
Towards On-device Machine Learning: Efficient Inference, Independent Learning,

and Collaborative Unsupervised Learning

by

Yawen Wu

B.E., Shandong University, 2013

M.S., Shandong University, 2016

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Yawen Wu

It was defended on

Feb. 17th 2023

and approved by

Jingtong Hu, Ph.D., Associate Professor, Department of Electrical and Computer

Engineering

Heng Huang, Ph.D., Professor, Department of Electrical and Computer Engineering

Zhi-Hong Mao, Ph.D., Professor, Department of Electrical and Computer Engineering

In Hee Lee, Ph.D., Assistant Professor, Department of Electrical and Computer Engineering

Xulong Tang, Ph.D., Assistant Professor, Department of Computer Science

Yiyu Shi, Ph.D., Professor, Department of Computer Science and Engineering, University of

Notre Dame

Fei Fang, Ph.D., Assistant Professor, School of Computer Science, Carnegie Mellon

University

Dissertation Director: Jingtong Hu, Ph.D., Associate Professor, Department of Electrical

and Computer Engineering

ii

Copyright © by Yawen Wu

2023

iii

Towards On-device Machine Learning: Efficient Inference, Independent Learning,

and Collaborative Unsupervised Learning

Yawen Wu, PhD

University of Pittsburgh, 2023

With the increasing ubiquity of edge devices, such as the Internet of Things (IoT) and

mobile devices, deploying machine learning models, particularly deep neural networks (DNNs),

on these devices to extract information from sensed data can enable the democratization of

artificial intelligence (AI). On-device AI has the potential to support various tasks, including

wildlife monitoring, augmented reality, and autonomous driving.

To enable on-device AI, both on-device inference and training need to be achieved.

On-device inference enables edge devices to make predictions from collected data. On-

device training enables the devices to adapt to dynamic environments by learning from the

environments and updating the model in situ. By applying on-device training to distributed

devices, collaborative learning uses multiple devices to learn a shared model while keeping

the data on personal devices for privacy.

However, it is challenging to achieve on-device inference and training. First, edge devices

have limited computation capabilities and limited memory size, but DNNs are demanding

in computation and memory. Therefore, DNNs need to be effectively compressed before

deploying to edge devices. Second, there is a large gap between the high computation and

energy demand of on-device training and the limited computing resources and battery capacity

on edge devices. Third, during on-device training, each device can only collect a limited

amount of data. However, model training needs a large amount of data to achieve a high

generalization performance.

To address these challenges, this dissertation proposes several techniques to enable

inference and training on single devices, and collaborative learning with multiple devices.

First, a model compression framework is proposed to compress multi-exit neural networks by

pruning and quantization. After compression, computation cost and model size are reduced

while the accuracy is preserved. Second, an efficient training method is proposed to reduce the

iv

computation cost of training by skipping unnecessary training data and pruning the gradient

computation. To further learn with as few labels as possible, a data selection approach

to select the representative data for training without using labels is proposed. Third, a

collaborative unsupervised learning framework for distributed devices to learn a shared model

from decentralized unlabeled data is proposed.

v

Table of Contents

Preface . xvii

1.0 Introduction . 1

1.1 Challenges of On-device Machine Learning 2

1.1.1 Limited On-device Resources . 3

1.1.2 High Training Costs and Label Scarcity 3

1.1.3 Limited Data on Individual Devices 4

1.2 Research Overview . 5

1.3 Contributions . 7

1.3.1 Model Compression for Multi-exit Neural Networks 7

1.3.2 Efficient Supervised On-device Training 7

1.3.3 Self-supervised On-device Training 8

1.3.4 Collaborative Unsupervised Learning with Decentralized Devices . . 9

1.4 Dissertation Organization . 9

2.0 Efficient On-device Inference with Compressed Multi-exit Neural Net-

works . 10

2.1 Introduction . 10

2.2 Related Work . 14

2.2.1 Multi-exit Network . 14

2.2.2 Network Compression . 15

2.2.3 Intermittent Execution . 15

2.3 Model Compression of Multi-exit Neural Networks 15

2.3.1 Problem Formulation . 17

2.3.1.1 Pruning . 18

2.3.1.2 Quantization . 18

2.3.2 RL-Based Nonuniform Compression 20

2.3.2.1 State . 20

vi

2.3.2.2 Action . 21

2.3.2.3 Reward . 21

2.3.2.4 Agent . 22

2.4 Application of Compressed Multi-exit Neural Network: Event-Driven IoT

with Energy Harvesting . 23

2.4.1 Event-Driven Intermittent Inference 23

2.4.1.1 Intermittent Execution Model 23

2.4.1.2 Optimization Goal . 24

2.4.2 Model Compression for Energy Harvesting 25

2.4.3 Runtime Exit Selection and Incremental Inference with Harvested Energy 26

2.5 Experiments . 28

2.5.1 Experimental Setup . 28

2.5.2 Nonuniform Pruning and Quantization 28

2.5.3 IEpmJ and Average Accuracy . 29

2.5.4 FLOPs and Latency . 30

2.5.4.1 FLOPs . 30

2.5.4.2 Latency . 31

2.5.5 Runtime Adaptation . 32

2.6 Video Demo . 33

2.6.1 System Setup . 33

2.6.2 An Easy Sample . 34

2.6.3 A Hard Sample . 35

2.7 Summary . 36

3.0 Efficient Supervised On-device Training 37

3.1 Introduction . 37

3.2 Background and Related Work . 39

3.2.1 Background of CNN Training . 39

3.2.2 Related Work . 40

3.2.2.1 Accelerated Training . 40

3.2.2.2 Distributed Training . 41

vii

3.2.2.3 Network Pruning during Training 41

3.2.2.4 Neural Architecture Search 41

3.3 Framework Overview . 42

3.4 Self-Supervised Early Instance Filter . 43

3.4.1 Challenges . 44

3.4.2 Adaptive Loss Threshold Based Labeling Strategy 45

3.4.3 Instance Selection by Uncertainty Sampling 47

3.4.4 Weighed Loss for Biased High-Loss Ratio 48

3.5 Error Map Pruning in Backward Pass . 50

3.5.1 Channel Selection to Minimize Reconstruction Error in Error Propagation 51

3.5.1.1 Problem Formulation . 51

3.5.1.2 Importance Score . 52

3.5.2 Channel Selection to Minimize Reconstruction Error in Gradient Com-

putation . 53

3.5.2.1 Problem Formulation . 53

3.5.2.2 Importance Score . 54

3.5.3 Mini-batch Pruning with Importance Score 54

3.5.3.1 Computation Reduction . 55

3.5.3.2 Overhead Analysis . 55

3.6 Experiments . 56

3.6.1 Experimental setup . 56

3.6.1.1 Datasets and Networks . 56

3.6.1.2 Architectures of Instance Filter 57

3.6.1.3 Training Details . 57

3.6.1.4 Metrics . 58

3.6.2 Evaluating Early Instance Filtering (EIF) 58

3.6.2.1 Computation Reduction while Boosting Accuracy 59

3.6.3 Evaluating EIF + EMP . 60

3.6.3.1 Experiments on CIFAR-100 62

3.6.3.2 Experiments on ImageNet 63

viii

3.6.4 Convergence Speed . 63

3.6.5 Quantitative and Qualitative Analysis 64

3.6.5.1 Effectiveness of Adaptive Loss Threshold 64

3.6.5.2 Effectiveness of Weighted Loss for Training EIF 65

3.6.5.3 Overhead of EIF . 66

3.6.5.4 Analysis of Error Map Pruning 69

3.6.6 Practical Energy Saving on Hardware Platforms 69

3.6.6.1 Hardware Setup . 70

3.6.6.2 Energy Saving of Training on Mobile GPU 71

3.6.6.3 Energy Saving of Training on MCU 72

3.7 Summary . 73

4.0 Unsupervised On-device Representation Learning 74

4.1 Introduction . 74

4.2 Background and Related Work . 77

4.2.1 Background of Contrastive Learning 77

4.2.2 Related Work . 77

4.2.2.1 Contrastive Visual Representation Learning 77

4.2.2.2 Data Selection in Streaming and Continual Learning 78

4.3 Self-Supervised On-Device Learning by Selective Data Contrast 78

4.3.1 Framework Overview . 79

4.3.2 Data Replacement By Contrast Scoring 80

4.3.2.1 Contrast Scoring . 80

4.3.2.2 Contrast Score Design Principle 82

4.3.2.3 Contrast Score Based Data Selection 82

4.3.3 Effectiveness of Contrast Score . 82

4.3.4 Lazy Scoring . 84

4.4 Experiments . 85

4.4.1 Experimental Setup . 85

4.4.1.1 Datasets and Evaluation Protocols 85

4.4.1.2 Strength of Temporal Correlation (STC) 85

ix

4.4.1.3 Default Training Setting . 85

4.4.1.4 Baselines . 86

4.4.2 Improved Accuracy with Different Labeling Ratios 86

4.4.3 Learning Curve: Improved Learning Speed and Accuracy 88

4.4.3.1 Learning Curve on CIFAR-10 88

4.4.3.2 Learning Curve on ImageNet-100 89

4.4.3.3 Learning Curve on ImageNet-20 and ImageNet-50 89

4.4.3.4 Learning Curve on SVHN and CIFAR-100 90

4.4.4 The Impacts of Lazy Scoring . 90

4.4.5 Improved Accuracy With Different Buffer Sizes 92

4.5 Video Demo . 93

4.5.1 System Setup . 93

4.5.2 Description of Video Demo . 93

4.6 Summary . 95

5.0 Collaborative Unsupervised Learning with Distributed Devices 96

5.1 Introduction . 96

5.2 Background and Related Work . 99

5.2.1 Contrastive Learning . 99

5.2.2 Collaborative Learning . 99

5.3 Collaborative Unsupervised On-device Learning 100

5.4 Local Learning with Feature Fusion . 102

5.4.1 Key Challenge . 102

5.4.2 Feature Fusion . 103

5.4.2.1 Effectiveness of Feature Fusion 103

5.4.2.2 Further Reducing the False Negative Ratio 104

5.5 Local Learning with Neighborhood Matching 105

5.5.1 Challenge . 105

5.5.2 Identifying Neighbors . 106

5.5.3 Neighborhood Matching Loss . 107

5.5.4 Final Loss . 107

x

5.6 Experiments . 108

5.6.1 Datasets and Model Architecture . 108

5.6.2 Distributed Setting of Collaborative Contrastive Learning 108

5.6.3 Training Details of Collaborative Finetuning for Evaluation 109

5.6.4 Metrics . 109

5.6.5 Baselines . 110

5.6.6 Linear Evaluation . 110

5.6.6.1 Linear Evaluation on CIFAR-10 111

5.6.6.2 Linear Evaluation on Various Datasets and Distributed Settings111

5.6.7 Feature Space Clustering . 112

5.6.7.1 Linear Evaluation with Different Percentages of Labeled Data 112

5.6.8 Semi-Supervised Learning . 114

5.6.9 Collaborative Finetuning . 114

5.6.10 Transfer Learning . 115

5.6.11 Ablations . 116

5.6.11.1 Effectiveness of Feature Fusion and Neighborhood Matching 116

5.6.11.2 Impact of Encrypted Images 120

5.6.12 Learning Curve . 120

5.6.12.1 IID Setting . 123

5.6.12.2 Non-IID Setting 1 . 125

5.6.12.3 Non-IID Setting 2 . 125

5.7 Summary . 125

6.0 Conclusion . 126

Bibliography . 128

xi

List of Tables

1 The top-1 accuracy achieved by EIF+EMP using ResNet-110, ResNet-74,

VGG-16 on CIFAR-10, and LeNet on MNIST. 61

2 Top-1 accuracy by EIF+EMP and baselines with ResNet-110 and VGG-16

on CIFAR-100. 62

3 Top-1 and Top-5 accuracy by EIF+EMP and baselines with ResNet-18

and VGG-11 on ImageNet. 64

4 Top-1 accuracy, average re-scoring percent, and batch time (relative to

that without scoring) on CIFAR-10 with different lazy scoring intervals. 91

5 Accuracy on CIFAR-10 dataset with different buffer sizes. 92

6 Linear evaluation on CIFAR-10, CIFAR-100, and FMNIST datasets under

the IID and two non-IID settings. 111

7 Linear evaluation with few labels to evaluate feature space clustering

under the IID setting. 112

8 Linear evaluation with few labels to evaluate feature space clustering

under non-IID setting 1 (top) and non-IID setting 2 (bottom). 113

9 Semi-supervised learning under IID setting (top) and non-IID setting 1

(bottom). 115

10 Semi-supervised learning in non-IID setting 2. We finetune the encoder

and classifier with 10% or 1% labeled data and report the top-1 accuracy. 116

11 Collaborative finetuning under IID setting (top) and non-IID setting 1

(bottom). 117

12 Collaborative finetuning under non-IID setting 2. 118

13 Transfer learning to downstream tasks. 118

14 Impact of image encryption evaluated by linear evaluation under the IID

and two non-IID settings. 120

xii

15 Impact of image encryption evaluated by semi-supervised learning under

IID setting (top), non-IID setting 1 (middle), and non-IID setting 2

(bottom). 121

16 Impact of image encryption evaluated by collaborative finetuning under

IID setting (top), non-IID setting 1 (middle), and non-IID setting 2

(bottom). 122

17 Impact of image encryption evaluated by transfer learning to downstream

tasks. 122

xiii

List of Figures

1 Overview of the proposed approaches in the dissertation. 5

2 Architecture of multi-exit neural networks. 16

3 Benefits of nonuniform compression. 16

4 Overview of the proposed compression framework. 17

5 Exit-guided layer-wise pruning and quantization. 20

6 Intermittent execution model with multi-exits. 24

7 Compression with EH constraints and runtime exit selection after deploy-

ment. 25

8 Pruning and quantization policy under 1.15M FLOPs and 16KB weight

size constraints. 29

9 The number of interesting events per energy harvesting millijoule. . . . 30

10 FLOPs reduced by compression. 31

11 Runtime adaptation by lightweight learning. 32

12 This is the system setup for the video demo of the model compression

framework designed for multi-exit neural networks. The system is powered

by energy harvesting technology. 33

13 The easy sample used in the video demo. 34

14 The hard sample used in the video demo. 35

15 Overview of early instance filtering (EIF) and error map pruning (EMP). 42

16 Self-supervised training of early instance filter (EIF) by adaptive loss

threshold, uncertainty sampling, and weighted loss. 43

17 Error maps of convolutional layers in back-propagation. 50

18 Back-propagation of errors with pruned error map. 51

19 Computation of weight gradient with pruned error map. 53

20 Top-1 accuracy by early instance filter (EIF) and baselines with ResNet-

110 on CIFAR-10. 58

xiv

21 Top-1 accuracy by EIF and baselines with ResNet-74 and VGG-16 on

CIFAR-10 and LeNet on MNIST. 59

22 Accuracy of ResNet-110 on CIFAR-10 by EIF+EMP and baselines under

different remaining computation ratios. 60

23 Convergence speed of ResNet-110 on CIFAR-10 during training with

different approaches. 65

24 The adaptive loss threshold (left) tracks the state of the main model and

stabilizes the number of preserved instances with predicted high loss by

EIF. 66

25 Incorrect loss prediction ratio of EIF with and without weighted loss. . 67

26 Energy and computation overhead of EIF. Energy overhead is measured

on NVIDIA Jetson TX2 mobile GPU. 67

27 Preserved and dropped instances by EIF when training ResNet-110 on

CIFAR-10 and LeNet on MINST. 68

28 Visualization of the pruned and preserved channels in the error map and

corresponding convolutional kernels. 69

29 Energy measurement setup for training on two edge platforms, including

mobile-level devices (top) and sensor node-level devices (bottom). . . . 70

30 Energy saving when training ResNet-110 and VGG-16 on Nvidia Jetson

TX2 mobile GPU with CIFAR-10 dataset. 71

31 Energy saving when training LeNet on MSP432 MCU. EIF+EMP prolongs

3.9x battery life. 72

32 Overview of on-device contrastive learning framework. 79

33 Contrast scoring for data replacement. 80

34 Accuracy on CIFAR-10 with 1% and 10% labeled data. 87

35 Learning curve on CIFAR-10 and ImageNet-100 datasets. 89

36 Learning curve on ImageNet-20 and ImageNet-50 dataset. 90

37 Learning curve on SVHN and CIFAR-100 datasets. 91

38 This is the system setup for the video demo, which showcases the self-

supervised on-device learning framework. 94

xv

39 Overview of the proposed collaborative contrastive learning (CCL) frame-

work. 100

40 Neighborhood matching aligns each client’s local features to the remote

features such that well-clustered features among clients are learned. . . 105

41 Linear evaluation accuracy on CIFAR-10 in the IID setting. 110

42 Ablations on CIFAR-10 dataset under the non-IID setting. 119

43 Ablations on CIFAR-10 dataset under the IID setting. 119

44 Linear evaluation accuracy against the number of communication rounds

on CIFAR-10 in the IID setting. 123

45 Linear evaluation accuracy against the number of communication rounds

on CIFAR-10 in two non-IID settings. 124

xvi

Preface

First and foremost, I would like to sincerely thank my Ph.D. advisor, Professor Jingtong

Hu, for his continuous guidance, support, advice, inspiration, enthusiasm, and patience with

my Ph.D. study and research. He is an outstanding researcher and an exceptional instructor.

He provides me with the opportunity to work with him. He teaches me how to look for and

identify important research problems, form novel ideas to solve these problems, overcome

difficulties in finding solutions to challenging problems, implement the solutions systematically

and in-depth, and deliver the ideas and findings in papers and presentations. I am fortunate

and it is my great hour to have the opportunity to work with Professor Jingtong Hu.

I would like to thank Professor Heng Huang, Professor Zhi-Hong Mao, Professor In Hee

Lee, Professor Xulong Tang, Professor Yiyu Shi, and Professor Fei Fang, for serving as my

Ph.D. dissertation committee members. They provide insightful advice and constructive

feedback to my research and dissertation. I thank them for their valuable time and efforts in

helping me.

I would like to thank all my academic collaborators. I would like to thank Professor

Yiyu Shi for his inspiring ideas and guidance in almost all my research works. Without his

help, feedback, and encouragement, some of my ideas would have been abandoned without

further exploration when some initial solutions did not work. Thanks to his help, I managed

to overcome the difficulties in developing and correcting ideas and had the opportunity to

deliver the findings as research papers. I would like to thank Professor Fei Fang. I appreciate

her great patience, insightful guidance, detailed suggestions, and constructive feedback for my

first research paper. I also want to thank Professor In Hee Lee for his insightful suggestions.

I also want to thank Professor Xulong Tang for his inspiring feedback on my research work. I

also want to thank Professor Meng Li for his constructive suggestions for my research works.

I also want to thank Professor Peipei Zhou for the great support of my research works. I

also want to thank Professor Alaina J. James for the insightful suggestions from medical

perspectives.

I want to thank all my lab mates, Dr. Mimi Xie, Dr. Chen Pan, Dr. Lei Yang, Dr.

xvii

Weiwen Jiang, Dr. Xinyi Zhang, Dr. Zhenge Jia, Dr. Xiaowei Xu, Zhepeng Wang, Dewen

Zeng, Yue Tang, Jianing Deng, Pan Wang, Sheng Li, Yi Sheng, Yubo Du, Yuyang Li, Jinming

Zhuang, and Zhuoping Yang for their support and help during my Ph.D. study. I want to

especially thank my collaborators Zhepeng Wang and Dewen Zeng for their efforts in helping

with my multiple research works.

Last but not least, I would like to thank my parents, my grandparents, my uncles, my

aunts, and my cousins Guowen, Huijuan, and Huiting for their continuous support of me.

Finally, I would like to thank my wife, Dr. Chaoqun Dong. Your love and support since high

school give me encouragement and impetus for our wonderful and beautiful life journey. I

also want to thank my parents-in-law for raising such an incredible and sweet person.

xviii

1.0 Introduction

Machine learning models, specifically deep neural networks (DNNs), have demonstrated

remarkable performance in visual data analysis [23, 25, 36, 58, 97, 98, 105, 123], enabling

sophisticated inference even with limited and noisy inputs. As edge devices such as IoT

devices and mobile devices become ubiquitous nowadays, deploying machine learning models

on such devices to extract information from the sensed data can enable us to democratize

artificial intelligence (AI). On-device AI has the potential to power various tasks in our

lives, from personal daily life assistance in smartphones, augmented reality (AR) and mixed

reality (XR) glasses, wearable devices, medical devices [12, 116], smart cities [96], and smart

agriculture [126], to search and rescue in Unmanned Aerial Vehicles (UAVs) [88,91].

To enable on-device AI, both on-device inference and on-device learning need to be

achieved. On-device inference enables edge devices to make predictions from collected data

such as object classification to obtain the category of objects in the collected images, and

object detection to recognize and predict bounding boxes of objects. Other than image data,

data in other modalities can also be processed by on-device AI such as voice recognition.

When these inference tasks are performed on high-performance computers (HPCs) with

abundant resources, low latency, and high throughput can be easily achieved. However, it is

not always possible to send all data collected on edge devices to HPCs for inference due to

data privacy, communication cost, and communication latency concerns [13]. Therefore, it

is desired to make predictions in situ on edge devices and only send the prediction results

to HPCs for further processing. Compared with cloud servers, edge devices have limited

computing capability and limited memory storage, which makes it challenging to perform

inference on edge devices.

To address the challenge of on-device inference, researchers have developed techniques for

efficient inference on edge devices. The multi-exit network with side classifiers in shallower

layers is proposed [40, 99]. Instead of only having one final inference result, networks can

have early results to save time or energy. Given an input, a subset of networks is selected

for faster inference by trading off accuracy. A large portion of samples can exit the network

1

via these exits when the results at these exits have high confidence. Model compression

methods including pruning and quantization are developed. [30, 37, 63] proposed pruning

techniques to remove insignificant model parameters for smaller model sizes and faster

inference. [44,83,102,120,125] quantize the model parameters and intermediate activations

such that the high-cost floating-point operations are replaced by faster integer operations for

speeding up inference.

In addition to on-device inference, on-device training is another technique needed to

enable on-device AI. The deep learning models are usually trained on HPCs and then deployed

to edge devices for inference. One drawback of existing deployment, however, is that typically

they are “one size fits all”. Once trained in the cloud and deployed in the devices, the neural

networks do not adapt to different users and application domains, nor do they evolve when

new unseen data streams in. However, in the physical world, the statically trained model

cannot adapt to the real world dynamically and may result in low accuracy for new input

instances. On-device training enables incremental and lifelong learning [85] to train an existing

model to update its knowledge. It also enables the deployment of transfer learning and

personalization [1–3] to improve accuracy for different users and application scenarios. These

techniques also continuously improve the performance of people that were under-represented

during the data collection stage. Federated learning [74] is another application scenario of

on-device training, where a large number of devices (typically mobile phones) collaboratively

learn a shared model while keeping the training data on personal devices to protect privacy.

The challenge of on-device training is the large gap between the high computation and energy

demand of training and the limited computing resource and battery on edge devices. To

enable on-device training, the computation cost of training needs to be significantly reduced

while the accuracy is preserved.

1.1 Challenges of On-device Machine Learning

A key requirement for an independent on-device machine learning system is to achieve

accurate and efficient predictions. To this end, the efficient deployment of machine learning

2

models for inference, the capacity to learn from new data and adapt to the dynamic environ-

ment, and the ability to share knowledge among devices are crucial components for on-device

machine learning. This dissertation addresses three main challenges associated with building

independent on-device learning systems.

1.1.1 Limited On-device Resources

Edge devices typically have constrained computing capabilities and limited memory

size. While DNNs can effectively extract features from noisy input data, they are usually

computationally expensive and require large memory sizes to make predictions. Typical

neural networks have tens of millions of weights and use billions of operations to finish one

inference. Even a small DNN (e.g. MobileNetV2 [89]) has over a million weights and millions

of operations. However, edge devices such as microcontrollers (MCUs) are constrained in

resources. Typical MCUs have limited storage (e.g. Flash or FRAM) size (several or tens

of KB) and run in low frequency (several or tens of MHz). Directly deploying conventional

DNN to MCU is infeasible because the model size exceeds the storage capacity. Even if the

DNN model can fit into the limited storage, the latency to finish one inference is still too

long. For other edge devices such as the mobile GPU platform Nvidia Jetson [78], while

the memory size is large enough for DNNs, it is necessary to reduce the computation cost

of DNNs to reduce the latency of inference, save energy and prolong the battery life. The

recently developed multi-exit neural networks [99] can reduce the inference latency by exiting

from side classifiers. However, their model sizes are even larger than conventional DNNs due

to the additional side classifiers. As a result, in order to deploy DNNs on edge devices, the

computation cost and memory footprint of DNN models need to be effectively reduced.

1.1.2 High Training Costs and Label Scarcity

Typically, DNN models are trained on high-performance computers and then deployed

to edge devices. However, these statically trained models are unable to adapt to dynamic

real-world environments, which can result in low accuracy for new inputs. On-device training

by learning from real-world data after deployment can significantly improve accuracy. Unfor-

3

tunately, the high computation cost of training can be prohibitive for resource-constrained

devices, posing a significant challenge for on-device learning. The challenge is amplified

by the large gap between the high computation and energy demand of training and the

limited computing resources and battery capacity of edge devices. For example, training

ResNet-110 [35] on a 32x32 input image takes 780M FLOPs, which is prohibitive for IoT

devices. Besides, since computation directly translates into energy consumption and IoT

devices are usually battery-constrained [30], the high computation demand of training will

quickly drain the battery. While existing works [45,80,108] effectively reduce the computation

cost of inference by assigning input instances to different classifiers according to the difficulty,

the computation cost of training is not reduced. Therefore, a method to reduce the training

cost to enable on-device training is needed.

Besides, during on-device training, the data are collected from the input stream and are

unlabeled. To perform on-device training, while it is feasible to send a few data to servers

for labeling, it is prohibitive to send all these new data due to the requirement of expert

knowledge, data privacy, communication cost, and latency concerns [13]. Thus, it is also

needed to learn from new streaming data in-situ with as few labels as possible.

1.1.3 Limited Data on Individual Devices

During on-device training, each device can only collect a limited amount of data. Since

effective model training needs a large amount of data, training on limited data can result in

model overfitting and degrade the model’s generalization performance [22]. Collaborative

learning is an effective approach for multiple distributed devices to collaboratively learn a

shared model from decentralized data and avoids raw data sharing for privacy protection.

However, data collected on devices are inherently far from independent and identically

distributed (IID) [39], which results in ineffective collaborative learning, especially when

most of the data are unlabeled. To improve the performance of collaborative learning on

non-IID data, [46,124] share local raw data (e.g. images) among clients. However, sharing

raw data among clients will cause privacy concerns [64]. Besides, they need fully labeled

data to perform collaborative learning, which requires expert knowledge and potentially high

4

labeling costs. Therefore, an approach to performing collaborative learning with limited

labels and avoiding sharing raw data is needed.

1.2 Research Overview

Pre-trained
model

Model
compression

On-device
training

Updated model
Edge device

Collaborative
unsupervised

training

Work 1 Works 2 and 3

Work 4

Figure 1: Overview of the proposed approaches in the dissertation.

The overview of this dissertation is shown in Figure 1. A framework for on-device machine

learning is proposed. In this framework, there are three major steps to achieve on-device

machine learning:

1. Model compression of multi-exit neural networks for efficient on-device inference.

2. On-device training on single devices with labeled or unlabeled data.

3. Collaborative on-device training among devices.

As discussed in Section 1.1.1, edge devices usually have limited computation capabilities

and limited memory size. Since DNNs are computationally intensive and have a large memory

footprint, directly deploying pre-trained models to devices is prohibitive. To address this

5

challenge, as shown in Work 1 of Figure 1, we propose a model compression framework to

effectively compress a multi-exit neural network by model pruning and quantization with a

nonuniform compression ratio and quantization bit-width. After compression, computation

cost and model size are reduced while model accuracy is preserved [108]. The proposed

model compression method is illustrated in the energy harvesting scenario, but it is generally

applicable to edge devices.

As discussed in Section 1.1.2, the environment in the physical world is dynamic. When

using a statically trained model, it cannot adapt to the real world dynamically and may result

in low accuracy for new input instances. On-device training by learning from real-world data

after deployment can greatly improve accuracy. However, the high computation cost makes

training prohibitive for resource-constrained devices. To enable on-device training, Works 2

and 3 in Figure 1 are proposed, In Work 2, we explore the computational redundancies in

training and propose a framework to reduce the computation cost by skipping unnecessary

training data and pruning the gradient computation [109]. To further learn data in situ with

as few labels as possible, in Work 3, a data selection approach to select the most representative

data from the input data stream without using labels is proposed [111].

As discussed in Section 1.1.3, each device can only collect a limited amount of data

and may not train the model well with limited data. To address this challenge, we propose

a decentralized unsupervised learning framework for multiple distributed clients to collab-

oratively learn a shared model from decentralized data [110]. In this framework, feature

fusion is proposed to solve the problems of imbalanced data distribution among devices,

and neighborhood matching is proposed to learn a unified feature space among devices. In

addition to computer vision tasks on edge devices, this framework can also be applied to

general medical image segmentation problems [113–115].

6

1.3 Contributions

Research contributions for this dissertation can be concluded as follows:

1.3.1 Model Compression for Multi-exit Neural Networks

We aim to enhance the efficiency of on-device inference by utilizing compressed multi-exit

neural networks [108]. More specifically, the proposed model compression method makes the

following contributions:

• Model compression framework for multi-exit neural networks. We propose a

framework for pruning and quantizing multi-exit neural networks to fit onto MCUs while

maximizing the average inference accuracy.

• Application of compressed multi-exit neural networks for energy harvesting

scenarios. We apply the compression framework to energy harvesting (EH) applications.

Based on the multi-exit neural network, we introduce an intermittent and incremental

inference model to guarantee an inference result before power failure occurs. We develop

a power trace-aware and exits-guided compression technique. We also propose an online

exit selection method, which selects the exit for each event based on the EH condition

and difficulty of each input.

1.3.2 Efficient Supervised On-device Training

This work aims to enable on-device training of convolutional neural networks (CNNs) by

reducing the computation cost at training time [109]. To be specific, the contributions of this

work are as follows:

• A framework to enable on-device training. We propose a framework consisting of

two approaches to eliminate unnecessary computation in training CNNs while preserving

full network accuracy. The first approach improves the training efficiency of both the

forward and backward passes, and the second approach further reduces the computation

cost in the backward pass.

7

• Self-supervised early instance filtering (EIF) on the data level. We propose an

instance filter to predict the loss of each instance and develop a self-supervised algorithm

to train the filter. Instances with predicted low loss are dropped before starting the

training cycle to save computation. To train the filter simultaneously with the main

network, we propose a self-supervised training algorithm including the adaptive threshold-

based labeling strategy, uncertainty sampling-based instance selection algorithm, and

weighted loss for biased high-loss ratio.

• Error map pruning (EMP) on the algorithm level. We propose an algorithm to

prune insignificant channels in error maps to reduce the computation cost in the backward

pass. The channel selection strategy considers the importance of each channel on both the

error propagation and the computation of the weight gradients to minimize the influence

of pruning on the final accuracy.

1.3.3 Self-supervised On-device Training

This work aims to enable on-device contrastive learning from input streaming data by

selecting the most representative data [111]. The contributions are as follows.

• Self-supervised on-device learning framework. We propose a framework for self-

supervised contrastive learning that forms mini-batches of training data on-the-fly from

the unlabeled input stream. The framework leverages a small data buffer and eliminates

the need to store all the streaming data on the device.

• Contrast scoring for data selection. We propose a data replacement policy by

contrast scoring to maintain the most representative data in the buffer for on-device

contrastive learning. Labels are not needed in the data replacement process, and the

selected data will generate large gradients that benefit the learning most.

• Lazy scoring for reduced computation overhead. We propose a lazy scoring strategy

to reduce the runtime overhead of data scoring. The data scores are updated every several

iterations instead of every iteration to save computation.

8

1.3.4 Collaborative Unsupervised Learning with Decentralized Devices

A collaborative unsupervised learning method is proposed to enable distributed devices for

learning a shared model from decentralized unlabeled data by feature fusion and neighborhood

matching [110]. The contributions are as follows.

• Collaborative contrastive learning framework. We propose a framework with two

approaches to learning visual representations from unlabeled data on distributed clients.

The first approach improves the local representation learning on each client with limited

data diversity, and the second approach further learns unified global representations

among clients.

• Feature fusion for better local representations. We propose a feature fusion

approach to leverage remote features for better local learning while avoiding raw data

sharing. The remote features serve as negatives in the local contrastive loss to achieve a

more accurate contrast with fewer false negatives and more diverse negatives.

• Neighborhood matching for improved global representations. We propose a

neighborhood matching approach to cluster decentralized data across clients. During

local learning, each client identifies the remote features to cluster local data with and

performs clustering. In this way, well-clustered features among clients can be learned.

1.4 Dissertation Organization

The dissertation is organized as follows. Chapter 2 introduces a model compression

framework to compress multi-exit neural networks by model pruning and quantization for

dynamic on-device inference. Chapter 3 presents an efficient supervised on-device training

framework for reducing the training cost while preserving the desired accuracy. Chapter 4

presents an on-device self-supervised learning framework to learn from the unlabeled input

stream by selecting the most representative data. Chapter 5 introduces a decentralized

unsupervised learning framework, which enables distributed clients to collaboratively learn a

shared model from decentralized unlabeled data. Chapter 6 summarizes this dissertation.

9

2.0 Efficient On-device Inference with Compressed Multi-exit Neural Networks

This chapter presents a project that aims to improve the efficiency of on-device inference

by compressing multi-exit neural networks [108]. The chapter is organized as follows. First,

the background and the motivation are introduced, and the related works are discussed.

Next, the details of the proposed model compression method for multi-exit neural networks

are presented. Then, a case study of applying the proposed model compression technique

to energy-harvesting powered event-driven IoT systems is introduced. After that, the

experimental results are shown to demonstrate the effectiveness of the proposed techniques,

and a video demo is described. Finally, the conclusion is presented to summarize this project.

2.1 Introduction

DNNs have achieved record-breaking performance for visual data analysis and enable

sophisticated inference using limited and noisy inputs. DNNs can effectively extract higher-

level feature representations from noisy input data. As edge devices such as IoT devices and

mobile devices become ubiquitous nowadays, deploying DNNs on such devices to extract

information from the sensed data can enable us to democratize artificial intelligence (AI).

However, DNNs are usually computationally expensive. Typical neural networks have

tens of millions of weights and use billions of operations to finish one inference. Even a

small DNN (e.g. MobileNetV2 [89]) has over a million weights and millions of operations.

However, MCUs are constrained in resources. Typical MCUs have limited storage (e.g. Flash

or FRAM) size (several or tens of KB) and run in low frequency (several or tens of MHz).

Directly deploying conventional DNN to MCU is infeasible because the model size exceeds

the storage capacity. Even if the DNN model can fit into the limited storage, the latency

to finish one inference is still too long. For other edge devices such as mobile GPU Nvidia

Jetson [78], while the memory size is large enough for DNNs, it is necessary to reduce the

computation cost of DNNs to reduce the latency of inference, save energy and prolong the

10

battery life.

To reduce the latency and energy usage of DNN inference, the multi-exit neural network

with side classifiers in shallower layers is proposed [40,99]. By using this model architecture, a

large portion of samples that can have high confidence in predictions at the shallower classifier

can exit the network early. For more difficult samples, more network layers or the full network

will be used to provide a more accurate result [99]. Multi-exit neural networks are very

promising for edge devices with limited resources because they can reduce the inference energy

cost and latency by exiting from early exits while maintaining prediction accuracy. While

multi-exit neural networks can reduce the inference latency by exiting from side classifiers,

the network size with multi-exits is usually larger than single-exit ones in terms of weights

and intermediate feature maps due to the additional layers to capture high-level features

along each exit path. As a result, to deploy multi-exit neural networks to edge devices, the

computation cost and memory footprint need to be effectively reduced.

To achieve efficient inference with multi-exit networks on edge devices, the challenge is

how to fit the multi-exit network onto MCUs while keeping a high accuracy of each exit.

Simply compressing the network with existing network compression approaches [27] does not

work well since they only consider the accuracy of the final exit. For a multi-exit network,

only considering the final exit during compression will significantly degrade the accuracy of

early exits. Unfortunately, in general applications, a large portion of the samples are easy

ones [100]. Early exits in shallower layers are often chosen to generate the result with a

limited energy budget, which results in low accuracy. Therefore, how to compress the network

considering the accuracy and energy cost of each exit remains a problem.

To address this challenge, we propose a framework to automatically compress multi-exit

neural networks before deployment. We aim to compress the multi-exit network to fit it

onto edge devices and achieve a high average accuracy of all samples. First, we will consider

the typical data distribution of the target application, which determines the probability of

selecting each exit. Priority will be given to the exits which have a higher probability of being

selected. Since the probability of selecting each exit will change after we compress the network

due to the change of prediction capability for each exit, we develop a reinforcement-learning

(RL) based approach to automatically search the best pruning rate, bitwidth of weights and

11

activations in all the layers to maximize the average accuracy.

One of the most promising applications of multi-exit neural networks on edge devices is

to build persistent, event-driven IoT systems. Recently, the maturation of energy harvesting

(EH) technology and the emergence of intermittent computing, which stores harvested energy

in energy storage and supports an episode of program execution during each power cycle,

creates the opportunity to build sophisticated battery-less energy-neutral sensors. Such

sensors have the potential to build persistent sensing systems, in which the main device (e.g.

a battery-draining processing device) can remain dormant, with near-zero power consumption,

until awakened by an EH-powered sensor, which monitors events of interest constantly with

harvested energy. To realize this capability, the EH-powered sensor has to frequently make

decisions locally with sensor data, as it is prohibitive to send the raw data to other devices

and offload the computation to them.

DNN inference on intermittently-powered devices remains largely unexplored. Existing

work [27] made the first step to implement DNNs on an intermittently powered MCU. However,

multiple power cycles are needed to finish one inference in most cases. Since the harvested

power is usually weak and unpredictable, the latency to obtain the final inference result can

be indefinitely long. Multi-exit neural networks have the potential for efficient and timely

inference on EH-powered devices. Based on the available energy, an exit can be selected such

that an inference result can be obtained before power failure. This eliminates the need to

wait for multiple power cycles to finish one inference and generates a timely result.

However, to compress multi-exit neural networks for EH-powered devices, there are

two challenges. First, when powered by EH, in addition to considering multi exits during

compression, the EH condition also needs to be considered. Powered by dynamic EH, the

chances that each exit is selected are different depending on both the power condition and the

accuracy/energy cost of each exit after compression. To maximize the average accuracy of all

the events, the compression algorithm has to take the power condition and accuracy/energy

cost of multiple exits into consideration. Maximizing the average accuracy across all the events

is equivalent to maximizing the number of interesting events that are correctly processed in a

fixed amount of harvested energy, which is important for EH-powered devices.

The second challenge is how to select the exit for each event during runtime to achieve

12

high average accuracy in the long term. The exit needs to be selected based on the available

EH energy and the difficulty of each input. Two sequential decisions need to be made. First,

when an event happens, simply selecting the exit with the highest accuracy that current

energy can support can result in low average accuracy in the long run. This is because even

if the current EH efficiency is high, it can be low in the future. Instead of using up all the

available energy for one inference to achieve high accuracy, a better strategy is to reserve

some energy for future events. Otherwise, the following events will have low accuracy or even

be missed because of insufficient energy. Second, the inference difficulty of each input needs

to be considered. The difficulty is only known at an exit by inspecting the entropy of the

current result. If the confidence is low at the selected exit, a second decision needs to be

made on whether an incremental inference is needed to propagate the input to a following

exit for higher accuracy. To make these two decisions, the EH condition and the difficulty of

the current event need to be considered.

To address these two challenges, based on the proposed compression framework for multi-

exit networks, we further propose a two-phase approach to compress multi-exit networks for

EH devices and conduct runtime exit selection. In the first phase, we apply the compression

framework and add constraints of typical EH power traces and event distribution to determine

the probability of selecting each exit. After compression, a pruned and quantized neural

network that maximizes the average accuracy of the typical power trace and event distribution

is obtained.

In the second phase, we aim to maximize the average accuracy for all the events during

runtime. We employ Q-learning [106] to learn the best exit under different EH energy

conditions. To select the exit for an event, we use the currently available energy level and

the charging efficiency as the state, and use all exits as the actions the learning method can

take. Q-learning is lightweight as it uses a lookup table (LUT) to select actions. The learning

process only involves updating the LUT. To decide whether to conduct incremental inference,

we use the confidence of the result at the selected exit and currently available energy as the

state. The action is a binary decision, representing to continue the inference or to output the

current result.

In summary, the main contributions of the work include:

13

• Compression framework for multi-exit neural networks. We propose a framework

to prune and quantize multi-exit neural networks to fit onto MCUs while maximizing the

average inference accuracy.

• Application of compressed multi-exit neural networks for energy harvesting

scenarios. Based on the multi-exit neural network, we propose an intermittent and

incremental inference model to guarantee an inference result before power failure occurs.

We apply the compression framework to EH applications and develop a power trace-aware

and exits-guided compression technique. We propose an online exit selection method to

select the exit for each event considering the EH condition and difficulty of each input.

Experimental results of applying the proposed model compression framework to the EH

application scenario show that this compression framework improves the number of correctly

processed events per energy unit by 3.6x over [27], a state-of-the-art (SOTA) intermittent

inference framework. It also outperforms [24], a NAS framework to generate networks for

MCUs, by 18.9x. The latency of all the processed events is improved by 7.8x and 10.2x over

these two approaches, respectively.

2.2 Related Work

2.2.1 Multi-exit Network

The multi-exit neural network has been investigated in various studies. Instead of only

having one final inference result, networks can have early results to save time or energy.

In [40, 99], a subset of networks is selected for faster inference by trading off accuracy. These

approaches allow a dynamic trade-off between inference latency and accuracy. However,

none of the works are targeted at EH-powered MCUs, which are constrained in the weight

storage and energy budgets. The large weight size and FLOPs of their models are prohibitive

for direct deployment to EH-powered MCUs. Pruning and quantization are needed for the

deployment.

14

2.2.2 Network Compression

There are extensive explorations on network pruning and quantization. For quantization,

[83] employs binary filters and inputs for CNNs. [102] automates the quantization of each

layer by a learning-based method. For pruning, [37] employs RL to automatically explore the

layer-wise pruning rate for channel pruning [63]. However, these pruning and quantization

methods only consider networks with one exit, which will greatly degrade the accuracy of

early exits. Besides, the above approaches only focus on either quantization or pruning, not

both of them. To deploy multi-exit networks to MCUs, an automated approach to conduct

the quantization and pruning simultaneously while considering the accuracy of all exits is

needed.

2.2.3 Intermittent Execution

EH techniques extract power from the ambient environment and provide an attractive

power alternative in sensing scenarios where it is difficult to employ batteries. With an

unstable power supply, EH-powered computing systems have to run intermittently. Various

optimization and tools such as Chain [20] have also been proposed to ensure correctness

and improve efficiency. Gobieski et al. [27] made the first step to implementing DNNs in an

intermittently-powered sensor. It guarantees the correctness of DNN inference across multiple

power failures. The drawback is that we must wait for multiple power cycles to finish one

inference. Since the harvested power is usually weak and unpredictable, it takes an indefinite

amount of time to obtain the final inference result.

2.3 Model Compression of Multi-exit Neural Networks

In this section, we will develop an exit-guided network compression framework. It aims to

fit the multi-exit network onto edge devices and maximize the average accuracy by allocating

layer-wise pruning rate and quantization bitwidth. Figure 2 shows a simple network with three

exits, and each exit has a different accuracy and energy cost. Existing model compression

15

Conv 5x5 Conv 5x5

Conv 3x3

Exit 1

Conv 5x5

Exit 2

Conv 5x5 Conv 3x3 Exit 3

Confidence
> threshold 1?

Confidence
> threshold 2?

Figure 2: Architecture of multi-exit neural networks.

A
cc

u
ra

cy
 (

%
)

55.0

60.0

65.0

70.0

75.0

Full-precision
Uniform compression
Unbalanced compression

Full-precision
Uniform compression
Unbalanced compression

73.0

67.5
69.9

72.0

65.2
68.5

64.9

61.9

57.3

Exit 1 Exit 2 Exit 3

Figure 3: Benefits of nonuniform compression.

algorithms, which uniformly compress networks, will significantly degrade the accuracy of

exits in shallow layers as shown in Figure 3. Different from existing algorithms that only

consider the accuracy of the final classifier, the proposed framework takes the accuracy of

all exits into consideration and conducts nonuniform compression. As shown in Figure 3, if

we take a non-uniform approach, which compresses less in the shallow layers and more in

the deep layers, the accuracy drop for all exits will be small. What is more, some exits will

be chosen more often than others under a given data distribution. Thus, we will prioritize

the accuracy of these exits during the compression process. In this way, we can improve the

average inference accuracy across all data.

The overview of the compression approach is shown in Figure 4. This approach takes the

multi-exit network and training samples as the input and generates a non-uniform pruning

rate and the bitwidth allocation policy for each layer. Based on the pruning rate, channel

16

Multi-exit
network Pruning

Quantization

Exit-guided
reward

Nonuniform
Compression

Training
samples

Compressed
multi-exit network

Figure 4: Overview of the proposed compression framework.

pruning is applied to each layer to prune out the input channels [63]. The channel to be

pruned out is selected by the importance of the channel, i.e. the magnitude of weights

applied to the input channel, and the less important ones are pruned out. Based on the

bitwidth policy, linear quantization [102] is applied to both the weights and activations. After

compression, the network is deployed onto edge devices and the exit will be selected by the

measured entropy at each exit and the entropy threshold. During compression, the approach

first generates an initial layer-wise compression policy. The compression policy prioritizes the

exits with higher probability and provides them with relatively higher accuracy by adjusting

the layer-wise compression policy. After applying the compression policy, the probability

distribution of each exit is changed and the compression policy needs further fine-tuning. To

accelerate the above iterative design process, we propose a reinforcement learning (RL)-based

algorithm to co-explore the pruning and quantization policies and the probability distribution

of each exit.

2.3.1 Problem Formulation

Given a full-precision network with multiple early exits, we will explore the accuracy

and energy cost allocation for each exit to maximize the average accuracy under the given

training data distribution. This is achieved by non-uniformly allocating the pruning rate and

quantization bitwidth for each layer. Both pruning and quantization reduce the FLOPs and

weight size of the network but with different emphases. Pruning mainly reduces the FLOPs,

17

while quantization mainly reduces the model size.

2.3.1.1 Pruning

Given a pruning rate αl, we employ channel pruning to prune out the entire input channels

of a convolutional or fully-connected layer. The advantages are two-fold. It reduces the

FLOPs of the previous layer by reducing the number of output channels. It also reduces the

FLOPs of the current layer by reducing the number of input channels. Besides, it can be

directly implemented on off-the-shelf MCUs without the overhead. More specifically, given

the pruning rate αl for layer l, we reduce the filter weights from shape [n, c, k, k] to [n, c′, k, k]

such that αl = c′/c. For convolutional layers, n and c are the numbers of output and input

channels, respectively, and k is the filter kernel size. For fully-connected layers, n and c are

the numbers of output and input activations, and k = 1. The input channels to be pruned are

selected according to the sum of absolute weights applied to them. We use wi,j to represent

the weights of filter i connected to input channel j. The importance of input channel j is:

sj =
n∑

i=1

|Wi,j|, j ∈ {1, ..., c}. (2-1)

All the input channels are sorted by sj and the least important ones are pruned out to make

c′ = c.

2.3.1.2 Quantization

For each layer l, we employ linear quantization for both the weights and activations

following the bitwidth bwl and bal . Given weight bitwidth bwl = k, the linearly quantized weight

w′
l is:

w′
l = clamp(round(wl/s),−2k−1, 2k−1 − 1)× s, (2-2)

where clamp(x, lb, ub) truncates the value x into the range [lb, ub] that k bits can represent.

s is the scaling factor, which is determined by minimizing the quantization error ||w′
l − wl||2.

As for activations, the quantization procedure is similar except the range for clamp() is

changed. Since all the activations are non-negative due to the ReLU function, we truncate

18

the activations into the range [0, 2k − 1].

The goal here is to find the best pruning and quantization rate. Formally, the multi-exit

network compression problem is formulated as:

Max
1

N

∑
j∈D

Accexit(j) (2-3)

s.t. Acci = facc(α1, b
w
1 , b

a
1, ..., αLi

, bwLi
, baLi

), ∀i ∈ {1...m}, (2-4)

Smodel ≤ Starget, (2-5)

Fmodel ≤ Ftarget. (2-6)

The objective is to maximize the average accuracy for the given dataset D with N samples.

In the objective function Eq.(2-3), Accexit(j) represents the accuracy of the exit for data

sample j. For sample j, an exit i is selected from m exits by the policy i = exit(j). A simple

policy is selecting the exit for a sample such that the confidence of the prediction is larger

than a given confidence threshold. The first constraint listed in Eq.(2-4) is that the accuracy

Acci of exit i is determined by the pruning rate αl, weight bitwidth bwl and activation bitwidth

bal of all layers before the layer Li where exit i is located. The second constraint listed in

Eq.(2-5) is the weight size Smodel can fit into the target MCU. The third constraint listed in

Eq.(2-6) is that the total FLOPs Fmodel is reduced to the target value Ftarget.

Given the pruning rate αl and bitwidth bwl , b
a
l , l ∈ {1, ..., L}, the objective function can

be immediately calculated. This is done by first evaluating Eq.(2-4) on the representative

dataset to get Acci. Following exit selection policy, the exit i = exit(j) for sample j ∈ {1...N}

is determined. Given exit(j), the objective function Eq.(2-3) is calculated. However, the

search space is prohibitively large to find the optimal allocation policy. Assume the network

has L layers. The quantization bitwidth bwl and bal are both selected from {1, ..., 8}, and the

pruning rate αi is in the range [0.05,1.0] with a step size of 0.05. The design space as large as

(82 × 20)L ≈ 103L, which prohibits direct searching.

19

Agent:
Pruning

Agent:
Quantization

Exit-guided reward

Training
samples

Pruning
ratio

Bitwidth
101

10101
1011

Layer L

Layer L+1

Layer L+2

1 0 1

1 0 1 10

1 0 1 1

Exit 3

Exit 1

Exit 2

Figure 5: Exit-guided layer-wise pruning and quantization.

2.3.2 RL-Based Nonuniform Compression

To effectively search for the optimal parameters, we model the pruning and quantization

task as a reinforcement learning problem. As shown in Figure 5, we use two agents to generate

the pruning rate and quantization bitwidth layer-by-layer. The compressed network is then

evaluated with the training data. the exit is selected according to the confidence threshold.

After that, the reward representing the average accuracy of all samples is given to the agents

to update their policies. After the exploration, the agents will generate the pruning rate and

quantization bitwidth for each layer to maximize Eq.(2-3).

2.3.2.1 State

Two agents share the layer-wise state during training and generate different actions.

The key point is that both the pruning and quantization information are encoded in the

observation. Each agent observes the peer’s action in the last layer such that it can take

20

action accordingly. For layer l, the shared observation Ol is:

Ol = (l, αl−1, b
w
l−1, b

a
l−1, f lopreduced, f lopremain, sreduced, sremain, iconv, cin, cout, sweight), (2-7)

where l is the layer index, αl−1 is the pruning rate of the previous layer, and bwl−1 and bal−1

are the bitwidth of weights and activations of the previous layer. flopreduced is the reduced

FLOPs in previous layers, and flopremain is the FLOPs in the following layers. sreduced and

sremain are the reduced weight size and the remaining weight size. iconv is a binary value

indicating whether this layer is a convolutional or fully-connected layer. cin and cout are the

number of input and output channels for the convolutional layer, or the number of input and

output activations for the fully-connected layer. Each dimension of Ol is normalized to [0, 1]

to make them on the same scale.

2.3.2.2 Action

Two agents generate different actions. One agent generates the action αl for the layer-

wise pruning rate. The other agent generates two actions, one for the layer-wise weight

bitwidth bwl and one for activation bitwidth bal . We use continuous action space to generate

accuracy pruning rate and quantization bitwidth. We do not use discrete action space because

fine-grained pruning rate and quantization bitwidth need a large number of discrete actions

to represent, which results in inefficient exploration during training. To apply the agents’

actions to the compression process, the continuous action representing the pruning rate can

be directly applied to pruning. The action for quantization is first linearly mapped from the

continuous action space [0, 1] to the discrete bitwidth in the range [bwmin, b
w
max] for weights

and [bamin, b
a
max] for activations. Then the bitwidth is applied to the quantization of weights

and activations.

2.3.2.3 Reward

Two agents have different reward functions Rprune and Rquant due to different goals. Their

rewards consist of the accuracy part Racc and the compression part. Racc aims to maximize

the average accuracy of all samples. We use the percentage of each exit selected to guide the

21

compression process. Racc is defined as:

Racc =
m∑
i=1

piAcci, (2-8)

where pi is the percentage of exit i being selected. It is determined by the given data

distribution and the exit selection policy such as the confidence threshold policy.

The compression goal of the pruning agent is to keep the FLOPs of all exits Fmodel =∑m
i=1 flopi under the targeted value Ftarget. The quantization agent aims to keep the weight

size Smodel under the target value Starget. Considering the accuracy reward in Eq.(2-8), the

reward for two agents is defined as follows:

Rprune =

λ1Racc if Fmodel ≤ Ftarget,

−λ1 otherwise,

(2-9)

Rquant =

λ2Racc if Smodel ≤ Starget,

−λ2 otherwise,

(2-10)

where λ1 and λ2 are the reward scaling factors. When the compression goal is satisfied, the

reward is the scaled accuracy. Otherwise, the reward is a negative value to punish the agents.

2.3.2.4 Agent

We use two RL agents, one for pruning and the other for quantization. Separate agents

enable us to set different rewards to achieve different goals simultaneously. The agents leverage

the deep deterministic policy gradient (DDPG) [65] algorithm to explore the design space.

The agents process the network layer-by-layer. In the learning process, one step represents

that the agent processes one layer. For each layer, two agents take the step simultaneously

and proceed to the next layer. One episode consists of many steps. It starts from the first

layer and ends at the last layer.

During exploration, each agent aims to maximize the overall reward of one episode. The

action-value Q-function is estimated as

Q′
l = rl +Q(Ol+1, al+1)|al+1=µ(Ol+1). (2-11)

22

The Q-function Q(O, a) is updated by minimizing the loss:

Loss =
1

N

∑
l

(Q′
l −Q(Ol, al))|al=µ(Ol), (2-12)

where N is the number of sampled steps during exploration. The policy a = µ(O) is updated

using the sampled policy gradient:

∇J =
1

N

∑
l

∇alQ(Ol, al)∇µ(Ol). (2-13)

2.4 Application of Compressed Multi-exit Neural Network: Event-Driven IoT

with Energy Harvesting

In the above sections, we have introduced the model compression of multi-exit neural

networks for general scenarios. Next, we provide a case study of the proposed techniques in

energy harvesting-powered event-driven IoT systems. In this system, the main device (e.g. a

battery-draining processing device) can remain dormant, with near-zero power consumption,

until awakened by an EH-powered sensor, which monitors events of interest constantly with

harvested energy.

We first describe the intermittent inference model with multi-exit neural networks in

Section 2.4.1. Then we introduce how to apply the proposed model compression framework

to this EH application scenario in Section 2.4.2. Finally, we describe runtime exit selection in

Section 2.4.3.

2.4.1 Event-Driven Intermittent Inference

2.4.1.1 Intermittent Execution Model

In the existing SOTA deployment of DNNs on EH-powered devices [27], when the power

is not sufficient to finish the entire forward pass, the system is forced to pause during the

inference process and wait until enough energy is harvested. However, the unpredictable EH

process can result in indefinite waiting time to harvest sufficient energy, by which time the

23

time

EH
 E

n
er

gy

Event 1:
Selecting Exit 3 Event 3:

Selecting Exit 2

Event 2:
Selecting Exit 1

Confidence
< threshold

Proceed to
Exit 2

Exit 1 Exit 2 Exit 3

Figure 6: Intermittent execution model with multi-exits.

event may become obsolete. To solve this problem, we employ networks with multi-exits [40].

As shown in Figure 2 and Figure 3, this simple network has 3 exits, and each exit has a

different accuracy and energy cost on CIFAR-10. As shown in Figure 6, when an event

triggers the inference, an exit will be selected according to the available energy and the energy

cost of each exit. In this example, when Event 1 occurs, the stored energy is sufficient to

support the inference to Exit 3, which is selected as the exit. However, when Event 2 occurs,

the energy can only support the inference to Exit 1. At each exit, the confidence of the result

is measured by entropy. If the confidence is higher than a threshold, the inference exits from

this point. Otherwise, when more energy is available, an incremental inference will be made

to proceed to the following exit for higher accuracy. In this example, since the confidence of

Event 2 in Exit 1 is below the threshold, an incremental inference is conducted to proceed to

Exit 2. This process alleviates the indefinitely long waiting time problem and an inference

result with confidence can be obtained during each power cycle.

2.4.1.2 Optimization Goal

We use local inference to filter sensor readings from events so that only the interesting

events are used to wake up the main device. Our figure of merit is the number of interesting

events that are correctly processed in a fixed amount of harvested energy. We denote it as

IEpmJ, or the number of Interesting Events per milliJoule. Maximizing IEpmJ is equivalent

24

to maximizing the average accuracy of all events:

IEpmJ =
Ncorrect

Etotal
=

∑N1
j=1Correctj +

∑N2
j=1 0

Etotal
=

N

Etotal
(
1

N

N∑
j=1

Correctj), (2-14)

where Ncorrect is the number of correctly processed events. N = N1 +N2 is the number of all

the events in which N1 events are processed by inference and N2 events are missed due to

insufficient energy. Ncorrect is a subset of N1 and Ncorrect =
∑N1

j=1 Correctj . Correctj ∈ {0, 1}

where Correctj = 1 represents event j is correctly processed and Correctj = 0 otherwise.

Since N and Etotal are constants determined by the EH environment, maximizing IEpmJ

is equivalent to maximizing the average accuracy of all N events, which is the number of

correctly processed events over the total number of events 1
N

∑N
j=1Correctj.

2.4.2 Model Compression for Energy Harvesting

To deploy the multi-exit networks to EH-powered devices, the model needs to be com-

pressed to fit onto resource-constrained MCUs. Next, we will introduce how to apply the

compression approach proposed in Section 2.3 to EH-powered devices.

Multi-exit
network Pruning

Quantization

Exit-guided
reward

EH
Power

Event
distribution Deploy Runtime Exit

Selection
Runtime Exit

Selection

Figure 7: Compression with EH constraints and runtime exit selection after deployment.

Based on the proposed compression framework in Section 2.3, we will add EH constraints

to develop an EH-powered trace-aware compression solution for EH applications. As shown in

Figure 7, this approach takes the multi-exit network, EH power trace, and event distribution

as the input and generates a non-uniform pruning rate and the bitwidth allocation policy for

each layer. After compression, the network is deployed onto edge devices and the runtime

algorithm will select the exit for each event, which will be introduced in Section 2.4.3.

25

Given a full-precision network with multiple early exits, we will explore the accuracy

and energy cost allocation for each exit to maximize the average accuracy (equivalent to

maximizing IEpmJ defined in Section 2.4.1) under the given EH power trace and event

distribution. Some exits will be chosen more often than others. Thus, we will prioritize the

accuracy of these exits during the compression process.

More specifically, the objective is to maximize the average accuracy of the given N events,

which is the same as the goal Eq.(2-3) of the general framework. In addition to the original

constraints Eq.(2-4) and Eq.(2-5), considering the typical power trace and event distribution,

the additional energy constraints are as follows.

s.t. Ei = fE(α1, b
w
1 , b

a
1, ..., αLi

, bwLi
, baLi

), ∀i ∈ {1...m}, (2-15)

n∑
j=1

EHj ≥
n∑

j=1

Eexit(j),∀n ∈ {1...N}. (2-16)

The constraint listed in Eq.(2-15) is that the energy cost Ei of exiting from exit i is determined

by all the pruning rates and bitwidth allocations before this exit. The constraint in Eq.(2-16)

means that for each of the N events, the total harvested energy from the beginning to the

current time is greater than or equal to the total energy cost for all the happened events.

Here, EHj is the harvested energy after event j − 1 and before event j. Eexit(j) is the energy

cost when exiting from exit i following policy i = exit(j) for data sample j.

The reward function defined in Eq.(2-9) and Eq.(2-10) does not need to be changed, but

Racc defined in Eq.(2-8) has a different meaning. The percentage pi of exit i being selected is

determined by both the power trace EHj and event sequence {1...N} in Eq.(2-16). Racc not

only means to maximize the average accuracy of all events under the given power trace and

event distribution, but also means to maximize IEpmJ defined in Eq.(2-14).

2.4.3 Runtime Exit Selection and Incremental Inference with Harvested Energy

During the compression process, the exit selection for an event j is determined statically

using a static policy, e.g. a lookup table (LUT). However, naively following the static policy

during runtime can result in low average accuracy in the long term. For example, when the

EH power is low in the long run, even if the system has sufficient energy to select the exit

26

with the highest accuracy and energy cost for the current inference, a better decision can

be selecting an exit with a lower energy cost to reserve energy for following events. This

dynamic exit selection can improve the average accuracy. Besides, if the confidence at the

selected exit is low, an incremental inference by proceeding to the following exit can improve

the accuracy. We propose an online algorithm to make these two sequential decisions.

During runtime, both the power trace and the event distribution are unknown in advance.

To select the best exit for each event, we propose to employ a lightweight RL algorithm,

Q-learning [106]. Q-learning consists of the state set S, the action set A, and the reward

function R. The state set S contains the currently available energy E and the charging

efficiency P . Since both E and P are continuous values, to make the number of elements

in S finite, we discretize E and P with appropriate step sizes. The action set A represents

all the possible exits, which is A = {exit1, ..., exitm}. The reward R is the accuracy of the

selected exit r = Acca, a ∈ A. The agent aims to learn the optimal policy π such that

a = π(s), a ∈ A, s ∈ S to maximize the reward R =
∑

r. When an event happens, the agent

takes two steps, one for selecting the action and the other for updating the Q-table. The

action for the exit is selected by finding the highest Q-value in the current state, represented

as a = argmaxa∈A Q(s, a), where Q(s, a) denotes the Q-value of action-state pair (s, a). The

entry (s, a) in the Q-table is updated as:

Q(s, a) = Q(s, a) + α(r + γmax
a∈A

Q(s′, a)−Q(s, a)). (2-17)

The overhead of Q-learning is negligible. It only needs a lookup table (LUT) with state-action

pairs as the entries, and the learning process is updating the LUT by Eq.(2-17).

To further improve the average accuracy, a second decision is made at the chosen exit for

event j. If the confidence of the result is low and the remaining energy is high, the algorithm

can decide to propagate the input further to the next exit for higher accuracy. The decision

is made based on the confidence of the result and currently available energy. We use the

entropy of the result as the measure of confidence [99]. We use another Q-table to make the

decision.

27

2.5 Experiments

We conduct extensive experiments in the EH application scenario to demonstrate the

effectiveness of our approaches in terms of nonuniform compression, IEpmJ and accuracy,

FLOPs and latency, and runtime adaptation.

2.5.1 Experimental Setup

The experiments are targeting TI MSP432 MCU. To power the MCU, we use a solar

profile from [71]. The backbone of the multi-exit model is LeNet [60]. We use LeNet because

most SOTA DNNs designed for mobile devices cannot fit into typical MCUs even after

compression. For example, MobileNetV2 [89] and DARTS [67] require 4.6MB and 6.6MB

weight storage, respectively. However, a typical MCU has tens of KBs of weight storage.

We extend LeNet to four convolutional layers and equip it with two early exits along the

data path. The original network needs 580KB weight storage when represented with 32-bit

floating-point numbers. The FLOPs of the three exits are 0.4452M, 1.2602M, and 1.6202M

with corresponding accuracy of 64.9%, 72.0%, and 73.0%. The energy cost is 1.5mJ per

million FLOPs. We are using the CIFAR-10 dataset and 500 events are randomly distributed

across the duration of the EH power trace.

2.5.2 Nonuniform Pruning and Quantization

Our approach effectively finds out the pruning rate and quantization bitwidth allocation

policy to maximize the average accuracy under the model size and FLOPs constraint. Figure 8

shows the layer-wise preserve rate and quantization bitwidth. The FLOPs constraint is set

to 1.15M FLOPs, and the target model size is set to 16 KB. Under these constraints, our

approach efficiently allocates the limited FLOPs and weight size budge to maximize accuracy.

For pruning, the convolutional layers are pruned more because they are more FLOPs-intensive

than the fully-connected layers. Different from pruning, quantization allocates more accuracy

to convolutional layers by setting their bitwidth to 8. FC-B21 and FC-B31 are quantized to

1-bit possibly because they have large weight sizes and are less sensitive to data precision.

28

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Conv1 ConvB1 Conv2 ConvB2 Conv3 Conv4 FC-B1 FC-B21 FC-B22 FC-B31 FC-B32
1

2

3

4

5

6

7

8
Pr

es
er

ve
 R

a�
o

Q
ua

n�
za
�o

n
Bi

ts

Preserve ra�o Quan�za�on bits

Figure 8: Pruning and quantization policy under 1.15M FLOPs and 16KB weight size

constraints.

The search takes 6 hours on an Nvidia P100 GPU.

2.5.3 IEpmJ and Average Accuracy

The proposed approaches substantially outperform the SOTA baselines in terms of

IEpmJ (Interesting Events per milliJoule) and equivalently the average accuracy of all

events. We compare with three baselines. SonicNet is from the SOTA intermittent inference

framework [27]. SpArSeNet is a network generated by a Neural Architecture Search framework

for MCUs [24]. LeNet-Cifar is the LeNet [60] adapted for the CIFAR-10 dataset.

The result of IEpmJ is shown in Figure 9. Our approach outperforms SonicNet, SpArSeNet,

and LeNet-Cifar by 3.6x, 18.9x, and 0.28x, respectively. Our approach achieves 0.89 interesting

events per millijoules, while SonicNet and SpArSeNet only achieve 0.25 and 0.05, respectively.

During compression, our approach considers the accuracy and energy cost of each exit, the

EH power trace, and the event distribution to compress the network such that the IEpmJ is

maximized. In terms of the accuracy of all events, where the accuracy of the missed event is

29

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Our Approach SonicNet SpArSeNet LeNet-Cifar

eluojilli
M rep stnevE gnitseretnI

Figure 9: The number of interesting events per energy harvesting millijoule.

set to 0, our approach achieves an average accuracy of 50.1%, while SonicNet, SpArSeNet,

and LeNet-Cifar only achieve 14.0%, 2.6%, and 39.2%, respectively. As for the accuracy

of all the processed events, our approach achieves 65.4%, slightly lower than 75.4%, 82.7%,

and 74.7% by the baselines. This is because we aim to improve the long-term accuracy to

maximize IEpmJ instead of the accuracy for a single event. Solely aiming at the per-inference

accuracy will generate a network with high energy cost and result in a high percentage of

missed events, which degrades IEpmJ.

2.5.4 FLOPs and Latency

2.5.4.1 FLOPs

Our approach effectively reduces the FLOPs of each exit to maximize the average accuracy

of all events. Reducing FLOPs is important because, with lower FLOPs and lower energy

cost per inference, the saved energy can be allocated to other events which could have been

missed due to insufficient energy. Figure 10 shows the FLOPs of each exit before and after

compression. The FLOPs are reduced by 0.31x, 0.44x, and 0.67x for three exits, respectively.

The reduction ratio of each exit is automatically decided by our approach. Different from our

30

0

0.5

1

2

11.4

Exit1 Exit2 Exit3 SonicNet SpArSeNet LeNet-Cifar

1.5

FL
O

PS
 (x

10
)6

FLOPs before compression
FLOPs a�er compression

0.67x
4.1x

23.2x

0.46x

0.44x

0.31x

Aver.

Figure 10: FLOPs reduced by compression.

approach, the SonicNet has 2.0M FLOPs and SpArSeNet has 11.4M FLOPs because they

did not consider the limited EH energy and only prioritize the per-inference accuracy. This

results in high energy cost per inference, low IEpmJ, and low average accuracy across all

events because a large portion of the events is missed. The LeNet-Cifar is manually designed

by domain experts and has low FLOPs, which fortunately fits the EH scenario well.

2.5.4.2 Latency

Our approach greatly reduces both per-event latency and per-inference latency. First,

the per-event latency is from the occurrence of an event to the end of inference. Across

all the processed events, our approach improves the per-event latency by 7.8x, 10.2x, and

3.15x over three baselines. More specifically, the average latency of our approach is 18.0 time

units (1 second per time unit), while the latency of the three baselines is 139.9, 183.4, and

56.7 time units, respectively. The improvement shows our approach smartly selects the early

exits to quickly output a result when the EH energy is low, instead of waiting for multiple

power cycles to reach the final exit as the baselines do. Second, our approach also improves

the per-inference latency, which is from the start to the end of an inference. As shown in

31

Figure 10, using the FLOPs as the proxy for the per-inference latency, our approach improves

the average per-inference latency by 4.1x, 23.2x, and 0.46x over three baselines.

2.5.5 Runtime Adaptation

30

35

40

45

50

55

60

1 6 11 16

)
%(ycaruccA egarevA

Learning Episodes

Q-Learning Sta�c LUT

(a) Runtime learning process.

0

50

100

150

200

250

300

350

400

450

71.0%

2.8%
11.4%

57.6%

3.8%

15.2%

Q-Learning Sta�c LUT

stnevE dessecorP fo reb
mu

N

Exit1 Exit2 Exit3

(b) Number of processed events.

Figure 11: Runtime adaptation by lightweight learning.

The average accuracy of all events is further improved by the runtime exit selection. The

runtime adaptation effectively learns from the EH environment and selects the exit for each

event to maximize the average accuracy. The adaptation approach outperforms the static

LUT by 10.2%. Figure 11a shows the average accuracy of all events is improved during the

runtime adaptation. The lightweight Q-learning approach gradually learns to optimize the

exit selection. Figure 11b shows the percentage and number of events exiting from each of

the three exits. Compared with the static LUT, the Q-learning approach prioritizes exit 1

shown in the blue bar to decrease the energy cost of each inference. By strategy adaptation,

the Q-learning approach processes 11.2% more events than the static LUT. The overhead of

Q-learning is negligible by updating its Q-table.

32

2.6 Video Demo

To demonstrate the effectiveness of the proposed model compression framework for multi-

exit neural networks, we have created video demos [4,5]. Our model compression framework is

applicable to the general tiny edge devices, but we have found that it works particularly well

for energy harvesting scenarios. Therefore, we demonstrate our methods using this scenario.

2.6.1 System Setup

Figure 12: This is the system setup for the video demo of the model compression framework

designed for multi-exit neural networks. The system is powered by energy harvesting

technology.

33

The system setup is shown in Figure 12. The system is powered by a solar panel and its

outputs are uploaded to a computer via the serial port. The system consists of an energy

harvesting adapter, a capacitor, a voltage regulator, a voltage measurement module, and

an MCU. The energy harvesting adapter, BQ25570 manufactured by Texas Instruments, is

used to extract power from the solar panel to charge up the capacitor. The capacitor is a

1.5F supercapacitor, and the voltage regulator is TPS62740. The MCU running the neural

network is STM32H7. The input images are pre-loaded onto the Flash memory of the MCU.

There are two video demos for this framework. The first video showcases how the proposed

methods work for an easy input sample, and the second video demonstrates the effectiveness

of our methods for a hard input sample. For these demos, we use the MNIST dataset [61] for

this demo, and the multi-exit model is based on LeNet [59], with two early exits added.

2.6.2 An Easy Sample

Figure 13: The easy sample used in the video demo.

We have created a video demo showcasing an easy sample, which is available online at [5].

The easy sample used in the video demo is shown in Figure 13. This digit is well-written and

easily recognizable. For this easy sample, the model is able to obtain a confident and correct

result at exit 1.

The event with this input image occurs three times. The system has enough energy to

make a prediction in the first two instances. However, in the third instance, the system does

not have enough energy and must wait for a while to accumulate enough energy.

34

2.6.3 A Hard Sample

Figure 14: The hard sample used in the video demo.

We have created a video demo showcasing a hard sample, which is available online at [4].

The hard sample used in the video demo is shown in Figure 14. This digit is sloppily written

and difficult to recognize. For this hard sample, the model’s inference results from the first

two exits have low confidence and are incorrect. The system, therefore, prefers to reach the

last exit to obtain a confident and correct result.

This event occurs three times. The first time, the system has enough energy to make

a prediction at all three exits. The system measures the confidence of prediction at exit 1

and decides to proceed to exits 2 and 3. The second time, the system does not have enough

energy to make a prediction at all three exits. At exit 1, the system is not confident and must

wait for a while to accumulate energy. Unfortunately, no more energy is available, so the

system exits at exit 1 and informs the user about its prediction and the low confidence level.

In the third instance, the system does not have enough energy to make a prediction at

all three exits. However, the system is able to accumulate enough energy to proceed to exit

2 and then exit 3. This allows the system to obtain a confident and correct prediction. At

exit 1, the system was not confident and had to wait for a while to accumulate more energy.

Fortunately, more energy became available, which allowed the system to proceed to exits 2

and 3.

35

2.7 Summary

This project aims to improve the efficiency of on-device inference by compression of

multi-exit neural networks. We provide a model compression method for multi-exit neural

networks with nonuniform compression ratios for each layer. Based on the proposed model

compression techniques, a case study of applying the proposed model compression techniques

to energy harvesting powered devices to enable event-driven IoT systems is introduced. The

experimental results show superior accuracy and latency compared with SOTA techniques.

36

3.0 Efficient Supervised On-device Training

This chapter presents a project that enables the training of CNNs on edge devices by

reducing the computation cost at training time [109]. It is organized as follows. First, the

motivation is presented. Next, the background and the related works are introduced. Then,

the details of the proposed data selection and the pruning of training computations to reduce

the training cost are presented. After that, the experimental results are shown to demonstrate

the effectiveness of the proposed techniques for reducing the training cost and preserving

accuracy. Finally, the conclusion is presented to summarize this project.

3.1 Introduction

The maturation of deep learning has enabled on-device intelligence for IoT devices. CNN,

as an effective deep learning model, has been intensively deployed on edge devices to extract

information from sensed data, such as smart cities [96], smart agriculture [126], and wearable

and medical devices [12,103]. The models are initially trained on high-performance computers

(HPCs) and then deployed to IoT devices for inference. However, in the physical world, the

statically trained model cannot adapt to the real world dynamically and may result in low

accuracy for new input instances. On-device training has the potential to learn from the

environment and update the model in situ. This enables incremental/lifelong learning [85] to

train an existing model to update its knowledge, and device personalization [86] by learning

features from the specific user and improving model accuracy. Federated learning [74] is

another application scenario of on-device training, where a large number of devices (typically

mobile phones) collaboratively learn a shared model while keeping the training data on

personal devices to protect privacy. Since each device still computes the full model update by

an expensive training process, the computation cost of training needs to be greatly reduced

to make federated learning realistic.

While the efficiency of training in HPCs can always be improved by allocating more

37

computing resources, such as 1024 GPUs [7], training on resource-constrained IoT devices

remains prohibitive. The main problem is the large gap between the high computation and

energy demand of training and the limited computing resource and battery on IoT devices.

For example, training ResNet-110 [35] on a 32x32 input image takes 780M FLOPs, which

is prohibitive for IoT devices. Besides, since computation directly translates into energy

consumption and IoT devices are usually battery-constrained [30], the high computation

demand of training will quickly drain the battery. While existing works [45,80,108] effectively

reduce the computation cost of inference by assigning input instances to different classifiers

according to the difficulty, the computation cost of training is not reduced.

To address this challenge, this work aims to enable on-device training by significantly

reducing the computation cost of training while preserving the desired accuracy. Meanwhile,

the proposed techniques can also be adopted to improve training efficiency on HPCs. To

achieve this goal, we investigate the computation cost of the entire training cycle, aiming

to eliminate unnecessary computations while keeping full accuracy. We made the following

two observations: First, not all the input instances are important for improving the model

accuracy. Some instances are similar to the ones that the model has already been trained

with and can be completely dropped to save computation. Therefore, developing an approach

to filter out unimportant instances can greatly reduce the computation cost. Second, for the

important instances, not all the computation in the training cycle is necessary. Eliminating

insignificant computations will have a marginal influence on accuracy. In the backward pass

of training, some channels in the error maps have small values. Pruning out these insignificant

channels and corresponding computation will have a marginal influence on the final accuracy

while saving a large portion of computation.

Based on the two observations, we propose a novel framework consisting of two comple-

mentary approaches to reduce the computation cost of training while preserving full accuracy.

The first approach is an early instance filter to select important instances from the input

stream to train the network and drop trivial ones. The second approach is error map pruning

to prune out insignificant computations in the backward pass when training with the selected

instances.

In summary, the main contributions of this paper include:

38

• A framework to enable on-device training. We propose a framework consisting of

two approaches to eliminate unnecessary computation in training CNNs while preserving

full network accuracy. The first approach improves the training efficiency of both the

forward and backward passes, and the second approach further reduces the computation

cost in the backward pass.

• Self-supervised early instance filtering (EIF) on the data level. We propose an

instance filter to predict the loss of each instance and develop a self-supervised algorithm

to train the filter. Instances with predicted low loss are dropped before starting the

training cycle to save computation. To train the filter simultaneously with the main

network, we propose a self-supervised training algorithm including the adaptive threshold-

based labeling strategy, uncertainty sampling-based instance selection algorithm, and

weighted loss for biased high-loss ratio.

• Error map pruning (EMP) on the algorithm level. We propose an algorithm to

prune insignificant channels in error maps to reduce the computation cost in the backward

pass. The channel selection strategy considers the importance of each channel on both the

error propagation and the computation of the weight gradients to minimize the influence

of pruning on the final accuracy.

We evaluate the proposed approaches on networks of different scales. ResNet and VGG

are for on-device training of mobile devices, and LeNet is for tiny sensor node-level devices.

The experimental results demonstrate that the proposed approaches effectively reduce the

computation and energy costs of training with little or no impact on model accuracy.

3.2 Background and Related Work

3.2.1 Background of CNN Training

The training of CNNs is most commonly conducted with the mini-batch stochastic

gradient descent (SGD) algorithm. It updates the model weights iteration-by-iteration using

a mini-batch (e.g. 128) of input instances. For each instance in the mini-batch, a forward

39

pass and a backward pass are conducted. The forward pass attempts to predict the correct

outputs using current model weights. Then the backward pass back-propagates the loss

through layers, which generates the error maps for each layer. Using the error maps, the

gradient of the loss w.r.t. the model weights are computed. Finally, the model weights are

updated by using the weight gradients and an optimization algorithm such as SGD.

To provide labeled data for on-device training, labeling strategies from existing works

can be used. For example, the labels can come from aggregating inference results from

neighbor devices [62] (e.g. voting), employing spatial context information as the supervisory

signals [77], or naturally inferred from user interaction [31,72] such as next-word-prediction

in keyboard typing.

3.2.2 Related Work

3.2.2.1 Accelerated Training

There are a number of works on accelerating network training. Stochastic depth [41]

accelerates the training by randomly bypassing layers with the residual connection. E2Train

[105] randomly drops mini-batches and selectively skips layers by using residual connections

to save computation costs. Different from [105], which randomly drops mini-batches, we

investigate the importance of each instance before keeping or dropping it. The input data from

the real world is not ideally shuffled and valuable instances for training can concentrate within

one mini-batch. Simply dropping mini-batches can miss important instances for training the

network. Besides, the layer skipping in these two works relies on the ResNet architecture [35],

and cannot be naturally extended to general CNNs. In contrast, our approaches are applicable

to general CNNs. OHEM [94] selects high-loss instances and drops low-loss ones to improve

training efficiency. It computes the loss values of all instances in the forward pass and only

keeps high-loss instances for the backward pass. The main drawback is that the computation

in the forward pass of low-loss instances is wasted. Different from this, our approach predicts

the loss of each instance and drops low-loss instances before starting the forward pass, which

eliminates the computation cost of low-loss instances. ECP [93] accelerates training by

selective convolution. However, this approach does not target on-device training and is only

40

evaluated on a small-scale dataset.

3.2.2.2 Distributed Training

Another way to accelerate training is by leveraging distributed training [104] with abundant

computing resources and large batch sizes. [7] employs an extremely large batch size of 32K

with 1024 GPUs to train ResNet-50 in 20 minutes. [48] integrates a mixed-precision method

into distributed training and pushes the time to 6.6 minutes. However, these works target

leveraging highly-parallel computing resources to reduce the training time and actually

increase the total computation cost, which is infeasible for training on resource-constrained

IoT devices.

3.2.2.3 Network Pruning during Training

Some works aim to train and prune the network architecture simultaneously. [9] and [70]

aim to accelerate training by reconfiguring the network to a smaller one during training.

The main drawback is that the network is pruned on the offline training dataset, and the

ability of the pruned network for further on-device learning is compromised. Instead, we

focus on reducing the computation cost of online training and the entire network architecture

is preserved to keep the full ability for learning in an uncertain future.

3.2.2.4 Neural Architecture Search

There are extensive explorations on neural architecture search (NAS). [50,51,107,119]

search neural architectures for hardware-friendly inference. [68] further considers quantiza-

tion during NAS for efficient inference. However, these works only aim to design network

architectures for efficient inference. The computation cost of training is not considered.

41

Loss

Input

Ground
truth

Early Instance Filter

Error map pruning

Main network

Forward pass

Backward pass

Self-Supervised
Training

Filter network EIF: Section IV

EMP: Section V

Keep

Drop

Figure 15: Overview of early instance filtering (EIF) and error map pruning (EMP).

3.3 Framework Overview

The overview of the proposed framework is shown in Figure 15. On top of the main

neural network, a small instance filter network is proposed to select important instances from

the input stream to train the network and drop trivial ones. When the input instances arrive,

the early instance filter predicts the loss value for each instance as if the instance was fed

into the main network and makes a binary decision to drop or preserve this instance. If the

predicted loss is high and the instance is preserved, the main network will be invoked to

start the forward and backward pass for training. Since the loss prediction is for the main

network, once the main network is updated, the instance filter also needs to be trained for

accurate loss prediction. The training of the instance filter is self-supervised based on the

labeling strategy by the adaptive loss threshold, instance selection by uncertainty sampling,

and the weighted loss for biased high-loss ratio, which will be introduced in Section 3.4. Once

important instances are selected, the error map pruning further reduces the computation cost

42

of the backward pass. It prunes out channels in the error maps that have small contributions

to the error propagation and gradient computation, which will be introduced in Section 3.5.

3.4 Self-Supervised Early Instance Filter

High loss
instances

Low loss inst
w/ low conf

Preserved instances

Main
network

Main
loss

Adaptive loss
threshold

Binary loss
label: H / LDropped

instances

Loss
threshold: Tl

Weighted loss
for filter

Section IV.A

Section IV.C

Section IV.B

Low

High

ConfidenceConfidence

Loss
Prediction

Early Instance Filter (EIF)

Uncertainty
sampling

Train EIF

Figure 16: Self-supervised training of early instance filter (EIF) by adaptive loss threshold,

uncertainty sampling, and weighted loss.

The early instance filter (EIF) is used to select important instances for training the main

network and drop trivial instances to reduce the computation cost of training. Since the

main network is constantly being updated during training, it is essential to tune the EIF

every time the main network is updated. In this way, the EIF can accurately select important

instances based on the latest state of the main network. In this section, we will first introduce

the working flow of EIF to select instances for training the main model. Then we discuss

the challenges of updating the EIF. After that, we present three approaches to address these

challenges such that the EIF can be effectively updated.

To select important instances and drop trivial ones on-the-fly during training, the EIF

43

predicts the loss value of each instance from the input stream without actually feeding

the instance into the main network. Trivial instances with predicted low loss are dropped

before the forward pass, which eliminates the computation on the forward pass and more

computationally intensive backward pass of the main network. Important instances with

predicted high loss are preserved to complete the forward pass, calculate the loss, and finish

the backward pass to compute the weight gradients to update the main network. Kindly note

that the instances are not pre-selected before the training starts. Instead, they are selected

on-the-fly during training based on what the main network has and has not learned at the

current state.

Figure 16 shows the working flow of EIF. The user first needs to pre-define a high-loss

ratio Rset (e.g. 10%) such that these amounts of instances in the whole input stream will be

predicted as high-loss and the others will be predicted as low-loss. Only instances predicted

as high-loss will be used for training the main network. When instances arrive sequentially,

the early instance filter predicts the loss value of each instance i as binary high or low

ypred,i = {H,L} for the main network such that the pre-defined high-loss ratio is satisfied.

The filter also produces the confidence of each loss prediction, represented by the entropy of

the loss prediction. Since the loss prediction by the EIF network is for the main network

and the main network is constantly being updated, it is essential to re-train the EIF network

every time the main network is updated to realize accurate loss prediction. However, there

are several challenges in realizing automatic self-supervised training for the EIF network.

In this section, we will first present three major challenges. Then, we will present three

techniques to address these challenges: adaptive loss threshold, uncertainty sampling, and

weighted loss, as shown in Figure 16.

3.4.1 Challenges

During on-device training, instances with predicted low loss are dropped before feeding to

the main network to compute the actual loss, and their true loss values are unknown. Thus,

we can only know the true loss values of instances with predicted high loss, which brings two

challenges. The first challenge is how to label instances as high-loss or low-loss for training

44

the EIF according to the pre-defined high-loss ratio. For example, if we could know the loss

values of all instances, defining a loss threshold to separate 10% instances with the highest

loss values is simply sorting all the loss values and finding the value for separation. Since the

loss values of dropped instances are unknown, defining a loss threshold remains a challenge.

The second challenge is that the EIF network can choose what instances will be used to

train itself, which is not possible for normal CNN training. As long as the EIF network is not

100% accurate, it will make wrong predictions. To avoid punishment, instead of adjusting its

own weights to make accurate loss predictions, the filter will learn a shortcut by predicting

all the new input instances as low loss and dropping them. Since the dropped instances will

not be fed to the main network, the EIF network will never know the ground truth of the

losses and thus it will not be punished for doing so. In this way, EIF will think it makes

perfect predictions. Dropping all the new instances prevents further training of the filter and

main network.

The third challenge is how to correctly train the filter when the number of high-loss and

low-loss instances is extremely unbalanced in the input stream. This is different from normal

training datasets such as CIFAR-10 and ImageNet, in which the number of instances in each

class is balanced. The unbalanced number of high-loss and low-loss instances makes the EIF

network training ineffective. For example, when the pre-defined high-loss ratio is relatively

low (e.g. 10%), simply predicting all the instances as low-loss will produce high accuracy of

90% on the filter, which it believes is a good result. However, this prediction is useless since

it does not find any important instance to train the main network.

We will present three techniques to address these challenges.

3.4.2 Adaptive Loss Threshold Based Labeling Strategy

The adaptive loss threshold is used to provide the ground truth (labels) for training the

EIF. With the adaptive loss threshold, we can label the loss of instances as high-loss or

low-loss to train the EIF. During the training of EIF and the main network, Rset percent of

instances will be predicted as high-loss by the EIF. The true loss values of instances predicted

as high-loss can be obtained on the main network. However, we do not know the true loss

45

values of instances predicted as low-loss since they are dropped before feeding into the main

network. With only partial loss values, defining an exact loss threshold (e.g. sorting all

loss values and finding the threshold) is challenging. Therefore, we aim to approximate the

threshold. To achieve this, we first define true high (TH) instances as the instances with

predicted high loss by the filter and labeled as high-loss by the loss threshold. We will monitor

the number of TH instances in the last n mini-batches. Then we calculate the percentage

RTH as the number of TH instances in the preserved ones over all the instances in the last n

mini-batches. By comparing the percentage RTH with the pre-defined percentage Rset, the

loss threshold is adjusted to draw RTH to the pre-defined percentage Rset.

Formally, with adaptive loss threshold Tl, instances are labeled as high-loss or low-loss as

follows.

yi =

H if lossi ≥ Tl,

L otherwise,

(3-1)

where lossi is the loss value of instance i computed by the main network. Tl is the adaptive

loss threshold.

The true high (TH) loss instance ratio RTH by the filter is defined as follows.

RTH =
1

mn

mn∑
i=1

I(ypred,i = H)I(yi = H), (3-2)

where I(x) is an indicator function which equals 1 if x is true and 0 otherwise. ypred,i is

the binary prediction by the filter for instance i, and yi is the loss label by Eq.(3-1). m is

the batch size, and n is the number of mini-batches to monitor for one update of the loss

threshold.

Based on the computed RTH and pre-defined Rset, the loss threshold Tl is adjusted to draw

RTH to Rset. When RTH is larger than Rset, too many instances are labeled and predicted as

high loss, which indicates Tl is too small. Therefore, Tl will be incremented by multiplying

with a factor larger than 1. Similarly, when RTH is smaller than Rset, Tl is too large and will

be attenuated. The loss threshold Tl is adjusted as:

Tl =

α1Tl if RTH ≥ Rset,

α2Tl otherwise,

(3-3)

46

where α1 and α2 are two hyper-parameters where α1 is larger than 1 and α2 is smaller than 1

to define the step size.

The computed RTH is essential to the self-supervised training of the EIF. More specifically,

RTH controls the loss threshold Tl by Eq.(3-3), which further controls the instance labels

yi by Eq.(3-1) for training the instance filter. With the labels yi, the filter will be trained

accordingly to predict high-loss instances. The number of instances with predicted high-loss

by the filter and labeled as high-loss will be used to compute the new RTH by Eq.(3-2), which

further adjusts Tl. This process continues for each mini-batch, which forms the self-supervised

training of the instance filter. Leveraging the self-supervision, the loss threshold Tl will be

properly adjusted and the instance filter will be well-trained to track the latest state of the

main network. In this way, the true high-loss ratio RTH affected by both the filter and the

loss threshold will be kept at the set ratio Rset. The filter will effectively select Rset percent

important instances for training the main network.

3.4.3 Instance Selection by Uncertainty Sampling

The main reason for the second challenge is that if an instance is dropped, it will never

be fed to the main network and the EIF network will never know the ground truth of the loss.

In this way, the labels (i.e. high-loss or low-loss) of the dropped instances for training the EIF

will be unknown, and the EIF cannot be correctly trained. To address this problem, we keep

some instances with predicted low loss, which would be dropped, to augment the preserved

instances for training the filter. In this way, wrong loss predictions of the dropped instances

will also punish the filter, which forces it to actually learn to find important instances. To

decide which instances to keep and minimize the number of selected instances, we employ

uncertainty sampling [55]. The dropped instances that the filter is least confident about will

be fed into the main network to compute the loss value. To measure the confidence of loss

prediction by the filter, we use the entropy defined as:

entropy(i) = −
∑

c∈{H,L}

pi,c log pi,c, pi,c = prob(ypred,i = c), (3-4)

47

where pi,c is the computed probability by the filter of being high-loss (c = H) or low-loss

(c = L) for instance i. The smaller the entropy, the more confident the filter is about the

prediction.

Based on the entropy, we select from the dropped instances where the entropy is above

the entropy threshold to augment the preserved instances for training the filter. The set of

selected instances is defined as:

I = {i | i ∈ {TL, FL}, entropy(i) > entropyT}, (3-5)

where entropyT is the entropy threshold.

3.4.4 Weighed Loss for Biased High-Loss Ratio

To address the third challenge, we propose to use the weighted loss function to make the

EIF training process fair in treating the high-loss instances when their ratio is low. In this

way, the EIF can be trained to make accurate loss predictions and select important instances

for training the main network.

Traditionally, for datasets with balanced classes, we use the average loss of each instance

as the loss function of a mini-batch for training. In our case, based on the binary loss label

yi in Eq.(3-1) and the binary loss prediction ypred,i by the filter, the loss function for instance

i is defined by cross-entropy as:

Li = −
∑

c∈{H,L}

I(yi = c) log pi,c, (3-6)

where pi,c defined in Eq.(3-4) is the computed probability of being a high or low loss for

instance i by the filter. Li measures how well the loss prediction approximates the true loss

label and will be minimized during training. The average loss will be the average loss value

of each preserved instance in a mini-batch. However, when the pre-defined high-loss ratio is

not 50% and makes the number of high-loss and low-loss instances unbalanced, directly using

the average loss will result in effective training of the EIF.

To understand the inefficiency of training with the average loss, we define the weighted

48

loss for preserved instances in a mini-batch to train the filter as:

L =
∑
i∈TH

wHLi +
∑
j∈FH

wLLj +
∑
p∈TL

wLLp +
∑
q∈FL

wHLq, (3-7)

where TH, FH, TL, and FL represent true high, false high, true low, and false low loss

instances, respectively. TH and FH are instances with predicted high loss and are labeled

as H and L by Eq.(3-1), respectively. TL and FL are instances with predicted low loss and

selected by uncertainty sampling in Eq.(3-5), which have loss labels L and H, respectively.

The weights wH and wL represent how important the true high loss (instances with loss label

H, including TH and FL) and true low loss (instances with loss label L, including TL and

FH) instances are, respectively. wH and wL are normalized such that the weights of all

instances in Eq.(3-7) sum up to 1.

When the pre-defined high-loss ratio Rset is not 50%, the number of high-loss and low-loss

instances will be not equal in the input stream. This makes training the EIF with the average

loss ineffective. For example, when Rset is set to 10%, only 10% of the instances streamed in

will be labeled as high-loss by the adaptive loss threshold. In this way, 90% of elements in

Eq.(3-7) will be low-loss instances and dominate the loss. If we were using average loss, all

the weights will be the same. To minimize the loss when training the filter, simply predicting

all instances as low-loss will produce small loss values on the dominating second and third

elements in Eq.(3-7), and hence the total loss, which prevents effective training of the filter.

To address this problem, we make the weights biased by setting wH = 1
Rset

and wL = 1
1−Rset

.

In this way, we have wH × percent(H = TH + FL) = wL × percent(L = TL + FH). The

first and fourth sums in Eq.(3-7) correspond to the high-loss (H) instances. The second and

third sums in Eq.(3-7) correspond to the low-loss (L) instances. By setting the weights in

this way, the high-loss and low-loss instances will contribute equally to the total loss and

will be treated fairly in training. In the above example, while the first and fourth sums only

contribute to 10% of the number of elements, the higher weight wH = 1
0.1

= 10 makes them

equally important as the second and third sums, which have lower weight wH = 1
0.9

= 1.1.

Therefore, the instance filter can be correctly trained with the unbalanced number of high-loss

and low-loss instances and accurately predict high-loss ones.

With the predicted high-loss instances by the filter, the selected instances by uncertainty

49

sampling, and the weighted loss function for training, the filter is effectively trained to predict

high-loss instances for training the main network.

3.5 Error Map Pruning in Backward Pass

Loss

Forward pass

Backward pass

Input

Conv layer

Input
error map

Output
error map

Conv layer
Output

Errors

Figure 17: Error maps of convolutional layers in back-propagation.

When training with the selected instances, the computation in the backward pass can

be further reduced by error map pruning (EMP). Since the backward pass takes about 2/3

of the computation cost of training, reducing its computation can effectively reduce the

total cost. As shown in Figure 17, in the backward pass of training, the back-propagation

propagates the errors layer-by-layer from the last layer to the first layer. We focus on pruning

convolutional layers because they dominate the computation cost in the backward pass.

Within one convolutional layer, the input error map is generated from the output error map

of the same layer. The output error map consists of many channels. We aim to prune the

insignificant channels to reduce the computation cost of training.

Given a pruning ratio, we need to keep the most representative channels in the error map

to maintain as much information such that the training accuracy is retained. The proposed

channel selection strategy aims to prune the channels that have the least influence on both

error propagation and the computation of the weight gradients.

50

3.5.1 Channel Selection to Minimize Reconstruction Error in Error Propagation

3.5.1.1 Problem Formulation

*

*

Rotated weights

:output error
map of layer L

:input error map of
layer L

Original error
propagation

Pruned error
propagation

Prune

c
n

c
n'

c

c

rot(W)
l

inδ lδ

Figure 18: Back-propagation of errors with pruned error map.

The first criterion to select the channels to be pruned is to minimize reconstruction error

in error propagation. The error propagation for one convolutional layer is shown at the top

of Figure 18. Within one layer, the error propagation starts from the output error map δl

shown on the right, convolves δl with the rotated kernel weights rot(W l), and generates the

input error map δlin on the left. The error propagation with pruned δl is shown at the bottom

of Figure 18. The number of channels in δl is pruned from n to n′. When computing δlin,

the computations corresponding to the pruned channels, which are convolutional operations

between δl and the rotated weights, are removed. To maintain training accuracy, it is desirable

to keep the input error map δlin as similar as possible before and after pruning. In other

words, the reconstruction error on the input error map should be minimized.

Formally, without channel pruning of δl, δlin is computed as follows.

δlin =
n∑

j=1

rot(W l
j) ∗ δlj, (3-8)

where δlin is the input error map consisting of c channels, each with shape [Win, Hin]. rot(W
l
j)

is the rotated weights of jth convolutional kernel with shape [c, kw, kh]. δ
l
j is the jth channel

51

of the output error map with shape [W,H].

Given a pruning ratio α and an output error map δl, we aim to reduce the number of

channels in δl from n to n′ such that α = n′/n. To minimize the reconstruction error on δlin,

the channel selection problem is formulated as follows.

argmin
β

∥∥∥∥∥δlin −
n∑

j=1

rot(W l
j) ∗ (δljβj)

∥∥∥∥∥
2

, (3-9)

s.t. ∥β∥0 = n′, (3-10)

where β is the error map selection strategy, represented as a binary vector of length n. βj

is the jth entry of β, and βj = 0 means the jth channel of δlj is pruned. The ℓ2-norm

∥x∥2 =
√
Σx2 measures the reconstruction error on δlin.

However, directly solving the minimization problem is prohibitive. δlin in the problem

is computed by Eq.(3-8), which completes all the computations in error propagation and

defeats the purpose of saving computation. To select channels to prune before starting the

actual error propagation, we define the importance score as an indication of how much each

channel will influence the value of δlin and prune the least important channels to minimize

the reconstruction error on δlin.

3.5.1.2 Importance Score

In Eq.(3-9), when a channel δlj is pruned, the computation error on δlin is caused by the

pruned rot(W l
j) ∗ δlj. As a fast and accurate estimation of the magnitude of rot(W l

j) ∗ δlj, we

define the importance score of channel j as follows.

sj = γ1
∥∥W l

j

∥∥
1
+ γ2

∥∥δlj∥∥1
, (3-11)

where ∥W l
j∥1 is ℓ1-norm of convolutional kernel j, computed by

∑c
i=1 |W l

j,i|. Here we remove

the rotation on W l
j since it does not change the ℓ1-norm. ∥δlj∥1 is ℓ1-norm of channel j in the

output error map, computed by the sum of its absolute values
∑W

x=1

∑H
y=1 |δlj,x,y|. γ1 and γ2

are two hyper-parameters to adjust the weight of each ℓ1-norm.

The importance score sj gives an expectation of the magnitude that a channel j in δl

52

contributes to δlin. Channels with small magnitudes in δl and corresponding kernel weights

|W l
j | tend to produce trivial values in the input error map δlin, which can be pruned while

minimizing the influence on δlin.

3.5.2 Channel Selection to Minimize Reconstruction Error in Gradient Compu-

tation

3.5.2.1 Problem Formulation

*

Weight gradient of
layer L :output error

map of layer L
:output feature map

of layer L-1

Original gradient
computation

Pruned gradient
computation

*

Prune

n

lδ1−la

n'
c

c

c
c

Figure 19: Computation of weight gradient with pruned error map.

The second criterion to select the channels to be pruned is to minimize the reconstruction

error in the weight gradients. The computation of the weight gradients without pruning is

shown at the top of Figure 19. The output feature map al−1 of the previous layer convolves

with one channel of the output error map δl to produce the gradient of one kernel. When

some channels in δl are pruned, the computation of the weight gradients corresponding to

the pruned channels is removed. To retain training accuracy, we want to keep the weight

gradients before and after pruning as same as possible. Without channel pruning of δl, the

53

weight gradients of kernel j are computed as follows.

glw,j = al−1 ∗ δlj, ∀j ∈ {1, ..., n}, (3-12)

where glw,j is the weight gradients of kernel j with shape [c, kw, kh]. a
l−1 is the output feature

map of the previous layer l − 1 with shape [c,Win, Hin]. δlj is the channel j of the output

error map in layer l, which has shape [W,H].

To determine the channel selection strategy β while minimizing the reconstruction error

on the gradient computation, the channel selection problem is formulated as:

argmin
β

n∑
j=1

∥∥glw,j − al−1 ∗ (δljβj)
∥∥
2
, s.t. ∥β∥0 = n′. (3-13)

Similar to Eq.(3-9), we use the ℓ2-norm ∥ · ∥2 to measure the reconstruction error on

the computation of the weight gradients for all the n kernels incurred by the pruning.

Similarly, solving this problem requires computing all the gradients in Eq.(3-12) to obtain

glw,j, j ∈ {1, ..., n}, which contradicts the goal of reducing computation. Thus, we define the

importance score of each channel in δl for gw and prune the least important ones to minimize

the reconstruction error on gw.

3.5.2.2 Importance Score

In Eq.(3-13), when a channel δlj is pruned, the computation error is caused by the pruned

al−1 ∗ δlj . Since al−1 is independent of j and can be considered as a constant when measuring

the importance of each channel δlj , we ignore a
l−1 and only include δlj in the importance score

of channel j, which is defined as follows.

sj =
∥∥δlj∥∥1

. (3-14)

3.5.3 Mini-batch Pruning with Importance Score

To make the pruned channels for error propagation and gradient computation consistent

with each other, we combine the importance score for these two processes. Then we scale it

from instance-wise to batch-wise for mini-batch training.

54

The importance score sj for gradient computation in Eq.(3-14) is a reduced form of

Eq.(3-11) by setting γ1 = 0 and γ2 = 1. Therefore, we combine them into Eq.(3-11). Based

on the per-instance importance score of each channel, we can prune channels for a mini-batch

of instances to reduce the computation while maintaining accuracy. For a mini-batch of

instances, we prune the same channels for all the instances. The batch-wise importance score

of one channel is calculated as Sj =
∑m

i=1 s
i
j. m is the batch size and sij is the importance

score of channel j for instance i.

With the batch-wise importance score, the error map pruning process for one convolutional

layer is as follows. Given a pruning ratio α, n(1− α) channels in the output error map δl

need to be pruned. First, for each channel j in δl, we calculate the batch-wise importance

score Sj. Then the importance scores of all channels are sorted and n(1− α) channels with

the smallest Sj are marked as pruned. Then the error propagation and the computation of

the weight gradients corresponding to the pruned channels are skipped to save computation.

3.5.3.1 Computation Reduction

With error map pruning, the computation cost of both the error propagation and the

weight gradients is effectively reduced. With pruning ratio α, 1− α computation in the error

propagation and gradient computation is skipped, which saves about 1 − α computation

in the backward pass of training. More specifically, without pruning, for one instance the

computation cost of error propagation for a convolutional layer l in floating-point operations

(FLOPs) is FLOPs(δlin) = WinHincnkwkh. When pruning the number of channels in δl from

n to αn, the computation cost is reduced to αFLOPs(δlin). For the computation of the

weight gradients, before pruning the computation cost of glw is FLOPs(glw) = WHcnkwkh.

With pruning ratio α, the cost is reduced to αFLOPs(glw). In this way, 1− α computation

cost is reduced in the backward pass of convolutional layers.

3.5.3.2 Overhead Analysis

The computation overhead of error map pruning is negligible. It is caused by channel

selection and the skipping of pruned channels. When using the ℓ1-norm strategy in Eq.(3-11)

55

for the channel selection, the overhead is negligible because the sum over each kernel weight

and each channel are much cheaper than the convolutional operation in the backward pass.

For example, the channel selection of ResNet-110 consumes a marginal 0.53% FLOPs of the

backward pass. For the overhead of skipping, since we employ structured pruning, skipping

the pruned channels is simply skipping the computation involving the pruned channels, which

has negligible overhead.

3.6 Experiments

We conducted extensive experiments to demonstrate the effectiveness of our approach

in reducing computation and energy usage, while maintaining accuracy and improving

convergence speed. We also provide a detailed analysis of the results. The evaluation is on

six network architectures and four datasets. We first evaluate EIF and then evaluate the

combined EIF+EMP approach. After that, we evaluate the practical energy savings on two

edge devices.

3.6.1 Experimental setup

3.6.1.1 Datasets and Networks

We evaluate the proposed approaches on four datasets: CIFAR-10, CIFAR-100 [57],

MNIST [61], and ImageNet [21]. We use networks with different capacities to show the

scalability of the proposed approaches. The networks include large-scale networks for mobile

devices and small networks for tiny sensor nodes. For large-scale networks, we employ residual

networks ResNet [35] and plain networks VGG [95]. ResNet-110, ResNet-74, and VGG-16

are evaluated on CIFAR-10/100. ResNet-18 and VGG-11 are evaluated on ImageNet. For

small networks, we use LeNet on MNIST.

56

3.6.1.2 Architectures of Instance Filter

We use different networks as the instance filter for different datasets. For CIFAR-10/100,

we use ResNet-8. It has 7 convolutional layers and 1 fully-connected layer. The first layer

is 3x3 convolutions with 16 filters. Then there is a stack of 3 residual blocks. The network

ends with a 10/100-way fully-connected layer. For ImageNet, we use ResNet-10. It has 9

convolutional layers and 1 fully-connected layer. The first layer is 7x7 convolutions with 64

filters. Additional downsampling is conducted with a stride of 4 to reduce the computation

cost. Then there is a stack of 4 residual blocks. The network ends with a 1000-way fully-

connected layer. For MNIST, we use a slimmed LeNet with kernel size 3x3 and {6,16} filters

for two convolutional layers.

The computation overhead of the EIF is negligible compared with the main networks. For

CIFAR-10/100, the computation required for the inference of the EIF is 5.0% of ResNet-110

and 4.1% of VGG-16, respectively. The computation required for training the EIF is 5.9% of

ResNet-110 and 4.8% of VGG-16, respectively. For ImageNet, the computation required for

the inference and training of the EIF network is 3.4% and 3.9% of ResNet-18, and 0.81% and

1.05% of VGG-11, respectively. For MNIST, the computation required for the inference and

training of the EIF is 9.5% and 7.8% of LeNet, respectively.

3.6.1.3 Training Details

We train both the main network and the instance filter simultaneously from scratch. For

ResNet-110, ResNet-74, and VGG-16, we employ the training settings in [35]. We use SGD

optimizer with momentum 0.9 and weight decay 0.0001 with batch size 128. The models are

trained for 64k iterations. The initial learning rate is 0.1 and decayed by a factor of 10 at

32k and 48k iterations. For the instance filter, the learning rate is 0.1. For ResNet-18 and

VGG-11, the batch size is 256 and the models are trained for 450k iterations. The learning

rate is decayed by 10 at 150k and 300k iterations. For LeNet, the learning rate is 0.01 and

the momentum is 0.5. The model is trained for 18.7k iterations with batch size 64. For the

instance filter, the initial learning rate is 0.1 and decayed to 0.05 after 0.94k iterations.

57

3.6.1.4 Metrics

We evaluate the proposed approaches in two highly related but different metrics: the

reduction of computation cost and practical energy saving. The computation cost is measured

in FLOPs, which is a device-independent metric for computation cost [89]. The evaluation of

the computation cost is conducted on NVIDIA P100 GPU with PyTorch 1.1 and measured

by the THOP library [82], which will be presented in Sections 3.6.2 - 3.6.5. The second

metric, practical energy saving, depends on the devices and is measured on two edge devices

(NVIDIA Jetson TX2 mobile GPU and MSP432 MCU), which will be presented in Section

3.6.6.

3.6.2 Evaluating Early Instance Filtering (EIF)

85.0%

87.0%

89.0%

91.0%

93.0%

95.0%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

EIF
SMD
SMB
OHEM

64% comp. saving, no accuracy loss

Remaining computa�on

To
p-

1
Ac

cu
ra

cy
 (%

)

Figure 20: Top-1 accuracy by early instance filter (EIF) and baselines with ResNet-110 on

CIFAR-10.

To show that the proposed early instance filtering (EIF) can effectively reduce the

computation cost while maintaining or even boosting the accuracy, we compare it with two

SOTA baselines and a standard training approach. Online hard example mining (OHEM)

[94] selects hard examples for training by computing the loss values. Stochastic mini-

58

batch dropping (SMD) [105] randomly skips every mini-batch with a probability. SMB is

the standard mini-batch training method by stochastic gradient descent (SGD), and the

computation cost is adjusted by reducing the number of training iterations.

3.6.2.1 Computation Reduction while Boosting Accuracy

The proposed EIF substantially outperforms the baselines in terms of both accuracy and

computation reduction. As shown in Figure 20, when training ResNet-110 on CIFAR-10, with

different remaining computation ratios, EIF consistently outperforms the baselines by a large

margin. Compared with the full accuracy by SGD (e.g. SMB with remaining computation

ratio 1.0), when using only 36.50% remaining computation, EIF boosts the accuracy by

0.16% (93.73% vs. 93.57%). With only 55.45% computation, EIF boosts the accuracy by

0.52% (94.09% vs. 93.57%). Compared with SMB and SMD, under different computation

ratios, EIF achieves consistently higher accuracy with a range [0.84%, 2.32%] and [0.83%,

2.28%], respectively. The significant improvement is achieved because EIF selects instances

by predicting the true loss value, instead of randomly dropping the instances. Compared

with OHEM, EIF consistently achieves higher accuracy with a range [0.31%, 0.98%] under

different computation ratios. The improved accuracy and reduced computation cost show

that the proposed instance filter effectively selects important instances for training to save

computation costs.

Remaining computa�on

To
p-

1
Ac

cu
ra

cy
 (%

)

Remaining computa�on

To
p-

1
Ac

cu
ra

cy
 (%

)

Remaining computa�on

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) ResNet-74 (b) VGG-16 (c) LeNet

87.5%

88.5%

89.5%

90.5%

91.5%

92.5%

93.5%

94.5%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

EIF
SMD
SMB
OHEM 91.5%

92.0%

92.5%

93.0%

93.5%

94.0%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

EIF
SMD
SMB
OHEM 98.6%

98.8%

99.0%

99.2%

99.4%

99.6%

0.2 0.3 0.4 0.5 0.6 0.7 0.8

EIF
SMD
SMB
OHEM

Figure 21: Top-1 accuracy by EIF and baselines with ResNet-74 and VGG-16 on CIFAR-10

and LeNet on MNIST.

59

To further evaluate EIF, we conduct experiments on training ResNet-74, VGG-16, and

LeNet. Consistent accuracy improvement over the SOTA baselines is observed in Figure 21.

3.6.3 Evaluating EIF + EMP

86.0%

87.0%

88.0%

89.0%

90.0%

91.0%

92.0%

93.0%

94.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

EIF+EMP
OHEM
SD
SMB

Remaining computa�on

To
p-

1
Ac

cu
ra

cy
 (%

)

68% comp. saving, no accuracy loss

Figure 22: Accuracy of ResNet-110 on CIFAR-10 by EIF+EMP and baselines under different

remaining computation ratios.

We evaluate the proposed framework EIF+EMP. Our approach effectively reduces the

computation cost and achieves significantly better accuracy than SOTA baselines. Figure 22

shows the accuracy of ResNet-110 on CIFAR-10 when trained by EIF+EMP and the baselines

under different remaining computation ratios. Compared with EIF or EMP only, EIF+EMP

achieves more computation reduction while preserving and even boosting accuracy. With

EIF only, we achieve a 63.50% computation reduction without accuracy loss. With EMP

only, we achieve a 35.56% computation reduction in the backward pass without accuracy loss

and a 62.22% computation reduction with a slight accuracy loss of 0.72%. By the combined

EIF+EMP, with up to 67.84% computation reduction, we achieve no accuracy loss and boost

the accuracy by up to 0.84% (94.41% vs. 93.57%).

We further evaluate EIF+EMP with more network architectures and datasets. Our

60

Table 1: The top-1 accuracy achieved by EIF+EMP using ResNet-110, ResNet-74, VGG-16

on CIFAR-10, and LeNet on MNIST.

Network Method Comp. Reduce Accuracy

ResNet-110

SGD(original) - 93.57%

EIF+EMP 67.84% 93.66%

OHEM [94] 60.45% 85.11%

SD [41] 60.00% 91.96%

EIF+EMP+Q 95.71% 93.54%

E2Train(+Q) [105] 90.13% 91.68%

ResNet-74

SGD(original) - 93.46%

EIF+EMP 63.91% 93.48%

OHEM 60.59% 87.90%

SD 60.00% 90.99%

EIF+EMP+Q 95.41% 93.00%

E2Train(+Q) 90.13% 91.36%

VGG-16

SGD(original) - 93.25%

EIF+EMP 67.33% 93.15%

OHEM 60.41% 71.81%

EIF+EMP+Q 95.54% 92.69%

E2Train(+Q) - -

LeNet

SGD(original) - 99.23%

EIF+EMP 78.60% 99.47%

OHEM 65.24% 99.33%

approach substantially outperforms the baselines in terms of computation reduction and

accuracy. We evaluate our approach with ResNet-110, ResNet-74, and VGG-16 on CIFAR-10

and LeNet on MNIST. For a fair comparison with E2Train [105], which employs quantization

61

[10], we use the same quantization scheme. When comparing with other baselines, we do not

use quantization. The experimental results are shown in Table 1. When training ResNet-74,

our approach achieves 63.91% computation savings without accuracy loss. With quantization,

our approach achieves 95.41% computation saving with a marginal accuracy loss of 0.46%.

E2Train achieves less computation saving of 90.13% and a much higher accuracy loss of

2.10%. Similar results are observed on ResNet-110, VGG-16, and LeNet. SD and E2Train

rely on residual connections and cannot be applied to VGG-16 and LeNet.

Table 2: Top-1 accuracy by EIF+EMP and baselines with ResNet-110 and VGG-16 on

CIFAR-100.

Network Method Comp. Reduce Accuracy

ResNet-110

SGD (Original) - 71.60%

EIF+EMP
50.02% 72.02%

56.24% 71.63%

OHEM 47.01% 69.98%

SD 50.00% 70.44%

SMB 50.00% 67.28%

EIF+EMP+Q 92.92% 71.29%

E2Train(+Q) 90.13% 67.94%

VGG-16

SGD (Original) - 71.56%

EIF+EMP
50.49% 71.59%

53.86% 70.92%

OHEM 46.99% 65.17%

SMB 50.00% 68.76%

3.6.3.1 Experiments on CIFAR-100

We further evaluate the proposed approaches on CIFAR-100 with ResNet-110 and VGG-

16. EIF+EMP substantially outperforms the baselines in both computation reduction and

62

accuracy. As shown in Table 2, with ResNet-110, EIF+EMP achieves a 56.24% computation

reduction while preserving the full network accuracy, and 50.02% computation reduction while

boosting the accuracy by 0.42%. The baselines OHEM, SD, and SMB achieve much lower

accuracy even with less computation reduction. In the case of VGG-16, EIF+EMP achieves

a 50.49% computation reduction without any loss in accuracy and a 53.86% computation

reduction with only a 0.64% loss in accuracy. In contrast, the baselines OHEM and SMB

achieve much larger accuracy losses of 6.39% and 2.80%, respectively, with less computation

reduction.

3.6.3.2 Experiments on ImageNet

We evaluate the proposed approaches on the large-scale dataset ImageNet [72]. ImageNet

consists of 1.2M training images in 1000 classes. The main networks are ResNet-18 and

VGG-11.

The proposed EIF+EMP effectively reduces the computation cost in training while

preserving the accuracy on the large-scale dataset. As shown in Table 3, when training

ResNet-18, with a 58.91% computation reduction in training, EIF+EMP boosts the top-1

accuracy by 0.51% (70.27% vs. 69.76%) and boosts the top-5 accuracy by 0.55%. With a

more aggressive computation reduction of 64.71%, EIF+EMP still boosts the top-5 accuracy

by 0.27% (89.35% vs. 89.08%). EIF+EMP consistently outperforms the SOTA baselines by

a large margin. Similar results are observed on VGG-11.

3.6.4 Convergence Speed

The proposed approaches improve the convergence speed in the training process. The test

error (i.e. 100% - accuracy on the test dataset) over the computation cost during training is

shown in Figure 23. The proposed EIF, EMP and combined EIF+EMP approaches converge

faster than the baselines, represented as lower test error (higher accuracy) with the same

computation cost. More specifically, EIF+EMP achieves 3.1x faster convergence and 0.09%

accuracy improvement compared with the standard mini-batch approach (SMB). The SOTA

baselines OHEM and SD achieve lower convergence speed and larger accuracy loss of 8.46%

63

Table 3: Top-1 and Top-5 accuracy by EIF+EMP and baselines with ResNet-18 and VGG-11

on ImageNet.

Network Method Comp. Reduce
Acc.

(top-1)

Acc.

(top-5)

ResNet-18

SGD (Original) - 69.76% 89.08%

EIF+EMP
58.91% 70.27% 89.63%

64.71% 68.98% 89.35%

OHEM 46.67% 62.09% 87.08%

SD 50.00% 65.36% 86.41%

SMB 50.00% 65.94% 87.50%

VGG-11

SGD (Original) - 70.38% 89.81%

EIF+EMP
51.63% 70.36% 89.98%

60.59% 70.01% 89.83%

OHEM 46.59% 56.39% 85.62%

SMB 50.00% 63.76% 86.49%

and 1.61%, respectively.

3.6.5 Quantitative and Qualitative Analysis

3.6.5.1 Effectiveness of Adaptive Loss Threshold

The proposed early instance filter effectively predicts a pre-defined percentage of input

instances as high-loss and the adaptive loss threshold effectively adjusts the loss threshold as

the labeling strategy to train the filter. In Figure 24(a), the pre-defined high loss ratio is 40%

for training ResNet-110 on CIFAR-10. The number of predicted high-loss instances, averaged

every 390 iterations, is stabilized at about 51, which effectively selects 40% high-loss instances

64

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SMB

SD
OHEM

EIF
EMP
EIF+EMP

Training computa�on cost (106 GFLOPs)

Te
st

 E
rr

or

 0.09% accuracy improve.

0.72% accuracy loss

0.16% accuracy improve.

1.61% accuracy loss
8.46% accuracy loss

Figure 23: Convergence speed of ResNet-110 on CIFAR-10 during training with different

approaches.

on average from 128 instances in each mini-batch. We further compare the proposed adaptive

loss threshold with the static loss threshold. The static loss threshold is set to 1.0 in Figure

24(b). The goal of training is to minimize the loss. However, the static loss threshold cannot

effectively decrease the loss of the main model as shown in the blue line, and results in low

accuracy. This is because the static loss threshold cannot track the latest state of the main

model. Therefore, it cannot effectively stabilize the number of predicted high-loss instances

to train the main model.

3.6.5.2 Effectiveness of Weighted Loss for Training EIF

The weighted loss in Eq.(3-7) effectively trains the EIF network to make accurate loss

predictions, which eventually results in higher accuracy of the main model. As shown in

Figure 25, when the weighted loss is employed, the wrong loss prediction ratio by the EIF is

65

0

32

96

128

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 16 32 48 64

dlohserhT ssoL dna ssoL
predicted high-loss instances
Adap�ve loss threshold
Average loss of main model

Training Itera�ons (x103) #
Pr

ed
ic

te
d

Hi
gh

-L
os

s I
ns

ta
nc

es
 p

er
 M

in
i-B

at
ch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 16 32 48 64
dlohserhT ssoL dna ssoL

Training Itera�ons (x103)

predicted high-loss instances
Sta�c loss threshold=1.00
Average loss of main model

0

32

96

128

Pr

ed
ic

te
d

Hi
gh

-L
os

s I
ns

ta
nc

es
 p

er
 M

in
i-B

at
ch

6464

(a) Adap�ve loss threshold (b) Sta�c loss threshold

Figure 24: The adaptive loss threshold (left) tracks the state of the main model and stabilizes

the number of preserved instances with predicted high loss by EIF.

much lower than that without weighted loss. The pre-defined high-loss ratio is 30%, and the

corresponding low-loss ratio is 70%. When the weighted loss is used for training EIF, the

average wrong loss prediction ratio by EIF is reduced from 20.31% to 8.59%. This accurate

loss prediction effectively selects high-loss instances to train the main model and results

in significantly higher accuracy of the main model, which is 94.05% with weighted loss vs.

90.58% without weighted loss.

3.6.5.3 Overhead of EIF

The proposed early instance filter has marginal energy and computation overhead. The

average energy and computation overhead of the EIF network per training iteration (e.g. one

mini-batch of 128 instances) when training ResNet-110 on the CIFAR-10 dataset is shown

in Figure 26. As shown in the yellow bar in Figure 26(a), the energy overhead of the EIF

66

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0 8 16 24 32 40 48 56 64

oitaR noitciderP ssoL gnor
W

Training Itera�ons (x103)

With weighted loss
Without weighted loss

Figure 25: Incorrect loss prediction ratio of EIF with and without weighted loss.

(a) EIF energy overhead (b) EIF computa�on overhead (c) EIF comp. overhead every itera�on

0

20

40

60

80

100

0 8 16 24 32 40 48 56 64

noitaretI rep sP
OLFG

Training Itera�ons

EIF overhead
Main model with EIF
Main model without EIF

0.0

20.0

40.0

60.0

80.0

100.0

Av
er

ag
e

GF
LO

Ps
 p

er
 It

er
a�

on

Main model EIF overhead

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

With
 EIF

Av
er

ag
e

En
er

gy
 p

er
 It

er
a�

on
 (J

ou
le

s)
 Main model EIF overhead

Without
 EIF

With
 EIF

Without
 EIF

Figure 26: Energy and computation overhead of EIF. Energy overhead is measured on

NVIDIA Jetson TX2 mobile GPU.

67

network (measured on NVIDIA Jetson TX2) is 0.43J per iteration, which is 10.22% of the

total energy cost 4.18J when training with EIF. Without EIF, the energy cost is 12.90J per

iteration. As shown in Figure 26(b), the computation overhead of EIF is 3.88 GFLOPs, which

is 11.65% of the total computation cost of 33.21 GFLOPs when training with EIF. Without

EIF, the computation cost is 99.91 GFLOPs per iteration. The detailed EIF computation

overhead across all training iterations is shown in Figure 26(c). While the overhead of EIF

is not zero, the proposed approach achieves 67.60% energy saving and 66.76% computation

saving while fully preserving the accuracy.

Dr
op

pe
d

Pr
es

er
ve

d

CIFAR-10 MNIST

Figure 27: Preserved and dropped instances by EIF when training ResNet-110 on CIFAR-10

and LeNet on MINST.

Preserved and Dropped Instances by EIF. To better understand the instances

selected by the early instance filter, we cluster the instances that the filter preserves and

drops when training ResNet-110 on CIFAR-10 and LeNet on MNIST, as shown in Figure 27.

We find that the dropped instances show the full objects with typical characteristics. The

preserved instances either only show part of the object or show non-typical characteristics,

even hard for humans to understand. This result shows the early instance filter can effectively

find important instances to train the network.

68

Pr
un

ed
Pr

es
er

ve
d

Error map Kernel weights High

Low

Figure 28: Visualization of the pruned and preserved channels in the error map and corre-

sponding convolutional kernels.

3.6.5.4 Analysis of Error Map Pruning

To better understand the pruned and preserved channels in the backward pass by using

error map pruning, we visualize them to analyze the effectiveness of the proposed channel

selection approach. The preserved and pruned channels in the error map and corresponding

kernel weights in the conv2 layer of VGG-16 are shown in Figure 28. The pruned channels are

darker with smaller values than the preserved channels, which are brighter with larger values.

Therefore, the pruned channels will have the least influence on both the error propagation

and computation of weight gradients. This result shows the proposed error map pruning

approach effectively selects the channels to prune to minimize the influence on training.

3.6.6 Practical Energy Saving on Hardware Platforms

The energy cost of training consists of both the computation cost and the memory access

cost. While the former dominates the energy cost and is represented by the commonly used

metric FLOPs [89], the energy saving ratio can be slightly different from the computation

reduction ratio. To evaluate the energy saving, we conduct extensive experiments on two

edge platforms and evaluate the proposed approaches in terms of practical energy saving and

accuracy.

69

Power supply and
energy measurement

Platform 1: Mobile GPU

Platform 2: MCU

Power supply and
energy meas.

Dataset
UART

Computer

Power analyzer

Energy meter

Figure 29: Energy measurement setup for training on two edge platforms, including mobile-

level devices (top) and sensor node-level devices (bottom).

3.6.6.1 Hardware Setup

We apply the proposed training approach on two edge platforms to evaluate realistic

energy saving. For mobile-level devices, we train ResNet-110, ResNet-74, and VGG-16 on

an NVIDIA Jetson TX2 mobile GPU with CIFAR-10 and CIFAR-100 datasets by PyTorch

1.1. We use an energy meter to measure the energy cost as shown at the top of Figure 29.

For sensor node-level devices, we train LeNet on the MSP432 MCU. We use C language

to implement the training process. Since the MCU cannot store the entire dataset, we use a

computer to feed the training data into the MCU via UART in the training process. We use

the Keysight N6705C power analyzer to measure the energy cost.

70

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

SGD EIF+EMP OHEM SD

En
er

gy
 (x

10
5
Jo

ul
es

)
Energy(J)
Computa�on Cost (GFLOPs)

67.60% energy saving,
3.1x ba�ery life,
no accuracy loss

Acc
93.57%

Acc
93.66%

Acc
85.11%

Acc
91.96%

(a) ResNet-110

Co
m

pu
ta

�o
n

Co
st

 (x
10

6
GF

LO
Ps

)

(b) VGG-16

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0

5.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

SGD EIF+EMP OHEM

Energy(J)
Computa�on Cost (GFLOPs)

Co
m

pu
ta

�o
n

Co
st

 (x
10

6
GF

LO
Ps

)

En
er

gy
 (x

10
5
Jo

ul
es

)

Acc
93.25%

Acc
93.15%

Acc
71.81%

60.02% energy saving,
2.5x ba�ery life,
0.1% accuracy loss

Figure 30: Energy saving when training ResNet-110 and VGG-16 on Nvidia Jetson TX2

mobile GPU with CIFAR-10 dataset.

3.6.6.2 Energy Saving of Training on Mobile GPU

We evaluate the energy saving by EIF+EMP on mobile-level devices. We repeat all the

experiments in Table 1 and Table 2 on the mobile GPU to measure the practical energy saving,

except for the LeNet, which will be evaluated on MCU. Our approach effectively reduces the

energy cost of on-device training. Compared with the original SGD, the proposed EIF+EMP

achieves energy savings of 67.60%, 63.57%, and 60.02% in the training of ResNet-110, ResNet-

74, and VGG-16 on CIFAR-10, respectively, as shown in Figure 30 (the result of ResNet-74

is not shown for conciseness). The energy savings prolong battery life by 3.1x, 2.7x, and 2.5x

while improving the accuracy or incurring a slight 0.1% accuracy loss. Compared with the

SOTA baselines OHEM and SD, our approach achieves significantly higher accuracy when

similar energy saving is achieved. SD relies on residual connections and cannot be applied

to VGG-16. Besides, the practical energy-saving ratios are very close to the computation

reduction ratios represented by FLOPs, which shows the computation reduction in FLOPs

can generalize well to energy-saving on hardware platforms. Similar results are observed

71

on the CIFAR-100, on which we achieve 54.22% and 46.64% energy saving (2.2x and 1.9x

battery life) for ResNet-110 and VGG-16 without any accuracy loss, respectively.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

SGD EIF+EMP OHEM

Co
m

pu
ta

�o
n

Co
st

 (G
FL

O
Ps

)

En
er

gy
 (x

10
3 Jo

ul
es

)

Energy(J)
Computa�on Cost (GFLOPs)

74.09% energy saving,
3.9x ba�ery life,
improved accuracy

Acc
96.98%

Acc
97.31%

Acc
96.66%

Figure 31: Energy saving when training LeNet on MSP432 MCU. EIF+EMP prolongs 3.9x

battery life.

3.6.6.3 Energy Saving of Training on MCU

We evaluate the energy saving by EIF+EMP on sensor node-level devices (i.e. MCUs).

We train LeNet on MCU MSP432 for one epoch including 60000 instances and measure the

energy cost and accuracy. Due to the limited runtime memory, we set the batch size to 1.

EIF+EMP significantly reduces the energy cost of training on MCUs and effectively prolongs

battery life. As shown in Figure 31, when training LeNet on MSP432 MCU, EIF+EMP

effectively reduces the energy cost by 74.09% while improving the accuracy by 0.33%. This

prolongs battery life by 3.9x. OHEM, while not fully feasible on MCU, achieves a much lower

energy saving of 59.78% with an accuracy loss of 0.32%. This result shows EIF+EMP greatly

improves the battery life of tiny sensor nodes and outperforms the baselines.

72

3.7 Summary

This work aims to enable on-device training of convolutional neural networks by reducing

the computation cost at training time. We propose two complementary approaches to reduce

the computation cost: early instance filtering (EIF), which selects important instances for

training the network and drops trivial ones, and error map pruning (EMP), which prunes

insignificant channels in the error map in back-propagation. Experimental results show

superior computation reduction with higher accuracy compared with SOTA techniques.

73

4.0 Unsupervised On-device Representation Learning

This chapter presents a project that aims to enable on-device contrastive learning from

streaming input data by selecting the most representative data [111]. The chapter is structured

as follows. First, the motivation is presented. Next, the background and related works in the

field are introduced. Then, the details of the proposed unsupervised data selection technique

from unlabeled data stream to improve self-supervised on-device learning and corresponding

optimizations are presented. After that, the experimental results are shown to demonstrate

the effectiveness of the proposed techniques for self-supervised on-device learning. Finally,

a video demo of the project is described and the conclusion is presented to summarize this

project.

4.1 Introduction

The deployment of deep learning models on edge devices has become increasingly common

for various tasks, including search and rescue robots [91] and wildfire surveillance UAVs [88].

The initial model training is typically performed on high-performance servers and subsequently

deployed on these devices without any further training. However, it is often beneficial for these

devices to learn from real-world input data, such as images captured by a camera, either based

on a pre-trained model or starting from scratch when deployed in an unknown environment [81].

This enables the model on robots or UAVs to adapt to new environments [92].

Although it is possible to send a small amount of data to servers for labeling, sending

all new data is often impractical due to the need for expert knowledge, concerns about data

privacy, high communication costs, and potential latency issues [13]. Therefore, rather than

relying on traditional server-based training using fully labeled datasets, it is desirable to

perform in-situ learning on streaming data using as few labels as possible.

Contrastive learning, as an effective self-supervised learning approach [34], can learn visual

representations from unlabeled data to improve the feature extractor (convolutional layers)

74

in the model. After contrastive learning, the classifier (fully connected layers) can be trained

on top of the improved feature extractor by using a few labeled data to achieve improved

classification performance. Contrastive learning is conventionally conducted by using a large

dataset, which is completely collected before the training starts. In the learning process, each

mini-batch is randomly sampled from the whole dataset to update the model [18]. On edge

platforms such as robots and UAVs, the data are collected by sensors such as cameras and

continuously fed into the device. While it is theoretically possible to store the constantly

generated massive unlabeled data on the device and employ contrastive learning, both the

storage and energy overhead associated with writing and reading these data from storage

devices (e.g. Flash memory) can be prohibitive in practice.

To learn from the unlabeled data stream without accumulating a large dataset, a small

data buffer can be used to form each mini-batch for training. Existing contrastive learning

frameworks [18,34] assume that each mini-batch is independent and identically distributed

(iid) by sampling uniformly at random from all the classes (i.e. each class has representative

data in this mini-batch). However, it is challenging to maintain the most representative data

in the buffer such that learning from this buffer will efficiently reach an accurate model due

to the following two reasons. First, the streaming data collected on edge devices are usually

temporally correlated [79] and result in a correlation within each mini-batch. This is because

a long sequence of data in the temporally correlated stream can be in the same class [32]. For

example, in wildlife monitoring, goats from a group can appear in adjacent images captured

by a continuous monitoring camera [43] at some time, while zebras can appear in adjacent

images at another time. Second, there is no easy way to select representative data for each

class from the non-iid streaming data due to the fact that the streaming data are unlabeled.

If labels were available for all the data, we could easily select representative data for each

class [32] based on all the labels even if the streaming data is non-iid. Without addressing

this challenge, directly learning from these temporally correlated non-iid mini-batches will

result in slow learning speed and poor learned representations.

To improve the accuracy and expedite the learning process, it is essential to maintain a

data buffer filled with representative data from the streaming data. To achieve this goal, this

paper defines a contrast score, which is computed by the similarity between the features of

75

data and its flipped view. The contrast score of each data measures the quality of feature

representation encoded by the model. Based on the contrast score, we propose a data

replacement policy to maintain a representative data buffer. Data with a low-quality encoded

representation by the model is more valuable for learning since they have not been effectively

learned. These data will be maintained in the buffer for further learning. On the other hand,

data with high-quality representations have been effectively learned, and they will be dropped

to save places for more valuable data. After contrastive learning effectively learns from the

unlabeled data and improves the feature extractor, the classifier needs to be updated as well.

Since training the classifier without any labels does not generate meaningful accuracy, we

will send as little as 1% of the data to the server for labeling to improve the classifier and

overall accuracy.

In summary, the main contributions of the paper include:

• Self-supervised on-device learning framework. We propose a framework to form

mini-batches of training data for self-supervised contrastive learning on-the-fly from the

unlabeled input stream. It only uses a small data buffer and eliminates the necessity of

storing all the streaming data on the device.

• Contrast scoring for data selection. We propose a data replacement policy by

contrast scoring to maintain the most representative data in the buffer for on-device

contrastive learning. Labels are not needed in the data replacement process, and the

selected data will generate large gradients that benefit the learning most.

• Lazy scoring for reduced computation overhead. We propose a lazy scoring strategy

to reduce the runtime overhead of data scoring. The data scores are updated every several

iterations instead of every iteration to save computation.

Experimental results on multiple datasets including CIFAR-10, CIFAR-100, SVHN,

ImageNet-20, ImageNet-50, and ImageNet-100 show that the proposed framework achieves

significantly higher accuracy than the SOTA techniques and greatly improves the learning

speed. With 1% labeled data on the CIFAR-10 dataset, the proposed framework achieves

28.36% higher accuracy than using the 1% labeled data for direct supervised learning. The

proposed data selection method based on contrast scoring achieves 13.9% higher accuracy

76

than the current SOTA approach [49]. At the same level of accuracy, the proposed approach

enables 2.67x faster learning compared to the baseline.

4.2 Background and Related Work

4.2.1 Background of Contrastive Learning

Contrastive learning is a self-supervised approach to learning an encoder (feature extractor)

for extracting visual representations from the input image [11,16,18,29,33,34,112,121]. In

this work, we employ the contrastive learning approach from [18] since it performs on par

with its supervised counterpart. For an input image x, its representation vector h is obtained

by h = f(x), where f(·) is the backbone of a deep learning model (i.e. convolutional layers).

To boost the performance of learned representation, a project head g(·) is used to map the

data representation to the latent space as a vector z = g(h) = g(f(x)) where contrastive loss

is applied. To create a positive pair (zi, zi+), one input x is augmented twice as (xi, xi+) and

then fed into the encoder to get representation vectors (hi, hi+) = (f(xi), f(xi+)), which are

further projected by g(·) and normalized as (zi, zi+). Then for each positive pair (zi, zi+) in

one mini-batch, the contrastive loss is applied to compute the loss ℓi,i+ as follows:

ℓi,i+ = − log
exp(zi · zi+/τ)

exp(zi · zi+/τ) +
∑

i− exp(zi · zi−/τ)
, (4-1)

where zi− is the representation vector of other data (serving as negatives to contrast with)

in the same mini-batch, and τ is the temperature. Minimizing
∑

ℓi,i+ in one mini-batch by

iteratively updating the model will learn an encoder to generate representations.

4.2.2 Related Work

4.2.2.1 Contrastive Visual Representation Learning

Existing works [18, 34] employ contrastive loss for representation learning and achieve

high accuracy on classification and segmentation tasks. [54, 79] use the temporal correlations

77

in the streaming data to improve representation learning. However, all these works assume

that the whole training dataset is available in the learning process, and each mini-batch

can be formed by sampling from the dataset. Each mini-batch consists of independent and

identically distributed (iid) data. But when learning from the streaming data, which cannot

be assumed to be iid on edge devices, the data is collected sequentially as it is. Besides,

random sampling from the entire input stream to create iid mini-batches is infeasible since it

requires storing all the data. Therefore, an approach to form mini-batches on-the-fly while

including the most representative data in each mini-batch is needed to enable efficient and

accurate on-device contrastive learning.

4.2.2.2 Data Selection in Streaming and Continual Learning

There are several supervised streaming and continual learning models that can learn from

a stream of data [8]. To overcome the problem of catastrophic forgetting of previously seen

data, a data buffer is usually needed to store previous data for rehearsal [8, 14, 32]. The

main drawback of these approaches is that data labels are needed to maintain the buffer.

However, labeling all the data in the streaming is prohibitive or even infeasible on edge

devices. Therefore, existing methods cannot be applied directly to contrastive learning and

an effective data selection approach that works on unlabeled data is needed.

4.3 Self-Supervised On-Device Learning by Selective Data Contrast

This paper proposes a framework to efficiently learn data representations from the

unlabeled input stream on-the-fly without accumulating a large dataset due to storage

limitations on edge devices. To maintain the most representative data in the buffer such that

learning from these data will benefit the model most, we propose a data replacement policy

based on Contrast Score by measuring the quality of representation for each data without

using labels. Data with low-quality representations have not been effectively learned by the

model and will be maintained in the buffer for further learning, while data with high-quality

78

representations will be dropped. The contrast scoring is supported by the theoretical analysis

that data with higher scores will generate larger gradients and accelerate the learning process.

In this section, we will first present the framework overview in Section 4.3.1. Then we

will introduce the proposed contrast scoring for data selection in Section 4.3.2. After that, we

will theoretically analyze the effectiveness of contrast scoring in Section 4.3.3. Finally, we will

introduce lazy scoring to reduce the runtime overhead of contrast scoring in Section 4.3.4.

4.3.1 Framework Overview

Contrast Scoring

New Data I

Data Maintained in Buffer B

Unlabeled
Input Stream

Updated Data Buffer B
Capturing New data Data Replacement by Contrast Scoring Model Update

Data with
High Scores

Encoder

Few Labeled
Data

Stage 2:
Train ClassifierStage 1: Self-Supervised Data Representation Learning

Classifier

Figure 32: Overview of on-device contrastive learning framework.

As shown in Figure 32, the proposed framework has two stages. The first stage learns an

encoder (i.e. convolutional layers) by self-supervised contrastive learning to generate data

representations (i.e. low-dimensional vectors) from the high-dimensional unlabeled inputs

(e.g. images). The second stage learns a classifier by using a few (e.g. 1%) labeled data on

top of the learned representations.

In stage 1, the proposed framework consumes the input streaming data on-the-fly to

update the model for improved representation. We only use a small data buffer B (i.e. the

same size as one mini-batch) to maintain the most representative data. When a segment

of new input I arrives, both the new data in I and the data in buffer B will be scored to

79

find the most representative data. While any size of I can be used, for simplicity we assume

I has the size as B by setting size(I) = size(B). Then the data with the highest scores in

B ∪ I will be selected and put into B. In this way, the data replacement process always

maintains the most representative data among the new and the old ones. After each iteration

of data replacement, the data preserved in the data buffer B will serve as one mini-batch for

updating the model once. The detailed data replacement policy will be described in the next

subsection.

4.3.2 Data Replacement By Contrast Scoring

Prepare Data for Scoring

Flip

Compute
Representation Vectors Compute Contrast Scores in

Projected Representation Space

0.2

0.2

0.9

0.9

New Inputs I ∪Data Buffer B

Encoder

Compare

Compare

Compare
Compare

Flipped Data

Repres.
Vectors

Figure 33: Contrast scoring for data replacement.

4.3.2.1 Contrast Scoring

For each input xi, the contrast scoring function S(xi) aims to measure the quality of

the representation vector hi = f(xi) generated by the base encoder f(·). Intuitively, if the

representation of xi is not good, xi will be valuable data for updating the base encoder since

it can still learn from xi to improve its capability of encoding xi. To achieve this, as shown

in Figure 33, for each image xi from the input stream and the buffer, we generate another

view xi+ by horizontal flipping. Then we feed both xi and xi+ into the encoder and generate

80

the representation vectors hi and hi+ for these two views. Ideally, if the encoder has learned

to generate effective representations of xi, hi and hi+ will be identical or very similar. After

that, based on hi and hi+ , the score for xi is computed by the contrast scoring function S(·).

The contrast scoring function S(·) is defined as:

S(xi) = dissim(xi, xi+) = 1− similarity(zi, zi+)

= 1− zTi zi+ , xi ∈ {B ∪ I},
(4-2)

where zi = g(hi)/∥g(hi)∥ℓ2 , zi+ = g(hi+)/∥g(hi+)∥ℓ2 , (4-3)

where hi and hi+ are the representation vectors generated by the base encoder f(·) as

hi = f(xi) and hi+ = f(xi+), taking data xi and its horizontally flipped view xi+ as inputs,

respectively. zi and zi+ are ℓ2-normalized vectors from the projection head g(·) to enforce

∥zi∥ℓ2 = ∥zi+∥ℓ2 = 1. In this way, the dot product zTi zi+ is in the range [-1,1], and S(xi) is

non-negative and in the range [0,2].

The contrast scoring function Eq.(4-2) measures the dissimilarity between the projected

representation vectors of an image xi and its horizontal flip xi+ , where a higher score means

a larger dissimilarity. Essentially, the representation of one image needs to be invariant to

image transformations [47], and the representations of xi and xi+ need to be as similar as

possible. Since a higher score represents a larger dissimilarity and less invariance, input xi

with a higher score is more valuable for updating the base encoder because the base encoder

still cannot generate sufficiently good representations of it. By updating the encoder with

xi using the contrastive loss [18], which aims to maximize the similarity of two strongly

augmented views of xi, the score of xi in Eq.(4-2) will decrease and xi will have a lower

probability of being selected into the next mini-batch in Eq.(4-4). In this way, more valuable

data to update the base encoder will have a higher probability of being selected for the next

mini-batch and others are more likely to be dropped. A detailed analysis of the effectiveness

of contrast scoring will be provided in Section 4.3.3.

81

4.3.2.2 Contrast Score Design Principle

Contrast scoring is a metric to represent the capability of the base encoder in generating

the representation hi = f(xi) for xi. Thus, it should only relate to the image itself and

the encoder. In Figure 33, when generating a pair of inputs (xi, xi+) to S(·) from an image

xi, we find it crucial to avoid any randomness (e.g. random crop) and only apply the weak

data augmentation (i.e. horizontal flipping) to generate xi+ . The reason is that this weak

augmentation is deterministic and provides consistent inputs to S(·). In this way, the score

S(·) is deterministic to xi and is consistent in different runs of S(·).

4.3.2.3 Contrast Score Based Data Selection

The objective at iteration t is to construct the subsequent mini-batch Bt+1 by selecting

the most informative data from the new data It and the buffer Bt. This selection is performed

with the aim of maximizing the model’s learning from Bt+1, resulting in the most significant

improvement in performance. To achieve this, we apply the contrast scoring function S(·) to

both the data already in the buffer Bt and new data It. Bt+1 is formed by selecting the data

with the highest contrast scores in Bt ∪ It:

Bt+1 = {xi|xi ∈ Bt ∪ It, i ∈ topN({S(xi)}2Ni=1)}, (4-4)

where topN() returns the indices of xi with the top N scores. In this way, the most

representative data is maintained in the buffer by using the proposed contrast scoring.

4.3.3 Effectiveness of Contrast Score

The proposed contrast scoring effectively selects data that can generate large gradients,

which benefits the learning most. To understand this, for each data xi in one mini-batch, the

gradient of contrastive loss ℓi,i+ in Eq.(4-1) with respect to the representation vector zi is

computed as:

∂ℓi,i+

∂zi
= −1

τ

(
1− pzi+

)
· zi −

∑
zi−

pzi− · zi−

 , (4-5)

82

pz =
exp

(
zi

T z/τ
)∑

zj∈{zi+ ,zi−} exp (zi
T zj/τ)

, z ∈ {zi+ , zi−}, (4-6)

where pz is the probability distribution generated by applying the softmax function to the

similarity zi
T zj between zi and each zj ∈ {zi+ , zi−} in the mini-batch. For z = zi+ , pzi+ is

the matching probability of zi with its positive pair zi+ . Similarly, for z = zi− , pzi− is the

matching probability of zi with a negative pair zi− (i.e. the representation vector of other

data in the same mini-batch).

Data with a small contrast score S(xi) generates a near-zero gradient and contributes

almost nothing to the learning process. On the other hand, a data xi with a high contrast

score S(xi) in Eq.(4-2) corresponds to a large gradient in Eq.(4-5), which contributes much

to the learning process. To understand this, we analyze the relationship between the contrast

score in Eq.(4-2) and the gradient in Eq.(4-5) in two cases:

Case 1: Data with a small contrast score generates a near-zero gradient. A small

contrast score in Eq.(4-2) corresponds to a large similarity between zi and zi+ . Therefore, the

value of dot product zi
T zi+ will be large and dominate the elements in the softmax function

in Eq.(4-6). As a result, pzi+ will be large and near 1. Since pz+i +
∑

z∈zi−
pz = 1 as a property

of the softmax function, the values of all pzi− will be small and near 0. In this way, 1− pzi+

as well as all pzi− will be near 0, and the gradient
∂ℓi,i+

∂zi
will be near 0. Using the near-zero

gradient to perform one gradient descent step w ← w − η
∂ℓi,i+

∂zi
does not contribute to the

learning since there is almost no change in the weight.

Case 2: Data with a high contrast score generates a large gradient. When the

contrast score is high, zi and zi+ are dissimilar to each other. By applying the same reasoning

as case 1, 1 − pzi+ and all pzi− will be near 1, and the gradient
∂ℓi,i+

∂zi
will be large, which

significantly contributes to the learning process.

Therefore, by using the proposed contrast score, trivial data that only generate near-zero

gradients will be dropped while important data that can generate large gradients will be

maintained in the buffer for learning.

83

4.3.4 Lazy Scoring

Computing the scores for new data and data in the buffer requires feeding these data

into the base encoder to generate the representations. This computation incurs additional

time overhead. To minimize the overhead, we propose lazy scoring, in which part of the data

scores can be reused to reduce computation.

We made the following two observations as the foundation of lazy scoring. First, during

each iteration of data replacement, most of the data (i.e. about 90%) in the buffer are

preserved while most of the new data are directly dropped. Therefore, by reusing contrast

scores of data in the buffer, a large portion of the computation in scoring can be reduced.

Second, the score S(xi) of data xi only slightly changes across several adjacent iterations.

This is because the score of data xi only depends on itself and the base encoder f(·). xi

remains constant and f(·) is slowly updated across iterations. Therefore, S(xi) is only slowly

updated following the pace of f(·), and the score S(xi) computed iterations ago still provides

meaningful information of xi.

To achieve lazy scoring, as long as data xi remains in buffer B, its score is updated in

every T iteration instead of in every iteration. More specifically, for each xi in B, we track its

age age(xi) in the number of iterations since it was placed in B. When performing scoring,

we separate data in B into two subsets, in which one needs scoring while the other does not.

The subset of data that needs scoring is denoted as:

B′
t = {xi | x ∈ Bt, age(xi) mod T = 0}. (4-7)

When scoring data in B, the scores are updated as:

St(xi) =

dissim(xi, xi+), xi ∈ B′
t,

St−1(xi), otherwise.

(4-8)

In the above equation, if xi needs scoring, its score is computed by Eq.(4-2). Otherwise, its

score in the last iteration is copied to save computation. By lazying scoring, the computation

overhead of contrast scoring is effectively reduced to about 1
T
of that without lazy scoring,

while the accuracy is preserved.

84

4.4 Experiments

In this section, we first evaluate the accuracy with different labeling ratios. Then, we

evaluate the learning speed of the proposed framework. After that, we evaluate the reduced

computation overhead by lazy scoring. Finally, we evaluate the impact of buffer size.

4.4.1 Experimental Setup

4.4.1.1 Datasets and Evaluation Protocols

We use multiple datasets, including CIFAR-10, CIFAR-100 [56], SVHN [75], and ImageNet-

20/50/100 [87] to evaluate the proposed approaches. To perform classification, the encoder

is first trained by the proposed approaches to generate data representations. As we men-

tioned before, training a classifier without any labels does not generate meaningful accuracy.

Therefore, we train a classifier with 1%, 10%, or 100% labeled data on the learned encoder.

4.4.1.2 Strength of Temporal Correlation (STC)

We use the metric Strength of Temporal Correlation (STC) to represent the temporal

correlation of the input stream. STC represents how many consecutive data in the input

stream are from the same class until a class change happens [32]. A larger STC represents a

stronger temporal correlation.

4.4.1.3 Default Training Setting

We use ResNet-18 as the base encoder. We train the encoder with the contrastive loss [18]

by the Adam optimizer. While the proposed approaches can be applied to both training

from scratch and fine-tuning a pre-trained model, to avoid any bias in the pre-trained model

on any approach to compare with, we train from scratch. Unless otherwise specified, the

batch size is 256 with a weight decay of 0.0001. For subsets of ImageNet, the learning rate

is 0.0004, the temperature τ is 0.07, and STC is 100. The model is trained for 300 epochs

for ImageNet-20/50 and 100 epochs for ImageNet-100. For CIFAR-10, CIFAR-100, and

85

SVHN, the learning rate is 0.0001, the temperature τ is 0.5, and the model is trained for 500

epochs with STC 500. For all datasets, the classifier is trained for 500 epochs with Adam

optimizer and a learning rate of 0.0003. The lazy scoring is disabled by default to have a fair

comparison of different data replacement approaches. The results are averaged over three

runs on 2 Nvidia V100 GPUs with different random seeds.

4.4.1.4 Baselines

We first compare the proposed framework with supervised learning using 1% or 10%

labeled data. Then, we compare the proposed contrast scoring with four data selection

baselines which select data from unlabeled streaming. The first two baselines are popular

and effective strategies for maintaining exemplars in continual learning while not requiring

labels. Random replacement is a variant of reservoir sampling [101] and is recently used for

continual learning [32]. It selects data uniformly at random from new data and data in the

buffer to form the new data buffer. FIFO replacement is also recently employed for continual

learning [32]. It replaces the oldest data in the buffer with new data. While not requiring

labeling information and are seemingly simple, these two approaches have demonstrated

superior performance in maintaining data for continual learning compared with approaches

that rely on exact labels [17]. The next two baselines are SOTA approaches to select data

for efficient training and improving accuracy. Selective-Backprop [49] selects data with the

largest losses for training. K-Center is a SOTA active learning approach [90], which selects

the most representative data by performing k-center clustering in the features space. For

brevity, in the figures and tables below, we use the term Contrast Scoring to refer to

our proposed approach, and use Random Replace , FIFO Replace , Selective-BP , and

K-Center to refer to the baseline methods.

4.4.2 Improved Accuracy with Different Labeling Ratios

We first compare the proposed framework with supervised learning using 1% or 10%

labeled data. The proposed approaches achieve significantly higher accuracy compared to

supervised learning. Specifically, the supervised learning approach achieves an accuracy

86

42

46

50

54

58

62

Contrast
Scoring

Random
Replace

FIFO
Replace

Selec�ve
Backprop

K-Center

Ac
cu

ra
cy

 (%
)

(b) Accuracy with 10% labeled data(a) Accuracy with 1% labeled data

+8.33% +12.02% +13.9% +13.21%

60

62

64

66

68

70

72

Contrast
Scoring

Random
Replace

FIFO
Replace

Selec�ve
Backprop

K-Center

+4.58% +7.49% +10.09% +9.24%

Figure 34: Accuracy on CIFAR-10 with 1% and 10% labeled data.

of 32.11% and 40.53%, which is 28.36% and 31.22% lower than the proposed approaches,

respectively. Therefore, supervised learning is not a practical option, and we will focus on

evaluating the accuracy of the proposed framework with different data selection approaches.

We compare the proposed contrast scoring with other data selection approaches in terms of

accuracy by first performing contrastive learning on unlabeled data with different approaches,

and then learning the classifier with different ratios of labeled data (i.e. 1%, 10%).

The proposed data selection approach by contrast scoring substantially outperforms the

SOTA baselines. The accuracy with different labeling ratios (i.e. 1%, 10%) on CIFAR-10

is shown in Figure 34, in which contrastive learning is performed for 100 epochs without

labels before training the classifier. First, with 1% and 10% labeled data for learning the

classifier, the proposed Contrast Scoring approach achieves accuracies of 60.47% and 71.75%,

respectively. These accuracies outperform the other four approaches by margins of {8.33%,

12.02%, 13.9%, 13.21%} and {4.58%, 7.49%, 10.09%, 9.24%}, respectively. Second, with

fewer labels (i.e. 1% vs. 10%), the proposed contrast scoring outperforms each baseline by

a larger margin. This is because with fewer labels, the quality of learned representation

becomes more important, and the proposed framework learns better representations than

87

the baselines. Different from this, the proposed Contrast Scoring selects data that benefit

contrastive learning the most.

The results show that the most competitive baselines are the two seemingly simple, yet

surprisingly effective approaches Random Replace and FIFO Replace. These results match

the results in [14], where a random replacement policy outperforms elaborately designed

approaches.

4.4.3 Learning Curve: Improved Learning Speed and Accuracy

We evaluate the learning curve of the proposed approaches and baselines on CIFAR-10,

ImageNet-20, ImageNet-50, ImageNet-100, SVHN, and CIFAR-100 datasets. The learning

curve represents how fast the model learns representations from the new inputs. Since we aim

to evaluate the contrastive learning process by different data selection approaches, to avoid

the influence of different label ratios in training the classifier, in the following evaluations, we

will use 100% labeled data to train the classifier after contrastive learning and only compare

with the two most competitive baselines.

4.4.3.1 Learning Curve on CIFAR-10

The proposed data replacement policy quickly learns data representations and achieves a

significantly faster learning speed and a higher accuracy than the baselines. The learning

curve on CIFAR-10 is shown in Figure 35 (a). The x-axis is the number of seen inputs and

the y-axis is the accuracy. The accuracy of the proposed approaches quickly increases to

76.1% with 3.74M seen data, which is 2.67× faster than the random replacement policy

that needs 9.98M data to achieve similar accuracy. The FIFO replacement policy cannot

achieve this accuracy even with 25M data. Besides, the proposed approaches achieve much

higher final accuracy than the baselines. The proposed approaches achieve a final accuracy of

82.13%, while the random and FIFO replacement policies only achieve 79.63% and 74.51%,

respectively.

88

66

68

70

72

74

76

78

80

82

84

0 0.5 1 1.5 2 2.5

Ac
cu

ra
cy

 (%
)

x 107

Contrast Scoring
Random Replace
FIFO Replace

Number of input data

(a) CIFAR-10.

30

35

40

45

50

55

0 0.2 0.4 0.6 0.8 1 1.2

To
p-

1
Ac

cu
ra

cy
 (%

)

x 107

Number of input data

Contrast Scoring
Random Replace
FIFO Replace

(b) ImageNet-100.

Figure 35: Learning curve on CIFAR-10 and ImageNet-100 datasets.

4.4.3.2 Learning Curve on ImageNet-100

We further evaluate the proposed approaches on the ImageNet-100 dataset. While this

dataset is a subset of the large-scale ImageNet dataset, it still features high-resolution images

and is challenging for the stream setting. As shown in Figure 35 (b), the proposed approaches

achieve a consistently faster learning speed than the baselines. The proposed approaches

achieve 55.05% top-1 accuracy and outperform the baselines by 3.69% and 6.39%, respectively.

4.4.3.3 Learning Curve on ImageNet-20 and ImageNet-50

We evaluate the proposed approaches on the ImageNet-20 and ImageNet-50 datasets. As

shown in Figure 36, the proposed approaches achieve a significantly faster learning speed

and higher accuracy than the baselines. On ImageNet-20, the proposed approaches achieve

70.64% top-1 accuracy and outperform two baselines by 5.76% and 8.19%, respectively. On

89

45

50

55

60

65

70

75

0 0.2 0.4 0.6 0.8

To
p-

1A
cc

ur
ac

y
(%

)

Contrast Scoring
Random Replace
FIFO Replace

x 107

Number of input data

(a) ImageNet-20.

35

40

45

50

55

60

65

0 0.5 1 1.5 2

To
p-

1
Ac

cu
ra

cy
 (%

)

Contrast Scoring
Random Replace
FIFO Replace

x 107

Number of input data

(b) ImageNet-50.

Figure 36: Learning curve on ImageNet-20 and ImageNet-50 dataset.

ImageNet-50, the proposed approaches achieve 60.99% top-1 accuracy and outperform the

baselines by 3.94% and 6.39%, respectively.

4.4.3.4 Learning Curve on SVHN and CIFAR-100

We evaluate the learning curve on the SVHN and CIFAR-100 datasets, and the results

are shown in Figure 37. The proposed approaches substantially outperform the baselines.

4.4.4 The Impacts of Lazy Scoring

We also evaluate the impact of lazy scoring on the accuracy, runtime overhead, and

average percent of re-scored data in the buffer in each training iteration. The model is trained

on the CIFAR-10 dataset with buffer size 256 and STC 500.

Lazy scoring effectively reduces the additional computation for scoring during training

and reduces batch time. As shown in Table 4, when lazy scoring interval T in Eq.(4-7)

90

70

72

74

76

78

80

82

84

86

88

90

0 0.5 1 1.5 2 2.5 3 3.5

Ac
cu

ra
cy

 (%
)

x 107

Number of input data

Contrast Scoring
Random Replace
FIFO Replace

(a) SVHN.

32

36

40

44

48

52

0 0.5 1 1.5 2 2.5

Ac
cu

ra
cy

 (%
)

x 107

Number of input data

Contrast Scoring
Random Replace
FIFO Replace

(b) CIFAR-100.

Figure 37: Learning curve on SVHN and CIFAR-100 datasets.

Table 4: Top-1 accuracy, average re-scoring percent, and batch time (relative to that without

scoring) on CIFAR-10 with different lazy scoring intervals.

Lazy Scoring Interval Disabled 4 20 50 100 200

Accuracy (%) 76.06
77.04

(+0.98)

77.18

(+1.12)

77.23

(+1.17)

76.38

(+0.32)

74.22

(-1.84)

Re-scoring Pct. (%) 100.0 21.78 4.31 1.71 0.89 0.44

Relative Batch Time 1.478 1.312 1.232 1.199 1.191 1.172

increases, the average re-scoring percent and the relative batch time (runtime overhead) are

effectively reduced. When lazy scoring is not used, each training step of our method is 47.8%

91

slower than the baselines (without scoring). When lazy scoring is employed with interval 50,

each training step is only about 19.9% slower than the baselines. Besides, lazy scoring slightly

increases the final accuracy by up to 1.17%. We conjecture that the increased accuracy is

because the lazy scoring performs similarly to the momentum encoder in [34]. The score

computed multiple iterations ago serves as a momentum score. This slowly updated score

brings more information from the past and benefits the data selection.

4.4.5 Improved Accuracy With Different Buffer Sizes

We evaluate the impact of buffer size on the performance of the proposed approaches.

The model is trained on the CIFAR-10 dataset. The buffer size is in {8, 32, 128, 256}. The

corresponding learning rate is scaled to {1, 3, 5, 10}×10−5, roughly following a learning rate ∝
√
batch size scaling scheme.

Table 5: Accuracy on CIFAR-10 dataset with different buffer sizes.

Buffer Size Method Accuracy

8

Contrast Scoring (ours) 69.38

Random Replace 66.71 (-2.67)

FIFO Replace 65.91 (-3.47)

32

Contrast Scoring (ours) 73.26

Random Replace 70.65 (-2.61)

FIFO Replace 70.80(-2.46)

128

Contrast Scoring (ours) 73.97

Random Replace 71.28 (-2.69)

FIFO Replace 70.65 (-3.32)

256

Contrast Scoring (ours) 76.06

Random Replace 72.75(-3.31)

FIFO Replace 70.53 (-5.53)

The proposed approaches consistently outperform the baselines under different buffer sizes.

92

As shown in Table 5, under different buffer sizes, the accuracy of the proposed approaches

maintains a clear margin over the baselines. Besides, the margin becomes larger as the buffer

size increases. This is because a larger buffer size provides the framework a better opportunity

to select more informative data, and the proposed approaches can leverage this opportunity

to maintain more representative data in the buffer for learning, while the baselines cannot.

Also, all the approaches achieve higher accuracy when the buffer size becomes larger. This is

because a larger buffer size provides a larger batch size, and contrastive learning naturally

benefits from a large batch size since it provides more negative samples [18].

4.5 Video Demo

We have created a video demo showcasing the workflow of the proposed self-supervised

on-device learning framework, and the video is available online at [6].

4.5.1 System Setup

The system setup is shown in Figure 38. The system consists of the image source and the

mobile GPU platform. The image source is a computer connected to a display (the display

on the right-hand side of Figure 38) that shows the images from the CIFAR-10 dataset in

random orders [57]. The mobile GPU platform is the Nvidia Jetson TX2 [78]. It has a camera

facing the display on the right-hand side to capture the images from the image source. The

output from the mobile GPU platform is displayed on a separate screen, which is shown on

the left-hand side of Figure 38.

4.5.2 Description of Video Demo

The video demo consists of two stages, as shown in Figure 32. In the first stage, the

proposed data selection method is used to perform self-supervised contrastive learning with

the unlabeled input stream. The data buffer for contrastive learning can store up to 64

images, and data replacement based on the proposed contrast score is performed after 64

93

Figure 38: This is the system setup for the video demo, which showcases the self-supervised

on-device learning framework.

images have been captured by the camera. The selected data is then used to update the

encoder. In the second stage, a classifier is learned using a few labeled data on top of the

learned representations. In this demo, 64 images are manually labeled and used to train the

classifier. Finally, the trained encoder and classifier make predictions for each new image.

94

4.6 Summary

This work aims to enable on-device contrastive learning from input streaming data. We

propose a framework to maintain a small data buffer filled with the most representative

data for learning. To achieve the data selection without requiring labels, we propose a data

replacement policy by contrast scoring. To reduce the runtime overhead of data scoring, we

propose a lazy scoring strategy. Experimental results on multiple datasets show that the

proposed approaches achieve superior learning speed and accuracy compared with SOTA

baselines.

95

5.0 Collaborative Unsupervised Learning with Distributed Devices

This chapter presents a project that enables distributed edge devices for learning a shared

model from decentralized unlabeled data by feature fusion and neighborhood matching [110].

It is organized as follows. First, motivation is introduced. Next, the background and the

related works are presented. Then, the details of the proposed collaborative unsupervised

learning techniques to learn representations from decentralized unlabeled data are presented.

After that, the experimental results are shown to demonstrate the effectiveness of the proposed

techniques for representation learning from decentralized devices. Finally, the conclusion is

presented to summarize this project.

5.1 Introduction

Collaborative learning is an effective method for multiple distributed clients to jointly

learn a shared model from decentralized data. This approach enables clients to leverage their

individual data to generate a stronger, more comprehensive model. In the learning process,

each client updates the local model by using local data, and then a central server aggregates

the local models to obtain a shared model. In this way, collaborative learning enables learning

from decentralized data [73] while keeping data local for privacy. Decentralized collaborative

learning has the potential to revolutionize healthcare applications, particularly in the early

detection of cognitive diseases such as Parkinson’s and assessment of mental health. This

approach involves multiple personal devices, such as mobile phones, collaborating to learn

and provide timely warnings [19]. Collaborative learning can also be used for robotics, in

which multiple robots learn a shared navigation scheme to adapt to new environments [66].

Compared with local learning, collaborative learning improves navigation accuracy by utilizing

knowledge from other robots.

Existing collaborative learning approaches assume local data is fully labeled so that

supervised learning can be used for the model update on each client. However, labeling all the

96

data is usually unrealistic due to high labor costs and the requirement for expert knowledge.

For example, in medical diagnosis, even if the patients are willing to spend time on labeling

all the local data, the deficiency of expert knowledge of these patients will result in large

label noise and thus an inaccurate learned model. The deficiency of labels makes supervised

collaborative learning impractical. Self-supervised learning can address this challenge by

pre-training a neural network encoder with unlabeled data, followed by fine-tuning for a

downstream task with limited labels. Contrastive learning (CL), an effective self-supervised

learning approach [18], can learn data representations from unlabeled data to improve the

model. By integrating CL into collaborative learning, clients can collaboratively learn data

representations by using a large amount of data without labeling.

In collaborative learning, data collected on clients are inherently far from IID [39],

which results in two unique challenges when integrating collaborative learning with CL as

collaborative contrastive learning (CCL) to learn high-quality representations. The first

challenge is that each client only has a small amount of unlabeled data with limited diversity,

which prevents effective contrastive learning. More specifically, compared with the global

data (the concatenation of local data from all clients), each client only has a subset of

the global data with a limited number of classes [73, 113, 124]. For instance, in real-world

datasets [69], each client only has one or two classes out of seven object classes. Since

conventional contrastive learning frameworks [18, 34] are designed for centralized learning on

large-scale datasets with sufficient data diversity, directly applying them to local learning on

each client will result in the low quality of learned representations.

The second challenge is that each client focuses on learning its local data without

considering the data of the other clients. As a result, the features of data in the same

class but from different clients may not be well-clustered even though they could have been

clustered for improved representations. Data are decentralized in collaborative learning and

even if two clients have data of the same class, they are unaware of this fact and cannot

leverage it to collaboratively learn to cluster these data. Furthermore, in scenarios where

no labels are available, identifying the correct data clusters and performing clustering for

improved representations can be a challenging task even if one client has knowledge of

another’s data.

97

To address these challenges, we propose a collaborative contrastive learning (CCL)

framework to learn visual representations from decentralized unlabeled data on distributed

clients. The framework employs contrastive learning [34] for local learning on each client and

consists of two approaches to learning high-quality representations. The first approach is

feature fusion, which provides remote features as accurate contrastive information to each

client for better local learning. To protect the privacy of remote features against malicious

clients, we employ an encryption method [42] to encrypt the images before generating their

features. The second approach is neighborhood matching and it further aligns each client’s

local features to the fused features such that well-clustered features among clients are learned.

In summary, the main contributions of the paper include:

• Collaborative contrastive learning framework. We propose a framework with two

approaches to learning visual representations from unlabeled data on distributed clients.

The first approach improves the local representation learning on each client with limited

data diversity, and the second approach further learns unified global representations

among clients.

• Feature fusion for better local representations. We propose a feature fusion

approach to leverage remote features for better local learning while avoiding raw data

sharing. The remote features serve as negatives in the local contrastive loss to achieve a

more accurate contrast with fewer false negatives and more diverse negatives.

• Neighborhood matching for improved global representations. We propose a

neighborhood matching approach to cluster decentralized data across clients. During

local learning, each client identifies the remote features to cluster local data with and

performs clustering. In this way, well-clustered features among clients can be learned.

98

5.2 Background and Related Work

5.2.1 Contrastive Learning

Contrastive learning is a self-supervised approach to learning an encoder (i.e. a con-

volutional neural network without the final classifier) for extracting visual representation

vectors from the unlabeled input images by performing a proxy task of instance discrimina-

tion [18,34,111,117]. In this work, we employ the contrastive learning framework from [34].

For an input image x, its representation vector z is obtained by z = f(x), z ∈ Rd, where f(·)

is the encoder. Let the representation vectors query q and key k+ form a positive pair, which

are the representation vectors from two transformations (e.g. cropping and flipping) of the

same input image. Let Q be the memory bank with K representation vectors stored, serving

as negatives. The positive pair query q and key k+ will be contrasted with each vector n ∈ Q

(i.e. negatives) by the loss function:

ℓq = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

n∈Q exp(q · n/τ)
. (5-1)

Minimizing this loss will learn an encoder to generate visual representations. Then a classifier

can be trained on top of the encoder by using limited labeled data.

However, existing contrastive learning approaches are designed for centralized learning

[18, 34] and require sufficient data diversity for learning. When applied to each client in

collaborative learning with limited data diversity, their performance will greatly degrade.

Therefore, an approach to increase the local data diversity of each client while protecting the

shared information is needed.

5.2.2 Collaborative Learning

The goal of collaborative learning is to learn a shared model by aggregating locally

updated models from clients while keeping raw data on local clients [73]. In collaborative

learning, there are C clients indexed by c. The training data D is distributed among clients,

and each client c has a subset of the training data Dc ⊂ D. There are recent works aiming

to optimize the aggregation process [76, 84]. While our work can be combined with these

99

works, for simplicity, we employ a typical collaborative learning algorithm [73]. The learning

is performed round-by-round. In communication round t, the server randomly selects β · C

clients Ct and sends them the global model with parameters θt, where β is the percentage of

active clients per round. Each client c ∈ Ct updates the local parameters θtc on local dataset

Dc for E epochs to get θt+1
c by minimizing the loss ℓc(Dc, θ

t). Then the local models are

aggregated into the global model by averaging the weights θt+1 ←
∑

c∈Ct
|Dc|∑

i∈Ct |Di|θ
t+1
c . This

learning process continues until the global model converges.

To improve the performance of collaborative learning on non-IID data, [46, 124] share

local raw data (e.g. images) among clients. However, sharing raw data among clients will

cause privacy concerns [64]. Besides, they need fully labeled data to perform collaborative

learning, which requires expert knowledge and potentially high labeling costs. Therefore, an

approach to performing collaborative learning with limited labels and avoiding sharing raw

data is needed.

5.3 Collaborative Unsupervised On-device Learning

Main
model

Momentum
model

Server

Remote
features

Features of
encrypted images

Client 1 Client C

 Clients
2…C-1Local

images

Encrypted
images

Local
features

Avg()

Main
model

Momentum
model

Remote
features

Features of
encrypted images

Local
images

Encrypted
images

Local
features

4. Local learning1. Model and feature uploading Avg() 2. Model aggregation 3. Model and feature downloading

Features of
encrypted images

Features of
non-encrypted images

Figure 39: Overview of the proposed collaborative contrastive learning (CCL) framework.

We propose a collaborative contrastive learning (CCL) framework to learn representations

from unlabeled data on distributed clients. These distributed data cannot be combined in a

100

single location to construct a centralized dataset due to privacy and legal constraints [52].

The overview of the proposed framework is shown in Figure 39. There is a central server

that coordinates multiple clients to learn representations. The local model for each client is

based on MoCo [34]. CCL follows the proposed feature fusion technique to reduce the false

negative ratio on each client for better local learning (Section 5.4). Besides, based on fused

features, CCL further uses the proposed neighborhood matching to cluster representations of

data from different clients to learn unified representations among clients (Section 5.5).

Before introducing the details of feature fusion and neighborhood matching, we present

the proposed CCL process. CCL is performed round-by-round and there are four steps in

each round as shown in Figure 39. First, each client c uploads its latest model (consisting of

the main model f c
q and momentum model f c

k) and latest features Ql,c of encrypted images to

the server. Second, the server aggregates main models from clients by θq ←
∑

c∈C
|Dc|
|D| θ

c
q and

momentum models by θk ←
∑

c∈C
|Dc|
|D| θ

c
k to get updated fq and fk, where |Dc| is the data size

of client c and |D| is the total data size of |C| clients. The server also combines features as

Q = {Ql,c}c∈C . Third, the server downloads the aggregated models fq and fk and combined

features Q excluding Ql,c as Qs,c = {Q \ Qc} to each client c. Fourth, each client updates

its local models with fq and fk, and then performs local contrastive learning for multiple

epochs with local features Ql,c and remote features Qs,c by using loss Eq.(5-13) including

contrastive loss with fused features Eq.(5-6) and neighborhood matching Eq.(5-12). During

local contrastive learning, to generate features Ql,c for uploading in the next round, images x

are encrypted by InstaHide [42] as x̃ and fed into momentum model f c
k . In this way, even if a

malicious client can ideally recover x̃ from the features Ql,c, which is already very unlikely

in practice, it still cannot reconstruct x from x̃ since Instahide effectively hides information

contained in x. Next, we present the details of local contrastive learning, including feature

fusion to reduce false negative ratio in Section 5.4 and neighborhood matching for unified

representations in Section 5.5.

101

5.4 Local Learning with Feature Fusion

Next, we focus on how to perform local CL in each round of CCL. We first present the

key challenge of CL on each client, which does not exist in conventional centralized CL. Then

we propose feature fusion to tackle this challenge and introduce how to perform local CL

with fused features.

5.4.1 Key Challenge

Limited data diversity causes a high false negative (FN) ratio for each client. A low FN

ratio is crucial to achieving accurate CL [53]. For one image sample q, FNs are features that

we use as negative features but actually correspond to images of the same class as q. In

centralized CL, the percentage of FNs is inherently low since diverse data are available. The

model has access to the whole dataset D with data from all the classes instead of a subset

Dc as in collaborative learning. Thus, when we randomly sample negatives from D, the FN

ratio is low. For instance, when dataset D has 1000 balanced classes and the negatives n are

randomly sampled, for any image q to be learned, only 1
1000

of n are from the same class as q

and are FNs.

However, in collaborative learning, the FN ratio is inherently high for each client due

to the limited data diversity, which significantly degrades the performance of contrastive

learning. For instance, in real-world datasets [69], one client can have only one or two classes

out of seven classes. With limited data diversity on each client, when learning image sample

q, many negatives n to contrast with will be from the same class as q and are FNs. To

perform contrastive learning by minimizing the contrastive loss in Eq.(5-1), the model scatters

the FNs away from q, which should have been clustered since they are from the same class.

As a result, the representations of samples from the same class will be scattered instead of

clustered and degrade the learned representations.

102

5.4.2 Feature Fusion

To address this challenge, we propose feature fusion to share negatives in the feature

space (i.e. the output vector of the encoder), which reduces FN and improves the diversity of

negatives while avoiding raw data sharing. Let Ql,c be the memory bank of size K for local

features of non-encrypted images on client c, and let Ql,c be features of encrypted images. In

one round t of CCL, features Ql,c of encrypted images on each client c will be uploaded to the

server (i.e. step 1 in Figure 39). The server also downloads combined features Q excluding

Ql,c to each client c (i.e. step 3 in Figure 39) to form its memory bank of remote negatives

Qs,c as follows.

Qs,c = {Ql,i | 1 ≤ i ≤ |C|, i ̸= c}, (5-2)

where C is the set of all clients.

On client c, with local negatives Ql,c and remote negatives Qs,c, the loss for sample q is

defined as:

ℓq = − log

[
exp(q · k+/τ)

exp(q · k+/τ) +
∑

n∈{Ql∪Qs} exp(q · n/τ)

]
, (5-3)

where we leave out the client index c in Ql,c and Qs,c for conciseness. ℓq is the negative

log-likelihood over the probability distribution generated by applying a softmax function to

a pair of input q and its positive k+, negatives n from both local negatives Ql and remote

negatives Qs.

5.4.2.1 Effectiveness of Feature Fusion

The remote negatives Qs reduce the FN ratio in local contrastive learning and improve the

quality of learned representations on each client. More specifically, in collaborative learning

with non-IID data, we assume the global dataset D has M classes of data, each class with

the same number of data. Each client c ∈ C has a subset Dc ⊂ D of the same length in m

classes (m ≤M) [73,124]. For a sample q on client c, when only local negatives Ql,c are used,

1
m
|Ql,c| negatives will be in the same class as q, which results in an FN ratio RFN = 1

m
. Since

m is usually small (e.g. 2) due to limited data diversity, the FN ratio RFN will be large (e.g.

50%) and degrade the quality of learned representations. Different from this, when remote

103

negatives are used, the FN ratio is:

RFN(q) =
1
m
|Ql,c|+

∑
i∈C,i̸=c I(i, q)

1
m
|Ql,i|

|Ql,c|+
∑

i∈C,i̸=c |Ql,i|
≤ 1

m
, (5-4)

where I(i, q) is an indicator function that equals 1 when client i has data of the same class as

q, and 0 otherwise.

In most cases, RFN (q) is effectively reduced by the remote negatives. First, in the extreme

case of non-IID data distribution, where the classes on each client are mutually exclusive [124],

all I(i, q) equal 0 and RFN (q) =
1
m

|Ql,c|
|Ql,c|+

∑
i∈C,i ̸=c |Ql,i|

= 1
m|C| ≪

1
m
. With the remote negatives,

the FN ratio is effectively reduced by a factor |C|. Second, as long as not all clients have data

of the same class as q, some elements in {I(i, q)}|C|
i=1, i̸=c will be 0, and RFN (q) in Eq.(5-4) will

be smaller than 1
m
. In this case, the FP ratio is also reduced. Third, even if the data on each

client is IID and all I(i, q) equal 1, which is unlikely in realistic collaborative learning [39],

the FN ratio RFN(q) will be 1
m
. In this case, while RFN(q) is the same as that without

remote negatives, the increased diversity of negatives from other clients can still benefit local

contrastive learning.

5.4.2.2 Further Reducing the False Negative Ratio

To further reduce the FN ratio, we propose to exclude the local negatives by removing Ql

in the denominator of Eq.(5-3) and only keeping remote negatives Qs. The corresponding

FN ratio becomes:

R′
FN(q) =

∑
i∈C,i̸=c I(i, q)

1
m
|Ql,i|∑

i∈C,i̸=c |Ql,i|
≤ RFN(q). (5-5)

When not all other clients have data in the same class as q, some I(i, q) values will be 0.

As a result, R′
FN (q) < RFN (q), which leads to a further reduction in the FN ratio. Based on

the loss ℓq for one sample q in Eq.(5-3), the contrastive loss for one mini-batch B is:

Lcontrast =
1

|B|
∑
q∈B

ℓq. (5-6)

104

5.5 Local Learning with Neighborhood Matching

Local
features

Remote
features

(a) Before neighborhood matching (b) After neighborhood matching

Figure 40: Neighborhood matching aligns each client’s local features to the remote features

such that well-clustered features among clients are learned.

In local contrastive learning, each client focuses on learning its local data without

considering data on the other clients. As a result, the features of data in the same class

but from different clients may not be well-clustered even though they could be clustered for

improved representations.

5.5.1 Challenge

To cluster local features correctly with remote features, it is necessary to identify local

data and remote features belonging to the same class. However, this is challenging in the

absence of labels for local data and remote features, making it difficult to identify the correct

clusters for local features.

To tackle this challenge, we propose a neighborhood matching approach that identifies

the remote features to cluster local data with. We also define an objective function to

perform the clustering. First, during local learning on one client, as shown in Figure 40,

for each local sample we find N nearest features from both the remote and local features

105

as neighbors. Then the features of the local sample will be pushed to these neighbors by

the proposed entropy-based loss. Since the model is synchronized from the server to clients

in each communication round, the remote and local features are encoded by similar models

on different clients. Therefore, the neighbors are likely to be in the same class as the local

sample being learned, and clustering them will improve the learned representations of global

data. In this way, the global model is also improved when aggregating local models.

5.5.2 Identifying Neighbors

To push each local sample close to its neighbors, we minimize the entropy of one sample’s

matching probability distribution to either a remote feature or a local feature. To improve

the robustness, we match one sample to N nearest features at the same time, instead of

only one nearest feature. By minimizing the entropy for N nearest neighbors, the sample’s

matching probability to each of the nearest neighbors will be individually certain.

For each local sample qi, we regard top-N closest features, either from local or remote

features, as neighbors. To find the neighbors, we first define the neighbor candidates as:

Q′ = {Qs+l,i| i ∼ U(|Qs|+K,K)} , (5-7)

where i ∼ U(|Qs|+K,K) samples K integer indices from [|Qs|+K] randomly at uniform.

Qs+l,i is the element with index i in the union of remote and local features Qs ∪Ql. For one

local sample qi, the neighbors P (qi), which are the top-N nearest neighbor candidates Q′, is

given by:

P (qi) = {Q′
j | j ∈ topN(Si)}, (5-8)

Si = {Si,m | 1 ≤ m ≤ K} (5-9)

where Si,m = sim(qi, nm) = qTi · nm/∥qi∥∥nm∥ is the cosine similarity between qi and one

neighbor candidate nm ∈ Q′.

106

5.5.3 Neighborhood Matching Loss

To make the probability of qi matching to each nj ∈ P (qi) individually certain, we consider

the set:

Lj = {nj} ∪ {Q′ \ P (qi)} ∈ R(K−N+1)×d, (5-10)

where d is the dimension of one feature vector. Lj contains one of the top-N nearest neighbors

nj and neighbor candidates excluding all other top-N nearest neighbors.

Given Lj, the probability that sample qi is matched to one of the neighbors na ∈ Lj is:

pi,j,a =
exp(qTi · na/τnm)∑
n∈Lj

exp(qTi · n/τnm)
, na ∈ Lj. (5-11)

The temperature τnm controls the softness of the probability distribution [38]. Since nj

has the largest cosine similarity with qi for n ∈ Lj, pi,j,a will have the largest value when

na = nj for na ∈ Lj . In this way, when minimizing the entropy of the probability distribution

{pi,j,a}na∈Lj
, the matching probability of qi and nj will be maximized.

For one mini-batch B, to match each sample to its N nearest neighbors, the entropy for

all samples in this mini-batch is calculated as:

Lneigh = − 1

|B|
∑
i∈B

1

N

N∑
j=1

K−N+1∑
a=1

pi,j,a log(pi,j,a), (5-12)

where K −N + 1 is the number of features in Lj, and N is the number of nearest neighbors

to match. By minimizing Lneigh, each i ∈ B will be aligned to its top-N nearest neighbors.

5.5.4 Final Loss

Based on the contrastive loss with fused features in Eq.(5-6) and neighborhood matching

loss in Eq.(5-12), the overall objective is formulated as:

L = Lcontrast + λLneigh, (5-13)

where λ is a weight parameter.

107

5.6 Experiments

5.6.1 Datasets and Model Architecture

We evaluate the proposed approaches on three datasets, including CIFAR-10 [56], CIFAR-

100 [56], and Fashion-MNIST [118]. Both CIFAR-10 and CIFAR-100 have 10 classes with 50k

samples for training and 10k samples for testing, and Fashion-MNIST has 10 classes with 60k

samples for training and 10k samples for testing. We use ResNet-18 as the base encoder and

use a 2-layer MLP to project the representations to 128-dimensional feature space [18,34].

For the model ResNet-18, following [18], we replace the first 7×7 Conv of stride 2 with 3×3

Conv of stride 1, and remove the first pooling layer.

5.6.2 Distributed Setting of Collaborative Contrastive Learning

We evaluate the proposed approaches in three collaborative learning settings for each of

the three datasets. The first setting (IID) follows [124] and there are 10 clients. Each client

is randomly assigned a uniform distribution over 10 classes for CIFAR-10/FMNIST, and

100 classes for CIFAR-100. Following [73], we set the percentage of active clients per round

β = 0.2 and the number of local epochs E = 1. The second setting (non-IID 1) is similar

to the first one except that the data distribution is non-IID, where the samples are split to

clients by classes, and each client has samples of 2 classes for CIFAR-10/FMNIST and 20

classes for CIFAR-100 [122, 124]. The third setting (non-IID 2) follows [122], where there

are 5 clients and each client has samples of 2 classes for CIFAR-10/FMNIST and 20 classes

for CIFAR-100, with β = 1.0 and E = 5. For the first two settings, we train the models for

300/β rounds for CIFAR-10/100 and 100/β rounds for FMNIST, such that the total number

of mini-batches used on all clients are identical to centralized training with 300 epochs and

100 epochs, respectively. For the third setting, following [122], we train the model for 100

rounds on all three datasets.

108

5.6.3 Training Details of Collaborative Finetuning for Evaluation

The encoder learned by collaborative contrastive learning is used as the initialization

for collaborative finetuning, where clients collaboratively finetune the encoder and classifier

by supervised collaborative learning with few labeled data (results shown in Section 5.6.9).

The distributed setting in collaborative finetuning is the same as collaborative contrastive

learning described in Section 5.6.2. For all three collaborative learning settings, we train for

300/β rounds for CIFAR-10, CIFAR-100, and FMNIST, where β is the percentage of active

clients per round described in Section 5.6.2. We use SGD as the optimizer with a batch

size of 128 and an initial learning rate of 0.1 with the cosine decay schedule. Standard data

augmentations including random cropping and random flipping (probability 0.5) are used.

5.6.4 Metrics

To evaluate the quality of learned representations, we use standard metrics for centralized

self-supervised learning, including the linear evaluation and semi-supervised learning [18].

Besides, we evaluate by collaborative finetuning for realistic collaborative learning. In linear

evaluation, a linear classifier is trained on top of the frozen base encoder, and the test accuracy

represents the quality of learned representations. We first perform collaborative learning by

the proposed approaches without labels to learn representation. Then we fix the encoder

and train a linear classifier on the 100% labeled dataset on top of the encoder. The classifier

is trained for 100 epochs by the SGD optimizer following the hyper-parameters from [34].

In semi-supervised learning, we first train the base encoder without labels in collaborative

learning. Then we append a linear classifier to the encoder and finetune the whole model on

10% or 1% labeled data for 20 epochs with SGD optimizer following the hyper-parameters

from [16]. In collaborative finetuning, the learned encoder by the proposed approaches is used

as the initialization for finetuning the whole model by supervised collaborative learning [73]

with few locally labeled data on clients. Detailed collaborative finetuning settings can be

found in the Appendix.

109

5.6.5 Baselines

We compare the proposed methods with multiple approaches. Predicting Rotation is a

self-supervised learning approach by predicting the rotation of images [26]. DeepCluster-v2

is the improved version of DeepCluster [15, 16] and achieves SOTA performance. SwAV

and SimCLR are SOTA approaches for self-supervised learning [16,18]. We combine these

approaches with FedAvg as FedRot, FedDC, FedSwAV, and FedSimCLR. FedCA is the SOTA

collaborative unsupervised learning approach with a shared dictionary and online knowledge

distillation [122]. Besides, we compare with two methods as upper bounds. MoCo [34]

is a centralized contrastive learning method assuming all data are combined in a single

location. We compare with MoCo since the local model in the proposed methods is based on

it. FedAvg [73] is a fully supervised collaborative learning method.

5.6.6 Linear Evaluation

FedRot
FedDC

FedSwAV
FedSimCLR

FedCA
Proposed

Centr. MoCo

(Up. bound)

78.0
80.0
82.0
84.0
86.0
88.0
90.0

To
p-

1
ac

cu
ra

cy
 (%

)

Figure 41: Linear evaluation accuracy on CIFAR-10 in the IID setting.

110

5.6.6.1 Linear Evaluation on CIFAR-10

We evaluate the proposed approaches by linear evaluation with 100% data labeled for

training the classifier on top of the fixed encoder learned with unlabeled data by different

approaches. The proposed approaches significantly outperform other methods and even

match the performance of the centralized upper bound method. The results on CIFAR-10

in the IID setting are shown in Figure 41. On CIFAR-10, the proposed approaches achieve

88.90% top-1 accuracy, only 0.38% below the upper bound method centralized MoCo. The

proposed approaches also outperform the SOTA method FedCA by +10.92% top-1 accuracy

and the best-performing baseline FedSwAV by +5.28%.

Table 6: Linear evaluation on CIFAR-10, CIFAR-100, and FMNIST datasets under the IID

and two non-IID settings.

CIFAR-10 CIFAR-100 FMNIST

Method IID Non-1 Non-2 IID Non-1 Non-2 IID Non-1 Non-2

FedRot 78.57 75.88 70.98 45.80 44.57 43.15 83.74 82.65 82.90

FedDC 78.49 69.97 69.34 49.27 49.06 47.21 88.41 85.92 88.35

FedSwAV 83.62 75.07 75.36 55.51 51.45 53.77 89.63 87.11 89.75

FedSimCLR 82.99 71.23 73.30 48.83 45.67 48.46 88.45 84.41 86.23

FedCA 77.98 75.57 75.50 48.93 47.70 48.22 86.98 86.22 86.46

Proposed 88.90 79.07 78.31 61.91 57.54 58.63 91.26 88.13 90.08

Upper bounds

MoCo (Centralized) 89.28 — — 63.72 — — 91.97 — —

FedAvg (Supervised) 92.88 60.60 59.03 73.08 67.59 66.90 94.12 77.08 69.92

5.6.6.2 Linear Evaluation on Various Datasets and Distributed Settings

We evaluate the proposed approaches on different datasets and collaborative learning

settings. Table 6 presents the results for CIFAR-100 and FMNIST datasets under IID setting

111

and non-IID settings 1 and 2. The linear classifier is trained on top of the fixed encoder

learned with unlabeled data by different approaches. Under all three collaborative learning

settings and on both datasets, the proposed approaches significantly outperform the baselines.

For example, on CIFAR-100 the proposed approaches outperform the best-performing

baseline by 6.40%, 6.09%, and 4.86% under three collaborative learning settings, respectively.

Besides, compared with the two upper bound methods, the proposed methods match the

performance of the upper bound centralized MoCo under the IID setting and outperform

supervised FedAvg on CIFAR-10 under non-IID settings.

5.6.7 Feature Space Clustering

Table 7: Linear evaluation with few labels to evaluate feature space clustering under the IID

setting.

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 75.12 68.27 34.65 17.24 82.83 75.20

FedDC 76.66 70.47 38.43 22.99 86.76 82.54

FedSwAV 81.43 77.85 46.22 29.52 87.95 83.66

FedSimCLR 81.14 76.74 40.92 27.51 86.55 83.75

FedCA 74.00 64.81 35.09 18.15 83.50 79.30

Proposed 87.75 85.30 54.80 42.90 89.11 85.25

MoCo (Centralized) 87.54 83.48 55.81 39.29 90.27 86.61

5.6.7.1 Linear Evaluation with Different Percentages of Labeled Data

We evaluate the performance of feature space clustering of different approaches. In addition

to using 100% labeled data for linear evaluation in Table 6, we use different percentages of

112

Table 8: Linear evaluation with few labels to evaluate feature space clustering under non-IID

setting 1 (top) and non-IID setting 2 (bottom).

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 71.64 59.97 33.48 17.35 80.75 73.24

FedDC 67.26 54.72 37.95 19.68 83.49 76.24

FedSwAV 71.93 61.32 41.64 23.80 84.73 76.11

FedSimCLR 66.22 56.21 36.58 22.30 81.90 74.06

FedCA 71.47 62.28 34.32 17.40 83.18 75.70

Proposed 75.05 65.20 47.75 31.33 85.59 77.30

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 65.80 54.10 31.70 15.85 80.15 70.61

FedDC 66.49 55.30 36.44 20.40 85.93 79.04

FedSwAV 72.99 62.07 44.13 25.40 87.17 79.22

FedSimCLR 68.72 56.21 40.08 25.95 83.59 75.97

FedCA 71.17 61.89 34.24 16.95 83.29 77.15

Proposed 75.41 64.42 49.93 32.25 87.27 81.22

labeled data (10%, 1%) for training the classifier on top of the fixed encoder learned with

unlabeled data by different approaches. This evaluation metric is inspired by [28], which

proposes that in ideal representations, classes are represented by distinct point masses in

the feature space, and few labeled data are sufficient to train the classifier. Therefore, with

few labeled data for training the classifier, a higher accuracy represents better feature space

clustering.

113

The proposed approaches achieve better feature space clustering than the baselines.

The results in the IID setting and two non-IID settings are shown in Tables 7 and 8,

respectively. Each table shows the results on three datasets with two labeled ratios. The

proposed approaches significantly outperform SOTA with both 10% and 1% labels. Consistent

improvements are observed with different labeled ratios, on different datasets, and under

different collaborative learning settings.

5.6.8 Semi-Supervised Learning

We further evaluate the proposed approaches by semi-supervised learning, where both

the encoder and classifier are finetuned with 10% or 1% labeled data after learning the

encoder on unlabeled data by different approaches. We evaluate the approaches under the

IID collaborative learning setting and two non-IID collaborative learning settings. Table 9

shows the comparison of our results against the baselines under the IID collaborative learning

setting (top) and non-IID setting 1 (bottom). Our approach significantly outperforms the self-

supervised baselines with 10% and 1% labels. Notably, the proposed methods even outperform

the upper bound method centralized MoCo on CIFAR-10 and CIFAR-100 datasets under the

IID setting.

In addition to the semi-supervised learning results in the IID setting and non-IID setting

1 (Table 9), Table 10 shows the comparison of our results against the baselines under non-IID

setting 2. Our approaches outperform the baselines on all three datasets with 10% and 1%

labels.

5.6.9 Collaborative Finetuning

We evaluate the performance of the proposed approaches by collaborative finetuning the

learned encoder with few locally labeled data on clients. The results under the IID setting,

non-IID setting 1, and non-IID setting 2 are shown in Table 11 (top), Table 11 (bottom),

and Table 12, respectively. In these collaborative learning settings and three datasets, the

proposed approaches consistently outperform the baselines.

114

Table 9: Semi-supervised learning under IID setting (top) and non-IID setting 1 (bottom).

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 85.38 71.62 43.78 19.84 91.23 47.94

FedDC 78.88 44.18 40.69 11.93 88.97 30.25

FedSwAV 84.51 48.96 50.23 13.82 90.48 62.08

FedSimCLR 86.05 75.36 49.54 27.45 91.28 84.46

FedCA 84.15 41.25 48.57 8.13 91.67 36.93

Proposed 89.27 84.79 58.49 40.71 92.18 85.63

MoCo (Centralized) 88.44 81.75 57.76 37.79 92.46 86.78

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 77.82 58.48 43.50 18.80 90.80 60.72

FedDC 71.25 31.85 40.85 11.42 86.80 37.91

FedSwAV 78.25 39.87 46.58 14.11 88.77 35.85

FedSimCLR 78.49 58.13 46.89 23.86 90.41 80.72

FedCA 79.75 58.76 48.10 8.07 89.60 38.98

Proposed 84.01 67.87 54.85 31.29 91.29 82.13

MoCo (Centralized) 88.44 81.75 57.76 37.79 92.46 86.78

5.6.10 Transfer Learning

Transfer learning evaluates the generalization of learned features. The features are first

learned on the source task in collaborative learning, then evaluated on the target task.

Following [16], we train a linear classifier on top of the frozen encoder on the target task. We

train the classifier for 500 epochs with Adam optimizer and learning rate 3e-4.

115

Table 10: Semi-supervised learning in non-IID setting 2. We finetune the encoder and

classifier with 10% or 1% labeled data and report the top-1 accuracy.

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 81.60 60.54 41.86 17.50 91.31 68.48

FedDC 71.62 30.73 39.51 9.97 88.39 36.26

FedSwAV 78.94 35.74 49.43 11.44 90.01 54.36

FedSimCLR 80.62 60.87 48.90 26.83 91.13 82.02

FedCA 81.28 31.53 50.78 7.87 90.91 21.53

Proposed 83.52 68.38 54.78 32.08 92.23 83.92

MoCo (Centralized) 88.44 81.75 57.76 37.79 92.46 86.78

Two transfer learning tasks are evaluated. In the first task, features are learned on

unlabeled CIFAR-10 and then evaluated on CIFAR-100, and in the second task, features

are learned on unlabeled CIFAR-100 and then evaluated on CIFAR-10. As shown in Table

13, our approach outperforms all the baselines on both tasks and all collaborative learning

settings.

5.6.11 Ablations

5.6.11.1 Effectiveness of Feature Fusion and Neighborhood Matching

We evaluate three approaches. Contrastive learning (CL) is the approach without feature

fusion (FF) or neighborhood matching (NM). CL+FF adds feature fusion, and CL+FF+NM

further adds neighborhood matching. We evaluate the approaches by linear evaluation and

semi-supervised learning (1% labels) under the non-IID collaborative learning setting (non-IID

setting 1). As shown in Figure 42, with linear evaluation, CL achieves 74.96% top-1 accuracy.

116

Table 11: Collaborative finetuning under IID setting (top) and non-IID setting 1 (bottom).

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 85.16 74.25 49.97 16.65 90.49 82.81

FedDC 79.98 71.17 42.81 21.47 90.17 84.22

FedSwAV 85.23 78.92 51.67 26.75 91.33 85.10

FedSimCLR 83.52 75.10 51.73 15.32 91.64 84.31

FedCA 82.32 72.77 50.78 21.10 91.57 84.29

Proposed 89.33 82.52 56.88 33.15 92.15 87.11

FedAvg (Supervised) 74.71 39.35 33.16 8.07 87.95 75.68

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 57.34 56.80 46.93 17.12 75.02 72.02

FedDC 60.37 49.28 40.29 21.20 77.12 73.16

FedSwAV 57.34 51.93 46.65 22.06 75.45 73.17

FedSimCLR 63.05 51.63 47.69 11.19 76.49 73.25

FedCA 59.52 57.33 49.14 21.50 73.23 71.34

Proposed 65.80 59.30 50.75 28.25 78.81 76.88

FedAvg (Supervised) 48.41 32.33 33.26 8.42 67.42 66.03

117

Table 12: Collaborative finetuning under non-IID setting 2.

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

FedRot 44.41 28.68 46.04 22.34 60.09 58.75

FedDC 58.05 50.54 39.89 20.25 58.66 58.09

FedSwAV 56.92 48.31 46.97 23.11 51.91 50.32

FedSimCLR 57.34 51.93 47.81 22.37 59.44 58.99

FedCA 42.01 29.21 49.96 21.64 57.76 51.13

Proposed 62.81 53.53 51.67 25.66 63.07 65.78

FedAvg (Supervised) 43.30 29.29 34.37 9.82 54.74 49.76

Table 13: Transfer learning to downstream tasks.

Source CIFAR-10 CIFAR-100

Target CIFAR-100 CIFAR-10

Distributed setting IID non-1 non-2 IID non-1 non-2

FedRot 40.22 38.56 37.72 68.85 69.34 69.17

FedDC 49.03 45.80 46.25 74.59 73.65 72.97

FedSwAV 49.09 45.73 47.05 74.99 74.94 75.36

FedSimCLR 46.56 39.46 41.28 72.46 71.67 72.83

FedCA 47.43 32.15 47.71 75.15 74.98 75.01

Proposed 51.43 47.90 49.49 77.28 76.37 77.50

Moco (Centralized) 56.74 — — 80.02 — —

118

CL CL+FF CL+FF+NM
 (proposed)

75.0
76.0
77.0
78.0
79.0

To
p-

1
ac

cu
ra

cy
 (%

)

(a) Linear evaluation.

CL CL+FF CL+FF+NM
 (proposed)

64.0

66.0

68.0

To
p-

1
ac

cu
ra

cy
 (%

)

(b) Semi-supervised learning.

Figure 42: Ablations on CIFAR-10 dataset under the non-IID setting.

Adding FF improves the accuracy by 3.68%, and adding NM further improves the accuracy

by 0.43%. With semi-supervised learning (1% labels), CL achieves 64.00% top-1 accuracy.

Adding FF improves the accuracy by 2.12% and adding NM further improves the accuracy

by 1.75%. These results show the effectiveness of feature fusion and neighborhood matching.

CL CL+FF CL+FF+NM
 (proposed)

86.0
86.5
87.0
87.5
88.0
88.5
89.0

To
p-

1
ac

cu
ra

cy
 (%

)

(a) Linear evaluation.

CL CL+FF CL+FF+NM
 (proposed)

78.0

80.0

82.0

84.0

To
p-

1
ac

cu
ra

cy
 (%

)

(b) Semi-supervised learning.

Figure 43: Ablations on CIFAR-10 dataset under the IID setting.

We further perform ablation studies to evaluate the effectiveness of feature fusion and

119

neighborhood matching under the IID setting. We evaluate three approaches using linear

evaluation and semi-supervised learning with 1% labels. As shown in Figures 43 (a) and (b).

With linear evaluation, CL achieves 86.22% top-1 accuracy. Adding FF improves the accuracy

by 1.98%, and adding NM further improves the accuracy by 0.70%. With semi-supervised

learning (1% labels), CL achieves 77.82% top-1 accuracy. Adding FF improves the accuracy

by 4.82% and adding NM further improves the accuracy by 2.15%.

Table 14: Impact of image encryption evaluated by linear evaluation under the IID and two

non-IID settings.

CIFAR-10 CIFAR-100 FMNIST

Method IID non-1 non-2 IID non-1 non-2 IID non-1 non-2

Without encryption 89.03 81.24 78.56 62.16 59.86 57.82 91.22 88.17 90.30

With encryption 88.90 79.07 78.31 61.91 57.54 58.63 91.26 88.13 90.08

5.6.11.2 Impact of Encrypted Images

We compare the quality of learned representations by using remote features of non-

encrypted images for feature fusion, and the results by using remote features of encrypted

images for feature fusion. We evaluate the learned representations by four metrics, including

linear evaluation, semi-supervised learning, collaborative finetuning, and transfer learning,

and the results are shown in Tables 14, 15, 16, and 17, respectively. The results of all four

metrics demonstrate that there is very little difference in performance when using features

of encrypted versus non-encrypted images, indicating the effectiveness of the proposed

approaches in utilizing both types of images.

5.6.12 Learning Curve

We evaluate the learning curve by linear evaluation in the learning process on CIFAR-10.

The learning curve represents the learning speed of each approach. We train a linear classifier

120

Table 15: Impact of image encryption evaluated by semi-supervised learning under IID setting

(top), non-IID setting 1 (middle), and non-IID setting 2 (bottom).

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

Without encryption 88.93 83.83 58.77 38.90 92.22 85.26

With encryption 89.27 84.79 58.49 40.71 92.18 85.63

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

Without encryption 84.72 69.66 55.26 32.97 91.22 81.93

With encryption 84.01 67.87 54.85 31.29 91.29 82.13

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

Without encryption 83.48 68.98 53.38 29.84 92.17 83.47

With encryption 83.52 68.38 54.78 32.08 92.23 83.92

121

Table 16: Impact of image encryption evaluated by collaborative finetuning under IID setting

(top), non-IID setting 1 (middle), and non-IID setting 2 (bottom).

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

Without encryption 88.97 80.64 57.43 29.11 92.39 86.77

With encryption 89.33 82.52 56.88 33.15 92.15 87.11

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

Without encryption 66.54 62.36 52.52 25.29 78.18 76.04

With encryption 65.80 59.30 50.75 28.25 78.81 76.88

CIFAR-10 CIFAR-100 FMNIST

Labeled ratio 10% 1% 10% 1% 10% 1%

Without encryption 61.99 52.23 50.19 23.65 61.57 59.11

With encryption 62.81 53.53 51.67 25.66 63.07 65.78

Table 17: Impact of image encryption evaluated by transfer learning to downstream tasks.

Source CIFAR-10 CIFAR-100

Target CIFAR-100 CIFAR-10

Distributed setting IID non-1 non-2 IID non-1 non-2

Without encryption 53.78 51.45 50.55 78.58 78.12 77.65

With encryption 51.43 47.90 49.49 77.28 76.37 77.50

122

100 300 500 700 900 1100 1300 1500
Communication rounds

60

65

70

75

80

85

90

To
p-

1
ac

cu
ra

cy
 (%

)

Proposed
FedCA
FedSwAV
FedRot
FedDC
FedSimCLR

Figure 44: Linear evaluation accuracy against the number of communication rounds on

CIFAR-10 in the IID setting.

on top of the encoder checkpointed every 100 communication rounds for IID setting and

non-IID setting 1, and every 20 rounds for non-IID setting 2. We use classification accuracy

as a proxy for representation quality in the learning process.

5.6.12.1 IID Setting

The proposed approaches achieve faster learning and better quality of learned representa-

tions than the baselines in both IID and non-IID settings. Figure 44 shows that in the IID

setting, the proposed approaches achieve significantly higher linear evaluation accuracy than

all baselines after 200 communication rounds. The baseline FedCA achieves slightly higher

accuracy in round 100, but it has much lower accuracy in all the following learning processes.

This is because FedCA learns from a pre-trained model and can achieve better performance

at the initial stage of learning. Different from FedCA, the proposed approaches can learn

without any prior knowledge and show superior accuracy over FedCA after the initial stage.

123

100 300 500 700 900 1100 1300 1500
Communication rounds

55

60

65

70

75

80

To
p-

1
ac

cu
ra

cy
 (%

)

Proposed
FedCA
FedSwAV
FedRot
FedDC
FedSimCLR

(a) Non-IID setting 1.

20 40 60 80 100
Communication rounds

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

To
p-

1
ac

cu
ra

cy
 (%

)

Proposed
FedCA
FedSwAV
FedRot
FedDC
FedSimCLR

(b) Non-IID setting 2.

Figure 45: Linear evaluation accuracy against the number of communication rounds on

CIFAR-10 in two non-IID settings.

124

At the end of the learning process, the proposed approaches achieve an accuracy of 88.90%

and outperform the best-performing baseline FedSwAV by 5.28%.

5.6.12.2 Non-IID Setting 1

Figure 45 (a) shows the learning curve in non-IID setting 1. The proposed approaches

achieve higher accuracy than all the baselines after 400 rounds. At the end of the learning

process, the proposed approaches achieve an accuracy of 79.07% and outperform the best-

performing baseline FedRot by 3.19%.

5.6.12.3 Non-IID Setting 2

Figure 45 (b) shows the learning curve in non-IID setting 2. The proposed approaches

achieve higher accuracy than all the baselines after 40 rounds. At the end of the learning

process, the proposed approaches achieve an accuracy of 78.31% and outperform the best-

performing baseline FedCA by 2.81%.

5.7 Summary

We propose a framework for collaborative contrastive representation learning. To improve

representation learning on each client, we propose feature fusion to provide remote features

as accurate contrastive data to each client. To achieve unified representations among clients,

we propose neighborhood matching to align each client’s local features to the remote ones.

Experiments show superior accuracy of the proposed framework compared with the SOTA.

125

6.0 Conclusion

This dissertation proposes a framework to enable on-device machine learning inference

and training. As edge devices such as IoT devices and mobile devices become ubiquitous,

deploying deep learning models, particularly DNNs, on such devices to extract information

from the sensed data can enable us to democratize AI. To enable on-device AI, both on-device

inference and on-device learning need to be achieved. On-device inference enables edge devices

to make predictions based on collected images, such as object classification, to determine

the category of objects in the images. On-device training enables devices to learn from their

environment and update the model in situ. By applying on-device training to distributed

devices, collaborative learning enables a large number of devices to collaboratively learn a

shared model while keeping the training data on personal devices to protect privacy.

However, it is challenging to achieve on-device inference and training. First, edge devices

usually have limited computation capabilities and limited memory size, but DNNs are usually

computationally expensive and require large memory sizes to make predictions. Therefore,

DNNs need to be effectively compressed while preserving high accuracy when deploying

them to edge devices. Second, DNN training has a high computation cost. There is a

significant gap between the high computation and energy demand of on-device training and

the limited computing resources and battery life of edge devices. During on-device training,

data are collected from the input stream and are unlabeled, which requires learning from new

streaming data in-situ with as few labels as possible. Third, during on-device training, each

device can only collect a limited amount of data. Model training requires a large amount of

data, and training on limited data can result in model overfitting and degrade the model’s

generalization performance.

To address the challenges of achieving on-device inference and training, this dissertation

proposes four techniques. The first challenge, which is the limited on-device computational

capability and memory size, is addressed with a proposed model compression framework.

This framework effectively compresses a multi-exit neural network through model pruning

and quantization, reducing computation cost and model size while preserving accuracy. The

126

second challenge, the high computation cost of on-device training, is addressed with the

proposed efficient training method. This method reduces computation costs by skipping

unnecessary training data and pruning gradient computation. Additionally, a data selection

approach is proposed to learn data in situ with as few labels as possible, by selecting the most

representative data from the input data stream without using labels. The third challenge,

the limited amount of data on each device, is addressed with a proposed decentralized

unsupervised learning framework. This framework allows multiple distributed devices to

collaboratively learn a shared model from decentralized unlabeled data.

127

Bibliography

[1] Adapting models to the real world: On-device training for edge model adapta-
tion. https://community.arm.com/developer/research/b/articles/posts/

adapting-models-to-the-real-world-on-device-training-for-edge-model\

-adaptation.

[2] Example on-device model personalization with tensorflow lite. https://blog.

tensorflow.org/2019/12/example-on-device-model-personalization.html.

[3] On-device training with core ml. https://machinethink.net/blog/

coreml-training-part1/.

[4] Video demo for model compression of multi-exit neural networks: A hard sample.
https://youtu.be/IXwi7AWEwac.

[5] Video demo for model compression of multi-exit neural networks: An easy sample.
https://youtu.be/gMGs62kOn-s.

[6] Video demo for self-supervised on-device learning framework. https://youtu.be/

5ujmt0_MFAI.

[7] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch sgd:
Training resnet-50 on imagenet in 15 minutes. 2017.

[8] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample
selection for online continual learning. In Advances in Neural Information Processing
Systems, pages 11816–11825, 2019.

[9] Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks.
In Advances in Neural Information Processing Systems, 2017.

[10] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit
training of neural networks. In Advances in neural information processing systems,
pages 5145–5153, 2018.

128

https://community.arm.com/developer/research/b/articles/posts/adapting-models-to-the-real-world-on-device-training-for-edge-model\-adaptation
https://community.arm.com/developer/research/b/articles/posts/adapting-models-to-the-real-world-on-device-training-for-edge-model\-adaptation
https://community.arm.com/developer/research/b/articles/posts/adapting-models-to-the-real-world-on-device-training-for-edge-model\-adaptation
 https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html
 https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html
 https://machinethink.net/blog/coreml-training-part1/
 https://machinethink.net/blog/coreml-training-part1/
 https://youtu.be/IXwi7AWEwac
 https://youtu.be/gMGs62kOn-s
 https://youtu.be/5ujmt0_MFAI
 https://youtu.be/5ujmt0_MFAI

[11] Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance
regularization for self-supervised learning. In International Conference on Learning
Representations, 2022.

[12] Sourav Bhattacharya and Nicholas D Lane. Sparsification and separation of deep
learning layers for constrained resource inference on wearables. In Proceedings of the
14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pages 176–189,
2016.

[13] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan
McMahan, et al. Towards federated learning at scale: System design. Proceedings of
machine learning and systems, 1:374–388, 2019.

[14] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization
for continual learning and streaming. Advances in Neural Information Processing
Systems, 33:14879–14890, 2020.

[15] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep
clustering for unsupervised learning of visual features. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 132–149, 2018.

[16] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
Armand Joulin. Unsupervised learning of visual features by contrasting cluster assign-
ments. Advances in neural information processing systems, 33:9912–9924, 2020.

[17] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,
Puneet K Dokania, Philip HS Torr, and M Ranzato. Continual learning with tiny
episodic memories. 2019.

[18] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International conference
on machine learning, pages 1597–1607. PMLR, 2020.

[19] Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth:
A federated transfer learning framework for wearable healthcare. IEEE Intelligent
Systems, 2020.

[20] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable intermittent
programs. In ACM SIGPLAN Notices, volume 51, pages 514–530. ACM, 2016.

129

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[22] Tom Dietterich. Overfitting and undercomputing in machine learning. ACM computing
surveys (CSUR), 27(3):326–327, 1995.

[23] Marc Egger and Detlef Schoder. Consumer-oriented tech mining: Integrating the
consumer perspective into organizational technology intelligence-the case of autonomous
driving. In Proceedings of the 50th Hawaii International Conference on System Sciences,
2017.

[24] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul Whatmough. Sparse:
Sparse architecture search for cnns on resource-constrained microcontrollers. Advances
in Neural Information Processing Systems, 32, 2019.

[25] Gao Ge, Wang Chengyan, Zhang Xiaodong, Hu Juan, Yang Xuedong, Wang He,
Zhang Jue, and Wang Xiaoying. Quantitative analysis of diffusion-weighted magnetic
resonance images: differentiation between prostate cancer and normal tissue based on
a computer-aided diagnosis system. Science China Life Sciences, 60(1):37–43, 2017.

[26] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

[27] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence beyond the
edge: Inference on intermittent embedded systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2019.

[28] Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, and
Tom Goldstein. Unraveling meta-learning: Understanding feature representations for
few-shot tasks. In International Conference on Machine Learning, pages 3607–3616.
PMLR, 2020.

[29] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad
Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised
learning. Advances in neural information processing systems, 33:21271–21284, 2020.

130

[30] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. International
Conference on Learning Representations (ICLR), 2016.

[31] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beau-
fays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated
learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

[32] Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience
replay for streaming learning. In 2019 International Conference on Robotics and
Automation (ICRA), pages 9769–9776. IEEE, 2019.

[33] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16000–16009, 2022.

[34] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European Conference on Computer Vision, pages 630–645, 2016.

[37] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for
model compression and acceleration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), 2018.

[38] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[39] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification
with real-world data distribution. arXiv preprint arXiv:2003.08082, pages 76–92, 2020.

[40] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian
Weinberger. Multi-scale dense networks for resource efficient image classification. In
International Conference on Learning Representations, 2018.

131

[41] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep
networks with stochastic depth. In European conference on computer vision, pages
646–661. Springer, 2016.

[42] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-hiding
schemes for private distributed learning. In International Conference on Machine
Learning, pages 4507–4518. PMLR, 2020.

[43] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile gpu-based
deep learning framework for continuous vision applications. In Proceedings of the 15th
Annual International Conference on Mobile Systems, Applications, and Services, pages
82–95, 2017.

[44] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2704–2713,
2018.

[45] Nitthilan Kannappan Jayakodi, Anwesha Chatterjee, Wonje Choi, Janardhan Rao
Doppa, and Partha Pratim Pande. Trading-off accuracy and energy of deep inference
on embedded systems: A co-design approach. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11), 2018.

[46] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-
Lyun Kim. Communication-efficient on-device machine learning: Federated distillation
and augmentation under non-iid private data. arXiv preprint arXiv:1811.11479, 2018.

[47] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information clustering for
unsupervised image classification and segmentation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 9865–9874, 2019.

[48] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,
Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep
learning training system with mixed-precision: Training imagenet in four minutes.
2018.

[49] Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean,
Gregory R Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C
Lipton, et al. Accelerating deep learning by focusing on the biggest losers. arXiv
preprint arXiv:1910.00762, 2019.

132

[50] Weiwen Jiang, Lei Yang, Edwin H-M Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha
Dasgupta, Yiyu Shi, and Jingtong Hu. Hardware/software co-exploration of neural
architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2020.

[51] Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, Qingfeng Zhuge, Yiyu Shi, and
Jingtong Hu. Accuracy vs. efficiency: Achieving both through fpga-implementation
aware neural architecture search. In Proceedings of the 56th Annual Design Automation
Conference 2019, pages 1–6, June. 2019.

[52] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. Foundations
and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[53] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane
Larlus. Hard negative mixing for contrastive learning. Advances in Neural Information
Processing Systems, 33:21798–21809, 2020.

[54] Joshua Knights, Ben Harwood, Daniel Ward, Anthony Vanderkop, Olivia Mackenzie-
Ross, and Peyman Moghadam. Temporally coherent embeddings for self-supervised
video representation learning. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 8914–8921. IEEE, 2021.

[55] Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning
from data. In Advances in Neural Information Processing Systems, 2017.

[56] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[57] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10. CIFAR-10 Dataset, 2009.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[59] Yann LeCun. Lenet-5, convolutional neural networks. http://yann.lecun.com/exdb/
lenet/.

133

http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/

[60] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[61] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[62] Seulki Lee and Shahriar Nirjon. Neuro. zero: a zero-energy neural network accelerator
for embedded sensing and inference systems. In Proceedings of the 17th Conference on
Embedded Networked Sensor Systems, 2019.

[63] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. In International Conference on Learning Representations,
2017.

[64] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of
Machine Learning and Systems, 2(3):429–450, 2020.

[65] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. In Yoshua Bengio and Yann LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

[66] Boyi Liu, Lujia Wang, and Ming Liu. Lifelong federated reinforcement learning: a
learning architecture for navigation in cloud robotic systems. IEEE Robotics and
Automation Letters, 4(4):4555–4562, 2019.

[67] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture
search. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[68] Qing Lu, Weiwen Jiang, Xiaowei Xu, Yiyu Shi, and Jingtong Hu. On neural architecture
search for resource-constrained hardware platforms. arXiv preprint arXiv:1911.00105,
2019.

[69] Jiahuan Luo, Xueyang Wu, Yun Luo, Anbu Huang, Yunfeng Huang, Yang Liu,
and Qiang Yang. Real-world image datasets for federated learning. arXiv preprint
arXiv:1910.11089, 2019.

134

[70] Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi, and
Mattan Erez. Prunetrain: fast neural network training by dynamic sparse model
reconfiguration. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–13, 2019.

[71] A. Maxey, C.; Andreas. Measurement and instrumentation data center
(midc). Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiome-
ter (RSR); Oak Ridge, Tennessee (Data); NREL Report No. DA-5500-56512.
http://dx.doi.org/10.5439/1052553, 2007.

[72] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[73] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[74] Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine
learning without centralized training data. 2017.

[75] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[76] Hung T Nguyen, Vikash Sehwag, Seyyedali Hosseinalipour, Christopher G Brinton,
Mung Chiang, and H Vincent Poor. Fast-convergent federated learning. IEEE Journal
on Selected Areas in Communications, 39(1):201–218, 2020.

[77] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by
solving jigsaw puzzles. In European Conference on Computer Vision, pages 69–84.
Springer, 2016.

[78] Nvidia. High performance ai at the edge: Nvidia jetson tx2. https://www.nvidia.
com/en-us/autonomous-machines/embedded-systems/jetson-tx2/, 2020.

[79] Emin Orhan, Vaibhav Gupta, and Brenden M Lake. Self-supervised learning through
the eyes of a child. Advances in Neural Information Processing Systems, 33:9960–9971,
2020.

135

 https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
 https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

[80] Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning
for energy-efficient and enhanced pattern recognition. In 2016 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2016.

[81] Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park, and Abhinav Gupta. The
curious robot: Learning visual representations via physical interactions. In European
Conference on Computer Vision, pages 3–18. Springer, 2016.

[82] Python. Thop: Pytorch-opcounter. a tool to count the flops of pytorch model., 2020.

[83] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In European
Conference on Computer Vision, pages 525–542. Springer, 2016.

[84] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin
Pedarsani. Fedpaq: A communication-efficient federated learning method with periodic
averaging and quantization. In International Conference on Artificial Intelligence and
Statistics, pages 2021–2031, 2020.

[85] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental
learning for robust visual tracking. International journal of computer vision, 77(1-
3):125–141, 2008.

[86] Ognjen Rudovic, Jaeryoung Lee, Miles Dai, Björn Schuller, and Rosalind W Picard.
Personalized machine learning for robot perception of affect and engagement in autism
therapy. Science Robotics, 2018.

[87] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International journal of computer vision,
115(3):211–252, 2015.

[88] Stamatios Samaras, Eleni Diamantidou, Dimitrios Ataloglou, Nikos Sakellariou, Anas-
tasios Vafeiadis, Vasilis Magoulianitis, Antonios Lalas, Anastasios Dimou, Dimitrios
Zarpalas, Konstantinos Votis, et al. Deep learning on multi sensor data for counter
uav applications—a systematic review. Sensors, 19(22):4837, 2019.

[89] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the

136

IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–4520,
2018.

[90] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A
core-set approach. In International Conference on Learning Representations, 2018.

[91] Jahanzaib Shabbir and Tarique Anwer. A survey of deep learning techniques for mobile
robot applications. arXiv preprint arXiv:1803.07608, 2018.

[92] Qi She, Fan Feng, Xinyue Hao, Qihan Yang, Chuanlin Lan, Vincenzo Lomonaco,
Xuesong Shi, Zhengwei Wang, Yao Guo, Yimin Zhang, et al. Openloris-object:
A robotic vision dataset and benchmark for lifelong deep learning. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 4767–4773. IEEE,
2020.

[93] Jianzhong Sheng, Chuanbo Chen, Chenchen Fu, and Chun Jason Xue. Easyconvpooling:
Random pooling with easy convolution for accelerating training and testing. arXiv
preprint arXiv:1806.01729, 2018.

[94] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object
detectors with online hard example mining. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 761–769, 2016.

[95] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[96] Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong Zhang, Jing
Wang, and Tao Li. In-situ ai: Towards autonomous and incremental deep learning for
iot systems. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018.

[97] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1–9, 2015.

137

[98] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1701–1708, 2014.

[99] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast
inference via early exiting from deep neural networks. In 2016 23rd International
Conference on Pattern Recognition (ICPR). IEEE, 2016.

[100] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua
Bengio, and Geoffrey J Gordon. An empirical study of example forgetting during deep
neural network learning. arXiv preprint arXiv:1812.05159, 2018.

[101] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software (TOMS), 11(1):37–57, 1985.

[102] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware
automated quantization with mixed precision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8612–8620, 2019.

[103] Tianchen Wang, Jinjun Xiong, Xiaowei Xu, Meng Jiang, Haiyun Yuan, Meiping
Huang, Jian Zhuang, and Yiyu Shi. Msu-net: Multiscale statistical u-net for real-time
3d cardiac mri video segmentation. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 614–622. Springer, 2019.

[104] Wenguan Wang, Henry Shu-hung Chung, Ralph Cheng, CS Leung, Xiaoqing Zhan,
Alan Wai-lun Lo, J Kwok, Chun Jason Xue, and Jun Zhang. Training neural-network-
based controller on distributed machine learning platform for power electronics systems.
In 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pages 3083–3089.
IEEE, 2017.

[105] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, and
Zhangyang Wang. E2-train: Training state-of-the-art cnns with over 80% energy
savings. In Advances in Neural Information Processing Systems, 2019.

[106] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[107] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu,
Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware
efficient convnet design via differentiable neural architecture search. In Proceedings of

138

the IEEE Conference on Computer Vision and Pattern Recognition, pages 10734–10742,
2019.

[108] Yawen Wu, Zhepeng Wang, Zhenge Jia, Yiyu Shi, and Jingtong Hu. Intermittent
inference with nonuniformly compressed multi-exit neural network for energy harvesting
powered devices. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2020.

[109] Yawen Wu, Zhepeng Wang, Yiyu Shi, and Jingtong Hu. Enabling on-device cnn training
by self-supervised instance filtering and error map pruning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(11):3445–3457, 2020.

[110] Yawen Wu, Zhepeng Wang, Dewen Zeng, Meng Li, Yiyu Shi, and Jingtong Hu.
Decentralized unsupervised learning of visual representations. In Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pages
2326–2333, 2022.

[111] Yawen Wu, Zhepeng Wang, Dewen Zeng, Yiyu Shi, and Jingtong Hu. Enabling
on-device self-supervised contrastive learning with selective data contrast. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pages 655–660. IEEE, 2021.

[112] Yawen Wu, Zhepeng Wang, Dewen Zeng, Yiyu Shi, and Jingtong Hu. Synthetic
data can also teach: Synthesizing effective data for unsupervised visual representation
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

[113] Yawen Wu, Dewen Zeng, Zhepeng Wang, Yi Sheng, Lei Yang, Alaina J James, Yiyu Shi,
and Jingtong Hu. Federated contrastive learning for dermatological disease diagnosis
via on-device learning. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1–7. IEEE, 2021.

[114] Yawen Wu, Dewen Zeng, Zhepeng Wang, Yiyu Shi, and Jingtong Hu. Federated
contrastive learning for volumetric medical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pages
367–377. Springer, 2021.

[115] Yawen Wu, Dewen Zeng, Zhepeng Wang, Yiyu Shi, and Jingtong Hu. Distributed
contrastive learning for medical image segmentation. Medical Image Analysis, 81:102564,
2022.

139

[116] Yawen Wu, Dewen Zeng, Xiaowei Xu, Yiyu Shi, and Jingtong Hu. Fairprune: Achieving
fairness through pruning for dermatological disease diagnosis. In Medical Image
Computing and Computer Assisted Intervention–MICCAI 2022: 25th International
Conference, Singapore, September 18–22, 2022, Proceedings, Part I, pages 743–753.
Springer, 2022.

[117] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature
learning via non-parametric instance discrimination. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3733–3742, 2018.

[118] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[119] Lei Yang, Weiwen Jiang, Weichen Liu, HM Edwin, Yiyu Shi, and Jingtong Hu.
Co-exploring neural architecture and network-on-chip design for real-time artificial
intelligence. In 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 85–90. IEEE, 2020.

[120] Jiecao Yu, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke. Tf-net: Deploying
sub-byte deep neural networks on microcontrollers. ACM Transactions on Embedded
Computing Systems (TECS), 18(5s):45, 2019.

[121] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins:
Self-supervised learning via redundancy reduction. In International Conference on
Machine Learning, pages 12310–12320. PMLR, 2021.

[122] Fengda Zhang, Kun Kuang, Zhaoyang You, Tao Shen, Jun Xiao, Yin Zhang, Chao
Wu, Yueting Zhuang, and Xiaolin Li. Federated unsupervised representation learning.
arXiv preprint arXiv:2010.08982, 2020.

[123] Li Zhang, Haixin Ai, Wen Chen, Zimo Yin, Huan Hu, Junfeng Zhu, Jian Zhao, Qi Zhao,
and Hongsheng Liu. Carcinopred-el: Novel models for predicting the carcinogenicity
of chemicals using molecular fingerprints and ensemble learning methods. Scientific
Reports, 7(1):2118, 2017.

[124] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra.
Federated learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

[125] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantiza-
tion. In International Conference on Learning Representations, 2017.

140

[126] Nanyang Zhu, Xu Liu, Ziqian Liu, Kai Hu, Yingkuan Wang, Jinglu Tan, Min Huang,
Qibing Zhu, Xunsheng Ji, Yongnian Jiang, et al. Deep learning for smart agriculture:
Concepts, tools, applications, and opportunities. International Journal of Agricultural
and Biological Engineering, 2018.

141

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1 The top-1 accuracy achieved by EIF+EMP using ResNet-110, ResNet-74, VGG-16 on CIFAR-10, and LeNet on MNIST.
	2 Top-1 accuracy by EIF+EMP and baselines with ResNet-110 and VGG-16 on CIFAR-100.
	3 Top-1 and Top-5 accuracy by EIF+EMP and baselines with ResNet-18 and VGG-11 on ImageNet.
	4 Top-1 accuracy, average re-scoring percent, and batch time (relative to that without scoring) on CIFAR-10 with different lazy scoring intervals.
	5 Accuracy on CIFAR-10 dataset with different buffer sizes.
	6 Linear evaluation on CIFAR-10, CIFAR-100, and FMNIST datasets under the IID and two non-IID settings.
	7 Linear evaluation with few labels to evaluate feature space clustering under the IID setting.
	8 Linear evaluation with few labels to evaluate feature space clustering under non-IID setting 1 (top) and non-IID setting 2 (bottom).
	9 Semi-supervised learning under IID setting (top) and non-IID setting 1 (bottom).
	10 Semi-supervised learning in non-IID setting 2. We finetune the encoder and classifier with 10% or 1% labeled data and report the top-1 accuracy.
	11 Collaborative finetuning under IID setting (top) and non-IID setting 1 (bottom).
	12 Collaborative finetuning under non-IID setting 2.
	13 Transfer learning to downstream tasks.
	14 Impact of image encryption evaluated by linear evaluation under the IID and two non-IID settings.
	15 Impact of image encryption evaluated by semi-supervised learning under IID setting (top), non-IID setting 1 (middle), and non-IID setting 2 (bottom).
	16 Impact of image encryption evaluated by collaborative finetuning under IID setting (top), non-IID setting 1 (middle), and non-IID setting 2 (bottom).
	17 Impact of image encryption evaluated by transfer learning to downstream tasks.

	List of Figures
	1 Overview of the proposed approaches in the dissertation.
	2 Architecture of multi-exit neural networks.
	3 Benefits of nonuniform compression.
	4 Overview of the proposed compression framework.
	5 Exit-guided layer-wise pruning and quantization.
	6 Intermittent execution model with multi-exits.
	7 Compression with EH constraints and runtime exit selection after deployment.
	8 Pruning and quantization policy under 1.15M FLOPs and 16KB weight size constraints.
	9 The number of interesting events per energy harvesting millijoule.
	10 FLOPs reduced by compression.
	11 Runtime adaptation by lightweight learning.
	12 This is the system setup for the video demo of the model compression framework designed for multi-exit neural networks. The system is powered by energy harvesting technology.
	13 The easy sample used in the video demo.
	14 The hard sample used in the video demo.
	15 Overview of early instance filtering (EIF) and error map pruning (EMP).
	16 Self-supervised training of early instance filter (EIF) by adaptive loss threshold, uncertainty sampling, and weighted loss.
	17 Error maps of convolutional layers in back-propagation.
	18 Back-propagation of errors with pruned error map.
	19 Computation of weight gradient with pruned error map.
	20 Top-1 accuracy by early instance filter (EIF) and baselines with ResNet-110 on CIFAR-10.
	21 Top-1 accuracy by EIF and baselines with ResNet-74 and VGG-16 on CIFAR-10 and LeNet on MNIST.
	22 Accuracy of ResNet-110 on CIFAR-10 by EIF+EMP and baselines under different remaining computation ratios.
	23 Convergence speed of ResNet-110 on CIFAR-10 during training with different approaches.
	24 The adaptive loss threshold (left) tracks the state of the main model and stabilizes the number of preserved instances with predicted high loss by EIF.
	25 Incorrect loss prediction ratio of EIF with and without weighted loss.
	26 Energy and computation overhead of EIF. Energy overhead is measured on NVIDIA Jetson TX2 mobile GPU.
	27 Preserved and dropped instances by EIF when training ResNet-110 on CIFAR-10 and LeNet on MINST.
	28 Visualization of the pruned and preserved channels in the error map and corresponding convolutional kernels.
	29 Energy measurement setup for training on two edge platforms, including mobile-level devices (top) and sensor node-level devices (bottom).
	30 Energy saving when training ResNet-110 and VGG-16 on Nvidia Jetson TX2 mobile GPU with CIFAR-10 dataset.
	31 Energy saving when training LeNet on MSP432 MCU. EIF+EMP prolongs 3.9x battery life.
	32 Overview of on-device contrastive learning framework.
	33 Contrast scoring for data replacement.
	34 Accuracy on CIFAR-10 with 1% and 10% labeled data.
	35 Learning curve on CIFAR-10 and ImageNet-100 datasets.
	36 Learning curve on ImageNet-20 and ImageNet-50 dataset.
	37 Learning curve on SVHN and CIFAR-100 datasets.
	38 This is the system setup for the video demo, which showcases the self-supervised on-device learning framework.
	39 Overview of the proposed collaborative contrastive learning (CCL) framework.
	40 Neighborhood matching aligns each client's local features to the remote features such that well-clustered features among clients are learned.
	41 Linear evaluation accuracy on CIFAR-10 in the IID setting.
	42 Ablations on CIFAR-10 dataset under the non-IID setting.
	43 Ablations on CIFAR-10 dataset under the IID setting.
	44 Linear evaluation accuracy against the number of communication rounds on CIFAR-10 in the IID setting.
	45 Linear evaluation accuracy against the number of communication rounds on CIFAR-10 in two non-IID settings.

	Preface
	1.0 Introduction
	1.1 Challenges of On-device Machine Learning
	1.1.1 Limited On-device Resources
	1.1.2 High Training Costs and Label Scarcity
	1.1.3 Limited Data on Individual Devices

	1.2 Research Overview
	1.3 Contributions
	1.3.1 Model Compression for Multi-exit Neural Networks
	1.3.2 Efficient Supervised On-device Training
	1.3.3 Self-supervised On-device Training
	1.3.4 Collaborative Unsupervised Learning with Decentralized Devices

	1.4 Dissertation Organization

	2.0 Efficient On-device Inference with Compressed Multi-exit Neural Networks
	2.1 Introduction
	2.2 Related Work
	2.2.1 Multi-exit Network
	2.2.2 Network Compression
	2.2.3 Intermittent Execution

	2.3 Model Compression of Multi-exit Neural Networks
	2.3.1 Problem Formulation
	2.3.1.1 Pruning
	2.3.1.2 Quantization

	2.3.2 RL-Based Nonuniform Compression
	2.3.2.1 State
	2.3.2.2 Action
	2.3.2.3 Reward
	2.3.2.4 Agent

	2.4 Application of Compressed Multi-exit Neural Network: Event-Driven IoT with Energy Harvesting
	2.4.1 Event-Driven Intermittent Inference
	2.4.1.1 Intermittent Execution Model
	2.4.1.2 Optimization Goal

	2.4.2 Model Compression for Energy Harvesting
	2.4.3 Runtime Exit Selection and Incremental Inference with Harvested Energy

	2.5 Experiments
	2.5.1 Experimental Setup
	2.5.2 Nonuniform Pruning and Quantization
	2.5.3 IEpmJ and Average Accuracy
	2.5.4 FLOPs and Latency
	2.5.4.1 FLOPs
	2.5.4.2 Latency

	2.5.5 Runtime Adaptation

	2.6 Video Demo
	2.6.1 System Setup
	2.6.2 An Easy Sample
	2.6.3 A Hard Sample

	2.7 Summary

	3.0 Efficient Supervised On-device Training
	3.1 Introduction
	3.2 Background and Related Work
	3.2.1 Background of CNN Training
	3.2.2 Related Work
	3.2.2.1 Accelerated Training
	3.2.2.2 Distributed Training
	3.2.2.3 Network Pruning during Training
	3.2.2.4 Neural Architecture Search

	3.3 Framework Overview
	3.4 Self-Supervised Early Instance Filter
	3.4.1 Challenges
	3.4.2 Adaptive Loss Threshold Based Labeling Strategy
	3.4.3 Instance Selection by Uncertainty Sampling
	3.4.4 Weighed Loss for Biased High-Loss Ratio

	3.5 Error Map Pruning in Backward Pass
	3.5.1 Channel Selection to Minimize Reconstruction Error in Error Propagation
	3.5.1.1 Problem Formulation
	3.5.1.2 Importance Score

	3.5.2 Channel Selection to Minimize Reconstruction Error in Gradient Computation
	3.5.2.1 Problem Formulation
	3.5.2.2 Importance Score

	3.5.3 Mini-batch Pruning with Importance Score
	3.5.3.1 Computation Reduction
	3.5.3.2 Overhead Analysis

	3.6 Experiments
	3.6.1 Experimental setup
	3.6.1.1 Datasets and Networks
	3.6.1.2 Architectures of Instance Filter
	3.6.1.3 Training Details
	3.6.1.4 Metrics

	3.6.2 Evaluating Early Instance Filtering (EIF)
	3.6.2.1 Computation Reduction while Boosting Accuracy

	3.6.3 Evaluating EIF + EMP
	3.6.3.1 Experiments on CIFAR-100
	3.6.3.2 Experiments on ImageNet

	3.6.4 Convergence Speed
	3.6.5 Quantitative and Qualitative Analysis
	3.6.5.1 Effectiveness of Adaptive Loss Threshold
	3.6.5.2 Effectiveness of Weighted Loss for Training EIF
	3.6.5.3 Overhead of EIF
	3.6.5.4 Analysis of Error Map Pruning

	3.6.6 Practical Energy Saving on Hardware Platforms
	3.6.6.1 Hardware Setup
	3.6.6.2 Energy Saving of Training on Mobile GPU
	3.6.6.3 Energy Saving of Training on MCU

	3.7 Summary

	4.0 Unsupervised On-device Representation Learning
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 Background of Contrastive Learning
	4.2.2 Related Work
	4.2.2.1 Contrastive Visual Representation Learning
	4.2.2.2 Data Selection in Streaming and Continual Learning

	4.3 Self-Supervised On-Device Learning by Selective Data Contrast
	4.3.1 Framework Overview
	4.3.2 Data Replacement By Contrast Scoring
	4.3.2.1 Contrast Scoring
	4.3.2.2 Contrast Score Design Principle
	4.3.2.3 Contrast Score Based Data Selection

	4.3.3 Effectiveness of Contrast Score
	4.3.4 Lazy Scoring

	4.4 Experiments
	4.4.1 Experimental Setup
	4.4.1.1 Datasets and Evaluation Protocols
	4.4.1.2 Strength of Temporal Correlation (STC)
	4.4.1.3 Default Training Setting
	4.4.1.4 Baselines

	4.4.2 Improved Accuracy with Different Labeling Ratios
	4.4.3 Learning Curve: Improved Learning Speed and Accuracy
	4.4.3.1 Learning Curve on CIFAR-10
	4.4.3.2 Learning Curve on ImageNet-100
	4.4.3.3 Learning Curve on ImageNet-20 and ImageNet-50
	4.4.3.4 Learning Curve on SVHN and CIFAR-100

	4.4.4 The Impacts of Lazy Scoring
	4.4.5 Improved Accuracy With Different Buffer Sizes

	4.5 Video Demo
	4.5.1 System Setup
	4.5.2 Description of Video Demo

	4.6 Summary

	5.0 Collaborative Unsupervised Learning with Distributed Devices
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Contrastive Learning
	5.2.2 Collaborative Learning

	5.3 Collaborative Unsupervised On-device Learning
	5.4 Local Learning with Feature Fusion
	5.4.1 Key Challenge
	5.4.2 Feature Fusion
	5.4.2.1 Effectiveness of Feature Fusion
	5.4.2.2 Further Reducing the False Negative Ratio

	5.5 Local Learning with Neighborhood Matching
	5.5.1 Challenge
	5.5.2 Identifying Neighbors
	5.5.3 Neighborhood Matching Loss
	5.5.4 Final Loss

	5.6 Experiments
	5.6.1 Datasets and Model Architecture
	5.6.2 Distributed Setting of Collaborative Contrastive Learning
	5.6.3 Training Details of Collaborative Finetuning for Evaluation
	5.6.4 Metrics
	5.6.5 Baselines
	5.6.6 Linear Evaluation
	5.6.6.1 Linear Evaluation on CIFAR-10
	5.6.6.2 Linear Evaluation on Various Datasets and Distributed Settings

	5.6.7 Feature Space Clustering
	5.6.7.1 Linear Evaluation with Different Percentages of Labeled Data

	5.6.8 Semi-Supervised Learning
	5.6.9 Collaborative Finetuning
	5.6.10 Transfer Learning
	5.6.11 Ablations
	5.6.11.1 Effectiveness of Feature Fusion and Neighborhood Matching
	5.6.11.2 Impact of Encrypted Images

	5.6.12 Learning Curve
	5.6.12.1 IID Setting
	5.6.12.2 Non-IID Setting 1
	5.6.12.3 Non-IID Setting 2

	5.7 Summary

	6.0 Conclusion
	Bibliography

