
Machine	learning	for	neural	decoding	
		

Joshua	I.	Glaser1,2,6,8,9*,	Ari	S.	Benjamin6,	Raeed	H.	Chowdhury3,4,	Matthew	G.	Perich3,4,			
Lee	E.	Miller2-4,	and	Konrad	P.	Kording2-7	

		
1.		 Interdepartmental	Neuroscience	Program,	Northwestern	University,	Chicago,	IL,	USA	
2.		 Department	of	Physical	Medicine	and	Rehabilitation,	Northwestern	University	and	Shirley	Ryan	Ability	Lab,	
Chicago,	IL,	USA	
3.						 Department	of	Physiology,	Northwestern	University,	Chicago,	IL,	USA	
4.		 Department	of	Biomedical	Engineering,	Northwestern	University,	Chicago,	IL,	USA	
5.		 Department	of	Applied	Mathematics,	Northwestern	University,	Chicago,	IL,	USA	
6.		 Department	of	Bioengineering,	University	of	Pennsylvania,	Philadelphia,	IL,	USA	
7.		 Department	of	Neuroscience,	University	of	Pennsylvania,	Philadelphia,	IL,	USA	
8.	 Department	of	Statistics,	Columbia	University,	New	York,	NY,	USA	
9.	 Zuckerman	Mind	Brain	Behavior	Institute,	Columbia	University,	New	York,	NY,	USA	
	
*	Contact:	joshglaser88@gmail.com	

		
	
Abstract	
Despite	rapid	advances	in	machine	learning	tools,	the	majority	of	neural	decoding	approaches	still	
use	traditional	methods.	Modern	machine	learning	tools,	which	are	versatile	and	easy	to	use,	have	
the	 potential	 to	 significantly	 improve	 decoding	 performance.	 This	 tutorial	 describes	 how	 to	
effectively	 apply	 these	 algorithms	 for	 typical	 decoding	 problems.	 We	 provide	 descriptions,	 best	
practices,	and	code	for	applying	common	machine	learning	methods,	including	neural	networks	and	
gradient	boosting.	We	also	provide	detailed	comparisons	of	the	performance	of	various	methods	at	
the	 task	 of	 decoding	 spiking	 activity	 in	 motor	 cortex,	 somatosensory	 cortex,	 and	 hippocampus.	
Modern	methods,	particularly	neural	networks	and	ensembles,	significantly	outperform	traditional	
approaches,	 such	 as	 Wiener	 and	 Kalman	 filters.	 Improving	 the	 performance	 of	 neural	 decoding	
algorithms	 allows	 neuroscientists	 to	 better	 understand	 the	 information	 contained	 in	 a	 neural	
population	and	can	help	advance	engineering	applications	such	as	brain	machine	interfaces.		
	
Introduction	
Neural	decoding	uses	activity	recorded	from	the	brain	to	make	predictions	about	variables	 in	the	
outside	 world.	 For	 example,	 researchers	 predict	 movements	 based	 on	 activity	 in	 motor	 cortex	
(Serruya	 et	 al.,	 2002;	 Ethier	 et	 al.,	 2012),	 decisions	 based	 on	 activity	 in	 prefrontal	 and	 parietal	
cortices	(Baeg	et	al.,	2003;	Ibos	and	Freedman,	2017),	and	spatial	locations	based	on	activity	in	the	
hippocampus	(Zhang	et	al.,	1998;	Davidson	et	al.,	2009).	These	decoding	predictions	can	be	used	to	
control	devices	(e.g.,	a	robotic	 limb),	or	 to	better	understand	how	areas	of	 the	brain	relate	 to	 the	
outside	world.	Decoding	is	a	central	tool	in	neural	engineering	and	for	neural	data	analysis.	
	
In	 essence,	 neural	 decoding	 is	 a	 regression	 (or	 classification)	 problem	 relating	 neural	 signals	 to	
particular	variables.	When	framing	the	problem	in	this	way,	it	is	apparent	that	there	is	a	wide	range	
of	methods	that	one	could	apply.	However,	despite	the	recent	advances	 in	machine	 learning	(ML)	
techniques	 for	 regression,	 it	 is	 still	 common	 to	 decode	 activity	with	 traditional	methods	 such	 as	
linear	 regression.	 Using	 modern	 ML	 tools	 for	 neural	 decoding	 has	 the	 potential	 to	 boost	
performance	significantly	and	might	allow	deeper	insights	into	neural	function.	
		
This	 tutorial	 is	 designed	 to	 help	 readers	 start	 applying	 standard	ML	methods	 for	 decoding.	We	
describe	when	one	should	(or	should	not)	use	ML	for	decoding,	how	to	choose	an	ML	method,	and	

best	practices	 such	as	 cross-validation	and	hyperparameter	optimization.	We	provide	companion	
code	 that	makes	 it	possible	 to	 implement	a	variety	of	decoding	methods	quickly.	Using	 this	same	
code,	we	demonstrate	here	that	ML	methods	outperform	traditional	decoding	methods.	In	example	
datasets	 of	 recordings	 from	 monkey	 motor	 cortex,	 monkey	 somatosensory	 cortex,	 and	 rat	
hippocampus,	modern	ML	methods	 showed	 the	 highest	 accuracy	 decoding	 of	 available	methods.	
Using	 our	 code	 and	 this	 tutorial,	 readers	 can	 achieve	 these	 performance	 improvements	 on	 their	
own	data.	
	
Materials	and	Methods	
In	this	section,	we	provide	1)	general	background	about	decoding,	including	when	to	use	machine	
learning	(ML)	for	decoding	and	considerations	for	choosing	a	decoding	method;	2)	the	practical	
implementation	details	of	using	ML	for	decoding,	including	data	formatting,	proper	model	testing,	
and	hyperparameter	optimization;	and	3)	methods	that	we	use	to	compare	ML	techniques	in	the	
Results	section,	including	descriptions	of	the	specific	ML	techniques	we	compare	and	datasets	we	
use.	
	
When	to	use	machine	learning	for	decoding	
Machine	learning	is	most	helpful	when	the	central	research	aim	is	to	obtain	greater	predictive	
performance.	This	is	in	part	because	of	the	general	success	of	machine	learning	for	nonlinear	
problems	(He	et	al.,	2015;	LeCun	et	al.,	2015;	Silver	et	al.,	2016).	We	will	demonstrate	this	later	in	
this	tutorial	in	Results.	There	are	multiple	separate	research	aims	for	decoding	that	benefit	from	
improved	predictive	performance,	including	engineering	applications	and,	if	used	carefully,	
understanding	neural	activity	(Glaser	et	al.,	2019).	
	
Engineering	applications	
Decoding	is	often	used	in	engineering	contexts,	such	as	for	brain	machine	interfaces	(BMIs),	where	
signals	from	motor	cortex	are	used	to	control	computer	cursors	(Serruya	et	al.,	2002),	robotic	arms	
(Collinger	 et	 al.,	 2013),	 and	 muscles	 (Ethier	 et	 al.,	 2012).	 When	 the	 primary	 aim	 of	 these	
engineering	applications	is	to	improve	predictive	accuracy,	ML	should	generally	be	beneficial.	
	
Understanding	what	information	is	contained	in	neural	activity		
Decoding	is	also	an	important	tool	for	understanding	how	neural	signals	relate	to	the	outside	world.	
It	 can	 be	 used	 to	 determine	 how	 much	 information	 neural	 activity	 contains	 about	 an	 external	
variable	 (e.g.,	 sensation	 or	 movement)	 (Hung	 et	 al.,	 2005;	 Raposo	 et	 al.,	 2014;	 Rich	 and	Wallis,	
2016),	and	how	this	information	differs	across	brain	areas	(Quiroga	et	al.,	2006;	Hernández	et	al.,	
2010;	van	der	Meer	et	al.,	2010),	experimental	conditions	(Dekleva	et	al.,	2016;	Glaser	et	al.,	2018),	
and	disease	states	(Weygandt	et	al.,	2012).	When	the	goal	is	to	determine	how	much	information	a	
neural	population	has	about	an	external	variable,	regardless	of	 the	form	of	that	 information,	 then	
using	 ML	 will	 generally	 be	 beneficial.	 However,	 when	 the	 goal	 is	 to	 determine	 how	 a	 neural	
population	 processes	 that	 information,	 or	 to	 obtain	 an	 interpretable	 description	 of	 how	 that	
information	is	represented,	one	should	exercise	care	with	ML,	as	we	describe	in	the	next	section.	
	
Benchmarking	for	simpler	decoding	models	
Decoders	 can	 also	 be	 used	 to	 understand	 the	 form	 of	 the	mapping	 between	 neural	 activity	 and	
variables	in	the	outside	world	(Pagan	et	al.,	2016;	Naufel	et	al.,	2018).	That	is,	if	researchers	aim	to	
test	 if	 the	 mapping	 from	 neural	 activity	 to	 behavior/stimuli	 (the	 “neural	 code”)	 has	 a	 certain	
structure,	they	can	develop	a	“hypothesis-driven	decoder”	with	a	specific	form.	If	that	decoder	can	
predict	 task	variables	with	some	arbitrary	accuracy	 level,	 this	 is	sometimes	held	as	evidence	that	

information	within	neural	activity	indeed	has	the	hypothesized	structure.	However,	it	is	important	
to	know	how	well	a	hypothesis-driven	decoder	performs	relative	to	what	is	possible.	This	is	where	
modern	ML	methods	can	be	of	use.	If	a	method	designed	to	test	a	hypothesis	decodes	activity	much	
worse	than	ML	methods,	then	a	researcher	knows	that	their	hypothesis	likely	misses	key	aspects	of	
the	neural	code.	Hypothesis-driven	decoders	should	thus	always	be	compared	against	a	good-faith	
effort	to	maximize	performance	accuracy	with	a	good	machine	learning	approach.		
	
	
Caution	in	interpreting	machine	learning	models	of	decoding	
	
Understanding	how	information	in	neural	activity	relates	to	external	variables	
It	is	tempting	to	investigate	how	an	ML	decoder,	once	fit	to	neural	data,	transforms	neural	activity	
to	external	variables.	This	may	be	especially	tempting	if	 the	ML	model	resembles	neural	 function,	
such	 as	 in	 a	 neural	 network	 decoder.	 Still,	 high	 predictive	 performance	 is	 not	 evidence	 that	
transformations	 occurring	within	 the	ML	 decoder	 are	 the	 same,	 or	 even	 similar	 to,	 those	 in	 the	
brain.	In	general,	and	unlike	hypothesis-driven	decoders,	the	mathematical	transformations	of	most	
ML	decoders	are	hard	to	interpret	and	themselves	are	not	meant	to	represent	any	specific	biological	
variable.	Some	recent	efforts	have	started	to	investigate	how	ML	models	might	be	interpreted	once	
fit	 to	data	(Ribeiro	et	al.,	2016;	Olah	et	al.,	2018;	Cranmer	et	al.,	2020).	However,	users	should	be	
cautious	that	this	is	an	active	research	area	and	that,	in	general,	ML	methods	are	not	designed	for	
mechanistic	interpretation.	
	
Understanding	what	information	is	contained	in	neural	activity	
It	is	important	to	be	careful	with	the	scientific	interpretation	of	decoding	results,	both	for	ML	and	
other	 models	 (Weichwald	 et	 al.,	 2015).	 Decoding	 can	 tell	 us	 how	 much	 information	 a	 neural	
population	 has	 about	 a	 variable	X.	 However,	 high	 decoding	 accuracy	 does	 not	mean	 that	 a	 brain	
area	is	directly	involved	in	processing	X,	or	that	X	is	the	purpose	of	the	brain	area	(Wu	et	al.,	2020).	
For	example,	with	a	powerful	decoder,	 it	could	be	possible	to	accurately	classify	 images	based	on	
recordings	 from	 the	 retina,	 since	 the	 retina	has	 information	about	all	 visual	 space.	However,	 this	
does	not	mean	that	the	primary	purpose	of	the	retina	is	image	classification.	Moreover,	even	if	the	
neural	 signal	 temporally	 precedes	 the	 external	 variable,	 it	 does	 not	 necessarily	 mean	 that	 it	 is	
causally	involved	(Weichwald	et	al.,	2015).	For	example,	movement-related	information	could	reach	
somatosensory	cortex	prior	to	movement	due	to	an	efference	copy	from	motor	cortex,	rather	than	
somatosensory	 cortex	 being	 responsible	 for	movement	 generation.	 Researchers	 should	 constrain	
interpretations	to	address	the	information	in	neural	populations	about	variables	of	interest,	but	not	
use	this	as	evidence	for	areas’	roles	or	purpose.	
	
On	a	more	technical	level,	there	are	some	decoders	that	will	not	directly	tell	us	what	information	is	
contained	 in	 the	 neural	 population.	 As	 described	 more	 in	 the	 following	 section,	 some	 neural	
decoders	incorporate	prior	information,	e.g.	incorporating	the	overall	probability	of	being	in	a	given	
location	when	decoding	from	hippocampal	place	cells	(Zhang	et	al.,	1998).	If	a	decoder	uses	prior	
information	about	 the	decoded	variable,	 then	 the	 final	decoded	variables	will	not	only	reflect	 the	
information	contained	in	the	neural	population,	but	will	also	reflect	the	prior	information	-	the	two	
will	be	entangled	(Kriegeskorte	and	Douglas,	2019).	
	
What	decoder	should	I	use	to	improve	predictive	performance?	
Depending	on	the	recording	method,	location,	and	variables	of	interest,	different	decoding	methods	
may	 be	 most	 effective.	 Neural	 networks,	 gradient	 boosted	 trees,	 support	 vector	 machines,	 and	

linear	methods	 are	 among	 the	dozens	 of	 potential	 candidates.	 Each	makes	different	 assumptions	
about	 how	 inputs	 relate	 to	 outputs.	We	will	 describe	 a	 number	 of	 specific	methods	 suitable	 for	
neural	decoding	later	in	this	tutorial.	Ultimately,	we	recommend	testing	multiple	methods,	perhaps	
starting	with	 the	methods	we	have	 found	 to	work	best	 for	our	demonstration	datasets.	 Still,	 it	 is	
important	to	have	a	general	understanding	of	differences	between	methods.		
	
Different	methods	make	different	implicit	assumptions	about	the	data	
There	 is	 no	 such	 thing	 as	 a	 method	 that	 makes	 no	 assumptions.	 This	 idea	 derives	 from	 a	 key	
theorem	in	the	ML	literature	called	the	“No	Free	Lunch”	theorem,	which	essentially	states	that	no	
algorithm	will	outperform	all	others	on	every	problem	(Wolpert	and	Macready,	1997).	The	fact	that	
some	 algorithms	 perform	better	 than	 others	 in	 practice	means	 that	 their	 assumptions	 about	 the	
data	are	better.	The	knowledge	that	all	methods	make	assumptions	to	varying	degrees	can	help	one	
be	intentional	about	choosing	a	decoder.	
	
The	assumptions	of	some	methods	are	very	clear.	Regularized	(ridge,	or	L2)	 linear	regression,	 for	
example,	makes	three:	 the	change	 in	the	outputs	 is	assumed	to	be	proportionate	to	the	change	 in	
the	 inputs,	 any	 additional	 noise	 on	 the	 outputs	 is	 assumed	 to	 be	Gaussian	 noise	 (implied	 by	 the	
mean-squared	 error),	 and	 the	 regression	 coefficients	 are	 assumed	 to	 pull	 from	 a	 Gaussian	
distribution	(Hoerl	and	Kennard,	1970;	Bishop,	2006).	For	more	complicated	methods	 like	neural	
networks,	the	assumptions	are	more	complicated	(and	still	under	debate,	e.g.	(Arora	et	al.,	2019))	
but	still	exist.		
	
One	crucial	 assumption	 that	 is	built	 into	decoders	 is	 the	 form	of	 the	 input/output	 relation.	 Some	
methods,	 e.g.	 linear	 regression	 or	 a	 Kalman	 filter,	 assume	 this	mapping	 has	 a	 fixed	 linear	 form.	
Others,	e.g.	neural	networks,	allow	this	mapping	to	have	a	flexible	nonlinear	form.	In	the	scenario	
that	the	mapping	is	truly	linear,	making	this	linear	assumption	will	be	beneficial;	it	will	be	possible	
to	accurately	learn	the	decoder	when	there	is	less	data	or	more	noise	(Hastie	et	al.,	2009).	However,	
if	 the	 neural	 activity	 relates	 nonlinearly	 to	 the	 task	 variable,	 then	 it	 can	 be	 beneficial	 to	 have	 a	
decoder	that	 is	relatively	agnostic	about	the	overall	 input/output	relationship,	 in	the	sense	that	 it	
can	express	many	different	types	of	relationships.	
	
A	 challenge	 of	 choosing	 a	 model	 that	 is	 highly	 expressive	 or	 complex	 is	 the	 phenomenon	 of	
“overfitting”,	in	which	the	model	learns	components	of	the	noise	that	are	unique	to	the	data	that	the	
model	 is	 trained	 on,	 but	 which	 do	 not	 generalize	 to	 any	 independent	 test	 data.	 To	 combat	
overfitting,	 one	 can	 choose	 a	 simpler	 algorithm	 that	 is	 less	 likely	 to	 learn	 to	 model	 this	 noise.	
Alternatively,	one	can	apply	regularization,	which	essentially	penalizes	the	complexity	of	a	model.	
This	 effectively	 reduces	 the	 expressivity	 of	 a	 model,	 while	 still	 allowing	 it	 to	 have	 many	 free	
parameters	(Friedman	et	al.,	2001).	Regularization	is	an	important	way	to	include	the	assumption	
that	the	input/output	relationship	is	not	arbitrarily	complex.	
	
Additionally,	 for	 some	neural	decoding	problems,	 it	 is	possible	 to	 incorporate	assumptions	about	
the	output	being	predicted.	For	example,	let	us	say	we	are	estimating	the	kinematics	of	a	movement	
from	neural	activity.	The	Kalman	filter,	which	is	frequently	used	for	movement	decoding	(Wu	et	al.,	
2003;	Wu	and	Hatsopoulos,	2008;	Gilja	et	al.,	2012),	uses	the	additional	information	that	movement	
kinematics	transition	over	time	in	a	smooth	and	orderly	manner.	There	are	also	Bayesian	decoders	
that	 can	 incorporate	 prior	 beliefs	 about	 the	 decoded	 variables.	 For	 example,	 the	 Naive	 Bayes	
decoder,	which	 is	 frequently	 used	 for	 position	 decoding	 from	hippocampal	 activity	 (Zhang	 et	 al.,	
1998;	Barbieri	et	al.,	2005;	Kloosterman	et	al.,	2013),	can	take	into	account	prior	information	about	

the	probability	distribution	of	positions.	Decoders	with	task	knowledge	built	in	are	constrained	in	
terms	of	their	solutions,	which	can	be	helpful,	provided	this	knowledge	is	correct.	
	
Maximum	likelihood	estimates	vs.	posterior	distributions	
Different	classes	of	methods	also	provide	different	types	of	estimates.	Typically,	machine	learning	
algorithms	provide	maximum	likelihood	estimates	of	the	decoded	variable.	That	is,	there	is	a	single	
point	estimate	for	the	value	of	the	decoded	variable,	which	is	the	estimate	that	is	most	likely	to	be	
true.	 Unlike	 the	 typical	 use	 of	 machine	 learning	 algorithms,	 Bayesian	 decoding	 provides	 a	
probability	distribution	over	all	possibilities	for	the	decoded	outputs	(the	“posterior”	distribution),	
thus	 also	 providing	 information	 about	 the	 uncertainty	 of	 the	 estimate	 (Bishop,	 2006).	 The	
maximum	likelihood	estimate	is	the	peak	of	the	posterior	distribution	when	the	prior	distribution	is	
uniform.		
	
Ensemble	methods	
It	 is	 important	 to	 note	 that	 the	 user	 does	 not	 need	 to	 choose	 a	 single	 model.	 One	 can	 usually	
improve	on	 the	performance	of	any	single	model	by	combining	multiple	models,	 creating	what	 is	
called	an	“ensemble”.	Ensembles	can	be	simple	averages	of	the	outputs	of	many	models,	or	they	can	
be	 more	 complex	 combinations.	 Weighted	 averages	 are	 common,	 which	 one	 can	 imagine	 as	 a	
second-tier	 linear	 model	 that	 takes	 the	 outputs	 of	 the	 first-tier	 models	 as	 inputs	 (sometimes	
referred	 to	 as	 a	 super	 learner).	 In	 principle,	 one	 can	 use	 any	method	 as	 the	 second-tier	 model.	
Third-	and	fourth-tier	models	are	uncommon	but	imaginable.	Many	successful	ML	methods	are,	at	
their	core,	ensembles	(Liaw	and	Wiener,	2002).	In	ML	competition	sites	like	Kaggle	(Kaggle,	2020),	
most	winning	solutions	are	complicated	ensembles.		
	
Under	which	conditions	will	ML	techniques	improve	decoding	performance?	
Whether	ML	will	outperform	other	methods	depends	on	many	factors.	The	form	of	the	underlying	
neural	code,	the	length	of	the	recording	session,	and	the	level	of	noise	will	all	affect	the	predictive	
accuracy	of	different	methods	to	different	degrees.	There	 is	no	way	to	know	ahead	of	 time	which	
method	will	perform	the	best,	and	we	recommend	creating	a	pipeline	to	quickly	test	and	compare	
many	 ML	 and	 simpler	 regression	 methods.	 For	 typical	 decoding	 situations,	 however,	 we	 expect	
certain	modern	ML	methods	 to	 perform	better	 than	 simpler	methods.	 In	 the	 demonstration	 that	
follows	in	Results,	we	show	that	this	is	true	across	three	datasets	and	a	wide	range	of	variables	like	
training	data	length,	number	of	neurons,	bin	size,	and	hyperparameters.		
	
A	practical	guide	(“the	nitty	gritty”)	for	using	machine	learning	for	decoding	
In	any	decoding	problem,	one	has	neural	activity	from	multiple	sources	that	is	recorded	for	a	period	
of	time.	While	we	focus	here	on	spiking	neurons,	the	same	methods	could	be	used	with	other	forms	
of	neural	data,	such	as	the	BOLD	signal	in	fMRI,	or	the	power	in	particular	frequency	bands	of	local	
field	 potential	 (LFP)	 or	 electroencephalography	 (EEG)	 signals.	When	we	 decode	 from	 the	 neural	
data,	whatever	the	source,	we	would	like	to	predict	the	values	of	recorded	outputs	(Fig.	1a).		
	
Data	formatting/preprocessing	for	decoding	
Preparing	for	regression	vs.	classification	
Depending	 on	 the	 task,	 the	 desired	 output	 can	 be	 variables	 that	 are	 continuous	 (e.g.,	 velocity	 or	
position),	or	discrete	(e.g.,	choices).	 In	the	first	case	the	decoder	will	perform	regression,	while	in	
the	second	case	it	will	perform	classification.	In	our	Python	package,	decoder	classes	are	labeled	to	
reflect	this	division.		
	

In	the	data	processing	step,	take	note	whether	a	prediction	is	desired	continuously	in	time,	or	only	
at	 the	 end	 of	 each	 trial.	 In	 this	 tutorial,	 we	 focus	 on	 situations	 in	 which	 a	 prediction	 is	 desired	
continuously	in	time.	However,	many	classification	situations	require	only	one	prediction	per	trial	
(e.g.,	when	making	a	single	choice	per	trial).	If	this	is	the	case,	the	data	must	be	prepared	such	that	
many	timepoints	in	a	single	trial	are	mapped	to	a	single	output.	
	
Time	binning	divides	continuous	data	into	discrete	chunks	
A	number	of	important	decisions	arise	from	the	basic	problem	that	time	is	continuously	recorded,	
but	 decoding	 methods	 generally	 require	 discrete	 data	 for	 their	 inputs	 (and,	 in	 the	 continual-
prediction	situation,	their	outputs).	A	typical	solution	is	to	divide	both	the	inputs	and	outputs	into	
discrete	 time	bins.	These	bins	usually	 contain	 the	 average	 input	 or	 output	 over	 a	 small	 chunk	of	
time,	but	could	also	contain	the	minimum,	maximum,	or	the	regular	sampling	of	any	interpolation	
method	fit	to	the	data.	
	
When	 predictions	 are	 desired	 continuously	 in	 time,	 one	 needs	 to	 decide	 upon	 the	 temporal	
resolution,	R,	 for	decoding.	That	is,	do	we	want	to	make	a	prediction	every	50ms,	100ms,	etc?	We	
need	 to	 put	 the	 input	 and	 output	 into	 bins	 of	 length	 R	 (Fig.	 1a).	 It	 is	 common	 (although	 not	
necessary)	to	use	the	same	bin	size	for	the	neural	data	and	output	data,	and	we	do	so	here.	Thus,	if	T	
is	 the	 length	of	 the	recording,	we	will	have	approximately	T/R	 total	data	points	of	neural	activity	
and	outputs.		
		
Next,	we	need	 to	 choose	 the	 time	period	of	neural	 activity	used	 to	predict	 a	 given	output.	 In	 the	
simplest	case,	the	activity	from	all	neurons	in	a	given	time	bin	would	be	used	to	predict	the	output	
in	 that	 same	 time	bin.	However,	 it	 is	 often	 the	 case	 that	we	want	 the	neural	data	 to	precede	 the	
output	 (e.g.,	 in	 the	 case	 of	making	movements)	 or	 follow	 the	 decoder	 output	 (e.g.,	 in	 the	 case	 of	
inferring	the	cause	of	a	sensation).	Plus,	we	often	want	to	use	neural	data	from	more	than	one	bin	
(e.g.,	using	500	ms	of	preceding	neural	data	to	predict	a	movement	in	the	current	50	ms	bin).	In	the	
following,	we	use	the	nomenclature	that	B	time	bins	of	neural	activity	are	being	used	to	predict	a	
given	output.	For	example,	if	we	use	three	bins	preceding	the	output	and	one	concurrent	bin,	then	
B=4	(Fig.	1a).	Note	that	when	multiple	bins	of	neural	data	are	used	to	predict	an	output	(B>1),	then	
overlapping	 neural	 data	 will	 be	 used	 to	 predict	 different	 output	 times	 (Fig.	 1a),	 making	 them	
statistically	dependent.	
		
When	multiple	bins	of	neural	data	are	used	to	predict	an	output,	then	we	will	need	to	exclude	some	
output	 bins.	 For	 instance,	 if	 we	 are	 using	 one	 bin	 of	 neural	 data	 preceding	 the	 output,	 then	we	
cannot	predict	the	first	output	bin,	and	if	we	are	using	one	bin	of	neural	data	following	the	output,	
then	we	cannot	predict	the	final	output	bin	(Fig.	1a).	Thus,	we	will	be	predicting	K	total	output	bins,	
where	K	is	less	than	the	total	number	of	bins	(T/R).	To	summarize,	our	decoders	will	be	predicting	
each	of	these	K	outputs	using	B	surrounding	bins	of	activity	from	N	neurons.		
	
The	format	of	the	input	data	depends	on	the	form	of	the	decoder	
Non-recurrent	decoders:	For	most	 standard	 regression	methods,	 the	decoder	has	no	persistent	
internal	state	or	memory.	In	this	case	N	x	B	features	(the	firing	rates	of	each	neuron	in	each	relevant	
time	 bin)	 are	 used	 to	 predict	 each	 output	 (Fig.	 1b).	 The	 input	matrix	 of	 covariates,	X,	 has	N	 x	B	
columns	(one	for	each	feature)	and	K	rows	(corresponding	to	each	output	being	predicted).	If	there	
is	a	single	output	that	is	being	predicted,	it	can	be	put	in	a	vector,	Y,	of	length	K.	Note	that	for	many	
decoders,	if	there	are	multiple	outputs,	each	is	independently	decoded.	If	multiple	outputs	are	being	
simultaneously	predicted,	which	can	occur	with	neural	network	decoders,	the	outputs	can	be	put	in	
a	matrix	Y,	that	has	K	rows	and	d	columns,	where	d	is	the	number	of	outputs	being	predicted.	Since	

this	 is	 the	 format	 of	 a	 standard	 regression	 problem,	 many	 regression	 methods	 can	 easily	 be	
substituted	for	one	another	once	the	data	has	been	prepared	in	this	way.	
		
Recurrent	 neural	 network	 decoders:	 When	 using	 recurrent	 neural	 networks	 (RNNs)	 for	
decoding,	 we	 need	 to	 put	 the	 inputs	 in	 a	 different	 format.	 Recurrent	 neural	 networks	 explicitly	
model	 temporal	 transitions	 across	 time	with	 a	persistent	 internal	 state,	 called	 the	 “hidden	 state”	
(Fig.	1c).	At	each	 time	of	 the	B	 time	bins,	 the	hidden	state	 is	adjusted	as	a	 function	of	both	 the	N	
features	(the	firing	rates	of	all	neurons	in	that	time	bin)	and	the	hidden	state	at	the	previous	time	
bin	(Fig.	1c).	Note	that	an	alternative	way	to	view	this	model	is	that	the	hidden	state	feeds	back	on	
itself	(across	time	points).	After	transitioning	through	all	B	bins,	the	hidden	state	in	this	final	bin	is	
used	to	predict	the	output.	In	this	way	an	RNN	decoder	can	integrate	the	effect	of	neural	inputs	over	
an	 extended	 period	 of	 time.	 For	 use	 in	 this	 type	 of	 decoder,	 the	 input	 can	 be	 formatted	 as	 a	 3-
dimensional	tensor	of	size	K	x	N	x	B	(Fig.	1c).	That	is,	for	each	row	(corresponding	to	one	of	the	K	
output	bins	to	be	predicted),	there	will	be	N	features	(2nd	tensor	dimension)	over	B	bins	(3rd	tensor	
dimension)	used	for	prediction.	Within	this	 format,	different	types	of	RNNs,	 including	those	more	
sophisticated	than	the	standard	RNN	shown	in	Fig.	1c,	can	be	easily	switched	for	one	another.		
	
	

Figure 1: Decoding Schematic
a) To decode (predict) the output in a given time bin, we used the firing rates of all N neurons in B time bins. In

this schematic, N=4 and B=4 (three bins preceding the output and one concurrent bin). As an example, preceding
bins of neural activity could be useful for predicting upcoming movements and following bins of neural activity
could be useful for predicting preceding sensory information. Here, we show a single output being predicted. b)
For non-recurrent decoders (Wiener Filter, Wiener Cascade, Support Vector Regression, XGBoost, and
Feedforward Neural Network in our subsequent demonstration), this is a standard machine learning regression
problem where N x B features (the firing rates of each neuron in each relevant time bin) are used to predict the
output. c) To predict outputs with recurrent decoders (simple recurrent neural network, GRUs, LSTMs in our
subsequent demonstration) we used N features, with temporal connections across B bins. A schematic of a recurrent
neural network predicting a single output is on the right. Note that an alternative way to view this model is that the
hidden state feeds back on itself (across time points).

	
	
Applying	machine	learning	
The	 typical	 process	 of	 applying	 ML	 to	 data	 involves	 testing	 several	 methods	 and	 seeing	 which	
works	best.	Some	methods	may	be	expected	to	work	better	or	worse	depending	on	the	structure	of	
the	data,	and	in	the	next	part	of	this	tutorial	we	provide	a	demonstration	of	which	methods	work	
best	for	typical	neural	spiking	datasets.	That	said,	applying	ML	is	unavoidably	an	iterative	process,	
and	for	this	reason	we	begin	with	the	proper	way	to	choose	among	many	methods.	It	is	particularly	
important	to	consider	how	to	avoid	overfitting	our	data	during	this	iterative	process.	
	
Compare	method	performance	using	cross-validation	
Given	 two	 (or	more)	methods,	 the	ML	 practitioner	must	 have	 a	 principled	way	 to	 decide	which	
method	is	best.	It	is	crucial	to	test	the	decoder	performance	on	a	separate,	held-out	dataset	that	the	
decoder	did	not	see	during	training	(Fig.	2a).	This	 is	because	a	decoder	typically	will	overfit	 to	 its	
training	 data.	 That	 is,	 it	will	 learn	 to	 predict	 outputs	 using	 idiosyncratic	 information	 about	 each	
datapoint	in	the	training	set,	such	as	noise,	rather	than	the	aspects	that	are	general	to	the	data.	An	
overfit	 algorithm	 will	 describe	 the	 training	 data	 well	 but	 will	 not	 be	 able	 to	 provide	 good	
predictions	on	new	datasets.	For	this	reason,	the	proper	metric	to	choose	between	methods	is	the	
performance	 on	 held-out	 data,	 meaning	 that	 the	 available	 data	 should	 be	 split	 into	 separate	
“training”	and	“testing”	datasets.	In	practice,	this	will	reduce	the	amount	of	training	data	available.	
In	order	to	efficiently	use	all	of	the	data,	it	is	common	to	perform	cross-validation	(Fig.	2b).	In	10-
fold	cross-validation,	for	example,	the	dataset	is	split	into	10	sets.	The	decoder	is	trained	on	9	of	the	
sets,	and	performance	is	tested	on	the	final	set.	This	is	done	10	times	in	a	rotating	fashion,	so	that	
each	set	is	tested	once.	The	performance	on	all	test	sets	is	generally	averaged	together	to	determine	
the	overall	performance.	
	
When	publishing	about	the	performance	of	a	method,	 it	 is	 important	to	show	the	performance	on	
held-out	 data	 that	was	 additionally	 not	 used	 to	 select	 between	methods	 (Fig.	 2c).	 Random	noise	
may	lead	some	methods	to	perform	better	than	others,	and	it	is	possible	to	fool	oneself	and	others	
by	 testing	a	great	number	of	methods	and	choosing	 the	best.	 In	 fact,	one	can	entirely	overfit	 to	a	
testing	dataset	simply	by	using	the	test	performance	to	select	the	best	method,	even	if	no	method	is	
trained	on	that	data	explicitly.	Practitioners	often	make	the	distinction	between	the	“training”	data,	
the	 “validation”	data	 (which	 is	 used	 to	 select	 between	methods)	 and	 the	 “testing”	 data	 (which	 is	
used	 to	evaluate	 the	 true	performance).	This	 three-way	split	of	data	 complicates	 cross-validation	
somewhat	(Fig.	2b).	It	is	possible	to	first	create	a	separate	testing	set,	then	choose	among	methods	
on	 the	remaining	data	using	cross-validation.	Alternatively,	 for	maximum	data	efficiency,	one	can	
iteratively	rotate	which	split	is	the	testing	set,	and	thus	perform	a	two-tier	nested	cross-validation.	
	

Hyperparameter	optimization	
When	 fitting	 any	 single	method,	 one	usually	has	 to	 additionally	 choose	 a	 set	 of	hyperparameters.	
These	are	parameters	that	relate	to	the	design	of	the	decoder	itself	and	should	not	be	confused	with	
the	 ‘normal’	 parameters	 that	 are	 fit	 during	 optimization,	 e.g.,	 the	 weights	 that	 are	 fit	 in	 linear	
regression.	 For	 example,	 neural	 networks	 can	 be	 designed	 to	 have	 any	 number	 of	 hidden	 units.	
Thus,	 the	user	needs	 to	set	 the	number	of	hidden	units	 (the	hyperparameter)	before	 training	 the	
decoder.	Often	decoders	have	multiple	hyperparameters,	and	different	hyperparameter	values	can	
sometimes	 lead	 to	 greatly	 different	 performance.	 Thus,	 it	 is	 important	 to	 choose	 a	 decoder’s	
hyperparameters	carefully.		
	
When	using	a	decoder	that	has	hyperparameters,	one	should	take	the	following	steps.	First,	always	
split	 the	data	 into	 three	separate	sets	 (training	set,	 testing	set,	and	validation	set),	perhaps	using	
nested	cross-validation	(Fig.	2b).	Next,	iterate	through	a	large	number	of	hyperparameter	settings	
and	 choose	 the	best	based	on	validation	 set	performance.	 Simple	methods	 for	 searching	 through	
hyperparameters	are	a	grid	search	(i.e.,	sampling	values	evenly)	and	random	search	(Bergstra	and	
Bengio,	 2012).	 There	 are	 also	 more	 efficient	 methods	 (e.g.,	 (Snoek	 et	 al.,	 2012;	 Bergstra	 et	 al.,	
2013))	 that	 can	 intelligently	 search	 through	 hyperparameters	 based	 on	 the	 performance	 of	
previously	tested	hyperparameters.	The	best	performing	hyperparameter	and	method	combination	
(on	the	validation	set)	will	be	the	final	method,	unless	one	is	combining	multiple	methods	into	an	
ensemble.	
	
	

Figure 2. Schematic of cross-validation
a) After training a decoder on some data (green), we would like to know how well it performs on held-out data that
we do not have access to (red). b) Left: By splitting the data we have into test (orange) and train (green) segments,
we can approximate the performance on held-out data. In k-fold cross-validation, we re-train the decoder k times,
and each time rotate which parts of the data are the test or train data. The average test set performance approximates
the performance on held-out data. Right: If we want to select among many models, we cannot maximize the
performance on the same data we will report as a score. (This is very similar to “p-hacking” statistical significance.)
Instead we maximize performance on “validation” data (blue), and again rotate through the available data. c) All
failure modes are ways in which a researcher lets information from the test set “leak” into the training algorithm.
This happens if you explicitly train on the test data (top), or use any statistics of the test data to modify the train
data before fitting (middle), or select your models or hyperparameters based on the performance on the test data
(bottom).

	
Methods	for	our	decoding	comparisons	and	demonstrations	
In	this	section,	we	demonstrate	the	usage	of	our	code	package	and	show	which	of	its	methods	work	
better	than	traditional	methods	for	several	neural	datasets.	
	
Code	accessibility	
We	have	prepared	a	Python	package	that	implements	the	machine	learning	pipeline	for	decoding	
problems.	It	is	available	at	https://github.com/KordingLab/Neural_Decoding,	and	it	includes	code	
to	correctly	format	the	neural	and	output	data	for	decoding,	to	implement	many	different	decoders	
for	both	regression	and	classification,	and	to	optimize	their	hyperparameters.		
	
Specific	decoders:	
The	 following	 decoders	 are	 available	 in	 our	 package,	 and	we	 demonstrate	 their	 performance	 on	
example	datasets	below.	We	included	both	historical	linear	techniques	(e.g.,	the	Wiener	filter)	and	
modern	ML	 techniques	 (e.g.,	neural	networks	and	ensembles	of	 techniques).	Additional	details	of	
the	 methods,	 including	 equations	 and	 hyperparameter	 information,	 can	 be	 found	 in	 a	 table	 in	
Extended	Data	(Figure	4-3).	
	
Wiener	Filter:	The	Wiener	filter	uses	multiple	linear	regression	to	predict	the	output	from	multiple	
time	bins	of	all	neurons’	spikes	(Carmena	et	al.,	2003).	That	is,	the	output	is	assumed	to	be	a	linear	
mapping	of	the	number	of	spikes	in	the	relevant	time	bins	from	every	neuron	(Fig.	1a,b).		
Wiener	 Cascade:	 The	 Wiener	 cascade	 (also	 known	 as	 a	 linear-nonlinear	 model)	 fits	 a	 linear	
regression	(the	Wiener	filter)	followed	by	a	fitted	static	nonlinearity	(e.g.,	(Pohlmeyer	et	al.,	2007)).	
This	allows	for	a	nonlinear	input-output	relationship	and	assumes	that	this	nonlinearity	is	purely	a	
function	of	the	linear	output.	Thus,	there	is	no	nonlinear	mixing	of	input	features	when	making	the	
prediction.	The	default	nonlinear	component	is	a	polynomial	with	degree	that	can	be	determined	on	
a	validation	set.		
Support	 Vector	 Regression:	 In	 support	 vector	 regression	 (SVR)	 (Smola	 and	 Schölkopf,	 2004;	
Chang	and	Lin,	2011),	 the	 inputs	are	projected	 into	a	higher-dimensional	space	using	a	nonlinear	
kernel,	and	then	 linearly	mapped	from	this	space	to	 the	output	 to	minimize	an	objective	 function	
(Smola	and	Schölkopf,	2004;	Chang	and	Lin,	2011).	That	is,	the	input/output	mapping	is	assumed	to	
nonlinear,	but	is	constrained	by	the	kernel	being	used	(it	is	not	completely	flexible).	In	our	toolbox,	
the	default	kernel	is	a	radial	basis	function.	
XGBoost:	XGBoost	(Extreme	Gradient	Boosting)	(Chen	and	Guestrin,	2016)	is	an	implementation	of	
gradient	 boosted	 trees	 (Natekin	 and	 Knoll,	 2013;	 Chen,	 2014).	 Tree-based	methods	 sequentially	

split	 the	 input	space	 into	many	discrete	parts	 (visualized	as	branches	on	a	 tree	 for	each	split),	 in	
order	to	assign	each	final	“leaf”	(a	portion	of	input	space	that	is	not	split	any	more)	a	value	in	output	
space	(Breiman,	2017).	XGBoost	fits	many	regression	trees,	which	are	trees	that	predict	continuous	
output	values.	“Gradient	boosting”	refers	to	fitting	each	subsequent	regression	tree	to	the	residuals	
of	the	previous	fit.	This	method	assumes	flexible	nonlinear	input/output	mappings.	
Feedforward	Neural	Network:	A	feedforward	neural	net	(Rosenblatt,	1961;	Goodfellow	et	al.,	2016)	
connects	 the	 inputs	 to	 sequential	 layers	 of	 hidden	 units,	which	 then	 connect	 to	 the	 output.	 Each	
layer	connects	to	the	next	(e.g.,	the	input	layer	to	the	first	hidden	layer,	or	the	first	to	second	hidden	
layers)	 via	 linear	mappings	 followed	by	nonlinearities.	Note	 that	 the	Wiener	 cascade	 is	 a	 special	
case	of	a	neural	network	with	no	hidden	layers.	 	Feedforward	neural	networks	also	allow	flexible	
nonlinear	input/output	mappings.	
Simple	RNN:	In	a	standard	recurrent	neural	network	(RNN)	(Rumelhart	et	al.,	1986;	Goodfellow	et	al.,	
2016),	 the	 hidden	 state	 is	 a	 linear	 combination	 of	 the	 inputs	 and	 the	 previous	 hidden	 state.	 This	
hidden	state	 is	 then	 run	 through	an	output	nonlinearity,	 and	 linearly	mapped	 to	 the	output.	Like	
feedforward	neural	networks,	RNNs	allow	flexible	nonlinear	input/output	mappings.	Additionally,	
unlike	 feedforward	neural	 networks,	 RNNs	 allow	 temporal	 changes	 in	 the	 system	 to	 be	modeled	
explicitly.		
Gated	Recurrent	Unit:	Gated	recurrent	units	(GRUs)	(Cho	et	al.,	2014;	Goodfellow	et	al.,	2016)	are	
a	more	complex	type	of	recurrent	neural	network.	 It	has	gated	units,	which	determine	how	much	
information	can	flow	through	various	parts	of	the	network.	In	practice,	these	gated	units	allow	for	
better	learning	of	long-term	dependencies.		
Long	Short	Term	Memory	Network:	Like	the	GRU,	the	long	short	term	memory	(LSTM)	network	
(Hochreiter	and	Schmidhuber,	1997;	Goodfellow	et	al.,	2016)	 is	a	more	complex	recurrent	neural	
network	with	gated	units	 that	 further	 improve	 the	capture	of	 long-term	dependencies.	The	LSTM	
has	more	parameters	than	the	GRU.		
Kalman	Filter:	Our	Kalman	filter	for	neural	decoding	was	based	on	(Wu	et	al.,	2003).	In	the	Kalman	
filter,	 the	hidden	 state	 at	 time	 t	 is	 a	 linear	 function	of	 the	hidden	 state	 at	 time	 t-1,	 plus	 a	matrix	
characterizing	 the	 uncertainty.	 For	 neural	 decoding,	 the	 hidden	 state	 is	 the	 kinematics	 (x	 and	 y	
components	 of	 position,	 velocity,	 and	 acceleration),	 which	 we	 aim	 to	 estimate.	 Note	 that	 even	
though	we	only	aim	to	predict	position	or	velocity,	all	kinematics	are	included	because	this	allows	
for	better	prediction.	Kalman	filters	assume	that	both	the	input/output	mapping	and	the	transitions	
in	kinematics	over	time	are	linear.		
Naïve	 Bayes:	 The	 Naïve	 Bayes	 decoder	 is	 a	 type	 of	 Bayesian	 decoder	 that	 determines	 the	
probabilities	 of	 different	 outcomes,	 and	 it	 then	 predicts	 the	 most	 probable.	 Briefly,	 it	 fits	 an	
encoding	model	to	each	neuron,	makes	conditional	independence	assumptions	about	neurons,	and	
then	uses	Bayes’	 rule	 to	 create	 a	 decoding	model	 from	 the	 encoding	models.	 Thus,	 the	 effects	 of	
individual	 neurons	 are	 combined	 linearly.	 This	 probabilistic	 framework	 can	 incorporate	 prior	
information	 about	 the	 output	 variables,	 including	 the	probabilities	 of	 their	 transitions	 over	 time.	
We	used	a	Naïve	Bayes	decoder	similar	to	the	one	implemented	in	(Zhang	et	al.,	1998).		
	
In	the	comparisons	below,	we	also	demonstrate	an	ensemble	method.	We	combined	the	predictions	
from	all	decoders	except	the	Kalman	filter	and	Naïve	Bayes	decoders	(which	have	different	formats)	
using	a	feedforward	neural	network.	That	is,	the	eight	methods’	predictions	were	provided	as	input	
into	a	feedforward	neural	network	that	we	trained	to	predict	the	true	output.		
	
Demonstration	datasets	
We	first	examined	which	of	several	decoding	methods	performed	the	best	across	three	datasets	
from	motor	cortex,	somatosensory	cortex,	and	hippocampus.	All	datasets	are	linked	from	our	
GitHub	repository:	https://github.com/KordingLab/Neural_Decoding	.	

.	
	
In	 the	 task	 for	 decoding	 from	motor	 cortex,	monkeys	moved	 a	manipulandum	 that	 controlled	 a	
cursor	on	a	screen	(Glaser	et	al.,	2018),	and	we	aimed	to	decode	the	x	and	y	velocity	of	the	cursor.	
Details	of	the	task	can	be	found	in	(Glaser	et	al.,	2018).	The	21	minute	recording	from	motor	cortex	
contained	164	neurons.	The	mean	and	median	firing	rates,	respectively,	were	6.7	and	3.4	spikes	/	
sec.	Data	were	put	into	50	ms	bins.	We	used	700	ms	of	neural	activity	(the	concurrent	bin	and	13	
bins	before)	to	predict	the	current	movement	velocity.		
	
The	same	task	was	used	in	the	recording	from	somatosensory	cortex	(Benjamin	et	al.,	2018).	The	
recording	 from	S1	was	51	minutes	and	contained	52	neurons.	The	mean	and	median	 firing	rates,	
respectively,	 were	 9.3	 and	 6.3	 spikes	 /	 sec.	 Data	 were	 put	 into	 50	 ms	 bins.	 We	 used	 650	 ms	
surrounding	the	movement	(the	concurrent	bin,	6	bins	before,	and	6	bins	after).	
	
In	 the	 task	 for	 decoding	 from	 hippocampus,	 rats	 chased	 rewards	 on	 a	 platform	 (Mizuseki	 et	 al.,	
2009b;	 Mizuseki	 et	 al.,	 2009a),	 and	 we	 aimed	 to	 decode	 the	 rat’s	 x	 and	 y	 position.	 From	 this	
recording,	we	 used	 46	 neurons	 over	 a	 time	 period	 of	 75	minutes.	 These	 neurons	 had	mean	 and	
median	firing	rates	of	1.7	and	0.2	spikes	/	sec,	respectively.	Data	were	put	 into	200	ms	bins.	 	We	
used	2	seconds	of	surrounding	neural	activity	(the	concurrent	bin,	4	bins	before,	and	5	bins	after)	to	
predict	the	current	position.	Note	that	the	bins	used	for	decoding	differed	in	all	tasks	for	the	Kalman	
filter	and	Naïve	Bayes	decoders	(see	Extended	Data	Figure	4-3	for	additional	details).	
	
All	 datasets,	which	 have	 been	 used	 in	 prior	 publications	 (Mizuseki	 et	 al.,	 2009b;	Mizuseki	 et	 al.,	
2009a;	 Benjamin	 et	 al.,	 2018;	 Glaser	 et	 al.,	 2018),	 were	 collected	 with	 approval	 from	 the	
Institutional	Animal	Care	and	Use	Committees	of	the	appropriate	institutions.	
	
Demonstration	analysis	methods	
	
Scoring	Metric:	To	 determine	 the	 goodness	 of	 fit,	 we	 used	𝑅! = 1− !!!!! !!

!!!! !!
,	 where	𝑦! 	 are	 the	

predicted	values,	𝑦! 	are	the	true	values	and	𝑦	is	the	mean	value.	This	formulation	of	R2	(Serruya	et	
al.,	2003;	Fagg	et	al.,	2009)(which	is	the	fraction	of	variance	accounted	for,	rather	than	the	squared	
Pearson’s	correlation	coefficient)	can	be	negative	on	the	test	set	due	to	overfitting	on	the	training	
set.	The	reported	R2	values	are	the	average	across	the	x	and	y	components	of	velocity	or	position.	
Preprocessing:	The	training	output	was	zero-centered	(mean	subtracted),	except	in	support	vector	
regression,	where	the	output	was	normalized	(z-scored),	which	helped	algorithm	performance.	The	
training	 input	 was	 z-scored	 for	 all	 methods.	 The	 validation/testing	 inputs	 and	 outputs	 were	
preprocessed	using	the	preprocessing	parameters	from	the	training	set.	
Cross-validation:	When	 determining	 the	 R2	 for	 every	 method	 (Fig.	 3),	 we	 used	 10-fold	 cross-
validation.	For	each	fold,	we	split	the	data	into	a	training	set	(80%	of	data),	a	contiguous	validation	
set	(10%	of	data),	and	a	contiguous	testing	set	(10%	of	data).	For	each	fold,	decoders	were	trained	
to	minimize	 the	mean	 squared	 error	 between	 the	 predicted	 and	 true	 velocities/positions	 of	 the	
training	data.	We	found	the	algorithm	hyperparameters	that	led	to	the	highest	R2	on	the	validation	
set	using	Bayesian	optimization	(Snoek	et	al.,	2012).	That	is,	we	fit	many	models	on	the	training	set	
with	 different	 hyperparameters	 and	 calculated	 the	 R2	 on	 the	 validation	 set.	 Then,	 using	 the	
hyperparameters	that	led	to	the	highest	validation	set	R2,	we	calculated	the	R2	value	on	the	testing	
set.	Error	bars	on	the	test	set	R2	values	were	computed	across	cross-validation	folds.	Because	the	
training	 sets	 on	 different	 folds	 were	 overlapping,	 computing	 the	 SEM	 as	 𝜎/ 𝐽	 (where	 𝜎	 is	 the	
standard	deviation	and	 J	 is	 the	number	of	 folds)	would	have	underestimated	the	size	of	 the	error	

bars	(Nadeau	and	Bengio,	2000).	We	thus	calculated	the	SEM	as	𝜎 ∗ !
!
+ !

!!!
		(Nadeau	and	Bengio,	

2000),	which	takes	into	account	that	the	estimates	across	folds	are	not	independent.	
	
Bootstrapping:	When	determining	how	performance	scaled	as	a	function	of	data	size	(Fig.	5),	we	
used	single	test	and	validation	sets,	and	varied	the	amounts	of	training	data	that	directly	preceded	
the	validation	set.	We	did	not	do	this	on	10	cross-validation	 folds	due	to	 long	run-times.	The	test	
and	validation	sets	were	5	minutes	long	for	motor	and	somatosensory	cortices,	and	7.5	minutes	for	
hippocampus.	To	get	 error	bars,	we	 resampled	 from	 the	 test	 set.	Because	of	 the	high	 correlation	
between	 temporally	 adjacent	 samples,	 we	 didn’t	 resample	 randomly	 from	 all	 examples	 (which	
would	 create	highly	 correlated	 resamples).	 Instead,	we	 separated	 the	 test	 set	 into	20	 temporally	
distinct	subsets,	S1-S20	(i.e.,	S1	is	from	t=1	to	t=T/20,	S2	is	from	t=T/20	to	t=2T/20,	etc.,	where	T	is	
the	 end	 time),	 to	 ensure	 that	 the	 subsets	were	more	 nearly	 independent	 of	 each	 other.	We	 then	
resampled	 combinations	 of	 these	 20	 subsets	 (e.g.,	 S5,	 S13,	 …	 S2)	 1000	 times	 to	 get	 confidence	
intervals	of	R2	values.	
	
Results	
We	investigated	how	the	choice	of	machine	learning	technique	affects	decoding	performance	using	
a	 number	 of	 common	 machine	 learning	 methods	 that	 are	 included	 in	 our	 code	 package.	 These	
ranged	 from	 historical	 linear	 techniques	 (e.g.,	 the	 Wiener	 filter)	 to	 modern	 machine	 learning	
techniques	 (e.g.,	 neural	 networks	 and	 ensembles	 of	 techniques).	 We	 tested	 the	 performance	 of	
these	techniques	across	datasets	from	motor	cortex,	somatosensory	cortex,	and	hippocampus.	
	
Performance	comparison	
In	 order	 to	 get	 a	 qualitative	 impression	 of	 the	 performance,	 we	 first	 plotted	 the	 output	 of	 each	
decoding	method	 for	each	of	 the	 three	datasets	 (Fig.	3).	 In	 these	examples,	 the	modern	methods,	
such	 as	 the	 LSTM	 and	 ensemble,	 appeared	 to	 outperform	 traditional	 methods.	 We	 next	
quantitatively	compared	 the	methods’	performances,	using	 the	metric	of	R2	on	held-out	 test	 sets.	
These	 results	 confirmed	 our	 qualitative	 findings	 (Fig.	 4).	 In	 particular,	 neural	 networks	 and	 the	
ensemble	 led	 to	 the	 best	 performance,	 while	 the	 Wiener	 or	 Kalman	 Filter	 led	 to	 the	 worst	
performance.	 In	 fact,	 the	 LSTM	decoder	 explained	 over	 40%	of	 the	 unexplained	 variance	 from	 a	
Wiener	 filter	 (R2’s	 of	 0.88,	 0.86,	 0.62	 vs.	 0.78,	 0.75,	 0.35).	 Interestingly,	 while	 the	 Naïve	 Bayes	
decoder	performed	relatively	well	when	predicting	position	in	the	hippocampus	dataset	(mean	R2	
just	 slightly	 less	 than	 the	 neural	 networks),	 it	 performed	 very	 poorly	 when	 predicting	 hand	
velocities	 in	 the	 other	 two	 datasets.	 Another	 interesting	 finding	 is	 that	 the	 feedforward	 neural	
network	did	almost	as	well	as	the	LSTM	in	all	brain	areas.	Across	cases,	the	ensemble	method	added	
a	 reliable,	 but	 small	 increase	 to	 the	 explained	 variance.	 Overall,	 modern	 ML	 methods	 led	 to	
significant	increases	in	predictive	power.	
	

Figure 3: Example Decoder Results
Example decoding results from motor cortex (left), somatosensory cortex (middle), and hippocampus (right), for
all eleven methods (top to bottom). Ground truth traces are in black, while decoder results are in various colors.

	

Figure 4: Decoder Result Summary
R2 values are reported for all decoders (different colors) for each brain area (top to bottom). Error bars represent
the mean +/- SEM across cross-validation folds. X’s represent the R2 values of each cross-validation fold. The NB
decoder had mean R2 values of 0.26 and 0.36 (below the minimum y-axis value) for the motor and somatosensory
cortex datasets, respectively. Note the different y-axis limits for the hippocampus dataset in this and all subsequent
figures. In Extended Data, we include the accuracy for multiple versions of the Kalman filter (Figure 4-1),
accuracy for multiple bin sizes (Figure 4-2), and a table with further details of all these methods (Figure 4-3).

	

	
Concerns	about	limited	data	for	decoding	
We	chose	a	representative	subset	of	the	ten	methods	to	pursue	further	questions	about	particular	
aspects	of	neural	data	analysis:	 the	feedforward	neural	network	and	LSTM	(two	effective	modern	
methods),	along	with	the	Wiener	and	Kalman	filters	(two	traditional	methods	in	widespread	use).	
The	 improved	 predictive	 performance	 of	 the	 modern	 methods	 is	 likely	 due	 to	 their	 greater	
complexity.	 However,	 this	 greater	 complexity	 may	 make	 these	 methods	 unsuitable	 for	 smaller	
amounts	of	data.	Thus,	we	tested	performance	with	varying	amounts	of	training	data.	With	only	2	
minutes	of	data	for	motor	and	somatosensory	cortices,	and	15	minutes	of	hippocampus	data,	both	
modern	methods	outperformed	both	traditional	methods	(Fig.	5a,	Extended	Data	Fig.	5-1).	 	When	
decreasing	 the	 amount	 of	 training	 data	 further,	 to	 only	 1	 minute	 for	 motor	 and	 somatosensory	
cortices	 and	 7.5	 minutes	 for	 hippocampus	 data,	 the	 Kalman	 filter	 performance	 was	 sometimes	
comparable	 to	 the	 modern	 methods,	 but	 the	 modern	 methods	 significantly	 outperformed	 the	
Wiener	 Filter	 (Fig.	 5a).	 Thus,	 even	 for	 limited	 recording	 times,	 modern	 ML	 methods	 can	 yield	
significant	gains	in	decoding	performance.	
	
Besides	 limited	 recording	 times,	 neural	 data	 is	 often	 limited	 in	 the	number	of	 recorded	neurons.	
Thus,	we	compared	methods	using	a	subset	of	only	10	neurons.	For	motor	and	somatosensory	data,	
despite	 a	 general	 decrease	 in	 performance	 for	 all	 decoding	 methods,	 the	 modern	 methods	
significantly	 outperformed	 the	 traditional	 methods	 (Fig.	 5b).	 For	 the	 hippocampus	 dataset,	 no	
method	predicted	well	 (mean	R2	<	0.25)	with	only	10	neurons.	This	 is	 likely	because	10	sparsely	
firing	 neurons	 (median	 firing	 of	 HC	 neurons	 was	 ~0.2	 spikes	 /	 sec)	 did	 not	 contain	 enough	
information	about	the	entire	space	of	positions.	However,	in	most	scenarios,	with	limited	neurons	
and	for	limited	recorded	times,	modern	ML	methods	can	be	advantageous.	
		
	

Figure 5: Decoder results with limited data
(A) Testing the effects of limited training data. Using varying amounts of training data, we trained two traditional
methods (Wiener filter and Kalman filter), and two modern methods (feedforward neural network and LSTM). R2
values are reported for these decoders (different colors) for each brain area (top to bottom). Error bars are 68%
confidence intervals (meant to approximate the SEM) produced via bootstrapping, as we used a single test set.
Values with negative R2s were not shown. (B) Testing the effects of few neurons. Using only 10 neurons, we

trained two traditional methods (Wiener filter and Kalman filter), and two modern methods (feedforward neural
network and LSTM). We used the same testing set as in panel A, and the largest training set from panel A. R2
values are reported for these decoders for each brain area. Error bars represent the mean +/- SEM of multiple
repetitions with different subsets of 10 neurons. X’s represent the R2 values of each repetition. Note that the y-axis
limits are different in panels A and B. In Extended Data, we provide examples of the decoder predictions for each
of these methods (Figure 5-1).

	
	
Concerns	about	run-time	
While	 modern	 ML	 methods	 lead	 to	 improved	 performance,	 it	 is	 important	 to	 know	 that	 these	
sophisticated	decoding	models	can	be	trained	in	a	reasonable	amount	of	time.	To	get	a	feeling	for	
the	typical	timescale,	consider	that	when	running	our	demonstration	data	on	a	desktop	computer	
using	 only	 CPUs,	 it	 took	 less	 than	 1	 second	 to	 fit	 a	 Wiener	 filter,	 less	 than	 10	 seconds	 to	 fit	 a	
feedforward	neural,	and	less	than	8	minutes	to	fit	an	LSTM.	(This	was	for	30	minutes	of	data,	using	
10	time	bins	of	neural	activity	for	each	prediction,	and	50	neurons.)	In	practice,	these	models	will	
need	 to	 be	 fit	 tens	 to	 hundreds	 of	 times	 when	 incorporating	 hyperparameter	 optimization	 and	
cross-validation.	As	 a	 concrete	 example,	 let	 us	 say	 that	we	 are	 doing	5-fold	 cross-validation,	 and	
hyperparameter	optimization	 requires	50	 iterations	per	 cross-validation	 fold.	 In	 that	 case,	 fitting	
the	LSTM	would	take	about	30	hours,	and	fitting	the	feedforward	neural	net	would	take	less	than	1	
hour.	 Note	 that	 variations	 in	 hardware	 and	 software	 implementations	 can	 drastically	 change	
runtime,	and	modern	GPUs	can	often	 increase	speeds	approximately	10-fold.	Thus,	while	modern	
methods	do	 take	significantly	 longer	 to	 train	 (and	may	require	running	overnight	without	GPUs),	
that	should	be	manageable	for	most	offline	applications.		
	
Concerns	about	robustness	to	hyperparameters	
All	 our	 previous	 results	 used	 hyperparameter	 optimization.	 While	 we	 strongly	 encourage	 a	
thorough	 hyperparameter	 optimization,	 a	 user	 with	 limited	 time	 might	 just	 do	 a	 limited	
hyperparameter	 search.	 Thus,	 it	 is	 helpful	 to	 know	 how	 sensitive	 results	 may	 be	 to	 varying	
hyperparameters.	We	tested	the	performance	of	the	feedforward	neural	network	while	varying	two	
hyperparameters:	 the	number	of	units	and	the	dropout	rate	(a	regularization	hyperparameter	for	
neural	networks).	We	held	the	third	hyperparameter	in	our	code	package,	the	number	of	training	
epochs,	constant	at	10.	We	found	that	the	performance	of	the	neural	network	was	generally	robust	
to	 large	 changes	 in	 the	 hyperparameters	 (Fig.	 6).	 As	 an	 example,	 for	 the	 somatosensory	 cortex	
dataset,	the	peak	performance	of	the	neural	network	was	R2=0.86	with	1000	units	and	0	dropout,	
and	virtually	the	same	(R2=0.84)	with	300	units	and	30%	dropout.	Even	when	using	limited	data,	
neural	network	performance	was	robust	 to	hyperparameter	changes.	For	 instance,	when	training	
the	 somatosensory	 cortex	 dataset	 with	 1	 minute	 of	 training	 data,	 the	 peak	 performance	 was	
R2=0.77	with	700	units	and	20%	dropout.	A	network	with	300	units	and	30%	dropout	had	R2=0.75.	
Note	that	the	hippocampus	dataset,	in	particular	when	using	limited	training	data,	did	have	greater	
variability,	 emphasizing	 the	 importance	 of	 hyperparameter	 optimization	 on	 sparse	 datasets.	
However,	 for	 most	 datasets,	 researchers	 should	 not	 be	 concerned	 that	 slightly	 non-optimal	
hyperparameters	will	lead	to	largely	degraded	performance.	
		

Figure 6: Sensitivity of neural network results to hyperparameter selection
In a feedforward neural network, we varied the number of hidden units per layer (in increments of 100) and the
proportion of dropout (in increments of 0.1), and evaluated the decoder’s performance on all three datasets (top to
bottom). The neural network had two hidden layers, each with the same number of hidden units. The number of
training epochs was kept constant at 10. The colors show the R2 on the test set, and each panel’s colors were put in
the range: [maximum R2 – 0.2 , maximum R2]. a) We used a large amount of training data (the maximum amount
used in Fig. 5a), which was 10, 20, and 37.5 minutes of data for the motor cortex, somatosensory cortex, and
hippocampus datasets, respectively. b) Same results for a limited amount of training data: 1, 1, and 15 minutes of
data for the motor cortex, somatosensory cortex, and hippocampus datasets, respectively.

		

Discussion	
Here	we	have	provided	a	tutorial,	code	package,	and	demonstrations	of	the	use	of	machine	learning	
for	neural	decoding.	Our	comparisons,	which	were	made	using	the	code	we	have	published	online,	
show	 that	 machine	 learning	 works	 well	 on	 typical	 neural	 decoding	 datasets,	 outperforming	
traditional	 decoding	 methods.	 In	 our	 demonstration,	 we	 decoded	 continuous-valued	 variables.	
However,	these	same	methods	can	be	used	for	classification	tasks,	which	often	use	classic	decoders	
such	 as	 logistic	 regression	 and	 support	 vector	 machines.	 Our	 available	 code	 also	 includes	
classification	methods.	
	
We	 find	 it	 particularly	 interesting	 that	 the	neural	 network	methods	worked	 so	well	with	 limited	
data,	 counter	 to	 the	 common	 perception.	 We	 believe	 the	 explanation	 is	 simply	 the	 size	 of	 the	
networks.	 For	 instance,	 our	 networks	 have	 on	 the	 order	 of	 105	 parameters,	 while	 common	
networks	 for	 image	 classification	 (e.g.,	 (Krizhevsky	 et	 al.,	 2012))	 can	 have	 on	 the	 order	 of	 108	
parameters.	Thus,	 the	smaller	size	of	our	networks	(hundreds	of	hidden	units)	may	have	allowed	
for	excellent	prediction	with	limited	data	(Zhang	et	al.,	2016).	Moreover,	the	fact	that	the	tasks	we	
used	 had	 a	 low-dimensional	 structure,	 and	 therefore	 the	 neural	 data	 was	 also	 likely	 low	
dimensional	(Gao	et	al.,	2017),	might	allow	high	decoding	performance	with	limited	data.	
	
In	 order	 to	 find	 the	 best	 hyperparameters	 for	 the	 decoding	 algorithms,	 we	 used	 a	 Bayesian	
optimization	routine	(Snoek	et	al.,	2012)	 to	search	the	hyperparameter	space	(see	Demonstration	
Methods).	Still,	 it	 is	possible	that,	 for	some	of	the	decoding	algorithms,	the	hyperparameters	were	
nonoptimal,	which	would	have	lowered	overall	accuracy.	Moreover,	for	several	methods,	we	did	not	
attempt	 to	 optimize	 all	 the	 hyperparameters.	 We	 did	 this	 in	 order	 to	 simplify	 the	 use	 of	 the	
methods,	 decrease	 computational	 runtime	 during	 hyperparameter	 optimization,	 and	 because	
optimizing	 additional	 hyperparameters	 (beyond	 default	 values)	 did	 not	 appear	 to	 improve	
accuracy.	For	example,	for	the	neural	nets	we	used	dropout	but	not	L1	or	L2	regularization,	and	for	
XGBoost	we	optimized	 less	than	half	 the	available	hyperparameters	designed	to	avoid	overfitting.	
While	 our	 preliminary	 testing	 with	 additional	 hyperparameters	 did	 not	 appear	 to	 change	 the	
results	significantly,	it	is	possible	that	some	methods	did	not	achieve	optimal	performance.	
	
We	have	decoded	from	spiking	data,	but	it	is	possible	that	the	problem	of	decoding	from	other	data	
modalities	 is	 different.	 One	 main	 driver	 of	 a	 difference	 may	 be	 the	 distinct	 levels	 of	 noise.	 For	
example,	 fMRI	 signals	 have	 far	 higher	 noise	 levels	 than	 spikes.	 As	 the	 noise	 level	 goes	 up,	 linear	
techniques	 become	 more	 appropriate,	 which	 may	 ultimately	 lead	 to	 a	 situation	 where	 the	
traditional	 linear	 techniques	 become	 superior.	 Applying	 the	 same	 analyses	 we	 did	 here	 across	
different	data	modalities	is	an	important	next	step.	
	
All	our	decoding	was	done	“offline,”	meaning	 that	 the	decoding	occurred	after	 the	recording,	and	
was	not	part	of	a	control	loop.	This	type	of	decoding	is	useful	for	determining	how	information	in	a	
brain	 area	 relates	 to	 an	 external	 variable.	 However,	 for	 engineering	 applications	 such	 as	 BMIs	
(Nicolas-Alonso	 and	 Gomez-Gil,	 2012;	 Kao	 et	 al.,	 2014),	 the	 goal	 is	 to	 decode	 information	 (e.g.,	
predict	movements)	 in	 real	 time.	 Our	 results	 here	may	 not	 apply	 as	 directly	 to	 online	 decoding	
situations,	since	the	subject	is	ultimately	able	to	adapt	to	imperfections	in	the	decoder.	In	that	case,	
even	relatively	large	decoder	performance	differences	may	be	irrelevant.	Plus,	there	are	additional	
challenges	 in	online	applications,	 such	as	non-stationary	 inputs	 (e.g.,	due	 to	electrodes	shifting	 in	
the	brain)	(Wu	and	Hatsopoulos,	2008;	Sussillo	et	al.,	2016;	Farshchian	et	al.,	2018).	Finally,	online	
applications	 are	 concerned	 with	 computational	 runtime,	 which	 we	 have	 only	 briefly	 addressed	

here.	 In	 the	 future,	 it	 would	 be	 valuable	 to	 test	 modern	 techniques	 for	 decoding	 in	 online	
applications	(as	in	(Sussillo	et	al.,	2012;	Sussillo	et	al.,	2016)).	
	
Finally,	we	want	to	briefly	mention	the	concept	of	feature	importance,	which	our	tutorial	has	not	
addressed.	Feature	importance	refers	to	the	determination	of	which	inputs	most	affect	a	machine	
learning	model’s	predictions.	For	decoding,	feature	importance	methods	could	be	used	to	ask	which	
neurons	are	important	for	making	the	predictions,	or	if	multiple	brain	areas	are	input	into	the	
decoder,	which	of	these	brain	regions	matter.	Three	common,	straightforward	approaches	that	we	
would	recommend	are	1)	to	build	separate	decoders	with	individual	features	to	test	those	features’	
predictive	abilities;		2)	leave-one-feature-out,	in	which	the	decoder	is	fit	while	leaving	out	a	feature,	
in	order	to	evaluate	how	removing	that	feature	decreases	prediction	performance;	and	3)	
permutation	feature	importance,	in	which	after	fitting	the	decoder,	a	feature’s	values	are	shuffled	to	
determine	how	much	prediction	performance	decreases.	(Molnar,	2018;	Dankers	et	al.,	2020)	
provide	more	details	on	these	approaches,	and	(Molnar,	2018)	describes	other	common	feature	
importance	methods	in	the	machine	learning	literature.	These	methods	can	facilitate	some	
understanding	of	neural	activity	even	when	the	ML	decoder	is	quite	complex.	
	
Conclusion	
Machine	learning	is	relatively	straightforward	to	apply	and	can	greatly	improve	the	performance	of	
neural	decoding.	Its	principle	advantage	is	that	many	fewer	assumptions	need	to	be	made	about	the	
structure	of	 the	neural	 activity	 and	 the	decoded	variables.	Best	practices	 like	 testing	on	held-out	
data,	perhaps	via	crossvalidation,	are	crucial	to	the	ML	pipeline	and	are	critical	for	any	application.	
The	Python	package	that	accompanies	this	tutorial	is	designed	to	guide	both	best	practices	and	the	
deployment	 of	 specific	 ML	 algorithms,	 and	 we	 expect	 it	 will	 be	 useful	 in	 improving	 decoding	
performance	 for	 new	 datasets.	 Our	 hunch	 is	 that	 it	 will	 be	 hard	 for	 specialized	 algorithms	 (e.g.	
(Corbett	et	al.,	2010;	Kao	et	al.,	2017))	to	compete	with	the	standard	algorithms	developed	by	the	
machine	learning	community.	
	
	
	
Acknowledgements	
We	would	 like	 to	 thank	 Pavan	 Ramkumar	 for	 help	with	 code	 development.	 For	 funding,	 JG	was	
supported	by	NIH	F31	EY025532	and	NIH	T32	HD057845,	NSF	NeuroNex	Award	DBI-1707398,	and	
the	Gatsby	Charitable	Foundation.	AB	was	supported	by	NIH	MH103910.	MP	was	supported	by	NIH	
F31	 NS092356	 and	 NIH	 T32	 HD07418.	 RC	 was	 supported	 by	 NIH	 R01	 NS095251	 and	 DGE-
1324585.	LM	was	supported	by	NIH	R01	NS074044	and	NIH	R01	NS095251.	KK	was	supported	by	
NIH	R01	NS074044,	NIH	R01	NS063399	and	NIH	R01	EY021579.	
	

References	
	

Arora	S,	Cohen	N,	Hu	W,	Luo	Y	(2019)	 Implicit	regularization	 in	deep	matrix	 factorization.	 In:	Advances	 in	
Neural	Information	Processing	Systems,	pp	7411-7422.	

Baeg	E,	Kim	Y,	Huh	K,	Mook-Jung	I,	Kim	H,	Jung	M	(2003)	Dynamics	of	population	code	for	working	memory	
in	the	prefrontal	cortex.	Neuron	40:177-188.	

Barbieri	 R,	 Wilson	 MA,	 Frank	 LM,	 Brown	 EN	 (2005)	 An	 analysis	 of	 hippocampal	 spatio-temporal	
representations	using	a	Bayesian	algorithm	for	neural	spike	train	decoding.	IEEE	Trans	Neural	Syst	
Rehabil	Eng	13:131-136.	

Benjamin	 AS,	 Fernandes	 H,	 Tomlinson	 T,	 Ramkumar	 P,	 VerSteeg	 C,	 Chowdhury	 R,	 Miller	 LE,	 Kording	 K	
(2018)	 Modern	 machine	 learning	 as	 a	 benchmark	 for	 fitting	 neural	 responses.	 Front	 Comput	
Neurosci	12:56.	

Bergstra	J,	Bengio	Y	(2012)	Random	search	for	hyper-parameter	optimization.	Journal	of	Machine	Learning	
Research	13:281-305.	

Bergstra	 J,	 Yamins	 D,	 Cox	 DD	 (2013)	Making	 a	 science	 of	model	 search:	 Hyperparameter	 optimization	 in	
hundreds	of	dimensions	for	vision	architectures.	

Bishop	CM	(2006)	Pattern	recognition	and	machine	learning:	springer.	
Breiman	L	(2017)	Classification	and	regression	trees:	Routledge.	
Carmena	JM,	Lebedev	MA,	Crist	RE,	O'Doherty	JE,	Santucci	DM,	Dimitrov	DF,	Patil	PG,	Henriquez	CS,	Nicolelis	

MA	 (2003)	 Learning	 to	 control	 a	 brain–machine	 interface	 for	 reaching	 and	 grasping	 by	 primates.	
PLoS	Biol	1.	

Chang	C-C,	Lin	C-J	 (2011)	LIBSVM:	a	 library	 for	support	vector	machines.	ACM	Transactions	on	 Intelligent	
Systems	and	Technology	(TIST)	2:27.	

Chen	T	(2014)	Introduction	to	boosted	trees.	University	of	Washington	Computer	Science	22:115.	
Chen	 T,	 Guestrin	 C	 (2016)	 Xgboost:	 A	 scalable	 tree	 boosting	 system.	 In:	 Proceedings	 of	 the	 22Nd	 ACM	

SIGKDD	International	Conference	on	Knowledge	Discovery	and	Data	Mining,	pp	785-794:	ACM.	
Cho	 K,	 Van	 Merriënboer	 B,	 Gulcehre	 C,	 Bahdanau	 D,	 Bougares	 F,	 Schwenk	 H,	 Bengio	 Y	 (2014)	 Learning	

phrase	 representations	 using	 RNN	 encoder-decoder	 for	 statistical	 machine	 translation.	 arXiv	
preprint	arXiv:14061078.	

Chollet	F	(2015)	Keras.	In.	
Collinger	 JL,	 Wodlinger	 B,	 Downey	 JE,	 Wang	 W,	 Tyler-Kabara	 EC,	 Weber	 DJ,	 McMorland	 AJ,	 Velliste	 M,	

Boninger	ML,	Schwartz	AB	(2013)	High-performance	neuroprosthetic	control	by	an	individual	with	
tetraplegia.	The	Lancet	381:557-564.	

Corbett	E,	Perreault	E,	Koerding	K	(2010)	Mixture	of	time-warped	trajectory	models	for	movement	decoding.	
In:	Advances	in	Neural	Information	Processing	Systems,	pp	433-441.	

Cranmer	M,	Sanchez-Gonzalez	A,	Battaglia	P,	Xu	R,	Cranmer	K,	Spergel	D,	Ho	S	(2020)	Discovering	Symbolic	
Models	from	Deep	Learning	with	Inductive	Biases.	arXiv	preprint	arXiv:200611287.	

Dankers	C,	Kronseder	V,	Wagner	M,	Casalicchio	G	(2020)	Introduction	to	Feature	Importance.	In:	Limitations	
of	ML	Interpretability.	

Davidson	TJ,	Kloosterman	F,	Wilson	MA	(2009)	Hippocampal	replay	of	extended	experience.	Neuron	63:497-
507.	

Dekleva	BM,	Ramkumar	P,	Wanda	PA,	Kording	KP,	Miller	LE	(2016)	Uncertainty	leads	to	persistent	effects	on	
reach	representations	in	dorsal	premotor	cortex.	eLife	5:e14316.	

Ethier	 C,	 Oby	 ER,	 Bauman	 MJ,	 Miller	 LE	 (2012)	 Restoration	 of	 grasp	 following	 paralysis	 through	 brain-
controlled	stimulation	of	muscles.	Nature	485:368-371.	

Fagg	AH,	Ojakangas	GW,	Miller	LE,	Hatsopoulos	NG	(2009)	Kinetic	trajectory	decoding	using	motor	cortical	
ensembles.	IEEE	Trans	Neural	Syst	Rehabil	Eng	17:487-496.	

Farshchian	A,	Gallego	JA,	Cohen	JP,	Bengio	Y,	Miller	LE,	Solla	SA	(2018)	Adversarial	Domain	Adaptation	for	
Stable	Brain-Machine	Interfaces.	arXiv	preprint	arXiv:181000045.	

Friedman	 J,	Hastie	T,	Tibshirani	R	 (2001)	The	 elements	 of	 statistical	 learning:	 Springer	 series	 in	 statistics	
New	York.	

Gao	P,	Trautmann	E,	Byron	MY,	Santhanam	G,	Ryu	S,	Shenoy	K,	Ganguli	S	(2017)	A	theory	of	multineuronal	
dimensionality,	dynamics	and	measurement.	bioRxiv:214262.	

Gilja	V,	Nuyujukian	P,	Chestek	CA,	Cunningham	JP,	Byron	MY,	Fan	JM,	Churchland	MM,	Kaufman	MT,	Kao	JC,	
Ryu	 SI	 (2012)	 A	 high-performance	 neural	 prosthesis	 enabled	 by	 control	 algorithm	 design.	 Nat	
Neurosci	15:1752.	

Glaser	JI,	Benjamin	AS,	Farhoodi	R,	Kording	KP	(2019)	The	roles	of	supervised	machine	learning	in	systems	
neuroscience.	Prog	Neurobiol.	

Glaser	JI,	Perich	MG,	Ramkumar	P,	Miller	LE,	Kording	KP	(2018)	Population	coding	of	conditional	probability	
distributions	in	dorsal	premotor	cortex.	Nature	Communications	9:1788.	

Glorot	X,	Bordes	A,	Bengio	Y	(2011)	Deep	sparse	rectifier	neural	networks.	In:	Proceedings	of	the	Fourteenth	
International	Conference	on	Artificial	Intelligence	and	Statistics,	pp	315-323.	

Goodfellow	I,	Bengio	Y,	Courville	A	(2016)	Deep	learning:	MIT	press.	
Hastie	T,	Tibshirani	R,	 Friedman	 J	 (2009)	The	elements	of	 statistical	 learning:	data	mining,	 inference,	 and	

prediction:	Springer	Science	&	Business	Media.	
He	K,	Zhang	X,	Ren	S,	 Sun	 J	 (2015)	Delving	Deep	 into	Rectifiers:	Surpassing	Human-Level	Performance	on	

ImageNet	Classification.	In:	2015	IEEE	International	Conference	on	Computer	Vision	(ICCV).	
Hernández	 A,	 Nácher	 V,	 Luna	 R,	 Zainos	 A,	 Lemus	 L,	 Alvarez	 M,	 Vázquez	 Y,	 Camarillo	 L,	 Romo	 R	 (2010)	

Decoding	a	perceptual	decision	process	across	cortex.	Neuron	66:300-314.	
Hochreiter	S,	Schmidhuber	J	(1997)	Long	short-term	memory.	Neural	Comput	9:1735-1780.	
Hoerl	 AE,	 Kennard	 RW	 (1970)	 Ridge	 regression:	 Biased	 estimation	 for	 nonorthogonal	 problems.	

Technometrics	12:55-67.	
Hung	 CP,	 Kreiman	 G,	 Poggio	 T,	 DiCarlo	 JJ	 (2005)	 Fast	 readout	 of	 object	 identity	 from	 macaque	 inferior	

temporal	cortex.	Science	310:863-866.	
Ibos	G,	Freedman	DJ	(2017)	Sequential	sensory	and	decision	processing	in	posterior	parietal	cortex.	eLife	6.	
Kaggle	(2020)	Kaggle.	In.	
Kao	JC,	Nuyujukian	P,	Ryu	SI,	Shenoy	KV	(2017)	A	high-performance	neural	prosthesis	incorporating	discrete	

state	selection	with	hidden	Markov	models.	IEEE	Trans	Biomed	Eng	64:935-945.	
Kao	JC,	Stavisky	SD,	Sussillo	D,	Nuyujukian	P,	Shenoy	KV	(2014)	Information	systems	opportunities	in	brain–

machine	interface	decoders.	Proceedings	of	the	IEEE	102:666-682.	
Kingma	D,	Ba	J	(2014)	Adam:	A	method	for	stochastic	optimization.	arXiv	preprint	arXiv:14126980.	
Kloosterman	F,	 Layton	 SP,	 Chen	 Z,	Wilson	MA	 (2013)	Bayesian	 decoding	 using	 unsorted	 spikes	 in	 the	 rat	

hippocampus.	J	Neurophysiol	111:217-227.	
Kriegeskorte	 N,	 Douglas	 PK	 (2019)	 Interpreting	 encoding	 and	 decoding	 models.	 Curr	 Opin	 Neurobiol	

55:167-179.	
Krizhevsky	 A,	 Sutskever	 I,	 Hinton	 GE	 (2012)	 Imagenet	 classification	 with	 deep	 convolutional	 neural	

networks.	In:	Advances	in	neural	information	processing	systems,	pp	1097-1105.	
LeCun	Y,	Bengio	Y,	Hinton	G	(2015)	Deep	learning.	Nature	521:436-444.	
Liaw	A,	Wiener	M	(2002)	Classification	and	regression	by	randomForest.	R	news	2:18-22.	
Mizuseki	K,	Sirota	A,	Pastalkova	E,	Buzsáki	G	(2009a)	Multi-unit	recordings	from	the	rat	hippocampus	made	

during	open	field	foraging.	
Mizuseki	K,	Sirota	A,	Pastalkova	E,	Buzsáki	G	(2009b)	Theta	oscillations	provide	temporal	windows	for	local	

circuit	computation	in	the	entorhinal-hippocampal	loop.	Neuron	64:267-280.	
Molnar	 C	 (2018)	 A	 guide	 for	 making	 black	 box	 models	 explainable.	 URL:	

https://christophmgithubio/interpretable-ml-book.	
Nadeau	 C,	 Bengio	 Y	 (2000)	 Inference	 for	 the	 generalization	 error.	 In:	 Advances	 in	 neural	 information	

processing	systems,	pp	307-313.	
Natekin	A,	Knoll	A	(2013)	Gradient	boosting	machines,	a	tutorial.	Front	Neurorobot	7:21.	
Naufel	 S,	 Glaser	 JI,	 Kording	 KP,	 Perreault	 EJ,	 Miller	 LE	 (2018)	 A	muscle-activity-dependent	 gain	 between	

motor	cortex	and	EMG.	J	Neurophysiol	121:61-73.	
Nicolas-Alonso	LF,	Gomez-Gil	J	(2012)	Brain	computer	interfaces,	a	review.	Sensors	12:1211-1279.	
Olah	C	(2015)	Understanding	LSTM	Networks.	In.	
Olah	C,	Satyanarayan	A,	 Johnson	I,	Carter	S,	Schubert	L,	Ye	K,	Mordvintsev	A	(2018)	The	building	blocks	of	

interpretability.	Distill	3:e10.	
Pagan	M,	Simoncelli	EP,	Rust	NC	(2016)	Neural	quadratic	discriminant	analysis:	Nonlinear	decoding	with	V1-

like	computation.	Neural	Comput	28:2291-2319.	

Park	 IM,	 Archer	 EW,	 Priebe	 N,	 Pillow	 JW	 (2013)	 Spectral	 methods	 for	 neural	 characterization	 using	
generalized	quadratic	models.	In:	Advances	in	neural	information	processing	systems,	pp	2454-2462.	

Pohlmeyer	EA,	Solla	SA,	Perreault	EJ,	Miller	LE	(2007)	Prediction	of	upper	limb	muscle	activity	from	motor	
cortical	discharge	during	reaching.	Journal	of	neural	engineering	4:369.	

Quiroga	RQ,	Snyder	LH,	Batista	AP,	Cui	H,	Andersen	RA	(2006)	Movement	intention	is	better	predicted	than	
attention	in	the	posterior	parietal	cortex.	J	Neurosci	26:3615-3620.	

Raposo	 D,	 Kaufman	 MT,	 Churchland	 AK	 (2014)	 A	 category-free	 neural	 population	 supports	 evolving	
demands	during	decision-making.	Nat	Neurosci	17:1784-1792.	

Ribeiro	MT,	Singh	S,	Guestrin	C	(2016)	"	Why	should	I	trust	you?"	Explaining	the	predictions	of	any	classifier.	
In:	Proceedings	of	the	22nd	ACM	SIGKDD	international	conference	on	knowledge	discovery	and	data	
mining,	pp	1135-1144.	

Rich	EL,	Wallis	JD	(2016)	Decoding	subjective	decisions	from	orbitofrontal	cortex.	Nat	Neurosci	19:973-980.	
Rosenblatt	 F	 (1961)	 Principles	 of	 neurodynamics.	 perceptrons	 and	 the	 theory	 of	 brain	 mechanisms.	 In:	

Cornell	Aeronautical	Lab	Inc	Buffalo	NY.	
Rumelhart	DE,	Hinton	GE,	Williams	RJ	(1986)	Learning	representations	by	back-propagating	errors.	Nature	

323:533-536.	
Serruya	 M,	 Hatsopoulos	 N,	 Fellows	 M,	 Paninski	 L,	 Donoghue	 J	 (2003)	 Robustness	 of	 neuroprosthetic	

decoding	algorithms.	Biol	Cybern	88:219-228.	
Serruya	MD,	Hatsopoulos	NG,	Paninski	L,	Fellows	MR,	Donoghue	JP	(2002)	Brain-machine	interface:	Instant	

neural	control	of	a	movement	signal.	Nature	416:141-142.	
Silver	 D,	 Huang	 A,	 Maddison	 CJ,	 Guez	 A,	 Sifre	 L,	 van	 den	 Driessche	 G,	 Schrittwieser	 J,	 Antonoglou	 I,	

Panneershelvam	V,	Lanctot	M,	Dieleman	S,	Grewe	D,	Nham	J,	Kalchbrenner	N,	Sutskever	I,	Lillicrap	T,	
Leach	M,	Kavukcuoglu	K,	Graepel	T,	Hassabis	D	(2016)	Mastering	the	game	of	Go	with	deep	neural	
networks	and	tree	search.	Nature	529:484-489.	

Smola	AJ,	Schölkopf	B	(2004)	A	tutorial	on	support	vector	regression.	Statistics	and	computing	14:199-222.	
Snoek	J,	Larochelle	H,	Adams	RP	(2012)	Practical	bayesian	optimization	of	machine	learning	algorithms.	In:	

Advances	in	neural	information	processing	systems,	pp	2951-2959.	
Sussillo	D,	Stavisky	SD,	Kao	JC,	Ryu	SI,	Shenoy	KV	(2016)	Making	brain–machine	interfaces	robust	to	future	

neural	variability.	Nature	communications	7:13749.	
Sussillo	D,	Nuyujukian	P,	Fan	JM,	Kao	JC,	Stavisky	SD,	Ryu	S,	Shenoy	K	(2012)	A	recurrent	neural	network	for	

closed-loop	intracortical	brain–machine	interface	decoders.	Journal	of	neural	engineering	9:026027.	
Tieleman	T,	Hinton	G	 (2012)	Lecture	6.5-RmsProp:	Divide	 the	gradient	by	a	 running	average	of	 its	 recent	

magnitude.	COURSERA:	Neural	Networks	for	Machine	Learning.	
van	 der	Meer	MA,	 Johnson	A,	 Schmitzer-Torbert	 NC,	 Redish	 AD	 (2010)	 Triple	 dissociation	 of	 information	

processing	in	dorsal	striatum,	ventral	striatum,	and	hippocampus	on	a	learned	spatial	decision	task.	
Neuron	67:25-32.	

Weichwald	 S,	 Meyer	 T,	 Özdenizci	 O,	 Schölkopf	 B,	 Ball	 T,	 Grosse-Wentrup	M	 (2015)	 Causal	 interpretation	
rules	for	encoding	and	decoding	models	in	neuroimaging.	Neuroimage	110:48-59.	

Weygandt	M,	Blecker	CR,	Schäfer	A,	Hackmack	K,	Haynes	J-D,	Vaitl	D,	Stark	R,	Schienle	A	(2012)	fMRI	pattern	
recognition	in	obsessive–compulsive	disorder.	Neuroimage	60:1186-1193.	

Wolpert	 DH,	 Macready	 WG	 (1997)	 No	 free	 lunch	 theorems	 for	 optimization.	 IEEE	 transactions	 on	
evolutionary	computation	1:67-82.	

Wu	W,	Hatsopoulos	NG	 (2008)	Real-time	 decoding	 of	 nonstationary	 neural	 activity	 in	motor	 cortex.	 IEEE	
Trans	Neural	Syst	Rehabil	Eng	16:213-222.	

Wu	W,	 Black	MJ,	 Gao	 Y,	 Serruya	M,	 Shaikhouni	 A,	 Donoghue	 J,	 Bienenstock	 E	 (2003)	 Neural	 decoding	 of	
cursor	motion	using	a	Kalman	filter.	In:	Advances	in	neural	information	processing	systems,	pp	133-
140.	

Wu	Z,	Litwin-Kumar	A,	Shamash	P,	Taylor	A,	Axel	R,	Shadlen	MN	(2020)	Context-dependent	decision	making	
in	a	premotor	circuit.	Neuron.	

Zhang	 C,	 Bengio	 S,	 Hardt	 M,	 Recht	 B,	 Vinyals	 O	 (2016)	 Understanding	 deep	 learning	 requires	 rethinking	
generalization.	arXiv	preprint	arXiv:161103530.	

Zhang	 K,	 Ginzburg	 I,	 McNaughton	 BL,	 Sejnowski	 TJ	 (1998)	 Interpreting	 neuronal	 population	 activity	 by	
reconstruction:	 unified	 framework	 with	 application	 to	 hippocampal	 place	 cells.	 J	 Neurophysiol	
79:1017-1044.	

	
	 	

Extended	Data	
	
	
	

Figure 4-1. Kalman Filter Versions
R2 values are reported for different versions of the Kalman Filter for each brain area (top to bottom). On the left
(in bluish gray), the Kalman Filter is implemented as in (Wu et al., 2003). On the right (in cyan), the Kalman Filter
is implemented with an extra parameter that scales the noise matrix associated with the transition in kinematic
states (see Demonstration Methods). This version with the extra parameter is the one used in the main text. Error
bars represent the mean +/- SEM across cross-validation folds. X’s represent the R2 values of each cross-validation
fold. Note the different y-axis limits for the hippocampus dataset.

	
	

Figure 4-2: Decoder results with different bin sizes
As different decoding applications may require different temporal resolutions, we tested a subset of methods with
varying bin sizes. We trained two traditional methods (Wiener filter and Kalman filter), and two modern methods
(feedforward neural network and LSTM). We used the same testing set as in Fig. 5, and the largest training set
from Fig. 5. R2 values are reported for these decoders (different colors) for each brain area (top to bottom). Error
bars are 68% confidence intervals (meant to approximate the SEM) produced via bootstrapping, as we used a
single test set. Modern machine learning methods remained advantageous regardless of the temporal resolution.

Note that for this figure, we used a slightly different amount of neural data than in other analyses, in order to have
a quantity that was divisible by many bin sizes. In this case, for motor cortex, we used 600 ms of neural activity
prior to and including the current bin. For somatosensory cortex, we used 600 ms of neural activity centered on the
current bin. For hippocampus, we used 2 seconds of neural activity, centered on the current bin.

	
	 	

	

Figure 5-1: Example results with limited training data
Using only 2 minutes of training data for motor cortex and somatosensory cortex, and 15 minutes of training data
for hippocampus, we trained two traditional methods (Wiener filter and Kalman filter), and two modern methods
(feedforward neural network and LSTM). Example decoding results are shown from motor cortex (left),
somatosensory cortex (middle), and hippocampus (right), for these methods (top to bottom). Ground truth traces are
in black, while decoder results are in the same colors as previous figures.

		
	
	 	

Method	 Equations,	details,	and	hyperparameters	
General	
information	

For	 all	 the	methods	 below,	we	 describe	our	 particular	 uses,	 which	 are	 available	 in	 our	
code	package	and	are	used	in	the	decoding	demonstrations	we	show	in	Results.		
	
Let	X	be	the	input	matrix	of	covariates	and	let	Y	be	the	output	that	is	being	predicted.	Y		is	
either	a	vector	or	matrix	depending	on	whether	the	outputs	(e.g.	x	and	y	components	of	
velocity)	are	predicted	simultaneously.	
	
Also,	note	that	for	our	demonstrations,	 for	all	methods	below,	the	noise	of	the	output	is	
assumed	to	be	normally	distributed.	

Wiener	Filter	 Decoder	 predictions	 have	 the	 form	 𝒀 = 𝜽𝑿,	 where	 𝜽	 is	 fit	 according	 to	 maximum	
likelihood	estimation.		
Hyperparameters:	None	

Wiener	Cascade	 Decoder	 predictions	 have	 the	 form	 𝒀 = 𝛽! + 𝛽!𝒁! +⋯+ 𝛽!𝒁!,	 where	 𝒁 = 𝜽𝑿.	 The	
parameters	𝜽	and	the	𝛽’s	are	fit	iteratively	according	to	maximum	likelihood	estimation.	
Hyperparameters:		Degree	of	the	polynomial	used	for	the	nonlinearity,	n.	

SVR	 Tutorials	 have	previously	been	written	on	 the	details	 of	 support	 vector	 regression	 and	
how	 they	 are	 optimized	 (Smola	 and	 Schölkopf,	 2004).	 Here,	 we	 provide	 a	 very	 short	
mathematical	summary.	In	nonlinear	SVR:	
	

𝒀 = (𝛼! − 𝛼!∗)𝑘(𝑿𝒊,𝑿)
!

!!!

+ 𝑏	

	
where	i	represents	the	data	point.	k	is	the	kernel	function,	which	allows	for	the	nonlinear	
transformation.	We	used	a	radial	basis	function	kernel:	
	

𝑘 𝒙′, 𝒙 = exp −
𝒙′ − 𝒙 𝟐

𝝈𝟐
	

	
The	parameters	𝛼! 	 and 𝛼!∗	 are	 constrained	 to	 be	 in	 the	 range	 [0,𝐶]	 in	 the	 optimization	
problem,	where	C	is	a	hyperparameter	that	can	be	understood	as	being	inversely	related	
to	regularization	strength.		
Hyperparameters:	Penalty	of	the	error	term	(C),	maximum	number	of	iterations	

XGBoost	 In	gradient-boosted	tree	methods	(which	XGBoost	is	an	implementation	of),	a	mapping	is	
learned	using	a	 collection	of	 regression	 trees.	 	Training	an	 individual	 regression	 tree	 is	
accomplished	by	sequentially	splitting	the	input	space,	and	assigning	an	output	value	to	
each	final	partition	of	the	input	space	(see	(Breiman,	2017)	for	further	description).	Let	𝑓! 	
be	 the	 input/output	 mapping	 of	 regression	 tree	 i.	 The	 final	 decoder,	 which	 combines	
across	N	regression	trees,	will	have	the	form:	
	

𝒀 = 𝑓!(𝑿)
!

!!!

	

	
To	train	the	XGBoost	decoder,	regression	trees	are	trained	sequentially.	The	first	tree	is	
trained	 to	minimize	 the	 loss	 function	which	 here	 is	 𝒀 − 𝑓!𝑿 𝟐

𝟐 + 𝛺(𝑓!),	 where	𝛺	 is	 a	
regularization	function.	The	second	tree	is	then	trained	to	predict	the	residual	of	the	first	
tree’s	 predictions.	 That	 is,	 we	 optimize	 𝑓!	 to	 minimize	 𝒀 − 𝑓!𝑿 − 𝑓!𝑿 𝟐

𝟐 + 𝛺(𝑓!).	
Successive	 trees	 continue	 to	 be	 optimized	 to	 predict	 the	 remaining	 residual.	 See	
https://xgboost.readthedocs.io/en/latest/tutorials/model.html	 for	 a	 more	 in-depth	
tutorial	description.	

Hyperparameters:	Maximum	depth	of	each	regression	tree,	number	of	trees,	learning	rate	
Feedforward	
Neural	Net	

We	created	a	 fully	connected	(dense)	 feedforward	neural	network	with	2	hidden	 layers	
and	 rectified	 linear	 unit	 (“ReLU”)	 (Glorot	 et	 al.,	 2011)	 activations	 after	 each	 hidden	
layer.	We	required	the	number	of	hidden	units	in	each	layer	to	be	the	same.	This	can	be	
written	as:		
	

𝑯𝟏 = ReLU(𝑾𝟏𝑿 + 𝒃𝟏)	
𝑯𝟐 = ReLU(𝑾𝟐𝑿 + 𝒃𝟐)	

𝒀 = 𝑾𝟑𝑯𝟐 + 𝒃𝟑	
	
We	 used	 the	 Adam	 algorithm	 (Kingma	 and	Ba,	 2014)	 as	 the	 optimization	 routine	 to	
solve	 for	 all	𝑾’s	 and	 𝒃’s.	 We	 used	 the	 Keras	 library	 (Chollet,	 2015)	 for	 all	 neural	
network	implementations.	This	neural	network,	and	all	neural	networks	below	had	two	
output	units.	That	is,	the	same	network	predicted	the	x	and	y	components	(of	position	or	
velocity)	together,	rather	than	separately.	
Hyperparameters:	Number	 of	 units	 (dimensionality	 of	𝑯𝟏	 and	𝑯𝟐),	 amount	 of	 dropout	
during	training,	number	of	training	epochs	

Simple	RNN	 Decoder	predictions	have	the	form:		
	

𝑯𝒕 = ReLU(𝑼𝑿𝒕 +𝑾𝑯𝒕!𝟏 + 𝒃)	
𝒀𝒕 = 𝑽𝑯𝒕 + 𝒄	

	
Note	that	we	used	the	ReLU	nonlinearity	as	opposed	to	the	“tanh”	nonlinearity,	which	is	
more	 common	 in	 RNNs,	 as	 this	 improved	 performance.	We	 used	 RMSprop	 (Tieleman	
and	Hinton,	2012)	as	the	optimization	routine.	
Hyperparameters:	 Number	 of	 units	 (dimensionality	 of	 𝑯),	 amount	 of	 dropout	 during	
training,	number	of	training	epochs	

GRUs	 Here,	we	mix	 notation	 from	 (Goodfellow	 et	 al.,	 2016)	 and	 (Olah,	 2015),	which	 provide	
excellent	 descriptions	 of	 the	 method.	 The	 GRU	 has	 two	 gates,	 which	 control	 the	
transmission	 of	 information	 through	 the	 network.	 The	 “update”	 and	 “reset”	 gates	 are	
parameterized	as	follows:	
	
Update	gate:	𝒛𝒕 = σ(𝑼𝒛𝑿𝒕 +𝑾𝒛𝑯𝒕!𝟏 + 𝒃𝒛)	
Reset	gate:	𝒓𝒕 = σ(𝑼𝒓𝑿𝒕 +𝑾𝒓𝑯𝒕!𝟏 + 𝒃𝒓)	
	
A	temporary	hidden	state	is	calculated	as:	
	

𝒉𝒕 = tanh(𝑼𝒉𝑿𝒕 + 𝒓𝒕 ∗𝑾𝒉𝑯𝒕!𝟏 + 𝒃𝒄)	
	
In	 this	 calculation,	 the	 reset	 gate	 controls	 what	 information	 from	 the	 previous	 hidden	
state	 is	 in	 this	 proposed	 new	 hidden	 state.	 Note	 that	 the	 ∗	 symbol	 denotes	 an	
elementwise	 (by	neural	 network	unit)	multiplication.	 To	 calculate	 the	hidden	 state,	we	
use	 the	 update	 gate	 to	 control	what	 information	 flows	 from	 the	 previous	 hidden	 state	
versus	what	is	updated	from	the	temporary	state:	
	

𝒉𝒕 = (𝟏 − 𝒛𝒕) ∗ 𝒉𝒕!𝟏 + 𝒛𝒕 ∗ 𝒉𝒕	
	
Finally,	as	in	the	standard	RNN:	

𝒀𝒕 = 𝑽𝑯𝒕 + 𝒄	
	
We	used	RMSprop	(Tieleman	and	Hinton,	2012)	as	the	optimization	routine.	
	

Hyperparameters:	 Number	 of	 units	 (dimensionality	 of	 𝑯),	 amount	 of	 dropout	 during	
training,	number	of	training	epochs.	

LSTM	 As	above,	we	mix	notation	from	(Goodfellow	et	al.,	2016)	and	(Olah,	2015),	which	provide	
excellent	 descriptions	 of	 the	 method.	 The	 LSTM	 has	 three	 gates,	 which	 control	 the	
transmission	 of	 information	 through	 the	 network.	 The	 “forget”,	 “input”,	 and	 “output”	
gates	are	parameterized	as	follows:	
	

𝒇𝒕 = σ(𝑼𝒇𝑿𝒕 +𝑾𝒇𝑯𝒕!𝟏 + 𝒃𝒇)	
𝒊𝒕 = σ(𝑼𝒊𝑿𝒕 +𝑾𝒊𝑯𝒕!𝟏 + 𝒃𝒊)	
𝒐𝒕 = σ(𝑼𝒐𝑿𝒕 +𝑾𝒐𝑯𝒕!𝟏 + 𝒃𝒐)	

	
The	LSTM	has	a	cell	state,	𝑪𝒕,	that	carries	information	across	time.	We	can	calculate	𝑪𝒕,	as:		
	

𝑪𝒕 = tanh(𝑼𝒄𝑿𝒕 +𝑾𝒄𝑯𝒕!𝟏 + 𝒃𝒄)	
𝑪𝒕 = 𝒇𝒕 ∗ 𝑪𝒕!𝟏 + 𝒊𝒕 ∗ 𝑪𝒕	

	
where	𝑪𝒕	 is	a	 temporary	cell	state,	 that	becomes	part	of	 the	cell	state	depending	on	the	
input	 gate,	 𝒊𝒕.	 Additionally,	 the	 previous	 time	 point’s	 cell	 state	 is	 carried	 through	
depending	 on	 the	 forget	 gate,	 𝒇𝒕.	 Note	 that	 the	 ∗	 symbol	 denotes	 an	 elementwise	 (by	
neural	network	unit)	multiplication.	
	
The	hidden	state	of	the	network	is	an	output-gated	version	of	the	cell	state:	

𝑯𝒕 = 𝒐𝒕 ∗ tanh (𝑪𝒕)	
	
Finally,	as	in	the	standard	RNN:	

𝒀𝒕 = 𝑽𝑯𝒕 + 𝒄	
	
We	used	RMSprop	(Tieleman	and	Hinton,	2012)	as	the	optimization	routine.	
	
Hyperparameters:	 Number	 of	 units	 (dimensionality	 of	 𝑯),	 amount	 of	 dropout	 during	
training,	number	of	training	epochs	

Kalman	Filter	 In	the	standard	Kalman	Filter,	
	

𝒚! = 𝑨𝒚!!! + 𝒘	
	
where	 	𝒚!	and	𝒚!!!	are	6	x	1	vectors	reflecting	kinematic	variables	(not	just	the	velocity	
or	position	being	predicting),	and	w	is	sampled	from	a	normal	distribution,	N(0,W),	with	
mean	0	and	covariance	W.		
	

𝒙!∗ = 𝑯𝒚! + 𝒒	
	
where	 	𝒙!∗	is	the	neural	activity	at	time	𝑡∗,	and	q	is	sampled	from	a	normal	distribution,	
N(0,Q).	 Note	 that	we	 allowed	 a	 lag	 between	 the	 neural	 data	 and	 predicted	 kinematics,	
which	is	why	we	use	t*	for	the	time	of	the	neural	activity.		
	
During	 training,	A,	H,	W,	 and	Q	 are	 empirically	 fit	 on	 the	 training	 set	 using	maximum	
likelihood	estimation.	When	making	predictions,	to	update	the	estimated	hidden	state	at	
a	given	time	point,	the	updates	derived	from	the	current	measurement	and	the	previous	
hidden	 states	 are	 combined.	 During	 this	 combination,	 the	 noise	matrices	 give	 a	 higher	
weight	to	the	less	uncertain	information.	See	(Wu	et	al.,	2003)	or	our	code	for	the	update	
equations	(note	that	x	and	y	have	different	notation	in	(Wu	et	al.,	2003)).	
	
We	had	one	hyperparameter	which	differed	from	the	standard	implementation	(Wu	et	al.,	

2003).	We	divided	the	noise	matrix	associated	with	the	transition	in	kinematic	states,	W,	
by	 the	 hyperparameter	 scalar	 C,	 which	 allowed	 weighting	 the	 neural	 evidence	 and	
kinematic	 transitions	 differently.	 	 The	 rationale	 for	 this	 addition	 is	 that	 neurons	 have	
temporal	correlations,	which	make	it	desirable	to	have	a	parameter	that	allows	changing	
the	weight	 of	 the	 new	neural	 evidence.	 The	 introduction	 of	 this	 parameter	made	 a	 big	
difference	for	the	hippocampus	dataset	(Extended	Data	Fig.	4	-	1).		
	
Hyperparameters:	C	and	the	lag	between	the	neural	data	and	predicted	kinematics.		

Naïve	Bayes	 We	used	a	Naïve	Bayes	decoder	similar	 to	 the	one	 implemented	 in	(Zhang	et	al.,	1998).	
We	first	fit	an	encoding	model	(tuning	curve)	using	the	output	variables.	Let	fi(s)	be	the	
value	 of	 the	 tuning	 curve	 (the	 expected	 number	 of	 spikes)	 for	 neuron	 i	 at	 the	 output	
variables	s.	Note	that	s	is	a	vector	containing	the	two	output	variables	we	are	predicting	
(x	 and	y	positions/velocities).	 	We	 assume	 the	number	of	 recorded	 spikes	 in	 the	 given	
bin,	ri,	is	generated	from	the	tuning	curve	with	Poisson	statistics:		
	

𝑃 𝑟! 𝒔 =
exp [−𝑓!(𝒔)]𝑓!(𝒔)!!

𝑟!!
	

	
We	 also	 assume	 that	 all	 the	neurons’	 spike	 counts	 are	 conditionally	 independent	 given	
the	output	variables,	so	that:	
	

𝑃 𝒓 𝑠 ∝ 𝑃 𝑟! 𝑠
!

	

	
where	r	 is	a	vector	with	the	spike	counts	of	all	neurons.	Bayes’	rule	can	then	be	used	to	
determine	the	likelihood	of	the	output	variables	given	the	spike	counts	of	all	neurons:	
	

𝑃 𝒔 𝒓 ∝ 𝑃 𝒓 𝒔 𝑃(𝒔)	
	
where	P(s)	is	the	probability	distribution	of	the	output	variables.	To	help	with	temporal	
continuity	 of	 decoding,	 we	 want	 our	 probabilistic	 model	 to	 include	 how	 the	 output	
variables	 at	 one	 time	 step	 depend	 on	 the	 output	 variables	 at	 the	 previous	 time	 step:		
𝑃 𝒔! 𝒔!!! .	Thus,	we	can	more	generally	write,	using	Bayes’	rule	as	before:	
	

𝑃 𝒔! 𝒓!∗, 𝒔!!! ∝ 𝑃 𝒓!∗ 𝒔! 𝑃 𝒔!!! 𝒔! 𝑃 𝒔! 	
	
Note	that	we	use	𝒓!∗	rather	than	𝒓!	because	we	use	neural	responses	from	multiple	time	
bins	to	predict	the	current	output	variables.	The	above	formula	assumes	that	𝒓!∗	and	𝒔!!!	
are	 independent,	 conditioned	 on	 𝒔! .	 The	 final	 decoded	 stimulus	 in	 a	 time	 bin	 is:	
argmax𝒔! 	𝑃 𝒔! 𝒓!∗, 𝒔!!! .	
	
𝑃 𝒔!!! 𝒔! 	 was	 determined	 as	 follows.	 Let	Δ𝒔	be	 the	 Euclidean	 distance	 in	 s	 from	 one	
time	 step	 to	 the	 next.	 We	 fit	 𝑃(Δ𝒔)	 as	 a	 Gaussian	 using	 data	 from	 the	 training	 set.	
𝑃 𝒔!!! 𝒔! 	was	approximated	as	𝑃(Δ𝒔!).	That	is,	the	probability	of	going	from	one	output	
state	to	another	was	only	based	on	the	distance	between	the	output	states,	not	the	output	
state	itself.	
	
Additionally,	including	𝑃 𝒔 	based	on	the	distribution	of	output	variables	in	the	training	
set	 did	 not	 improve	 performance	 on	 the	 validation	 set.	 This	 could	 be	 because	 the	
probability	 distribution	 differed	 between	 the	 training	 and	 validation/testing	 sets,	 or	
because	 the	 distribution	 of	 output	 variables	 was	 approximately	 uniform	 in	 our	 tasks.	
Thus,	we	simply	used	a	uniform	prior.	

	
In	 our	 calculations,	 we	 discretize	 s	 into	 a	 100	 x	 100	 grid	 going	 from	 the	minimum	 to	
maximum	of	the	output	variables.	When	increasing	the	decoding	resolution	of	the	output	
variables,	we	did	not	see	a	meaningful	change	in	decoding	accuracy.		
	
Our	tuning	curves	had	the	format	of	a	Poisson	generalized	quadratic	model	(Park	et	al.,	
2013),	 which	 improved	 the	 performance	 over	 generalized	 linear	models	 on	 validation	
datasets.	
	
On	 the	 hippocampus	 dataset,	 we	 used	 the	 total	 number	 of	 spikes	 over	 the	 same	 time	
interval	as	we	used	for	the	other	decoders	(4	bins	before,	the	concurrent	bin,	and	5	bins	
after).	Note	 that	using	a	 single	 time	bin	of	 spikes	 led	 to	very	poor	performance.	On	 the	
motor	cortex	and	somatosensory	cortex	datasets,	the	naïve	Bayes	decoder	gave	very	poor	
performance	 regardless	 of	 the	 bins	 used.	 We	 ultimately	 used	 bins	 that	 gave	 the	 best	
performance	 on	 a	 validation	 set:	 2	 bins	 before	 and	 the	 concurrent	 bin	 for	 the	 motor	
cortex	dataset;	 1	 bin	before,	 the	 concurrent	bin,	 and	1	bin	 after	 for	 the	 somatosensory	
cortex	dataset.	
	
Hyperparameters:	None	

	
	
Figure	4-3:	Additional	decoder	details,	including	equations	and	hyperparameters	
These	details	are	for	the	decoder	implementations	that	we	use	in	our	demonstrations	and	have	in	our	code	
package.		
	

