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Abstract 

Why Correlation Doesn’t Imply Causation: Improving Undergraduate Students’ 

Understanding of Research Design 

 

Ciara Louise Willett, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

Understanding when it is appropriate to make causal inferences from a statistical result is 

a fundamental skill for science literacy. Prior research has concentrated on erroneous causal 

judgments about observational studies, but there is little research on whether people understand 

that experiments provide stronger justification for causal claims. Our study tested the efficacy of 

an intervention at improving students’ ability to discriminate between correlation and causation. 

Students were taught how to use causal diagrams to illustrate possible explanations for a statistical 

relation in an experiment versus an observational study. To evaluate the intervention’s efficacy, 

intro psych (Experiments 1-3) and research methods (Experiment 1) students decided whether to 

make causal inferences about hypothetical observational studies and experiments. In Experiment 

1, we tested multiple methods of instruction to see which worked best. Intro psych students learned 

more when they completed practice problems that involved generating self-explanations, whereas 

research methods students learned more from making analogical comparisons or reading worked 

examples. Critically, we found that students struggled with identifying the study design, which is 

the first step in correlation-causation discrimination. In Experiment 2, we added instructions to the 

Self Explanation intervention about how to identify observational studies versus experiments. Our 

modifications did not improve this skill nor students’ ability to discriminate between correlation 

and causation. The most successful intervention was in Experiment 3, which explicitly pointed out 

that people often make errors when evaluating evidence from observational studies and repeated 
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the importance of considering study design when making causal judgments. A second goal of 

Experiment 3 was to test the influence of students’ expectations about the direction of the statistical 

relationship on their evaluation of the evidence. Students made more causal inferences about study 

outcomes that were in the same direction as their prior beliefs than outcomes they thought were 

implausible. After the intervention, students still used their prior beliefs to decide whether to make 

a causal judgment, but they also more strongly considered the study design in their evaluation of 

evidence. In general, our intervention improved students’ understanding of causality, but its 

efficacy may also depend on their prior knowledge.   
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1.0 Introduction 

“Correlation does not imply causation” is a rule introduced in science classes and 

frequently repeated throughout research methods and statistics textbooks (e.g., Leary, 2012). Its 

emphasis is well justified – the ability to discriminate between correlation and causation is a key 

component of scientific reasoning. This idea, however, is not one from modern science but instead 

has more ancient origins; the Latin phrase “cum hoc ergo propter hoc” means “with this, therefore 

because of this”, and refers to how the mere co-occurrence of two events does not provide evidence 

that one caused the other. However, despite the longevity of this concept, people often make causal 

inferences about two co-occurring events without sufficient evidence (Bleske-Rechek et al., 2015; 

Meijer, 2007). More recently, educational interventions have been designed to improve 

understanding that a statistical relation on its own does not imply causation; for example, by 

teaching students how to generate alternative explanations for why two events may have co-

occurred (Seifert et al., 2022). Across three studies, we developed and tested an intervention with 

the goal of improving college students’ correlation-causation discrimination abilities and their 

understanding of when a statistical relation does and does not warrant a causal claim.  

Developing a better understanding of why correlation does not equal/imply causation is 

imperative for both scientists and the public. For scientists, a key goal of research is uncovering 

causal relations, but certain criteria must be met to make a causal claim. In the 19th century, 

philosopher John Stuart Mill suggested three necessary conditions for causality: 1) covariation 

between the cause and effect, 2) temporal precedence such that the cause precedes the effect, and 

3) ruling out alternative possibilities for covariation, such as a common cause or confounded 
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relationship (Mill, 1872). Thus, covariation is necessary but insufficient for making causal 

inferences.   

Understanding this concept is a core tenet of scientific literacy. For scientists, uncovering 

causal relations is a key goal of research, so it is imperative that they know how to make 

appropriate conclusions based on their methodology and results. In the American Psychological 

Association’s (APA) list of comprehensive learning goals for undergraduate psychology majors, 

this skill is a core aspect of the “scientific inquiry and critical thinking” goal (Halonen et al., 2013). 

Specifically, upon completing their major, students should know to “limit cause-effect claims to 

research strategies that appropriately rule out alternative explanations”. However, even well-

trained scientists make erroneous causal claims based on correlational studies (Haber et al., 2018; 

Han et al., 2022; Parra et al., 2021; Robinson et al., 2007).  

The incorrect use of causal language to describe correlational findings is also prevalent in 

media articles (Adams et al., 2019; Bratton et al., 2020; Cofield et al., 2010; Haber et al., 2018). 

One study found that 49% of health news articles made causal claims about correlations, with 22% 

of articles making erroneous causal claims directly in the news headlines (Haneef et al., 2015). 

Thus, it becomes the responsibility of the public to evaluate the validity of these causal claims. 

However, correlation-causation discrimination is quite challenging, and people often make causal 

claims from correlational findings. For example, a sample of Midwestern adults were randomly 

assigned to read a vignette that described either an observational study or an experiment, and they 

were equally likely to make causal claims about correlational studies as they were for experiments 

(Bleske-Rechek et al., 2015). Given that it is highly difficult to retroactively correct 

misinformation (Lewandowsky et al., 2012), it is imperative to uncover methods of improving 
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correlation-causation discrimination so that people can adequately evaluate the validity of causal 

claims upon first encountering them.  

In this paper, we conducted three studies to answer four main questions. First, does a causal 

diagrams intervention improve correlation-causation discrimination in undergraduate students? 

Second, what are the ideal methods of instruction for such an intervention? Third, can the 

intervention also improve related research methodology skills, like the ability to design 

observational studies and experiments? And fourth, can the intervention lessen the influence of 

students’ prior beliefs on their assessments of whether a statistical relationship is causal or not?  

1.1 Using Causal Diagrams to Improve Correlation-Causation Discrimination 

A comprehensive understanding of “why correlation does not imply causation” involves 

knowing when it is versus when it is not appropriate to make a causal claim about a statistical 

relation. Much of the prior research in this domain has focused on studying the tendency for people 

to make causal claims about observational studies (Michal, Seifert, et al., 2021; Seifert et al., 2022), 

which is typically framed as a bias in reasoning (Halonen et al., 2013). However, these studies can 

only address reasoning about scenarios in which causal claims for statistical relations are 

unjustified, rather than in contrast to scenarios in which causal claims are justified. Because 

experiments can rule out alternative explanations for a statistical relation, people should make 

stronger causal claims about experiments than observational studies; we call this “correlation-

causation discrimination”. 

Correlation-causation discrimination requires a foundational knowledge of research 

design. One must be able to identify the correct study design to determine whether a causal claim 
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is warranted or not. In an observational study, there are many possible explanations for a statistical 

relationship. Consider the following example in which a group of researchers collected survey data 

and found that having yellow teeth and lung cancer are correlated. If we made the claim that 

“yellow teeth causes lung cancer”, we would be ignoring alternative possible explanations for the 

correlation. One possibility is a reverse causality explanation in which lung cancer causes yellow 

teeth instead of the other way around. A more likely possibility is a common cause/confound 

explanation, in which smoking cigarettes is the cause of both lung cancer and yellow teeth. If the 

smoking variable is not controlled for, it can look like there is a causal relationship between yellow 

teeth and lung cancer when there is none.  

In an experiment, however, random assignment to conditions rules out alternative 

explanations for a statistical relation. This means we can be more confident that a simple cause-

effect explanation is how two variables are related. Random assignment to conditions rules out 

reverse causality by ensuring that the possible cause precedes the effect in time. Experiments also 

rule out possible confounds by eliminating the possibility of systemic differences between 

conditions at pretest, assuming random assignment worked properly. Thus, because there are fewer 

alternative explanations for a statistical relation in an experiment versus an observational study, 

there is more justification for a causal claim in an experiment.  

We can use causal diagrams, sometimes called directed acyclic graphs (DAGs) to represent 

the possible explanations for a statistical relation. In an observational study, all three diagrams in  

Figure 1 (simple cause-effect, reverse causality, common cause/confound) are possible 

explanations for a statistical relation. In an experiment, random assignment rules out the reverse 

causality (Figure 1B) explanation and reduces the likelihood of a common cause (Figure 1C) 

explanation.  
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Figure 1 Examples of using causal diagrams to illustrate possible explanations for a correlation 

Causal diagrams are visual representations of complex systems and have previously been 

used as tools for science communication and generating testable hypotheses like potential 

confounds or reverse causality explanations for a statistical relation (Pearl, 1995; Pearl & 

Mackenzie, 2018). In education, causal diagrams have been successfully used as a tool for 

improving scientific reasoning skills. For example, students’ analytical skills can improve by 

drawing diagrams to represent the causal structure of an argument (Harrell, 2012). Other studies 

have shown that students can better understand complex causal systems when also provided with 

illustrations of the structures in diagrams versus text descriptions of the systems alone (McCrudden 

et al., 2007; van Loon et al., 2014).  

At a high level, causal diagrams appear to facilitate learning by providing a simple concrete 

illustration of a multivariate causal system. They also enable “cognitive offloading”, or a reduction 

in the amount of effort needed to parse complex relationships (Cheng et al., 2001). Thus, causal 

diagrams may help students to process that there are many alternative explanations for a statistical 

relation in an observational study (including multivariate relationships), that there are fewer 

explanations for a statistical relation in an experiment, and that this means we can make stronger 

causal claims about experiments than observational studies. In the current paper, we used causal 

diagrams as a tool to improve students’ correlation-causation discrimination.  
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Seifert et al. (2022) recently showed that teaching undergraduate students how to use causal 

diagrams can reduce the number of causal claims they make about observational studies. During 

the intervention, students were given an example of an observational study and an explanation of 

why it is problematic to draw causal conclusions from the correlational findings. Next, they 

completed practice problems in which they came up with alternative explanations for the statistical 

relation and read explanations of how to use causal diagrams to evaluate the possibility of reverse 

causality and common cause explanations. To test for learning during the intervention, students 

were given a task that involved deciding whether to make a causal judgment about a headline that 

merely described a correlation. The number of causal judgments about correlational findings 

reduced from pre to post, which suggests that the intervention was successful.  

Additionally, students got better at generating alternative explanations using causal 

diagrams for the statistical relation at posttest compared to pre (Seifert et al., 2022). Prior work 

has shown that teaching students how to generate their own alternative explanations for a statistical 

relation can be quite difficult (Sibulkin & Butler, 2019). We contend that understanding there are 

more alternative explanations for a statistical relation in an observational study compared to an 

experiment is a critical component for improving correlation-causation discrimination. Thus, the 

findings from Seifert et al. (2022) provide preliminary evidence that causal diagrams may be an 

effective tool at helping students learn the concepts necessary for improving correlation-causation 

discrimination. However, testing for improved correlation-causation discrimination requires 

asking participants to make judgments about both observational studies and experiments. 

In the current study, we expanded upon the findings of Seifert et al. (2022) by developing 

and testing our own intervention to improve correlation-causation discrimination. Specifically, we 

used causal diagrams to teach students not only about the possibility of alternative explanations 
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for a statistical relation in an observational study, but also how those alternative explanations can 

be ruled out in an experiment. We then tested for improvement in correlation-causation 

discrimination by having participants decide whether to make causal judgments about both 

hypothetical observational studies and experiments.  

1.2 Different Methods of Instruction for Improving Correlation-Causation Discrimination 

Taking a foundational course in research methods in psychology is associated with better 

scientific reasoning (VanderStoep & Shaughnessy, 1997) and critical thinking skills (Bensley et 

al., 2010; Penningroth et al., 2007) in general. However, undergraduate students struggle with 

understanding the difference between correlation and causation even after taking research methods 

(Meijer, 2007) or other STEM-related courses (Bleske-Rechek et al., 2015; List et al., 2022; 

Owens, 2018). Given that a key learning goal for psychology majors is to understand when it is 

and is not appropriate to make a causal claim (Halonen et al., 2013), we wanted to test different 

methods of instruction to see if one method was best for teaching students about correlation-

causation discrimination.  

In the current study, we first presented students with foundational knowledge about why 

correlation does not imply causation, including information about how to use causal structures to 

illustrate alternative explanations for a statistical relation that are possible in observational studies 

but not experiments. Students then completed two practice problems that reinforced these concepts 

by asking them to consider different alternative explanations (mechanism, reverse causality, 

confound) in the context of a hypothetical observational study and a hypothetical experiment.  
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Practice, which involves completing a repeated series of problems or tasks, is a well-

established instructional technique that helps students learn the procedural steps of problem 

solving (see Richey & Nokes-Malach, 2015 for a review). Thus, providing students in the current 

study with a series of practice problems may facilitate learning and improve correlation-causation 

discrimination. 

Undergraduate psychology students’ understanding of various concepts and skills in 

research methods can greatly improve with practice, like knowing how to interpret and critique 

scientific articles (Kershaw et al., 2018) and discriminate between causal versus correlational 

language in writing (Mueller & Coon, 2013). However, practice may not be sufficient for 

improving some critical research methods skills. In Sibulkin and Butler (2019), undergraduate 

research methods in psychology students were given examples of reverse causality explanations 

for statistical relations in hypothetical observational studies and completed practice problems 

throughout the rest of the semester, in which they generated their own reverse causality 

explanations for novel examples. The accuracy of students’ explanations improved from the first 

practice problem (39%) to the fourth and final practice problem (56%), but performance was still 

quite poor at the end of the study because 44% of students were unable to generate reverse causality 

explanations after repeated instruction and practice.  

In addition to practice, there are other methods of instruction that utilize alternative 

techniques to facilitate learning during problem solving or task completion. In Experiment 1, we 

compared three methods of instruction during practice: Worked Examples (the learner sees a 

problem set and the solutions to the problems), Analogical Comparison (the learner answers a 

problem set by comparing two example problems), and Self Explanation (the learner answers a 

problem set and generates an explanation for their answers). We chose these methods because each 
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has been widely researched in the literature and has its own unique benefits and limitations (see 

Richey & Nokes-Malach, 2015 for a review). Thus, each method could plausibly help students 

learn more about correlation-causation discrimination. 

1.2.1 Worked Examples 

Worked Examples involve providing students with example practice problems and 

solutions that illustrate how to solve the problem (Kalyuga et al., 2001; Renkl, 2014; Richey & 

Nokes-Malach, 2013; Sweller & Cooper, 1985). Providing students with the correct solution 

reduces their cognitive load while learning; for example, participants spend less time and effort on 

trial-and-error to solve the problem (Owen & Sweller, 1985). The reduction in cognitive load 

improves students’ memory for the declarative features of problems like the procedural steps 

(Sweller, 1988), which means they can later apply this information to novel problems. Compared 

to Analogical Comparison and Self Explanation, Worked Examples are particularly good for 

students acquiring declarative knowledge and conceptual knowledge that is necessary for problem 

solving. However, there is less evidence that Worked Examples help students identify 

misconceptions in their own knowledge, which is a key strength of the other two methods (Richey 

& Nokes-Malach, 2015).  

There are a few limitations regarding the effectiveness of Worked Example instruction. 

One constraint is that students must have enough content knowledge to support learning from 

Worked Examples. For example, undergraduate students needed a foundational understanding of 

relevant laws and theorems in order to benefit from Worked Examples of physics problems (Renkl, 

2014). On the other hand, providing too much information in Worked Examples can lead to less 

learning compared to Worked Examples that involve less instructional explanations (Richey & 
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Nokes-Malach, 2013). When students are given too much information, this can stop them from 

spontaneously engaging with the material (e.g., generating their own explanations) beyond 

passively reading the provided problem solutions. If spontaneous engagement is critical for 

learning, then providing students with too much information in Worked Examples will impede that 

process. In contrast, Self Explanation and Analogical Comparison instruction encourage more 

engagement with the material by design, which may yield greater learning.  

The efficacy of Worked Examples may depend on the prior knowledge and understanding 

of the learner. If the student already has substantial knowledge of the subject, Worked Examples 

may not be effective. For example, mechanical trade apprentices with less experience learned more 

from Worked Examples instead of practice problems without solutions, whereas those with more 

experience learned more from practice problems without solutions because the Worked Examples 

contained redundant information (Kalyuga et al., 2001). Instead, Worked Examples may have a 

bigger impact if people have less prior knowledge or understanding about the material (Cooper & 

Sweller, 1987). The potential influence of prior knowledge is particularly relevant to the current 

study, because we compared the efficacy of the three instructional techniques with an intro psych 

and a research methods sample. Because intro psych students have less prior knowledge about 

research methodology, they may benefit more from Worked Example instruction. However, we 

expect that very few (if any) students would have prior knowledge about using causal diagrams to 

illustrate alternative explanations for a statistical relation. Therefore, the research methods sample 

may also be naïve to the information and benefit from Worked Example instruction.  
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1.2.2 Analogical Comparison 

Analogical Comparison involves students comparing example problems that share similar 

features (Gentner, 1983; Gentner et al., 2003; Gick & Holyoak, 1983). The version of Analogical 

Comparison that is most like what we used in the current study, is when participants are asked to 

compare or contrast problem features by making analogies between examples provided by the 

researcher. Because the examples are provided, the learner does not have to worry about memory 

retrieval and can instead focus on identifying similar features across problems, which they can 

apply to novel scenarios. According to Gentner’s (1983) structural mapping-theory, for successful 

problem solving of novel scenarios, the learner must first uncover similar structural features across 

examples at a deep level and then map those features onto similar features in the novel problem 

(see also Novick & Holyoak, 1991).  

Whereas Worked Examples teach the learner about surface-level problem features, 

Analogical Comparison instruction can improve understanding of common structural features 

across problems (Blanchette & Dunbar, 2000; Cummins, 1992). However, with Analogical 

Comparison, people sometimes exhibit bias for making analogies about superficial similarities 

between examples rather than deeper structural similarities between examples. When students only 

learn about surface-level features from analogical comparisons, then they may only be able to 

solve problems that share superficial features and not problems that share structural features 

(Holyoak & Koh, 1987).  

One solution is to specifically structure Analogical Comparison instruction so that the 

problems highlight or provide hints about structural similarities in the examples. Having students 

answer questions that directly ask about similarities between structural features in examples can 

improve performance for novel problems, compared to if students are simply given the examples 
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in succession without any questions that prompt analogical comparison (Gentner et al., 2003). This 

means that students may require support or guidance in the development of connections for 

Analogical Comparison to be effective, because students may not spontaneously engage in 

analogical comparisons on their own. For example, Gick and Holyoak (1983) found that using 

diagrams to illustrate problem solutions was most effective when the diagrams were also 

supplemented with Analogical Comparison instruction, versus no analogical comparisons.  

In the current paper, Analogical Comparison instruction may improve correlation-

causation discrimination because one of our goals is to teach students about the causal structures 

that underlie statistical relations in observational studies and experiments. Analogical Comparison 

is particularly effective at facilitating learning about similarities in structural features across 

examples (Gentner, 1983). First, causal diagrams are inherently structures, and because Analogical 

Comparison is good for learning about structural features in particular, this method may be ideal 

for learning during the intervention. Second, Analogical Comparison may help students learn 

about another problem feature that is critical for correlation-causation discrimination, the design 

of the study; students can compare study designs across different examples and apply this 

information when making inferences about causation.  

1.2.3 Self Explanation 

Self Explanation involves students generating their own explanations of the material, such 

as summarizing key concepts in a reading (Hausmann & VanLehn, 2007). Although some prior 

research has studied the effects of Self Explanations that are spontaneously generated by the 

learner (e.g., Chi et al., 1989), we explicitly asked participants questions that required generating 

Self Explanations during the intervention. Our Self Explanation instruction was similar to the 
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version used in Seifert et al. (2022), in which participants were told to generate their own examples 

of alternative explanations for a statistical relation and draw diagrams to represent those relations, 

rather than the participants spontaneously coming up with these examples on their own. 

One proposed mechanism of learning via Self Explanation is that this method provides 

opportunities for students to identify gaps in their own knowledge or understanding (Chi, 2013). 

Therefore, even if students generate incorrect explanations, they can still learn from Self 

Explanation instruction. For example, a group of undergraduate psychology and biology students 

completed an intervention in which they learned and practiced generating Self Explanations (e.g., 

monitoring their understanding of the material, explaining what happened in their own words, 

making predictions about what would happen next in the text, etc.) to improve their reading 

comprehension for science texts (McNamara, 2004). At posttest, students who completed the 

intervention – even those who generated poor Self Explanations – had better reading 

comprehension than those who did not complete the intervention.  

Only Seifert et al. (2022) have specifically studied the effects of incorporating causal 

diagrams into Self Explanation instruction. After completing Self Explanation problems that 

included drawing diagrams to represent alternative explanations for a statistical relation, students 

were less likely to make causal claims about observational studies compared to before instruction. 

Other studies have shown that supplementing Self Explanation with visual representations of 

information, aside from causal diagrams, can facilitate learning. Students who were prompted to 

generate their own visual explanations of complex mechanical and chemical systems demonstrated 

a better understanding of those systems than students who were prompted to generate purely verbal 

explanations (Bobek & Tversky, 2016). Another study found that Self Explanation practice was 

most beneficial for learning about new content if Self Explanation was preceded by instructional 
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material presented in a diagrams format (e.g., drawings of the human circulatory system) instead 

of a text format (Ainsworth & Loizou, 2003). Thus, incorporating visual illustrations with Self 

Explanation practice, like teaching students how to represent different causal relations in diagrams 

and then providing them with the opportunity to practice generating their own examples of 

diagrams and explanations for the relations, may improve correlation-causation discrimination.  

1.2.4 Active versus Passive Learning 

All three interventions differ in terms of whether they involve active (Analogical 

Comparison or Self Explanation) or passive (Worked Example) learning. Educational 

interventions that involve active learning have been associated with improving critical thinking in 

relation to psychology (Penningroth et al., 2007, cf. McLean & Miller, 2010), understanding of 

research methodology (Kreher et al., 2021; LaCosse et al., 2017), and reducing erroneous 

pseudoscientific and paranormal beliefs (Lawson & Brown, 2018; McLean & Miller, 2010). 

Therefore, active learning in the Analogical Comparison and Self Explanation practice conditions 

may be particularly beneficial at facilitating learning about correlation-causation discrimination. 

On the other hand, passive learning in the Worked Example condition could be more beneficial 

given that most students will be novices with causal diagrams and therefore might benefit from 

step-by-step instructions and examples. In sum, there are plausible reasons for why any of the three 

techniques could improve correlation-causation discrimination. 
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1.3 Testing Research Design Abilities 

The first step of correlation-causation discrimination, and of evaluating whether a study 

outcome warrants a causal claim, is to identify the design of the study. People should be more 

confident in making a causal claim about an experiment than about an observational study. Thus, 

understanding the critical difference between the two study designs – that random assignment is 

used in experiments but not observational studies – is foundational knowledge for correlation-

causation discrimination. This is also foundational knowledge for the ability to properly design 

studies, which is another research methods skill that the APA pinpoints as a learning outcome for 

undergraduate psychology students to master before graduating (Halonen et al., 2013).  

In the developmental literature, many studies have looked at the acquisition of one critical 

skill for designing experiments – whether the child understands how to control for variables in a 

multivariate study (Chen & Klahr, 1999; Klahr et al., 2011; Klahr & Nigam, 2004; Kuhn et al., 

2000; Kuhn & Dean Jr, 2005). For example, if a researcher is designing a study to test the effect 

of a potential cause (e.g., caffeine intake as a cause of sleep quality), they should control for 

possible confounds by holding alternative causes (e.g., stress) constant. Thus, these studies have 

tested whether elementary children have the foundational knowledge for designing research that 

is robust to critiques, like alternative explanations for the statistical elation. In a different domain, 

the biology literature, researchers have tested undergraduate students’ knowledge of experimental 

design and their ability to design experiments (Brownell et al., 2014; Shanks et al., 2017; Sirum & 

Humburg, 2011). For example, Shi et al. (2011) found that biology majors struggled with 

understanding the purpose of a control group in an experiment and also with recognizing 

experiments from observational studies. 
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Across these domains, there seems to be a substantial focus on whether people can design 

experiments or not. None of the prior research, however, has specifically tested whether students 

can design both experiments and observational studies when prompted. Because random 

assignment to conditions is not always possible in research, especially in the field of psychology, 

it is important for students to learn how to design both types of studies. Knowing how to design 

an experiment instead of an observational study, or vice versa, requires students to understand that 

experiments use random assignment to conditions, but observational studies do not. Similarly, this 

understanding is also necessary for correlation-causation discrimination because the first step in 

deciding whether to make a causal conclusion should be to determine the study design. In 

Experiment 2, we tested whether our intervention also improved students’ abilities to design their 

own observational studies and experiments. The key goal of our intervention was to improve 

correlation-causation discrimination; because the same foundational knowledge is required for 

designing an observational study versus an experiment, it is possible that the causal diagrams 

intervention might also improve students’ research design abilities.  

1.4 Influence of Prior Beliefs 

A third direction of the current paper was to test the role of prior beliefs in correlation-

causation discrimination. When one is learning about a study, for example when reading the news, 

or hearing about scientific findings in a course, they likely have expectations about how the results 

of that study will turn out. In turn, these prior expectations may influence whether they accept the 

conclusions from the study; for example, if the results are incongruent with their expectations, they 

may be less likely to accept the findings. Michal et al. (2021b) gave participants examples of 
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studies that tested hypothetical educational interventions (e.g., studying in a messy versus tidy 

classroom. When participants were asked to evaluate the scientific evidence in the study, they were 

more likely to make judgments based on whether the study findings were plausible or not rather 

than evaluating the quality of the study evidence.  

In the field of causal learning, several studies have shown that prior beliefs can influence 

people’s judgments about causal relationships in a variety of ways (Alloy & Tabachnik, 1984; 

Fugelsang & Thompson, 2000, 2001; Garcia-Retamero et al., 2009). For example, prior beliefs 

can affect whether someone believes that a variable is the cause or the effect in a relationship 

(White, 1995). Additionally, people are more likely to discount or rule out a possible cause of an 

outcome (e.g., allergic reactions, car accidents) if they think that another cause is more believable 

(Fugelsang & Thompson, 2001). However, there is little research about how prior beliefs might 

affect correlation-causation discrimination.  

One study by Michal and colleagues (2021a) had participants read hypothetical media 

article vignettes about observational studies. The vignettes were pretested to ensure that half of the 

vignettes were belief-congruent in the sense that most people thought the result was plausible (e.g., 

social media use is negatively correlated with well-being), and the other half were belief-

incongruent in that most people thought the result was implausible (e.g., time spent on homework 

is negatively correlated with grades). When the correlational findings were belief-congruent, and 

participants thought the statistical relation was plausible, they were more likely to justify a causal 

claim. Additionally, participants generated fewer alternative explanations for belief-congruent 

vignettes; although there were alternative explanations for a statistical relation in both the belief-

congruent and belief-incongruent cases, participants generated more alternative explanations for 

the result when they thought it was implausible.  
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These findings are consistent with a dual-process account of reasoning. When people 

reason about information that already aligns with their expectations, their reasoning can be biased 

or they may rely on heuristics to make judgments (Evans & Curtis-Holmes, 2005; Nickerson, 

1998). For example, when people have prior knowledge about a topic, they tend to engage in 

positive testing strategy and seek out evidence that confirms those beliefs rather than searching for 

information that would invalidate them (Goedert et al., 2014). On the other hand, when people 

reason about belief-incongruent information, they engage in more analytical reasoning and are 

more critical of the study findings (Koehler, 1996; Kunda, 1990; Lord et al., 1979; Shah et al., 

2017; Thompson & Evans, 2012). If people have strong prior beliefs, and they have a good reason 

to have those prior beliefs, it is unlikely that they will immediately accept evidence that 

disconfirms those expectations. Instead, people may be more motivated to generate alternative 

explanations for evidence that they find to be implausible or disagree with, as in Michal et al. 

(2021a).   

In the current research we expanded upon the literature on prior beliefs in two ways. First, 

we tested the influence of prior beliefs on whether people made causal judgments about 

observational studies and experiments, rather than only asking participants about observational 

studies. In Michal et al. (2021a)., participants made causal claims about observational studies, and 

they made even stronger causal claims about belief-congruent observational studies than belief-

incongruent ones. However, we do not know how participants’ expectations about the statistical 

relationship might affect their judgments about experiments.  

One possibility is that the influence of prior beliefs will be the same for experiments as for 

observational studies; that participants will make stronger causal judgments when the evidence is 

consistent with their prior beliefs and make weaker causal judgments when the evidence is belief 
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incongruent. Another possibility is that prior beliefs have less of an impact when participants are 

deciding whether to make causal judgments about experiments than observational studies, because 

experiments provide stronger evidence for causality. This could have implications for correlation-

causation discrimination; for example, if prior beliefs do not affect judgments about experiments, 

but judgments for evidence-congruent observational studies are more causal than for evidence-

incongruent observational studies, then people would have better correlation-causation 

discrimination for evidence-incongruent scenarios. A third possibility is that prior beliefs have a 

greater impact when people make evaluate the findings from experiments than observational 

studies, which would also affect the extent of correlation-causation discrimination. 

The second way that we expanded on the existing research on prior beliefs is that we tested 

whether our intervention decreases the influence of prior beliefs on correlation-causation 

discrimination. Our intervention encourages students to think more critically about study design 

when making causal judgments; they learn how to generate alternative explanations for a 

correlation in an observational study, and how experiments rule out these alternative explanations 

through random assignment. If the intervention works, after the intervention, when students are 

asked to decide whether a study provides sufficient evidence for causality, they may rely less on 

whether the evidence is congruent with their prior beliefs and more on information about study 

design.  

1.5 Summary of Three Experiments 

Across three experiments, we tested the efficacy of interventions aimed at improving 

correlation-causation discrimination (i.e., making stronger causal claims for experiments than 
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observational studies) among undergraduate students (Experiments 1-3). A main theme across 

these interventions was teaching students how to use causal diagrams to illustrate alternative 

explanations for statistical relations and that they should make stronger causal claims about 

experiments because there are fewer possible explanations for a statistical relation than in an 

observational study. In Experiment 1, we tested whether different methods of instruction – Worked 

Example, Analogical Comparison, Self Explanation – were more successful at improving 

correlation-causation discrimination. In Experiment 2, we tested whether the intervention would 

also improve students’ ability to design both observational studies and experiments, which is 

another critical research methods skill. Additionally, we tested whether they could identify the 

causal structures that were possible alternative explanations for a statistical relation in their 

hypothetical studies, based on the type of study they were prompted to design. Finally, in 

Experiment 3, we tested the effects of prior beliefs on correlation-causation discrimination and 

whether the intervention would reduce bias due to prior beliefs. 
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2.0 Experiment 1 

The primary goal of Experiment 1 was to test whether certain methods of instruction 

(Worked Example, Analogical Comparison, Self-Explanation) led to greater improvement in 

participants’ ability to discriminate between correlation and causation. Specifically, whether they 

understand that they can make stronger causal inferences about statistical relationships in an 

experiment versus an observational study. We used several measures to assess students’ 

correlation-causation discrimination abilities, the efficacy of the intervention, and students’ prior 

knowledge of why correlation does not imply causation. 

2.1 Methods 

A total of 602 participants completed the study. 265 participants completed the study to 

fulfill a requirement for an Introduction to Psychology course. 337 participants were recruited from 

a Research Methods in Psychology course; two instructors assigned the survey as a homework 

assignment. Students were encouraged to email the study administrator if they did not wish their 

data to be used in analyses (N = 1). An additional 2 participants from the intro psych sample were 

excluded from analyses because they did not show effort on any of the pre-test or post-test 

qualitative measures (e.g., wrote “I don’t know” for every question). Ultimately, 599 participants 

(263 in intro psych, 336 in research methods) were included in analyses.  
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2.1.1 General Procedure 

Participants completed the entire study online in Qualtrics. Participants were randomly 

assigned to one of the three intervention conditions: Analogical Comparison (N = 86 in intro psych; 

114 in research methods), Self-Explanation (N = 89 in intro psych; 110 in research methods) and 

Worked Example (N = 88 in intro psych; 112 in research methods).  

The general procedure for Study 1 is outlined in Figure 2. The study involved a pre-test, 

intervention, and post-test. The intervention comprised two parts. The first part which we call the 

‘tutorial’ was the same for all three conditions that talks about the difference between observational 

studies vs. experiments and introduces causal diagrams for as potential explanations for a statistical 

relation. The second part of the intervention involved further learning and practice, and was 

different for the three conditions (worked example, analogical comparison, or self-explanation). 

The full texts for the interventions and tutorial are available at https://osf.io/eug96. 

Students were encouraged to take the entire study in one sitting. However, some students 

(38%) opened the assignment and returned to it on a later day. Of the students who completed the 

assignment in one day, the median completion time was 69 minutes in intro psych and 65 minutes 

in research methods, though this could include time not working on the study.  

https://osf.io/eug96
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Figure 2 Procedural Timeline of Experiment 1 

 

2.1.2 Pre-Test Measures 

Participants did a task designed to test if they can discriminate correlation from causation. 

In particular, we tested whether they know to only make causal claims for statistical relations in 

experiments and not observational studies. Furthermore, we tested whether they know that an 

intervention proposed to act on the independent variable of an experiment should indeed have an 

influence on the dependent variable, whereas interventions proposed to act on the independent 
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variable of an observational study are not justified because the independent variable may not cause 

the dependent variable.  

This task involved reading about four imaginary research studies. Two of the studies were 

experiments and the other two were observational studies, though participants needed to figure out 

which type of study it was on their own. For each study they answered four questions. The first 

three tested for correlation-causation discrimination (journalist’s conclusion, plan success, and 

causal conclusion). The fourth asked if they believe that the study was an experiment or 

observational study; accurately identifying the study type is necessary for correct correlation-

causation discrimination.  

Participants were told to “imagine that you are reading the newspaper and a journalist has 

written a series of articles on recently published studies”. Each article was presented as a one-

paragraph vignette about a study that found a statistical relation between two variables. All but 

one of the vignettes was adapted from Michal et al. (2019) or other materials provided by their lab. 

We converted half of the vignettes so that they described experiments, not observational studies. 

An example vignette about an observational study was as follows: 

 

“Researchers at the Sleep Research Society have found that people who are tired spend 

more money on food purchases. Participants reported the average number of hours that 

they slept each night and then submitted their grocery and restaurant bills to the researchers 

at the end of every week for analysis. Participants who reported sleeping less than five 

hours a night spent more money on food. So, it follows that getting more sleep will reduce 

the amount of money someone spends on food.” 

 

On the same page as each vignette, participants answered four questions. Three of these 

questions probed correlation-causation discrimination1. First, each vignette ended with a 

 

1 The first two questions (journalist’s conclusion and plan success) were from Michal et al. (2019). 
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journalist’s conclusion proposing an intervention, and the participant judged the journalist’s 

conclusion, “To what extent do you think that the study findings support the journalist’s 

conclusion that [getting more sleep will reduce the amount of money someone spends on food]?”, 

rated on a 7-point scale (1 = the finding does not support the journalist’s conclusion; 4 = unsure; 

7 = the finding strongly supports the journalist’s conclusion).  

Second, the participant made a plan success judgment, in which they evaluated the 

likelihood of a successful intervention that was based on the study’s findings: “After reading about 

this study, [Jane decides to get at least six hours of sleep before going to the grocery store to reduce 

her spending on food]. How likely is it that [Jane’s] plan will work?” (1 = not at all likely for the 

plan to work; 4 = unsure; 7 = extremely likely for the plan to work). They were also asked to 

“Explain your reasoning. Why do you think that [Jane’s] plan is likely/unlikely to work?”. We 

only asked participants to explain their reasoning in Experiment 1, and do not analyze these results 

in the current work.  

Whereas the above two questions focused on a proposed intervention, the third question 

more directly asked about whether the study supports a causal conclusion with the following 

question: “Do you think that this study shows that [getting more sleep] causes [people to spend 

less money on food]?”  

Third, the participants made a judgment about the believed study design by selecting 

whether they thought the study was an observational study or an experiment. This question is not 

about correlation-causation discrimination per se; however, the first step in deciding whether to 

make a causal inference from a study or not involves first whether the design is an observational 

study or an experiment. Incorrect identification of the study design could prevent participants from 

drawing appropriate causal conclusions.  
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After participants read the four studies and answered the above questions, they were asked 

to explain “What does the phrase ‘Correlation does not equal/imply causation’ mean to you?”.  

Although this phrase is quite common, our hypothesis was that most students do not fully 

understand why this is true. This qualitative measure is a different way of assessing correlation-

causation discrimination because it is an open-ended opportunity for students to articulate their 

prior knowledge and depth of understanding about the concept. Additionally, the amount of prior 

knowledge that participants have about correlation vs. causation could affect the extent to which 

the intervention improves correlation-causation discrimination. This was only asked at pre, not 

post.2 

2.1.3 Intervention 

There were two parts in the intervention: a causal diagrams tutorial (see OSF for exact text) 

and two practice problems to elaborate the concepts. All three conditions saw the same tutorial. At 

the beginning of the tutorial, participants read a one-paragraph summary of a blog post written for 

the New York Times, “Walkable Neighborhoods Cut Obesity and Diabetes Rates” (Bakalar, 

2016). We chose this example because the headline used a causal claim about findings from an 

observational study. After reading the summary paragraph, participants answered the five 

measures from the correlation-causation discrimination task.  

 

2 At pre-test and post-test, participants were also asked to apply the concept of correlation-causation 

discrimination to interpreting the results of statistical tests. Only research methods students 

completed this measure because we thought intro psych students would not have enough prior 

statistical knowledge. For conciseness and because this measure was less central to our main goals, 

the methods and results for this measure are presented in Appendix A.  
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On the following page, there was a detailed explanation about how the author made a causal 

claim about an observational study and that causal claims should only be made about experiments. 

At the end of the explanation, they were given an abbreviated summary: “If it is an 

experiment/randomized control trial, then we can conclude that the independent variable caused 

the dependent variable. If it is an observational study (or otherwise known as “correlational” 

study), then we can conclude that two variables are related, but we don’t know how.”  

The last two pages of the tutorial introduced causal diagrams as a method for illustrating 

different causal explanations for a statistical relation in an observational study (Figure 3); 

participants were told that “all three of these explanations can explain why there is a negative 

correlation”. At the end of the tutorial, participants completed a “knowledge check” where they 

had to identify the correct name for the three main causal structures (mechanism, reverse causality, 

common cause/confound). They saw the correct answers on the following page.  

 

Figure 3 Examples from Causal Diagram Tutorial 

In the second part of the intervention, participants were randomized to three conditions: 

Worked Example, Analogical Comparison and Self Explanation. The three conditions are similar 

in that they all included one practice problem about an observational study (a positive relation 

between watching TV and feeling tired during the day) and one about an experiment (positive 

relation between text message reminders and medication adherence).  
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For both the observational study and experiment practice problems, participants read a one-

paragraph vignette in the style of a media report. They made a judgment about the believed study 

design and were given the correct answer on the following page. The rest of the procedure involved 

three sections, one for each causal diagram (mechanism, reverse causality, confound); the goal 

was to teach them that all three causal structures are possible for an observational study but only 

the mechanism causal structure is possible for an experiment. At the beginning of the reverse 

causality and common cause sections, participants were asked “Given that this is an [observational 

study/experiment], do you have to worry about [reverse causality/common cause]?” and were then 

given the correct answer.  

The rest of the procedure for the sections differed across the three methods of instruction, 

all of which had the potential to improve correlation-causation discrimination. To highlight some 

of the similarities and differences between the three conditions, both the experiment and 

observational study passages for the reverse causality section is shown in Figure 4. In the Worked 

Example condition, we gave participants an example of a causal structure and an explanation for 

whether that structure was a possible explanation for a statistical relation in the practice problem. 

In the Analogical Comparison condition, participants were given the same example but no 

explanation. Instead, participants had to compare or contrast the practice problem example with 

the analogous causal structure from the tutorial (Figure 4). In the Self Explanation condition, 

participants came up with their own example of a causal structure and had to explain how the 

causal structure was or was not possible for the hypothetical study. Due to a programming error, 

most participants were not asked to explain how the confound structure was impossible for the 

experiment; after the error was identified, we added the question for the last 53 participants in the 

intro psych sample.  
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Because it is possible that participants in the Analogical Comparison and Self Explanation 

conditions would give incorrect responses, they were given feedback through an example of a 

correct response afterwards (see Figure 5 for an example). This example of a correct response was 

meant to be as similar as possible to the worked example condition while also answering the 

analogical comparison and self-explanation questions. 

 

Figure 4 Portion of Reverse Causality Section in the Practice Problems 
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Figure 5 Feedback in the Reverse Causality Section for the Experiment Problem 

2.1.4 Post-Test Measures 

First, participants did the same tasks that they did in the pre-test, but with four different 

vignettes. We counterbalanced the order, so that half of participants saw one block of four at pre-

test and the other half saw the block at post-test.  

Next, participants completed a novel task that we call the ‘causal diagrams’ task. The goal 

of this task was to test whether participants would endorse all three causal structures (mechanism, 
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reverse causality, and confound) as explanations for an observational study, but only endorse the 

mechanism structure as an explanation for an experiment.3  

Participants were told to imagine that they surveyed a group of undergraduate students and 

found “students who meditated at least 10 minutes per day reported greater life satisfaction than 

students who did not meditate at all”. Next, they were shown three diagrams (Figure 6) and were 

asked “from this finding, which of the following relationships are possible?”. Because the study 

was observational, they should endorse all three diagrams as possible explanations; however, they 

were not told it was observational and had to figure that out on their own. 

Next, participants read an example of an experiment: “100 undergraduate students are 

randomly assigned to either meditate for at least ten minutes per day or not meditate at all. After 

three weeks, the researchers survey the undergraduate students and find that the students who 

meditated at least 10 minutes per day reported greater life satisfaction than the students who did 

not meditate at all.” Participants answered the causal diagrams question; they should only endorse 

the causal mechanism as a possible explanation because random assignment to conditions rules 

out the alternative explanations.  

 

Figure 6 Three Possible Explanations in the Causal Diagrams Task 

 

3 In addition to the experiment and observational study, we asked participants to design their own experiments and 

they completed the ‘causal diagrams’ task for their own designed study. The task ended up being too easy and most 

participants successfully designed their own experiments (instead of observational studies). Because most participants 

were at ceiling, we do not discuss this measure or results further and designed a better task for Experiment 2. 
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2.2 Results 

Registered analyses, anonymized datasets, and analysis scripts are available on OSF. Any 

deviations from the registration are noted in the manuscript. For mixed-effects models, we 

followed Barr et al.’s (2013) suggestions for how to simplify random slopes if a model does not 

converge. The most complex model that converged is reported for each analysis – detailed notes 

for model convergence are available in the analysis scripts on OSF. The intro psych and research 

methods samples were analyzed separately, with one exception, noted below. To test for possible 

differences between the two sections of research methods, we conducted a mixed-effects 

regression for each of the three correlation-causation measures with section × actual design (within 

subjects: observational versus experiment) as a fixed effect, actual design as a by-subject random 

slope, and vignette as a random intercept. Because there were no main effects of class section or 

any section × design interactions, the two research methods sections were analyzed together. 

2.2.1 Ability to Correctly Identify the Study Design from Vignettes4 

When deciding whether to infer causality from a study, the first step should be to determine 

whether it is an observational/correlational study or an experiment/randomized control trial. In the 

vignettes, the key difference was whether the term “randomly assigned” was used or not. To test 

whether participants could discriminate between the two study designs at pretest, and to test for 

learning during the intervention, we ran a regression with an interaction between actual design and 

block. We used contrast coding for actual design (-0.5 = observational study; 0.5 = experiment) 

 

4 These analyses were not included in the registered analysis plan. 
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and dummy coding for block (0 = pre; 1 = post). The dependent measure was whether participants 

said that the vignette was an observational study or an experiment (Model 1 in Table 1). The most 

complex model that converged included actual design as a by-subject random slope and vignette 

as a random intercept. For all analyses presented in this paper, we only included the most important 

predictors in the tables and text, meaning those that aligned with our registered hypotheses; our 

registered hypotheses and full set of results are available on OSF. 

The effect of actual design was significant for both samples; because of contrast coding, 

this means that participants could discriminate between observational studies and experiments at 

pretest. Participants were more likely to say that the study was an experiment if it was an actual 

experiment (filled shapes in Figure 7) as opposed to an observational study (white shapes). In both 

classes, the actual design × block interactions were significant, which means that participants’ 

study design discrimination was better at posttest than at pretest.  

To test whether the improvement in study design discrimination differed across the three 

interventions, we tested for a three-way interaction (Model 2 in Table 1). The most complex model 

that converged included a by-subject random intercept and slope for actual design, and a by-

vignette random intercept. Only one of six interactions was significant; in the intro psych sample, 

improvement in study design discrimination was greater in the Worked Example condition (circles 

in Figure 7) than in the Analogical Comparison condition (triangles).  

In sum, participants could discriminate between study designs at pretest and got better at 

posttest. Thus, participants learned about study design discrimination during the intervention. In 

the intro psych class, the Worked Example condition showed more improvement than the 

Analogical Comparison condition; however, this was the only difference across the interventions 

for the two samples. Although study design discrimination generally improved across the 
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interventions, it was still imperfect at posttest; this could have critical implications for correlation-

causation discrimination.   

 
 

Figure 7 Believed Study Design Discrimination 
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Table 1 Mixed Effects Models Testing Believed Study Design Discrimination 

 Intro Psych  Research Methods 

Predictor Odds Ratio 95% CI  p  Odds Ratio 95% CI  p 

Model 1: Block × Actual Design 

Block (B) 1.12 0.88, 1.42 .350  1.21 0.93, 1.57 .152 

Actual Design (A) 11.93 6.91, 20.61 <.001  94.60 40.79, 219.41 <.001 

Block × Actual Design 4.76 2.93, 7.72 <.001  2.02 1.20, 3.40 .008 

Model 2: Block × Actual Design × Intervention 

B × A × I (WE vs AC) 3.26 1.10, 9.66 .033  1.58 0.49, 5.05 .441 

B × A × I (SE vs AC) 1.52 0.52, 4.40 .440  0.89 0.28, 2.88 .848 

B × A × I (SE vs WE) 0.47 0.16, 1.37 .166  0.56 0.17, 1.82 .339 

Note. Boldface = p < .05. I = Intervention; AC = Analogical Comparison; WE = Worked Example; 

SE = Self Explanation. Results for effects and interactions not listed here are on OSF.  

2.2.2 Correlation-Causation Discrimination for the Vignettes 

Participants made three correlation-causation judgments for each vignette: support for the 

journalist’s conclusion, likelihood of a successful plan, and support for a causal conclusion. We 

transformed the judgments to be on a scale of -3 to +3; participants should make more positive 

judgments (more causal) for experiments and more negative judgments (less causal) for 

observational studies.  

Our original analysis plan tested for correlation-causation discrimination by comparing 

judgments for actual observational studies versus actual experiments. However, this analysis is 

unable to fully detect correlation-causation discrimination abilities. Consider a hypothetical 

participant who sometimes confuses a vignette describing an experiment for an observational 

study, or vice versa, but who correctly makes positive judgments for studies that they believe to 

be experiments and negative judgments for studies that they believe to be observational. An 
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analysis that tests judgments based on actual design tests if participants correctly identify the study 

type and correctly makes correlation-causation discrimination judgments; but if they get one part 

correct and the other incorrect, this analysis will not be able to detect their partial knowledge. Thus, 

we decided to analyze correlation-causation discrimination in two ways; based on the actual study 

design and the participants’ believed study design.  

To test for correlation-causation discrimination at pretest and learning during the 

intervention, we conducted separate mixed-effects regressions for each measure. Model 1 tested 

for an actual design × block interaction and Model 2 tested for a believed design × block interaction 

(Table 2). The most complex model that converged included a by-subject slope and random 

intercept for design × block, and a by-vignette random intercept. There were significant effects of 

actual design and believed design for both samples across all three measures; at pretest, 

participants made more positive judgments for actual experiments than actual observational studies 

and for believed experiments than believed observational studies (Figure 8 and Figure 9). In both 

samples, there is evidence that correlation-causation discrimination improved according to 

believed study design, as seen by five out of six significant Believed Study Design × Block 

interactions in Table 2. However, there is little evidence of improved correlation-causation 

discrimination according to actual study design; none of the Actual Study Design × Block 

interactions were significant though some were close. In sum, correlation-causation discrimination 

did improve after the interventions, but only partially, because complete correlation-causation 

discrimination also requires accurate study design discrimination.  

To test for differences in learning across the three interventions, we tested the three-way 

interactions in Table 3. These regressions test whether the amount of correlation-causation 

discrimination increased more in one model versus another with pairwise comparisons. The 
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maximal model converged for almost all regressions and included a by-subject slope and random 

intercept for design × block, and a by-vignette random intercept. The Self Explanation (SE) 

condition was the best intervention for the intro psych sample. Regarding the actual design 

analyses, SE was better than Worked Example (WE) for all three measures, and better than 

Analogical Comparison (AC) on the causal conclusion measure; all the other 5 comparisons were 

not significant. For believed design, there were no differences for any of the 9 comparisons. 

However, for the research methods sample, SE was the worst for improving correlation-

causation discrimination. It was significantly worse than WE on the causal conclusion measure for 

the actual design analysis, and significantly worse than AC for the journalist’s conclusion and 

causal conclusion measures for the believed design analysis; all the other 15 comparisons were not 

significant.  

In sum, participants exhibited significant correlation-causation discrimination at pretest, 

and this ability improved after the intervention but only partially; correlation-causation 

discrimination improved based on believed but not actual study design. The Self Explanation 

condition produced the best learning of the three conditions for the intro psych class but the worst 

for the research methods class. That said, for the most part the three conditions all performed fairly 

similarly. 
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Figure 8 Correlation Causation Discrimination by Actual Study Design 
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Figure 9 Correlation Causation Discrimination by Believed Study Design 
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Table 2 Mixed Effects Models Testing for Correlation-Causation Discrimination  

 Intro Psych  Research Methods 

Dependent Measure β 95% CI p  β 95% CI  p 

Actual Study Design from Model 1 [Actual Study Design × Block] 

Journalist’s Conclusion 0.90 0.73, 1.08 <.001  1.03 0.78, 1.29 <.001 

Plan Success 0.89 -0.03, 0.24 <.001  1.04 0.69, 1.38 <.001 

Causal Conclusion 0.96 0.75, 1.16 <.001  1.12 0.87, 1.36 <.001 

Interaction from Model 1 [Actual Study Design × Block] 

Journalist’s Conclusion 0.11 -0.02, 0.24 .092  0.08 -0.03, 0.19 .159 

Plan Success 0.11 -0.03, 0.24 .113  0.03 -0.08, 0.14 .552 

Causal Conclusion 0.12 0.00, 0.25 .055  0.04 -0.07, 0.14 .506 

Believed Study Design from Model 2 [Believed Study Design × Block] 

Journalist’s Conclusion 0.27 0.15, 0.40 <.001  0.44 0.34, 0.55 <.001 

Plan Success 0.27 0.16, 0.39 <.001  0.45 0.34, 0.56 <.001 

Causal Conclusion 0.26 0.14, 0.38 <.001  0.62 0.51, 0.74 <.001 

Interaction from Model 2 [Believed Study Design × Block] 

Journalist’s Conclusion 0.19 0.05, 0.33 .007  0.13 0.02, 0.24 .023 

Plan Success 0.26 0.12, 0.39 <.001  0.14 0.03, 0.25 .015 

Causal Conclusion 0.20 0.06, 0.34 .007  0.05 -0.07, 0.16 .421 

Note. Boldface = p < .05. Positive β for main effect of design is evidence of correlation-

causation discrimination. Positive β for design × block interaction is evidence of learning. The 

effect of block is not included in the table because it tests for bias (not correlation-causation 

discrimination) and none of the effects were significant; see OSF for full results.  
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Table 3 Mixed Effects Models Comparing the Three Interventions 

 Intro Psych  Research Methods 

Dependent Measure β 95% CI p  β 95% CI  p 

Model 3: Actual Design × Block × Intervention (WE vs AC) 

Journalist’s Conclusion -0.08 -0.41, 0.25 .623  -0.12 -0.39, 0.15 .380 

Plan Success -0.22 -0.56, 0.13 .218  0.03 -0.24, 0.31 .807 

Causal Conclusion -0.01 -0.32, 0.29 .929  0.09 -0.17, 0.36 .492 

Model 3: Actual Design × Block × Intervention (SE vs AC) 

Journalist’s Conclusion 0.28 -0.05, 0.61 .094  -0.20 -0.47, 0.08 .161 

Plan Success 0.15 -0.20, 0.49 .403  -0.04 -0.32, 0.23 .761 

Causal Conclusion 0.33 0.02, 0.63 .037  -0.22 -0.49, 0.05 .111 

Model 3: Actual Design × Block × Intervention (SE vs WE) 

Journalist’s Conclusion 0.36 0.04, 0.69 .029  -0.07 -0.35, 0.20 .599 

Plan Success 0.36 0.02, 0.70 .037  -0.08 -0.35, 0.20 .586 

Causal Conclusion 0.34 0.03, 0.64 .029  -0.31 -0.58, -0.04 .025 

Model 4: Believed Design × Block × Intervention (WE vs AC) 

Journalist’s Conclusion 0.06 -0.28, 0.40 .741  -0.15 -0.42, 0.12 .279 

Plan Success 0.13 -0.23, 0.48 .484  0.01 -0.26, 0.28 .939 

Causal Conclusion 0.17 -0.17, 0.51 .327  -0.07 -0.35, 0.21 .605 

Model 4: Believed Design × Block × Intervention (SE vs AC) 

Journalist’s Conclusion 0.06 -0.28, 0.40 .725  -0.31 -0.58, -0.04 .027 

Plan Success 0.02 -0.33, 0.37 .916  -0.03 -0.29, 0.24 .850 

Causal Conclusion 0.08 -0.26, 0.42 .639  -0.30 -0.58, -0.02 .035 

Model 4: Believed Design × Block × Intervention (SE vs WE) 

Journalist’s Conclusion <0.01 -0.34, 0.34 .985  -0.16 -0.44, 0.12 .257 

Plan Success -0.11 -0.46, 0.24 .549  -0.03 -0.31, 0.24 .804 

Causal Conclusion -0.09 -0.42, 0.25 .606  -0.23 -0.51, 0.05 .113  

Note. Boldface = p < .05. SE = Self Explanation; WE = Worked Example; AC = Analogical 

Comparison. Positive correlation coefficients mean that correlation-causation discrimination 

improved more for the condition listed first than second. Results for effects and interactions not 

listed here are on OSF. 
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2.2.3 Pre-Test Explanations of “Correlation Doesn’t Equal/Imply Causation” 

The goal of the intervention was to use causal diagrams to teach undergraduate students 

why correlation does not imply causation. Before the intervention, participants were asked to 

explain the phrase “correlation doesn’t equal/imply causation” – the purpose of this measure was 

to gauge participants’ prior knowledge. We identified two themes from a subset of participants’ 

responses and two coders classified the remaining responses (92% agreement; κ = 0.75). Three 

responses were not coded due to lack of effort by the participant. The two main themes identified 

were 1) that there are alternative possible explanations for a correlation (e.g., mentioning the 

possibility of a coincidence, reverse causality, confound), and 2) that an experiment (or “controlled 

study” or manipulation of the IV/random assignment to conditions) is needed to make a causal 

claim.  

 83% of intro psych participants and 76% of research methods participants mentioned 

neither theme in their responses; these participants simply re-stated the phrase in their own words. 

15% of intro psych participants and 18% of research methods participants only mentioned Theme 

1. Less than 1% of intro psych participants and 4% of research methods students only mentioned 

Theme 2. Very few mentioned both themes. In sum, even if participants know correlation does not 

equal causation, they struggle to explain why. Because few participants mentioned Theme 2 or 

both themes, we treated their explanations as binary (i.e., any theme or not) in subsequent analyses.  

2.2.4 Pre-Test Explanations and Correlation-Causation Discrimination 

We hypothesized that at pretest, the quality of participants’ explanations for “correlation 

doesn’t equal/imply causation” would be correlated with their correlation-causation discrimination 
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abilities. Recall that at pretest, students had some correlation-causation discrimination because 

they made stronger causal judgments for the experiment vignettes than the observational study 

vignettes. However, their pretest explanations were quite poor in both classes. To assess whether 

pretest explanation quality was predictive of pretest correlation-causation discrimination, we ran 

mixed-effects regressions for the three correlation-causation measures and separately tested for 

actual design × explanation accuracy (Model 1) and believed design × explanation accuracy 

(Model 2) interactions. The maximal model converged in all cases, with by-subject random slopes 

and random intercepts for study design, and a by-vignette random intercept (Table 4).  

In the research methods class, three of the six design × explanation accuracy interactions 

were significant; believed design × explanation accuracy was significant for the causal conclusion 

and journalist’s conclusion measures, and actual design × explanation accuracy was significant for 

the causal conclusion measure. In all three cases, at pretest, research methods students with better 

quality explanations had better correlation-causation discrimination. This suggests that at least to 

some extent, the free-response explanations are capturing similar knowledge as the correlation-

causation discrimination measures. 

However, only half of the interactions were significant for the research methods sample, 

and the journalist’s conclusion measure was only barely significant (p = .047). Furthermore, none 

of the interactions were significant for the intro psych class, meaning that explanation accuracy 

was not a strong predictor of pretest correlation-causation discrimination. This aligns with the fact 

that intro psych students had especially poor pretest explanation accuracy, despite exhibiting 

correlation-causation discrimination when making judgments about the vignettes at pretest. 

Altogether, these results suggest that the free response measure of “What does correlation does not 
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equal/imply causation mean to you?” may be more sensitive than the correlation-causation 

discrimination measures for capturing gaps in participants’ understanding.  

Table 4 Explanation Accuracy as a Predictor of Pre-Test Correlation-Causation Discrimination 

 Intro Psych  Research Methods 

Predictor β 95% CI p  β 95% CI p 

Interaction from Model 1 [Actual Study Design × Explanation Accuracy] 

Journalist’s Conclusion 0.09 -0.22, 0.40 .557  0.18 -0.05, 0.42 .129 

Plan Success <0.01 -0.32, 0.33 .991  0.15 -0.08, 0.37 .193 

Causal Conclusion 0.11 -0.18, 0.15 .460  0.27 0.05, 0.50 .017 

Interaction from Model 2 [Believed Study Design × Explanation Accuracy] 

Journalist’s Conclusion 0.14 -0.19, 0.47 .398  0.23 0.00, 0.47 .047 

Plan Success 0.02 -0.30, 0.33 .919  0.18 -0.05, 0.42 .125 

Causal Conclusion 0.18 -0.13, 0.48 .261  0.40 0.16, 0.64 .001 

Note. Positive β means better correlation-causation discrimination for participants who provided 

an accurate explanation. Results for effects and interactions not listed here are on OSF. 

2.2.5 Causal Diagrams Task 

In the intervention, participants were taught to use causal diagrams to represent alternative 

explanations for a correlation. If the intervention was successful, they should know that there are 

more possible explanations for a correlation in an observational study (mechanism, reverse 

causality, confound) than in an experiment (mechanism). To test this, we analyzed participants’ 

posttest endorsements of the three causal structures as possible explanations for a hypothetical 

observational study versus a hypothetical experiment. (These questions were only asked at 

posttest, not pre.) For each causal structure, we ran a mixed-effects logistic regression that tested 

for an interaction between study design prompt and intervention. The dependent variable was 

whether the participant endorsed the structure as a possible explanation. The results for the two 
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samples were quite similar; for conciseness, we present the results of both samples together in 

Table 5 and Figure 10 (see OSF for separate analyses). The most complex model that converged 

included a by-subject random intercept. 

For the reverse causality and confound diagrams, participants should endorse both 

structures for the observational study but not the experiment, and this is what was found; the effect 

of study design was significant for both structures. At the same time, the proportion of endorsement 

of reverse causality and a confound was less than 50% for observational studies, which means that 

participants still do not have a good grasp that these structures can explain a statistical relation in 

an observational study.  

In contrast to the reverse causality and confound structures, participants should endorse a 

mechanism as an explanation for both study designs. However, there was a significant effect of 

study design; participants were more likely to endorse the mechanism structure for the experiment 

than for the observational study. This is inconsistent with what they were taught in the intervention, 

but it is not too concerning because the rate of endorsement of the mechanism structure was high 

for both experiments and observational studies. None of the interactions were significant, so there 

is no evidence that one condition worked any better than another. 

In sum, though participants had some understanding of different possible causal 

explanations for experiments vs. observational studies, many participants still did not understand 

that a confound or reverse causality can explain the results of an observational study.  
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Figure 10 Endorsement in Causal Diagrams Task 
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Table 5 Testing for Differences in Endorsement of Causal Diagrams 

Dependent Measure 
Odds 

Ratio 
95% CI p 

Study Design 

Model 1: Mechanism 5.30 1.50, 18.72 .010 

Model 2: Reverse 0.17 0.10, 0.29 <.001 

Model 3: Confound 0.16 0.10, 0.27 <.001 

Study Design × Intervention (AC vs WE) 

Model 1: Mechanism 1.78 0.30, 10.56 .524 

Model 2: Reverse 0.85 0.40, 1.82 .673 

Model 3: Confound 0.93 0.46, 1.86 .829 

Study Design × Intervention (AC vs SE) 

Model 1: Mechanism 0.38 0.05, 3.04 .363 

Model 2: Reverse 1.13 0.53, 2.40 .753 

Model 3: Confound 1.04 0.51, 2.10 .919 

Study Design × Intervention (SE vs WE) 

Model 1: Mechanism 0.21 0.03, 1.80 .156 

Model 2: Reverse 1.33 0.61, 2.88 .471 

Model 3: Confound 1.12 0.56, 2.26 .751 

Note. Boldface = p < .05. SE = Self Explanation; WE = Worked Example; AC = Analogical 

Comparison. Intervention was not a significant predictor of endorsement in any of the analyses (p 

> .05), see OSF for the full results. 

2.3 Discussion 

The main goal of Experiment 1 was to test the efficacy of different interventions aimed at 

improving correlation-causation discrimination abilities. There were a few key findings. 

First, both intro psych and research methods were able to discriminate between correlation 

and causation at pretest. Although prior research has shown that people tend to make causal 
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judgments about observational studies, which is typically framed as a bias in reasoning (Halonen 

et al., 2013), we found that students knew to make more causal judgments about experiments than 

observational studies. Regarding scientific reasoning abilities, this result establishes that even 

before the intervention, students at least somewhat understand that correlation does not imply 

causation. On the other hand, most students were unable to adequately explain “why correlation 

does not imply/equal causation” at pretest. Thus, this qualitative measure may be more sensitive 

at detecting students’ understanding and suggests that there is room for improvement in students’ 

understanding. Additionally, even though correlation-causation discrimination for the vignettes 

was present at pretest, there was also room for improvement; participants could learn to make even 

more causal judgments for experiments and less causal judgments for observational studies.  

Second, for the vignettes, students somewhat struggled with identifying whether the study 

design was an observational study or an experiment. At pretest, both intro psych and research 

methods students failed to identify experiments as experiments in at least 25% of cases. Because 

accurate identification of study design is critical for deciding whether to make causal inferences 

about statistical relations, inaccurate study design identification means students cannot have a 

complete understanding of correlation-causation discrimination. Study identification improved at 

posttest in both classes, but it was still imperfect, particularly for identification of experiments. 

This had critical implications for learning; collapsing across the three interventions, correlation-

causation discrimination only improved from pre to post based on participants’ beliefs about study 

design rather than the actual design of the study. Thus, participants only partially learned about 

correlation-causation discrimination; they learned to make more causal judgments about studies 

they think are experiments and less causal judgments about studies they think are observational 
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studies. To have a complete understanding, they must also learn how to identify the correct study 

design so that they can be more accurate in their correlation-causation discrimination.  

Third, participants’ correlation-causation discrimination did get better from pre to posttest, 

but only based on participants’ beliefs about study design, if collapsing the analyses across the 

three interventions. However, even though there was some improvement in correlation-causation 

discrimination, at posttest, participants made causal claims about actual or believed observational 

studies in 22-25% of cases and failed to make causal claims about actual or believed experiments 

in 25% of cases. Thus, there was room for improvement in correlation-causation discrimination 

based on both participants’ beliefs about study design and the actual design of the study. One 

possible reason why correlation-causation discrimination was not very strong, in addition to 

participants having difficulty with correctly identifying study designs, is that students did not fully 

understand a key lesson in the tutorial. After the intervention, less than half of participants 

endorsed the reverse causality and confound structures as possible reasons for a statistical relation 

in an observational study, which was a critical message in the tutorial. In Experiment 2, we 

improved the tutorial in several ways to further improve posttest correlation-causation 

discrimination and study design discrimination. 

Fourth, we found that different methods of instruction were successful for the two classes. 

In the intro psych class, participants learned the most about correlation-causation discrimination 

in the Self Explanation condition. In the research methods class, participants learned more in the 

Analogical Comparison and Worked Example conditions compared to the Self Explanation 

condition. Thus, considering prior knowledge or abilities may be key in determining best methods 

of instruction for teaching about why “correlation doesn’t imply causation”.  
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3.0 Experiment 2 

In Experiment 2, we made a number of modifications to improve the Self Explanation 

intervention, test learning with additional dependent measures, and compare the Self Explanation 

intervention against a control with no intervention.  

First, in Experiment 2 and 3 we focused on the Self Explanation condition. In Experiment 

1 there was mixed evidence about which intervention was best depending on the dependent 

measure, analysis, and sample. All three of the interventions were quite similar – they had the same 

tutorial and participants did the same practice problems. Thus, for Experiments 2 and 3 we chose 

to focus on one condition, making improvements to that condition, and testing new dependent 

measures. In Experiments 2 and 3 we only had access to an Intro Psych sample, and we chose to 

focus on the Self Explanation condition because it was the most promising for Intro Psych in 

Experiment 1. We now refer to the Self Explanation condition as the intervention.  

Second, Experiment 1 compared three interventions, but did not compare them to a control 

condition. In Experiment 2 we compared a single intervention (Self Explanation) to a control to 

isolate the influence of learning due to the intervention vs. learning merely due to repeated practice 

with the vignettes and dependent measures.  

Third, we made several changes to improve the intervention. In Experiment 1, participants 

had difficulty discriminating between observational studies and experiments, which is 

fundamental for correlation-causation discrimination. Participants also did not fully understand 

that they should endorse reverse causality and confounds as possible explanations for a correlation 

in an observational study. We made changes to directly address both of these. 
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Fourth, we added a third set of vignettes called ‘implicit experiments’, that describe 

experiments without explicitly mentioning random assignment. In actual media articles and 

scientific abstracts, random assignment is often implied rather than being explicitly stated, so it is 

important to assess whether students recognize such cases as experiments.            

Fifth, in Experiment 2 we tested if the intervention would also help students be able to 

design experiments and observational studies, by asking them to design both at pre and at post. 

This is similar to being able to identify if a study is experimental or observational, but also requires 

more original thinking. 

3.1 Methods 

3.1.1 Participants, Attention Check, and Exclusion Criteria 

A total of 399 participants completed Experiment 2 as part of a requirement for an 

Introductory to Psychology course. We added an attention check measure, the “sports 

participation” question from Oppenheimer et al. (2009), at the beginning of the study. Most 

participants (98%) passed the attention check on the first attempt. If they did not pass after five 

attempts, they could still complete the study but were excluded from analyses (N = 3); this was 

registered on OSF.  
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3.1.2 Design and Intervention 

Participants were randomly assigned to either the Self Explanation Intervention or the 

Control condition. The intervention consisted of both the tutorial and Self Explanation practice 

problems from Experiment 1, with some modifications. In the tutorial, we made two major 

changes. First, we added instructions for how to discriminate between observational studies and 

experiments, including how to discriminate study designs when random assignment is only 

implied. Second, we added an example to show how random assignment in an experiment rules 

out alternative explanations (reverse causality, confounds) for a statistical relation. In the practice 

problems, we broke up some of the questions into multiple parts so that participants were more 

likely to answer each part of the question.  

The control condition did not contain the tutorial or the Self Explanation Intervention; 

participants simply did the pre-test and then the post-test questions immediately afterwards. Since 

this experiment was given in an educational setting, participants in the Control condition received 

the tutorial and practice problems after the posttest measures as a form of instruction for the class.  

3.1.3 Pre-Test and Post-Test Measures 

At pretest and posttest, participants completed the same three tasks. First, they read and 

made judgments about six randomly ordered vignettes – two observational studies, two explicit 

experiments, and two implicit experiments. We used the same vignettes for the observational 

studies and explicit experiments from Experiment 1 but removed any references to sample size in 

the vignettes. We counterbalanced the two blocks of six vignettes to pre versus post. After reading 

each vignette, participants answered the three correlation-causation discrimination measures from 
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Experiment 1 and whether they thought the study was an “Observational/Correlational Study” or 

an “Experiment.”5 We did not include the qualitative “explain your reasoning” response for the 

plan success measure.  

Second, participants designed two observational studies and two experiments at pretest and 

posttest. They were told to imagine themselves as a researcher who was testing a hypothesis (e.g., 

“people who consume caffeine will have disrupted sleep”) and were instructed, “In 1-2 sentences, 

design an [observational study (not an experiment) / experiment (not an observational study)] that 

tests this hypothesis”. We counterbalanced the scenarios so that half of participants were told to 

design an observational study for a particular hypothesis, and the other half were told to design an 

experiment.  

Third, participants completed the causal structure task, which was embedded within the 

design an experiment task. After designing a study, participants were asked “Imagine that you ran 

your proposed [observational study/experiment] and you found a statistical relation … which of 

the following diagrams could possibly explain this statistical relation?” If participants were told to 

design an observational study, they should endorse all three structures as a possible explanation 

for a correlation; if participants were told to design an experiment, they should only endorse the 

mechanism structure as a possible explanation.  

 

5 In Study 1 it is possible that when asked to identify the study design participants answered in a superficial way by 

noticing that some vignettes included the words “random assignment” and then selecting the “Experiment / 

Randomized Controlled Trial” option. In Experiments 2 and 3 we removed “Randomized Controlled Trial” and simply 

called it an “Experiment” to avoid this issue. 
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3.2 Results 

Before analyzing the data, we decided to use two additional exclusion criteria that were not 

registered on OSF, aside from the attention check which was. The study was designed so that 

participants could complete it within 40-50 minutes; the median time of completion was 49 

minutes. We excluded participants from analyses if they took less than 20 minutes total (N = 11), 

because this timeframe seemed indicative of very low effort. After reading participants’ responses 

in the “design a study” task, we also dropped participants who demonstrated insufficient effort on 

more than one item in the same block (N = 9) or did not provide enough information to code their 

responses for more than two items in the same block (N = 9). The final analyses included 367 

participants, with 181 in the Self Explanation condition and 186 in the Control condition.  

3.2.1 Ability to Correctly Identify the Study Design from Vignettes 

We conducted similar analyses as in Experiment 1 to test whether participants were able 

to identify the study design (‘believed study design’) from the actual design in the vignettes. In 

one mixed effects model, we tested for a three-way interaction between block, actual design, and 

intervention. However, we ran separate analyses to compare discrimination for implicit 

experiments versus observational studies and explicit experiments versus observational studies 

(Table 6). 

The most complex model that converged included a by-subject random slope and random 

intercept, and a by-vignette random intercept. There was a significant effect of actual design for 

both analyses. This means that at pretest (due to the contrast coding), participants discriminated 

between observational studies (triangles in Figure 11) and explicit experiments (squares), and also 
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between observational studies and implicit experiments (circles). There were also significant 

interactions between actual design and block, which means that participants learned to distinguish 

observational studies from both implicit and explicit experiments better at post than pre. As is 

obvious from Figure 11, participants learned to better identify experiments; their ability to identify 

observational studies was already quite good at pre and did not change. 

For both analyses, there was no significant three-way interaction, meaning that the amount 

of learning was the same in the intervention and control conditions. This suggests that our 

modification to the intervention to teach students how to identify observational studies versus 

experiments unfortunately did not work. Still, participants got better at identifying study types in 

both conditions, suggesting that practice even without feedback was beneficial. 

 
Figure 11 Believed Study Design Discrimination 
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Table 6 Mixed Effects Model Testing Believed Study Design Discrimination 

 
Explicit Experiment  

vs. Observational Study 

 Implicit Experiment  

vs. Observational Study 

Predictor Odds Ratio 95% CI  p  Odds Ratio 95% CI  p 

Block  0.67 0.56, 0.80 <.001  0.66 0.55, 0.79 <.001 

Actual Design 0.09 0.06, 0.15 <.001  0.11 0.09, 0.15 <.001 

Block × Actual 0.58 0.40, 0.84 .004  0.52 0.36, 0.73 <.001 

B × A × Intervention 1.03 0.51, 2.09 .933  1.26 0.62, 2.55 .523 

Note. Boldface = p < .05. B = Block (pre versus post); A = Actual Design (Explicit Experiment 

versus Observational or Implicit Experiment versus Observational). Results for effects and 

interactions not listed here are on OSF. 

3.2.2 Correlation-Causation Discrimination for the Vignettes 

We conducted similar analyses as in Experiment 1 to test correlation-causation 

discrimination (Figure 12). For discrimination based on the actual design, we compared 

observational studies vs. explicit experiments and observational studies vs. implicit experiments 

(Table 7). For discrimination based on the believed design, we compared the studies that 

participants thought were observational vs. those that they thought were experiments, regardless 

of whether they were actually observational studies, explicit experiments, or implicit experiments 

(Table 8). 

Both models tested for a three-way interaction to assess if learning improved more in the 

intervention than control. The most complex model that converged included a by-subject random 

slope and intercept for the interaction between block and design, and a by-vignette random 

intercept. There were significant effects of actual design (Table 7) and believed design (Table 8) 

across all three measures and analyses. This means that at pretest, participants could discriminate 
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between observational studies and both types of experiments based both on the actual design and 

believed design.  

The actual design × block interactions, which tested for improved discrimination based on 

actual design, was only significant for one of the six cases: only comparing implicit experiments 

versus observational studies and only for the journalist’s conclusion measure (Table 7). This was 

mainly driven by the journalist’s conclusion judgments for implicit experiments becoming more 

causal (circles in Figure 12A). Overall, given that only one of these six interactions was significant, 

it means that there still was not considerable learning to discriminate experiments vs. observational 

studies.  

For the analyses of learning based on believed design, there were significant interactions 

with block for two out of the three measures: journalist’s conclusion and plan success (Table 8). 

This appears to be driven both by participants learning to make more causal judgments for believed 

experiments (squares in Figure 12B) and less causal judgments for believed observational studies 

(triangles).  

None of the three-way interactions, which tested whether learning improved more in the 

intervention than control group, were significant for discrimination based on the actual design. 

This fits with the fact that there was little improvement in the actual design in the two-way 

interactions. For believed study design, the three-way interaction was significant for the 

journalist’s conclusion measure. Participants in the Self Explanation intervention condition (black 

squares in Figure 12B) learned to make more causal judgments for believed experiments but not 

for the control (white squares). The other two three-way interactions were not significant.  

Altogether, these results suggest that the intervention improved correlation-causation 

discrimination a bit (for the journalist’s conclusion for believed study design), and there was some 
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learning due to practice across both the intervention and control in two other cases (journalist’s 

conclusion for actual study design for implicit experiments versus observational studies and plan 

success for believed study design). Still, there is considerable room for improvement. 

 

Figure 12 Correlation Causation Discrimination in Study 2 



 59 

Table 7 Mixed Effects Model Testing for Correlation-Causation Discrimination by Actual Design 

 
Explicit Experiment  

vs. Observational Study 

 Implicit Experiment  

vs. Observational Study 

Dependent Measure β 95% CI p  β 95% CI  p 

Actual Study Design from Model [Actual Study Design × Block × Intervention] 

Journalist’s Conclusion 0.70 0.46, 0.94 <.001  0.63 0.39, 0.87 <.001 

Plan Success 0.75 0.38, 1.12 <.001  0.84 0.54, 1.15 <.001 

Causal Conclusion 0.79 0.52, 1.06 <.001  0.79 0.54, 1.03 <.001 

Actual Study Design × Block 

Journalist’s Conclusion 0.05 -0.06, 0.17 .341  0.14 0.03, 0.26 .016 

Plan Success 0.01 -0.11, 0.13 .879  0.02 -0.09, 0.14 .701 

Causal Conclusion 0.01 -0.10, 0.11 .918  0.05 -0.06, 0.16 .352 

Actual Study Design × Block × Intervention 

Journalist’s Conclusion 0.07 -0.16, 0.29 .560  -0.03 -0.25,0.20 .829 

Plan Success 0.13 -0.10, 0.37 .277  -0.05 -0.29, 0.19 .680 

Causal Conclusion 0.17 -0.04, 0.38 .119  0.09 -0.13, 0.31 .422 

Note. Boldface = p < .05. Positive β for main effect of design is correlation-causation 

discrimination. Positive β for design × block interaction is learning. Results for effects and 

interactions not listed here are on OSF.  
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Table 8 Mixed Effects Model Testing for Correlation-Causation Discrimination by Believed Design 

Dependent Measure β 95% CI p 

Believed Study Design from Model [D × B × Intervention] 

Journalist’s Conclusion 0.44 0.35, 0.52 <.001 

Plan Success 0.40 0.32, 0.48 <.001 

Causal Conclusion 0.53 0.45, 0.62 <.001 

Believed Study Design × Block 

Journalist’s Conclusion 0.11 0.02, 0.21 .018 

Plan Success 0.10 0.00, 0.19 .044 

Causal Conclusion -0.02 -0.11, 0.07 .711 

Believed Study Design × Block × Intervention 

Journalist’s Conclusion 0.24 0.05, 0.43 .012 

Plan Success 0.11 -0.04, 0.15 .221 

Causal Conclusion 0.14 -0.04, 0.32 .136 

Note. Boldface = p < .05. Positive β for main effect of design (D) is correlation-causation 

discrimination. Positive β for design × block (B) interaction is learning. Results for effects and 

interactions not listed here are on OSF. 

3.2.3 Design a Study Task 

At pretest and posttest, participants were prompted to design two observational studies and 

two experiments, to test if participants got better at designing both sorts of studies. A total of 2871 

responses were coded as either an experiment or an observational study (92% agreement; κ = 0.79), 

after dropping 65 items due to lack of effort (N = 4) or not enough information to code (N = 61). 

A response was coded as an experiment if there was implied or explicit random assignment and 

there was more than one participant in each group.   

We ran a regression testing for a three-way interaction between design prompt, block, and 

intervention, using our standard contrast codes. The dependent measure was whether they designed 
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an experiment or not6 (Model 1 in Table 9). The most complex model that converged included a 

by-subject random intercept. The effect of design prompt was significant, which means that at 

pretest, they were more likely to design an experiment when told to design an experiment (squares 

in Figure 13) versus when told to design an observational study (triangles).  

There was no significant interaction between design prompt and block, which tested for 

improvement in design abilities at posttest, and there was no three-way interaction. However, this 

is likely because participants were already able to design observational studies when prompted to 

do so at pre so could not exhibit learning. To address this, we tested for a block × intervention 

interaction using the subset of cases in which participants were prompted to design an experiment 

(squares in Figure 13).7 The most complex model that converged included a by-subject random 

slope and intercept for block. There was a significant block × intervention interaction; participants 

in the Self Explanation condition got considerably better at designing experiments at posttest, but 

there was no change in the Control condition (odds ratio = 7.37, 95% CI [1.77, 30.63], p = .006).  

In sum, participants could discriminate between designing an observational study and an 

experiment at pretest; they were particularly adept at designing observational studies. Additionally, 

participants in the intervention learned how to better design experiments at posttest; however, they 

clearly still have much room to improve.  

 

 

6 In the registration, we used accuracy (designing an experiment vs. observational study when asked to) as the 

dependent variable. After visualizing the data, we believed it was more straightforward and better aligned with other 

analyses to present our findings using probability of designing an experiment instead.  
7 This analysis was not in the preregistration. 
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Figure 13 Participants' Study Designs 

Table 9 Mixed Effects Model Testing Probability of Designing an Experiment 

Predictor 
Odds 

Ratio 
95% CI  p 

Block (B) 1.20 0.74, 1.93 .461 

Design Prompt (D) 71.43 34.88, 146.25 <.001 

Block × Design  2.28 0.88, 5.91 .091 

B × D × Intervention 1.94 0.29, 13.05 .495 

Note. Boldface = p < .05.  Results for effects and interactions not listed here are on OSF. 

3.2.4 Causal Structures Task 

After designing a study, participants were asked whether to endorse three causal structures 

(mechanism, reverse causality, confound) as potential explanations for a significant statistical 
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result. In the intervention, participants were taught that they should endorse all three structures for 

an observational study and only the mechanism structure for an experiment.  

We ran separate analyses for the three causal structures, using our standard contrast coding. 

The regression tested for a three-way interaction between design prompt, block, and intervention, 

with endorsement of the structure (possible versus not possible explanation) as the dependent 

variable. The most complex model that converged included a by-subject random slope and random 

intercept for design prompt, and a by-scenario random intercept (Table 10). There were significant 

effects of design prompt for the reverse causality and confound structures but not the mechanism 

structure, which means that at pretest, there was some understanding that a mechanism explanation 

is equally possible for both designs, but reverse causality and confound explanations are more 

likely in observational studies (triangles in Figure 14) and not in experiments (squares).  

The design prompt × block interactions were significant for the reverse causality and 

confound structures, but not the mechanism structure, suggesting learning. Furthermore, both 

interactions were qualified by significant three-way interactions. In the Self Explanation condition, 

at posttest, participants were more likely to endorse reverse causality and confound explanations 

for observational studies (grey triangles in Figure 14) and less likely to endorse these structures 

for experiments (black squares). In the Control condition, the change in posttest judgments for 

observational studies (white triangles) and experiments (white squares) was either nonexistent or 

much smaller than in the Self Explanation condition. 

In sum, our changes to the intervention to explain why random assignment can rule out 

alternative explanations in an experiment but not observational studies were successful, as 

participants in the Self Explanation condition improved. Still, there is additional room for 
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improvement; in particular, posttest endorsement for reverse causality could be higher for 

observational studies and endorsement for a confound could be lower for the experiments.  

 

Figure 14 Endorsement in Causal Diagrams Task 

Table 10 Testing for Differences in Endorsement of Causal Diagrams 

Structure Odds Ratio 95% CI p 

Design Prompt in [Design Prompt × Block × Intervention] 

Mechanism 0.73 0.34, 1.56 .413 

Reverse  0.45 0.34, 0.60 <.001 

Confound 0.63 0.50, 0.80 <.001 

Design Prompt × Block  

Mechanism 1.57 0.92, 2.67 .098 

Reverse  0.40 0.27, 0.60 <.001 

Confound 0.29 0.21, 0.42 <.001 

Design Prompt × Block × Intervention 

Mechanism 1.20 0.41, 3.46 .742 

Reverse  0.13 0.06, 0.29 <.001 

Confound 0.21 0.10, 0.42 <.001 

Note. Boldface = p < .05. Results for effects and interactions not listed here are on OSF. 
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3.3 Discussion 

In Experiment 2, we made several modifications to improve the intervention and test other 

dependent measures. Some of these changes were more successful than others; there was learning 

across multiple measures in the Self Explanation condition, but not always due to the intervention.  

During the intervention, participants successfully learned which causal structures are 

possible explanations for a correlation in an observational study versus an experiment. This was a 

key lesson in the tutorial; we believed that this understanding is fundamental to improving other 

measures of discrimination. The success of the intervention at teaching this point suggests that the 

improvements to the tutorial after Experiment 1 were worthwhile, because participants did not 

perform as well in Experiment 1.   

Additionally, the intervention successfully improved participants’ ability to design 

experiments. Participants in both conditions were quite good at designing observational studies at 

pretest, but only participants the Self Explanation condition improved at designing experiments. 

Designing the correct type of study, like identifying the correct study design in a vignette, requires 

understanding that experiments use random assignment whereas observational studies do not. In 

Experiment 2, we added instructions about how to differentiate between the two designs. This 

likely helped participants when designing experiments at posttest. However, it had no effect on 

participants’ ability to discriminate between study designs when reading vignettes, because both 

groups showed the same amount of improvement at posttest.  

We hoped that the changes to the tutorial would also improve correlation-causation 

discrimination, which was quite weak in Experiment 1. However, only one of the three-way 

interactions was significant in Experiment 2. And like in Experiment 1, the difference in judgments 

for observational studies versus experiments was not very strong. There was room for 
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improvement, and our changes to the intervention did not seem to help much. In Experiment 3, we 

tested whether the intervention would be more successful under different circumstances; 

specifically, hypothetical scenarios that were consistent or inconsistent with participants’ prior 

beliefs.  
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4.0 Experiment 3 

In Experiment 2, there was no evidence that the intervention helped participants learn how 

to identify whether the study design was an observational study or an experiment, and there was 

minimal evidence that the intervention helped participants improve at discriminating between 

correlation and causation. In Experiment 3, we made more improvements to the tutorial, and tested 

the impact of participants’ prior beliefs on correlation-causation discrimination and the 

effectiveness of the intervention.  

First, we modified our approach for some of the instructional material from the tutorial. 

One difference between the intervention in Experiments 1 and 2 and the intervention in Seifert et 

al. (2022) is that they framed making causal judgments about observational studies as a bias, which 

they called “causal theory error”. Although we told students about people’s tendency to 

erroneously make causal judgments about observational studies, we did not name this error, nor 

did we tell them that it was important to avoid making this error; we assumed that the latter was 

implied because the content of the intervention involved learning when people should and should 

not make causal claims based on the design of a study. In Experiment 3, we modified the 

intervention to be more like the one in Seifert et al. (2022), which was successful at reducing causal 

theory error. We added text to the intervention that defined causal theory error and explained that 

participants should avoid making this error. This modification could potentially motivate 

participants to learn about discriminating between correlation and causation, or to apply this 

principle to novel scenarios.  

In addition, we added more explicit instructions to the Experiment 3 intervention that 

outlined the exact steps one should take to reduce the likelihood of causal theory error in reasoning. 
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In Experiment 2, we did not want to be too heavy-handed and over explain each concept; we 

wanted students, at least to some extent, to engage in independent critical reasoning about the 

content and attempt to make connections between concepts. Research on Worked Examples, which 

is the instructional technique most similar to the tutorial portion of the intervention, has found that 

providing too much information in instructional explanations can prevent the learner from 

spontaneously engaging with the material (Richey & Nokes-Malach, 2013). Our reasoning for a 

less “heavy-handed” approach is consistent with this finding. However, because there was little to 

no improvement in correlation-causation discrimination and study design identification following 

the intervention in Experiment 2, this approach was not very successful. In Experiment 3, we 

changed this strategy by including itemized steps for reducing the likelihood of causal theory error: 

1) identifying the design of the study, and then 2) using the study design to make appropriate 

inferences about possible explanations for a statistical relation, which should yield stronger causal 

judgments for experiments than observational studies.  

Second, we added a manipulation to test the effects of participants’ prior expectations about 

the direction of a statistical relationship on their ability to discriminate between correlation and 

causation and whether the Self Explanation intervention was successful. Imagine a scenario in 

which someone believes that taking short breaks during the workday will increase productivity. 

Subsequently they read about a study, either an experiment or an observational study, which found 

that taking short breaks during the workday actually led to a decrease in productivity. How might 

the fact that the reader’s prior beliefs are incongruent with the study findings influence whether 

they believe the study provides strong evidence of a negative causal relationship? For one, if the 

reader thinks that the study findings are implausible because they are belief-incongruent, they may 

be less likely to endorse conclusions that short breaks during the workday decrease productivity. 
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Second, they may be less likely to think the study’s findings support that taking short breaks during 

the workday causes a change in productivity. Third, they may be less likely to believe that if 

someone makes a change in their life (stop taking short breaks to improve productivity), that the 

change will be successful.  

On the one hand, such hypotheses make sense from the perspective that if it one has good 

reasons to hold a belief, a single study likely should not completely overturn their perspective. On 

the other hand, some of the measures we have been studying, such as “To what extent do you think 

that the study findings support the journalist’s conclusion?” and “Do you think that this study 

shows that [taking short breaks during the workday] causes [a decrease in productivity]?” can be 

answered in light of what the study demonstrates about causality rather than necessitating a change 

in one’s worldview based on the findings.  

When learning about a study, at least for studies that are pertinent to one’s life, we believe 

that people will very often have prior beliefs about the likely outcomes of the study. Thus, we think 

it is important to understand how prior beliefs affect the ability to assess the causal support that a 

study provides. Individuals are likely to think more critically about study findings that they believe 

are implausible or do not fit with their expectations about the outcome (Evans & Curtis-Holmes, 

2005; Lord et al., 1979; Nickerson, 1998). When people think that only one outcome is plausible, 

and they hear about an observational study in which the results are incongruent with that outcome, 

they will generate more alternative explanations for that belief-incongruent finding than they 

would for a belief-congruent finding (Michal et al., 2021a). Furthermore, when asked to evaluate 

causal conclusions made by journalists about observational studies, participants were less likely to 

endorse causal conclusions that were incongruent with their prior beliefs. If there are more 

alternative explanations for a statistical relation, it makes sense to think that there is more evidence 



 70 

for a stronger causal relation; at the same time, if one does not believe a causal relationship is 

possible because that would not match their prior beliefs, they may consider alternative reasons 

why two variables are statistically related.  

However, we do not know how participants’ prior beliefs will affect the evaluation of 

evidence from experiments. One possibility is that prior expectations about a study outcome will 

have the same effect when people are deciding whether to make causal inferences for both 

observational studies and experiments. Another possibility is that prior beliefs will have less of an 

impact when making causal judgments about experiments. If someone understands that 

experiments have strong internal validity, and then learns about the results of an experiment in 

which the outcome is incongruent with the person’s prior beliefs, they may be more willing to 

update their prior beliefs based on that new information because the evidence comes from an 

experiment.  

In Experiment 3, participants read and made judgments about observational studies and 

experiments that were either congruent or incongruent with their prior beliefs. We manipulated 

evidence congruency by having participants pick a statement that most closely aligned with their 

expectations about a statistical relationship (e.g., whether taking short breaks during the workday 

increases or decreases productivity) and then randomly assigning them to read a vignette with text 

that was either congruent or incongruent with their prior expectations. Manipulating evidence 

congruency across participants – rather than having the same vignettes be belief-congruent or 

incongruent for each participant – solves two issues. First, because we ask each participant about 

their expectations, and modify the vignettes based on that choice, we can be more certain that 

evidence congruency was successfully manipulated for individual participants and not just on 



 71 

average. Second, this manipulation reduces the possibility of a confound and the possibility of 

other differences across vignettes as the reason for any differences in causal judgments.  

4.1 Methods 

A total of 399 participants were recruited from the Intro Psych subject pool at the 

University of Pittsburgh. All participants passed the attention check; thus, participants were only 

excluded from analyses if there was an error in data collection (N = 20) or they took less than 15 

minutes to complete the study (N = 9), which we believed to be indicative of low effort. The final 

analyses included 370 participants. In Experiment 3, we removed the “design a study task”; the 

only pretest and posttest measures were the correlation-causation discrimination vignettes.  

4.1.1 Prior Belief Manipulation 

In Experiment 3, we added a manipulation to assess the effects of participants’ prior beliefs 

on their correlation-causation discrimination, and whether the intervention mitigated any effects 

of prior beliefs. Thus, the study design for Experiment 3 was a 3 actual design (observational study 

versus explicit experiment versus implicit experiment, within subjects) × 2 block (pre versus post, 

within subjects) × 2 intervention (Control versus Self Explanation, between subjects) × 2 evidence-

congruency (consistent with prior beliefs versus inconsistent, within subjects). Participants made 

judgments about a total of twelve vignettes. They read six vignettes at pretest and posttest, one for 

each combination of actual design and evidence congruency, in a random order. At the end of the 

vignettes, there was either a positive statistical relation or a negative statistical relation between 
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the two variables of interest. We assigned half of the vignettes to conclude with evidence that was 

congruent/consistent with participants’ prior beliefs about the statistical relation, and the other half 

to conclude with evidence that was incongruent/inconsistent. 

We manipulated evidence-congruency by asking participants to make a judgment about 

their prior belief about a statistical relation, and then modifying the vignette so that the evidence 

was either congruent or incongruent with that belief. Participants made judgments about a total of 

twelve vignettes; six vignettes presented in a random order at pretest and at posttest, with one 

vignette for each combination of actual design and evidence congruency. Half of the vignettes 

were assigned to be congruent with participants’ prior beliefs, and the other half were assigned to 

be incongruent with participants’ prior beliefs. People are hesitant to update their prior beliefs after 

learning about new evidence that is incongruent with those prior beliefs, especially if the topic is 

central to their ideology or worldviews (Lewandowsky et al., 2012). Because of this, we designed 

the stimuli so that participants were likely to have expectations about the outcome of the study but 

the outcome was unlikely to be central to their identity or core values (e.g., “Having more daily 

screen time (e.g., watching TV, using a tablet) [improves/worsens] children’s social skills”).  

To assess prior beliefs, we first asked participants if they thought there would be either a 

positive or negative statistical relation between two variables. For example, they were asked 

whether “Exercising close to bedtime improves sleep quality” or “Exercising close to bedtime 

worsens sleep quality”. On the following page, participants rated how strongly they agreed with 

that belief on a scale of 0 (I don’t really have an opinion one way or the other), 1 (somewhat 

agree), or 2 (strongly agree). We used the information from the first question (participants 

believed there would be a positive or statistical relation) to change the text of the vignette so that 

the results were either congruent or incongruent with participants’ prior beliefs. After reading each 
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vignette, participants completed the three correlation-causation discrimination measures, and said 

whether they thought the design was an observational/correlational study or an experiment. 

We conducted two rounds of pilot testing with participants from Amazon Mechanical Turk 

to make sure that the vignettes involved scenarios for which participants believed there would be 

a positive or statistical relationship. We wanted to rule out, to the greatest extent possible, the 

likelihood that participants would not have prior expectations about the statistical relationships for 

the scenarios in our vignettes. During the pilot test, participants selected which one of three 

statements that most closely aligned with their prior beliefs: a positive statistical relation (“Yoga 

increases energy levels”), a negative statistical relation (“Yoga decreases energy levels”), or that 

“I do not have an opinion about these statements one way or the other”. In the first round, 

participants (N = 25) completed this task for 21 different scenarios. In the second round, a new 

group of participants (N = 24) completed the task for 30 scenarios; we retested the scenarios from 

the first round that participants had prior beliefs about and tested some new scenarios to replace 

ones from the first round for which participants had no opinion. After the second round, we 

identified twelve scenarios in which less than 12% of participants had no opinion; we were 

satisfied that most participants in our study would have prior beliefs about these vignettes. 

4.1.2 Intervention 

Participants were randomly assigned to complete either the Self Explanation (N = 178) or 

Control (N = 192) conditions. The Self Explanation intervention was mostly the same as in 

Experiment 2, aside from some edits to improve clarity. There was one key exception, which was 

that we added text that introduced the term “causal theory error”, the idea that people often make 

causal claims about observational studies, and a solution for how to reduce causal theory error. 
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These additions were modeled after Seifert et al. (2022), who found that correlation-causation 

discrimination improved after teaching students about causal theory error and how to reduce bias 

in judgments for observational studies.  

In our intervention, we introduced “causal theory error” at the end of the tutorial (i.e., 

immediately before the two practice problems) by saying, “people often make causal claims about 

findings from observational studies. This is called causal theory error”. Then, we explained that 

there are two steps for reducing causal theory error. First, participants must “figure out whether 

the study is purely observational or an experiment”. Second, they must “consider what causal 

diagrams are possible based on the study design” and were reminded of the causal structures that 

are possible for observational studies versus experiments.  

4.2 Results 

4.2.1 Ability to Correctly Identify the Study Design from Vignettes 

To test if participants could identify the correct study design from the actual design in the 

vignettes, we conducted similar analyses to Experiment 28. To test whether improvement in study 

design discrimination differed across the three interventions, we tested for a three-way interaction 

 

8 In our OSF registration, our analysis plan also included “evidence congruency” as a predictor of 

study design identification. We decided not to include it for two reasons. First, in hindsight, we do 

not have strong justification for why prior beliefs about the direction of the statistical relation 

would affect subjects’ judgments about study design. When we included it in the model, evidence 

congruency had no effect and no interactions with the other variables (all p’s > .05; see OSF for 

results). Second, there were problems with convergence when we included evidence congruency.  
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between actual design, block, and intervention. The most complex model that converged included 

a by-subject random intercept and slope for actual design with correlations removed, and by-

vignette random intercepts (Table 11).  

There was a significant effect of study design for both analyses. This means that at pretest, 

participants could discriminate between both explicit experiments (squares in Figure 15) and 

observational studies (triangles), and implicit experiments (circles) and observational studies. 

There was a significant interaction between actual design and block for the implicit experiment 

versus observational study analysis, which meant that participants got better at identifying the 

correct study design at posttest. More importantly, in both analyses, there were significant 

interactions between actual design, block, and intervention. This means that participants learned 

more during the intervention than control; participants in the Self Explanation group (filled shapes 

in Figure 15) were better at distinguishing both implicit and explicit experiments from 

observational studies at posttest compared to pre, but there was no improvement in the Control 

group. Learning in the Self Explanation group seems mainly driven by an improved ability to 

identify implicit experiments and explicit experiments; there was not much improvement at 

identifying observational studies. In contrast, participants in the Control group actually got worse 

at identifying observational studies at posttest (triangles in Figure 15). 
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Figure 15 Believed Study Design Discrimination 

Table 11 Mixed Effects Models Testing Believed Study Design Discrimination 

 
Explicit Experiment  

vs. Observational Study 

 Implicit Experiment  

vs. Observational Study 

Dependent Measure β 95% CI p  β 95% CI p 

Actual Design 0.26 0.16, 0.44 <.001  0.16 0.09, 0.29 <.001 

Actual Design × Block 0.86 0.63, 1.17 .330  0.65 0.46, 0.91 .013 

A × B × Intervention 0.27 0.14, 0.50 <.001  0.18 0.09, 0.36 <.001 

Note. Boldface = p < .05. A = Actual Design; B = Block. Results for effects not listed here are 

available on OSF. 
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4.2.2 Correlation-Causation Discrimination for the Vignettes 

We conducted similar analyses as in Experiment 2, but this time included evidence 

congruency (consistent or inconsistent with prior beliefs) as an additional predictor. We used 

binary contrast codes (-0.5 = evidence is incongruent with prior beliefs versus 0.5 = evidence is 

congruent with prior beliefs).9 The models tested for a four-way interaction between design, block, 

evidence congruency, and intervention (Table 12 and Table 13). The most complex model that 

converged included a by-subject random slope and intercept for the design × block interaction and 

evidence congruency, and a by-vignette random intercept. Not all possible predictors or 

interactions are included in Table 12 and Table 13. This decision was made for ease of 

interpretation purposes because we tested for a complex four-way interaction. We only included 

the most important predictors in the main paper, meaning those that aligned with our registered 

hypotheses; our registered hypotheses and full set of results are available on OSF. 

4.2.2.1 Efficacy of the Intervention on Correlation-Causation Discrimination 

In this section we report findings that appear in Rows 1-3 of Table 12 and Table 13. There 

were significant effects of actual design and believed design across all three measures and analyses 

(Row 1 of Table 12 and Table 13). This means that at pretest, participants could discriminate 

between observational studies (triangles in Figure 16) and both types of experiments (circles and 

squares in Figure 16). Additionally, almost all the actual design × block and believed design × 

block interactions were significant, which means that participants got better at discriminating 

 

9 We also ran analyses using continuous contrast codes (-0.5 = strongly incongruent; -0.25 = somewhat incongruent; 

0 = no opinion; 0.25 = somewhat congruent; 0.5 = strongly congruent) that we calculated using participants’ judgments 

about the strength of their prior beliefs. The results were very similar and so we only report the results from binary 

contrast codes; see OSF for all results. 
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correlation from causation, both based on the actual design and believed design, and for both 

explicit and implicit experiments (Row 2 of Table 12 and Table 13). The only exception was that 

there was no interaction between actual design and block for the plan success measure in either 

analysis. 

Most importantly, the three-way interaction between actual design, block, and intervention 

tests whether the improvement in correlation-causation discrimination was larger in the Self 

Explanation condition than Control. The interaction was significant for almost all measures in both 

analyses (Row 3 of Table 12 and Table 13). As seen in Figure 16, the means for the experiments 

vs. observational studies got farther apart at post than at pre for the Self Explanation group (filled 

in shapes). However, in the Control group (white shapes), the means remained fairly flat from pre 

to post and did not get farther apart. The only exception was that there was no believed design × 

block × intervention interaction for the plan success measure. For the most part, however, there 

was clear evidence that the intervention worked.  

4.2.2.2 Effects of Prior Beliefs on Correlation-Causation Discrimination 

This section reports on the influence of prior belief on correlation-causation discrimination; 

the results appear in Rows 4 – 8 of Table 12 and Table 13. First, the main effect of prior belief was 

significant for all three measures and analyses (Row 4 of Table 12 and Table 13). At pretest, 

judgments were more causal for studies in which the evidence was congruent with participants’ 

prior beliefs (diamonds in Figure 17) than judgments for evidence-incongruent studies (triangles). 

Specifically, participants’ beliefs about the plausibility of the direction of a finding influenced their 

judgments about whether the results provide causal evidence (supported the journalist’s causal 

conclusion, whether implementing an intervention based on the results would have the outcome 

implied by the results, and whether the study shows that the independent variable causes the 
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dependent variable). Furthermore, the regression weights reveal the participant’s prior belief about 

the plausibility of the finding usually had a considerably larger influence on these judgments about 

evidence for causality than whether the study was actually an experiment or observational study 

and whether they believed that the study was an experiment or observational study.  

Second, Row 5 of Table 12 and Table 13 reports the interaction of evidence congruency, 

block, and intervention. One of out of the six of these tests was significant for the actual design 

regression, and two out of three were significant for the believed design regression; all the 

significant ones were negative. These negative interactions can be interpreted as the effect of prior 

belief decreasing from pre to post, primarily in the Self Explanation condition. To help interpret 

this finding, the evidence congruency × block × intervention interactions can be compared to the 

actual design × block × intervention interactions. The latter were all significant, and positive, 

evidence of becoming more influenced by the actual study design due to the intervention. In 

contrast, the former were sometimes significant and negative, evidence of becoming somewhat 

less influenced by one’s prior beliefs due to the intervention. In sum, this is evidence of a desirable 

form of learning to focus less on one’s prior beliefs when making causal claims. 

Third, none of the higher-level interactions involving evidence congruency and believed 

study design were significant (Rows 6-8 of Table 13). And very few of the higher-level interactions 

involving evidence congruency and actual study design were significant (Rows 6-8 of Table 12), 

with the following exception: Two of the six evidence congruency × actual study design 

interactions in Row 6 of Table 12 were significant. This means that at pretest, correlation-causation 

discrimination was better when the study findings were congruent with participants’ beliefs and 

worse when they were incongruent; the difference in judgments for observational studies and 

explicit experiments was greater for the evidence-congruent (diamonds in Figure 17A) than the 
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evidence-incongruent vignettes (triangles) at pretest. This, like the first finding, provides 

additional evidence that prior beliefs can impact causal claims. 

 
 

Figure 16 Correlation Causation Discrimination by Study Design 
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Figure 17 Correlation Causation Discrimination by Study Design and Evidence Congruency  
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Table 12 Mixed Effects Model Testing for Correlation-Causation Discrimination by Actual Design 

 
Explicit Experiment  

vs. Observational Study 

 Implicit Experiment  

vs. Observational Study 

Dependent Measure β 95% CI p  β 95% CI p 

1. Actual Study Design     

Journalist’s Conclusion 0.23 0.06, 0.39 .006  0.20 0.06, 0.34 .005 

Plan Success 0.41 0.14, 0.69 .003  0.43 0.15, 0.70 .002 

Causal Conclusion 0.28 0.07, 0.49 .009  0.33 0.17, 0.49 <.001 

2. Actual Study Design × Block     

Journalist’s Conclusion 0.13 0.02, 0.24 .020  0.22 0.11, 0.33 <.001 

Plan Success -0.03 -0.16, 0.10 .684  0.06 -0.06, 0.18 .313 

Causal Conclusion 0.11 0.01, 0.22 .038  0.16 0.06, 0.27 .003 

3. Actual Study Design × Block × Intervention     

Journalist’s Conclusion 0.45 0.23, 0.67 <.001  0.51 0.29, 0.73 <.001 

Plan Success 0.35 0.10, 0.61 .007  0.40 0.16, 0.64 .001 

Causal Conclusion 0.58 0.37, 0.80 <.001  0.52 0.31, 0.74 <.001 

4. Evidence Congruency     

Journalist’s Conclusion 0.51 0.42, 0.59 <.001  0.45 0.37, 0.53 <.001 

Plan Success 0.47 0.38, 0.55 <.001  0.37 0.29, 0.46 <.001 

Causal Conclusion 0.63 0.54, 0.71 <.001  0.53 0.45, 0.61 <.001 

5. Evidence Congruency × Block × Intervention     

Journalist’s Conclusion -0.18 -0.39, 0.03 .092  -0.24 -0.45, -0.03 .026 

Plan Success 0.04 -0.18, 0.27 .720  -0.03 -0.26, 0.20 .801 

Causal Conclusion -0.17 -0.38, 0.04 .113  -0.11 -0.32, 0.09 .273 

6. Evidence Congruency × Actual Study Design     

Journalist’s Conclusion -0.01 -0.16, 0.14 .854  -0.12 -0.27, 0.02 .098 

Plan Success 0.29 0.13, 0.45 <.001  0.10 -0.07, 0.26 .239 

Causal Conclusion 0.17 0.02, 0.32 .028  -0.03 -0.17, 0.12 .704 

7. Evidence Congruency × Actual Study Design × Block 

Journalist’s Conclusion -0.03 -0.24, 0.18 .781  0.03 -0.18, 0.24 .798 

Plan Success -0.12 -0.34, 0.11 .315  -0.04 -0.27, 0.19 .740 

Causal Conclusion -0.16 -0.37, 0.05 .137  -0.02 -0.23, 0.18 .823 

8. Evidence Congruency × Actual Design × Block × Intervention 

Journalist’s Conclusion 0.25 -0.17, 0.68 .241  0.14 -0.27, 0.56 .501 

Plan Success -0.05 -0.50, 0.41 .839  -0.19 -0.65, 0.27 .424 

Causal Conclusion -0.34 -0.76, 0.09 .118  -0.22 -0.63, 0.19 .285 

Note. Boldface = p < .05. Results for effects and interactions not listed here are on OSF.  
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Table 13 Mixed Effects Model Testing for Correlation-Causation Discrimination by Believed Design 

Dependent Measure β 95% CI        p 

1. Believed Study Design 

Journalist’s Conclusion 0.12 0.05, 0.20 .001 

Plan Success 0.10 0.03, 0.17 .005 

Causal Conclusion 0.22 0.14, 0.29 <.001 

2. Believed Study Design × Block 

Journalist’s Conclusion 0.18 0.07, 0.28 .001 

Plan Success 0.13 0.03, 0.22 .013 

Causal Conclusion 0.13 0.03, 0.23 .010 

3. Believed Study Design × Block × Intervention 

Journalist’s Conclusion 0.44 0.24, 0.65 <.001 

Plan Success 0.30 0.10, 0.50 .003 

Causal Conclusion 0.39 0.18, 0.59 <.001 

4. Evidence Congruency 

Journalist’s Conclusion 0.46 0.39, 0.53 <.001 

Plan Success 0.45 0.38, 0.52 <.001 

Causal Conclusion 0.08 0.03, 0.13 .001 

5. Evidence Congruency × Block × Intervention 

Journalist’s Conclusion -0.19 -0.35, -0.02 .026 

Plan Success -0.01 -0.19, 0.17 .905 

Causal Conclusion -0.21 -0.37, -0.05 .012 

6. Evidence Congruency × Believed Study Design  

Journalist’s Conclusion -0.01 -0.13, 0.11 .874 

Plan Success -0.06 -0.19, 0.07 .392 

Causal Conclusion -0.06 -0.18, 0.06 .339 

7. Evidence Congruency × Believed Study Design × Block 

Journalist’s Conclusion -0.07 -0.24, 0.10 .400 

Plan Success 0.03 -0.15, 0.22 .725 

Causal Conclusion 0.02 -0.15, 0.19 .807 

8. Evidence Congruency × Believed Design × Block × Intervention 

Journalist’s Conclusion -0.06 -0.40, 0.28 .714 

Plan Success -0.14 -0.51, 0.24 .469 

Causal Conclusion 0.12 -0.21, 0.46 .466 

Note. Boldface = p < .05. Results for effects and interactions not listed here are on OSF. 
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4.3 Discussion 

In Experiment 3, we made improvements to the intervention and tested the effects of 

participants’ prior beliefs on correlation-causation discrimination. There were a couple key 

findings. 

First, the improvements we made to the intervention were successful. In the Self 

Explanation condition, intro psych students became better at identifying whether a vignette 

described an observational study or an experiment, and at discriminating between correlation and 

causation. This contrasts with what we found in Experiment 2, in which there was no evidence that 

the intervention improved students’ ability to identify observational studies versus experiments, 

and there was minimal evidence that the intervention improved correlation-causation 

discrimination. In the general discussion, we discuss some possible reasons why students may have 

learned from the intervention in Experiment 3 than from the previous two versions.  

Second, we found that participants’ beliefs about the plausibility of the study outcome 

affected their judgments for both observational studies and experiments. The effect of prior beliefs 

on judgments for observational studies were consistent with Michal et al. (2021a), and we also 

extended these findings to experiments; for both observational studies and experiments, people are 

more likely to endorse causal claims about statistical relations when the results are consistent with 

their expectations. At pretest, prior beliefs had a greater impact on participants’ evaluation of the 

study evidence than the actual design of the study. However, after the intervention, the influence 

of prior beliefs lessened, at least for some of the analyses. This coincided with improved 

correlation-causation discrimination based on actual and believed study design in the Self 

Explanation condition, which suggests that participants may have started placing less weight on 
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their prior beliefs and more emphasis on the study design when reasoning about causality from 

study findings.  

Additionally, our study is the first to show the impact of prior beliefs on correlation-

causation discrimination, because we could directly compare participants’ evaluation of 

experiments and observational studies when the evidence was either congruent or incongruent with 

their prior beliefs. For the plan likelihood and causal conclusion measures, in which participants 

judged the likelihood of a successful intervention based on the study findings and how strongly 

the study supported a causal claim, there was a significant interaction between evidence 

congruency and actual design. Correlation-causation discrimination based on actual design was 

better at pretest for the evidence-congruent vignettes than for evidence-incongruent vignettes. This 

is the first evidence that prior beliefs can have at least some influence on people’s ability to 

discriminate between correlation and causation.  
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5.0 Discussion 

Across three studies, we tested an intervention that uses causal diagrams to improve 

undergraduate students’ knowledge of key research methods concepts and skills. There were three 

key findings. 

First, we found that our intervention improved students’ understanding across multiple 

measures. Previous work has studied the extent to which people infer causality from observational 

studies (Seifert et al., 2022). However, because people were not also asked to evaluate evidence 

from experiments, which provide more evidence for causation, there is a gap in the current 

literature about the extent to which people understand when statistical results do and do not imply 

causation. Our study showed that a well-tailored intervention that teaches students about 

alternative explanations for a statistical relation improved their ability to discriminate between 

correlation and causation. Additionally, the intervention improved students’ ability to design 

experiments, a critical research skill, which we tested in a novel task in which students must design 

the correct type of study (observational or experimental) given a prompt. Another beneficial 

outcome, which we believe is critical to the two previous outcomes, is that the intervention 

improved students’ ability to identify if a study was an experiment or an observational study. 

Second, we tested different methods for teaching students about why correlation does not 

imply causation. In Experiment 1, we compared three different types of practice (Analogical 

Comparison, Worked Example, and Self Explanation). Whereas the intro psych students learned 

the most from Self Explanation practice, research methods students improved the least in this 

condition. Because students in intro psych classes have less foundational knowledge, these results 

suggest that prior knowledge may play a role in the effectiveness of certain interventions. Another 
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consideration is the extent to which students require extensive handholding during learning. 

Although intro psych students learned the most in the Self Explanation condition, which requires 

more independent practice than the other two conditions, students learned more when Self 

Explanation practice was preceded by step-by-step procedural instructions for how to stop making 

erroneous causal judgments about observational studies.  

Third, participants’ prior expectations about the likelihood of a finding had a strong 

influence on their judgments of whether the study should be interpreted as providing causal 

evidence for both observational studies and experiments. This is an expansion on prior research 

(Michal, Seifert, et al., 2021), which has only studied the effects of prior beliefs on people’s 

judgments of whether observational studies warrant causal claims. Additionally, we found that 

correlation-causation discrimination is better when study evidence is congruent with people’s prior 

beliefs. Most importantly, our intervention led to a reduction in the influence of participants’ prior 

beliefs and an increase in the influence of the study design on their judgments of whether the 

findings support a causal relationship.  

Overall, though the intervention could still be improved, our findings provide clear 

evidence that it helps students learn to discriminate correlation from causation. 

5.1 Lessons Learned About Improving Correlation-Causation Discrimination 

Across three studies, we made iterative changes to the intervention, and across the three 

studies the intervention appeared to become more successful. During this process, we learned three 

main lessons about factors that we think are important to include in teaching correlation-causation 

discrimination. These lessons were mainly from cross-study comparisons rather than perfectly 
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controlled comparisons within an experiment, so we cannot claim for certain that these were the 

causal factors that led to success in Experiment 3, but they are our best guesses.  

The first lesson we learned was that students may struggle with identifying if a study is an 

experiment versus an observational study, which can prevent accurate correlation-causation 

discrimination.  The second lesson we learned was to motivate students not to make a “causal 

theory error”. The third lesson we learned was that it seems necessary to be extremely explicit 

(more explicit than what we initially thought was necessary) about initial steps for having 

correlation-causation discrimination: 1) identifying the study design, and 2) considering the 

possibility of alternative explanations for the relation based on the study design.  

Prior to conducting any of the studies, we conceptualized correlation-causation 

discrimination as occurring in two steps. The first step in deciding whether a statistical relationship 

is evidence of a causal relationship is to identify whether the design is an observational study or 

an experiment. In the second step, the reader can use that information to decide whether alternative 

explanations are possible for the statistical relation. If it is an observational study, there are 

potentially two alternative explanations for a statistical relation, a confound and reverse causality, 

which means that one should be hesitant to make a causal claim. In contrast, an experiment 

provides stronger evidence for causality because random assignment reduces the likelihood of a 

confound, and the temporal precedence inherent in manipulating the independent variable 

eliminates the possibility of reverse causality. Thus, a causal claim is more warranted for 

experiments than it is for observational studies. 

Our first lesson came from Experiment 1. In Experiment 1, we focused primarily on 

improving knowledge of the second step in correlation-causation discrimination. We made the 

intentional decision to mention the difference between observational studies and experiments, but 
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not to provide extensive details about how to determine the design of a study from a written 

description. This was because we wanted students to engage in some independent critical thinking 

and not overexplain each concept covered in the tutorial. Furthermore, we believed this was a task 

that students would be able to complete without extensive handholding; there was an obvious 

difference between the vignettes that participants could use to identify the study designs, in which 

all the experiments used the phrase “random assignment” whereas the observational studies did 

not. At pretest in Experiment 1, only 60% of intro psych students and 75% of research methods 

students correctly identified experiments as experiments. In general, they were more likely to say 

that a study was an experiment if it was an experiment versus if it was an observational study; 

however, this performance was clearly not at ceiling in either sample. Participants got better at this 

task with practice, there was still considerable room for improvement on average and the 

intervention did not help. Furthermore, in Experiment 1, we found that participants’ correlation-

causation discrimination was related to their beliefs about the study design, which was good news 

because it was evidence that the students were successfully implementing Step 2, but not Step 1. 

Thus, in Experiment 2 we added an explanation about how to look for language that refers 

to whether there is implicit or explicit random assignment to conditions in the study. 

Unfortunately, this additional instruction still did not improve students’ ability to identify the study 

design and had minimal effects on correlation-causation discrimination. That said, the intervention 

was successful at helping students design experiments versus observational studies and 

understanding which causal structures (mechanism, reverse causality, confound) are possible 

explanations for a statistical relation in an experiment versus an observational study. Both findings 

suggest that the intervention was working to some extent, although not necessarily for improving 

correlation-causation discrimination. 
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The second and third lessons came from the failure of the intervention in Experiment 2 to 

improve correlation-causation discrimination, and the eventual success in Experiment 3. In 

Experiment 3, we decided to make two additional changes to the intervention. First, we looked 

back at the intervention from Seifert et al.’s (2022) study, which was successful at reducing causal 

inferences for observational studies. One thing they did was tell participants to avoid making a 

“causal theory error,” and explained that there is a tendency for people to make an error in 

reasoning where they make causal claims about observational studies. Second, we even more 

clearly listed the two steps for correlation-causation discrimination, “First, figure out whether the 

study is purely observational or an experiment … Second, consider what causal diagrams are 

possible based on the study design”. These changes were worthwhile, because after the 

intervention, students got better at identifying whether the design was an observational study or an 

experiment, and also at discriminating correlation from causation (making stronger causal 

judgments for experiments than for observational studies). 

 Because we made both modifications to the intervention simultaneously, it is possible that 

either modification, or some combination of the two, is why the intervention was successful in 

Experiment 3. The second lesson we learned has to do with the first modification – naming the 

phenomenon of causal theory error during the intervention. In Experiment 3, we taught students 

about “causal theory error”, why it was important to avoid, and the steps they could take to reduce 

the likelihood of making this error. In this way, we framed causal theory error as an error students 

could learn to avoid making, and that students can develop greater competency for critical 

scientific reasoning skills. When students have a greater sense of self-efficacy or feel more 

confident that they can learn and achieve their goals, they are more motivated to learn compared 

to students who are less confident in their abilities (Pintrich, 2003; Pintrich & Schunk, 2002). Thus, 
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in our study, there are two potential sources of motivation in Experiment 3 – that making causal 

judgments for correlational studies is an error in reasoning (which students would likely want to 

avoid), and that they are able to learn how to avoid this error. Increased motivation to learn could 

also explain why we saw improved study design identification in Experiment 3 but not Experiment 

2 – although Experiment 2 included very detailed instructions for how to identify observational 

studies versus experiments from text, we did not include the potentially motivating information 

about causal theory error. 

The third lesson we learned was that to improve correlation-causation discrimination is that 

it may be necessary to be extremely explicit about the steps the reader must take to reduce causal 

theory error. Breaking problems down into these kinds of smaller subgoals can facilitate problem 

solving during learning (Catrambone, 1998), which would explain why explicitly stating that there 

are two steps to improving correlation-causation discrimination, and these are the order to 

complete them in, would help students get better at correlation-causation discrimination. During 

the interventions in Experiment 1 and 2, students learned these subgoals (identifying the study 

design, considering the possibility of alternative explanations) but we did not provide them with 

these steps in a numbered list. In Experiment 3, we learned that highlighting these two skills as 

ordered steps for reducing causal theory error may be critical for improving correlation-causation 

discrimination.  

Though we think that the three lessons mentioned above are likely the most responsible for 

the success of the intervention in Experiment 3, there are also some other factors that may have 

made a difference. First, all versions of the interventions in our experiments relied on causal 

structures to teach about alternative explanations for a correlation, which is similar to Seifert et al. 

(2022). We suspect that causal diagrams are a useful tool for teaching correlation-causation 



 92 

discrimination, though we do not know of any studies that have compared it to another form of 

instruction.  

Second, in Experiment 3, we also asked participants to state their expectations about the 

outcome of a study and included vignettes that were sometimes consistent and sometimes 

inconsistent with their expectations. It is possible that these procedures may have led participants 

to be more aware of their prior beliefs and possibly encouraged them to not use their prior beliefs 

and instead use the study design when making judgments about causality.  

We hope other researchers and educators might incorporate these findings when designing 

interventions that target learning about correlation and causation (Michal, Seifert, et al., 2021), 

and perhaps other important skills like the ability to discriminate between science and 

pseudoscience (McLean & Miller, 2010) and critical thinking more generally (Tiruneh et al., 

2014), among others.  

5.2 Undergraduate Students’ Ability to Design their Own Studies 

In addition to the correlation-causation discrimination measures, we tested a novel task that 

probed students’ ability to design both observational studies and experiments. Prior work, 

primarily in the biological sciences, has studied students’ ability to design robust experiments 

(Brownell et al., 2014; Shanks et al., 2017; Sirum & Humburg, 2011) but not their ability to design 

experiments and observational studies. Thus, we do not know much about students’ ability to 

design observational studies, a common paradigm in all domains of research. The APA suggests 

that undergraduate psychology majors should be able to design both correlational studies and 

simple between-subjects experiments after taking multiple lower-level psychology courses 
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(Halonen et al., 2013). Therefore, we thought it was important to assess undergraduate psychology 

students’ ability to design both types of studies, not just experiments.  

In the current paper, students read a prompt that described a hypothetical statistical relation; 

they were randomly assigned to design either an observational study or an experiment to test the 

outcome. To be successful at this task, students must understand the critical difference between 

the two designs – that experiments use random assignment to conditions, whereas observational 

studies do not. This is the same foundational knowledge required for when students identified the 

design of a hypothetical study after reading a short vignette. Thus, both tasks require the student 

to be able to discriminate between the two types of study designs. The “design a study” task, 

however, is a more advanced test of this ability, because it requires more independent and creative 

thinking for how to measure or manipulate variables.  

In Experiment 2, at pretest, participants were quite good at designing observational studies 

but not experiments. Students successfully designed an observational study almost every time they 

were asked to at pretest (98%), whereas they were less successful at designing experiments (27%). 

We can compare this performance to the study design identification task in the vignettes at pretest, 

in which students correctly identified experiments in 63% of cases and were even more successful 

at identifying observational study designs in the vignettes (88%). Although both tasks require 

understanding that only experiments use random assignment, these results show that designing 

studies is a more challenging application of that principle. However, the intro psych students did 

show some ability to discriminate between the two designs for the design a study measure at 

pretest, because they were more likely to design an experiment when told to design an experiment 

versus an observational study. Still, there was obvious room for improvement. 
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Critically, we found that our intervention helped students get better at designing 

experiments. After the intervention, participants in the Self Explanation condition successfully 

designed an experiment when told to do so in 42% of cases, meaning there was a 15% improvement 

from pretest to posttest. One thing that we changed in Experiment 2 was that we explained how to 

identify study designs in vignettes by determining whether random assignment was used or not. 

This change was unsuccessful for improving students’ ability to identify studies from pre-written 

descriptions, but it may have helped them when designing their own. Additionally, they may have 

benefitted from seeing our examples of hypothetical observational studies and experiments during 

the intervention. For each example, we reminded students why the study design was an 

observational study or an experiment by pointing out how the text either referenced random 

assignment to conditions or did not.  

It is possible that any of these parts – telling students how to identify the design of a study 

in a text or providing examples of observational studies versus experiments – may have helped 

students get better at designing their own experiments. However, they ultimately require even more 

scaffolding or instruction; when prompted to design an experiment after the intervention, most 

students (58%) could not, and did not include random assignment to conditions in their designs. 

In Experiment 3, we found that telling students about “causal theory error” and providing the exact 

steps for reducing causal theory error may have helped improve study design identification from 

pre to post. Perhaps these changes might also motivate or help students to discriminate between 

study designs when designing their own experiments. Future studies could test whether this 

method is successful for this measure as well, which is a critical but challenging research methods 

skill for undergraduate psychology students to master.  
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5.3 Implications for Theories about Prior Beliefs 

In the current study, there were three different measures that we used to probe how students 

evaluated the findings from observational studies versus experiments – whether there is sufficient 

support for a journalist to make a causal conclusion based on the study findings, whether the study 

findings support a causal conclusion about the statistical relationship, and whether implementing 

changes in one’s life to elicit a favorable outcome based on the results of the study would be 

successful. All three measures were highly influenced by students’ prior expectations about the 

outcome of a study; students drew stronger causal conclusions about vignettes in which the 

research findings were congruent with their prior expectations about the statistical relationship. 

For example, if they believed there would be a positive relationship between exercising close to 

bedtime and sleep quality, they were more likely to justify a causal claim for the results of an 

observational study or experiment showed a positive relationship between the variables (evidence-

congruent) instead of a negative relationship (evidence-incongruent).  

Our findings about how prior beliefs influence judgments of causality is consistent with 

previous research, which shows that people tend to make stronger causal inferences about 

correlational data that is consistent with their worldview or prior beliefs (Evans & Curtis-Holmes, 

2005; Lord et al., 1979; Nickerson, 1998). However, this research has focused on the effects of 

prior beliefs on judgments about observational studies, whereas people must often draw inferences 

from experiments as well. Our study expanded upon the previous research to show that students 

not only weigh prior expectations when evaluating findings from observational studies (Michal, 

Seifert, et al., 2021), but also when making judgments about the outcome of an experiment.  

Furthermore, because we asked participants to evaluate findings from both observational 

studies and experiments, we were able to directly compare regression weights to assess the 
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magnitude of the effect that prior beliefs and study design have on participants judgments for 

observational studies versus experiments. At pretest, people were more likely to rely on their prior 

beliefs than study design to decide whether they should infer causality from a statistical relation. 

However, our intervention reduced bias due to prior beliefs at posttest; during the intervention, 

participants were taught to pay more attention to the design of the study when making causal 

judgments, and in doing so, seemed to pay less attention to their own prior beliefs. 

One of the main theories in the prior belief literature is a dual account of reasoning (Evans 

& Curtis-Holmes, 2005; Nickerson, 1998). When people encounter a study result that they believe 

to be implausible and must decide whether that result justifies a causal claim, they will engage in 

a more analytical reasoning approach and generate alternative reasons for the statistical relation. 

If the reader can identify alternative explanations for the study outcome, and thereby explain the 

reason for the implausible result, they may not have to change their perspective about the 

relationship between the two variables. We found that prior beliefs affected judgments for both 

observational studies and experiments, which means that they may not have considered study 

design as a factor in whether such alternative explanations are even possible. However, our 

intervention helped students in the Self Explanation condition get better at using study design to 

make judgments about causation, instead of being primarily motivated by their prior beliefs.  

The question becomes, how did our intervention reduce reliance on prior beliefs? It is 

notable that this intervention was able to reduce such a strong influence on reasoning about causes, 

so how did the intervention motivate them to think more about study design when making causal 

judgments? One possibility, as we discussed in the previous section about lessons learned, was 

that students may have been more motivated to learn because of how we framed “causal theory 

error” as a bias that should be avoided and can be avoided by following a two-step procedure. This 
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motivation may have also helped students overcome the tendency to be biased by prior 

expectations about the statistical relationship and incorporate the consideration of study design; 

this means that students may have been more likely to consider causal claims about belief-

incongruent experiments and think more critically about making causal claims for belief-congruent 

observational studies.  

5.4 Implications for Theories about Instructional Techniques 

One of the main goals of Experiment 1 was to compare methods of instruction as means of 

improving correlation-causation discrimination and students’ ability to recognize whether a study 

was an experiment or an observational study from text. For intro psych students, the Self 

Explanation condition seemed to be better for improving correlation-causation discrimination 

based on actual study design, compared to the Worked Example condition. However, there was 

little evidence that the interventions differentially affected students’ ability to discriminate 

between believed observational studies and believed experiments or their ability to identify the 

study designs in vignettes. Thus, the benefits of Self Explanation in the intro psych class were 

limited to improving correlation-causation discrimination by actual design, and for the most part 

only found when comparing Self Explanations with Worked Example instruction.  

Conversely, the research methods students seemed to learn more from the Worked 

Example and Analogical Comparison interventions. However, these differences were not always 

stable. For example, the Analogical Comparison condition seemed to be better than Self 

Explanation at improving correlation-causation discrimination by believed design, and the Worked 

Example condition seemed to be better than Self Explanation at improving correlation-causation 
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discrimination by actual design. In sum, different interventions worked better for the two samples, 

and within each sample, the effects of the interventions were not always stable across the analyses. 

One question was whether some of the differences in performance across the interventions 

could be explained by theory, and the mechanisms of these instructional methods for facilitating 

learning. We found more evidence that the Self Explanation intervention helped improve students’ 

understanding in intro psych, compared to the other two conditions. However, we only found these 

benefits when looking at analyses of correlation-causation discrimination that used actual design 

and not believed study design as a predictor. At pretest, the difference in intro psych students’ 

judgments for experiments versus observational studies was greater when comparing judgments 

based on participants’ beliefs about design, rather than the actual designs in the vignettes. This 

meant that correlation-causation discrimination was not as good at pretest if analyzing by actual 

study design than by believed study design for the intro psych sample. Because Self Explanation 

instruction helps the learner identify gaps in their own knowledge or understanding (Chi, 2013), 

the Self Explanation intervention may have led to more learning (compared to the other two 

conditions) for correlation-causation discrimination by actual study design, because students 

struggled with this at pretest.  

It is also possible that some of these differences are not meaningful, because for the most 

part, the three instructional methods seemed to work quite similarly. Although we believed there 

was enough evidence that Self Explanation somewhat improved correlation-causation 

discrimination for the intro psych sample, the other interactions were too inconsistent across the 

measures and samples to identify stable patterns that suggest different instructional methods are 

better for certain tasks. In Experiment 2, we tested an updated verison of the Self Explanation 

intervention versus a Control condition, and found little evidence of learning during the 
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intervention. We did, however, find evidence of learning after Experiment 3, which mostly 

involved edits to the text in the tutorial rather than the practice problems. Recall in Experiment 1, 

the tutotrial text was the same for the Worked Example, Analogical Comparison, and Self 

Explanation conditions; the key difference was how participants completed the practice problems. 

As such, it would be interesting to once again test for different effects of the instructional methods 

now that we have made successful revisions to the tutorial.  

5.5 Future Directions for Improving the Intervention and Tailoring it to Different 

Populations 

In Experiment 1, we compared the effectiveness of Self Explanation, Worked Example, 

and Analogical Comparison interventions at improving correlation-causation discrimination for 

intro psych students and research methods students. If intro psych students had less prior 

knowledge at pretest, this could potentially explain why the Self Explanation condition was more 

effective for this sample in some of the comparison analyses. Admittedly, we should be careful 

not to make strong generalizations from cross-sample comparisons of prior knowledge. However, 

there were some fairly clear differences between the two groups, across a few measures.  

At pretest, intro psych students had worse pre-test correlation-causation discrimination 

than research methods students, and they were not as good at identifying the type of study design 

in vignettes. Intro psych students were also more likely to make causal claims about vignettes that 

they thought were observational studies (39%) compared to the research methods sample (31%), 

and they made fewer causal claims about vignettes they thought were experiments (65%) 

compared to the research methods sample (74%). Thus, at pretest, intro psych students were less 



 100 

advanced than research methods students at skills like identifying the correct study designs and to 

some extent, discriminating between correlation and causation. Because there were differences at 

pretest, this opens the possibility that differences in prior knowledge led to some interventions 

having a bigger impact than others.  

In Experiments 2 and 3, we decided to focus on the Self Explanation intervention, and only 

collected data from samples of intro psych participants. Although the intervention in Experiment 

2 was not successful at improving correlation-causation discrimination, our modifications to the 

intervention in Experiment 3 seemed effective because students appeared to get better at 

discriminating between correlation and causation at posttest. An alternative explanation for why 

there was greater improvement in correlation-causation discrimination after the intervention in 

Experiment 3, however, is that there was something inherently different about the sample of 

participants in Experiment 3 (data collected during the Spring 2022 semester) compared to the 

sample of participants in Experiment 2 (data collected during the Fall 2021 semester).  

When we compared participants’ pretest performance across studies, we realized that the 

participants in Experiment 2 may have had more relevant prior knowledge. At pretest, fewer intro 

psych students made causal claims about observational studies in Experiment 2 (33%) than 

students in Experiment 3 (53%), but they made an equal number of causal claims about 

experiments in Experiment 2 (68%) and Experiment 3 (67%). This means that before the 

intervention, students in Experiment 3 were more likely to make a causal theory error than in 

Experiment 2. And, if participants in Experiment 3 had more to learn about discriminating between 

correlation and causation at pretest, this could explain why the intervention helped them improve 

at posttest. Thus, the intervention we designed for Experiment 3 may be most effective for students 

who have less prior knowledge.  



 101 

If the current intervention is only effective for students with a certain amount of prior 

knowledge, then tailoring the intervention to reach others with more or even less knowledge may 

help to widen the reach of its impact. In Experiment 3, students seemed to have less prior 

knowledge or correlation-causation discrimination abilities than the participants in Experiment 2, 

but they were still able to somewhat discriminate between observational studies and experiments. 

However, the adults in Bleske-Rechek et al. (2015) had much lower levels of correlation-causation 

discrimination, and they were just as likely to make causal judgments about observational studies 

as they were for experiments. In the future, we could potentially test the intervention with groups 

of varying levels of prior knowledge to see the boundary conditions of effectiveness for the 

intervention in Experiment 3; perhaps the intervention would also be successful for participants 

like those in Bleske-Rechek et al. (2015), who were equally willing to make causal judgments 

about observational studies and experiments. Alternatively, participants with less prior knowledge 

may require even more foundational knowledge for the intervention to be effective.  

One concern is that providing too much redundant information to participants with 

background knowledge will have no effect on learning. This may be why there was no 

improvement in Experiment 2; the instruction may have been too heavy-handed for a sample with 

more advanced levels of prior knowledge. When students are given more instructional information 

than needed, they may not spontaneously generating their own explanations about the content or 

engaging with the material more generally, which could impede learning (Richey & Nokes-

Malach, 2013). Instead, the amount of instructional explanations should be as minimal as possible, 

but tailored for more naïve learners who may require more detailed explanations during the 

preliminary stages of learning (Renkl, 2002).  
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More advanced learners may benefit from strategies that involve less scaffolding in the 

sense of heavy-handed instructional explanations. In the future, we plan to test another iteration of 

the intervention in Experiment 3 that includes more practice problems, but with feedback. In 

Experiment 2, there was some evidence of learning in both the Control and Self Explanation 

groups, which means that people got better at discriminating between correlation and causation 

simply due to repeated practice with the measures. We did not see learning from practice in 

Experiment 3, presumably because the students did not have enough foundational knowledge to 

benefit from practicing with more examples. Since practice was effective for the more advanced 

sample, we want to test whether including practice with feedback during the intervention – with 

additional vignettes and the same correlation-causation measures – might improve correlation-

causation discrimination even further.  

5.6 Conclusions 

Correlation-causation discrimination is a critical skill not only for scientists, but also for 

the general public. For example, imagine someone who reads about the outcome of a scientific 

study on Twitter, and learns that people who drink more coffee are more likely to have lung cancer. 

If the study is observational, but the reader is now convinced that drinking coffee causes lung 

cancer because the two are statistically related, they may modify future behaviors based on those 

conclusions. For example, they might stop drinking coffee to reduce the likelihood of lung cancer. 

However, such an intervention could be ineffective (or in some scenarios even harmful), if the two 

variables are related for some other reason (e.g., smokers are more likely to drink coffee than non-

smokers, and smoking causes lung cancer). Reasoning about such causal relationships can become 
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even more complicated when that information conflicts with people’s prior expectations about the 

study outcomes, and people may rely more on prior beliefs than considering the methodological 

design of the study to decide if these variables are causally related or not.  

Thus, it is imperative to identify methods for improving scientific literacy, specifically 

methods to improve correlation-causation discrimination. Across three studies, we tested the 

efficacy of an intervention that uses a causal diagrams tutorial to improve correlation-causation 

discrimination. One of the desired learning outcomes was that in the future, participants can apply 

what they learned to actual studies they read about in the media. Ideally, in the future, they will be 

able to use that knowledge to recognize when authors make erroneous causal claims about 

observational studies. However, although our intervention improved correlation-causation 

discrimination, there remained substantial room for further progress.  

Future steps could be to continue making iterative improvements in the hopes of finding 

an even more effective method of teaching students about why correlation does not imply 

causation. But our efforts may not be successful, and even if they are successful, it is unlikely that 

we will be able to reach everyone who is likely to encounter erroneous causal claims about 

correlational findings, which are rife in media articles (Cofield et al., 2010; Haber et al., 2018; 

Haneef et al., 2015). Thus, our work also highlights the need for authors to make accurate claims 

about study findings, and to reduce the demand on the reader. We found that people can learn to 

discriminate between correlation and causation, even when they encounter information that is 

congruent or incongruent with their prior expectations. However, there was still much room for 

improvement after the intervention, and so accounting for biases like “causal theory error” when 

writing about scientific findings may be necessary for people to draw appropriate conclusions.  
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Appendix A Results for Interpreting Statistical Tests 

Participants in the research methods sample were answered two questions about 

interpreting the results of different statistical tests, “Suppose you do a study with an independent 

variable and a dependent variable and you run a [Pearson correlation/t-test] to test if they are 

statistically related. You get a significant result. You should conclude…”. For each test, they 

selected one option from the following: 1) Correlation does not imply causation, so you should 

conclude that the independent variable does not cause the dependent variable; 2) You should 

conclude that it is possible that the independent variable causes the dependent variable – you would 

need to know more about the study to make a determination; 3) You should conclude that the 

independent variable does cause the dependent variable; 4) I’m not sure. The order of the two 

questions was randomized, and they were also asked at the end of the post-test measures.  

Neither of the statistical test questions (t-test or Pearson’s correlation) provided enough 

information about the design of the study to draw a causal conclusion. In both scenarios, the correct 

answer was “You should conclude that it is possible that the independent variable causes the 

dependent variable – you would need to know more about the study to make a determination”. 

These questions require a more nuanced understanding of causality and study design – that 

regardless of the statistical test, study design is a key factor in interpreting significant results. 

Previously, we have asked research methods students these questions on exams; even at the end 

of semester, students seem to struggle with this concept. If participants’ performance improves 

after the intervention, this would be evidence that the intervention leads to far-transfer by means 

of applying correlation-causation discrimination to making inferences about statistical results.   
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I coded participants’ responses as either correct or incorrect, and conducted a mixed-effects 

regression (separately for each question) to assess whether accuracy improved after the 

intervention; I included block × intervention as a fixed effect and a by-subject random slope (Table 

A3). There was a significant main effect of block for the t-test question, which was moderated by 

a significant block × intervention interaction when comparing the Worked Example and Self 

Explanation conditions. In the Self Explanation condition, there was no improvement in 

participants’ responses from pre-test (50.91%) to post-test (50.91%). However, there was clear 

improvement in the Worked Example condition from pre-test (37.50%) to post-test (51.79%). 

Given that post-test performance was quite similar, the improvement is likely due to pre-test 

differences across the three groups. These results suggest that while an intervention may help with 

performance on this far-transfer task, there may be a limit to the benefits.  

Appendix Table 1 Testing for Improvement in Interpreting Statistical Tests 

 Pearson’s Correlation  t-test 

Predictor b 
95% CI  

[LL, UL] 
p 

 
b 

95% CI  

[LL, UL] 
p 

Block  -0.09 [-0.18, 0.00] .051  -0.11 [-0.20, -0.02] .014 

Intervention (AC vs WE) 0.09 [-0.02, 0.20] .117  -0.07 [-0.18, 0.05] .247 

Intervention (AC vs SE) 0.08 [-0.03, 0.19] .175  <0.01 [-0.12, 0.11] .944 

Intervention (WE vs SE) -0.01 [-0.12, 0.10] .839  0.06 [-0.05, 0.18] .281 

Block × (AC vs WE) -0.07 [-0.20, 0.05] .252  -0.03 [-0.16, 0.10] .661 

Block × (AC vs SE) -0.01 [-0.14, 0.11] .848  0.11 [-0.02, 0.24] .085 

Block × (WE vs SE) 0.06 [-0.07, 0.19] .345  0.14 [0.01, 0.27] .032 

Note. AC = Analogical Comparison; WE = Worked Example; SE = Self Explanation; Boldface = 

p < .05. 
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