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Ultra-fast control of magnetic relaxation in a
periodically driven Hubbard model

Juan Jose Mendoza-Arenas2* | Fernando Javier Gémez-Ruiz', Martin Eckstein®,

Dieter Jaksch?, and Stephen R. Clark*3

Motivated by cold atom and ultra-fast pump-
probe experiments we study the melting of long-
range antiferromagnetic order of a perfect Néel
state in a periodically driven repulsive Hubbard
model. The dynamics is calculated for a Bethe
lattice in infinite dimensions with non-equilibrium
dynamical mean-field theory. In the absence of
driving melting proceeds differently depending
on the quench of the interactions to hopping
ratio U/v( from the atomic limit. For U > v
decay occurs due to mobile charge-excitations
transferring energy to the spin sector, while for
vo 2 U it is governed by the dynamics of resid-
ual quasi-particles. Here we explore the rich ef-
fects that strong periodic driving has on this re-
laxation process spanning three frequency w
regimes: (i) high-frequency w > U, vy, (i) res-

onant lw = U > vy with integer [, and (iii) in-
gap U > w > v away from resonance. In case
(i) we can quickly switch the decay from quasi-
particle to charge-excitation mechanism through
the suppression of vq. For (ii) the interaction can
be engineered, even allowing an effective U = 0
regime to be reached, giving the reverse switch
from a charge-excitation to quasi-particle decay
mechanism. For (iii) the exchange interaction can
be controlled with little effect on the decay. By
combining these regimes we show how periodic
driving could be a potential pathway for control-
ling magnetism in antiferromagnetic materials.
Finally, our numerical results demonstrate the ac-
curacy and applicability of matrix product state
techniques to the Hamiltonian DMFT impurity
problem subjected to strong periodic driving.

1 Introduction

Relaxation of a symmetry-broken state after a quench
represents a class of non-equilibrium dynamics that has
been intensely studied both experimentally and theoret-
ically. Part of the reason for this interest is the distinct
departure of the evolution from the expected rapid ther-
malization for isolated but interacting systems. Comple-
mentary to quenching the application of time-periodic
driving is now emerging as a key tool for controlling
many-body systems on microscopic time scales. In cold
atom systems this is achieved by directly modulating
the optical lattice potential [1, 2], while in condensed
matter resonant THz excitation of low-energy structural
and electronic degrees of freedom is opening up simi-
lar means of control [3]. As such the possibility of stabi-
lizing, enhancing and switching between various forms
of order like superconductivity [4, 5] and charge-density
wave [6] is a tantalizing prospect. Of particular funda-
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mental and technological interest is the ultrafast control
of magnetism [7-13] that may have applications in mag-
netic storage devices [14-16].

Motivated by these developments we examine the in-
fluence of strong periodic driving on the paradigmatic
case of antiferromagnetic (AFM) Néel state relaxation
within the repulsive Hubbard model. In the absence
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of driving the mechanism underpinning the melting of
long-ranged antiferromagnetic order depends on the
quench of the ratio of interactions to hopping U /v, from
the atomic limit [17]. For U > v( local moments and
their exchange coupling are retained during the evolu-
tion, but the quench results in the rapid nucleation of
charge excitations whose motion on top of the spin back-
ground scrambles the staggered magnetization. For vy =
U the melting is governed by the dynamics of residual
quasi-particles that leads to the fast decay of both the lo-
cal moments and long-range order. Suddenly introduc-
ing periodic driving is expected to have a profound influ-
ence on this relaxation.

Our focus is on the Hubbard model for a Bethe lat-
tice in infinite dimensions where non-equilibrium dy-
namical mean-field theory (NE-DMFT) can solve for the
dynamics. We study the relaxation process in three fre-
quency w regimes: (i) high-frequency w > U, vy, (ii) res-
onant lw = U > v with integer [, and (iii) in-gap off-
resonant U > w > vq. The high-frequency regime (i)
leads to the well-known renormalization of the hopping
vop and consequently the decay process for vy > U to
be switched from a quasi-particle to charge-excitation
mechanism. Resonant driving (ii) and the resulting effec-
tive Hamiltonian describing the system have been the
subject of recent theory work [18]. This indicates that in-
teractions can be modified significantly, eliminated all to-
gether or mimic signatures of those of an opposite sign.
This regime therefore allows for the reverse switch for
U > v, from a charge-excitation to quasi-particle decay
mechanism. For in-gap driving away from resonances
(iii) we show that the increase of charge excitations is
compensated by the suppression of their hopping, leav-
ing the melting mechanism unaffected. We then discuss
how by combining these driving regimes we can control
the evolution of the system to induce a particular mag-
netic order parameter, and an ultrafast reversal of dynam-
ics.

A significant contribution of this work is to demon-
strate the accuracy and applicability of matrix product
state techniques to the time-dependent Hamiltonian NE-
DMEFT impurity problem without increasing the num-
ber of bath sites compared to the time-independent case.
This adds further impetus to the use of these methods
for more complex problems involving other symmetry-
broken states like superconductivity.

The plan of the paper is as follows. In Sec. (2) we
introduce the driven Hubbard model to be considered,
and briefly describe the key predictions of Floquet theory.
In Sec. (3) we outline the framework of NE-DMFT, with
particular emphasis on the Hamiltonian formulation of
the impurity problem and the matrix product state tech-

nique we use as an impurity solver. Details of the DMFT
setup for the Néel state melting are also described. In
Sec. (4) we present results for the melting without driving,
extending earlier work [17], and providing a baseline for
the expected behavior. This is followed in Sec. (5) by the
main results of this paper describing the effects of driv-
ing in the three regimes outlined. Finally we conclude in
Sec. (6).

2 Model

2.1 Driven Fermi-Hubbard lattice

We focus on the Fermi-Hubbard model at half-filling
given by the Hamiltonian

1 1
Hyub =—Jo Z C;rUCjU+UZ(niT_5)(ni1_E), (1)
i

({i,j)0o

where cjg creates an electron at site i with spin o =1, |,
Nig = cjac,-g is the corresponding number operator, Jj is
the hopping amplitude between nearest-neighbor sites
(i, ), and U is the repulsive on-site interaction. For sim-
plicity we consider a Bethe lattice in the limit of infinite
coordination number Z and hopping Jo = vo/v'Z, where
vy corresponds to the unit of energy. Physically this sys-
tem can be envisaged as a cycle-free rooted tree in the
x-y plane with equidistant spacing a between each site.
Despite this it nonetheless mimics many properties ex-
pected of higher dimensional regular bipartite lattices
and its Z — oo limit is where our numerical approach,
NE-DMFT, is exact [19].

We take the system as being subjected to a uniform
unpolarized AC electric field propagating in the z direc-
tion resulting in a time-periodic linear potential emanat-
ing from the root of the tree’ viaa driving term

Hyr (1) =) _eaEysin(w?) sjnj, )
j

where e is the electronic charge, Ej is the amplitude of
the field, w is the angular frequency of the drive, s; is
the shell containing site j2, and n j = nji +nj. Moving
to the rotating-frame via the unitary transformation (we

T An essentially identical setup for a hypercubic lattice would be
a uniform electric field polarized along the body-diagonal [16].
2 There are sj steps from the root of the tree to site j.
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will take 7 = 1 throughout)

U(r) =exp , 3)

ip(0)) sjn;
J
where ¢(t) = —(eaEy/w)cos(wt), we transform H(¢) =
Hypyp + Hgry(2) into a rotating-frame Hamiltonian
Hyoi(1) = iU U () + U HD U (), (4)

where U(1) is the time derivative of U (). The explicit driv-
ing term is therefore eliminated making H;y(t) equiva-
lent to Hyyp, with a time-dependent Peierls phase on the
hopping amplitude as

J(t) = Joexp [iA(s; — sj) cos(wD)], 5)

where we define a dimensionless driving amplitude A =
eaEy/w. Nearest-neighbor hopping implies (s; —s;) = +1,
as it only occurs between neighboring shells.

2.2 Floquet theory

Since we are studying a periodically driven system we
give a brief overview of Floquet formalism applied to the
driven Hubbard lattice; see Refs. [20, 21] for recent re-
views. For closed quantum systems, Floquet’s theorem
establishes that there is a complete set of solutions of the
time-dependent Schrédinger equation

d
ialw(t))=H(t)|w(t)>, with  H(¢r+T) = H(1), (6)

and T = 27/w the period of the time-dependent Hamil-
tonian H(t), of the form

() = e ey (1), with |ye(0)=lya(t+T), ()
where the quasi-energies €4 lay in the “Brillouin zone"

—w/2 < g4 < w/2. This is equivalent to that of Bloch’s the-
orem in time. Expanding the time-periodic function

e ()= e ™ |y m), 8)
m

in terms of the Floquet modes |y, ), then Eq. (6) is re-
duced to the eigenvalue problem

(€q + M) Wa,m) =Y Hp ! |Wa,mr)s 9)
m!
in terms of the Fourier components of the Hamiltonian

1 T :
H’”:Tfo dte™ ! Hoo (). (10)
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For the Fermi-Hubbard lattice with time-dependent hop-
ping given in Eq. (5), this results in Fourier Hamiltonian
terms [16]

Hp=-Jo Y, (—1)mfrn((si - sj)A)C;raCJ'U
(imo

+0moU ) njinji,
]

(11)

where the Coulomb repulsion is only present for the m =
0 sector, and the hopping processes are renormalized by
the mth Bessel function _#, ((s; — s;)A). Truncating the
number of Floquet sectors, or taking some specific limits,
it is possible to solve the eigenvalue problem in Eq. (9).
For example, by moving to an extended Hilbert space
and using second-order perturbation theory on the cou-
plings between the m = 0 sector and the rest, the ex-
change interaction Jex was found to be [16]

Jex (A, w) _ X jlnl(A)z

T A ) (12)
Jex(A=0) 2= 1+nw/U

with v¢/U < 1 so the exchange of the non-driven case
Jex(A = 0) can be well defined. In particular this result
shows how high-frequency driving w > U, v, will lead to
a reduction of J¢x. With in-gap driving vo < w < U, on
the other hand, it is possible to increase Jex, which can
be exploited to enhance exchanging pairing below half-
filling [22]. For sufficiently strong driving A Eq. (12) even
predicts that the sign of J¢x can be flipped. At half-filling
it is thus possible for periodic driving to induce an ultra-
fast reversal of the magnetic dynamics of a system [16].
The application of high-frequency and strong-coupling

expansions to the driven Hubbard lattice were recently
placed on an equal footing [18] where both can be seen
as a form of generalized Schrieffer-Wolf transformation.
This formalism is particularly useful for resonant driving
case vo < U = lw, for integer [. There the effective Hamil-
tonian Hgff = Hj to zeroth-order in 1/w, equal to the time-
averaged rotating-frame Hamiltonian, is

HO -

ot = D {_]effgija_ eff (_Ulmjhjja’LH'c‘]}’ (13)

(ij)o

with the operators

h:.rjg = nigc;rgcjg(l -njs), (14a)
gijo=010- niﬁ)cjacja(l —njz)+ ni(fcjacjanjﬁ; (14b)
where { =] and | =1, and the parameters

Jett = Jo 20(A), Kefi = Jo Z1(A), (15)

with n;; = 1 for i > j and n;; = 0 for i < j. The
term hjjg corresponds to creation and annihilation of
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holon-doublon pairs between sites i and j, and g;j,
represents holon-doublon and projected-fermion hop-
ping. The weights of these processes can be manipulated
by means of the driving amplitude A, as indicated in
Eq. (15), leading to novel physics that we will illustrate
in Sec. (5). The first-order correction in 1/w is Hgg =
1/w) Z"nj:l [Hp, H-;;1/ m and gives rise to driving modi-
fied exchange terms.

3 Non-equilibrium DMFT

To study the dynamics of the driven high-dimensional
Fermi-Hubbard lattice described in Section 2.1, we use
the non-equilibrium extension [19] of DMFT [23]. In
brief, this approach consists of replacing the correlated
lattice by an impurity site, which retains the strictly lo-
cal interactions of the lattice, and a coupling to an effec-
tive mean-field A4 (t) representing the rest of the system.
This mean-field must be determined self-consistently
and is time-dependent in order to capture dynamical
fluctuations arising from the exchange of particles with
the impurity separated by a time ¢. For non-equilibrium
configurations, which in general do not possess time-
translational invariance, the dynamical mean-field de-
pends on two times, and is denoted as A4 (t, t'). Although
this mapping is exact only in the limit of infinite di-
mensions (equivalent to Z — oo), it has been success-
fully used as the starting point of different approaches
for finite-dimensional lattices including nonlocal spatial
correlations [24-28].

3.1 Hamiltonian formulation

A variety of methods have been developed to solve the
effective impurity problem of strongly correlated non-
equilibrium high dimensional systems; see Ref. [19] for
detailed descriptions. These include weak- and strong-
coupling perturbation theories, which cannot deal with
intermediate interaction regimes, and continuous-time
quantum Monte-Carlo algorithms, that are limited by
sign problems. To overcome these difficulties the use of a
so-called Hamiltonian-based impurity solver, which has
been successful for equilibrium DMFT [23,29], has been
recently proposed for the non-equilibrium case [30]. The
approach consists of discretizing the mean-field environ-
ment A, (t,t") by mapping the effective impurity prob-
lem to a time-dependent single-impurity Anderson model
(SIAM). This new problem corresponds to the impurity
site coupled to an in-principle infinite, but in practise

finite number of noninteracting bath orbitals Lpy, de-
scribed by the Hamiltonian

Hsiam (1) = Himp + Hpath () + Hhyb (), (16)
with
1 1
Himp = U(”OT - _) (”01 - _) _,UZ Nog» (17a)
2 2) &
Higy = Y (Vep (06} cpo +H.c.), (17b)
p>0,0
Hyan = Y. [€po ()= ] chyCpo- (17¢)

p>0,0

Here we denote with 0 the impurity site and bath orbitals
by the index p > 0, u is the chemical potential, VO‘;(t)
is the time-dependent hopping amplitude of a fermion
with spin ¢ from orbital p to the impurity, and €, (f) is
the time-dependent on-site energy of bath orbital p for
spin o. Equation (17a) corresponds to the local impurity
Hamiltonian possessing the repulsive interaction of the
original lattice problem. Equation (17b) describes the hy-
bridization between the impurity and bath orbitals, and
Eq. (17c) gives the on-site bath Hamiltonian. In this sys-
tem there are only direct couplings between the bath or-
bitals and the impurity, therefore it is sketched in Fig. 1(a)
as the impurity surrounded by bath orbitals in a star ge-
ometry.

The dynamics of the impurity site of the SIAM corre-
sponds to that of each site of the original high-dimensional
lattice once self-consistency conditions are met. Thus
the original problem is solved by performing the time
evolution of the SIAM, given the time-dependent pa-
rameters of Eq. (17a)- Eq. (17c), as obtained by the self-
consistency to be outlined in Sec. (3.3). While simpler
than the original lattice system, solving the impurity
problem is still non-trivial. To aid this the use of state-of-
the-art experimental quantum technologies has recently
been proposed based on quantum simulating the dy-
namics of the STAM with trapped ions [31] and supercon-
ducting qubits [32]. Otherwise popular approaches on
a classical computer include exact diagonalization [30],
multi-configurational time-dependent Hartree Fock [33]
and matrix product state (MPS) calculations [17, 34]. In
this work we exploit a slightly different version of the lat-
ter as we now describe.

3.2 Matrix product impurity solver
The MPS tensor network has a one-dimensional chain

geometry and as such this has made it an extremely
successful ansatz for describing short-ranged interacting
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Figure 1 (a) Star geometry of the SIAM, with the impurity

site (blue big circle) surrounded by noninteracting bath orbitals
(small red circles). The green lines indicate the hybridization
between both. (b) Linear chain geometry of the SIAM, with the
impurity on the left edge and long-range hopping to the bath
orbitals. (c) td-DMRG sweep for a single time step, where the
impurity moves across the lattice by the action of swap gates.

one-dimensional quantum systems. While the star geom-
etry of the SIAM is straightforward with exact diagonal-
ization, it does pose an issue for MPS approaches. To ap-
ply MPS we therefore reshape the system as a chain with
the impurity site on an edge and long-range hopping, as
depicted in Fig. 1(b). It is not a priori clear whether a
MPS simulation can be performed efficiently for this sys-
tem, since entanglement is generally expected to grow
very fast in the presence of long-range coupling. How-
ever it has been shown that entanglement grows slowly
due to the inhomogeneous distribution of the couplings
across the lattice, making the problem suitable for ma-
trix product calculations [34]. For non-equilibrium prob-
lems, Refs. [17, 34] successfully applied MPS simulation
methods to the STAM with long-range hopping using a
Krylov-based time evolution algorithm [35].

which consists of a left-to-right sweep of local two-site
gates W (0, p) followed by a right-to-left sweep of gates
W (p,0), defined by

. ot
W(,p) = SeXp(—lh(O, p);), (19a)

. ot
W(p,O):Sexp(—lh(p,O)E). (19b)
Here S is the fermionic swap gate that exchanges the po-
sition of the impurity with the nearest neighbor in the di-
rection of the sweep, h(0, p) is the SIAM Hamiltonian of
impurity site 0 and bath site p for the left-to-right sweep
where the impurity is to the left of the bath site, and simi-
larly for h(p,0) in the right-to-left sweep where the impu-
rity is to the right of the bath site.

In this scheme the impurity is moved across the chain,
becoming nearest neighbor of every bath orbital at some
point in the sweep, and thus allowing for a standard im-
plementation of each two-site gate. Our td-DMRG calcu-
lations were performed using particle-number conserva-
tion for both spins o =1, |, bath size Ly, = 20, and U-
dependent time steps 5x 1073 < §tvy < 5x 1072, The deci-
mation process during the time evolution was controlled
by fixing a maximal truncation error per time step, with
a maximal internal dimension of y = 1500. The increase
of y during the evolution is determined by the Hamilto-
nian parameters, being fast for systems with strong cor-
relations. This increase limits the final times that can be
accessed within the algorithm, as the states of each step
must be saved to perform the DMFT self consistency (see
Sec. 3.3) for which a huge amount of memory is required.
However the timescales reached in our simulations, simi-
lar to those of the previous NE-DMFT+MPS works [17,34]
and obtained with essentially the same computational
effort, allow us to provide a complete discussion of the
relevant physical processes underlying the dynamics. Ap-
proximate schemes to reach even longer times have been
previously proposed [34].

In our work, we show that a conventional time-dependent

density matrix renormalization group (td-DMRG) ap-
proach based on Trotterized two-site unitaries [36, 37]
works similarly well, not only for time-independent evo-
lution but also for periodic driving. The codes used here
were implemented with the open-source Tensor Network
Theory (TNT) library [38,39]. The long-range interaction
is dealt with as shown in Fig. 1(c). We perform the evolu-
tion during a single time step of length ¢ by means of a
second-order Trotter expansion

Lpath 1
exp(—iHSIAMﬁt):(HW(O,p))( I W(p,O)), (18)

p=1 P=Lbpath
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3.3 Setup for Néel melting

Now we summarize the main steps to implement the NE-
DMET for an initial state that is a classical antiferromag-
netic Néel state

Peen) = [ cf; [T ¢, 100, (20)

i€eA JjeB
A detailed description can be found in Refs. [17, 30, 34].

The system consists of two homogeneous interpenetrat-
ing sub-lattices, A for 0 =1 and B for o =|. Since both
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lattices are identical except for their opposite magnetiza-
tion, only the dynamics of one of them needs to be calcu-
lated, with that of the other sub-lattice following imme-
diately.

The central quantity of the NE-DMFT method and
its self-consistency condition is the local single-particle
Green function

Gro (1, 1) = —i{T cro(t)c) (), (21)

where 9 indicates time ordering along a Keldysh con-
tour on which t, ¢’ are placed, and cy, (620) is the anni-
hilation (creation) operator of a fermion at a particular
site of sub-lattice k = A, B; since the sub-lattices are ho-
mogeneous, the site index is not included.

For a Bethe lattice its semi-elliptical density of states

D(e) = \/4v3 —€? | (2nv}) results in the lattice Green func-
tions being related to the mean-fields Ay, (¢, t') by a sim-
ple self-consistency condition,

Aa),o(t, 1) =v(D)Gpay,o(t, )V (1), (22)

where J(t) = v(t)/v/Z is the time-dependent hopping in
the driven Hubbard model. Since the Green functions of
the two sub-lattices are related by the symmetry condi-
tion Gas = Gp,—¢, we may drop the k index. Therefore
Eq. (22) becomes

Ay (6, 1) =v()G_g (L, thVv* (). (23)

Additionally, the mean-field obtained from the SIAM
with a star geometry is

AN (L, 1) = 3 Ve, (08 (1, 1Y Vi (), (24)
p

with g, (£, ') the noninteracting Green function for the

isolated bath orbital p, and whose exact analytical form

is well known [19]. The time-dependent parameters of

the SIAM, namely VO‘;(I) and €, (), must be chosen so

Ag(t, ') = ASM (g, 1), (25)

If this condition is satisfied, the SIAM correctly captures
the physics of the original high-dimensional lattice.

Due to the particle-hole symmetry of the problem,
and the possibility to freely choose €, (¢ = 0), the ini-
tial state of the SIAM bath orbitals representing the
high-dimensional lattice at half-filling acquires a simple
form [30]. Namely, half of the bath orbitals are empty,
and the other half are doubly occupied, as sketched in
Fig. 2(a). The initial state of the impurity (site 0 of the
SIAM) is determined by the initial configuration of the
high-dimensional lattice. Taking the latter as a perfect

Néel state, and calculating the dynamics only for the k =
A sub-lattice, the former corresponds to a single fermion
with spin up. So the initial state of the SIAM is

Lpath
[T ey, 0
p=(Lpath/2)+1

[Wstam(t =0)) = ¢}, (26)

with |0) the SIAM vacuum. The full implementation of

the NE-DMFT requires several technical details and sub-

tleties not mentioned here [17, 30, 34]. Instead we sketch
the main ingredients required for the algorithm. The ba-
sic steps for one of the sub-lattices are the following.

1. Start with a guess of the Green function G, (¢, t').

2. Obtain mean field A, (¢, t') from self consistency Eq. (23).

3. Calculate the SIAM hopping parameters VO‘;(I) from
DMEFT conditions Eq. (24) and Eq. (25). This can be
performed, for example, by means of a Cholesky de-
composition [30]. For simplicity, the on-site bath or-
bital energies are taken to be €, (£ > 0) = 0, so all time
dependence is assigned to the hopping.

4. Obtain a new Green function G (,t') by calculating
Eq. (21) for the impurity site of the SIAM. The re-
quired time evolution of the initial state under Hamil-
tonian Eq. (16) is calculated with td-DMRG as de-
scribed in Sec. (3.1).

5. Repeat steps 2-4 until convergence is reached.

Once convergence has been obtained, single-site ex-
pectation values can be calculated. In particular we focus
on the double occupation

d(n) =(n(0n (1)), 27)

and the staggered magnetic order parameter Mstagg(f) =
(ny(t) — ny (1)), along with

_ Mstagg(t)

" 1240’ =

which is normalized by the probability of the site being
singly occupied [17]. The magnetization M (f) signals the
existence of antiferromagnetic order in the system, de-
scribing spin dynamics, and d(#) indicates the formation
of charge excitations during the dynamics.

3.4 Spin precession dynamics

To determine the AFM melting mechanism during the dy-
namics, the following setup was proposed in Ref. [17]. On
a single probe site o of sub-lattice A, the spin of the ini-
tially located fermion is flipped in the x direction. This
action leads to a change of O(1/Z) on A, and thus has a
negligible back-action on the rest of the lattice [17]. The

Copyright line will be provided by the publisher
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Figure 2 (a) Initial state of the SIAM. The impurity site (0)
is coupled to the bath orbitals, with €,5 = 0, through time-
dependent hopping rates V&,(t). At time ¢ = 0 the impurity
is isolated, so VO‘; (0) = 0. Initially half of the bath orbitals are
empty and half are doubly occupied. The initial state of the
impurity site, represented by a blue circle, depends on the par-
ticular problem of interest. (b) Scheme of spin precession dy-
namics. A single magnetic moment S(¢) in the Bethe lattice is
flipped to the x direction, which precesses in the x-y plane
under the effective magnetic field Be (green arrows). From
the precession angle ¢(t) the exchange interaction Jex can
be obtained as described in Sec. (3.4).

resulting dynamics corresponds to the local magnetic
moment precessing in the effective mean field A, (¢, t')
obtained in the DMFT simulations. So a new SIAM simu-
lation is performed in which the spin at site o (the impu-
rity) starts in x direction. The initial state of the SIAM is
thus

1 Lpath
lysam(t=0)=—=(cl. +cl) ] .o, @9
\/E ol ol p=(Lpath /2)+1 PIopl

and the dynamics takes place with the same hopping pa-
rameters obtained during the DMFT. As the neighboring
sites of the probe o are oriented along the z direction, we
can assume that they lead to an effective parallel mag-
netic field Begr = BegrZ2. Under this approximation the dy-
namics is easily shown to correspond to a harmonic pre-
cession of the magnetic moment in the x-y plane, with

Copyright line will be provided by the publisher

frequency Q = (1) = Beg; this is depicted in Fig. 2(b).
Thus the components of the magnetic moment S(¢) at
the impurity site

S zl(cT col+cl ) (30a)
X 2 of 0] 0l 01/

i
Sy = —E(C(J;Tcm _C(J)rlCOT>’ (30b)
S, =(ng; —ng)», (30c)

with initial conditions S,(0) = 1 and S,(0) = 0, are de-
scribed by the functions

Sx(t) = Pxcos(Qyt), Sy(t)=Pysin(Q,1), (3D
with amplitudes P, = P, = 1 and frequencies Q, = Q,, =
Q. From these components an effective exchange inter-
action between the impurity and the mean field can be
obtained, Jex = ¢()/| Mtaggl. Here

Sy (1)

_ -1
¢(1) =tan 5.0

(32)

is the angle of the spin in the x-y plane [17] and Msagg
is the staggered magnetization of the environment (ob-
tained from the magnetic melting simulation), which de-
fines the exchange interaction through Beff = JexMstagg-
With this it is possible to find out whether the initial AF
order is melted by (a) the decay of magnetic moments in
time, (b) the decay of the effective exchange interaction
while the moments persist, or (c) the energy exchange be-
tween charge and spin sectors (if (a) and (b) don’t occur).

4 Undriven magnetic melting

We start by discussing the physics of the undriven Fermi
Hubbard model in a Bethe lattice (A=0andv =vy=1) to
provide a baseline of expected effects. Even though this
scenario has been studied in detail in Ref. [17] (see also
Ref. [40] for a study of the 1D case), we outline the melt-
ing process here focusing on the two limits of U > vy and
vo > U.In Sec. (5) we will describe how this physics is af-
fected when the system is periodically driven.

4.1 Melting via mobile charge excitations

We first consider the case of strong Coulomb interactions
U > vy. In Fig. 3(a) we show the decay in the magnetic or-
der parameter M(t), and correspondingly in Fig. 3(b) the
double occupation over the time 0 < vyt < 6 for different
values of U. The behavior for both quantities divides up
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Figure 3 Dynamics of a system with no driving and U >
1. (a) Decay of order parameter M(t). The symbols corre-
spond to the results of the simulations, and the dashed lines
to linear fits M(¢) = 1 — mv3t/U? For U = 18,28,42 we
have m = 6.29(2),6.77(1),6.49(1) respectively. Inset. Early-
time dynamics of the staggered magnetization Mstagq(?), with
scaled axes. (b) Double occupation d(t). Inset. Early-time dy-
namics, with scaled axes. The times for both insets correspond
to the shaded areas of the main panels. We note that the os-
cillations at early times of both Msiagg(f) and d (1) have U-
dependent decays, not captured by the perturbative results of
Egs. (33) and (34). However we verified numerically that these
are well described by a function ~ exp(—qU?t?) with constant

q.

distinctly into times before and after vyt =~ 1. For vyt > 1
there is a linear decrease in M(t) with a U dependent
gradient, while d(#) converges to a U dependent steady-
state value. Thus M (¢) and d(t) relax at a different rate,

the charge dynamics being faster than the spin dynam-
ics. For vyt < 1 strong oscillations are observed in M(f)
and d(¢) that are well captured by a second-order time-
dependent perturbation theory [40] as

8v3 Ut
Mitagg() =1 - m sin ( 5 ), (33)
and
i (Ut
a) = F sin (7) (34)

This is made clearer in the insets of Fig. 3(a) and (b)
where oscillations in M (t) and d(t) for different U’s col-
lapse on top of one another and damp away within vyt =
1.

These results are consistent with the charge excita-
tion decay mechanism outlined in Ref. [17]. The early
time oscillations, resulting from the Néel state not being
an eigenstate of the Hubbard model at finite U, nucle-
ate a finite amount of charge excitations ds ~ 2v3/U?
in the system, as highlighted in Fig. 3(b). The motion of
these excitations, with a hopping amplitude v, on top of
a spin background then scrambles the AFM order. Owing
to strong spin-charge coupling via the exchange interac-
tion Jex the kinetic energy of these charge carrier is trans-
ferred to the spin sector. This process is well captured by
aso-called t—J, model [17,41], where it is found that for
vot > 1 the number f of spins flipped by a single carrier
grows linear as f(t) ~ 3vyt before saturation occurs. The
decay of magnetization is therefore

2

6vg
M(t)zl—dssf(t)Zl—F(vOt). (35)

In Fig. 3(a) we indeed find a linear decay with a gradient
scaling as 1/U? and coefficient close to 6 for times vyt >
1.

In this regime the spin precession dynamics, described
in Section 3.4, gives rise to Fig. 4. At early times vyt <
1 the exchange interaction behaves as Jox = 2Ud(1),

strongly oscillating around its static perturbative value
TRt =aviiu. (36)

For longer times vyt > 1 both the precessing magnetic
moment and the exchange interaction persist, confirm-
ing that the melting of M(t) is not due to the suppression
of local moments.

4.2 Melting via residual quasi-particles

For U/vy < 1, close to the non-interacting integrable
limit U = 0, approximately conserved quasi-particles are

Copyright line will be provided by the publisher
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Figure 4 Spin precession dynamics for non-driven lattices.
(a) Trajectory in the x-y plane of the precessing magnetic mo-
ment. We checked numerically that this is approximately well
described by Eqg. (31). (b) Exchange interaction Jex extracted
from the dynamics of simulations with U >> 1. The perturbative
exchange values (36) are indicated by arrows (). Matching
colors among both panels correspond to equal values of U.

expected to govern the dynamics leading to oscillatory
behavior of M(¢) and prethermalization [17]. In Fig. 5 we
show the results for M (¢) and d(t) for different low val-
ues of the Coulomb repulsion®. The magnetic order pa-
rameter oscillates and decays very fast to zero, and the
double occupancy saturates to high values, approach-

3 Different final times are reached for each value of U due to a
different growth rate of y, as described in Sec. 3.2. This is also
observed in results to be presented in subsequent Sections.
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Figure 5 Dynamics of a system with no driving and U < 1.
Main panel. Order parameter M(t). Inset. Double occupation
d(t). Matching colors correspond to equal values of U.

ing the non-interacting limit d(t — oo) = 0.25 as U de-
creases. The spin precession dynamics, shown in Fig. 4,
displays a very small decaying component in the y direc-
tion and a rapidly decaying x component. This indicates
that the magnetic moments are short lived, and that an
effective exchange interaction cannot be well defined. In
this regime magnetic and charge dynamics occur on the
same time scale, namely that of the hopping vy. The melt-
ing of AFM order is therefore via a different mechanism
to that seen at U/v( > 1, corresponding to the destruc-
tion of magnetic moments.

5 Magnetic melting in driven lattices

Having reviewed the behavior for the static case we now
consider the impact of the driving, represented by the
time-dependent hopping (5). To do so we explore in turn
three different regimes for the driving frequency w: (i)
high-frequency w > U, vy, (ii) resonant lw = U > v with
integer [, and (iii) in-gap U > w > vy.

5.1 High-frequency driving limit

The high-frequency limit, w > U, vo, where the driving is
much faster than all microscopic time scales of the sys-
tem, is the conventional regime for Floquet theory. In
Fig. 6 we show the behavior of M(t) and d(¢) for vy =
U =1 and w = 15. As expected for the weakly interacting
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Figure 6 Time evolution of a lattice with high-frequency driv-
ing. (a) Magnetic order parameter. (b) Double occupation. The
solid lines correspond to systems with vo = U =1, w = 15
and different amplitudes A. The dashed lines correspond to
systems with no driving, U = 1 and renormalized hopping
v = vo %o (A), with A the driving amplitude of the solid line
of the same color.

regime, the static system displays magnetic order that de-
cays very fast and features oscillations around M(t) = 0,
while the double occupation quickly saturates to a value
close to d(t) = 0.25, reproducing the results shown in
Fig. 5. Low driving amplitudes (A = 0.5,1) have a weak
impact on the relaxation. However, for larger amplitudes
A = 2,3 the dynamics is strongly affected, with a slower
decay of M(¢) and a significant suppression of d(t). This
behavior is typical of static systems with a larger value of
Ul V0.
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Figure 7 Spin precession dynamics for high-frequency driv-
ing. (a) Trajectory in the x-y plane of the precessing magnetic
moment. The solid lines correspond to vo = U =1, w = 15
and different amplitudes A. The dashed lines correspond to
systems with no driving, U = 1 and hopping v = vo_%,(A).
(b) Exchange interaction Jgx extracted from the precession dy-
namics of the system with renormalized hopping (solid lines),
and perturbative values 4(jo(A)v0)2/ U (dashed lines).

These results are well known from Floquet theory. In
the high-frequency limit, different Floquet sectors are
largely separated in energy, as suggested by Eq. (9). So
the system can be effectively described by keeping only
sector m = 0. From Eq. (11), this corresponds to a Fermi-
Hubbard model with the hopping being renormalized by
a Bessel function _#,(A). Since |_#(A4)| < 1, this corre-
sponds to a suppression of the hopping, or equivalently
to an effective enhancement of U/v.

Copyright line will be provided by the publisher
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As depicted in Fig. 6 for both M(#) and d(t), the
dynamics of the driven system is (after averaging out
small modulations at frequency w) very well captured by
a static system with a hopping renormalized by _#;(A).
This picture is confirmed by the spin precession dy-
namics; the results are shown in Fig. 7. For weak driv-
ing amplitudes the precessing magnetic moment decays
quickly, while for large amplitudes it persists for long
times. The average dynamics is again well described by
a non-driven system with a renormalized hopping along
with an exchange interaction (obtained as described in
Section 3.4) close to the renormalized perturbative value
4(Fo(A)ve)*1U.

Our simulations thus corroborate the prediction from
Floquet theory of effective hopping renormalization at
high frequency driving. Choosing amplitudes Aso | % (A4)| <
1itis then possible to switch a system with U/v( < 1 from
displaying quasi-particle melting to charge-excitation
melting. Furthermore, by selecting A so _#y(A) = 0, the
hoppingis completely suppressed (effectively correspond-
ing to infinite Coulomb interaction) and the dynamics is
frozen®. This phenomenon of dynamical localization by
coherent driving was predicted long ago in a noninteract-
ing system with the same type of driving used here [42]. It
has also been studied theoretically in spin chains [43,44],
and was observed experimentally in a system of cold
atoms where a potential of the form of Eq. (2) was created
by shaking an underlying optical lattice [45].

5.2 Resonant driving

We now decrease w to the point that it is directly reso-
nant as w = U > vy (I = 1). The resulting dynamics is
depicted in Fig. 8 for w = U = 15. In the non-driven case,
the magnetic order decays very slowly and the double oc-
cupation remains low; the Coulomb repulsion is so large
that fermions are prevented from hopping across the lat-
tice. This picture is strongly modified when driving at res-
onance, even at weak amplitudes. The magnetic order de-
cays very fast, and the double occupation increases to
large values. Importantly, for A = 0.5 the magnetization
M (t) has been suppressed at short times while d(t) has
not saturated. For strong driving A > 0.5 the magnetic or-
der melting is still fast, and the charge dynamics occurs
on a commensurate timescale. This shows that with res-

4 This is exemplified in Section 5.4 for a combined driving
scheme to stabilize the magnetic order parameter or the num-
ber of charge excitations to a particular value.
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Figure 8 Time evolution of a lattice with resonant driving. (a)
Magnetic order parameter. (b) Double occupation. The solid
lines correspond to vo =1, U = w = 15 and various ampli-
tudes A. The dashed line corresponds to the non-driven case.

onant driving it is possible to control the speed of charge
dynamics compared to spin dynamics up to the point of
making the former slower, a behavior not seen in the non-
driven case.

The magnetic melting mechanism is elucidated from
the spin precession dynamics shown in the main panel
of Fig. 9. In the static case the magnetic moment is pre-
served for a long time, while for the resonantly driven
case the magnetic moments decay very fast. Resonant
absorption of energy from the drive thus destroys the lo-
cal moments so an exchange interaction cannot be de-
fined, and suppresses magnetic order. The behavior is ex-
tremely reminiscent of the static case with U/v( < 1, and
suggests that resonant driving can be used to switch from

11
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Figure 9 Precession dynamics in the x-y plane for vo =1,
resonant driving [ = 1 (U = w = 15) and various amplitudes
A.

a charge-excitation mechanism to quasi-particle melt-
ing.

Resonant driving with / even can in fact map the in-
teracting system exactly to the U = 0 limit. As predicted
in Ref. [18], when the amplitude is such that Jef = Kegr
in Hamiltonian (13), the driving precisely induces holon-
doublon creation terms that would exist if U = 0 with no
driving. We consider the situation [ = 2 (w = U/2) and
A =1.8412 in Fig. 10. The driven lattice is seen to be es-
sentially equivalent to a non-interacting one with renor-
malized hopping vo_%(A) confirming this novel effect
for an infinite-dimensional system. Therefore at this spe-
cial driving strength and frequency w = U/2 we have in-
duced an effective suppression of the Coulomb repulsion
U, which corresponds to the opposite effect of the effec-
tive interaction enhancement at high-frequency driving.

5.2.1 Effective attractive interactions and pairing

For larger driving strengths A = 2,3 at both the / =1 and
I =2 resonances the double occupation shows an intrigu-
ing feature. In Fig. 8 and Fig. 10 we see that d(¢) = 0.33
at early times, and so exceeds the dgs = 0.25 value of the
non-interacting limit [17, 40]. A similar effect has been
reported before [46] under very different conditions of a
high-frequency drive, with large driving amplitudes A so
that _#p(A) < 0, flipping the sign of the hopping. There
the appearance of d(t) > 0.25 was argued to imply that
fermions are clustering due to an effective attractive in-
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Figure 10 Resonant [ = 2 dynamics for U = 40, w = 20 and
several driving amplitudes A. (a) Magnetic order parameter.
(b) Double occupation. We go from repulsive interactions (A =
1,1.2,1.5) to an effective non-interacting case (A = 1.8412,
well described by a non-interacting lattice with renormalized
hopping v = vo_%,(A) = 0.316), to positive effective interac-
tions (A = 2). After creation of holon-doublon pairs is maxi-
mized (A = 2.4048), the interactions start decreasing while
still being positive (A = 3).

teraction. Here similar signatures are seen, but crucially
they occur on a much faster time scale and emerge from
an initial state with zero double occupancies.

This can be qualitatively understood from the res-
onant effective Hamiltonian (13) with [ = 1. For A =
0.5,1 we have that Je > Kefr, s0 the dynamics is dom-
inated by holon and doublon hopping processes. On
the other hand, for A = 2,3 then | K| > |Jegtl, SO holon-
doublon creation processes dominate, explaining the

Copyright line will be provided by the publisher
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Figure 11 Time evolution of a lattice with in-gap driving. The
solid lines correspond to v =1, A =2, w = 11 and different
values of U > w. The dashed lines of the same color corre-
spond to equal values of U with no driving. (a) Magnetic order
parameter. Inset. Collapse of . (t) = (1 — M(t))/ _#o(A){d)
as a function of time for the values of U of the main panel;
results for U = 42 and different amplitudes A have also been
included, to further test Eq. (37). (b) Double occupation. The
results for non-driven systems are shown in the inset for clarity.

greater propensity for double occupancies. For [ = 2 and
A = 2.4048 we have that Je = 0, so the dynamics is
then entirely governed by creation and annihilation of
doublon-holon pairs. This temporarily maximizes d(?),
as depicted in Fig. 10(b). However in either case the effec-
tive Hamiltonian is far from simple, owing to frustration
effects from overlapping holon-doublon creation terms.
We therefore postpone a more detailed analysis of poten-
tial pairing [22] to future work where it maybe of rele-

Copyright line will be provided by the publisher

vance to observations of light-induced superconductiv-
ity [4,5].

5.3 In-gap off-resonant driving

Now we consider the regime of in-gap driving vop < w < U.
For our analysis we fix w and take different values of
U, staying away from resonant points U = [w. In this
form the divergences of Jex(A,w) predicted by Eq. (12)
are avoided. The magnetic order parameter M(t) and
the double occupation d(t) are depicted in Fig. 11, for
both the driven and the non-driven cases. Although each
time evolution shows a general decay of M () with strong
fluctuations, it closely follows the melting of the corre-
sponding non-driven case. The double occupation, on
the other hand, notably increases on average due to the
driving, although still remains low.

These results suggest that the melting mechanism
of the off-resonant in-gap driving discussed here is the
same of the strongly-interacting non-driven case, de-
scribed in Sec. 4.1. In fact, as depicted in the inset of
Fig. 11(a), besides oscillations the magnetic order param-
eter satisfies

M(0) ~1—(d) (1), (37)

with f(£) = 3_#(A)vot and (d) the time-average of d(¢).
This behavior is completely analogous to that of Eq. (35)

for the non-driven case, with renormalized hopping vo_#,(A)

as expected for in-gap off-resonant driving [22]. So the
magnetic melting emerges from the strong spin-charge
coupling, being mostly dependent on the hopping and
the number of charge excitations nucleated at early times,
and weakly dependent on the value of the exchange inter-
action. The fact that the melting of the order parameter
closely follows that of the non-driven case indicates that
the effective suppression of the hopping by _#,(4) is ap-
proximately compensated by the increase of the double
occupation.

This picture is reinforced by the spin precession dy-
namics. In Fig. 12(a) we show fitted trajectories of the pre-
cessing spin in the x-y plane, which for each value of U
are very similar to those of the non-driven case. The mag-
netic moments thus remain long-lived under in-gap off-
resonant driving. The resulting effective exchange inter-
actions of the driven and non-driven cases are also sim-
ilar, as shown in Fig. 12(b). The relation between both
is very well captured by the Floquet result Eq. (12). For
the different U we obtain that 1.02 < Jex(A,w)/Jex(A =
0) < 1.40, so the exchange interactions slightly increase
with the driving. As the magnetic moments and their ex-
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Figure 12 (a) Trajectories in the x-y plane of precessing mag-
netic moments in systems with vo =1, A=2, w =11 and
different values of U > w. The solid lines are the resulting tra-
jectories when fitting Sx and Sy, to the functions (31), with the
original trajectories being shown in the inset (with the same
scale for both Sy and Sy). The dashed lines of matching col-
ors are for systems with equal U and no driving. (b) Exchange
interaction Jex for the driven dynamics extracted from the fit-
ting functions (31) (solid lines; extracting Jex from the trajec-
tories depicted in the inset of (a) is complicated due to their
many loops), and for systems with equal U and no driving
(dashed lines). The perturbative exchange (36) for the non-
driven cases are indicated by arrows (<), and those from Flo-
quet theory for in-gap off-resonant driving (12) by solid circles

(¢)-

change are long-lived, the magnetic melting occurs due
to energy transfer from charge to spin sectors.

In summary the results of this Section show that for
in-gap driving away from resonances, a similar magnetic
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dynamics to that of the non-driven case is induced. The
notably larger double occupancies created by the driv-
ing are compensated by the suppression of the hopping.
In addition the exchange interaction is weakly modified.
This approximately leads to the same magnetic melting
rate in both the driven and non-driven scenarios, leaving
the underlying melting mechanism unaffected.

5.4 Dynamic control of magnetic melting

Finally we show two examples of how combining the dif-
ferent driving schemes previously described, it is possi-
ble to engineer a ultra-fast protocol to manipulate the
magnetic order and pairing of a fermionic interacting sys-
tem. The first corresponds to rapidly stabilizing a partic-
ular magnetization value from an initial Néel state with
large U/vy. An immediate form to do it is following a driv-
ing scheme like that depicted in Fig. 13(a). This consists
of two stages. First the desired magnetization is quickly
reached by resonant driving. Then the dynamics is frozen
by high-frequency driving, maintaining the magnetiza-
tion for the required time. This protocol could also be
used for stabilizing a state with enhanced pairing, target-
ing a particular value of the double occupation instead of
magnetization (inset of Fig. 13(a)).

The second example illustrates the induction of dy-
namics reversal by an appropriate choice of the driving.
In Ref. [16] a scheme for achieving this effect in long
time scales vyt =~ 100 was discussed. There a 1D system
was allowed to evolve freely for some time, after which it
was in-gap and non-resonantly driven in such a way that,
from Eq. (12), Jex(A, )/ Jex(A = 0) = —1. By slowly ramp-
ing the driving field electronic excitations were strongly
impeded, leading to spin-dominated dynamics which
could be reversed by changing the sign of the exchange
interaction.

Here we use a similar idea to induce a dynamics re-
versal on much shorter time scales vgt < 8, but with a
sudden quench of the amplitude of a / = 1 resonant driv-
ing designed to invert the sign of the effective Hamil-
tonian (13). The scheme consists of two stages, start-
ing from a Néel state, and leading to the results de-
picted in Fig. 13(b). During the first stage the system
evolves under resonant excitation with amplitude A till
time £, leading to a fast melting of the magnetic order
and large charge excitations. For the second stage the
driving amplitude A, is chosen so the sign of both Jgg
and K is inverted, while keeping their ratio to the val-
ues of the first stage approximately constant. The ampli-
tudes used in Fig. 13(b) are such that Jeg(A1)/ Jefr(A2) =
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Figure 13 (a) Simple protocol to stabilize a strongly-
interacting system (vo = 1, U = 10) with a particular mag-
netization (main panel) or double occupation (inset). From
t =0 to ¢ = t; resonant driving is applied (A =2, w = 10)
to quickly decrease the magnetization. Then for ¢ > #; high-
frequency driving is applied (A = 2.4048 so _#,(A) =0, w =
95), which freezes the system in the final state of the first driv-
ing scheme. (b) Protocol to induce dynamics reversal on a
strongly-interacting system at [ = 1 resonance (U = w = 20),
indicated by both the magnetic order parameter (main panel)
and the double occupation (inset). From t =0 to #; = 2.5
(red dashed lines) the system in driven with A; = 1.40, and
from t; = 2.5 onwards it is driven with Ay = 4.65. In this form
Fo(A1)] #o(Az) = =2.003 and _#1(A1)/ #1(Az) = —2.021.
Reversal of dynamics is observed at time vgf = 7.5 (green
dashed lines).

Kef(A1) I Kegp(A2) = —2. The dynamics for ¢ > f; is thus
slower than that for ¢ < #; by a factor of 2, in addition to

Copyright line will be provided by the publisher

the change of sign, resulting in an almost-complete rever-
sal of both the magnetic order parameter and the double
occupation after an evolution of length 2¢;. The reversal
is not perfect due to the higher-order terms in Hamilto-
nian (13). However our results show that it is possible
to almost entirely re-magnetize a system whose order
parameter has been strongly suppressed on a ultra-fast
time scale. Notably this re-magnetization occurs even
though the double occupation reaches large values, by re-
versing the dynamics of the latter as well.

6 Conclusions

In the present work we have discussed several forms
in which the melting of an initial perfect Néel state in
a high-dimensional Fermi-Hubbard lattice can be con-
trolled by external periodic driving. Using the recently-
introduced non-equilibrium dynamical mean-field the-
ory with a Hamiltonian-based matrix product impurity
solver, we have performed the time evolution of driven
systems with a computational effort similar to that of
quenched Hamiltonians. In addition, insights from Flo-
quet theory have allowed us to understand the underly-
ing mechanisms responsible for the melting of the mag-
netic order in each scenario considered.

We focused on three different driving regimes. First
we observed how high-frequency driving suppresses the
hopping and the exchange interaction, slowing down the
melting of the magnetic order. For weak Coulomb repul-
sion this corresponds to switching from quasiparticle-
governed magnetic melting to the scrambling of mag-
netic order due to mobile charge carriers. Second we con-
sidered resonant driving, and observed how for strong
interactions it leads to a very fast magnetization decay
and a large enhancement of double occupations. This
corresponds to switching from melting due to charge
carriers to quasiparticle-governed dynamics. In addi-
tion, we showed how resonant driving can effectively
induce zero or attractive interactions on an ultra-fast
time scale, where the latter might be relevant for non-
equilibrium superconductivity. Third we considered in-
gap off-resonant driving, where for large interactions the
driving-induced double occupation is compensated by
the suppression of the hopping, while the exchange in-
teraction is weakly affected. Thus the underlying mag-
netic melting mechanism is the same of the non-driven
system, governed by a strong spin-charge coupling. It is
important to stress that these results illustrate how driv-
ing with the same amplitude A, in particular those for
which _#,(A) =0, can lead to completely different conse-
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quences for distinct frequency regimes. In this case hop-
ping processes are suppressed, but while it leads to dy-
namical localization at high frequency, it maximizes the
creation of charge excitations at resonance.

and J. Kreula for their help during the development of the
DMET code.

Key words. Ultrafast control, antiferromagnetism, Floquet
theory, non-equilibrium dynamical mean-field theory

Gathering ideas from the different driving regimes
we presented combined schemes of magnetic control,
namely the stabilization of states with determined mag-
netic order parameter or double occupation, and the in-
duction of dynamics reversal in a short time scale. Our
work thus indicates that ultra-fast periodic modulation
might provide a viable mechanism to control antifer-
romagnetic order in strongly interacting systems. This (1]
could be observed experimentally in condensed matter
systems by excitation with THz light pulses [3], or in cold
atomic gases [47] in an oscillating underlying optical lat-
tice [1,2].

Finally we emphasize that our work manifests the
power of the NE-DMFT algorithm to successfully de-
scribe strongly-driven many-body systems in different
interacting regimes, without resorting to perturbation
theory. It also shows that conventional MPS time evo-
lution based on Trotterized two-site unitary operations
works as well as the previously-used Krylov-space algo-
rithms [17,34], since with both methods similar timescales
are reached with comparable computational effort. This
motivates the use of our approach for analyzing how to
manipulate and enhance, by external periodic driving,
different types of ordered states in high-dimensional lat-
tices such as charge-density waves and superconducting
phases, for repulsive [22] and attractive [48,49] fermionic
models.

(6]
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