. These results together provide clear direction for 

future research into the effect of uncertainty on behavior and neural coding, and new opportunities 

for investigating circuit-specific functions that mediate these behaviors. 
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1.0 Introduction 

Uncertainty is a pervasive aspect of decision making processes for humans and animals, 

and for all types of choices. In fact, very few decisions can ever be made with complete certainty 

of the outcome. Typically, choices are made with some uncertainty about the identity of the 

possible outcomes, or about the outcome likelihoods. Formalized uncertainty in decision making 

can be broken into two distinct forms: risk and ambiguity1. Risk is uncertainty where the outcome 

of a decision is unknown, but the possible outcomes and their probabilities are known. For 

example, there are two possible outcomes of a fair coin flip: head or tails, and their probabilities 

are both known to be 50%. However, for decision-makers in the real world, the true underlying 

probability distributions are typically unavailable, or too expensive to calculate. Decisions in 

everyday life are much more reflective of ambiguity, than pure risk. Ambiguity is uncertainty 

where the outcome of a decision is unknown, and there is limited or no information about the 

possible outcomes or their likelihoods. For example, toy vending machines in grocery stores give 

us an idea of real-life ambiguity in decision outcomes. Perhaps the front of the vending machine 

shows examples of all of the toys inside, or perhaps it’s showing just a few of the possibilities. 

Further, we have no idea how many of each of the possible toys there are in the vending machine 

– or in other words, we don’t know the true probability of receiving one of these possible toys. It 

is of important note that risk, as formalized here, has nothing to do with the hazards of a choice. 

For example, some would say skydiving is ‘risky’ in the sense that there is an understood danger 

if anything were to go wrong. Here, risk is determined in relation to the probabilities of the possible 

outcomes. For example, a 50/50 gamble between two options is the riskiest, in the sense that it is 

the least certain you can be about what the outcome will actually end up being. On the other hand, 
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a 75/25 gamble between two option is less risky than a 50/50 gamble, because one of the outcomes 

has a higher likelihood. Further, ambiguity, as formalized here, has nothing to do with sensory 

discriminability; instead, the decision ambiguity discussed here relates to the information available 

about possible choice outcomes and their likelihood of occurring. 

For hundreds of years, mathematicians, economists, psychologists, and other researchers 

across various fields have formalized the risk and ambiguity in everyday decision making, and 

how to best deal with this uncertainty. In addition, researchers have made note of the numerous 

observable paradoxical choices that individuals engage in, when trying to deal with risk and 

ambiguity. While a toy vending machine is a frivolous example of ambiguity in decision making, 

there are plenty of consequential decisions involving ambiguity in an individuals’ life, such as 

choosing between possible universities or jobs, and in history. For example, in a press briefing in 

2002, the United States Secretary of Defense Donald Rumsfeld utilized ambiguity as a 

fearmongering tactic to garner public support of the United States to invade Iraq and the Middle 

East. When asked about Iraq’s possession of weapons of mass destruction and whether there were 

connections between Iraq and terrorist organizations, he stated, ‘…there are known knowns; there 

are things we know we know. We also know there are known unknowns; that is to say we know 

there are some things we do not know. But there are also unknown unknowns—the ones we don't 

know we don't know. And if one looks throughout the history of our country and other free 

countries, it is the latter category that tends to be the difficult ones’2. The point of this statement 

was to create fear around possibilities that we couldn’t possibly know, and unfortunately, humans 

do not always act in logical ways in the face of ambiguity. Our current understanding of how 

humans and animals make decisions under risk and ambiguity, rationally or irrationally, can be 

described as economic decision theory. 
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 Economic Decision Theory  

  Almost three centuries ago in 1738, Bernoulli described a coin flipping game where a 

player is offered a chance to win $2 if a coin is flipped and turns up heads. Then, in the next stage, 

the player will win double the original reward, $4, if the coin turns up heads again which has a 

1/4th probability. In the next stage, the reward doubles again for an $8 for another head, which has 

a 1/8th probability, and so on and so forth until the coin flip results in tails, at which point they will 

lose their initial entry fee and any prior gains. The puzzle lies in the question of, “What is a fair 

price to enter the game?” In order to determine this, we must consider what the expected value 

(EV) of this gamble would be. The EV can be calculated by multiplying the reward value by its 

probability of occurring, and taking the sum over all possible steps in the game. The issue is, that 

while the probability of flipping heads that many times consecutively shrinks, the payout is 

increasing at the same rate, as such the EV of the game is infinite, as follows: 

𝐸𝑉 =
1
2
∙ $2 +

1
4
∙ $4 +

1
8
∙ $8 +

1
16

∙ $16 +
1
32

∙ $32 +⋯	

𝐸𝑉 = 1 + 1 + 1 + 1 + 1 +⋯	

𝐸𝑉 = ∞ 

(Eq. 1) 

Because this game has an infinite EV players should be willing to pay any price to play, according 

to Expected Value Theory, which was the accepted standard of the time. However, as Bernoulli 

outlined, individuals will not pay millions of dollars to play this game – which is irrational, if an 

individual is trying to maximize the EV. This became known as the St. Petersburg paradox3, and 

Bernoulli deduced that while the EV may be infinite, the expected utility (EU) is not, and 

eventually plateaus as the player wins more money. Thus, the players’ subjective gains in value, 
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or marginal utility, are not as large as they were in the beginning of the game – capping the value 

of the game to much less than ∞. Importantly, he also outlined how individual risk preferences 

can vary person to person, based on their current financial circumstances. This finding would form 

the beginning of the basis for modern economic decision theory, specifically expected utility 

theory. 

 Almost two hundred years later in 1921, Frank Knight elaborated on the idea of 

uncertainty, separating the idea of risk, or the known possible outcomes and the knowable 

probabilities of those outcomes, and ‘uncertainty’, or decision situations with limited to no 

information about the possible outcomes and their probabilities4. This important distinction was 

made to express the differences in decision making processes in regards to the two, specifically 

the inability of researchers to apply the concept of maximizing expected utility, like one would in 

risky decision making, in ‘uncertain’ conditions. In the decades following, mathematician John 

von Neumann and economist Oskar Morgenstern published their book, Theory of Games and 

Economic Behavior, where they expand on Bernoulli’s initial concept of expected utility (EU) with 

a handful of axioms to explain rational decision making under conditions of risk5. Leonard Savage 

would further elaborate on individual preferences during decision making in the presence of risk, 

with what he described as subjective expected utility6. Both works introduce concepts that are the 

cornerstone for expected utility theory, game theory, and Bayesian statistics. 

It would not be until 1961 when Daniel Ellsberg publishes “Risk, Ambiguity, and the 

Savage Axioms”, where there was a real sense of investigating how decision-makers deal with 

‘uncertainty’ – as it was known – as opposed to risk1. It is in this work that Ellsberg defines 

ambiguity, which was previously described as Knightian uncertainty4, or uncertainty where the 

outcome is unknown and the possible outcomes and their probabilities are also unknown. In this 
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work, Ellsberg introduces a new scenario that displays paradoxical behavior that violates the 

prevailing theory of decision making under uncertainty, expected utility theory (EUT). The 

Ellsberg paradox describes a scenario where there is an urn with 90 balls, 30 are red, and the 

remaining 60 are either black or yellow. An individual is asked to bet on one of two gambles, (A) 

$100 if the ball drawn from the urn is red or (B) $100 is the ball is black. Then the individual is 

asked to choose between two other gambles, (C) $100 if the ball drawn from the urn is not black 

or (D) $100 if the ball is not red. In most cases, it has been shown that individuals will choose 

gamble A over B, and gamble D over C. The paradox lies in the fact that the people will choose to 

bet for known information – in this case gamble A that the ball selected is red, and gamble D that 

the ball selected is not red. This outcome violates Savage’s sure-thing principle6, requiring that 

decision-makers conserve their belief that red is more probable in the urn, which is consistent with 

choosing gamble A but not gamble D. This choice preference to choose based on known 

information, the 30 red balls we know about in the urn, instead of unknown information, or the 

unknown number of black balls in the urn, is known as ambiguity aversion. Importantly, decision-

makers will avoid ambiguity at the expense of utility. This is a seminal work for understanding 

how risk and ambiguity effect choices. 

Risk preferences and individual-specific decision patterns that belie expected utility theory 

are realized in the 1979 work of Kahneman and Tversky, “Prospect Theory: An Analysis of 

Decision Under Risk”7. It is in this paper that a value function is detailed and shown to be specific 

to changes in an individual’s current situation, and their own specific preferences that are context 

dependent. The value function described is concave for gaining rewards, leading individuals to be 

risk averse for gains, and convex for losing rewards, or risk seeking. This collection of research 

spanning hundreds of years has informed our modern understanding of the rules of decision 
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making under risky and ambiguous conditions, and the many observable ways with which we 

break those rules in real life choices. While decision making can’t always be accurately described 

by expected utility theory or prospect theory, they are the standard that researchers can apply to 

try to understand what rational economic decision making looks like under uncertainty, and how 

individuals can evaluate their options in complicated and perpetually changing environments. 

 Reinforcement Learning 

Success in uncertain decisions rely on an individual’s aptitude for navigating complex 

surroundings, evaluating many available possibilities, and approximating potential choice 

outcomes as closely to reality as possible. Further, integrating the outcomes of past choices to learn 

and inform future choices has a huge influence on individuals’ success in receiving the highest 

value rewards. This is what is at the crux of reinforcement learning, simply put, it is how 

individuals learn to make the best decisions. Modern reinforcement learning (RL) has a past in 

behavioral psychology, specifically trial-and-error learning, optimal control of dynamical systems, 

and temporal difference methods8.  

 Trial-and-Error Learning 

Edward Thorndike was the first to describe the heart of RL, which is trial-and-error 

learning. Specifically, in 1911 Thorndike described the “Law of Effect”, which defined a decision-

maker’s tendency to learn to repeat actions that were followed by good outcomes, and to stop 

actions that were followed by bad outcomes9. In other words, the effects of actions informed an 
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individual’s future decisions of which actions to repeat and which ones to stop. This form of 

learning is different from just association, as it takes into account a history of past outcomes.  

The term ‘reinforcement’ stems from Ivan Pavlov’s work from 1927 describing classical, 

or Pavlovian, conditioning10. Pavlov was studying the physiology of digestion in dogs by 

measuring their salivation, when he discovered that the dogs would begin salivating not at the 

presentation of the food, but instead, when the experimenter entered the room to feed them. Pavlov 

followed this observation and discovered that he could elicit a physiological response 

(unconditioned response; UR) to stimuli that normally would produce no response, or a neutral 

stimulus (NS), by pairing it with a stimulus that naturally elicits the UR, or an unconditioned 

stimulus (US). The dog naturally salivating to the presentation of food would be the UR and the 

US, respectively. Then by pairing a sound prior to the food, the dogs would learn to associate the 

sound (conditioned stimulus; CS) with the presentation of food. Finally, after learning these 

associations, the sound (CS) would elicit the animal to begin salivating even without the immediate 

presentation of food – a conditioned response (CR) to the CS. Although reinforcement learning as 

we know it is more than learning by association, Pavlovian conditioning provided a critical 

framework for cognitive and behavioral research, and allowed researchers to utilize conditioning 

to investigate increasingly complex decision making paradigms.   

Another key contribution that pushed trial-and-error learning towards reinforcement 

learning was that of Marvin Minsky in 1954. In his PhD dissertation, Minsky discusses 

computational models of reinforcement learning and an analog machine he created, with multiple 

components named Stochastic Neural-Analog Reinforcement Calculators (SNARCs) 11. In the 

same year, Farley and Clark designed neural networks that learned through trial-and-error12. In 

1963, John Andreae created a machine  that used trial-and-error learning and included a model of 
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the environment, and later added a component to perform hidden state inference, or ‘internal 

monologue’ which he named STeLLA13,14. Around the same time as Andreae was creating his 

trial-and-error learning machine, Donald Michie was creating a system that could learn to play 

Noughts and Crosses (also known as Tic-Tac-Toe) called a Matchbox Educable Noughts and 

Crosses Engine (MENACE)15,16. These are just a few examples of the steps taken towards creating 

algorithms that utilized trial-and-error learning techniques that would inform modern 

reinforcement learning. 

In 1975 John Holland introduced what would become a critical tool in reinforcement 

learning research, the n-armed bandit17. This mechanism was used to portray selection between 

some number (n) of independent ‘arms’, like a those of a slot machine, where learning takes place 

through choosing a different arm, receiving some outcome, then deciding whether to exploit the 

option you have already experienced, or explore alternate arms of the bandit. Holland’s initial 

version of this concept was to utilize trial-and-error learning machines where algorithms learn to 

optimize genetic fitness by selection of biological variables such as mutation, crossover, and was 

based on an evolutionary adaptive system18. However, the key principles remain and are used in 

reinforcement learning research today. Holland also emphasized the importance of the dual control 

problem, introduced by Fel’Dbaum in 196519, which states the need to select a policy for behaviors 

of specific variables while simultaneously identifying other options in uncertain conditions. 

Holland specified the issue as one between exploiting known options and exploring new ones to 

gain information. Finally, in 1986 Holland introduced the idea of classifier systems, which were 

algorithms that use state-dependent rules to store information in order to create value functions 

associated with possible behaviors or policies18. This work would greatly influence Richard 
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Sutton, Andrew Barto, and Charles Anderson’s work on the Actor-Critic reinforcement learning 

architecture20.  

 The Optimal Control of Dynamical Systems 

A second thread of the history behind reinforcement learning is optimal control theory; 

which deals with choosing a controller, or defined behavior of specific variables over states, to 

best operate a dynamical system, such that some objective output is optimized21. Richard Bellman 

developed an approach that involves solving a value function, or an optimal return function, to 

best optimize the dynamical systems output. Finding the solutions to these dynamical systems is 

also known as dynamic programming. In the case of reinforcement learning, a decision-maker (or 

agent) has the goal of optimizing the value accrued from their decisions. In order to achieve this 

objective, they must learn to behave optimally over states (i.e. learn an optimal controller) via 

successive approximations, or in other words, over trial-and-error learning. 

Bellman also created a discrete, stochastic version of the optimal control problem known 

as Markov decision processes (MDPs)22. MDPs describe a situation where a decision-maker in a 

specific state can select an action that is available in that particular state, and then the decision-

maker is moved to a new state and given a reward, much like Markov chains which describes a 

sequence of possible events where the probability of each event is dependent on previous states. 

The assertion of the MDPs is that these outcomes are partly random and partly under the control 

of the decision-maker. A policy is the specific action that a decision-maker is likely to make given 

a specific state. In 1960, Ron Howard introduced the policy iteration method for MDPs, where 

time steps are repeated  over and over until the policy converges, giving an ideal action to take 

given the state, which is still used in modern reinforcement learning algorithms23. 
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 Temporal Difference Learning  

Classical conditioning methods using a conditioned stimulus (CS), or secondary reinforcer, 

are critical in animal behavioral and cognitive research. Temporal difference (TD) facilitates 

learning by predicting future outcomes following a choice, and then evaluating whether said 

outcome is worse or better than predicted, and utilizing that evaluation update future predictions11. 

The point of this computation is to assist in learning of a secondary reinforcer, or CS, and correctly 

calculating what reward the secondary reinforcer predicts. Arthur Samuel was the first to create a 

checkers-playing artificial learning system that utilized TD-learning methods24.  

It was in the 1970’s that Harry Klopf combined the trial-and-error learning theories with 

temporal difference (TD) learning, describing large adaptive systems that had multiple 

subcomponents that could locally reinforce each other while influencing the larger system as a 

whole25. Specifically, this system had excitatory input for rewards, and inhibitory input for 

punishments, in order to represent the ‘hedonic aspects’ of behavior. This assertion was critical for 

distinguishing reinforcement learning from supervised learning, which learns to implement 

choices based on generalizing from training examples instead of by trial-and-error. In their book, 

Reinforcement Learning: An Introduction, Sutton and Barto describe how Klopf’s work would be 

a key influence in their integration of optimal control theory, trial-and-error learning, and TD-

methods to build reinforcement learning, specifically using temporally successive predictions and 

the research into animal learning and behavior8. 
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 Actor-Critic Architecture 

In 1983 Barto, Sutton, and Anderson would 

publish a method applying temporal difference (TD) 

methods to trial-and-error learning in what they called the 

actor-critic architecture (Fig. 1)20. In this model, the agent, 

or decision-maker, chooses a policy which creates an 

action that effects the environment of the agent. Then, after 

the action, the environment provides feedback in the form 

of reward and the state of the agent. The actor refers to the 

behavioral policy and the critic refers to the estimated 

value functions. The value function is the “critic” in that it 

critiques the policy selection of the actor, and updates it accordingly. Importantly, the TD 

prediction error is the sole critique from the value function, or the critic, and this is what is used to 

update the policy selection of the actor. This architecture is different from other methods by having 

a value function that is separate from the policy selection, or in other words, by having the critic 

and actor separated instead of being in the same function. 

The original 1983 paper utilizing the actor-critic method used it to address Michie and 

Chamber’s pole-balancing task, which was one of the earliest examples of a learning task under 

conditions with incomplete knowledge, or uncertainty20,26. The goal of the pole-balancing system 

is to move a cart left and right in an attempt to balance a long, hinged pole attached to the middle, 

and prevent it from falling over. Some important variables in this example are the angle of the pole 

and the location of the cart on its finite track. The state could describe situations where the cart 

Figure 1: Actor-Critic Architecture of 
Reinforcement Learning 
Reproduced with permission, Figure 6.15 of 
Sutton & Barto, 1998; Reinforcement 
Learning: An Introduction, published by MIT 
Press. 
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was towards the left, center, or right of the track, the velocity of the cart, and the direction and 

angle that the pole is leaning. The actor must select a policy for all of these states where the action 

selected exerts enough opposite force to straighten the pole back out, or keeps it steady and 

balanced. After a policy, and in turn an action, is selected by the actor, the environment will update 

the state, and return a reward, for example +1 for keeping the pole from falling for another step, 

or nothing for letting it fall. The value function is updated by the reward and the TD prediction 

error is sent by the critic, which updates the policy selection of the actor for future states. This 

model of reinforcement learning is still vital to neuroscience, machine learning, and psychological 

research done today. 

 Q-Learning Algorithm 

The integration of trial-and-error learning, temporal difference learning, and optimal 

control, was when Q-learning, a model-free reinforcement learning (RL) algorithm, was 

introduced by Chris Watkins in 198927. Q-learning is model-free, in that it does not require a model 

of the environment of the agent, and it learns the optimal policy that maximizes value in a finite 

Markov decision process. Importantly, Q-learning is an off-policy method, unlike Actor-Critic 

methods, meaning that the system learns the optimal policy independent of the agent’s action 

selection process. In other words, the Actor-Critic methods of RL are on-policy, because it is only 

estimating the value function of the policy currently being followed. The Q-learning policy relies 

on value function, “Q”, that the algorithm computes which returns the expected rewards for an 

action taken in a particular state. A convergence proof of Q-learning was given by Watkins and 

Peter Dayan in 199228. Integrating Q-learning into the current methods is a critical step towards 

integrating optimal control, and temporal difference methods into RL. 
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 Modern Reinforcement Learning  

To make optimal decisions, an individual must learn to act in ways that provide them with 

the most rewarding outcome – which is subjective to that individual. While economic decision 

theory instructs how individuals choose based on their subjective preferences, reinforcement 

learning tells us how an individual learns what exactly the best outcome is to them. Reinforcement 

learning is incredibly important in a complex and uncertain world, where things are more nuanced 

than just worse or better, and learning about uncertain environments helps us get more value in the 

long run. Imagine that I want to go out and buy a coffee. Redhawk Coffee is a favorite coffee shop 

of mine, and I have accrued hundreds of experiences buying a coffee there, and then experiencing 

some outcome in terms of the subjective value that coffee provides for me. Every time I receive a 

coffee from Redhawk, I taste it, and experience a prediction error based on the subjective value I 

experience from that particular cup of coffee. This is a temporal difference (TD) learning method 

used to update the value of options in the everyday decisions we make. Sometimes my cup of 

coffee is worse than my average experience, and sometimes it’s better. I learn from all of these 

experiences, and they accumulate to create a distribution of outcomes that build my average 

expectation of the value of a cup of coffee from Redhawk. In this instance, the outcomes are 

normally distributed around my average expected value (EV) of a coffee at Redhawk (Fig. 2, left 

panel). While this alone is a useful mechanism to build an accurate expectation for the value of 

receiving a coffee at Redhawk, it is most useful in helping us determine what decision to make in 

the first place. Most often, we make decisions between multiple uncertain choices, and this is 
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where our 

cumulative 

experiences help us 

make decisions. 

While I frequent 

Redhawk, I 

sometimes go to 

Dunkin’ Donuts 

for coffee. However, unlike my distribution of experiences at Redhawk, my experiences at 

Dunkin’ Donuts are much less consistent and are uniformly distributed around an average 

subjective value (Fig. 2, right panel). This means that even though my average subjective value of 

coffee from both of these places is similar and is across the same range of worse or better than 

average outcomes, a cup of coffee from Redhawk is much more consistent, and I am more likely 

to experience a much worse than expected – or much better than expected – cup of coffee from 

Dunkin’. What does this mean for me as a decision-maker? Well, if I prefer the reliability of the 

quality of the cup of coffee at Redhawk, then I might choose to go there as to not risk the possibility 

of a getting a much worse than expected cup of coffee at Dunkin’. On the other hand, perhaps I 

am feeling optimistic about my chances of getting a better than expected cup of coffee at Dunkin’, 

and I take the risk and choose to go there instead of Redhawk, as I am much more likely to a much 

better than average cup of coffee at Dunkin’ based on my distribution of past experiences. Every 

one of these outcomes provided a TD prediction error, and allow me to update what to expect when 

I choose to buy coffee from one of these places. This is a simple example of how distributions over 

Figure 2: Experiences Shape Value Expectations 
Probability density functions representing the quality of a cup of coffee for Redhawk Coffee 
Roasters (left), and Dunkin’ Donuts (right).  
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rewards influence reward-based decision making in uncertain environments that is happening in 

our everyday lives.  

Reinforcement learning is, put simply, the updating of values of behaviors, and these values 

should be considered subjective to the individual and can be influenced by the uncertainty 

surrounding the options and their outcomes. Combining these concepts, reinforcement learning 

and economic decision making, are the heart of this body of work and specifically, the effects of 

uncertainty on the brain and the neural systems involved in learning and decision making. The 

next section will be a discussion of function of multiple regions in the brain that mediate decision 

making through their representations of reward prediction errors, value, and uncertainty. 

  How the Brain Mediates Reward Based Decision Making and Learning 

Reinforcement learning (RL) has become a universally accepted way to consider how 

humans and animals learn from experience and make appropriate decisions. Much of early RL 

research utilized these computational concepts to create artificial learning systems. At the same 

time, because of the computational context it provides, neuroscientists have sought out how 

neurobiological systems fit into this framework. A key factor in RL is value functions, and 

economic decision theory has given clear standards on how individuals construct value (utility) 

functions based on their subjective experience in an uncertain world. The following sections will 

outline different key brain regions that perform uncertainty and value coding, and mediate 

learning. A caveat to keep in mind is that a lot of these brain regions perform multiple different 

roles depending on the situation29. These brain regions do not exist to perform in a singular context, 



 16 

and as such, most need to, and will, dynamically adapt to fit the role necessary to successfully 

learn and optimize performance in different behavioral conditions.  

 Neural Coding of Reward Prediction Errors 

Reward prediction errors (RPEs), in terms of temporal difference (TD) learning rules, are 

the difference between the received minus predicted reward: 

𝑅𝑃𝐸 = 𝑅𝑒𝑤𝑎𝑟𝑑	𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑅𝑒𝑤𝑎𝑟𝑑	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

(Eq. 2) 

The predicted reward is a point estimate that represents the expected subjective value. In regards 

to reinforcement learning (RL), this acts as the critic’s signal back to the actor. This signal can be 

used to update the state value estimate, and be integrated into the policy of what decision to make 

in future iterations. The first neural substrate to become widely associated with coding RPEs are 

midbrain dopamine neurons. Before dopamine neurons were known to code RPEs, many scientists 

studied their role in generating movements, due to the motor impairments resulting from lesion 

studies and evident in Parkinson’s disease, which is a result of the deterioration of dopaminergic 

neurons30-34. However, following multiple investigations to uncover the role of dopamine neurons, 

it was in 1997 that Schultz, Dayan, and Montague discovered that dopamine neurons code reward 

prediction errors35. They saw that dopamine neurons showed phasic activations to receiving 

unpredicted rewards (Fig. 3, top). Further, when they associated a cue with a reward, dopamine 

neurons stopped having phasic activations at the time of reward, but instead became activated at 

the cue presentation that fully predicted that a reward would be given (Fig. 3, middle). In addition, 

if the reward was withheld following the reward-predicting cue, dopamine neurons showed phasic 
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pauses in firing (Fig. 3, bottom). This finding perfectly capitulated a TD prediction error (Eq. 2). 

It is important to note that RPEs happen not only following actual rewards – or primary reinforcers 

– but also following secondary reinforcers, like a conditioned stimulus (CS) that predicts reward. 

To contextualize how real world experiences can produce the firing patterns shown in Figure 3, 

imaging you are at a restaurant and you have 

ordered your food and you are waiting for it to 

come out. In the top panel of Figure 3, there is 

no CS, so no RPE (dark blue), followed by an 

unpredicted reward, causing a positive RPE 

(light blue) – or a phasic burst in firing. This 

might happen if you don’t see the waiter coming 

towards you with your food and they just set it 

down all the sudden. You didn’t see the waiter 

coming and thus had no prediction of food being 

delivered, so when you unexpectedly receive the 

food you experience a positive RPE. In the 

middle panel, there is a CS that predicts a 

reward, causing a positive RPE (dark blue), 

followed by the predicted reward, causing no 

RPE (light blue). In this instance, you see the 

waiter coming out with food, and you have the 

positive prediction error because you went from 

no food to food is on the way, and delivery was fully expected, resulting in no prediction error. In 

Figure 3: Midbrain Dopamine Neurons Code 
Reward Prediction Errors 
Raster plots and peri-stimulus time histograms 
(PSTHs) from extracellular recordings in midbrain 
dopamine neurons. Top panel is aligned to reward (R), 
middle and bottom panels aligned to conditioned 
stimulus (CS) presentation. Top, No CS and thus, no 
reward prediction occurs (0 RPE, dark blue), followed 
by an unpredicted reward (Positive RPE, light blue). 
Middle, CS predicts reward (Positive RPE, dark blue), 
followed by the predicted reward (0 RPE, light blue). 
Bottom, CS predicts reward (Positive RPE, dark 
blue), followed by the predicted reward being 
withheld (Negative RPE, light blue). Dark blue shaded 
regions indicate RPEs to secondary reinforcers (the CS 
or no CS), light blue shaded regions indicate RPEs to 
primary reinforcers (juice or no juice reward). 
Reproduced and modified with permission, based on 
Figure 1 of Schultz, Dayan, & Montague, 1997; 
published in Science by the American Association of 
the Advancement of Science. 



 18 

the bottom panel, there is a CS that predicts a reward, causing a positive RPE (dark blue). However, 

this time, no reward is given, causing a negative RPE (light blue). In this instance, you see the 

waiter coming out with food so you have a positive RPE, but the waiter walks past you with the 

food to a different table, so instead of getting food like you expected, you get nothing, causing a 

negative RPE. 

Waiting for food at a restaurant is an intuitive example of real-life prediction errors. 

However, a lot more than reward vs. no reward goes into how our neurons calculate the “Reward 

Predicted” aspect of the RPE equation (Eq. 2). Consider a monkey is in an environment where the 

average reward they can expect is 0.6 ml, based on a cue that predicts equal probabilities of 

receiving 0.4 or 0.8 ml of juice. When they see the cue, they have a RPE that reflects the point 

estimate of the subjective value of that cue, which is, 0.4 ml*(P)0.5 + 0.8 ml*(P)0.5, which results 

in an expected value of 0.6 ml for the cue that predicts those outcomes. Now, when they receive 

either the 0.4 or the 0.8 ml reward, there will also be a RPE response. A negative RPE response if 

they receive the 0.4 ml of juice, as it is worse than predicted (0.4 ml < 0.6 ml) – or a positive RPE 

response if they receive the 0.8 ml of juice, as it is better than predicted (0.8 ml > 0.6 ml). The 

absolute reward magnitude is not the only consideration when calculating the expected value of a 

cue. The value received from a reward is not the same across individuals, and as such, the estimates 

of subjective value that are used by dopamine neurons to calculate reward prediction errors also 

reflect individual differences. Utility is defined as the unique worth or benefit that a person gains 

from a reward, and dopamine neurons use utility to code reward prediction errors36. The utility of 

an outcome incorporates any kind of feature that could alter how much a person values it, and 

dopamine neurons have been shown to incorporate them individually as well. Different features of 

reward outcomes, such as reward type, volume, delay, effort required, and probability are all 
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integrated on a common scale of utility37-41. In addition to incorporating all of these facets of 

reward, dopamine neurons also adapt in order to most effectively code reward prediction errors 

regardless of the absolute utility, such that RPEs in a context with rewards of small utility are 

efficiently coded for maximal learning, and RPEs in a context with rewards of large utility are also 

efficiently coded42. This is important because even though the utility of a coffee is much smaller 

than that of a car, it is necessary to adapt prediction error coding in order to learn which outcomes 

were the best in both contexts. To elaborate on this, if you want to buy a car and you go to test 

drive a few, you will experience RPEs in relation to whether the experience driving them is better 

or worse than you were expecting, and these RPEs will utilize the maximal range of firing rates in 

dopamine neurons. Then, if you go and buy a coffee, the comparative utility is much smaller, but 

you still want to effectively evaluate if it was better or worse than you were predicting. If dopamine 

did not adapt to different contexts, the RPEs in response to the much smaller utility of a coffee 

would be so minimal that it would become a useless mechanism. However, because dopamine 

neurons can adapt to different rewarding contexts, they can still utilize their full firing range, even 

with smaller utility decisions, like a coffee. Reward prediction error signals from dopamine 

neurons have been proven to be causal in effecting behavior. Specifically, animals will choose a 

stimulus that predicts optogenetic stimulation of dopamine neurons over a choice with the same 

juice reward but no optogenetic stimulation43,44. Furthermore, if dopamine neurons are inhibited, 

this outcome is reversed, and behaviors that predict dopamine inhibition are avoided45,46. Thus, 

RPE signals can causally influence how we learn and make reward-based decisions. 

Two other nuclei that perform reward prediction error coding are the lateral habenula 

(LHb) and the rostromedial tegmental nucleus (RMTg). These regions both provide input to 

dopamine neurons – specifically, a small amount of direct afferents to dopamine from the LHb47,48, 
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along with additional input routed disynaptically through the RMTg49,50. The LHb plays a key role 

in learning from non-rewarding or even aversive events, by coding an inverse reward prediction 

error where neurons are activated by non-rewarding or aversive stimuli, and silenced by reward 

and reward-predicting stimuli51,52. The RMTg also codes inverse reward prediction errors49,50. 

While the RMTg receives inverse reward prediction error signals from the LHb, the anterior 

cingulate cortex also inputs to RMTg and provides a teaching signal to learn to avoid aversive 

outcomes53. Stimulating the LHb facilitates behavioral avoidance54,55. Further, there is a direct 

causal relationship between the LHb and dopamine neurons, such that activating the LHb causes 

inhibition of dopamine neurons, which is mostly mediated through the disynaptic connections 

through RMTg56-59. Further, ablation of the LHb prevents learning from unrewarded stimuli, and 

even minimizes animal’s ability to create nuanced behavior and graded dopamine RPE responses 

to stimuli with varying expected values60. The LHb, RMTg, and midbrain dopamine neurons all 

code a form of reward prediction error, and provide a neural teaching signal to instruct which 

behaviors to repeat and which to stop. These teaching signals are utilized in downstream brain 

regions to update value representations of stimuli and actions that preceded the reward prediction 

errors. 

 Value Representations in the Brain 

A critical part of economic theories of decision making is that decision-makers often value 

the same options differently given their own conditions, and when compared to other individuals. 

The circumstances the person is under, their subjective preferences, their internal states, and risk 

tolerance all play into how an individual evaluates possible choice options. Devaluation is a classic 

example showing that internal state can change subjective preferences through selective 
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satiation61. Consider a person who prefers orange juice over apple juice. After a week of having 

orange juice every day, they choose apple juice over orange juice. Wealth can also modulate 

individuals’ risk attitudes and consequently, their decisions. Consider two individuals go to a 

casino. They both play blackjack and both have won $10,000. One of these individuals is already 

rich, so they continue to play and gamble, as they are not satisfied by the $10k of winnings, and 

they are not worried about the possibility of losing all their winnings by continuing to gamble. The 

other individual, however, is poor and sees $10k as a huge win, and chooses to cash out in order 

to avoid the risk of losing what they have already earned. These examples suggest that economic 

decision making is a dynamic process and our brains must represent and integrate multiple factors 

across different domains during economic decision making.  

 Subjective Value Coding in Cortical Regions 

One of the most well-characterized regions for subjective value coding is the orbitofrontal 

cortex (OFC), which is located at the most ventral portion of the prefrontal cortex. The past two 

decades of research in the OFC has shown how essential this region is for encoding subjective 

value of choice options, regardless of the action taken by the subject. These findings indicate a 

role for OFC in instructing downstream regions which options are of the highest value to the 

decision-maker. Interest in OFC function stemmed from the observable effects of frontal lobe 

damage in humans, and subsequent lesion studies in monkeys. For example, macaque monkeys 

with OFC lesions show a variety of behavioral impairments in multiple different tasks. One 

striking example reveals the loss of ability to update the value of a previously non-rewarding 

object62. In the first study characterizing the electrophysiological functions of OFC neurons in 

awake and behaving macaques, authors noted that neurons did not code information relevant to 

the performance of the visual discrimination task, but indeed, were very active in response to the 
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different stimuli and their values63. Further, they made note that some neurons of the OFC would 

show the same level of activation for a particular reward at the time of the visual stimulus that 

predicted it, and at the reception of the reward itself; a finding that would foreshadow our current 

understanding of subjective value coding in the OFC. In another study, OFC neurons stopped 

responding to rewards that had been devalued, showing that as the individuals’ subjective value of 

a reward decreased so did the coding of that reward in OFC neurons64. In 1999, Tremblay and 

Schultz recorded from OFC neurons in macaque monkeys performing a delayed-response task, 

where the monkeys had to move their hand to a lever on the side that a previously shown image 

had appeared65. The task was set up in blocks where two different rewards could be given, 

depending on the identity of the visual stimuli. In blocks of trials where the monkeys’ preferred 

(Reward A) and second preferred reward (Reward B) could be received, OFC neurons showed 

higher firing rates following Reward A. However, when they were in blocks of trials where their 

second (Reward B) and third preferred reward (Reward C) could be received, OFC neurons 

showed the same pattern of firing as in blocks with Rewards A and B, but in this case, OFC neurons 

showed higher firing rates following Reward B. This result indicated that the OFC coded the 

relative value of the rewards available during a specific block and illustrates the flexibility of OFC 

neurons – they can update their coding scheme based on the options that are available in a given 

environment, much like range adaptation seen in dopamine neurons42. More recent studies have 

shown that OFC coding meets two important conditions required to be considered an abstract 

representation of subjective value – or in other words, in the space of economic ‘goods’66. First, 

the coding of value must be independent of the sensorimotor contingencies necessary for making 

a choice; and second, the coding should encompass all external (i.e. reward identity and amount, 

delay to reward, effort required, uncertainty) and internal (i.e. attitudes towards uncertainty, 
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motivation, delay tolerance, etc.) aspects that could be integrated to compute the value of the 

option. These conditions have certainly been met, as many studies have substantiated that the OFC 

codes subjective value of choice options, integrating multiple relevant aspects of the option; and 

that this coding was independent of the subsequent choice and behavioral action the animal 

planned and consequently completed66-77. Further, decoded activity of neural populations in the 

OFC shows the value comparisons between two choice options. Specifically, when the decision is 

fast, the coding between two options separates quickly; when the decision is slow and the 

individual takes more time to deliberate, the separation between the coding of the two choice 

options is smaller78. This is a reasonable result, as an individual may not be as decisive when they 

value two options similarly, and it should not take an extensive amount of consideration to choose 

an option that is subjectively much more valuable. It has been suggested that the location of the 

OFC in the prefrontal cortex is quite distinct, as it receives inputs from visual, olfactory, gustatory, 

and visceral sensory areas70,79. This junction of information in the OFC provides the neurons in 

this area a unique ability to integrate multiple sensory modalities to create a comprehensive 

subjective valuation of choice options in the environment.  

In addition to the OFC, there are a number of other prefrontal cortical regions that perform 

value coding. The medial prefrontal cortex (mPFC) has been shown to encode the value of a chosen 

option, such that the activity persists following selection of the option – which could act as a 

remedy for the credit assignment problem80 by allowing memory of the value of the selected action 

to remain available69. Further evidence to support the mPFC role in credit assignment comes from 

a choice task where two options are individually and serially presented to monkeys. In this task, 

mPFC neurons preferentially encoded the value of the first option presented and persisted during 

and after receiving the reward72. In a choice task where humans made choices between immediate 
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and delayed monetary rewards, functional magnetic resonance imaging (fMRI) blood-oxygen-

level dependent (BOLD) activity in mPFC was correlated with the subjective value of the rewards 

in a common currency that integrated the delay and reward volume for multiple options81. Other 

fMRI studies have shown that ventromedial prefrontal cortex (vmPFC) activity also integrated risk 

and ambiguity82, and gains and losses83 into their subjective value estimates. The lateral PFC 

(lPFC) has been shown to encode stimulus identities as well as the location of option that will be 

chosen, indicating a role for this region in transforming goals in the environment into actions that 

will allow us to obtain these goals84-86. Single-unit electrophysiology in the dorsolateral PFC 

(dlPFC) – specifically Broadmann area (BA) 46 – of rhesus monkeys performing an oculomotor 

delayed-response task showed enhanced activation in the delay before making a saccade to a larger 

reward-predicting target stimulus in their response fields87. Other work has shown action-value 

functions in this region as well, informing which actions had preceded the best rewards88,89. In 

more recent research, decoding of neural activity in the dlPFC has shown value representations for 

novel pairs of rewarding choice options, and further, that these representations begin to appear as 

the values of the stimuli are learned and updated following a value reversal90. In addition, this 

study also demonstrated that the dlPFC showed expanding and unique coding space for the 

numerous individual pairs of reward-predicting stimuli, signifying coding of specific object 

identities and not just their value. Indeed, the dlPFC has been shown to be flexible in the variables 

it encodes dependent upon the demands of the task – a concept known as ‘mixed selectivity’ due 

to the adaptable rules of coding seen in dlPFC91. 

Other regions of the cortex, such as the cingulate cortex, and posterior parietal cortex have 

also been implicated in coding value. The anterior cingulate cortex (ACC) lies on the ventromedial 

wall of the frontal lobe and has been shown to code a state value function, like that seen in a 
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reinforcement learning algorithm92. The posterior portion of the cingulate cortex (PCC) also shows 

value related signaling, specifically, neural signals about value differences between the actual 

reward received and the average reward rate in an environment are carried into the next trial, 

essentially keeping track of a previous trials’ risk to potentially inform future decisions88,93,94. In 

the parietal cortex, similar value functions related to the action or state value have also been 

reported. Many neurons in the lateral intraparietal cortex (LIP) encode value functions for eye 

movements95-99. However, more recent work has shown the LIP encodes the salience of choice 

options as it relates to the magnitude of value gains and punishments, as opposed to just value100. 

This suggests LIP can mediate a wider scale of outcomes than previously suspected, which is 

critical when making decisions where there may be a tradeoff of positive and negative outcomes. 

These are just a few key regions of the cortex that mediate value into their neural coding. 

 Subjective Value Coding in Subcortical Regions 

One subcortical portion of the brain, the basal ganglia, are comprised of the striatum, 

pallidum, and the substantia nigra101. The basal ganglia are classically thought to be a key 

controller of movement, due to the degradation of motor control seen in Parkinson’s disease 

following the degeneration of midbrain dopamine neurons and consequent dopaminergic 

denervation of the sensorimotor striatum30,102. Observations in disease states lead to the 

characterization of the “direct” and “indirect pathway” through the D1- and D2-medium spiny 

neurons (MSNs), which appear to mediate opposing effects on movement103,104. However, research 

has shown that while basal ganglia projections mediate the control of movement, there are also 

substantial contributions to integrating value and learning signals from multiple regions across the 

brain. Characterizations of the anatomy and functional roles of the basal ganglia show distinct, 

parallel basal ganglia-thalamocortical circuits105. More recent research has shown the role of the 
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reciprocal connections between the cerebellum and the basal ganglia as well – suggesting multiple 

nodes in an integrated network to mediate behavior106,107. These anatomically distinct yet 

functionally related subcortical networks integrate information from motor, limbic, and cognitive 

networks to produce sophisticated behavior; and reward-mediated decision making is included in 

these processes. 

The striatum is often credited as the critical mediator in reinforcement learning (RL) 

through learning and encoding of value108. The ventral striatum (VS) consists of the nucleus 

accumbens (NAc) and the olfactory tubercle (OT), while the dorsal striatum (DS) consists of the 

caudate (Cd) and putamen (Pt). Both of these regions receive vast input from midbrain dopamine 

neurons109, which relay reward prediction error responses to instruct which behaviors to repeat and 

which to stop110,111. Much of RL-based research in the striatum separates into action-value and 

stimulus-value, and some have postulated dissociable roles of the DS and the VS112. Multiple 

studies recording across the entirety of the striatum, in both phasically active neurons (PANs, 

putatively MSNs), and tonically active neurons (TANs; putatively cholinergic interneurons) have 

shown reward-related signals in decision making tasks113-118. In the DS, a seminal study showed 

that the value of two separate actions were learned and encoded in MSNs in the Cd and Pt of 

macaque monkeys119. Specifically, the values encoded represented the learned action-values that 

incorporated the history of outcomes that reflected the probability of choosing a particular action, 

as estimated by a RL model. However, the DS is not limited to encoding only action values. 

Microstimulation in the Cd of the DS causally increases the value of specific choices, and the 

probability of choosing a specific option, regardless of the actions necessary to make the choice120. 

This finding refutes the idea that the DS is limited to perform as the RL ‘actor’, and speaks to the 

larger role of the DS as a mediator of learning both action and stimulus values. 
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In terms of the ventral striatum (VS) and its role in reinforcement learning (RL), some have 

described the role the VS played to be one of the critic, incorporating error signals from midbrain 

dopamine neurons to the value function112. However, lesions to the VS in monkeys produces 

specific deficits in assigning and updating value to rewarding stimuli, but not to rewarding 

actions121. If the VS were the critic in a RL framework, there would be deficits to both stimulus- 

and action-value learning, as it should learn value regardless of the modality of the association. 

The VS receives dense projections from midbrain dopamine neurons, and as such, reward 

prediction error (RPE) signals can be detected in this region. Specifically, blood oxygenation level 

dependent (BOLD) responses from MRI studies show RPE signals in the VS that mimic those seen 

in the midbrain122. In addition, dopamine concentration in the NAc also reflects RPE coding seen 

in midbrain dopamine neurons, suggesting a highly conserved electrochemical RPE signal from 

soma to dopamine release at the terminals in the NAc123. The neurons of the VS, however, integrate 

a multitude of different facets regarding rewards into their neural reward signals. Putative MSNs 

of the VS encode the value of rewarding options, and even hold a representation of the outcome 

of previous choices, perhaps to optimize value estimates and decisions on subsequent trials124-128. 

The role of the VS is minimized in deterministic choices, and is only really essential in 

probabilistic RL environments to stabilize value representations127,129,130. Perhaps this is due to the 

minimal learning necessary for deterministic environments, and thus, the lack of necessity for a 

region that receives such dense innervation from dopamine neurons, and the RPE learning signals 

they send. 

Another region of the basal ganglia that is a critical mediator of reward based decision 

making is the pallidum131,132. The internal segment of the globus pallidus (GPi) plays a critical role 

in basal ganglia-thalamocortical circuits. A major output center of the basal ganglia, the GPi sends 
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motor and non-motor signals to thalamic and other brain stem regions101,133,134. In addition to 

playing a critical role in movement, the GPi also projects to the lateral habenula (LHb), which 

computes an inverse reward prediction error. The GPi connections to the LHb send information 

about expected reward following target appearance135,136. The external segment of the globus 

pallidus (GPe), also encodes reward related information, specifically, an integration of the future 

movement to perform and the expected reward following that movement137. Finally, the ventral 

pallidum (VP) has been postulated as a limbic output region of the BG, due to its connections with 

canonically limbic regions such as the VS, amygdala, and OFC138. While typically thought to 

translate reward-based motivation to movements necessary to acquire rewards139, the VP also 

encodes preference for different rewarding stimuli138. These BG regions and their role in reward 

coding and decision making reflect the previously mentioned multiple parallel cortico-basal 

ganglia circuits that mediate multiple necessary functions in the brain101. 

While the striatum is typically thought to be the main subcortical region that learns and 

encodes values that drive decision processes, the amygdala has also been shown to perform similar 

value coding. The amygdala is a heterogeneous nucleus located in the temporal lobe just beneath 

the uncus that also receives dense dopaminergic projections from the midbrain140,141. The 

amygdala is historically known for its role in emotion and Pavlovian learning140,142-145. However, 

decision making research has shown that it also has a prominent role in reinforcement learning. 

Studies have shown that the amygdala encodes a state value function146,147. Further, distinct 

subpopulations of the amygdala encode either positive or negative value148. Interactions between 

the PFC and the amygdala are critical for reward-guided behavior, and disrupting this connection 

through amygdala lesions significantly impairs OFC’s ability to encode reward value149,150. Similar 

to the neural signals seen in the VS, the amygdala encodes information about a preferred stimulus, 
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including its value and identity, and this signal is held across trials84. The amygdala has also been 

shown to encode information about the immediate value of exploiting known rewards in addition 

to the possible future value of exploring unknown rewards, suggesting a key role in explore-exploit 

decision making127. There are both dopamine D1 and D2 receptors in the amygdala, and dopamine 

has been shown to be necessary to make value representations labile in order to update them 

following dopamine reward prediction errors151,152. Further, increased dopamine availability 

through pharmacological interventions increases the likelihood of exploring novel choice 

options153. While the amygdala and the VS seem to have overlapping roles in reward-based 

decision making, consider the security of having multiple regions perform similar computations in 

the case that one of these regions were to fail in its role from either damage or disease states. 

Further, studies in monkeys have shown that animals with VS lesions are less impaired in RL tasks 

than animals with amygdala lesions, insinuating that while these regions have similar roles in value 

coding, there are still differences in their overall roles in RL, perhaps specifically through the effect 

they have on regions they project to129. 

Similar to the basal ganglia, the cerebellum is commonly associated with movement, 

specifically motor learning and movement coordination154. Specifically, about the role of the 

cerebellum in error-based learning in regards to motor movements. In the formalized Marr-Albus 

theory of cerebellar learning155, parallel fibers from granule cells have a representation of the state 

of the system as well as the current motor commands (known as an efference copy). 

Comparatively, climbing fibers stem from the inferior olive nucleus and compute a motor-based 

prediction error, and both climbing and parallel fibers synapse on Purkinje cells. However, more 

work has shown the role of the cerebellum in reward-based decision making and learning. One 

study using two-photon calcium imaging showed granule cells responded to reward anticipation, 
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while others responded to reward or reward omission156. Further, neuroimaging studies have 

shown reward and reward prediction error signals in the anterior portion of the cerebellar cortex157. 

To summarize, similar to the parallel thalamo-cortico-basal ganglia loops that show topographic 

functional specificity, the cerebellum is also interconnected to the BG, with specific topography 

related to motor, cognitive, and limbic functions158,159. These reward-related signals across vast 

cortical and subcortical regions of the brain are critical in reward-based decision making. 

 Uncertainty Coding in the Brain  

Uncertainty around reward outcomes, and the subjective value of the cues that predict those 

outcomes, are incredibly difficult to disentangle due to the fact that subjective value integrates 

reward uncertainty to create value estimates. In order to code subjective value – like in the 

previously detailed brain regions – there must be some biological representation that can be used 

in these calculations. While there are many regions that have been shown to reflect value, there 

are much fewer instances of uncertainty coding across the brain. A few regions that have shown 

uncertainty-dependent neural coding include the anterodorsal septal nucleus, striatum, multiple 

prefrontal cortex regions, parietal, and cingulate cortices.  

From fMRI studies in humans in choice tasks, there has been evidence of a few regions 

with uncertainty-specific activation. The inferior frontal gyrus activity following safe and low risk 

options correlated with higher risk aversion in subjects, while the striatum and cingulate showed 

activations in response to making more risky choices – and these combined signals were able to 

predict choices made in risky decisions160. One study showed the medial prefrontal cortex (mPFC) 

correlated with amount of ambiguity in the environment and ambiguity aversion161. Another 

showed subjective value activations in ventromedial prefrontal cortex (vmPFC), while the 
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dorsolateral prefrontal cortex (dlPFC) was specifically activated by the level of uncertainty in those 

subjective value predictions162. Further, dlPFC manipulations with transcranial magnetic 

stimulation was shown to modulate risk preferences163,164. Uncertainty in subjective value 

estimates could be interpreted as ambiguity – as the uncertainty could be attributed to missing or 

unclear information in the underlying statistics of a choice environment. Indeed, another study 

showed distinct regions for ambiguity and risk, where the lateral prefrontal cortex (lPFC) showed 

modulations specific to ambiguity preference, while the posterior parietal cortex showed risk 

preferences165 – suggesting two dissociable circuits for the two forms of uncertainty. 

In electrophysiology experiments, results have shown distinct populations of orbitofrontal 

cortex (OFC) encoded reward value, and uncertainty as a function of variance in the possible 

outcomes166,167. Another study showed neurons in the macaque posterior parietal cortex coded 

uncertainty in terms of the coefficient of variance of rewards93 – similar to activations seen in 

fMRI experiments activations based on risk preferences165. As mentioned previously, midbrain 

dopamine neurons showed graded increases of baseline firing rate dependent upon the uncertainty 

of reward outcome in risky cues40. In addition, the primate dorsal striatum has been shown to code 

risk in stimulus-outcome associations during decision making, with firing rates being higher for 

cues with higher risk168. Finally, in a study recording from the anterodorsal septal nucleus in rhesus 

macaques, single neurons showed uncertainty coding that reflected the inverted U-shape that 

describes the amount of uncertainty in terms of Shannon entropy of risky decisions (Fig. 12) – 

which was completely independent of the expected value of the gamble. These results provide 

ample evidence that uncertainty is relevant and elicits different responses across the brain, and can 

represent uncertainty in general, and even individual preferences for both risk and ambiguity. 
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 Ubiquitous Reward Modulation to Optimize Behavior 

In the previous sections, we discussed critical brain regions that perform reward-based 

decision making and learning. However, many regions that are primarily associated with other 

behavioral functions are still modulated by value. This pervasive reward modulation across the 

brain is critical in attenuating behaviors that are more rewarding than others. Consider some of the 

‘primary’ regions of the brain: the primary visual cortex (V1), auditory cortex (A1), and motor 

cortex (M1). The primary visual cortex (V1) is located in the most posterior portion of the occipital 

lobe, and is known to be organized into cortical columns, and the receptive fields of V1 neurons 

are tuned by ocular dominance and line orientation169-171. However, there has been research that 

shows that rewards can modulate coding in this region. Specifically, it has been shown in that 

reward modulates the firing rate in firing of V1 neurons of rats172 and rhesus monkeys173, and in 

V1 fMRI responses in humans34. In one study, V1 neurons in rats were shown to fire in a way that 

coded the timing of rewards with different delays following a visual stimulus172. In another study, 

neurons in the rhesus monkey V1 showed heightened responses following stimuli that predicted 

higher value rewards173. These results demonstrate that rewards influence the neural activity in 

V1, a region that is critical in early visual processing.  

The primary auditory cortex (A1) is positioned in the superior temporal gyrus of the 

temporal lobe, and is characterized by having a tonotopic map of sounds, where low to high 

frequency sounds are coded anterior to posterior174-176. Research using classical conditioning 

paradigms with rewarded and unrewarded tones has shown that the best frequency of the neurons 

in A1 shifts towards the rewarded frequency, but not the unrewarded one177,178. In addition, in an 

electrophysiological mapping study of neurons in A1 of owl monkeys, rewarded tones had 

enhanced spatial representations of rewarded tones in the tonotopic map, leading to enhanced tone-
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discrimination performance179. Further, in a task where high and low reward was signaled by a 

visual cue, then rhesus monkeys had to withhold response during the auditory Wait signal, and 

then respond at the auditory Go signal, fMRI showed enhanced activity in A1 during the Wait 

signal, even though the tone was identical180. Interestingly, in a study in gerbils, the authors found 

that optogenetic stimulation of ventral tegmental area (VTA) dopamine neurons enhanced 

frequency-specific gain amplification in A1, and this enhancement was specific to the A1 cortical 

layers that receive direct innervation from dopamine neurons181. VTA dopamine neurons are 

known for reward prediction errors and sending a neural teaching signal to indicate which 

rewarding behaviors to repeat and which behaviors to stop. This research shows that this dopamine 

teaching signal regarding rewards extends to primary sensory areas like A1, and teaches which 

sounds are behaviorally relevant for optimal performance in getting the best outcomes. 

Primary motor cortex (M1) is located in the gyrus that is anterior to the central sulcus, and 

has representations of different portions of the body that output neurons send motor signals to; this 

organization is known as the homunculus182. In 1980, Fetz and Cheney showed how M1 neuron 

firing directly created movements in their respective output muscles with the use of 

electromyography (EMG) electrodes implanted into the forelimb muscles of rhesus monkeys183. 

Later research would show that M1 encodes information regarding kinematics or movement 

dynamics184-186. Learning and optimizing motor output is critical in order to enhance behavioral 

performance and receive the most rewards. Motor learning theories postulate that rapid, error-

based learning is mediated through the cerebellum, while slower, reward-based learning is 

mediated through the basal ganglia187. Further, it has been shown that there are neural correlates 

of reward in premotor, supplementary motor, and cingulate motor areas that project to M1188-190. 

While rewards can indirectly modulate M1 neural firing, via motor learning in order to optimize 
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behavioral output191-193, rewards are also able to directly influence firing rates of neurons in M1194-

197. In a study where rhesus monkeys were required to use a planar manipulandum to control an 

on-screen cursor and make center-out reaches to a target, a small portion of M1 neurons showed 

an increased firing rate at the time a reward was supposed to occur195. Some of this subset of M1 

neurons increased their firing rate at the time of reward when reward was delivered, but more of 

them showed an increase in firing rate when reward was not delivered, due to an error in their 

reach. As previously mentioned, midbrain dopamine neurons code reward prediction errors, which 

instructs regions that dopamine neurons innervate which behaviors to continue and which to stop 

– including M1, which has been shown to have dopamine innervation198-201. Parkinson’s Disease 

is characterized by degeneration of midbrain dopamine neurons, and one impairment as a result is 

an diminished ability to learn new motor skills202. In addition to this impairment seen in 

Parkinson’s Disease, it has also been shown that dopamine release in M1 is necessary for learning 

new motor skills203,204. This research adds to the evidence supporting the necessity of rewards, and 

particularly dopamine modulation, throughout the brain in order to optimize behavior. 

All of these ‘primary’ regions have relatively straight-forward schemas. V1 and A1 have 

specific input organizations, the cortical columns and tonotopic mapping, respectively, and M1 

output is specifically organized to represent different regions of the body. The fact that all of these 

regions are modulated by rewards speaks to their importance, and that it is essential to have 

information about rewards represented ubiquitously in the brain for humans and animals to learn 

to behave in ways that give them the best outcomes. 

Regions of the brain that are critically important for other higher-level functions are also 

modulated by reward. The hippocampus and entorhinal cortex are regions primarily known for 

memory, representing our self-location and orientation in an environment205-209. However, there 
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are studies that have shown reward can modulate the coding of neurons in these regions. Rats 

performing a spatial memory task showed that previously rewarded locations enhanced positional 

decoding in neurons of the medial entorhinal cortex210. In addition, fan cells in layer 2a of the 

lateral entorhinal cortex were shown to group previously rewarded stimuli with new stimuli that 

are rewarded following the same association schemes211. Further, the authors showed that this 

change in the cognitive map of task-relevant variables was mediated by midbrain dopamine release 

in the entorhinal cortex, effectively integrating the new memories of cue-associations with existing 

ones. The hippocampus is critical to spatial navigation and memory, but has also been shown to 

be modulated by reward212. A recent study showed the hippocampus has a specialized cell 

population that was only active in rewarded areas of the environment they were navigating213. The 

intersection of memory, spatial awareness, and rewards is logical because, again, part of our ability 

to receive the best rewards relies on remembering successful places, behaviors, and how to 

perform.  

The key takeaway from this is that rewards are important for neural coding all over the 

brain, and that uncertainty is a key influence on subjective value calculations. From basic sensory 

regions in the cortex that experience receptive field adaptations to rewards, to the most critical 

regions in reward-based decision making that guide our ability to learn and optimize our outcomes. 

Furthermore, midbrain dopamine neurons code reward prediction errors based on subjective value, 

and have widespread projections that receive graded signals indicating which outcomes were better 

or worse than expected.  The following chapters will outline the impact of uncertainty on behavior 

and learning, and how midbrain dopamine neuron coding is a critical mediator in uncertain 

environments. Finally, we will consider how integration of non-human primate genomic 
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sequencing techniques with behavioral neurophysiology can assist in the determination of cell 

type-specific and circuit-specific roles in reward-based decision making and learning.  
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2.0 Rare Rewards Amplify Learning and Dopamine Responses1 

Making accurate predictions is evolutionarily adaptive. Accurate predictions enable 

individuals to be in the right place at the right time, choose the best options, and efficiently scale 

the vigor of responses. Dopamine neurons are crucial for building accurate reward predictions. 

Phasic dopamine responses code for reward prediction errors: the differences between the values 

of received and predicted rewards41,136,214-219. These reward prediction error responses guide the 

direction and magnitude of reward learning220, through associative and extinction learning44,45.  

Likewise, phasic dopamine neuron stimulation during reward delivery increase both the dopamine 

responses to reward predicting cues and the choices for those same cues43. These learning signals 

are approximated by reinforcement learning algorithms, including Temporal Difference (TD) and 

Rescorla-Wagner learning models221,222. According to standard TD learning, ‘reward predictions’ 

are simply point estimates – formally, the temporally discounted sum of future outcomes222. The 

magnitude of these predictions, often determined by the average value of past outcomes, accurately 

describe the activity of dopamine neurons in well-controlled laboratory settings221. However, point 

estimate predictions reflect neither predicted uncertainty, nor the shapes of reward distributions, 

and they are not adequate descriptors of behavior223-226. Consider that, learning takes longer when 

rewards are sampled from broader distributions, compared to when they are sampled from 

narrower distributions224,225. Likewise, decision-makers take longer to choose between options 

when value differences are small, compared to when differences are large226,227. These results 

demonstrate that probability distributions over reward values, and not simply point estimates such 

                                                
1 The contents of this chapter were previously published (Rothenhoefer et al., 2021). 
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as the mean, influence learning and decision making. Dopamine responses adapt to the range or 

standard deviation of predicted outcomes42, but it remains unknown if the weights allocated to the 

tails of reward distributions – a parameter that determines distribution shape and frequency of 

prediction errors – affects dopamine responses and neural learning rules.  

Reinforcement Learning (RL) has produced remarkable advances in artificial 

intelligence228,229 and RL techniques have recently been extended to learning probability 

distributions230. Distributional RL models simultaneously learn different value predictions that, 

together, represent probability distributions. It was recently shown that a range of value predictions 

derived from distributional RL were reflected by dopamine neurons, raising the enticing possibility 

that brains employ a distributional code for value231. Critically, this distributional code operates at 

the level of populations, rather than individual neurons. Thus, it is unknown how single dopamine 

neurons may adapt their responses to predicted reward probability distributions. 

To investigate whether the distribution shape differentially affected reward, we created two 

discrete reward size distributions that reflected, roughly, the shapes of normal and uniform 

distributions. We trained NHPs to predict rewards drawn from these distributions. Crucially, 

according to temporal difference (TD) learning, the Normal distribution resulted in rare prediction 

errors following rewards drawn from the tails of that distribution, whereas the same rewards, with 

identical prediction errors, were drawn with greater frequency from the Uniform distribution. We 

found that NHPs learned to choose the better option within fewer trials when rewards were drawn 

from Normal distributions, compared to when rewards were drawn from Uniform distributions. 

Moreover, we found that pupil diameter was enhanced with learning from rare prediction errors, 

but not with learning from common prediction errors of the same magnitude. This result suggests 

greater vigilance to rare outcomes. Using single neuron recording, we show that dopamine 
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responses reflect the shape of predicted reward distribution. Specifically, rare prediction errors 

evoked significantly larger responses than common prediction errors with identical magnitudes. 

These results demonstrate a complementary but distinct mechanism from TD-like reward 

prediction error responses for learning based on probability distributions. Due to the identical 

expected values, but varying distributions of outcomes, these results demonstrate a complementary 

but distinct mechanism compared to TD-like reward prediction errors for learning based on 

probability distributions.  

 Methods 

 Animals, Surgery and Setup 

All animal procedures were approved by Institutional Animal Care and Use Committee of 

the University of Pittsburgh. We used two male Rhesus macaque monkeys (Macaca mulatta) for 

these studies (13.9 and 11.2 kg). A titanium head holder (Gray Matter Research) and a recording 

chamber (Crist Instruments, custom made) were aseptically implanted under general anesthesia 

before the experiment. The recording chamber for vertical electrode entry was centered 8 mm 

anterior to the interaural line (Fig. 5). During experiments, animals sat in a primate chair (Crist 

Instruments) positioned 30 cm from a computer monitor. During behavioral training, testing and 

neuronal recording, eye position was monitored using infrared eye tracking (Eyelink Plus 1000). 

Licking was monitored with an infrared optical sensor positioned in front of the juice spout 

(Balluff). Eye, lick and digital task events were sampled at 2 kHz. Custom-made software (Matlab, 

Mathworks Inc.) running on a Microsoft Windows 7 computer controlled the behavioral tasks. 
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 Behavioral Tasks 

Pavlovian Task 

Three distinct cues (fractal images) were used to predict reward. One predicted a sure 

reward of 0.4 ml. Another predicted a uniform distribution, where 0.2, 0.4, and 0.6 ml were 

delivered with equal frequency (1/3 probability for each reward). A final cue predicted a normal 

reward distribution, where 0.2 and 0.6 ml were delivered with low frequency (2/15 probability for 

each of the two rewards), and the middle reward (0.4 ml), was delivered with a much higher 

frequency (11/15 probability). Finally, there was an unpredicted reward condition, where 0.4 ml 

of juice would be given after no cue was presented. In each trial, one of the three cues, or no cue, 

was pseudorandomly chosen and was presented to the animal. The reward was delivered 2 s after 

the cue onset. At the same time, and to assist in reward size identification, a value bar cue was 

displayed on the screen that indicated the reward volume they received. Trials were separated with 

inter-trial intervals of 2-5 s, chosen from a truncated exponential distribution. Before recording, 

all cues were well learned after experiencing them repeatedly over multiple sessions (Monkey B: 

10 sessions, ~2800 trials; Monkey S: 6 sessions. ~2600 trials).  

 

Choice Task for Measuring Distributions Values 

For the data presented in Figure 4b-d, three cues (Fig. 4a) predicted a Normal distribution 

(Fig. 8a, right), and three different cues (Fig. 4a) predicted a Uniform distribution (Fig. 8a, left). 

One small, ‘safe’ cue predicted 0.2 ml of juice and one large, ‘safe’ cue predicted 0.6 ml of juice 

(Fig. 4a). Monkey S was offered binary choices between Normal and Uniform distribution-

predicting cues, and between distribution-predicting cues and safe cues. Following successful 
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central fixation for 0.5 s, two choice options appeared on the monitor and the monkey indicated 

its choice by a saccade towards one of the cues. The monkey was allowed to saccade as soon as it 

wanted. The monkey had to keep its gaze on the chosen cue for 0.5 s to confirm its choice. Reward 

was delivered 1.5 s later. Trials were separated with inter-trial interval of 1.5-6.5 s, drawn from a 

truncated exponential distribution. Failure to maintain the central fixation or early break of the 

fixation on the chosen option resulted in a 4 s time-out, and a repeat of the failed trial. 

Figure 4: Normal and uniform reward size distributions have equivalent subjective values 
a, Schematic of the distribution-predicting fractal cues used to represent Normal (N) and Uniform (U) distributions, 
and safe values for the choice task in b. Three unique cues were used to predict a Normal distribution of rewards, and 
three unique cues were used to predict a Uniform distribution of rewards. All the distribution predicting cues were 
comprised of the same three reward volumes (0.2, 0.4, and 0.6 ml), and thus the same expected value (EV) of 0.4 ml. 
Additionally, one fractal cue predicted a sure reward of 0.2 ml, and another fractal cue predicted a sure reward of 0.6 
ml. b, Monkeys made saccade-guided choices between Normal distribution-predicting cues, Uniform distribution-
predicting cues, and safe rewards. c, Bar graphs are the probability of choosing the alternate cue over a Uniform 
distribution-predicting cue with an EV of 0.4 ml. The alternates from left to right on the x axis are a safe cue predicting 
0.2 ml, a Normal distribution-predicting cue with a mean of 0.4 ml, and a safe cue predicting 0.6 ml. Data points are 
from individual blocks, and error bars represent ±s.e.m. across blocks (between 6 and 18 blocks per condition). d, 
Same as in c, but the probability of choosing an alternate cue over a Normal distribution-predicting cue with an EV 
of 0.4 ml, and the middle alternate option represents Uniform distribution-predicting cues with an EV of 0.4 ml. e, 
The choice task used to measure subjective value. Animals made saccade-directed choices between a distribution 
predicting cue and a safe alternative option. The safe alternative option was a value bar with a minimum and maximum 
of 0 and 0.8 ml at the bottom and top, respectively. The intersection between the horizontal bar and the scale indicated 
the volume of juice that would be received if monkeys selected the safe cue. f, Probability of choosing the safe cue as 
a function of the value of the safe option, when the distribution predicting cue had an expected value (EV) of 0.4ml. 
Dots show average choice probability for 9 safe value options for monkey B. Solid lines are a logistic fit to the data. 
Red indicates data from normal distribution blocks, gray indicates data from uniform distribution blocks. The dashed 
horizontal lines indicate subjective equivalence, and the CE for each distribution type is indicated with the dashed 
vertical lines. g, Same as in f, for monkey S. 
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For the data presented in Figure 4e-g, monkeys made choices between well-learned 

distribution-predicting fractal cues and ‘safe’ value bar cues that indicated the magnitude of the 

alternative option. The value bar cue had a value range of 0 ml to 0.8 ml, in 0.1 ml increments. 

Wherever the horizontal bar intersected the vertical scale indicated with 100% certainty the size 

of juice the monkeys would receive if they chose it. The mean of the distribution predicting cues 

was 0.4 ml. In each choice trial, after successful central fixation for 0.5 s, the two choice options 

appeared on the monitor and the monkey indicated its choice by a saccade towards one of the cues. 

The monkey was allowed to saccade as soon as it wanted. The monkey had to keep its gaze on the 

chosen cue for 0.5 s to confirm its choice. Reward was delivered 1.5 s later. Trials were separated 

with inter-trial interval of 1.5-6.5 s, drawn from a truncated exponential distribution. Failure to 

maintain the central fixation or early break of the fixation on the chosen option resulted in a 4 s 

time-out, and a repeat of the failed trial. 

 

Choice Task to Measure Learning 

For the data presented in Figure 8, monkeys were offered two never-before-seen cues on 

the first trial of every block. The block length was selected from a truncated exponential 

distribution between 15 to 25. Within each block both the cues predicted rewards drawn from the 

same type of distribution, Normal or Uniform. Further, each novel cue had a different pseudo-

randomly selected mean that was either 0.2, 0.3, 0.4, 0.5, or 0.6 ml. For example, if it were a 

Uniform block, and the means selected for the two cues were 0.3 and 0.6 ml, the rewards for one 

cue would be 0.2, 0.3, and 0.4 ml (drawn with equal frequency), and 0.5, 0.6, and 0.7 ml (also 

drawn with equal frequency). In each choice trial, after successful central fixation for 0.5 s, the 

two choice options appeared on the monitor and the monkey indicated its choice by a saccade 
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towards one of the cues. The monkey was allowed to saccade as soon as it wanted. The monkey 

had to keep its gaze on the chosen cue for 0.5 s to confirm its choice. Reward was delivered 1.5 s 

later. Trials were separated with inter-trial interval of 1.5-6.5 s, drawn from a truncated exponential 

distribution. Failure to maintain the central fixation or early break of the fixation on the chosen 

option resulted in a 4 s time-out, and a repeat of the failed trial. 

 

Choice Task for Measuring the Subjective Value of Reward Size Distributions 

The overall goal of this study was to investigate how predicted distribution shape 

influenced dopamine responses. To fairly investigate this, we required that the predicted 

distribution values be the same. Accordingly, we created the Uniform and Normal reward size 

distributions such that they were composed of the same three elements and had the same Expected 

Values (Fig. 8a). However, because we planned to record from dopamine neurons and they reflect 

subjective values, we used two choice tasks to verify that the Expected Utilities (EUs) of the 

distributions were the same (Fig. 4). 

We first used a direct choice task to measure the relative subjective values of the 

distributions. Visual cues (fractal images) were used to predict rewards. To avoid preferences 

between cues, we used six different cues to predict distributions – three cues predicted the Normal 

distribution and three different cues predicted the Uniform distribution (Fig. 4a). To ensure that 

the monkey was making valid economic choices rather than choosing randomly, we also created 

two safe cues that predicted a small (0.2 ml) and large (0.6 ml) reward. We reasoned that if subjects 

were making valid economic choices, they should choose the large reward option over both 

distributions, and both distributions over the small reward option232. We used classical 

conditioning to train monkeys on the cue-reward contingencies, then we measured binary choices 
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between the cues (Fig. 4b). The monkey selected the Normal cue over the Uniform cue with a 

probability of 0.53 ± 0.19; this was not significantly different from chance (Fig. 4c) (p = 0.48, N 

= 9 cue pairs, t-test). Additionally, the monkey chose the Normal distribution over the small reward 

(Fig. 4c, p < 0.0001, t-test) and the large reward over the distribution (Fig. 4c, p = 0.0004, t-test). 

Similarly, the monkey chose the Uniform Distribution over the small reward, and the large reward 

over the distribution (Fig. 4d, p = 0.001 and 0.005, respectively N = 3 cue pairs, each, t-test) Thus, 

while making valid economic choices, the monkey was choice indifferent between the 

distributions. These results provide strong evidence that the predicted values of the two 

distributions were the same. 

The EUs were critical to our interpretation of the data, and as such, we replicated this result 

using a different behavioral paradigm: we independently measured the certainty equivalents (CEs) 

of Normal and Uniform reward distributions. CEs are the volumes of rewards the subject would 

exchange for a gamble; in these experiments the distributions were the gambles. Monkeys made 

choices between cues that predicted a distribution and cues that explicitly indicated safe options 

(Fig. 4e, Methods). We plotted the probability of choosing the safe option as a function of the safe 

option volume and generated psychometric functions (Fig. 4f, g). The CEs were the safe values 

that corresponded to P(Choose Safe) = 0.5 (black dashed lines in Fig. 4f, g). Analysis of the 

session-by-session CEs for the Normal and Uniform blocks found no effect of the distribution type 

on the CEs (p = 0.2, N = 18. T-test). Therefore, the CEs strongly agree with the direct choice data 

indicate that the Normal and Uniform reward size distributions had similar subjective values. 

These results indicated that the prediction errors generated from the distributions could be readily 

compared and ensured that disparities between prediction error responses were not driven by 

differences in the predicted subjective values. 
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 Neuronal Data Acquisition and Analysis of Neuronal Data 

Custom-made, movable, glass-insulated, platinum-plated tungsten microelectrodes were 

positioned inside a stainless-steel guide cannula and advanced by an oil-driven micromanipulator 

(Narishige). Action potentials from single neurons were amplified, filtered (band-pass 100 Hz to 

3 kHz), and converted into digital pulses when passing an adjustable time–amplitude threshold 

(Bak Electronics). We stored both analog and digitized data on a computer using custom-made 

data collection software (Matlab). 

Dopamine neurons were functionally localized with respect to (a) the trigeminal 

somatosensory thalamus explored in awake monkeys (very small perioral and intraoral receptive 

fields, high proportion of tonic responses, 2-3 mm dorsoventral extent233, (b) tonically active 

position coding ocular motor neurons and (c) phasically direction coding ocular premotor neurons 

in awake monkeys. Individual dopamine neurons were identified using established criteria of long 

waveform (> 2.5 ms, Fig. 5a) and low baseline firing (< 8 impulses/s)234. Following standard 

sample sizes used in studies investigating neuronal responses in non-human primates, we recorded 

extracellular activity from 67 dopamine neurons. Forty neurons had a sufficient number of trials 

and we used these neurons for further analysis. 

The neurons that met these criteria showed the typical phasic activation after unexpected 

reward (Fig. 5b, p < 0.0001, N = 40 neurons; Wilcoxon rank-sum test). Figure 5c and d show maps 

of our recording locations relative to both monkeys’ grids, and the number of cells recorded at 

each location. Figure 5e and f show MRI images of monkey S and the location of the recordings. 
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Figure 5: Dopamine neurons and recording sites 
a, Example dopamine waveform from one of the neurons in our population. b, The population of 40 neurons used for 
our analyses in the Pavlovian and choice task had significant activations following unpredicted rewards – a 
characteristic feature of dopamine neurons. Gray bar along the x axis indicate the response window used for analysis. c, 
Recording locations for the left hemisphere of monkey S. X axis indicates lateral to medial location in the grid in 
millimeters, relative to midline (0). Right y axis indicates posterior to anterior location in the grid in millimeters, 
relative to interaural line (IAL). Each locations’ color indicates the number of neurons recorded for that location. 
Black circles surrounding the individual locations indicated that neurons recorded there were part of the population of 
29 neurons that had steeper response slopes in normal compared to uniform condition. Bar graphs on the left and top 
axes indicate the proportion of cells in that AP (left) or ML (top) location that were effect positive. Yellow dot 
corresponds to location indicated in MRI scan shown in d and e. d, Recording locations for the left hemisphere of 
monkey B. Same as panel c. e, Sagittal view MRI of the recording chamber of monkey S. Purple arrow indicates the 
AP location in the grid (+12 mm from IAL). f, Coronal view MRI of the recording chamber of monkey S. Purple 
arrow indicates the ML location in the grid (1 mm from Midline). Yellow dot in e and f correspond to approximate 
recording grid location in c. 
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 Analysis of Behavioral Data 

Logistic regression 

We used logistic regression to quantify the influence of reward distribution on monkeys’ 

behaviors, controlling for trial numbers since a new block starts and the difference between the 

values of two cues. 

log
𝑃 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

1 − 𝑃 𝐶𝑜𝑟𝑟𝑒𝑐𝑡
= 	𝛽C + 𝛽D ∗ 𝐷 +	𝛽G ∗ 𝐶 +	𝛽H ∗ 𝑇 

 (Eq. 3) 

where D is a binary variable for reward distribution type (0 for Uniform and 1 for Normal), C is a 

continuous variable for the difference between the values of two cues and T is a categorical variable 

for the trial number since the start of a new block. 

 

Reinforcement Learning Model 

We used a fixed learning-rate reinforcement learning (RL) model to examine monkeys’ 

choices during learning and to acquire trial-by-trial estimate of chosen and unchosen values 222. 

The model had two value functions representing the learned values of probability distribution 1 

(𝑝𝑑1) and probability distribution 2 (𝑝𝑑2) respectively.  In each trial (𝑡), the probability that the 

model chooses 𝑝𝑑1 over 𝑝𝑑2 was estimated by the softmax rule as follows: 

𝑃(𝑝𝑑1)M =
	 𝑒NO PQR /T

	 𝑒NO PQR /T +	 𝑒NO PQU /T 

   (Eq. 4) 
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where 𝛽, the temperature parameter of the softmax rule, determines the level of choice 

randomness.  

In each trial, upon making a choice and receiving an outcome, the value of the chosen 

option on that trial, 𝑉M, was updated according the reward prediction error, as follows: 

𝑉MVR = 	𝑉M + 𝛼 ∗ δM 

 (Eq. 5) 

where 𝛼 denotes the learning rate, and the prediction error is calculated as the following: 𝛿M = 𝑟M −

	𝑉M, indicates the difference between the predicted and realized reward sizes,	𝑉M and 𝑟M, 

respectively. The free parameters, 𝛼 and 𝛽, were fit by maximizing the likelihood of the model. 

After fitting the model, we took the trial-wise mean of the unsigned PE over blocks of the same 

type (Fig. 8e).   

To characterize the transition from active learning to asymptotic behavior, we fit 

logarithmic functions to each block, and the collected the block-by-block transition trials that 

marked the crossing of a predetermined threshold that separated active learning from asymptotic 

behavior. When the first derivative of the fitted prediction errors decreased below a predetermined 

threshold, we considered that the animal had stopped actively learning. When the magnitude of 

the prediction errors stayed below 0.1 for more than two trials, we considered that the animal 

successfully estimated the true value, since the true difference between the lowest/highest values 

from the mean was 0.1 ml. We designated the boundary between active learning and asymptotic 

phases as the trial when both conditions were met.  The faster learning exhibited in the Normal 

distribution block was robust under a wide range of prescribed thresholds. 
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 Analysis of Neural Data 

Data Pre-Processing 

We constructed peri-

stimulus time histograms (PSTHs) 

by aligning the neuronal impulses 

to task events and then averaging 

across multiple trials. We 

smoothed the PSTHs by 

convolving with (1 – e−t)e−t/T, 

where T is set to be 20 ms. The 

analysis of neuronal data used 

defined time windows, individual 

to each neuron, that included the 

major positive and negative 

response components following 

cue onset and juice delivery, as 

detailed for each analysis and each 

figure caption. The neural activity 

within time window following 

juice delivery was baseline-corrected by subtracting the average activity from -1000 ms to 0 ms 

relative to cue onset. 

 

Figure 6: Reward randomization schemes used to determine trial 
types 
Top, ‘CS matched” randomization with equal frequencies of Normal and 
Uniform trials. Bottom, “PE matched” randomization with equal 
frequencies of 0.2 ml and 0.6 ml reward trials in each distribution. In both 
graphs, the y axis represents the probability of drawing the trial type (trial 
types drawn with replacement). The 6 trial types divided according to 
distribution type (N and U) and reward size (0.2, 0.4 and 0.6 ml). The 
number of instances in each trial type “stack” indicates the probability of 
drawing the trial type. 
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Single Neuron Linear Regression 

To determine whether previous rewards influence the current CS response, we fit a linear 

model to each neurons’ CS response, using the rewards from the previous 5 trials as the 

independent variables. We found that previous outcomes up to 5 trials back did not influence CS 

response. This result is not particularly surprising in the Normal distribution trials, as the previous 

5 outcomes were most often 0.4 ml. This reward magnitude evoked no reward prediction errors. 

The Uniform distribution, on the other hand, did generate more prediction errors. The lack of a 

clear learning effect in the Uniform distribution has two main causes, we think. First, trial types 

were determined at random (Fig. 6). Thus, the previous Uniform trial could be several trials back. 

Second, the monkeys had experienced the cues so often that the learning rate was likely very low.  

To assess if reward responses for an individual neuron were enhanced bidirectionally by 

rare prediction errors, we fit the following linear model to each neuron: 

𝐹[ = 	𝛽C + 𝛽R ∗ 𝐷 +	𝛽U ∗ 𝑅 +	𝛽\ ∗ 𝐷	𝑥	𝑅 

 (Eq. 6) 

where 𝐹[ is the normalized firing rate in the time window following juice delivery, 𝐷 is a binary 

variable for reward distribution type (Normal distribution as reference group), 𝑅 is a continuous 

variable for reward magnitude and 𝐷	𝑥	𝑅 represents the interaction effect between reward 

distribution and reward magnitude. Figure 9f was obtained by scatter plotting each neuron’s slope 

for the Normal distribution against its slope for the Uniform distribution. A paired t-test was used 

to see if the slopes were significantly biased towards Normal distribution.  

 

Decoding Distribution Type 
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For each of the three reward magnitudes, we used a Gaussian naïve Bayes classifier to 

decode the Normal and Uniform reward distributions from the average firing rate in the time 

window following juice delivery235. We then used leave-one-out cross-validation to assess the 

performance of the decoder. The resulting confusion matrix was normalized by the number of 

trials. After cross-validation, permutation tests with 5000 iterations were performed to see if the 

accuracy of the decoder is significantly different from chance for each reward magnitude. A 

decoder including all 40 neurons was not able to correctly classify distribution types above chance. 

Therefore, we used a Selectivity Index (SI) to select neurons for decoding. The single-neuron SI 

for a particular reward magnitude was defined as the difference between mean reward responses 

in two reward distribution, divided by the pooled variance of two conditions. 

𝑆𝐼 = 	
𝐹 − 𝐹a
𝜎c

 

(Eq. 7) 

The subset of 11 neurons with the largest SI successfully decoded the predicted distribution from 

the responses to 0.2 and 0.6 ml (Fig. 9g). To ensure that the rest of the neurons did not encode an 

opposite effect, we built a classifier with the rest of the neurons (29/40) and did not observe above-

chance performance (p = 0.515, p = 0.329, p = 0.549, for 0.2, 0.4 and 0.6 ml respectively, 

Permutation test). 

 

Reversal-Point Correction 

To account for variability of reversal point reported in the literature231, we corrected the 

reward response of each neuron by subtracting the estimated reward response of its reversal point. 

We estimated neuron- and distribution-specific reversal point by splitting the distribution of 
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responses for each neuron, in each distribution, into two groups. One group contained the trials 

with activations, and the other group contained the trials with suppressions.  We then averaged the 

reward sizes that were associated with the responses in the two groups, and the reversal points 

were obtained by taking the mean of the two averages (Fig. 10a). The neural activity corresponding 

to the reversal point was estimated by plugging the reversal point into the single neuron linear 

regression described above. For each neuron in each distribution, we subtracted this estimated 

activity from the responses to 0.2, 0.4 and 0.6 ml. We used a two-tailed Wilcoxon signed rank test 

to test if neurons with steeper response slopes to rewards from Normal distributions show 

bidirectional stretch in their reward responses, after reversal point correction (Fig. 10b). 

 Deconvolution 

Event-related pupil responses were analyzed trial-by-trial using nideconv236,237, a Python 

package that specializes in fMRI and pupil signal deconvolution. The design matrix for a trial 

consisted of a total of four event types: the onset of central dot for fixation, the onset of cue 

presentation, the monkeys’ saccades to indicate choice, offset of cue presentation (in temporal 

order), and the onset of reward. The pupil diameter changes related to fixation and the offset of 

cue presentation were analyzed 0.5 s pre-event until 2 s post-event; the time windows for the onset 

of cue presentation and monkeys’ saccades started 0.5 s pre-event and ended 3 s post-event; the 

time window for the presence of rewards started at 0.5 s pre-event and ended at 1.5s post-event. 

To understand the relationship between pupil diameter and prediction error post-reward, reward 

prediction errors and value estimates derived from the model were used as covariates in the 

deconvolution algorithm. Consequently, we obtained a measure of how sensitive the post-reward 

pupil diameter changes are to the prediction errors in each reward distribution, by looking at the 
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beta coefficients in the prescribed time window. Finally, we grouped the deconvolved signal based 

on the Active/Asymptotic learning period distinction and reward distribution type and calculated 

the ensemble average across trials. 

 Results  

 Reward Size Distributions  

We used non-informative images (fractals) to predict rewards drawn from differently 

shaped distributions. Distribution shapes were defined according to relative reward frequency. One 

fractal image predicted an equal probability of receiving a small, medium, or large volume of juice 

reward. We define this as the uniform reward size distribution (Fig. 8a left). A second fractal image 

predicted that the small and the large reward would be given 2 out of 15 times, and the medium 

sized reward would be given 11 out of 15 times (Normal reward size distribution, Fig. 8a right). 

Importantly, both reward size distributions were symmetrical and were 

comprised of the same three reward magnitudes. Therefore, the Uniform 

and Normal distributions had identical Pascalian expected values. 

However, rewards drawn from the tails of the normal distribution were 

rare, compared to the frequency of identical rewards drawn from the 

tails of the uniform distribution. Anticipatory licking reflected the 

expected value of both the distributions, as well as the expected value of 

safe cues (Fig. 7, p = 0.019, Linear Regression). Thus, the animals 

learned that the cues predicted rewards. 

Figure 7: Anticipatory 
licking show that monkeys 
learned the predicted 
reward magnitude 

Black dots indicate the 
normalized licking duration 
data for predicted reward 
volume, and the grey dotted 
line indicates the linear fit to 
the data. Error bars indicate 
±s.e.m. across session. 
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a, Schematics of uniform and normal 
reward size probability distributions. 
Green and purple bars indicate the 
probabilities of different reward sizes in 
the uniform and normal conditions, 
respectively. Small, medium and large 
reward sizes are indicated by small, 
medium and large blue dots. Gray shaded 
regions show the underlying probability 
density functions. EV, expected value; 
−PE/+PE, negative/ positive prediction 
error. A cue associated with a uniform 
distribution predicted that each reward 
size would be drawn with 1/3 probability. 
A different cue associated with a normal 
distribution predicted that the small and 
large reward volumes would be drawn 
2/15 times, whereas the medium reward 
size would be drawn 11/15 times. b, Task 
where each block was either a normal or 
a uniform. In normal blocks, two new 
cues represented normal distributions 
with different EVs. In uniform blocks, 
two new cues represented uniform 
distributions with different EVs. c, Box 
and whisker plots show the probability of 
choosing the higher-valued option on 
trials 1 and 15, across both distribution 
types. Triangles represent averages. ***p 
< 0.0001, N = 275 blocks, t-test. d, 
Reinforcement learning model 
performance for a subset of trials. Actual 
(black) and estimated (gray) value 
differences for two choice options. The 
bar at the top indicates either normal or 
uniform block type. The primary y axis 
shows the EV difference between the two 
choice options, and the x axis shows trial 
number. The blue tick marks correspond 
to correct and incorrect choices, indicated 
by the secondary y axis. e, Absolute PEs 

as a function of trial number within normal and uniform blocks. The y axis represents the absolute PE (|PE|) in ml of 
juice. Error bars are ±s.e.m. across 142 normal blocks and 133 uniform blocks, and solid lines are exponential 
functions fit to the data. Shaded box schematically describes the transition from ‘active learning’ to ‘asymptotic’ 
behavior, the actual transition trials were determined on a block-wise basis (Methods). f, Box and whisker plot shows 
the number of trials in the active learning phase for normal and uniform distribution blocks. ***p < 0.0001, Mann–
Whitney U-test. g, Beta coefficients from a deconvolution analysis on pupil diameter data for trials in the active 
learning phase of normal and uniform blocks, aligned to reward delivery at time 0. The gray horizontal bar indicates 
time points after reward where normal beta coefficients were significantly different from uniform beta coefficients (p 
< 0.05, N = 4,703 trials, cluster-based permutation test). Shaded regions indicate 95% confidence interval over trials. 
h, As in g, for trials in the asymptotic phase. 

Figure 8: Behavior during distribution 
choice task 
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 Distribution Shape Affects Learning 

To investigate whether the distribution shape differentially affects reward learning, we 

created symmetrical reward size distributions that simulated the shapes of Uniform and Normal 

distributions (Fig. 8a). Within each block (15-25 trials), monkeys made choices between two 

never-before-seen cues that predicted Normal or Uniform reward size distributions, as in Fig. 8a, 

with pseudorandomly chosen EVs (Fig. 8b, Methods). As expected, the monkeys performed at 

chance levels on trial 1, but quickly learned to choose the better option (Fig. 8c). Logistic 

regression of the choice behavior indicated both trial-by-trial learning and better overall 

performance in the Normal blocks (bHdefg = 0.110, p < 0.0001, b`hdifg = 0.167, p = 0.007, N = 

6098 trials, t-test). We used a standard Reinforcement Learning (RL) model222 to quantify the 

prediction errors generated during learning (Fig. 8d, Eq. 4, Eq. 5). This analysis revealed that 

behavior in both block types was characterized by an active learning phase when the prediction 

error magnitudes were diminishing, and a later asymptotic phase when the magnitudes were stable 

(Fig. 8e). However, the number of trials in the active learning phase was significantly fewer in the 

Normal blocks compared to the Uniform blocks (Fig. 8f, Methods). Together, these data showed 

enhanced learning performance in blocks with rewards drawn from Normal distributions. 

 We hypothesized that the animals would learn faster from reward sizes sampled from the 

normal distribution compared to the uniform distribution. We used a reinforcement learning (RL) 

model to quantify the learned values (Methods). Our model, fit to the behavioral choices, 

performed well at predicting the true values of the two choice options (Fig 8d).  To differentiate 

active learning from stable, asymptotic-like behavior, we fit a logarithmic function to the estimated 

prediction errors (Fig. 8e). When the change in the log-fitted values went below a robust threshold, 
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we considered the values to be learned (Methods). Using this approach, we determined the block-

wise number of trials needed to learn. We found that, on average, animals needed 4 additional 

trials to learn in the uniform blocks, compared to the normal blocks (Fig. 8f, p < 0.001, Mann-

Whitney U test). These data demonstrate that the monkeys learned faster from normal reward 

distributions, compared to uniform reward distribution. Thus, rare prediction errors have greater 

behavioral relevance than common prediction errors of the same magnitude. 

 Enhanced Autonomic Responses to Rare Rewards 

To investigate autonomic responses to prediction errors, we analyzed the pupil responses 

during the choice task (Fig. 8b). We used deconvolution to separate the effects of distinct trial 

events on pupil responses (Methods). The deconvolution analysis indicated that during the active 

learning phase, pupil diameter responses were more sensitive to rare reward prediction errors than 

to common reward prediction errors of the same magnitude (Fig. 8g, Methods). The gray 

horizontal bar in Figure 8g indicates time points after reward where the Normal beta coefficients 

from the deconvolution analysis that were significantly different from the Uniform beta 

coefficients (p < 0.05, N = 4,703 trials, cluster-based permutation test). This indicates that greater 

vigilance or arousal was associated with learning from rare-prediction errors. This effect 

disappeared during the asymptotic phase (Fig. 8h). Thus, pupil responses indicated greater levels 

of arousal to rare prediction errors during learning.  
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 Dopamine Responses to Rare Rewards  

After showing that probability distributions were reflected in learning behavior and 

autonomic responses, we investigated the neural correlates of probability distributions. To do so, 

we recorded extracellular dopamine neuron action potentials during a passive viewing task (Fig. 

9a, Fig. 5, Methods). Here, the magnitudes of the small, medium, and large rewards were fixed at 

0.2, 0.4, and 0.6 ml, respectively (Fig. 9a). Prior choice testing confirmed that Normal and Uniform 

distributions with these reward size elements had equivalent expected utilities (EUs) (Fig. 4, 

Methods). As expected from cues that predict the same EUs, Dopamine neurons were similarly 

activated by the Normal and Uniform distribution predicting cues (Fig. 9b). Thus, the passive 

viewing task rigorously controlled the magnitudes of conventional prediction errors – defined as 

received minus predicted reward values. 

At the time of reward delivery, dopamine neurons are activated or suppressed by rewards 

that are better or worse than predicted, respectively. Therefore, we expected dopamine neurons to 

be activated by delivery of 0.6 ml and suppressed by delivery of 0.2 ml. We used two different 

randomization schemes to control for the number of times each distribution was presented (CS-

matched), or the number of times each prediction error was experienced (PE-matched) (Fig. 6). 

Under both randomization schemes, the 0.6 ml reward activated a larger dopamine response in 

Normal distribution trials, compared to dopamine activations following delivery of the same 

volume reward in Uniform distribution trials (Fig. 9c, d, solid lines).  
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 a, In the recording task, the monkeys viewed 
a distribution predicting CS and rewards were 
delivered two seconds later. b, Peri-stimulus 
time histogram (PSTH) of CS-evoked 
responses to the Normal and Uniform 
distribution predicting cues in a single 
neuron. There was no significant difference 
between the response magnitudes (p = 0.69, 
N = 40 neurons, Wilcoxon rank-sum). Shaded 
regions represent ±s.e.m. across trials. c, 
Single neuron reward responses to rewards 
during Normal and Uniform trials, recorded 
using the CS-matched randomization scheme 
(Figure 6). Top: PSTHs show impulse rate as 
a function of time. Solid lines show responses 
to 0.6 ml, whereas dashed lines show 
responses to 0.2 ml of juice. Shaded regions 
represent ±s.e.m. across trials. Bottom: 
Raster plots, separated by Normal and 
Uniform trials and by reward sizes. Every tick 
mark represents the time of an action 
potential, and every row represents a trial. 
Black vertical dashed line indicates the time 
of reward. d, as in c, for a neuron recorded 
using the PE-matched randomization scheme 
(Figure 6). e, Single neuron linear regression 
of a single neuron (c) showed steeper 
response slopes to rare rewards drawn from 
the normal distributions. Solid lines indicate 
the fitted slopes in Normal and Uniform 
distribution trials. Dots represent the average 
neural response rewards in Normal and 
Uniform distribution trials. Error bars 
represent ±s.e.m. across trials (all data points 
had between 13 and 76 trials). f, Scatter plot 
of Normal and Uniform distribution response 
slopes from every neuron (p = 0.003, N = 40 
neurons, t = 3.19, t-test). Inset: Histogram 

shows the density of the dots relative to the diagonal unity line. g, Confusion matrices of distribution identity decoding 
from neuronal responses to 0.2 ml, 0.4ml and 0.6ml rewards in the Normal and Uniform distributions. The matrix 
sectors are shaded according to the proportion of trials decoded as Normal (N) and Uniform (U). The scale bar on the 
right shows that darker shades indicate higher proportions. Black asterisks indicate decoding performance above 
chance level for the responses to 0.2 ml and 0.6 ml (p = 0.045 and p = 0.028, N = 11 neurons, Permutation test, 
uncorrected p-values). No asterisk above 0.4 responses indicate no significant decoding (p = 0.642, N = 11 neurons, 
Permutation test).   

 

 

 

Figure 9: Rare rewards amplified 
dopamine reward prediction error 
responses 
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Likewise, dopamine responses were 

more strongly suppressed by delivery of 

0.2 ml reward during Normal 

distribution trials, compared to delivery 

of the same reward during Uniform 

distribution trials (Fig. 9c, d, dashed 

lines). Linear regression revealed that 

thirty-four neurons were significant for 

reward size, and that the vast majority 

of neurons (29/40) had steeper slopes 

for the Normal condition, compared to 

the Uniform condition (Fig. 9e, f). 

Thus, rare prediction errors resulted in bidirectional amplification of the responses, compared to 

common prediction errors of the same magnitude. Moreover, because the amplification was bi-

directional – both activations and suppressions were amplified in single neurons – this effect could 

not be attributed to differences in predicted subjective values. Thus, the effects we observed were 

robust to errors in the measurement of subjective value.  These findings confirm that dopamine 

responses are sensitive to probability distributions during complex behaviors and demonstrate that 

amplified dopamine responses can be used to guide active learning and decision making. 

We applied a naive Bayes classifier to 11 neurons with the greatest selectivity for rare 

rewards (Methods). The classifier was able to decode distribution identity from the responses to 

0.2 ml and 0.6 ml, but failed to decode the distribution from the responses to 0.4 ml (Fig. 9g). 

Figure 10: Dopamine pseudo-populations and single neurons 
simultaneously reflect predicted probability distributions 

a, Box and whisker plots show the spread of reversal points for the 
population of neurons in normal (purple) and uniform (green) trials 
((0.0065, 0.0129) and (0.0133, 0.0221), N = 40 neurons, bootstrap 
90% confidence interval for standard deviation). b, Box and whisker 
plots show the baseline subtracted responses to 0.2 and 0.6 ml of 
juice. ***p < 0.0001, N = 29 neurons, Wilcoxon signed-rank test, 
Bonferroni corrected. Responses to 0.4 ml were not significantly 
different and so not shown (p = 0.226, N = 29 neurons, Wilcoxon 
signed-rank test). Box and whisker plots show the median (line), 
quartiles (boxes), range (whiskers) and outliers (+). 
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Together, these results demonstrate that phasic dopamine responses reflect predicted probability 

distributions. 

 Reversal Point Variability in Distribution Predictions in Dopamine Neurons 

Finally, we investigated whether reversal point variability 

reflected the predicted distributions. We categorized responses as 

activations or suppressions and calculated the reversal points for 

each neuron in each distribution (Methods). As predicted by the 

distributional TD model231, the Uniform distribution evoked a 

larger spread of reversal points compared to the Normal 

distribution (Fig. 10a). We subtracted cell- and distribution-

specific reversal points from each cells’ average responses to the 

three different rewards and tested whether the differential reversal 

points accounted for the bidirectional response amplification. 

Following reversal point correction, we still observed significantly 

amplified responses, in both the negative and positive domain, to 

identical rewards drawn from the Normal compared to the Uniform distribution (Fig. 10b, Fig. 

11), but no significant difference in the reversal point-corrected responses to 0.4 ml. These results 

demonstrate that the bidirectional amplification of responses is not accounted for by the reversal 

points. Moreover, these results hint that the single cell-level amplification of responses and the 

population level distributional TD model could be complementary schemes for learning the shapes 

of probability distributions. 

 

Figure 11: Amplification effect 
was robust 
Box and whisker plots show the 
baseline subtracted responses to 0.2 
and 0.6 ml of juice, as in Fig. 8, but 
applied to all 34 neurons that were 
significantly modulated by value. * 
indicates p < 0.05, ** indicates p < 
0.01, N = 34 neurons, Wilcoxon 
signed-rank test, Bonferroni 
corrected for multiple comparisons. 
Box and whisker plots show, 
median (line), quartiles (boxes), 
range (whiskers), and outliers (+). 
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 Conclusion 

We dissociated unpredictability from expected value by pseudorandomly drawing rewards 

from symmetric probability distributions with equal values. These data show that rare prediction 

errors – compared to commonly occurring prediction errors of the same magnitude – evoke faster 

learning, increased autonomic arousal, and enhanced dopamine reward prediction error responses. 

Monkeys learned faster from the more unpredictable rewards drawn from the tails of normal 

distributions and showed larger pupil responses when learning from rare rewards. In addition, 

amplified dopamine responses were evident even when identically sized rare and common rewards 

generated identical TD prediction errors. This result demonstrates that dopamine responses are 

sensitive to the shapes of predicted probability distribution, rather than just the predicted mean.  

Our data show that dopamine-dependent learning behavior and dopamine reward 

prediction error responses reflect probability distributions. Together, these data reveal a novel 

computational paradigm for phasic dopamine responses that is distinct from, but complementary 

to, conventional reward prediction errors. Rare events are often highly significant238, and our data 

show decision-makers exhibit greater vigilance towards rare rewards and learn more from rare 

reward prediction errors. Amplified dopamine prediction error responses provide a mechanistic 

account for these behavioral effects.  

More than 20 years ago, single unit recordings demonstrated the importance of 

unpredictability for dopamine neuron responses215. Since then, the successful application of TD 

learning theory to dopamine signals has largely subsumed the role of unpredictability, and recast 

it within the framework of value-based prediction errors35,239. In most experimental paradigms, 

reward unpredictability is captured by frequentist probability of rewards and, therefore, 
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unpredictability is factored directly into expected value218,219,240-242. The resulting Pascalian 

expected values are learned by TD models222 and reflected in dopamine responses218,240,242. Here, 

we dissociated unpredictability from expected value by pseudorandomly drawing rewards from 

symmetric probability distributions with equal values. Monkeys learned faster from the more 

unpredictable rewards drawn from the tails of normal distributions. Likewise, dopamine responses 

were amplified by greater unpredictability, even when the conventional prediction error was 

identical. These data reinforce the importance of unpredictability for dopamine responses and 

learning. 

Several lines of evidence indicate that the amplifications of dopamine responses were not 

explained by differences in conventional prediction errors. Behavioral assays showed that the 

monkeys assigned similar Expected Utility (EU) to both distributions (Fig. 4). EU is a proxy for 

the ‘predicted reward value’ term used to describe dopamine reward prediction error responses36. 

Accordingly, dopamine responses to Normal and Uniform distribution predicting cues were 

indistinguishable (Fig. 9b). Therefore, the amplified dopamine responses we observed here were 

not explained by differences in conventionally defined prediction errors. Rather, the dynamic 

ranges of the neurons adapted to the shapes of the predicted probability distributions (Fig. 9c-f). 

Biological learning signals have inspired deep reinforcement learning algorithms with 

performance that exceeds expert human performance on Atari games, chess and Go228,243. 

Recently, a new machine learning model, distributional RL, was applied to study the activity of 

dopamine neurons231. A fundamental distinction between distributional RL and the results we 

present here is the scale at which outcome distributions are represented. In distributional RL, the 

probability distribution is represented at the level of dopamine neuron populations. In contrast, our 

results show that single dopamine neurons are sensitive to the shape of the probability distribution 
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(Fig. 9c–f). Our data indicate that two mechanisms, one operating at the level of populations and 

the other at the level of single neurons, are complementary schemes for learning probability 

distributions. Indeed, our data confirmed one prediction from the distributional RL model: for the 

same population of dopamine neurons, the spread of the measured reversal points is larger for 

uniform, when compared to normal predicted reward distributions (Fig. 10a). Nevertheless, even 

after accounting for the distribution-sensitive reversal points, we still observe bidirectional 

amplification of dopamine responses to rare rewards (Fig. 10b). These results reveal 

complementary learning schemes within the same population of dopamine neurons. 

At the level of single neurons, the amplified dopamine responses to rare rewards indicate 

that reinforcement learning (RL) models that acquire only point estimate predictions are not 

adequate to describe dopamine activity. Rather, these data suggest that RL algorithms that track 

uncertainty, such as Kalman TD232, may provide an appropriate conceptual framework to explain 

information processing in the reward system. Kalman-like reinforcement signals enables reward 

prediction and estimation of uncertainty244, and therefore may be critical for implementing 

Bayesian inference. In this sense, the observed amplification of dopamine responses by rare 

rewards is consistent with a signal that could guide Bayesian inference of the most likely outcomes. 

Nevertheless, future studies will be required to understand whether phasic dopamine responses can 

support explicit Bayesian inference for optimal economic choices. 

The amplification of dopamine responses by rare rewards appears to be a distinct 

phenomenon from novelty driven dopamine responses that we and others have previously 

observed240,245. Stimulus novelty decays with the number of exposures and dopamine responses 

appear to follow this decay240. A recent study has shown that stimulus novelty, specifically, and 

not rarity, drives the large dopamine responses observed during the first exposures to stimuli, and 
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that novelty-driven CS responses promote learning245. None of the rewards used in our study were 

novel, as only three rewards were used while recording: 0.2 ml, 0.4 ml, and 0.6 ml of blackcurrant 

juice. The monkeys experienced these three rewards hundreds of times each during every session. 

Rarity was maintained only during Normal trials, when 0.2 ml and 0.6 ml were rarely given. Thus, 

the amplification of dopamine responses to rewards drawn from the tails of Normal distributions 

is likely a function of reward rarity, and distinct from novelty responses. 

Pupil diameter was sensitive to prediction errors generated during active learning phases, 

but the sensitivity sharply decreased after learning. This result is consistent with prior studies 

showing that pupil diameter is more sensitive to unexpected uncertainty, compared to expected 

uncertainty246, and indicates that the monkeys learned the distributions and their associated 

expected uncertainties. In parallel, we observed that learning was enhanced in the Normal 

distribution trials. Specifically, we observed that learning became asymptotic after fewer trials in 

Normal compared to Uniform blocks. Together, these results are consistent with prior studies in 

humans showing that reward learning is dependent on standard deviation and higher statistical 

moments of reward distributions223-225. Further experiments will be required to disentangle the 

effects of higher statistical moments, especially standard deviation and kurtosis, on reward 

learning.  

One limitation of our study is that the behavioral choice data and these neural recordings 

were collected using different tasks. The behavioral paradigm enabled us to directly measure 

learning differences, however, it required models to do post-hoc estimation of the underlying 

reward prediction errors. This dependency on model-derived estimates constrained our ability to 

control the magnitudes of reward prediction errors. Therefore, we used a passive-viewing task to 

control prediction errors during neuronal recordings (Fig. 9a). This strategy of measuring behavior 
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in one version of the task and doing neural recordings in a simplified version of the task has been 

used many times previously by ourselves and others247. However, the experimental separation of 

the behavioral measurement from the neural recordings prevents us from drawing firm conclusions 

regarding the role of dopamine signal amplifications in learning. Future studies that combine 

complex behavior and neural recording in the same task will be critical for determining the trial-

by-trial relationship between dopamine response amplification and behavior. 

It is tantalizing to speculate about the possibility that the neural circuits responsible for 

value processing evolved in a world where the Normal distribution makes frequent appearances – 

and that this evolutionary history makes it easier for individuals (and their dopamine neurons) to 

learn Normal statistics. Regardless, the amplified dopamine responses coupled with the faster 

learning dynamics observed here suggest that the magnitude of dopamine release may affect 

cellular learning mechanisms in the striatum. Moreover, dopamine responses have the ability to 

modulate dopamine concentrations in the prefrontal cortex (PFC), which are tightly linked to 

neuronal signaling and working memory performance248. These findings raise the possibility that 

amplified dopamine responses could contribute to the exaggerated salience of rare events and 

postulate a neural mechanism to explain aberrant learning behaviors associated with debilitating 

mental health disorders such as psychosis, schizophrenia, and depression. 
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3.0 Ambiguity Preferences Depend on Reward Magnitude 

Decision theory recognizes two forms of uncertainty: risk – in which the underlying 

probability distributions are known, and ambiguity – in which the underlying probability 

distributions are not known4. Expected Utility Theory (EUT), is the dominant economic theory of 

decision making, describes decisions under uncertainty5. In this framework, decision-makers 

combine probability with subjective value, and select the option with the highest expected utility. 

Non-human primates (NHPs) and humans incorporate risk and reward magnitude to generate 

choice behavior that is estimated by EUT249. Ambiguity aversion, first illustrated in the Ellsberg 

paradox, is a phenomenon where decision-makers will avoid ambiguity at the cost of utility – 

violating EUT1. This is a well-documented behavioral paradox that is present in humans and non-

human primates82,250-254. A study that measured decision making in humans showed that learning 

about ambiguity aversion made them more tolerant to ambiguity, but still did not fully prevent 

ambiguity aversion255. Moreover, decision-makers also became less risk averse, indicating an 

incorrect generalization to risk from ambiguity. Many decision making theories based on risk, 

including EUT, fail to adequately describe real-world choice behavior, as illustrated by the 

Ellsberg paradox. This failure partly reflects the fact that pure risk is rare: it is only encountered 

in casinos, coin-flips, and decision making experiments. In most real-world cases, incomplete 

information, sparse data, and cognitive limitations create various states of ambiguity. Therefore, 

ambiguity, rather than risk, better describes the conditions of uncertainty under which most real-

world decision making occurs. Prior work has demonstrated that non-human primates demonstrate 

ambiguity aversion during choices between risky and ambiguous stimuli254. In addition, it has been 

shown that the magnitudes of rewards NHPs choose between in risky decisions modulates their 
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risk preference, such that they are risk seeking with small reward gambles and risk averse with 

large reward gambles256. It is currently unknown whether NHPs will show this shift in preference 

for ambiguity as they do for risk, depending upon whether they are given low- or high-stakes 

decisions versus safe, certain value options. 

Pupil diameter is closely related to attention, vigilance, learning, and has even been shown 

to reflect belief state257-259. Uncertainty in an individual’s environment triggers the sympathetic 

nervous system260-262. Activation of the sympathetic nervous system causes norepinephrine release 

from the locus coeruleus, leading to the physiological “fight-or-flight” responses263,264. These 

physical reactions include increases in heart rate, perspiration, and pupil diameter265. Pupil 

diameter has been shown to be tightly correlated with unexpected uncertainty and errors in 

expectation, effectively signaling that learning needs to take place to update predictions about the 

environment266. In Chapter 2, we show that during learning, pupil responses to reward prediction 

errors following risky cues with higher uncertainty are suppressed in comparison to less uncertain 

risky cues267. This suggests that the lack of arousal from norepinephrine-mediated circuits could 

minimize the speed with which animals learn in risky conditions with higher uncertainty. It is 

currently unknown whether pupil responses will show differences in response to risky and 

ambiguous options with the matched levels of uncertainty. 

Here, we investigate whether decision-makers will have varying levels of ambiguity 

preference dependent upon the EV, like they have EV-dependent risk preferences256. We 

developed a novel NHP economic decision making task with independent control over the level of 

uncertainty, and reward ranges, magnitudes and probabilities. By matching EV, and manipulating 

only the amount of uncertainty, measured by Shannon entropy268, we hypothesized we could reveal 

a specific effect of ambiguity on decision making and pupil diameter. On a subset of trials, the 
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outcome probability information was fully obscured to create ambiguity in the outcome probability 

distribution. During ambiguity trials with small reward sizes, we observed ambiguity-seeking 

tendencies: the animal selected ambiguous options over safe rewards with similar values, and even 

valued them more than the risky cues of the same EV. With larger rewards, the trend was reversed: 

the animal was ambiguous-averse, and switched his preference and valued risky options more than 

the ambiguous one. Thus, similar to what is seen with risk preferences256, the monkey displayed 

value-dependent ambiguity attitudes, such that it became ambiguity averse as the EV increased. In 

addition to the choice data, we analyzed pupil diameter and found that pupil dilation was less 

sensitive to ambiguous cues, and the reward volumes received following, at both low and high 

EVs. Pupil diameter has been previously shown to reflect learning rate and prediction error266,267. 

Thus, the decreased sensitivity to the ambiguous cues and their subsequent rewards indicates that 

those predictions might not be updated quickly. Together, these observations suggest that there are 

fundamental distinctions between decision making under risky or ambiguous contexts.  

 Methods 

 Animals, Surgery and Setup 

All animal procedures were approved by Institutional Animal Care and Use Committee of 

the University of Pittsburgh. We used one male Rhesus macaque monkeys (Macaca mulatta) for 

these studies (11.2 kg). A titanium head holder (Gray Matter Research) was aseptically implanted 

under general anesthesia before the experiment. During experiments, animals sat in a primate chair 

(Crist Instruments) positioned 30 cm from a computer monitor. During behavioral training, testing 
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and neuronal recording, eye position was monitored noninvasively using infrared eye tracking 

(Eyelink Plus 1000). Eye and digital task event signals were sampled at 2 kHz. Custom-made 

software (Matlab, Mathworks Inc.) running on a Microsoft Windows 7 computer controlled the 

behavioral tasks. 

 Behavioral Tasks 

Entropy as a Method to Quantify and Compare Ambiguity and Risk 

In order to compare the effect of ambiguity on behavior 

and sympathetic responses compared to risk, we used Shannon 

entropy to quantify the amount of information (or uncertainty) 

in risky and ambiguous cues268. Entropy can be described as the 

amount of random information, and when using cues with 

discrete outcomes, entropy is measured in bits. Entropy, or bits 

of random information, using the following equation: 

H 𝑋 =	− P 𝑥e

m

enR

logU P(𝑥e) 

(Eq. 8) 

The function is a sum over all the cues’ possible outcomes (𝑛), 

and their probabilities (𝑥). Given this function, a cue that has a 

100% probability of giving one reward volume has 0 bits of 

random information, and an equiprobable gamble between two 

different reward magnitudes is equal to 1 bit of random 

Figure 12: The relationship between 
expected value and uncertainty 

In a two-outcome gamble, where one 
outcome is to receive reward, and the 
other is to receive no reward, as 
probability increases, the effect on 
expected value (primary axis, light 
blue) and uncertainty (secondary axis, 
purple) differ. Specifically, as 
probability (p) of receiving reward 
increases in relationship to the 
probability of not getting reward (1-p), 
expected value increases linearly. 
Uncertainty as a function of probability 
is an inverted U shape. This being the 
case, the most uncertainty in a two-
outcome gamble is when the options are 
equiprobable, or a 50% probability for 
each outcome. As one of the two 
outcomes becomes more probable over 
the other, uncertainty diminishes due to 
the increasing likelihood (or certainty) 
of one of the outcomes. This being the 
case, there is no uncertainty when the 
probability of one outcome is 100% and 
the other is 0%. 
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information. Figure 12 shows the relationship between uncertainty (or entropy, light blue) and 

expected value (purple) in two outcome gambles, when the probability of getting a reward (p) is 

between 0 and 1, and the probability of getting no reward has a probability of 1-p. The expected 

value of the gamble increases linearly as the probability of reward gets higher and the probability 

of no reward gets lower. Uncertainty is at its peak when the gamble is equiprobable, and at its 

lowest when there was 0 probability of one of the outcomes and 100% probability of the other. 

A critical feature is the fact that the highest amount of random information occurs when 

the outcomes, no matter how many possible, have equal probability of being received. This 

information is crucial, as the ambiguous option has the probabilities of the possible reward 

volumes hidden, the bits of random information are automatically assessed as at the maximum for 

the number of outcomes. Or in other words, the entropy of an ambiguous option where the number 

of possible outcomes is known, but the outcome probabilities are unknown, is treated as if the 

underlying distribution is uniform, and every outcome has an equal probability of being received, 

as this is the maximum amount of random information. This feature will uncover the specific effect 

of ambiguity, because if an ambiguous cue, and a risky cue (both with the same number of 

outcomes that are all equally probable) have the same amount of random information, reward 

range, and expected value, then any differences seen are only attributable to the specific effect of 

ambiguity. 

 

 

 

Behavioral Task Cues to Measure Subjective Value of Uncertain Choice Options 
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 We created a set of 4 risky cues and one ambiguous cue (Fig. 14a), which will all be 

offered as a choice versus a ‘safe’ certain cues that fully predict a reward. All of the cues use value 

bars, where a dot (or dots) intersect the vertical bar, indicating the reward volume(s) predicted, 

and the horizontal bar(s) stemming from the dot(s) indicate that reward volume’s probability (Fig. 

14a). The value range of the vertical line of the value bar represents is a range of 0-1 ml, spaced 

in 0.1 ml increments. The horizontal line, or summation of all the lines, will always total to 100%. 

Figure 14a shows the four risky, distribution predicting cues, and one ambiguous cue, with the top 

panel showing the low expected value (EV) conditions, where the reward distributions are drawn 

from 0.4, 0.5, and 0.6 ml of juice. The bottom panel of Figure 14a shows the high EV conditions, 

where the reward distributions are drawn from 0.7, 0.8, and 0.9 ml of juice. From left to right of 

Figure 14a, the Skew Low distribution (light blue) had a probability distribution of 0.50, 0.25, 0.25 

for the low, medium, and high rewards. The Normal distribution (purple) had a probability 

distribution of 0.25, 0.50, 0.25 for the low, medium and high rewards. The Uniform distribution 

(green) had a probability distribution of 0.33 for all rewards. Because the maximum amount of 

uncertainty is when all options are equally probable (Fig. 12, Methods), the Ambiguous 

distribution (red) also had a probability distribution of 0.33 for all rewards, but with the horizontal 

probability bars occluded while the reward volumes were still visible. Finally, the Skew High 

distribution (dark blue) had a probability distribution of 0.25, 0.25, 0.5 for the low, medium, and 

high rewards. We used multiple reward distributions in order to create variety in the monkey’s 

expectations of possible reward probability distributions that the occluder could be blocking. The 

Skew Low and Skew High distributions had slightly different EVs from the Normal, Uniform, and 

Ambiguous cues, and as such we solely use the Normal and Uniform cues as risky comparisons to 

the Ambiguous cue.  
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In each choice trial, after successful fixation of 0.5 s, the two choice options appeared on 

the monitor and the monkey indicated its choice by a saccade towards one of the cues. The monkey 

was allowed to saccade as soon as it wanted. The monkey had to keep its gaze on the chosen cue 

of 0.5 s to confirm its choice. Reward was delivered 1.5 seconds later. In order to prevent the 

monkey from associating the grey occluder with a specific value, prevent a novelty response, and 

control for luminance across trials, it was always on the screen at variable positions, but only 

covered the reward probabilities of Ambiguous distribution trials. In the example trial in Figure 

14b, the choice is between the low EV Normal distribution-predicting cue versus a safe value of 

0.5ml. After selecting the Normal distribution-predicting cue, the reward would be drawn from the 

Normal distribution over 0.4, 0.5, and 0.6 ml of juice reward. The example trial in Figure 14c is 

between the high EV Ambiguous cue and a safe, certain value of 0.5 ml of juice reward. In this 

example trial, the reward would be drawn from a uniform distribution.  

 Analysis of Behavioral Data 

Over 6 weeks, we collected ~5100 over 23 sessions choice trials of various uncertain 

distribution-predicting cues at two different EVs in one monkey. Due to the large variety of trial 

types (5 distribution cues, 2 different EVs, 11 ‘safe’ alternate options), we used week-by-week 

estimates of CEs to ensure enough trials to have a good fit of the psychometric functions. Due to 

the slight differences in EV in the Skew Low and Skew High cues, we removed them from further 

analyses – leaving the Ambiguous, Uniform, and Normal reward-predicting distributions for the 

low and high EVs. 
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 Calculating Subjective Value of Uncertain Options Using Certainty Equivalence 

Certainty equivalence (CE) is the value of a safe option that NHPs will have equal 

probability of choosing as an uncertain cue. In other words, the NHPs are indifferent between the 

two options Monkeys made choices between cues that predicted an uncertain cue and cues that 

explicitly indicated safe options (Fig. 14b, c). Figure 14d shows the probability of choosing the 

safe cue over the uncertain cue, as a function of the value of the safe option, when the distribution 

predicting cue had an EV of 0.5 ml (left), or 0.8 ml (right). Dots show average choice probability 

for 11 safe value options. Solid lines are a logistic fit to the data. The dashed horizontal lines 

indicate the point of certainty equivalence. Calculating the CE for all the uncertain options gave 

us a qualitative measure of how the animals valued the risky cues and ambiguous cue at low (0.5 

ml) and high (0.8 ml) EVs. We used a Wilcoxon rank-sum test between Normal and Uniform 

distribution-predicting cues and found no significant differences for either EV (Fig. 15; Low EV, 

p = 0.12, High EV, p = 0.62; Wilcoxon rank-sum). This resulted reflects what we saw previously, 

that animals equally valued the Uniform and Normal distribution-predicting cues, and had 

matching CS responses in midbrain dopamine neuron firing rates, even though they had different 

underlying reward probabilities, in Chapter 2. We then compared the Uniform and Ambiguous 

cues, due to their matching EV, reward outcomes, and underlying distribution. There was a 

significant difference between Uniform and Ambiguous cues at both EVs, but the differences were 

in opposite directions. Specifically, at Low EVs, the monkey had a significant preference for 

Ambiguous cues over Uniform ones, based on their CEs (p = 0.0001, Wilcoxon rank-sum). 

However, in the High EV conditions, the monkey had a significant preference for Uniform cues 

over Ambiguous ones, based on their CEs (p = 0.0043, Wilcoxon rank-sum).  
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 Calculating Value-Dependent Uncertainty Preferences 

We plotted the CEs as a function of Low and High EV to determine the relationship 

between uncertainty-preferences as a function of expected value (Fig. 15b). When we compared 

the slopes of the Normal and Uniform risk-preferences from Low to High EVs, we see no 

significant difference, indicating their risk-preferences as a function of value were the same (Fig. 

15b; Normal vs. Uniform slopes, p = 0.75; Wilcoxon rank-sum).  

 Measuring Response Times  

Response time was considered the time between the cues being presented on the screen, 

and then selection of a cue. We compared response times between Uniform and Ambiguous cues 

with Low and High EVs. At the Low EV, the monkey showed equal response times during 

Uniform and Ambiguous choices (Fig. 15c p = 0.75, Wilcoxon rank-sum). At the High EV, the 

monkey took longer to make a decision in the Ambiguous choice conditions compared to Uniform 

(p < 0.001, Wilcoxon rank-sum). 

 Deconvolution 

Event-related pupil responses were analyzed trial-by-trial using nideconv236,237, a Python 

package that specializes in fMRI and pupil signal deconvolution. The design matrix for a trial 

consisted of a total of four event types: the onset of central dot for fixation, the onset of cue 

presentation, the monkey’s saccades to indicate choice, offset of cue presentation (in temporal 

order), and the onset of reward. The pupil diameter changes related to fixation and the offset of 

cue presentation were analyzed 0.5 s pre-event until 2 s post-event; the time windows for the onset 

of cue presentation and monkeys’ saccades started 0.5 s pre-event and ended 3 s post-event; the 

time window for the presence of rewards started at 0.5 s pre-event and ended at 1.5s post-event. 
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To understand the relationship between pupil 

diameter and uncertainty, expected value, reward 

volume, and reward prediction errors, were used as 

covariates in the deconvolution algorithm. 

Consequently, we obtained a measure of how 

sensitive the post-cue and post-reward pupil diameter 

changes were to the expected values, rewards 

received, and prediction errors in each trial, by 

looking at the beta coefficients in the prescribed time 

window. 

 Analysis of Possible Learning Over 

Multiple Weeks 

In order to determine whether the monkey 

learned or updated the value of the Ambiguous cues over sessions, we performed a Kruskal-Wallis 

test to analyze the effect of week on each of the distribution-predicting cue types (Fig. 13).  None 

of the cue types showed a significant effect of week on certainty equivalent, indicating that they 

did not learn over experience with the uncertain cues, and had stable CEs (Figure 13; Ambiguous, 

p = 0.28, Uniform, p = 0.87, Normal, p = 0.94; Kruskal-Wallis test).  

Figure 13: Certainty equivalent did not change 
over time 
Certainty equivalent as a function of testing week, 
for Low EV versus High EV distribution-
predicting cues. The Normal (purple), Uniform 
(green) and Ambiguous cues did not show any 
significant differences in CE over weeks of 
behavior and experience with the cues 
(Ambiguous, p = 0.28, Uniform, p = 0.87, Normal, 
p = 0.94; Kruskal-Wallis test). The circles 
represent CE at High EV, the triangles represent 
CE at Low EV. The bottom dashed line represents 
the EV of the Low EV distribution-predicting cues, 
and the top dashed line represents the EV of the 
High EV distribution-predicting cues. 
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 Results  

Decision-makers are ambiguity averse, and will choose cues with certain outcomes over 

ambiguous ones, at the expense of reward1. Previous studies have shown ambiguity aversion in 

non-human primates in choice situations with ambiguous versus risky cues254. However, it has not 

been determined how monkeys will evaluate the value of ambiguous options versus safe options, 

and whether the expected value of ambiguous options will change their tolerance of ambiguity, 

like what is seen with risk269. To investigate the specific effect of ambiguity as opposed to risk on 

decision making, we created a novel decision making paradigm with a variety of possible risky 

distributions over rewards, and the use of an occluder to block reward distribution information but 

not the possible values to create ambiguity. 

We created a set of 4 risky cues with varying reward probability distributions and one 

ambiguous cue (Fig. 14a, Methods), which were all offered as a choice option versus a ‘safe’ 

certain cue that fully predict a reward. We used multiple reward distributions in order to create 

variety in the monkey’s expectations of possible reward probability distributions that the occluder 

could be blocking. Further, to investigate the effect of expected value on ambiguity preferences, 

we utilized two different expected values for the uncertain cues, 0.5 ml EV (low EV) and 0.8 ml 

EV (high EV). In addition, the occluder was a constant feature of the task, even when it was not 

blocking any information on the value bars. 
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a, Value bar cues to create four risky, distribution predicting cues, and one ambiguous cue in choice task to measure 
uncertainty preferences across two different expected values (EVs). The dots along the vertical line indicate the 
volume of reward, which are values between 0.1 and 0.9 ml in 0.1 ml increments. The horizontal bar that extends from 
the dot indicates the probability of that reward volume, with the sum of all the probabilities in a cue totaling to 1. The 
top row shows the low EV cues, with reward distributions over 0.4, 0.5, and 0.6 ml of juice. The bottom row shows 

Figure 14: Choice behavior shows value-dependent risk and ambiguity preferences 
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the high EV cues over 0.7, 0.8, and 0.9 ml of juice. Starting with the risky cues, the Skew Low (light blue) distribution 
cue reward probabilities were 0.50 for the low reward, and 0.25 for the medium and high reward. The Normal (purple) 
distribution predicting cue had probabilities of 0.25 for the low and high rewards and 0.50 probability for the medium 
reward. The Uniform (green) cue’s rewards are equiprobable, and thus, have a probability of 0.33 for each. The Skew 
High (dark blue) distribution predicting cue reward probabilities were 0.25 for the low and medium rewards and 0.50 
for the high reward. We used a variety of distributions in order to create variety in the monkey’s expectations of 
possible reward probability distributions. In order to create ambiguity, we used a grey occluder the cover the reward 
probabilities while leaving the possible reward volumes visible. Because the maximum amount of uncertainty is when 
all options are equally probable (Fig. 12, Methods), the Ambiguous cue rewards were also drawn from a uniform 
distribution. The Skew Low and Skew High had slightly different EVs from the Normal, Uniform, and Ambiguous 
cues, and as such we solely use the Normal and Uniform cues as risky comparisons to the Ambiguous cue. b, Example 
trial of a medium EV Normal cue versus a safe, certain value of 0.5 ml of juice. In each choice trial, after successful 
fixation of 0.5 s, the two choice options appeared on the monitor and the monkey indicated its choice by a saccade 
towards one of the cues. The monkey was allowed to saccade as soon as it wanted. The monkey had to keep its gaze 
on the chosen cue of 0.5 s to confirm its choice. Reward was delivered 1.5 seconds later. In this example trial, the 
reward would be drawn from the Normal distribution over 0.4, 0.5, and 0.6 ml of juice reward. In order to prevent the 
monkey from associating the grey occluder with a specific value, it was always on the screen at variable positions, but 
only covered the reward probabilities during the Ambiguous trials. c, Same as b, but for a high EV Ambiguous cue 
versus a safe, certain value of 0.5 ml of juice reward. In this example trial, the reward would be drawn from a uniform 
distribution (Methods). d) Probability of choosing the safe cue as a function of the value of the safe option, when the 
distribution predicting cue had an EV of 0.5 ml (left), or 0.8 ml (right). Dots show average choice probability for 11 
safe value options. Solid lines are a logistic fit to the data. The dashed horizontal lines indicate certainty equivalence. 

 

Because the maximum amount of uncertainty is when all options are equally probable (Fig. 

12, Methods), the Ambiguous distribution (red) also had a probability distribution of 0.33 for all 

rewards, but with the horizontal probability bars occluded while the reward volumes were still 

visible. Finally, the Skew High distribution (dark blue) had a probability distribution of 0.25, 0.25, 

0.5 for the low, medium, and high rewards. The Skew Low and Skew High distributions had 

slightly different EVs from the Normal, Uniform, and Ambiguous cues, and as such we solely use 

the Normal and Uniform cues as risky comparisons to the Ambiguous cue. 

We first compared the Normal and Uniform distribution-predicting cues and found no 

significant differences for either EV (Fig. 15a; Low EV, p = 0.12, High EV, p = 0.62; Wilcoxon 

rank-sum). This resulted reflects what we saw previously, that animals equally valued the Uniform 

and Normal distribution-predicting cues in Chapter 2. We then compared the Uniform and 

Ambiguous cues, due to their matching EV, reward outcomes, and underlying distribution.  
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a, Certainty equivalence 
(CE) in ml of juice as a 
function of level of 
uncertainty for low (left) and 
high (right) EV distributions. 
This visualization shows that 
uncertainty was not a factor 
in the valuation of uncertain 
distribution-predicting cues, 
and that Ambiguity 
preferences were dependent 
on the expected value. The y 
axis represents the Certainty 
equivalent (CE) in ml of 
juice. The x axis represents 
the amount of uncertainty 
with Normal (purple) being 
lower than Uniform (green) 
and Ambiguous (red) cues. 
In low EVs, the Ambiguous 
cue had a higher CE than the 
Uniform cue (p = 0.0001, 
Wilcoxon rank-sum). This 
preference switched in the 
high EV conditions, and the 
Ambiguous cue had a lower 
CE than the Uniform one (p 
= 0.0043, Wilcoxon rank-
sum). Normal and Uniform 
cue CEs were not 

significantly different in either EV condition (Low EV, p = 0.12, High EV, p = 0.62; Wilcoxon rank-sum). Error bars 
are ±s.e.m. across 6 week-by-week CE measurements. The horizontal dashed line represents the expected value (EV) 
of the cues. b, CE of uncertain cues across Low and High EV. Error bars are ±s.e.m. across 6 week-by-week CE 
measurements. Black horizontal lines indicate the expected value for the Low EV (0.5 ml) and High EV (0.8 ml) 
conditions. Slopes between Uniform and Ambiguous are significantly different (p < 0.01, Wilcoxon rank-sum). c, Box 
and whisker plots showing response times (ms) for Uniform (green) and Ambiguous (red) choices in the High EV 
condition. Ambiguous choices took significantly longer than Uniform ones (p < 0.001). 

 

There was a significant difference between Uniform and Ambiguous cues at both EVs, but 

the differences were in opposite directions. Specifically, at Low EVs, the monkey had a significant 

preference for Ambiguous cues over Uniform ones, based on their CEs (Fig. 15a, left; p = 0.0001, 

Wilcoxon rank-sum). However, in the High EV conditions, the monkey had a significant 

preference for Uniform cues over Ambiguous ones, based on their CEs (Fig. 15a, right; p = 0.0043, 

Figure 15: Ambiguity 
preferences are dependent 
on reward magnitude 
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Wilcoxon rank-sum). This 

result shows that the Normal 

and Uniform cues had matched 

expected values but different 

distributions, it did not 

modulate their preference for 

either cue. However, even 

though the Uniform and 

Ambiguous distribution-

predicting cues were matching 

in expected value and 

underlying distributions, the 

monkey showed variable 

preferences based solely on the 

fact that the Ambiguous cues 

had distribution information hidden from the animal. In addition, at the Low EV, the monkey 

showed equal response times during Uniform and Ambiguous choices (p = 0.75, Wilcoxon rank-

sum). However, at the High EV, the monkey took longer to make a decision in the Ambiguous 

choice conditions compared to Uniform (p < 0.001, Wilcoxon rank-sum). We suggest that not only 

do they just completely avoid the ambiguous cues at High EVs, they deliberate longer.   

We used a deconvolution analysis to relate phasic changes of pupil diameter to different 

task epochs (Fig. 16). Across both EV conditions, pupil responses between the Normal and 

Uniform cues and their following rewards were never significantly different (Fig. 16a; High EV 

Figure 16: Ambiguous cues and thier following rewards illicit smaller 
pupil responses 

a, Beta coefficients from a deconvolution analysis on the pupil diameter for 
Normal (purple), Uniform (green), and Ambiguous (red) cue onset (left) and 
reward reception (right) for High EV trials. b, Same as in a, but for Low EV 
trials. Error bars are ±s.e.m. across 23 sessions. 
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Cue, p = 0.22, High EV Reward Volume, p = 0.5; Fig 16b; Low EV Cue, p = 0.09; Low EV 

Reward Volume, p = 0.5). In both High and Low EV conditions, we saw that phasic pupil 

responses were smaller following Ambiguous cues, and the rewards they received following them 

in compared to Uniform cues and their rewards (Fig. 16a; High EV Cue, p < 0.01, High EV Reward 

Volume, p < 0.001; Fig 16b; Low EV Cue, p < 0.01; Low EV Reward Volume, p < 0.05). Due to 

the reversal in preference for ambiguity from Low to High EV, this result shows that the pupil 

response was a value-independent response to ambiguity – such that the responses regardless of 

preference were always smaller relative to the Uniform cues and their subsequent rewards. 

 Conclusion 

Decision-makers must assess the value of multiple options in order to make optimal 

choices. Most choices are made under some level of uncertainty, which are differentiated into two 

different types: risk and ambiguity4. Ambiguity aversion is the phenomenon where decision-

makers will avoid ambiguity at the cost of utility1,82,250-254. Here, we show that NHPs show varying 

preferences for ambiguity which depends on the volume of the rewards – much like that of their 

preferences for risk256. Such that, when the stakes are low and rewards are small, they are 

ambiguity seeking, and when the stakes are high and rewards are small, preferences switch and the 

animals become ambiguity averse (Fig. 15a, b). While this study never directly gives animals 

choices between a risky and ambiguous choice option with the same EV, other research has shown 

ambiguity aversion specifically in relation to ambiguous versus risky options254. We hypothesize 

that at low stakes, animals will choose the ambiguous option more than a risky one, and at high 

stakes this will reverse. Future research offering animals these direct choices between risky and 
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ambiguous options in order to find an ambiguous cue’s risky equivalent will be necessary to 

confirm this. In addition, at the High EV, the monkey took longer to make a decision in the 

Ambiguous choice conditions compared to Uniform (Fig. 15c). This result could indicate that not 

only are they ambiguity averse at the High EV, but they still take longer to decide, perhaps 

suggesting they take more time deliberating based on the uncertain or noisy estimates of EV in 

ambiguous situations.  

We used a deconvolution analysis to relate phasic changes of pupil diameter to different 

task epochs (Fig. 16). We saw that phasic pupil responses were smaller following Ambiguous 

cues, and the rewards they received following them, in both High and Low EV conditions. Due to 

the reversal in preference for ambiguity from Low to High EV, this result shows that the pupil 

response was a value-independent response to ambiguity – such that the responses regardless of 

preference was the same relative to the Uniform cues. This reveal a specific relationship with pupil 

diameter and ambiguous economic choices. Some research has shown that phasic changes in pupil 

diameter changes have been linked to unexpected uncertainty, which is also similar to novelty 

detection and the necessity to update the underlying probability of the environment266,270-272. 

However, we believe the uncertainty from ambiguity experienced in our task is not reflective of 

unexpected uncertainty, as the occluder is not novel in any way, and the underlying task statistics 

of the environment are held constant. Other research has shown that faster learning rate is reflective 

of an increased state of arousal, reflected in phasic increases in pupil diameter273. In Chapter 2, we 

found evidence supporting this, specifically that less uncertainty in the distribution of reward 

outcomes associated with a cue elicited faster learning and increases of phasic pupil responses. 

Here, there was no learning in relation to any of the cues (Fig. 13), and the Ambiguity cue and its 
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rewards elicited smaller phasic pupil responses, which is suggestive that the ambiguity elicited by 

the occluder was not perceived as novel by the animal.  

The monkey could potentially attempt to learn, through trial-and-error9, the underlying 

reward distribution of the ambiguous cue. It is the same in reward outcome possibilities and 

probabilities, uncertainty, and EV as the Uniform distribution-predicting cue, with the only 

difference being that the probability information is hidden from the animal. Indeed, previous work 

with ambiguity has shown that monkeys did eventually learn the underlying probabilities of 

rewards through multiple experiences with an ambiguous cue254. Further, in Chapter 2, we show 

that animals can indeed learn the expected values of non-informative (fractal) Uniform 

distribution-predicting cues, albeit slower than fractal Normal distribution-predicting cues267. 

While we did not have the same variety of underlying distributions in Chapter 2 that we did here, 

the overall frequency of all the rewards, if you consider the probabilities of all the risky cues, is 

equal across the three reward volumes of the distributions. Or in other words, if the animal were 

to have integrated information about the overall distribution of the environment to estimate the 

most likely underlying distribution, it could have inferred a uniform distribution of rewards as 

well. Considering these possible methods that the animal could have used to learn the underlying 

distribution, either through trial-and-error experience or by integrating information about the 

overall uncertainty of the environment, leads us to believe that the specific differences seen here 

between the Uniform and Ambiguous cues can only be attributed to the specific effect of 

ambiguity, seen in humans and animals1,82,250-254. Together, our results suggest that different 

psychological and neural mechanisms mediate risk and ambiguity preferences in reward-based 

economic decision making. This view is consistent with other studies that have suggested the 

same165,254,274.  
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It has been shown that learning about the Ellsberg Paradox reduces, but does not totally 

abolish, ambiguity aversion, and this increases behavioral performance in humans255. This finding 

shows that while this is somehow an engrained bias individuals have; cognitive inhibition of this 

behavior can be implemented. This leaves room to investigate what brain areas perform top-down 

modulations to economic decision making in choices with ambiguity. Some areas that have 

previously been shown to be differentially responsive to ambiguity versus risk in economic 

decision making are the lateral orbitofrontal cortex (lOFC) and the amygdala. A previous study 

using fMRI in humans performing a decision making task show increases in lOFC and the 

amygdala in ambiguous decisions compared to risky ones274. Further, the striatum was more 

activated in risky decisions over ambiguous ones. These results provide the basis for further 

behavioral and neuronal characterizations of decision making under ambiguity.  



 85 

4.0 Transcriptional and Anatomical Diversity of the Primate Striatum2 

The striatum serves as the major input nucleus for the basal ganglia (BG) and the principal 

neural interface between dopamine reward signals and cortico-basal ganglia-thalamo-cortical 

circuits. Information processing in the striatum is dependent on cell-type-specific circuits. In 

particular, Medium Spiny Neurons (MSNs), which account for the vast majority of all striatal 

neurons, are divided into two major cell types: D1- and D2- MSNs275. D1-MSNs express dopamine 

receptor type 1 (DRD1) and form the “direct pathway” via monosynaptic projections to the basal 

ganglia output nuclei103. D2-MSNs express dopamine receptor type 2 (DRD2) and form the 

“indirect pathway” via di-synaptic projections to the basal ganglia output nuclei103. Activity in the 

direct and indirect pathways produces, broadly, opposing effects on thalamo-cortical projections. 

This cell-type-specific circuit model has been crucial to understanding the role of the striatum and 

BG in the control of movement and the mechanisms of Parkinson’s disease276,277. However, the 

striatum and BG are involved in many behaviors besides the control of movement. For example, 

segregated neurochemical compartments in the dorsal striatum (DS), known as striosome (patch) 

and matrix are thought to participate in limbic and sensorimotor functions, respectively278-280. 

Similarly, the ventral striatum (VS) has fundamental roles in reward processing, learning, and 

emotional responses281-284. The traditional model, that involves competition between signals in the 

direct and indirect pathways, does not account for these broad functional roles. Rather, these broad 

functionalities indicate deeper cell-type and circuit heterogeneity.   

                                                
2 The contents of this chapter were previously published (He & Kleyman et al., 2021). KMR made significant 

intellectual contributions in the planning and execution of data acquisition for the manuscript. 
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Single cell technologies that classify cell types according to their overall gene expression 

profiles provide powerful and quantitative methods for investigating cell type heterogeneity285. 

Single cell and single nucleus RNA sequencing (scRNA-Seq and snRNA-Seq, respectively) have 

revealed new subtypes of MSNs and striatal interneurons286-291. Moreover, these technologies are 

providing novel insights into cell-type-specific mechanisms for diseases involving the striatum, 

including drug addiction292 and Huntington’s disease293. Despite these advances, we know neither 

the extent of MSN diversity in the primate striatum, nor how that diversity corresponds to the 

anatomical or neurochemical divisions of the highly-articulated primate brain. 

The close phylogenetic relationship and the high degree of homology between human and 

non-human primate (NHP) brains, genes, and behaviors make NHP studies indispensable for 

understanding the neuronal substrates of human behavior, as well as neurological, 

neurodegenerative, and psychiatric diseases294. Here, we used snRNA-Seq and Fluorescent In-Situ 

Hybridization (FISH) to characterize the transcriptional and anatomical diversity of MSNs and 

closely related neurons. The resulting cell-type-specific gene expression patterns provide insights 

into MSN functions and indicate potential molecular access points for cell-type-specific 

applications of genetically coded tools to primate brains, in scientific or translational settings. 

 Methods 

 Non-human Primates (NHPs) 

All animal procedures were in accordance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals and approved by the University of Pittsburgh’s 
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Institutional Animal Care and Use Committee (IACUC) (Protocol ID, 19024431). Rhesus 

Monkeys were single- or pair-housed with a 12h-12h light-dark cycle. Monkey F was a 12-year-

old female (8.1 kg). Monkey P was a 5-year-old female (5.4 kg). Monkey B was a 13-year-old 

male (11.78 kg). Monkey K was a 4-year-old male (6.0 kg). 

 MRI and Surgery 

For MRI, we anesthetized monkey F and P with ketamine and maintained general 

anesthesia with isoflurane. We head fixed the monkeys using an MRI-compatible stereotaxic frame 

and scanned (Siemens, 3T) for anatomical MRI. We generated a whole brain model for each 

monkey using Brainsight (Rogue Research) and 3-D printed a custom matrix for the brain with 

cutting guide set every 1 mm. 

To maximize nuclei viability, we followed a harvesting protocol similar to the one outlined 

in Davenport et al.295. Briefly, animals were initially sedated with ketamine (15 mg/kg IM), and 

then ventilated and further anesthetized with isoflurane. The animals were transported to a surgery 

suite and placed in a stereotaxic frame (Kopf Instruments). We removed the calvarium and then 

perfused the circulatory systems with 3-4 liters of ice cold artificial cerebrospinal fluid (ACSF; 

124 mM NaCl, 5 mM KCl, 2 mM MgSO4, 2 mM CaCl2, 23 mM NaHCO3, 3 mM NaH2PO4, 10 

mM glucose; pH 7.4, osmolarity 290–300 mOsm) oxygenated with 95% O2:5% CO2. We then 

opened the dura and removed the brain. We sliced on the custom brain matrix into 4 mm slabs 

along the rostral-caudal axis. We removed three striatal regions – the caudate nucleus, putamen, 

and ventral striatum –under a dissection microscope for nuclei isolation. Monkeys B and K, for 

FISH, were perfused with 4% paraformaldehyde (PFA, Sigma-Aldrich, Cat# P6148) in phosphate 

buffered saline (PBS, Fisher Scientific, Cat# BP243820) supplemented with 10% sucrose (Sigma-
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Aldrich, Cat# S8501). The brain was post-fixed with 4% PFA and cryopreserved with a gradient 

of sucrose (10%, 20%, 30%) in PBS. 

 Nuclei Isolation 

We isolated nuclei isolated as previously described296. Briefly, we homogenized tissues 

using a loose glass dounce homogenizer followed by a tight glass homogenizer in EZ PREP buffer 

(Millipore Sigma, Cat# NUC-101). We washed nuclei once with EZ PREP buffer and once with 

Nuclei Suspension Buffer (NSB; consisting of 13PBS, 0.01% BSA and 0.1% RNase inhibitor 

(Clontech, Cat# 2313A)). We re-suspended the washed nuclei in NSB and filtered them through a 

35-mm cell strainer (Corning, Cat# 352235). We counted the nuclei and diluted down to 1000 

cells/ml. We loaded approximately 10,000 cells from each brain region onto a 10X chip which 

were then run through a 10x Genomics Chromium controller. 

 Single Nucleus RNA-Seq 

We used 10x Chromium Single Cell 30 Reagent kits v3 Chemistry (10x Genomics, Cat# 

PN-1000075) for monkeys F and P. We reverse transcribed RNAs and generated libraries 

according to 10x Genomics protocol. Briefly, we generated Gel beads-in-emulsion (GEMs) after 

running through a 10x Genomics Chromium controller. We reverse transcribed mRNAs within 

GEMs in a Bio-Rad PCR machine (Cat# C1000). We barcoded cDNAs from individual cells with 

10x Genomics Barcodes and barcoded different transcripts with unique molecular identifiers 

(UMIs). We purified cDNAs with Dynabeads (10x Genomics, Cat# 2000048) after breaking the 

emulsion with a recovery agent (10x Genomics, 220016). Then, we amplified cDNAs by PCR and 
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purified them with SPRIselect reagent (Beckman Coulter, Cat# B23318). We analyzed the cDNA 

quantification and quality using Agilent Bioanalyzer 2100. We prepared libraries following 

fragmentation, end repair, A-tailing, adaptor ligation, and sample index PCR. We quantified the 

libraries by qPCR using a KAPA Library Quantification Kit (KAPA Biosystems, Cat# KK4824). 

We pooled together libraries from individual monkeys and loaded them onto NovaSeq S4 Flow 

Cell Chip. We sequenced samples from monkeys F and P to depths of 400,000 and 250,000 reads 

per nuclei, respectively. 

 FISH Probes 

We ordered custom FISH probes from ACD to validate MSN subtypes as follows: DRD1 

(ACD #549041, a 20ZZ probe targeting 1335-2279 of NM_001206975.1), DRD2 (ACD #549031-

C2, a 20ZZ probe targeting 232-1470 of XM_001085571.3), RXFP1 (ACD #801121-C2, a 20ZZ 

probe targeting 1508-2592 of XM_001096574.4), CPNE4 (ACD #801111-C3, a 20ZZ probe 

targeting of 2-943 of XM_028843706.1), KCNIP1 (ACD #889143-C3, a 20ZZ probe targeting 

283-1626 of XM_015141392.2), KCNT1 (ACD #881571-C3, a 20ZZ probe targeting 964-1906 of 

XM_015116381.2), BACH2 (ACD #898961-C3, a 20ZZ probe targeting 927-2260 of 

XM_028847343.1), KHDRBS3 (ACD #881591-C3, a 20ZZ probe targeting 494-1493 of 

XM_028852934.1), STXBP6 (ACD #881611-C2, a 20ZZ probe targeting 2-1077 of 

NM_001260925.1), SEMA3E (ACD #879971-C2, a 20ZZ probe targeting 905-1889 of 

XM_028846126.1), GDA (ACD #881601-C2, a 20ZZ probe targeting 355-1373 of 

XM_015117899.2), GREB1L (ACD #898991-C3, a 20ZZ probe targeting 784-1732 of 

XM_015121640.2), ARHGAP6 (ACD #898981-C3, a 20ZZ probe targeting 2516-3463 of 

XM_001094565.3), TAC3 (ACD #520901-C3, a 17 ZZ design and targets 2- 768 bp of 
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XM_001115535.2), and OPRK1 (ACD #518931, a 20 ZZ probe and targets 91-1392 bp of 

NM_001321097.1). 

 FISH Stain and Imaging 

We embedded brains in optimal cutting temperature (OCT) and stored them at 80°C until 

cutting. We cut floating sections at 15 and 30 mm, in monkey B and K, respectively, mounted 

tissue on 2x3” pre-treated slides, and preserved the slides in a freezer at -80°C. We used the 

Advanced Cell Diagnostics (ACD) RNAscope platform and Multiplex Fluorescent Detection 

Reagents v2 (ACD, Cat# 323110) to perform FISH with slight modifications for monkey brain 

tissue. We air-dried slides for 30 min after removal from -80°C freezer and baked them at 60°C 

for 20 min. We treated the brain sections with hydrogen peroxide (ACD, Cat# 322335) for 10 min 

at room temperature and then with RNAscope Target Retrieval Reagents (ACD, Cat# 322000) for 

8 min at 99°C. We incubated the slides in 100% alcohol for 3 min and then dried them in 60°C for 

10 min. We treated the samples with protease III (ACD, Cat# 322337) for 30 min at 40°C and 

incubated them with probes for 2 hr. After hybridization with AMP 1, 2 and 3, we incubated the 

slides with different HRP channels and fluorophores, including Opal 520 (PerkinElmer, Cat# 

FP1487A), Opal 570 (PerkinElmer, Cat# FP1488A) and Opal 650 (PerkinElmer, Cat# FP1496A). 

Lastly, we used Trueblack (Biotium, Cat# 23007) to quench Lipofuscin autofluorescence for 45 s 

at room temperature and counterstained every slide with DAPI before mounting with Prolong Gold 

Antifade Mountant (Life technologies, Cat# P36930). 

We scanned labeled sections using a Hamamatsu NanoZoomer S360 or a Nikon Eclipse 

Ti2 under 20x objective. For high resolution images, we used a Nikon Eclipse Ti2 or an Olympus 
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IX83 under 40x or 63x objective or 40x with additional 2x built in objective (equal to 80x). We 

took multi-layer images and did deconvolution using Nikon’s NIS-Elements deconvolution 

software and used maximum intensity projections to create single images. We used NDP software 

to convert the NanoZoomer original files to tiff format and ImageJ and Adobe Photoshop to adjust 

brightness and overlay images. 

 Immunohistochemistry (Fluorescent) 

We sought to verify previously labeled sections containing FISH probes for possible shell 

markers using adjacent tissue sections and immunohistochemistry to label for Calbindin. The 

sections were rinsed in Phosphate Tris (PT, pH 7.2-7.4) buffer and blocked in 10% normal donkey 

serum (Jackson, Cat# 017-000-121) solution for one hour. The sections were then incubated with 

primary antibody solution (Swant, Calbindin D-28K, 300, 1: 7,000) overnight at 4°C. The sections 

were then rinsed in PT buffer and incubated in secondary solution (Alexa Fluor 568, Donkey anti-

mouse, 1:300) at room temperature for two hours. They were then rinsed in PT buffer and 

counterstained with Hoechst (Invitrogen, Cat# H21486, 1: 10,000) for 10 minutes. Lastly, the 

sections were rinsed in PT buffer and mounted with Prolong Gold Antifade (ThermoFisher, Cat# 

P36930). To verify µ-opioid receptor proteins were enriched in NUDAPs as well, we did 

immunostaining with MOR antibodies on an adjacent section performed with OPRM1 FISH 

labeling (Abcam, ab-10275, 1:500) using similar approach except that PBS buffer instead of PT 

buffer was used. To verify DRD2 and CPNE4 labels cholinergic neurons, after FISH labeling with 

the two probes, we performed the following immunostaining with ChAT antibodies (Pro-Sci, Cat# 

45-037, 1:1000) using similar approach except that TBS buffer instead of PT buffer was used. 
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 Immunohistochemistry (DAB) 

Free-floating sections were selected based on previous FISH labeling to provide 

verification of common protein marker identification. Sections selected for KChIP1 were rinsed 

in Phosphate Tris (PT, pH 7.2-7.4) buffer and Phosphate-Buffered Saline with 0.2% Triton (PBST, 

pH 7.2-7.4) respectively. They were then moved into a 0.5% H2O2 buffer for 10 minutes followed 

by a series of rinses before incubating in a 10% Normal Horse Serum (NHS, Vector, S-2000) 

solution for one hour. The tissue was transferred to primary antibody solution (NeuroMab, Anti-

KChIP1, clone K55/7, 1:200) for overnight incubation at 4°C. The next day, sections were again 

serially rinsed in respective buffers and incubated in secondary antibody (Vector, Vectastain ABC, 

Peroxidase Kit, PK-4002, 1:200) for 30 minutes. Sections were again serially rinsed and placed 

into ABC (Vector, Vectastain ABC, Peroxidase Kit, PK-4002) buffer for one hour incubation 

before being rinsed. Tissue was placed in DAB substrate solution (3,3¢-diaminobenzidine, Vector, 

SK-4100) until reacted. Following a final serial rinse, sections were mounted for imaging and 

analysis. 

See also Data S1, S2, S3, and S4. 

 Quantification and Statistical Analysis 

 Custom Annotation File 

We downloaded the macaque rheMac10 genome297 

(https://hgdownload.soe.ucsc.edu/goldenPath/rheMac10/bigZips/rheMac10.fa.gz) and human 

NCBI RefSeq transcriptome annotation gtf file from the UCSC genome browser 

(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/genes/hg38.ncbiRefSeq.gtf.gz). We 
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used the UCSC liftOver tool with the hg38toRheMac10 chain file 

(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToRheMac10.over.chain.gz) to 

overlay the human transcriptome gtf file onto the rheMac10 genome, with a minimal match 

threshold of 0.85. The human “liftOver” annotations were used to extend and supplement the 

macaque annotations, leading to greater numbers of genes called (Figure S1B). 

 Single Nucleus RNA Sequencing Analysis 

We converted original bcl format of sequences to fastq files using cellranger mkfastq. 

Alignment of the reads by cellranger count to the rheMac10 genome using the custom rheMac10 

gtf yielded 61,609 and 23,690 nuclei for monkey P and F, respectively. We used a Seurat v3 

pipeline to perform an integrated analysis of monkey F and P (85,299 nuclei in total). First, we 

removed ambient RNA in monkey P using SoupX298. We then deleted ribosomal genes for both 

monkeys, and removed doublets using DoubletDetection299, which lowered the number of nuclei 

to 80,902. Neuronal cells express higher numbers of genes compared to non-neuronal cells300-302 

and therefore we used two different thresholds to remove low quality neuronal and non-neuronal 

nuclei. We chose these thresholds as the minimal level that produced clear cluster separation 

(Figure 17E). A total of 31,258 genes were identified, with an average of 3,200 per nucleus. We 

performed standard log-normalization and a variance stabilizing transformation prior to finding 

anchors and identified variable features individually for each monkeys’ dataset using Seurat’s 

FindVariableFeatures function with number of features set to 7000. Next, we identified anchors 

using the FindIntegrationAnchors function with default parameters and passed these anchors to 

the IntegrateData function. This returned a Seurat object with an integrated expression matrix for 

all nuclei. We scaled the integrated data with the ScaleData function, ran PCA using the RunPCA 

function, and visualized the results with UMAP. We used Louvain clustering and chose a 
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resolution that reflected the major cell classes of striatum including D1- and D2-MSNs, 

interneurons and astrocytes. We calculated the differentially expressed genes for each cell class 

with the FindMarkers function (Data S1). We annotated the clusters based on feature plots of well-

known marker genes286,290,303 and verified the identities of cell clusters by using the 

hypergeometric test to compare differentially expressed genes for each cluster to markers from 

single cell rodent studies304. Given the robust conservation of major cell types, the rodent markers 

were sufficient for annotation304. We converted rodent genes to rhesus macaque genes by BioMart 

Ensemble, keeping one-to-one orthologs only305,306.  

For MSN analysis, we isolated the clusters that were enriched with well-known marker 

MSN genes including PPP1R1B, BCL11B, and PDE1B. In order to balance the number of nuclei 

per animal, we randomly sampled MSN and MSN-like nuclei from monkey P to levels of monkey 

F (7,387 nuclei). We then re-calculated principal components (PCs) and performed UMAP 

dimensionality reduction on the first 15 PCs. We used Louvain clustering and chose a resolution 

that separated clusters that were distinct in UMAP space. We calculated the differentially 

expressed genes for each MSN subtype with the FindMarkers function (Data S1). To determine 

whether the clustering of MSNs was exhaustive, we further isolated ‘D1-’ and ‘D2-MSNs’. D1-

MSNs including D1-striosome, D1-matrix and D1-shell/OT, whereas D2-MSNs included D2-

striosome, D2-matrix and D2-shell/OT. We re-calculated PCs and performed UMAP 

dimensionality reduction based on the top 15 PCs for both subclusters. This analysis recovered the 

same, physically distinct clusters observed in the integrated analysis. To analyze the interneuron 

populations, we isolated clusters based on interneuron markers291. Similarly, we re-calculated PCs 

and performed UMAP dimensionality reduction on the first 30 PCs. We used Louvain clustering 

and annotated the resulting clusters based on known interneuron markers. To explore the 
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functional roles of these cell types, gene enrichment analysis was run using gprofiler307 with the 

following GO databases: Biological Process, Molecular Pathway, KEGG, and Human Phenotype 

ontology (Data S4). We calculated the cosine similarity for nuclei within and between clusters 

based on PCA space. We used a permutation test on the cosine similarity between pairs of clusters. 

We randomly shuffled the nuclei to mask the nuclei identity and recalculated cosine similarity. We 

repeated these 10,001 times and used within group and between group variance ratio to determine 

a p value. To compare the cell types between monkey and mouse MSNs, we first generated an 

orthologous gene list between mouse and rhesus macaque from BioMart Ensemble with one-to-

one orthologous genes305,306 used for downstream analysis. We integrated our MSNs and MSN-

like nuclei from the two monkeys with MSN types in Stanley et al.288 based on the homologous 

genes using the Seurat integration method as above for the two animals. 

 Archetypal Analysis 

We used archetypal analysis to characterize the gradients within and between subtypes. We 

used partition-based graph abstraction (PAGA) to find those pairs that warranted a gradient-based 

analysis. PAGA uses the formalism of graph theory and community detection to define a statistic 

quantifying the presence of connectivity between two clusters308. To calculate the PAGA graph 

we ran scanpy.tl.paga on our Seurat integrated data (Figure S3F). We defined subtype pairs as 

connected if the PAGA edge weight was greater than 0.02. For each pair of connected subtypes – 

or within a single subtype – we used the Dirichlet Simplex Nest (DSN) implementation of 

archetype analysis (https://arxiv.org/abs/1905.11009) to define gradients of gene expression. 

Because we used the raw gene counts, we ran the DSN algorithm in the Poisson configuration309. 

Across several runs of the DSN algorithm, we located the archetype most correlated with the 

subtypes’ annotations and designated those archetypes as the transition axes between the subtype 
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pairs. To determine if the transitions were discrete, we used regression discontinuity design 

(RDD)310. The null hypothesis of this test is that the gene expression is, solely, a linear function of 

the transition archetype weights, and adding a threshold does not add additional information. 

Therefore, we computed p value distributions across all correlated genes for each connected pair. 

We then tested whether the number of genes that had significant discontinuities (p < 0.05, RDD) 

was greater than expected by chance using a binomial test. We performed the binomial test with 

two different null distributions, a uniform null distribution, and a simulated null distribution where 

we randomly shuffled the cell labels and performed the RDD 100 times per gene. Regardless of 

which null distribution we used, the binomial tests indicated more statistically significant 

discontinuities than predicted by chance for every subtype pair except for D1S and D2S (the 

subtypes for which we had the lowest sample sizes) (p < 0.00001 for uniform null, and p < 10-12 

for simulated null). We corrected the binomial test p values using the Benjamini-Hochberg 

procedure. To verify biological reproducibility, and because defining an archetype and computing 

discontinuities from the same data can lead to inflated p value distributions311, we calculated the 

archetypes using data from monkey P and computed the discontinuities on data from monkey F. 

To project the archetypes learned from monkey P onto monkey F, we multiplied the normalized 

expression matrices of monkey F by the pseudoinverse of the archetype vectors. Using the DSN 

algorithm we found several archetypes of particular interest including an archetype representing 

CNR1 signal in hybrid cells, caudate signal in D1- and D2- MSNs, core signal in D1- and D2- 

MSNs and TAC3 signal in shell D1- MSNs. To provide molecular markers for these archetypes 

we calculated each gene’s Pearson correlation with each archetype of interest (Data S2 and S3; 

Tables S2 and S3). 
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 Assessing Clustering Robustness 

We used Single Cell Clustering Assessment Framework (SCCAF)312  to test the robustness 

of our MSN subtype classification. The concept behind such ‘self-projection’ tests is that the gene 

expression patterns in a subsample of the cells should be sufficient to classify the remaining cells 

in the labeled clusters with a high level of accuracy313.  SCCAF splits the expression data into a 

training and test set, and then fits a classifier on the training set on each cluster provided (MSN 

subtypes in our case). We used the default parameters of a 50% train/test split and a logistic 

regression classifier. We also used SCCAF to test whether our snRNA-seq sampling was sufficient 

for accurately detecting the MSN subtype heterogeneity. Because the number of cells of each MSN 

subtype could vary during the down sampling, we opted to use SCCAF classifier’s macro-f1 score 

for evaluation. The f1 score is the geometric mean between the precision and recall. To compute 

our macro-f1 score, we computed the average across f1 scores for each MSN subtype. Using the 

scanpy.pp.subsample method, we repeatedly subsampled fractions of our cells from both monkeys 

and calculated the macro-f1 across each trial. 

 FISH Image Quantification 

We quantified expression using high resolution images collected using a Nikon Eclipse Ti2 

(40x objective with or without additional 2x built in objective) or an Olympus IX83 under 40x or 

63x magnification. For comparison between different regions, we scanned images using the same 

settings. To quantify cells expressing DRD1 and DRD2 in the caudate and putamen (Figure 20D), 

we chose ten representative areas from each striatal region (Figure 20C). We adjusted the threshold 

of the nuclei images and converted them to black and white using the “Make Binary” function in 

ImageJ314. We then filled the holes using the “Fill Holes” function and separated overlapping 

nuclei with the “Watershed” function. We identified the number and regions for nuclei using the 
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“Analyze Particles” function and added the nuclear contours to “ROI Manager.” We then opened 

the DRD1 and DRD2 images and identified the DRD1 and DRD2 grains using the “Find Maxima” 

function in ImageJ and then obtained binary images with a single pixel for each local maxima by 

choosing output type of “Single Points.” We measured the integrated intensity of DRD1 and DRD2 

above each nucleus using the “Measure” function within the “ROI Manager.” The number of 

grains in each nucleus is equal to the integrated intensity divided by 255. We considered cells 

containing three or more grains above the nucleus as positive for that gene. We chose this threshold 

because it provides clear separation from the background. We quantified the total number of 

DRD1-positive and DRD2-positive cells for each striatal region of interest (ROI) in each section 

and counted positive cells on three rostro-caudal sections. We calculated cell density as the number 

of positive cells divided by total number of nuclei in the area. We used a similar method to quantify 

the cell density in CPNE4 and RXFP1 clusters (Figure S6E) except that we drew ROIs for the 

whole CPNE4 and RXFP1 clusters after separating overlapping nuclei with the “Watershed 

 function. As control, we drew ROIs of roughly similar size to the RXFP1 or CPNE4 clusters in 

nearby regions and quantified the cells expressing DRD1. 

To quantify DRD1 and DRD2 grains in D1/D2-hybrid cells, D1- and D2- MSNs (Figure 

20G), we scanned high resolution images for RXFP1-positive cells in triple stained DRD1, DRD2, 

and RXFP1 sections. The majority of RXFP1-positive cells expressed both DRD1 and DRD2 in 

dorsal striatum. We quantified the number of grains for DRD1 and DRD2 in these D1/D2-hybrid 

cells as well as adjacent normal D1 and D2 MSNs in ImageJ using similar methods as above except 

that we quantified the total grains in the cells instead of nuclei. To quantify DRD1 and DRD2 

grains in D1/D2-hybrid cells, we first draw ROIs for RXFP1 expressing cells and added the ROIs 

to the “ROI Manager” based on the RXFP1 signal. We then opened the DRD1 and DRD2 images 
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and identified the DRD1 and DRD2 grains using the “Find Maxima” function in ImageJ and then 

output binary images with a single pixel for each local maxima by choosing an output type of 

“Single points.” We measured the integrated intensity and calculated the number of grains for each 

ROI using the “Measure” function within the “ROI Manager.” To quantify DRD1 and DRD2 

grains in D1- and D2- MSNs, we used the same method except that we drew ROIs for D1- and 

D2- MSNs. We confirmed the identity of D1- or D2- MSN instead of a D1/D2-hybrid cell by 

quantifying the DRD2 or DRD1 and RXFP1 grain number less than three in D1- or D2- MSNs. 

We used a similar method to quantify ARHGAP6 and GREB1L grains in the core and shell except 

that we first adjusted the threshold of the images to overexpose the ARHGAP6 and GREB1L 

signals to guide the ROI drawing. To quantify OPRM1 grain numbers in RXFP1 and CPNE4 

islands and nearby D1-MSNs, we labeled DRD1 and OPRM1 on one section and DRD1, RXFP1 

and CPNE4 on an adjacent section because of overlapping channels in the OPRM1 and RXFP1 

probes. The locations of RXFP1 and CPNE4 islands in the OPRM1 and DRD1 double stained 

sections were determined by adjacent section labeled with RXFP1 and CPNE4. The quantification 

of OPRM1 grains numbers was similar to ARHGAP6 or GREB1L quantification except that we 

used overexposed DRD1 to draw ROIs for each cell. 

To quantify nuclei size for RXFP1 and CPNE4 islands (Figure S6F), we first scanned high 

resolution images for DRD1, RXFP1, and CPNE4 triple labeled sections. We performed automatic 

quantification of the areas of nuclei using ImageJ. We adjusted the threshold and convert images 

to black and white using the “Make Binary” function. Then filled the holes using the “Fill Holes” 

function. Then we separated overlapping nuclei with the “Watershed” function, and then draw the 

ROI and automatically detect the areas of nuclei using the “Analyze Particles” function. To 

produce a more accurate quantification of the nuclei size, we chose to randomly sample dozens of 
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cells expressing DRD1 in each island per section due to high packing density of the nuclei in ICjs 

(Figure S6E). We calculated the area of nuclei by the similar method except that we drew an area 

of interest around individual nucleus. Three sections in total were quantified and the area for each 

nucleus was normalized to the control D1-MSNs in each section. 

 D1 Islands Mapping 

In order to map the distribution of D1-RXFP1 and D1-CPNE4 islands, we triple labeled 

six sections spaced at 750 mm intervals with probes against DRD1, RXFP1, and CPNE4 in monkey 

B. We scanned the whole sections and ran a custom CellProfiler pipeline315 to determine the spatial 

distribution of nuclei and signal intensity of individual channel for each nucleus. We marked 

regions as D1-RXFP1 (D1-CPNE4) that had a majority of cells double-labeled with DRD1 and 

RXFP1 (CPNE4). To confirm that these islands were D1 exclusive, we double-labeled sections 

with DRD1 and DRD2 adjacent to the above six sections. We confirmed that these islands are 

exclusively the D1 clusters from the similar CellProfiler analysis. We did the similar process for 

eight sections spaced at 600 mm intervals for monkey K. 

 Results 

 Major Cell Classes in the Primate Striatum 

To investigate the cell-type-specific architecture of the NHP striatum, we micro-dissected 

the caudate nucleus (Cd), putamen (Pt), and ventral striatum (VS) from coronal sections of two 

monkeys (Figures 17A and S1A), performed snRNA-Seq, and clustered the nuclei profiles based 
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on their gene 

expression counts 

(Methods). Each 

major cluster had 

nuclei derived from 

both subjects (Figure 

17B) and all regions 

(Figure 17C), 

indicating broad 

similarities between 

the subjects and the 

regions. Feature 

plots showed the 

expression of well-

known marker genes 

and thus indicated 

the correspondence 

between nuclei 

clusters and broad 

cell classes including 

D1-MSNs, D2-

MSN, striatal 

interneurons, and 

Figure 17: Cell type taxonomy in the primate striatum 

A, MRI image of a Rhesus macaque coronal brain section (left) showing three striatal 
regions labeled with cyan (caudate nucleus [Cd]), brown (putamen [Pt]), and pink (ventral 
striatum [VS]). Schematic striatum (middle) marked by Cd, Pt, and VS. The 
right axis shows dorsal (D), ventral (V), lateral (L), and medial (M) directions. B, UMAP 
visualizations of the samples from two subjects (P and F). C, UMAP visualizations of 
striatal nuclei colored by the three regions. The color scheme for these regions is the same 
as in A. D, Feature plots of canonical neuronal and astrocyte marker gene expression in 
striatal nuclei. E, UMAP visualization colored according to eight major classes in the NHP. 
F, Heatmap of differentially expressed genes. Color bar at the top corresponds to the major 
classes identified in E. G, Violin plots of distributions of marker gene expression across 
nine clusters, with MSNs divided into D1- and D2-MSNs. 
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non-neuronal cell types (Figures 17D, S1C and S2). Each major cell class was signified by groups 

of differentially expressed genes that were specifically enriched in that cluster (Figures 17E and 

17F; Data S1). The intersection of differentially expressed genes from each cluster with 

orthologous marker gene lists from several databases286,290,303 confirmed the identity of the clusters 

(p < 0.05, Benjamini-Hochberg corrected, Hypergeometric tests). Violin plots showing the 

expression levels of marker genes in each major class confirmed the basic validity of our 

experimental and analytic methods (Figure 17G). Together, these results provide a broad 

transcriptional catalogue of cell classes in the NHP striatum and a rich dataset for future 

exploration. 

 Transcriptional Diversity of Medium Spiny Neurons 

The expression of well-known MSN marker genes, including PP1R1B, BCL11B, and 

PDE1B,316,317 indicated which clusters contained MSNs (Figures S1E-S1G). Differential gene 

analysis of those MSN clusters vs. other clusters revealed several other MSN markers, including 

KIAA1211L, PDE2A, SLIT3, and NGEF (Figures S1H-S1K). To identify MSN subtypes, we 

recalculated the PCAs and performed dimensionality reduction on the isolated MSN nuclei, 

clustered them at a resolution that distinguished physically separated UMAP clusters, and 

annotated them using FISH probes against a mixture of previously described289,318,319 and novel 

marker genes (Data S1; Figures 18A-C and 20-23). The clusters putatively corresponded to D1- 

and D2-MSNs in the matrix (D1M and D2M), D1- and D2-MSNs in striosome (D1S and D2S), 

D1- and D2-MSNs in the NAc shell and olfactory tubercle (OT) (D1Sh and D2Sh), and MSN-like 

neurons located in the interface islands (Figure 18A). One cluster was a D1/D2-hybrid (D1/2) and 

shared many characteristics with a novel MSN type described in rodents (D1H or eccentric-



 103 

SPN)288,290. Each MSN cluster was signified by groups of differentially expressed genes that were 

specifically enriched in that cluster (Figures 18C and 18D; Data S1; Table S1) (Methods).  We 

used the Single Cell Clustering Assessment Framework (SCCAF) to quantify the robustness the 

MSN subtype clusters312. For all nine clusters, the model predictions were robust: the areas under 

Figure 18: Medium spiny neuron (MSN) subtypes 
A, UMAP projection of MSN nuclei. Each dot represents a nucleus, and the colors represent the different 
MSN types. B, Feature plots for the expression of DRD1, TAC1, DRD2, and PENK showing the separation 
of D1- and D2-MSNs and the expression of marker genes enriched in each cluster. C, Heatmap showing 
the top ten most enriched genes in each MSN type. Colored bar at the top corresponds to the colors in A. D, 
Top: MSN-type identifications colored according to A. Bottom: violin plots showing cell-type- and 
compartment-specific marker gene expression. E, The accuracy rate between SCCAF-decoded cell type 
and actual cell type using the data combined from both subjects. 
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the receiver operating characteristic (AUROC) was more than 0.92 and 0.94, for monkeys P and 

F, respectively (Figure 18E and S3D)312. Together, these results indicate that the primate striatum 

contains at least nine transcriptionally distinct neuron subtypes that all feature characteristics of 

MSNs. 

We used archetypal analysis to determine the similarity between the monkeys P and F, and 

the relationships between MSN subtypes320-322. Archetypal analysis decomposes the expression 

matrix into gene loading vectors, or ‘archetypes,’ that correspond to cell states320-322. We found the 

archetypes that defined the transition from one MSN subtype to another using the data from 

Monkey P. When projected onto monkey F, these archetypes maintained the same transitions 

between subtype clusters (Figure S3G). This result illustrates the high level of consistency between 

the two experimental subjects and validates the archetypes. We subsequently found all genes that 

were significantly correlated with the archetypes that defined the transitions between subtypes (p 

< 0.05, Benjamini-Hochberg corrected, Pearson’s correlation). Each subtype pair contained genes 

where transitions included a significant discontinuity (Figure 19A, p < 0.05, Regression 

discontinuity test, Methods) and other genes without significant discontinuity (Figure 19B, p > 

0.05, Regression discontinuity test). The p-value distributions demonstrated the degree of 

discontinuity between subtype pairs (Figure 19C). For every pair, except for D1S and D2S – the 

subtypes for which we had the lowest sample sizes – the p-value distributions indicated more 

statistically significant discontinuities than predicted by chance (Figure 19C, p < 0.00001, 

Benjamini-Hochberg corrected, Binomial test, Methods). These results demonstrate that each 

identified MSN subtype is characterized by discrete gene expression patterns. 
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Despite our emphasis on discrete borders between subtypes, we also detected continuous 

gradients of gene expression. Cosine similarity between nuclei indicated that DS-derived clusters 

were more like other DS clusters compared to VS-derived clusters, and vice versa (Figure 19D) (p 

< 0.0001, Permutation tests, STAR Methods). Consistent with this and with previous studies in 

mouse,288,289 the crystallin mu and the cannabinoid receptor genes, CRYM and CNR1, respectively, 

Figure 19: Archetypal analysis of MSN subtypes 
A, Representative genes showing significant discontinuity between a subtype pair. B, Representative genes 
showing non-significant discontinuity between a subtype pair. C, The p value distributions between each 
subtype pair. D, Heatmap showing the cosine similarity between cells within and between the nine types of 
MSNs. E, FISH labeling of CRYM (magenta) and CNR1 (green) reveals a continuous gradient on the dorsal-
ventral axis. F, CRYM (top) and CNR1 (bottom) expressions along the D1/D2-hybrid archetype axes. G, The 
archetype distribution of subtype pairs (top) that were divided between the DS and VS and CNR1 (bottom) 
distributions in these archetype axes. H, Heatmap showing the cosine similarity between cells within and 
between striosome and matrix in Cd and Pt. The color scale is the same as in D. I, Distribution of Cd and Pt 
in archetype axes. J, OPRM1 expression in the Cd and Pt cells along the archetype axes. 
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reflect continuous gradients on the dorsal-ventral axis of the mouse striatum (Figure 19E). 

Archetypal analysis indicated that this gradient is reflected in the D1/D2-hybrid population (Figure 

19F; Table S2), and across subtype pairs that were divided between the DS and VS (Figure 19G). 

This result highlights that gene expression gradients that define position on the dorsal and ventral 

axis are conserved between species. The primate DS is divided into the Cd and Pt by the internal 

capsule. Compared to the differences between the DS and VS, the Cd and Pt appeared more 

similar. Indeed, cosine similarities between the striosome and matrix showed that striosome nuclei 

in the Cd were far more similar to striosome nuclei in the Pt, as opposed to matrix nuclei in the Cd 

(Figure 17H, p < 0.0001, Permutation test, STAR Methods). Nevertheless, archetypal analysis 

identified a gradient that showed an enhanced  µ-opioid receptor (OPRM1) expression in the Cd 

(Figures 19I and 19J; Data S2). This archetype might highlight striosome-enriched nature of the 

Cd.  

Archetype analysis also highlighted continuous sources of variation within subtypes. Some 

nuclei derived from the VS clustered together with matrix nuclei (D1M and D2M). We detected 

archetypes that highlighted the VS nuclei fraction (Figure S3H), and the genes that were correlated 

with the VS weighted vector are preferentially expressed in NAc core, including ZDBF2 (r = 0.18 

and 0.2, p < 10-6 and 10-7, with D1- and D2-MSNs, respectively, Pearson’s correlation)  and 

HPCAL4 (r = 0.12, p < 10-3 with D2-MSNs, Pearson’s correlation) (Data S3)323. Another archetype 

of particular interest was found in D1Sh and defined by upregulation of the gene for the 

Neurokinin-B receptor, TAC3. Differential gene analysis of the D1Sh TAC3-archetype revealed 

selectively genes enriched in this archetype, including MPPED1, HPCAL1, and MEIS3. This result 

demonstrates within-subtype variations with potentially functional roles.  
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 Medium Spiny Neuron Subtype and Archetype 

Distributions in the Dorsal Striatum 

We used FISH to explore the anatomical distribution of 

MSN subtypes and archetypes. As expected, the majority of 

neurons expressed either DRD1 (325 ± 99 nuclei/mm2)  or DRD2 

(320 ± 99 nuclei/mm2; Figures 20A-D). To investigate the 

relatively rare hybrid cell type (D1/2) that expresses both DRD1 

and DRD2, we used probes against RXFP1, a highly specific 

Figure 20: MSN subtypes in the 
dorsal striatum 
A, FISH labeling of DRD1 (green) 
and DRD2 (magenta). White box 
indicates the region shown in B. 
The top right axis shows D, V, L, 
and M directions. B, High-
resolution image of region 
highlighted in A. C, Schematic 
diagrams of the three sections used 
for DRD1 and DRD2 
quantification. The square boxes 
indicate the quantified regions of 
interest (ROIs). D, Quantification 
of cell density of neurons 
expressing DRD1 (green), DRD2 
(magenta), or both (orange) in the 
Cd and Pt. Error bars are SD across 
ROIs. E, One example MSN 
expressing both DRD1 and DRD2. 
F, RXFP1 labels D1/D2-hybrid 
MSNs in the dorsal striatum. 
Arrowhead points to an example 
D1/D2-hybrid cell. G, 
Quantification of DRD1 and DRD2 
grain number in D1/D2-hybrid 
cells and normal D1- or D2-MSNs. 
Unpaired t-test was used for 
statistical analysis, and p values are 
indicated on the plots. Error bars 
represent standard deviation (SD) 
across 6 cells per type. NS, non-
specific. H, FISH labeling of DRD1 
and RXFP1. Left two pictures are 
original FISH images showing the 
distribution of DRD1 and RXFP1. 
The right two pictures are 
CellProfiler-processed images 
showing DRD1 expressing (red 
dots) or DRD1 and RXFP1 (black 
dots, enlarged for display purposes) 
co-expressing cells. Gray dots are 
nuclei. I, Immunohistochemistry of 
KChIP1 showing robust striosome 
pattern. J, FISH labeling of 
KCNIP1 (yellow) and STXBP6 
(blue) distinguishes striosome and 
matrix, respectively. White square 
indicated the region shown in K. K, 
Top: detail of the white square in 
(J). Bottom: as above, for 
characteristic striosome and matrix 
markers, BACH2 and GDA. 
Cd, caudate; Pt, putamen; IC, 
internal capsule. 
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marker gene for D1/2 cells (p = 2.47 x 10-135 , Wilcoxon). High resolution imaging confirmed that 

RXFP1 positive cells in the dorsal striatum co-labeled with DRD1 and DRD2 (Figure 20F). D1/2 

cells were distributed uniformly throughout the DS (Figure 20G). Intestingly, D1/2 cells had the 

same amount of DRD1 expression as nearby D1-MSNs, but there was far less DRD2 expression 

when compared to nearby D2-MSNs (Figure 20H, p = 0.55  and p < 0.0001 respectively, unpaired 

t-tests). Co-clustering of the NHP data with striatum data from mouse indicates that the D1/2 shares 

important transcriptional characteristics with a subset of the recently described “D1H” (Figures 

S3A-S3C)288,290. These results confirm that a hybrid D1/2 cell type is also present in the NHP 

striatum.  

Both D1- and D2-MSNs derived from the DS split into two clusters; one larger cluster and 

one smaller cluster. We reasoned that the larger D1- and D2-MSN clusters likely corresponded to 

the matrix (Figure 18A, dark and light blue clusters, respectively), whereas the smaller clusters 

likely corresponded to striosomes (Figure 18A, light and dark red clusters, respectively). The genes 

most enriched in the striosome MSNs (D1S and D2S) were KCNT1, KHDRBS3, FAM163A, 

BACH2, and KCNIP1, whereas the genes most enriched in the matrix MSNs (D1M and D2M) 

were EPHA4, GDA, STXBP6, and SEMA3E (Figures 2C and S4A) (p < 1.77 x 10-52 , Wilcoxon).  

KCNIP1 is the gene for the the potassium channel-related KChIP1, and staining for KChIP1 labels 

the boarders of the striosome (Figure 20I)324. We performed FISH labeling with KCNIP1 and 

STXBP6 – a highly specific matrix marker – and the results show a similar pattern as the KChIP1 

antibody labelling (Figures 20J and 20K). Similar patterns were observed using FISH probes that 

labeled other identified striosome and matrix markers (Figures 20K and S4B-S4D). Thus, these 

results confirm that four major snRNA-Seq clusters derived mostly from the DS correspond to D1- 

and D2- MSNs in the striosome and matrix. 



 109 

 Medium Spiny Neuron Subtype and Archetype Distributions in the Ventral Striatum 

Four MSN clusters were highly enriched in the nuclei from the VS (Figure 19D). Three of 

the clusters were DRD1 positive, whereas the fourth cluster was DRD2 positive. Differential gene 

analysis of the two largest clusters (Figure 18A, light and dark green) revealed selectively enriched 

marker genes, including GREB1L, ARHGAP6, and GRIA4 (Figure 18C). FISH labeling of the 

striatum with DRD1 and ARHGAP6 revealed that ARHGAP6 was enriched in a restricted portion 

of the VS that likely corresponds to the NAc shell and OT (Figures 21A, 21B and S5A), but was 

not prevalent in the core (Figure S5B). Quantification of grain number of ARHGAP6 in putative 

shell/OT and core regions confirmed that ARHGAP6 was more enriched in shell/OT (Figure 21B, 

left), and very similar pattern was observed with probes against another enriched marker gene, 

GREB1L (Figure 21B, right). We labeled sections with DRD1 and GREB1L probes and an adjacent 

section with an immunofluorescent stain for calbindin, which roughly markes the border between 

NAc core and shell325. The GREB1L intensity traced the putative transition from the calbindin-

poor shell to the calbinin-rich core (Figure S5C). Thus, these results indicate that NAc Shell and 

OT are comprised of region-specific D1- and D2-MSNs.  

Archetypal analysis revealed a TAC3-positive archetype within the D1-Shell/OT subtype 

(Figures 21C and S5D-S5F; Table S3). In order to locate this MSN archetype and to distinguish it 

from TAC3-positive interneuons (Figure S2)291, we triple labelled coronal sections with probes 

against DRD1, DRD2, and TAC3 (Figures 21D and 21E). This labeling revealed the previously 

described TAC3 interneuons unifomly distributed throughout the striatum (Figure 21F); these cells 

did not show co-localization with DRD1 or DRD2. However, there was a cluster of TAC3-positive 

neurons located in the medial shell region of the NAc that co-localized with DRD1, and far fewer 
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than that co-localized with DRD2 (Figures 21G and 21H). We observed the same DRD1- and 

TAC3-positive cluster in the medial shell region of a second monkey (Figure 21I). These results 

reveal a novel TAC3-positive MSN archetype in the primate NAc. 

Figure 21: MSN subtypes in the VS 

A, Top: double labeling with DRD1 (left) and ARHGAP6 (middle) of the NAs shell/OT shows that 
ARHGAP6 is selectively enriched in the shell/OT. Bottom: CellProfiler-processed images for the above 
images. Lettered boxes indicate regions shown in Figure S5A and S5B. B, Left: quantification of grain 
number of ARHGAP6 in shell/OT and core. Unpaired t test was used for statistical analysis. Error bars 
represent SD across thirty-two cells per each region. Right: quantification of grain number of GREB1L 
in shell/OT and core. Unpaired t test was used for statistical analysis. Error bars represent SD across 
twenty-nine cells per each region. C, Violin plot showing TAC3 levels in D1Sh-TAC3 archetype, other 
D1Sh cells, and TAC3 interneurons. D, TAC3 co-localizes with DRD1 in medial shell MSNs. E, DRD2 
FISH image showing the outline of the striatum. Dashed white line delineate the borders of striatum. F, 
CellProfiler results showing the TAC3 distribution (red dots) in the section in E. Gray dots are nuclei. G, 
CellProfiler results showing the distribution of TAC3 and DRD1 co-expressing cells (dark green dots) in 
the section in E. 
(H) CellProfiler results showing the distribution of TAC3 and DRD2 co-expressing cells (dark green 
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One of the most remarkable features of the DRD1 and DRD2 labelling in the VS was the 

presence of D1-exclusive islands that likely corresponded to “interface islands” (Figure 

22A)326,327. We investigated whether the cell types within these D1-exclusive islands corresponded 

to the smaller DRD1 enriched VS clusters (Figure 18A, light and dark orange). We selected two 

Figure 22: Cell types in the interface islands 
A, FISH stain of DRD1 (green) and DRD2 (magenta). Inset: White area indicates striatum and the red box highlights 
the area shown in A and B. B, FISH stain of DRD1, RXFP1 and CPNE4 in immediately adjacent section from A.  C, 
High-resolution image of the regions indicated with the letter “C” in B. D, High-resolution image of the region 
indicated with the letter “D” in B. E, Distribution of RXFP1 and CPNE4 clusters across six rostral-caudal regions 
identified by multichannel FISH. The upper right axis shows dorsal (D), ventral (V), lateral (L), medial (M), rostral 
(R), and caudal (C) directions. Dashed white box denotes RXFP1 clusters in putamen, the FISH image of which is 
shown in Figure S5H. Yellow arrowheads point to RXFP1 clusters in caudal extent of NAc in both illustration and 
images shown in F. F, Example RXFP1 clusters in caudal extent of NAc. AC = anterior commissure, GPe = external 
globus pallidus, VP = ventral pallidum.  
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respective marker genes, RXFP1 and CPNE4, for the two DRD1 enriched VS clusters (Figure 

S6C). We labeled one section using DRD1, RXFP1, and CPNE4 probes and revealed that RXFP1 

and CPNE4 labeled distinct D1-exclusive cell islands (Figure 22B). High resolution confocal 

microscopy of these islands verified that CPNE4 and DRD1 co-localized in the same cells in one 

island (Figure 22C), whereas RXFP1 and DRD1 co-localized in the same cells of another island 

(Figure 22D). These results suggest that different interface islands contain different DRD1-positive 

cell types. 

We repeated the DRD1, RXFP1, and CPNE4 FISH on regularly spaced pre- and peri-

commissural coronal sections. We defined the regions of the VS by comparison of Nissl-stained 

sections with a high-resolution MRI and DTI Rhesus macaque brain atlas (Figures S6A and 

S6B)328,329 and we mapped all the nearby islands in two monkeys (Figures 22E and S5G-S5I). The 

CPNE4-positive islands appeared to correspond to the Islands of Calleja (ICj)330. This 

correspondence was verified by intense co-localization of CPNE4 and DRD1 in the cells of the 

major ICj, an easily identifiable landmark at the border between the NAc and the septal nuclei 

(Figure S6D). Previous studies have shown that cells in ICjs are granule cells330. Likewise, the 

CPNE4-positive cells we examined were small and exhibited high packing density (Figures S6E 

and S6F). Thus, the cluster enriched with DRD1 and CPNE4 corresponded with granule cells in 

the ICjs. Outside of the ICjs, co-localization between DRD1 and CPNE4 was restricted to a dense 

cell layer at the ventral extreme of the OT, possibly corresponding to a portion of the anterior 

olfactory nucleus (AON) (Figures 22B and S6G). Gene enrichment analysis revealed that 

differentially expressed genes in these cells are implicated in neurogenesis, neurosecretion, and 

many other functions (Data S4).  
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 In contrast to the CPNE4-positive ICjs, the RXFP1-positive islands had larger nuclei that 

were less densely packed together and did not appear different from nearby D1-MSNs (Figures 

S6E and S6F). Likewise, RXFP1-positive islands were not restricted to the border regions of the 

VS, rather, they were found throughout the NAc, putamen, and near the adjacent septal nuclei 

(Figure 22E, orange arrows and dashed black box, Figures S5G-S5I, S6H, S6I, and S7A). RXFP1-

positive cells located in these VS islands exhibited high levels of DRD1 expression, but no 

detectable DRD2 expression (Figures S7A and S7B). Moreover, cells in the RXFP1-positive 

islands expressed high levels of the gene for the µ-opioid receptor (OPRM1) compared to regular 

D1- MSNs located outside of the D1-exclusive island (Figures 23A and 23B). Interestingly, 

expression of the k-opioid receptor gene (OPRK1) was almost completely absent from these 

islands, compared to surrounding tissues (Figure S7D). Using immunohistochemistry, we 

confirmed that MOR was expressed in the RXFP1-positive islands (Figure 23C). Based on their 

distribution and the upregulation of µ-opioid receptor – upregulation that was not present in the 

ICjs (Figures 23D-F) – we concluded that these RXFP1-positive interface islands corresponded 

with Neurochemically Unique Domains in the Accumbens and Putamen (NUDAPs)283,284. 

Therefore, we denoted the DRD1- and RXFP1-positive cells as D1-NUDAP neurons. Gene 

enrichment analysis revealed that D1-NUDAP neurons express genes that have been implicated in 

drug addiction and many other functions (Data S4). These data show a novel cell type that is 

associated with interface islands and could be critical for the hedonic aspects of reward. Altogether, 

these results demonstrate that the ventral striatum is characterized by the presence of discrete MSN 

subtypes that correspond to functionally relevant subdivisions including NAc shell, OT, and 

distinct types of interface islands. 
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 Conclusion 

The phylogenetic relationship between humans and nonhuman primates (NHPs) makes 

NHPs a crucial neuroscientific model. Here, single nucleus RNA-sequencing (snRNA-Seq) 

revealed at least nine distinct Medium Spiny Neuron (MSN) and MSN-like subtypes in the NHP 

striatum (Figure 17). The borders between subtype pairs were characterized by discontinuities in 

gene expression, though we also found continuous axes of variation (Figure 18). We identified 

five distinct MSN subtypes in the dorsal striatum (DS), including D1- and D2-MSN subtypes 

specific to the striosome and matrix compartments, as well as a hybrid cell type that contained 

mRNA for both D1 and D2 receptors (Figure 20). The ventral striatum (VS) contained at least four 

Figure 23: µ-opioid receptor expression is specifically enriched in D1-NUDAP cells 

A, FISH stain of DRD1 and RXFP1 as well as OPRM1 in two close sections. White dashed line delineates the 
boundaries of a RXFP1 cluster. B, Quantification of grain number of OPRM1 in RXFP1 clusters and close D1-MSNs. 
Unpaired t-test was used for statistical analysis. Error bars represent standard deviation (SD) across 41 cells in each 
group. C, MOR expression in an adjacent section of A. D, FISH stain of DRD1 and CPNE4 as well as OPRM1 in two 
close sections. White dashed line delineates the boundaries of a CPNE4 cluster. E, Quantification of grain number of 
OPRM1 in CPNE4 clusters and close D1-MSNs. Unpaired t-test was used for statistical analysis. Error bars represent 
standard deviation (SD) across 36 cells in each group. F, MOR expression in an adjacent section of D. 
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distinct subtypes, including D1- and D2-MSN subtypes located specifically in the nucleus 

accumbens (NAc) shell and olfactory tubercule (OT) regions (Figure 21), and two subtypes 

associated with the “interface islands” – dense cellular islands located within and near the ventral 

border of the striatum. Marker genes for one of these VS cluster subtype were highly enriched in 

the Islands of Calleja (ICjs) (Figure 22). Cells from the other VS cluster subtype were restricted to 

Neurochemically Unique Domains in the Accumbens and Putamen (NUDAPs) (Figures 22 and 

23)283,284. Within these subtypes, archetypal analysis revealed finer distinctions, including a TAC3-

positive D1Sh-MSN that could represent the origin of a third pathway through cortico-basal 

ganglia loops (Figure 21)331. Together, these MSN subtypes and archetypes provide a blueprint for 

studying cell-type specific functions during sophisticated primate behaviors, and the cell-type-

specific marker genes define potential molecular access points to enable the application of 

genetically coded tools in scientific or translational contexts. 

 The DS is divided into the caudate nucleus (Cd) and putamen (Pt) by the internal capsule. 

Spanning these structures are two neurochemical compartments, matrix and striosome, that form 

the ‘neostriatal mosaic’278,280. Broadly understood, matrix MSNs receive neocortical inputs from 

associative and sensorimotor cortex and give rise to the direct and indirect pathways332. In contrast, 

striosomal MSNs, and the recently discovered, extrastriosomal ‘exo-patch’ MSNs289,319, receive 

input from limbic territories, including the anterior cingulate cortex, orbitofrontal cortex, and 

anterior insular cortex333, and project directly to midbrain dopamine neurons334,335. Despite our 

advanced understanding of these circuit-based structures, we are only beginning to gain insights 

into the associated circuit-based functions. For example, striosomal MSN activations influence 

cognitive and emotional decision making336 and value based learning337. A critical milestone that 

will enable us to accelerate functional discovery will be the development of cell-type- and 
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compartment-specific viral vectors to enable circuit interrogation in NHPs. Here, we identified 

compartment-specific gene expression patterns for NHP matrix – STXBP6, GDA, and SEMA3E – 

and striosome – BACH2, KCNT1, KCNIP1, and KHDRBS3. Moreover, we found an 

extrastriosomal cell type, the D1/D2 hybrid, that expressed many of the genes associated with 

striosome, thus suggesting a possible homology to ‘exo-patch’ cells319. We expect that 

understanding the regulatory vocabulary governing these gene expression patterns will reveal cell-

type-specific enhancers that can be packaged into AAVs that grant molecular access to striosome 

and matrix MSNs in the NHP brain.  

The VS is strongly implicated in reward processing282. The NAc and OT complex 

comprises a major portion of the rostral VS, and this complex is traditionally recognized as a 

limbic-motor interface338. The NAc is further divided into core and shell territories with distinct 

behavioral functions339. We found several gene markers, including ARHGAP6, GREB1L, and 

GRIA4, that were upregulated in the VS samples (Figure 18). FISH labeling with these probes 

revealed that their upregulation traced the transition of the ventrally positioned, Calbindin-poor 

shell to the dorsally positioned, Calbindin-rich core (Figure S5C). Thus, these marker genes label 

D1- and D2-MSN subtypes that were specific to the NAc shell and OT. Within the D1Sh subtype, 

we detected an archetype that expresses the gene for Neurokinin-B (TAC3) (Figures 21C-21I). 

Previous tracing studies in rodents have shown that a small population Neurokinin B-positive D1-

MSNs have direct projections to other basal forebrain structures, including notably the cholinergic 

substantia inomiata331,340,341. Thus, this TAC3 MSN archetype could represent the genesis of an 

additional pathway, along with the direct and indirect pathways, for cortico-striatal signals to reach 

the cortex. As with the DS cell types, the regulatory code controlling these cell-type-specific VS 

gene expression patterns will likely hold the keys to molecular access points. 
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The DS striosome and the VS are both implicated in limbic functions and reward 

processing, and thus it is interesting to compare these subpopulations. Our data indicate that there 

are many transcriptional similarities between the striosome and VS cell types, but also some key 

differences. For example, many striosome specific markers are upregulated in D1-NUDAP cells, 

including KCNIP1, KCNT1, KHDRBS3, and BACH2 (Figure S7C). Even PDYN, which is a widely 

acknowledged D1-striosome marker gene342, is also expressed in D1-NUDAPs. On the other hand, 

D1-NUDAPs also express some genes which we found to be selectively expressed in the matrix, 

including STXBP6, GDA, and SEMA3E. OPRM1 was upregulated in the striosome, as predicted, 

but the upregulation was not as dramatic as we expected. In contrast, we observed robust OPRM1 

signals in the NUDAPs (Figures 23A-23C). Indeed, this selective enrichment of OPRM1 in the 

RXFP1-positive interface islands is a key piece of evidence in favor of the NUDAP hypothesis. 

This selective OPRM1 enrichment suggests the intriguing possibility that NUDAPs are part of the 

network of “hedonic hotspots?” Hedonic hotspots are regions in the NAc and ventral pallidum 

that, when opioids are directly applied, produce behavioral reactions that indicate pleasure343. As 

might be expected for hedonic hotspots, the k-opioid receptor gene (OPRK1) was absent from D1-

NUDAP cells (Figure S7D).  These differentially expressed genes and others provide a blueprint 

for understanding cell-type-specific contributions of this novel cell type to reward processing and 

pleasure.  

The basal ganglia are highly conserved throughout vertebrate evolution344, and a rough 

comparison of our results with single cell studies of the mouse striatum286-290 confirmed this pattern 

at the level of cell types. As with prior studies, we find a relatively even distribution of D1- and 

D2-MSN in the striatum. Approximately 10% of sampled MSNs were identified as striosome 

MSNs290. We found that our neuronal nuclei samples contained approximately 85% MSNs and 
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15% interneurons; this is a higher proportion of interneurons than was recovered from single cell 

analysis of rodent striatum290, but consistent with counts made in humans345. A novel and relatively 

rare MSN type has been recently documented and variously described as eccentric SPNs289,290, 

Pcdh8-MSNs286, and D1H288. Both D1/D2 hybrid and D1-NUDAP neurons shared some 

characteristics with this novel cell type. We formally compared our results to D1H because the 

sequencing depth was most similar between the studies. Co-clustering our data with the mouse 

data revealed that approximately half of the D1H population co-clustered with D1/D2-hybrids, and 

the other half co-clustered with D1-NUDAPs (Figures S3A-S3C). However, despite their 

similarities and their co-clustering with D1H, our data indicate that D1-NUDAP neurons and 

D1/D2-hybrid neurons represent distinct MSN subtypes. First, although DRD2 expression was 

common in D1/D2-hybrids (Figures 18D and 20F), we found no evidence of DRD2 expression in 

D1-NUDAPs (Figures S7A and S7B). Second, the D1-NUDAP neurons did not express other 

marker genes, including CASZ1 and GRIK1, that were reported in D1/D2-hybrids, D1H, and 

eSPNs288-290. Third, a machine learning classifier easily distinguished between D1-NUDAP and 

D1/D2-hybrid neuron subtypes (Figure 18E). Finally, we only found D1/D2-hybrid MSNs in the 

DS, whereas D1-NUDAP cells were restricted to dense cell islands in the VS. Together, these data 

clearly demonstrate that in NHPs, D1-NUDAP and D1/D2-hybrid MSNs are discrete subtypes. 

However, the limitations involved with integrating single cell data sets346,347, and the vast 

differences between the studies – differences that include species, age, single cell technology, 

transgenic status, MSN sampling density, and sequencing depth – preclude us from determining 

the role of species in determining the degree of discontinuity between cell types.   

In contrast to the distinct boundaries between subtypes, we also observed continuous 

variation in gene expression288,289,348. On a large scale, continuos variation in gene expression was 
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exemplified by the dorso-ventral gradients of CRYM and CNR1 (Figure 19), but there were also 

axes of continuous variation within and between MSN subtypes. We examined this variation using 

archetypal analysis320-322. Archetypes have biologically interpretable dimensions and concepts, in 

genes and cell states, respectively. Moreover, projecting archetypes learned in one biological 

replicate onto another biological replicate requires only a simple matrix operation. This simplicity 

enabled us to clearly demonstrate the similarity between the biological replicates (Figure S3G).  

Within most of the MSN subtypes, we observed several archetypes. For example, archetypal 

analysis of the matrix clusters revealed an archetype that highlighted VS derived nuclei (Figure 

S3H). Some of the genes correlated with this VS archetype are upregulted in the NAc core323. 

Thus, this archetype analysis defined a potential NAc core signal. One challenge that remains is to 

determine whether archetypes indicate subtypes or ‘states,’ with the former being a stable feature 

found across individuals and the latter being a transitory phase that could be activity dependent. In 

the case of the D1Sh TAC3-archetype, the fact that we detected it in two monkeys indicates that 

this archetype is akin to a minor subtype, but other archetypes may indicate transitory cell states. 

As we gather more data about cell types – for example data on sexual dimorphisms, epigenomic 

features, physical circuits, and behavioral functions – we believe that the concepts captured by 

archetypal analysis will be crucial for organizing, describing, and modeling the vast functional 

heterogenity that charachterizes even simple brain structures like the striatum.  

 The challenge of defining “cell types” was the genesis of modern neuroscience349. More 

recently, we have come to understand cell types as complex distributions of molecular 

processes350,351. The dynamics of such processes rarely fit simple boundaries, but nonetheless we 

continue to use the idea of cell types to abstract molecular, neurophysiological, and morphological 

patterns that we observe in our cells of study. We foresee at least three critical reasons to avidly 
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continue doing so in NHP. First, Old-world monkeys, like Rhesus macaques, are more similar to 

humans than any other research animal that allows for invasive neurophysiological experiments. 

Accordingly, Rhesus macaque cell types, including highly specialized neurons like Betz cells, von 

Economo neurons, and even striatal interneuron types, recapitulate homologous human cell types 

better than cells from rodents or even from marmosets291,352,353. Second, single cell studies 

performed on post-mortem human tissue are subject to different ethical constraints that manifest 

as relatively long and highly variable postmortem intervals300. In contrast, NHP experiments can 

be performed in a highly controlled and more timely fashion. Finally, NHPs have resisted the 

widespread application of modern genetically coded tools. Single cell technologies, including 

snRNA-Seq and snATAC-Seq can identify cell types and potent regulatory sequences that will 

break this resistance and enable the effective applications of genetically coded tools in large, wild 

type animals that resemble humans. Rhesus macaque behavior is readily interpretable in terms of 

human behavioral theory such as economic theory36,37,269,354, learning theory217, and even game 

theory88,355. The diversity of MSN cell types presented here provides a blueprint to investigate the 

cell-type-specific mechanisms for such sophisticated behaviors. 
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5.0 Discussion 

Uncertainty is a ubiquitous fact of life that persists in small decisions like choosing which 

coffee to order in the morning, to incredibly consequential decisions like choosing which house to 

buy or what job to accept. In order to account for uncertainty in our environment, we know that 

risk is integrated into the way decision-makers assess the values of choice options, and thus, into 

brain regions that code estimates of subjective value. Ambiguity, on the other hand, is a less 

understood form of uncertainty in terms of the impact it has on subjective value coding and 

learning, and the neural regions that mediate this. However, real world decisions are more 

reflective of ambiguity than of risk, but most research utilizes risk because of the ability to 

precisely control a number of variables that are difficult to control when trying to elicit ambiguity. 

The work discussed here has filled a critical gap in our understanding of how uncertainty effects 

behavior, how neurons encode complex environments through representations of higher order 

statistics, and possible future striatal targets for cell type- or circuit-specific manipulations in 

nonhuman primates (NHPs).  

 Reward Distribution Coding in Midbrain Dopamine Neurons 

Midbrain dopamine neuron reward prediction error (RPE) responses showed enhanced 

coding to rare rewards compared to the same rewards that were more commonly experienced. The 

work described here is the first study to show that distributions over rewards can be represented in 

individual dopamine neuron firing rates with matching reward outcomes, expected values, and 

prediction errors – as calculated by a standard temporal difference (TD) learning rule where RPE 
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is equal to the reward received minus the reward predicted. In addition, we corroborated previous 

studies, showing that distributions over rewards with higher uncertainty caused slower learning 

compared to distributions with more certainty122. While the recordings we performed were in a 

passive viewing task, and not the choice task used to estimate learning, it is an intuitive jump to 

suggest that decreases in dopamine responses to common rewards compared to rare rewards of the 

same magnitude, would elicit smaller dopamine neurons coding in a learning task. Further, reward 

prediction error signals can be seen in dopamine concentrations in the striatum. Specifically, 

dopamine release in the nucleus accumbens (NAc) shows graded, bi-directional concentration 

changes reflective of RPE magnitude, such that larger positive RPEs increase dopamine 

concentration compared to smaller RPEs, and larger negative RPEs decrease dopamine 

concentration compared to smaller negative RPEs356. This fine-tuned coding of distributions over 

rewards in midbrain dopamine neurons could indeed also be represented via dopamine release in 

downstream targets that are critical for value learning and updating behavior.  

In addition to the slower learning from distributions over reward with higher uncertainty, 

phasic changes in pupil diameter were also smaller in comparison to distributions over reward that 

had higher certainty. Pupil diameter is a physiological measure of norepinephrine release, 

stemming from the locus coeruleus (LC), which is a sign of sympathetic nervous system activation. 

It has also been shown that, post-reward feedback, pupil dilation drives learning in uncertain 

perceptual environments. Midbrain dopamine neurons and the LC have direct and indirect 

reciprocal connections, and both receive prefrontal cortical inputs357-359. Further, LC and midbrain 

fMRI responses are functionally coupled360. While these observations are only correlational, they 

are certainly grounds for experiments to disentangle the relationship between midbrain dopamine 

neuron and LC firing rates in response to learning from varying degrees of uncertainty in reward 
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distributions, sympathetic activation as measured by pupil response, and learning. A working 

hypothesis is that higher levels of uncertainty in choices causes enhanced bidirectional decreases 

in the magnitude of positive and negative RPE responses in dopamine neurons, minimized 

responses in LC neural coding and pupil dilation, and slower learning in choice situations. 	

A question that should be asked following our observations in Chapter 2 – that rare rewards 

cause amplified dopamine reward prediction error responses is: “Why do we need a representation 

of reward uncertainty, and how is it used in downstream brain regions?” Dopamine projects widely 

through the brain. Areas of particular interest include the striatum and amygdala361,362, due to their 

role in reinforcement learning and observable effects following dopamine manipulations. Standard 

reinforcement learning (RL) models include a representation of the state of the environment as 

estimated by the expected value of that state after integrating input from the critic. However, this 

model lacks higher order statistics to describe the state. Partially observable Markov decision 

process (POMDP) models of RL furthers the standard RL model, such that it operates under the 

assumption that the agent can create a distribution of the possible outcomes given the state. 

Specifically, the amygdala and ventral striatum (VS) have been shown to encode both the 

immediate expected value (IEV) of exploitation of a given state, and the future expected value 

(FEV) by exploring novel options as related to a POMDP RL127. If the POMDP RL model 

integrates distributions of outcomes, it is safe to say that there must be some biological input to 

represent this variable. Our finding, that dopamine neurons encoding distributions over reward, 

could suggest the representation of a distribution over the possible outcomes utilized in the 

POMDP RL model could be the distributional representation of outcomes that the amygdala and 

VS utilize to update their representations of IEV. In fact, another study has shown with the use of 

a POMDP RL model, dopamine neurons reflected belief state about their probability of being 
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rewarded based on perceptual ambiguity363. In regards to the FEV of exploration, it has been shown 

that in tasks where the values of two options can be inferred from another and has a set number of 

trials before value reversal, dopamine neurons utilize this inferred value on the first trials of a new 

block where the cue and outcome had not yet been experienced136. Specifically, on the first trial of 

the new block, dopamine neurons switch their coding from a negative RPE response to the 

previously unrewarded cue, to a positive RPE response – indicating their representation of the 

expected value of the target has changed to be one of not rewarded, to rewarded. The inferred RPE 

response following the cue then strengthens after actual experience of the reward. Further, it has 

been shown that dopamine release in the VS is reflective of RPE responses – putatively matching 

the encoding from dopamine cell bodies123. While there is a possibility for distributional coding 

across populations of dopamine neurons231, there currently is not enough data to make the jump 

from individual dopamine neurons coding distributions over rewards, to populations of dopamine 

neurons coding both inferred FEV distributions over rewards and experienced IEV distributions 

over rewards. However, this certainly leaves room for investigation into the possibility of midbrain 

dopamine neurons encoding higher order statistics of distributions of rewarding outcomes across 

populations for experienced rewards and inferred value, and the utility of this in downstream 

regions like the amygdala and VS.  

In Chapter 4 we characterized multiple different subtypes of MSNs across the macaque 

striatum, a region with dense inputs from dopamine neurons that is crucial in mediating reward-

based learning and decision making. One possibility is that a specific subtype, or subtypes, of these 

MSNs could have the unique function of integrating signals about distributions of rewards, 

utilizing that information at the local level, and then propagating it to its own downstream targets. 

The dorsal striatum (DS) striosome and matrix subspaces are poorly understood in terms of their 
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function. Generally, the striosome and matrix are thought to participate in limbic and sensorimotor 

functions, respectively278-280. One hypothesis is that striosome MSNs, and not matrix MSNs, could 

receive and functionally integrate information about distributions of rewards, and that this could 

be evident in their electrophysiological activity. Utilizing cell type-specific optogenetics in order 

to photo-tag DS D1 striosome neurons and D1 matrix neurons during a learning task with 

distributions of rewards (like the learning task in Chapter 2), would be incredibly enlightening in 

order to compare and contrast the effects of dopamine neuron coding over distributions of rewards 

on these distinct types of MSNs.   

 Uncertainty Preferences, Ambiguity Aversion and Potential Neural Mediators 

Individual decision-makers have varying attitudes about uncertainty in different contexts. 

Further, individuals are typically so reluctant to choose ambiguous options, so much so that they 

would rather choose a gamble where they know the probabilities, even if the expected value is 

lower than an ambiguous option. The results from Chapter 3 suggest that even when expected 

value, range of rewards, and amount of uncertainty were matched, there was still a behavioral and 

sympathetic difference in the effect of ambiguity versus risk. By matching all of these variables, 

the question of what mechanisms are causing ambiguity aversion still remain, and what 

manipulation is necessary to parse out the cause of this maladaptive behavior. One possibility is 

that, under ambiguous choice conditions, decision-makers have a difficult time making predictions 

about the expected value of the cue, which will lead to noisy value estimates, minimizing their 

confidence in their choices. While perceptual uncertainty and reward uncertainty are surely arising 

from different issues of estimation, uncertainty in the perceptual domain or in the computation of 
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reward estimates, respectively, we should not hesitate in attempting to generalize some of the 

methods from the vast literature in perceptual decision making.  Many studies investigating 

perceptual decision making have utilized choice confidence into their belief state regarding their 

probability of choosing correctly, as the decision-makers must discriminate noisy stimuli, like 

random dot motion stimuli364, or odors363. In addition, decision-makers use these internal belief 

states about the perceptual uncertainty of an environment to adjust their choice behavior365-367. 

Future studies attempting to parse the neural causes of ambiguity aversion as it relates to estimates 

of the subjective values of cues and their underlying reward probabilities, could utilize a post-

decision wager, to determine the decision-maker’s confidence in their estimates of value. In a study 

utilizing perceptual decision making with measures of choice confidence following decisions, the 

authors intuit that under perceptual uncertainty, the decision-maker must utilize estimates of belief 

state, which is their subjective estimate of the true state of the environment based on their current 

perceptual experience363. Further, they showed that midbrain dopamine neurons were sensitive to 

decision confidence, and integrated their confidence about their perceptual discrimination such 

that the probability they believed they were correct, and would subsequently be rewarded, 

influenced midbrain dopamine reward prediction errors. These results combined with ours, 

suggests that the model utilized in the aforementioned study363 could be used to estimate belief 

state in regards to underlying reward distribution, and that this signal could be detectable in 

midbrain dopamine neuron firing rates.  

Ambiguity aversion is highly individual-specific, so much so that it has been shown that 

optimistic people are less ambiguity averse than pessimistic people, and therefore make better 

decisions in ambiguous environments368. Sub-optimal decision making is a hallmark of a number 

of psychiatric disorders that also influence affect, such as schizophrenia, anxiety, bipolar disorder, 
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and depression369-371. Critically, dopamine is a key pharmacological target in treating the disorders 

previously mentioned. Medications used to manage the positive symptoms of schizophrenia – like 

delusions or hallucinations – target dopamine372. Gaining an understanding in dopamine cell body 

firing – and their subsequent release of dopamine in downstream targets – in response to ambiguity 

could provide insights into sub-optimal decision making in ambiguous environments and provide 

understandings into the possible disruptions in disorders characterized by poor decision making. 

Specifically, in psychiatric or neurodegenerative diseases where dopamine is a therapeutic target.  

There has been previous research into the effect of ‘advanced information’ on decision 

making preferences and neural activity in midbrain dopamine neurons in non-human primates 

(NHPs)373. Speculation may lead one to believe that the risky cues used here have advanced 

information about the distribution, and thus the ambiguous cues could present a similar avoidance 

due to the lacking probability information as seen in the aforementioned study. However, there are 

three things that could counteract this notion. The first has already been seen, as monkeys in this 

study never have a preference for the no information cues, whereas in our work, we see that 

monkeys do indeed prefer ambiguity when the EV is on the lower end of the value bars – or in 

other words, when the stakes are low (Fig. 14a, left).  

Second, it is possible that the advanced information preference seen in the previously 

mentioned study is a result of a discounting delay in RPEs when monkeys have to wait to 

experience the rewarding outcome of the trial, instead when they receive the instructional cue that 

reveals what the reward will be and elicits a RPE response. In other words, it is known that 

dopamine neurons incorporate delay discounting into RPE coding374. In the case of advanced 

information about the outcome of the trial, they are experiencing the RPE sooner than if they would 

have had to wait in the no information condition. Dopamine RPE responses occur initially at the 
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time of an unexpected reward, but as an animal learns that a cue predicts a reward, the dopamine 

RPE response occurs following the cue and not the reward, because it is no longer unexpected. A 

smaller delay period to the RPE would create an enhanced dopamine coding, as it is of more 

subjective value – or utility375 –  due to delay discounting imposed on RPE responses374,376. 

Further, sooner RPE responses would cause release dopamine sooner and in greater amounts to 

downstream projections. As shown in Chapter 2, dopamine neurons incorporate higher statistical 

moments into RPE coding that are independent from the expected value and thus, the magnitude 

of the calculated reward prediction error – which only incorporates the received reward minus the 

expected reward377. It could be inferred from previous research that delay may also be incorporated 

into reward prediction error coding as an independent aspect of expected value. Specifically, in 

the paper that defined the effect of delay discounting on dopamine neurons RPE responses, it was 

revealed that monkeys were choice indifferent to two stimuli with different reward volumes and 

delay times – a small reward with a short delay, and a large reward with a long delay374. The 

authors showed there were slightly smaller overall dopamine responses to the cue with a longer 

delay, even though they had the same expected value. This suggests a specific delay-induced 

minimization of dopamine reward prediction error responses, or possibly baseline activity, that is 

separate from expected value. It has been shown that dopamine responses and subsequent release 

are necessary and sufficient for effective learning and updating of value43,378-382, which is theorized 

to be through Hebbian learning mechanisms383. Instituting delays to rewards following predictive 

cues also has been shown to reduce the speed with which animals can learn these dopamine-

mediated cue-reward associations376. Thus, the reduction in dopamine firing, and subsequent 

release, following a delayed RPE in the ‘No Information’ condition could be the source of reduced 

valuation of that cue compared to the faster RPE experienced in the ‘Information’ condition. 
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Further, in terms of reinforcement learning, the delay to knowing the outcome in the no 

information condition would delay credit assignment to the stimulus like the mPFC, which 

receives dopamine innervation, to continue firing to preserve the memory of the value of the action 

the animal performed to receive the reward, perhaps weakening the representation of the ‘No 

Information’ cue value in later trials69,80. These are all possibilities for why the animals would hold 

a preference for the faster RPE experienced in the advanced information condition373. 

Finally, a behavioral experiment that could determine if this was indeed an effect of 

advanced information received from the risky cues, as opposed to a genuine effect of ambiguity, 

would be to include a fractal cue in the choice task seen in Chapter 3, that also predicts a uniform 

distribution – thus having the same expected value, reward distribution, and uncertainty as the 

ambiguous cue, and the Uniform value bar cue. This finding would not only disprove the idea that 

the ambiguity the monkeys experience here is a difference of advanced information, but instead, a 

psychological state induced by our manipulation by ‘hiding’ information about reward 

probabilities that they typically can access in the risky cues.  

It has been shown that learning about the Ellsberg Paradox reduces ambiguity aversion, 

thus increasing behavioral performance in humans255. This finding shows that while this is an 

engrained bias, it can be overcome using cognitive inhibition. This leaves room to investigate what 

brain areas perform top-down modulations to decision making in economic decisions with 

ambiguity. Some areas that have previously been shown to be differentially responsive to 

ambiguity versus risk in economic decision making are the lateral orbitofrontal cortex (lOFC) and 

the amygdala. A previous study using fMRI in humans performing a decision making task show 

increases in lOFC and the amygdala in ambiguous decisions compared to risky ones274. Further, 
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the striatum was more activated in risky decisions over ambiguous ones. These results provide the 

basis for further behavioral and neuronal characterizations of decision making under ambiguity.  

Due to the unique subjective experience of risk and ambiguity that elicits very different – 

and sometimes illogical – behavioral patterns across individuals, perhaps it is possible that while 

DS D1 striosome MSNs mediate information about distributions over rewards, a different subtype 

of MSNs could mediate our preferences in uncertain environments. Specifically, there are  

“hedonic hotspots” located in the nucleus accumbens and ventral pallidum that, when opioids are 

directly applied, produce behavioral reactions that indicate pleasure343. One possibility is that the 

MSNs we identified as NUDAPs could be a part of these hedonic hotspots, and these areas mediate 

our uncertainty preferences. Uncertainty – or risk and ambiguity – can be pleasurable, even to a 

pathological degree, as can be seen by compulsive gambling, and other addiction disorders. But 

uncertainty can also induce negative feelings and distress, again, which can become pathological 

in disorders like anxiety or depression. The striatum is such a critical region for learning, and 

hedonic hotspots could mediate the subjective interpretation of objective uncertainty that produces 

individual-specific preferences. 

 Final Thoughts & Future Directions 

The most important result to utilize 

moving forward is that a standard Temporal 

Difference (TD) reward prediction error (RPE) 

model is not sufficient to account for the RPE 

responses seen in dopamine neurons. Our results Figure 24: Uncertainty term, gamma (γ), for Normal 
and Uniform distributions 



 131 

illustrate that second order statistics, and possibly the full probability distribution over rewards, 

are incorporated into dopamine RPE responses. There are RL algorithms that may be more adept 

at describing the results we have shown, such as the Kalman TD232. We propose a framework 

similar to Kalman TD, where the estimation of uncertainty (γ) would be the inverse of the 

probability of receiving that reward – such that a normal distribution would have an uncertainty 

term that represents an inverted U-shape over possible rewards, and a uniform distribution would 

have a constant term as the outcome are all equally probable (Fig. 24). The reward prediction error 

on every trial would then be calculated by taking the product of a standard TD RPE and the 

uncertainty term generated based on underlying probability distribution over rewards, and would 

update the value of the chosen option as follows: 

𝑉MVR = 𝑉M + 	𝛼 ∗ (𝛿M ∗ 	𝛾) 

(Eq. 9) 

where V is the value of the chosen option, t is the current trial, and 𝛼 is the learning rate. The 

Kalman TD is the product of 𝛿M, which is a TD RPE, and 𝛾, the term representing the inverse of 

the likelihood of receiving the reward that was given (Fig. 24). An important note is that we do 

not attribute the amplification we saw in dopamine neurons to be coding the product of the standard 

TD RPE and the learning rate term. This is because in our recordings the CS-reward associations 

were stable over many thousands of trials, and thus the effective learning rate was likely near zero. 

Therefore, we postulate that there must be a specific term for the uncertainty of an environment, 

or 𝛾, separate from the learning rate term, 𝛼. The observed amplification of dopamine responses 

by rare rewards is consistent with a signal that could guide Bayesian inference of the most likely 

outcomes. While our results indicate that this algorithm is a strong possibility in a learned, yet 

risky, environment, further research is required to understand how these dopamine signals change 
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during the context of learning, and what our baseline estimation of the underlying distribution over 

rewards is. In other words, how do we learn the second order statistics about distributions of 

rewards following a choice? Future research will be required to determine whether a Kalman TD 

is an accurate representation of dopamine reward prediction error signals during learning in risky 

environments with underlying probability distributions over multiple rewards. Further, 

discovering the assumptions made by decision-makers about the probabilities of rewards before 

learning the true underlying distribution will be important in understanding how we learn statistics 

of rewarding environments. There are multiple instances of neural coding taking the shape of a 

normal distribution in the brain, such as orientation tuning in V1, that have a normal distribution 

coding scheme with the peak at the neurons’ preferred orientation384. If this is the standard model 

used in neural coding and the assumption made about the statistics of our environment, this could 

be a contributing factor as to why learning from narrower, normal distributions is easier than 

broader, uniform distributions – as it is already an innate feature of our brains. 

While each of these results are individually interesting and provide a novel contribution to 

neuroscience, there is a common through line that ties them all together. Dopamine neurons send 

learning signals to their downstream projections, such that phasic activations teach us to repeat 

behaviors, and phasic suppression teach us to stop behaviors. Dopamine neurons are less sensitive 

to common RPE responses from uncertain distributions, and learning is slowed by uncertainty. 

Additionally, we saw that broader, more uncertain distributions slowed learning, and that 

ambiguity was treated as ‘super risk’, such that ambiguity preferences in low and high stakes 

choices matched risk preferences, but were much more exaggerated in comparison to risky cues 

with the same uncertainty. We saw that animals had larger pupil responses in more certain normal 

distributions during learning, and they also learned faster. In a choice context with no learning 
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involved, pupil responses were smaller in ambiguous compared to risky decisions and outcomes. 

Based on these observations, ambiguity aversion could be caused by dopamine neurons. If 

ambiguous cues and rewards elicit a smaller magnitude of RPE responses in dopamine neurons, 

this could slow the value learning needed to accurately choose the best option, which would also 

be reflected in minimized pupil diameter responses. In low stakes contexts, this explain why we 

see such a preference for ambiguity, because like with risk preferences, they are not concerned 

with losing smaller volumes of safe juice, and indeed value the uncertainty surrounding the 

ambiguous or risk cue – even though they may not have an accurate estimation of the underlying 

value or distribution over rewards. However, in the high stakes conditions, decision-makers are 

not likely to gamble with larger reward volumes and, indeed, value a higher value of certainty, as 

we saw with the exaggerated undervaluing of the ambiguous cue. Furthermore, now that we have 

characterized unique MSNs in the primate striatum – which all receive dense projections from 

dopamine neurons, it is indeed plausible that a specific subtype of these MSNs might integrate 

information about distributions of rewards into their coding.  Specifically, D1 striosome neurons 

of the striatum could incorporate information about the distributions over rewards in a particular 

environment, while NUDAPs that possibly make up hedonic hotspots color our individual 

experience and preferences towards the uncertainty of these distributions over rewards. 

Together, this body of work has provided information that compels us to update a long-

held standard for how we think of the coding of dopamine neurons, and clear directions for future 

research. Key questions include understanding how the brain uses information about the second 

order statistics of rewarding environments encoded by dopamine neurons, and how this relates to 

ambiguity aversion. Further, newly characterized medium spiny neuron types in the macaque 
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striatum could be possible points of investigation in terms of how we incorporate information 

about distributions over rewards, and our subjective preferences for uncertainty. 
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Appendix A Supplemental Information 

Supplemental data and tables for Chapter 4 can be found online at 

https://doi.org/10.1016/j.cub.2021.10.015. 
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Supplemental Figures 
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Supplementary Figure 1: Read Mapping, Feature Plots, Sub-clustering, and Gene Expression Counting, 
Related to Figure 17 and 18 
A, A slab of monkey tissue after caudate and putamen were dissected out.  
B, Comparison of gene mapping rate using four different gtf in our alignment of reads to macaque genome. We 
used UCSC liftOver tool to liftOver the human transcriptome gtf file onto the rheMac8 or rheMac10 genome to 
get liftOver version rheMac8_liftOver and rheMac10_liftOver, respectively.  
C, Feature plots of marker gene expression for major cell classes in striatal nuclei. 
D, Feature plot showing the expression of RBFOX3, which labels all neurons.   
E-K, Feature plots of gene expression for well-known MSN markers, PPP1R1B and BCL11B, PDE1B and new 
MSN-specific markers, KIAA1211L, PDE2A, SLIT3, NGEF.  
L, Standard deviation in different principal components (PCs) for all MSNs. The first 15 PCs account for majority 
of the variation.   
M, Side by side monkey comparison for MSNs in UMAP coordinates.  
N, UMAP visualization of MSNs colored by three regions.   
O, Standard deviation in different principal components (PCs) for D1 MSNs. Inset showing the same spatially 
distinct UMAP clusters (D1-Matrix, D1-Striosome, and D1-Shell/OT) were recovered after isolating DRD1- 
MSNs and then performing PCA and UMAP dimensionality reduction. Color scheme is the same as in Q.  
P, Standard deviation in different principal components (PCs) for D2 MSNs. Inset showing the same spatially 
distinct UMAP clusters (D2-Matrix, D2-Striosome, and D2-Shell/OT) were recovered after isolating DRD2- 
MSNs and then performing PCA and UMAP dimensionality reduction.  Color scheme is the same as in Q.  
Q, Distribution of relative proportion of each MSN type in monkey P and F.   
R, Number of genes (top) and unique molecular identifiers (UMIs, bottom) across nine MSN types. Error bars 
indicate standard deviation across two monkeys.   
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A, Re-clustering of interneurons revealed six distinct interneuron clusters that corresponded to known populations of 
striatal interneurons (PTHLH/PVALB-, VIP-, SST-, TH-, CHAT-, and TAC3-positive interneurons).  
B, UMAP visualizations of the samples from the two subjects.  
C, Feature plots of interneuron marker genes for each subtype.  
D, TrackPlot of marker genes in each subtype.  
E, Heatmap of differentially expressed genes across interneuron subtypes.   

Supplementary Figure 2: Interneurons in Primate Striatum, Related to Figure 17 
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F, FISH labeling for TAC3 – a marker gene for a novel class of interneurons that are unique to primates291 – indicated 
that these interneurons are broadly but sparsely distributed throughout the Rhesus macaque striatum.  
G, Two example TAC3-positive cells. 
H, The snRNA-Seq data indicated that CPNE4 and DRD2 were significant marker genes for cholinergic interneurons.  
I, CPNE4 co-localizes with DRD2 and ChAT antibody labeling in cholinergic interneurons. 
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A, UMAP visualization of monkey subtypes after integration of monkey and mouse MSNs in UMAP coordinates. 
B, UMAP visualization of mouse subtypes after integration of monkey and mouse MSNs in UMAP coordinates. 

Supplementary Figure 3: Monkey and Mouse MSN Comparison, Confusion Matrix Among MSN types and 
Archetype analysis, Related to Figures 18 and 19 
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C, Combined monkey and mouse MSNs were re-annotated to (D2-MSNs, D1-MSNs, D1/D2 hybrid, D1- NUDAP 
and D1-ICj) and the number of cells per mouse MSN cell type that fell within the re-annotated clusters was quantified. 
To make a comparable comparison, mouse cell types were annotated with D1, D2, D1H and ICj as in the paper Stanley 
et al.288 
D, The accuracy rate (numbers within the grid) between SCCAF decoded cell type and actual cell type using the data 
combined from both subjects. 
E, f1 score from SCCAF after down sampling. Systematic down-sampling of the MSN samples revealed that we had 
adequately sampled the underlying heterogeneity: even dividing the sample in half, or more, had little impact on our 
ability to decode the subclusters. 
F, MSN subtypes connected by PAGA analysis 
G, The calculated archetypes weights – trained on the data from one monkey showed the same structure for the 
subtypes in both subjects. 
H, Archetype analysis on the D1- and D2-matrix showed an archetype originated from ventral striatum (VS). 
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A, Violin plot showing our identified and published striosome and matrix markers. From left to right columns are D1 
Supplementary Figure 4: Striosome and Matrix Labeled by FISH Markers, Related to Figure 20 
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striosome, D2 striosome, D1 matrix and D2 matrix. PDYN is a specific D1 striosome marker and POU6F2 is a specific 
D2 striosome marker. 
B, FISH labeling of KHDRBS3 (yellow) and SEMA3E (blue) showing clear striosome and matrix distinction. Right 
images show representative striosome and matrix from left image. 
C, FISH labeling of KCNT1 (yellow) and STXBP6 (blue) showing striosome and matrix compartmentation. Cd: 
caudate, IC: internal capsule, Pt: putamen. 
D, Detail of the white square in C. Scale bars are indicated on the images. 
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A, High-resolution image of the ROI indicated with the letter “A” in Figure 21A. 
B, High-resolution image of the ROI indicated with the letter “B” in Figure 21A. 
C, (top) Calbindin immunohistochemistry reveals the border between the core and shell (dashed white line). (bottom) 
FISH labelling of GREB1L and GREB1L intensity follows the border of the shell (dashed white line). 
D, TAC3 expressions along the D1 shell/OT archetype axes. 
E, UMAP plot of TAC3 in MSNs. 
F, UMAP plot of TAC3 in nuclei including all major cell classes. 
G, Distribution of RXFP1 and CPNE4 clusters across eight rostral-caudal regions identified by multichannel 
FISH in a second monkey K. 

Supplementary Figure 5: RXFP1 and CPNE4 Cluster Distribution in a Second Monkey, Related to Figures 21 
and 22 
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H, FISH stain of DRD1 (green), RXFP1 (red) and CPNE4 (cyan). Nuclei were labeled by DAPI (grey). This 
image shows a representative RXFP1 cluster in the ventral striatum. 
I, FISH stain of DRD1 (green), RXFP1 (red) and CPNE4 (cyan). Nuclei were labeled by DAPI (grey). This 
image shows a representative CPNE4 cluster in the ventral striatum. 
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A, Paxinos atlas shows the ventral extent of the external and extreme capsules loop around the ventral portion of the 

Supplementary Figure 6: Comparing Nissl Section with Paxinos Atlas and RXFP1 
and CPNE4 Cluster Mapping, Related to Figure 22 
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NAc and connects to the rostrum of the corpus callosum. Cd: caudate, Put: putamen, ec: external capsule, NAc: 
nucleus accumbens, rcc: rostrum of the corpus callosum, ic: internal capsule. 
B, Nissl stain of one section. This Nissl image corresponds to the blue dashed box on the left. 
C, Violin plots of relevant marker genes in ventral striatum MSN types. 
D, Nissl stain of a section (left) and triple labeling of DRD1 (green), RXFP1 (red) and CPNE4 (blue) in an adjacent 
section (middle and right) shows that CPNE4 labels major island of Calleja. Nuclei labeled by DAPI (grey). Right 
image is the enlarged image from the boxed region in the middle image. 
E, Quantification of cell density of neurons expressing DRD1 in RXFP1 and CPNE4 clusters and nearby MSNs. One-
way ANOVA with Bonferroni post hoc test was used for statistical analysis. Error bars are SD across 4 sections. 
F, Quantification of nuclei size of neurons expressing DRD1 in RXFP1 and CPNE4 clusters and nearby D1- MSNs. 
Nuclei size was normalized to the mean area size of regular D1-MSNs in each section. One-way ANOVA with 
Bonferroni post hoc test was used for statistical analysis. Error bars are SD across 49 cells from three sections. 
G, FISH labeling of DRD1 (green), RXFP1 (red) and CPNE4 (blue) in a section. Nuclei labeled by DAPI (grey). Inset: 
white area indicates striatum and the dashed black box highlights the area shown in the FISH image. The bottom 
CPNE4 cluster mapped to AON. 
H, FISH stain of DRD1 (green), RXFP1 (red), and CPNE4 (blue) in one of section from monkey B. Inset: white area 
indicates striatum and the dashed black box highlights the area shown in the FISH image. 
I, FISH stain of DRD1 (green), RXFP1 (red), and CPNE4 (blue) in one of section from monkey K. Inset: white area 
indicates striatum and the dashed black box highlights the area shown in the FISH image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 148 

A, Triple FISH labeling of DRD1 (green), RXFP1 (red) and DRD2 (blue) shows that RXFP1 islands do not express 

Supplementary Figure 7: RXFP1 Cluster, Violin Plots of Relevant Genes in Striosome, D1/D2-Hybrid and 
D1-NUDAP Cells and OPRK1 and BCL2 expression in NUDAPs, Related to Figures 22 and 23 
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DRD2. Black asterisk indicates staining artifact probably from dust. The artifact could be easily differentiated from 
real signals because there was no individual grain inside the artifact.  
B, High resolution images from the boxed regions in A. 
C, Violin plots of relevant marker genes in D1-striosome, D2-striosome, D1/D2-hybrid, and D1-NUDAP cells. 
D, Triple FISH labeling of RXFP1 (green), OPRM1 (red) and OPRK1 (cyan) shows reduced OPRK1 expression in 
RXFP1 islands. 
E, Triple FISH labeling of DRD1 (green), RXFP1 (red) and BCL2 (cyan) shows that RXFP1 islands express 
neuronal immature marker BCL2. 
F, Triple FISH labeling of DRD1 (green), CPNE4 (red) and BCL2 (cyan) shows that CPNE4 islands express 
neuronal immature marker BCL2. 
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