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Dephasing enhanced transport in nonequilibrium strongly correlated quantum systems
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A key insight from recent studies is that noise, such as dephasing, can improve the efficiency of quantum
transport by suppressing coherent single-particle interference effects. However, it is not yet clear whether
dephasing can enhance transport in an interacting many-body system. Here, we address this question by analyzing
the transport properties of a boundary driven spinless fermion chain with nearest-neighbor interactions subject to
bulk dephasing. The many-body nonequilibrium stationary state is determined using large-scale matrix product
simulations of the corresponding quantum master equation. We find dephasing enhanced transport only in the
strongly interacting regime, where it is shown to induce incoherent transitions bridging the gap between bound
dark states and bands of mobile eigenstates. The generic nature of the transport enhancement is illustrated by
a simple toy model, which contains the basic elements required for its emergence. Surprisingly, the effect is
significant even in the linear response regime of the full system, and it is predicted to exist for any large and finite
chain. The response of the system to dephasing also establishes a signature of an underlying nonequilibrium
phase transition between regimes of transport degradation and enhancement. The existence of this transition is
shown not to depend on the integrability of the model considered. As a result, dephasing enhanced transport is
expected to persist in more realistic nonequilibrium strongly correlated systems.
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I. INTRODUCTION

Recently, the effects of noise on the efficiency of quan-
tum transport phenomena have been scrutinized intensely
by the scientific community. This has been motivated in
part by a series of ground-breaking nonlinear spectroscopic
experiments on light-harvesting complexes demonstrating
surprisingly long-lived quantum coherence during exciton
transport, even in a warm and wet environment.1–3 Yet, for
purely coherent exciton dynamics in such protein pigment
networks, transport is highly suppressed due to destructive
interference between different propagation pathways. Instead
studies revealed that the remarkably high transport efficiency
observed (above 95%) in fact emerges in combination with
local noise, such as dephasing, which disrupts this interference
opening up previously inhibited pathways for transmission.4–10

Transport properties in open systems can thus not only defy the
traditional understanding of when quantum effects should play
a significant role, but also challenge the notion that couplings
to the environment unconditionally degrade performance.

Different effects of dephasing have been studied in net-
works populated by single particles, in scenarios such as trans-
port through quantum optical systems,11 heat transport through
chains of two-level systems,12 information transmission,13 and
quantum information processing.14 Also, interesting phenom-
ena have been seen to emerge from the coexistence of particle-
particle interactions and noise, such as glassy dynamics in
ordered systems15 and interaction impeded decoherence.16,17

However, the interplay between noise and strong correlations
induced by interactions in a many-body setting is not yet fully
understood. In particular, recent numerical simulations showed
that the time-of-flight expansion of a strongly interacting cold
atomic gas was slow in the absence of noise and substantially
increased once noise was added.18 This raises an important
question as to when and how dephasing can enhance transport
in a strongly interacting system.

Here, we answer this question in the affirmative by consid-
ering a concrete example composed of spinless fermions with
nearest-neighbor interactions hopping through a tight-binding
chain, as depicted in Fig. 1. This model makes an ideal testbed
for several reasons. First, it is equivalent to the well studied
XXZ spin-1/2 chain,19–21 representing one of the simplest
models of strongly correlated electron systems. Second,
the transport properties of such low-dimensional interacting
quantum systems remain an important open problem, exhibit-
ing anomalous features such as ballistic spin transport and
unusually high thermal conductivity, reported experimentally
in so-called spin-chain materials.22–25 In addition to solid state
systems like chains of coupled quantum dots26 or molecular
wires embedded between electrodes,27 understanding this
model is directly relevant to ion-trap,28 coupled-cavity array,29

and cold-atom18,30–32 quantum systems. Of particular impor-
tance are recent seminal experiments that revealed the contact
and bulk resistivity of cold fermionic atoms flowing through a
narrow mesoscopic channel between a pair of reservoirs with
a population imbalance.33,34

Very similar to these cold-atom experiments, we consider
a chain attached to two unequal Markovian reservoirs at its
boundaries providing continuous incoherent driving, along
with local dephasing noise along its extension (see Fig. 1).35–38

We then compute the current-driving characteristics of its
nonequilibrium stationary state (NESS). Being a homogeneous
chain with transport from end to end, previously studied
single-particle interference effects originating from geometry
or disorder are absent.6,7,39,40 Interestingly, we show that
dephasing-enhanced transport nonetheless emerges so long
as the interactions are strong enough. In this regime and
at maximal driving, the NESS forms a cooperative many-
body quantum state possessing a long-ranged domain of
particles pinned to one boundary strongly suppressing the
current, analogous to a Coulomb or Pauli blockade insulator.36

Dephasing induces incoherent transitions out of this bound
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FIG. 1. (Color online) Spinless fermions hop with amplitude
τ across a chain, subject to a nearest-neighbor density-density
interaction of strength �, local dephasing at a rate γ , and boundary
driving that injects/ejects fermions at a rate proportional to � and
driving bias f . The driving process induces a forward (upper arrows)
and a backward (lower arrows) flow of particles, and the bias f

determines the imbalance between both.

state establishing a current in a regime that would otherwise be
insulating. We illustrate this mechanism in a simple toy model,
in which we isolate the essential conditions for the emergence
of the effect. Surprisingly, a large current enhancement is
predicted to exist in any long and finite chain even for weak
driving, where the transport is diffusive in the absence of
noise. We also observe that the transport enhancement is a
signature of an underlying nonequilibrium phase transition,
and demonstrate its generality beyond the integrable system
considered.

The paper is organized as follows. In Sec. II, we describe
the system to be studied. In Sec. III, we show the existence
of dephasing-assisted transport for strong interactions, which
contrasts with the transport degradation at weak interactions.
The mechanism behind this nonequilibrium phenomenon is
explained in Sec. IV. An illustrative toy model containing the
basic features for the effect to emerge is described in Sec. V.
The signatures of a nonequilibrium phase transition between
the two transport regimes, revealed by the existence of an
optimal dephasing rate and the correlations through the system,
are presented in Section VI. We also show in this section that
this transition remains even if the integrability of the model is
broken. Finally, in Sec. VII, we discuss the conclusions of our
work.

II. MODEL

We study the N site interacting spinless fermion chain
described by the Hamiltonian

H =
N−1∑
j=1

[
1

2
τ (c†j cj+1 + H.c.) + �

(
nj − 1

2

)(
nj+1 − 1

2

)]
,

(1)

where c
†
j ,cj are standard fermionic creation/annihilation

operators for site j and nj = c
†
j cj is the associated number

operator. In addition to the hopping amplitude τ , this Hamilto-
nian has a nearest-neighbor density-density interaction njnj+1

with strength �. We take τ = 1 to set the energy scale. The
dynamics of the system is described by a Lindblad quantum
master equation,41 (taking h̄ = 1)

dρ

dt
= −i[H,ρ] + L(ρ), (2)

where ρ is the density matrix of the chain and L is the
dissipator describing the coupling to the Markovian reservoirs.

In Lindblad form, the dissipator is

L(ρ) =
∑

k

(
LkρL

†
k − 1

2
{L†

kLk,ρ}
)

, (3)

where {.,.} is the anticommutator and the sum is over a set
of jump operators Lk . We consider a dissipator that splits into
three parts L = LL + Ld + LR . Here LL and LR describe the
coupling to external particle reservoirs at the left and right
boundaries, respectively, each with two jump operators:

L+
L,R =

√
�(1 ∓ f )/2 c1,N , L−

L,R =
√

�(1 ± f )/2 c
†
1,N ,

(4)

where � is the coupling strength, identical for both reservoirs,
and 0 � f � 1 is the driving bias.36 We consider moderate
coupling � = 1 throughout this paper.42 The driving mech-
anism, depicted in Fig. 1, induces two pumping processes,
corresponding to forward (left-to-right) and backward (right-
to-left) flows, thus forcing the system far from equilibrium.
This scheme is reminiscent of the well studied classical
stochastic exclusion model.43,44 When f = 0, particles are
injected and ejected with equal rates at both boundaries, so
the counterpropagating flows cancel each other. This results
in the stationary solution ρ = 1/2N to Eq. (2), irrespective of
�, thus having no net current.45 For f > 0, the forward flow
is favored over the backward flow, raising the possibility of
a genuine NESS possessing a finite current. The remaining
contribution Ld accounts for bulk dephasing in the chain and
is described by the jump operators

Ld
j = √

γ (1 − 2nj ), 1 � j � N, (5)

with a uniform dephasing rate γ .
By directly simulating Eq. (2) and taking the long-time

limit, the state ρ(t) converges to the time-independent NESS
of the system. A solution can be computed efficiently in
a controlled way and accounting for significant many-body
correlations by applying the time evolving block decimation
(TEBD) algorithm46,47 to a matrix product operator description
of ρ(t). This highly compact representation enables the
efficient evaluation of relevant expectation values and makes
accessible much larger system sizes than exact diagonalization
or Monte Carlo approaches.48–50 Moreover, TEBD can be
applied effectively over a large parameter range allowing us to
examine the properties of the system as a function of f beyond
the f � 1 linear response regime. Our implementation of the
numerical method is based on the open source tensor network
theory (TNT) library.51

The transport properties are analyzed by computing the
current crossing site j from the operator

Jj = i(c†j cj+1 − H.c.), 1 � j � N − 1. (6)

In the NESS, the current 〈Jj 〉 = 〈J 〉 is homogeneous through-
out the system.

III. DEPHASING ENHANCED TRANSPORT

It is known that in the weakly interacting regime |�| < 1,
in the absence of dephasing, the system is an ideal ballistic
conductor for any driving f , with a nearly flat density profile
〈nj 〉 and a current 〈J 〉 ∝ f , which is independent of N .36,52
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The introduction of dephasing has been shown to induce
diffusive transport, where the current fulfills the diffusion
equation 〈J 〉 = κ∇〈nj 〉, with κ the particle conductivity, and
〈nj 〉 features a constant gradient

∇〈nj 〉 = 〈nN−1〉 − 〈n2〉
N − 3

= �n

N − 3
, (7)

where �n is the density difference between opposite ends of
the system (after discarding the boundary sites). As a result,
the current scales with the size of the system as

〈J 〉 ∝ �n

N − 3
∼ f

N
, (8)

characteristic of an Ohmic conductor.39,53 In either case, the
maximum current through the chain occurs at maximal bias
f = 1, where only forward pumping is present, as might be
intuitively expected. In the noninteracting limit, � = 0, it
has been proven rigorously that a homogeneous chain cannot
exhibit any dephasing enhanced end-to-end transport;5,40,53

this behavior was also suggested for weakly-interacting sys-
tems where |�| < 1.39 In Fig. 2(a), we report the current-
driving profiles for � = 0.5 showing that dephasing mono-
tonically degrades the current for any driving, confirming that
this behavior persists even in the presence of weak interactions.
Thus, in this work, we focus on the strongly interacting regime
|�| > 1.

FIG. 2. (Color online) (a) The current-driving profiles in the
weakly interacting regime � = 0.5 for increasing (as indicated by
the arrow) dephasing rates γ and N = 16. (b) Identical plot to (a)
but in the strongly interacting regime � = 2. (Inset) The density 〈nj 〉
of the system when � = 2, f = 1, and N = 16, corresponding to
γ = 0,0.05,1.00.

In the absence of dephasing and for weak driving f �
1, transport was found to be diffusive when |�| > 1,52 a
controversial finding given that the integrability of the system
is conjectured to lead to ballistic transport.54 However, for
strong driving, f → 1, it was recently discovered36,55 that
the NESS exhibits a particle domain at the left edge of the
chain irrespective of the sign of �, strongly suppressing
the current as 〈J 〉 ∝ exp(−N ), characteristic of an insulator.
Consequently, the current 〈J 〉 at γ = 0 exhibits nonlinear
behavior with the driving f , leading to an effect known as
negative differential conductivity (NDC) where increasing the
driving eventually decreases the current.36,55 In Fig. 2(b),
the γ = 0 curve shows that this causes a near complete
suppression of the current at f = 1 for � = 2. In the strongly
interacting regime, the system therefore presents the intriguing
property that more current forward flows at an intermediate
bias f < 1 where some backward pumping is present.

A. Current enhancement

The main result of the present work is that for |�| > 1 the
presence of a small bulk dephasing can significantly enhance
the particle transport. This striking behavior is illustrated for
� = 2 in Fig. 2(b) where dephasing up to a moderate rate
γ ≈ 0.5 is seen to increase the current. This enhancement in
the current is shown to occur for any f > 0; however, it is not
uniform in f , resulting in the current-driving profile changing
with γ . Specifically, around γ ≈ 0.3 the NDC effect is lost and
further increases in γ yield a linear profile in f . Near f = 1,
dephasing therefore induces not just a quantitative increase
in the current, but rather causes a major qualitative change
in the behavior of the system from being insulating at γ = 0
to yielding the maximal current once γ > 0.3. In the inset
of Fig. 2(b), this change at f = 1 is shown to be coincident
with the breakdown of the particle domain at the left boundary
into a nearly linear density profile, due to the increase of the
dephasing rate. The transport at large driving and dephasing
rates therefore resembles that of a diffusive conductor. This
result is confirmed by the scaling of the current with the size
of the system, shown in Fig. 3 for � = 2 and dephasing rates
γ = 0.5 and γ = 1.0. The power-law fits for each γ , which
are seen to accurately model the data, indicate subdiffusive
transport for γ = 0.5, where the current decays slower than
1/(N − 3), but has approached a diffusive behavior once
γ = 1.0.

For a given f there is an optimal dephasing rate γopt that
maximizes the current, as shown in Fig. 4. For the parameters
of this figure, the enhancement at weak driving and the optimal
dephasing rate is quite significant, e.g., ≈37% at f = 0.1.
As the driving increases so does the optimal dephasing rate
γopt, as well as the enhancement of the current, the latter
being of several orders of magnitude for f → 1. For γ > γopt,
the current is reduced because the Ld contribution to Eq. (2)
dominates over the coherent hopping terms and progressively
freezes out the dynamics due to the Zeno effect.41 In fact, for
increasingly large γ , the NESS current converges to the exact
� = 0 solution with dephasing:53,56

〈J 〉�=0 = 2f
�
4 + 4

�
+ (N − 1)γ

. (9)
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FIG. 3. (Color online) The current 〈J 〉 at f = 1, divided by the
resulting density difference �n between the ends of the system
(excluding the boundary), is plotted against the system size N − 3 up
to N = 100 sites. The data is for dephasing rates γ = 0.5 (×) and γ =
1.0 (�). The solid lines show the fitting to 〈J 〉/�n = κ(N − 3)−α

for each γ . These yield κ = 1.288 and α = 0.863 for γ = 0.5, and
κ = 1.228 and α = 0.958 for γ = 1.0.

This convergence, shown in Fig. 4, thus indicates that the
interaction strength � becomes irrelevant for very large
dephasing rates.

B. Scaling with the system size

To show that the transport enhancement is not restricted
to small chains, we analyze the scaling of the optimal
dephasing rate γopt with N for weak driving f = 0.1. The
results are presented in Fig. 5. Although γopt decreases as
N increases, extrapolations with simple trial functions (of
which an exponential decay, shown in Fig. 5, gives the best
description) indicate that even when N → ∞, γopt remains
finite. However, since the density imbalance between the
boundaries of the chain �n is bounded, 〈J 〉 → 0 in the
thermodynamic limit; see also the inset of Fig. 5, which shows
that 〈J 〉opt → 0 as N → ∞. Nevertheless, the existence of
a finite γopt in the thermodynamic limit indicates that even
in the linear response regime, the transport can be enhanced

FIG. 4. (Color online) The current as a function of γ for driving
biases f = 0.1, 0.2, 0.3, and 0.4 (from bottom to top curve) with
� = 2, and N = 40. The dashed lines correspond to 〈J 〉�=0, the
noninteracting analytic result.53,56

FIG. 5. (Color online) Optimal dephasing γopt for different sizes
of the system, at f = 0.1, � = 2, and � = 1 (circles). The solid line
corresponds to the exponential decay γopt = γ TL

opt + a exp (−N/b),
with a = 0.252, b = 85.9, and γ TL

opt = 0.109. (Inset) Optimal current
〈J 〉opt as a function of N . The solid line corresponds to the power
law decay 〈J 〉opt = aN−b, with a = 0.0948 and b = 0.94. Note that
as N → ∞, 〈J 〉opt → 0.

by environmental coupling in systems of any finite size.
For stronger driving, both the current enhancement and γopt

become larger, as shown in Fig. 4, and the range of bene-
ficial dephasing rates broadens. So the dephasing-enhanced
transport should emerge in mesoscopic systems even for weak
driving.

IV. ENHANCEMENT MECHANISM

We now discuss the physical mechanism underlying NDC
and the dephasing enhanced transport. Specifically, we show
that these effects arise due to an interplay between the
eigenstructure of the strongly interacting chain Hamiltonian
and the boundary driving. As illustrated in Fig. 6(a) for a small
but representative system size with very strong interactions
|�|  1, the eigenspectrum consists of nearly flat high-energy
bands of bound states of low conductivity, separated by gaps of
order |�| from more mobile bands of states with lower energy.
As we shall now show, strong boundary driving preferentially
populates only the most energetic bound states resulting
in an insulating NESS. The introduction of dephasing then
induces transitions to mobile current-carrying bands, thereby
enhancing the conductivity.

To see this in more detail, it is instructive to first
consider maximally biased driving f = 1 in the extreme
|�| → ∞ limit. In this case, configuration states such as
|10110 · · · 011〉, where the particle occupancy on each site
of the chain is explicitly specified, are exact eigenstates of
the Hamiltonian. A key property of the boundary driving
is that it only incoherently connects configurations within a
quadruplet of states |0x0〉,|0x1〉,|1x0〉,|1x1〉 for any value of
f , where x is any length N − 2 occupancy bit string and
thus defines each quadruplet. This is illustrated in Fig. 6(b).
Consequently, if x has (n − 1) 1’s, the driving couples states
within the total particle number sectors n − 1,n, and n + 1.
This structure constrains the evolution caused by the driving
processes to shuffling population between states in these
isolated quadruplets. At f = 1, there is one configuration
|1x0〉 within each quadruplet which, owing to it having a
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FIG. 6. (Color online) (a) The energy eigenspectrum of the
spinless fermion Hamiltonian governing the chain for N = 12 and
� = 10. Energies εν have been shifted by 1

4 �(N − 1) so that the
state |�D(0)〉 = |00 . . . 00〉 has zero energy. The spectrum includes
contributions from all particle number sectors n = 0, . . . ,12; since
the spectra arising from n = 0, . . . ,5 are identical to those of
n = 7, . . . ,12, only the former are shown in addition to n = 6. The
highest lying eigenstate for each sector |�D(n)〉 is highlighted and
seen to be isolated by a gap of O(�) from eigenstates composed of
break-away configurations (states with the outermost particle of the
domain breaking away, or a hole propagating through the domain).
The braces give an indication of the location of mobile and flattened
bands for n = 6. (b) For any f , the driving alone incoherently
connects a quadruplet of configurations |0x0〉,|0x1〉,|1x0〉,|1x1〉. The
situation for f = 1 is shown where the driving can be seen to only
pump into the so-called dark configuration |1x0〉.

particle on the leftmost site and a vacancy on the rightmost
site, is entirely decoupled from the driving (i.e., there is no
action of the driving on such a configuration), while also
being the sink for all driving transitions [see Fig. 6(b)]. The
effect of this incoherent evolution alone is thus to eventually
drive all the population among the quadruplet of states into
this dark configuration. Of particular relevance are the dark
configurations

|Bn〉 = |
n︷ ︸︸ ︷

111 · · · 111 000 · · · 000︸ ︷︷ ︸
N−n

〉, (10)

which possess an n particle domain pinned to the left boundary.
For each particle number sector n, the state |Bn〉 is separated

from other configurations by an energy gap O(|�|), akin to a
domain binding energy.

As we move to the limit of finite, but strong interactions
|�|  1, hopping between configuration states results in each
configuration |Bn〉 giving rise to an eigenstate |�D(n)〉 of
bound particles. For each particle number n, |�D(n)〉 is the
highest state in the eigenspectrum, as indicated in Fig. 6(a).
Its properties are readily determined by treating hopping as a
perturbation. Specifically, to lowest-order in |2�|−1, hopping
hybridizes, across an energy gap of �, the state |Bn〉 with the
break-away configuration

|
n−1︷ ︸︸ ︷

111 · · · 11 01 00 · · · 000︸ ︷︷ ︸
N−n−1

〉, (11)

where the outermost particle of the domain has escaped.
As discussed in Appendix A, the hybridization of |Bn〉 with
more distant break-away configurations decays exponentially
with the distance from the domain wall with a length scale
ξ ∼ 1/ ln(|2�|). Crucially almost all of these break-away
configurations are dark to the driving like |Bn〉. Only the
configurations where either a hole or particle has reached
the boundary couple to the driving, and their amplitude is
exponentially suppressed by this localization.

The emergence of an insulating NESS in the strongly
interacting regime at f = 1, having a particle domain of size
N/2, and thus the domain wall farthest from the boundaries,
follows from the combination of two results in the perturbative
approach: (i) as n → N/2, |�D(n)〉 becomes an exponentially
close approximation to a dark state of f = 1 driving, with
increasing N . (ii) The boundary driving at f = 1 preferentially
populates |�D(n)〉 leaving a NESS that is well approximated
by a statistical mixture

ρ =
N∑

n=0

pn|�D(n)〉〈�D(n)|, (12)

with the probability pn exponentially peaked at n = N/2. In
Appendix A, points (i) and (ii) are shown to arise for sizes
N � 4.

The existence of the insulating NESS described by Eq. (12)
is only possible in the absence of dephasing processes along
the chain. Since local dephasing on each site, given in Eq. (5),
does not commute with the chain Hamiltonian H , this noise
process induces incoherent transitions between many-body
energy eigenstates of the system. This is characterized by an
energy dissipation rate

dEγ

dt
= −2γ

∑
j

〈c†j cj+1 + H.c.〉, (13)

dependent on the kinetic energy of the state, and enables
population to escape from the approximate dark states
|�D(n)〉 to the mobile bands of scattering states. It is this
effect that breaks the localization in the f = 1 insulating
NESS and significantly enhances the current. An optimal
dephasing rate γopt emerges due to the competition between
these dephasing induced transitions and the degradation
of mobility of the scattering states by dephasing through
the Zeno effect. An increase in γopt with |�| is observed
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since a larger energy dissipation is needed to overcome
the gap.

When reducing f slightly from the f = 1 limit, a small
backward pumping process appears in addition to the dominant
forward pumping of particles. Since particles are then injected
and ejected by the driving at both boundaries, all the states
of every quadruplet become populated and there are no
longer dark configurations decoupled from the driving. A
finite current is therefore established in the NESS as the
population in the approximate dark states |�D(n)〉 diminishes.
Nonetheless, the picture of dissipation from majority occupied
bound states to higher mobility scattering states still applies.
However, in the linear response regime, where f → 0 and
the NESS is a diffusive conductor rather than an insulator,
it is not a priori obvious that additional dissipation induced
by dephasing will be beneficial to transport. Yet, as seen in
Figs. 4 and 5, an enhancement of the current due to dephasing
for chains of any finite size is observed for f > 0. This
behavior suggests that even in this case, where the high-energy
bound states like |�D(n)〉 are only marginally populated by
the driving, additional incoherent transitions bridging the
numerous gaps in the spectrum to the mobile bands still
enhance transport. To help further unravel the processes behind
dephasing enhancement and NDC, we describe a simple toy
model in the following section. This model not only reproduces
the basic features of these effects in a concrete analytically
tractable way, but also reveals that the physical mechanism
underlying both effects is the same.

V. TOY MODEL

We have seen that numerous approximate dark states,
whose occupation is favored by f = 1 driving, cause the
stationary state to become insulating. Remaining in the
strongly interacting limit, we now wish to isolate the effect
of such bound states on the transport for all drivings f ,
i.e., on the complete current-driving profile. To do so, we
construct a simple toy model, whose structure is motivated
by considering the half-filled domain state |BN/2〉 and its
corresponding break-away configurations, which eventually
connect it to the boundary driving. As such, the toy model
is composed of K configuration states |1〉,|2〉, . . . ,|K〉 for
some size K > 2. To mimic the interaction binding energy
of |BN/2〉, we distinguish the configuration |K〉 by elevating
it in energy by � above the set of otherwise degenerate
configurations |1〉,|2〉, . . . ,|K − 1〉, which model break-away
states like |11 · · · 10100 · · · 0〉, |11 · · · 10010 · · · 0〉, etc. In
addition, the states |1〉,|2〉, . . . ,|K〉 are also coherently coupled
to their neighbors via “hopping” processes given by

Ht = 1

2

K−1∑
k=1

(|k〉〈k + 1| + H.c.).

The current operator for the model then follows as

J = −i

K−1∑
k=1

(|k〉〈k + 1| − H.c.),

which measures the flow within the coherently connected
configurations |1〉,|2〉, . . . ,|K〉. To model the driving in the
full system, which incoherently connects one particle number

FIG. 7. (Color online) The schematic of the toy model and its
various processes and properties. These include the nearest-neighbor
coherent hopping between the set of states |1〉,|2〉, . . . ,|K〉, an energy
offset � for state |K〉, incoherent transitions |1〉 ↔ |s〉 and |K〉 ↔ |s〉
between the boundary states and the auxiliary state |s〉, and dephasing
at a rate γ . The rates for the incoherent driving transitions 1

2 �(1 ± f )
are also listed.

sector to another, we introduce an auxiliary state |s〉 whose
function is simply to be an intermediary. The jump operators
describing the driving then take the form

L±
L =

√
�(1 ∓ f )/2 ±

L, L±
R =

√
�(1 ± f )/2 ±

R,

where −
L = |s〉〈1 | and +

R = |K〉〈s |, with +
L = (−

L )† and
−

R = (+
R )†. Thus, via |s〉, the driving incoherently induces

transitions between the boundary configurations |1〉 and |K〉
with a bias f . At f = 0, driving in both directions is equal and
it is easily confirmed that the NESS is ρ = 1/(K + 1), yielding
〈J 〉 = 0 as in the case of the full spinless fermion chain. At
the opposite limit, f = 1, population is asymmetrically driven
from |1〉 → |K〉. To complete the analogy with the full system,
the toy model also includes dephasing, at a rate γ , via the jump
operator LZ = √

γZ where

Z = 1 − 2 |K〉 〈K | ,
whose action is to scramble the phase of any superpositions
between |K〉 and the other configurations. A schematic of
the toy model illustrating all the coherent and incoherent
contributions is shown in Fig. 7.

Since it is inspired in the |�|  1 regime, the toy model
does not embody the entire physics of the full system.
Nevertheless, it does capture the essential features of NDC
and dephasing enhancement when |�|  1. Fundamentally,
the same mechanisms observed in such a limit apply to
the more complex full system when considering its entire
eigenspectrum, even when |�| → 1.

The current 〈J 〉 = tr(Jρ) of the NESS ρ can be solved
analytically for the toy model as a function of f, γ , and �,
although the complete expression is lengthy. Since the model
was motivated by the perturbative limit |�|  1, the physically
relevant part of this result is found by keeping only the lowest
order terms in �−1. This gives

〈J 〉 ≈ (K − 1)[8γf + (1 − f )f �]

(K + 1) − 2(K − 2)f + (K − 1)f 2

(
1

�

)2

. (14)

In Fig. 8(a), the current-driving profile 〈J 〉, rescaled by �2, is
plotted for K = 20. Two key features emerge from this result.
First, for γ = 0, the (1 − f )f in the numerator of Eq. (14),
which enforces zero current at the f = 0 and 1, causes 〈J 〉 to
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FIG. 8. (Color online) (a) The NESS current 〈J 〉, rescaled by �2,
for K = 20, as a function of the driving f and dephasing γ , described
by the approximation in Eq. (14). The behavior at f = 1 with γ

is emphasized by the additional (red) line. (b) The exact current-
driving profiles of the toy-model as a function of γ with � = 2 and
K = 20.

display negative differential conductivity (NDC). Moreover,
the expansion involves only even powers of �−1, showing
that this behavior is independent on the sign of �. Second,
dephasing enhancement of 〈J 〉 is evident from the linear γ

term in Eq. (14), which eventually destroys the NDC effect.
However, since γ and � appear only linearly, this lowest order
expression is only valid for weak dephasing and coupling to
the boundary reservoirs. In particular, the dephasing degrading
behavior expected for large γ , due to the Zeno effect, is not
described by Eq. (14). The expression is also only valid for
K � 3 because NDC is not seen for K = 2; having no direct
coherent coupling between the boundary configurations where
driving occurs, i.e., |1〉 and |3〉 for K = 3, is essential for NDC
to emerge. This is similar to how NDC is only seen for N � 4
in the full system, like in Fig. 14(b) of Appendix A. In Fig. 8(b),
the exact current-driving profile for the toy model is shown for
� = 2 as a function of moderate γ ’s, beyond the applicability
of Eq. (14). This confirms the wider similarity of the response
of the toy model to that observed in the full spinless-fermion
system.

Given their similar response, the toy model provides
a tractable means of unravelling the origins of NDC and
dephasing enhancement in the full many-body system. The
eigenspectrum of the toy model is plotted in Fig. 9(a). By
construction, we see that it mimics some of the features
shown in Fig. 6(a) for an individual number sector of the
spinless fermion system. Specifically, there is a high-lying
eigenstate |�D〉, separated by a gap O(|�|) from a dense band

FIG. 9. (Color online) (a) The spectrum εν of the Hamiltonian
for the toy model for K = 20 and � = 2. Eigenstate ν = 0 is the
highlighted auxiliary state |s〉 whose energy has been set arbitrarily.
The highest-lying eigenstate ν = K is also highlighted and is the
approximate dark state of the model |�D〉. Beneath this state,
separated by a gap O(|�|), is a band of eigenstates |�ν〉 split by
the small hopping. (b) The probability distributions |〈k|�ν 〉|2 of
the eigenstates over the configurations |k〉 are shown. The band
of eigenstates is seen to be delocalized over the configurations
|1〉,|2〉, . . . ,|K − 1〉 and expunged from the boundary configuration
|K〉, while the characteristic of a bound state |�D〉 is predominately
peaked at |K〉 with exponential tail into the bulk.

of eigenstates. In Fig. 9(b), the eigenstates of this band are
seen to be delocalized over the bulk of the system excluding
the boundary configuration |K〉. In contrast, for a given size
K , the eigenstate |�D〉 has the form

|�D〉 ≈
K−1∑
k=0

|2�|−k|K − k〉, (15)

to within O(|2�|−2K ). So as seen in Fig. 9(b), |�D〉 is expo-
nentially peaked at |K〉. As K → ∞, such an exponentially
decaying wave function is simply the discrete analog of the
well-known bound state of a 1D δ potential.57 Given that the
amplitude for the left boundary configuration |1〉 scales as
|2�|1−K , we see that |�D〉 becomes exponentially close, with
increasing K , to being a dark state of the driving when f = 1.

The driving at f = 1 exclusively pumps into the configura-
tion |K〉 whose dominant overlap is with |�D〉. Consequently,
so long as γ = 0, the population gets progressively trapped
in this dark state giving rise to 〈J 〉 ≈ 0, characteristic of
an insulating NESS. Remaining at f = 1 and switching on
a nonzero dephasing directly decoheres the exponentially
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decaying superposition within |�D〉. This is equivalent to
the coherent trapping of population, caused by the ener-
getic gap, being bypassed by dephasing induced incoherent
transitions connecting |�D〉 directly to the delocalized band
of eigenstates. Current flow in the system is thus made
possible via the ensuing nonstationary mixture of these eigen-
states. Further increases in dephasing eventually degrade the
current once the monotonically decreasing mobility of the
delocalized eigenstates, caused by the Zeno effect, outweighs
the flux of population escaping from |�D〉. Since the toy
model only has a single approximate dark state |�D〉, it
confirms that its existence, at one isolated point f = 1 and
γ = 0, is alone enough to make the current-driving profile
for 0 � f � 1 exhibit NDC and γ > 0 exhibit dephasing
enhancement.

Another key insight from the toy model is that the emer-
gence of a nonzero current from the insulating point f = 1 and
γ = 0, involves identical physics either when γ is increased
slightly from zero, or when f is reduced slightly from unity.
Examining Eq. (14) at f = 1 shows that 〈J 〉�2 = 2(K − 1)γ ,
while for γ = 0 an expansion about f = 1 shows that the
current is 〈J 〉�2 = 1

4 (K − 1)(1 − f )� to lowest order. This
suggests a correspondence

γ = 1

2
(1 − f )

�

4
. (16)

Consequently, a slight decrease of driving or increase of
dephasing induce the same decoherence process that enhances
the transport of the otherwise insulating state. A further
indication of this equivalence, focused on the decay in time of
the coherences between states |K − 1〉 and |K〉, is presented
in Appendix B.

While successful in describing the effective single-particle
aspects of the full spinless fermion system, the toy model
fails to describe several important features that are hallmark
of genuine many-body physics. First, in the strongly driven
f = 1 limit at large dephasing, the toy model does not display
diffusive transport, like that observed for the full system in
Fig. 3. This is expected since aside from configuration |K〉 the
toy model is an ordered homogeneous tight-binding system.
Second, when there is no dephasing, the full system is known
to exhibit a nonequilibrium phase transition from diffusive to
ballistic transport at weak driving36 as |�| → 1. As the toy
model was constructed to mimic the |�|  1 limit, it does
not capture this many-body property of the full system. In the
next section, we investigate the effect of dephasing on this
transition in the full system.

VI. SIGNATURE OF A NONEQUILIBRIUM
PHASE TRANSITION

The results discussed in Sec. III demonstrate the existence
of two transport regimes in the system with different responses
to moderate dephasing: degradation for weak interactions and
enhancement for strong interactions. We now discuss the
transition between the two transport regimes, characterize the
critical interaction strength, analyze the correlations through
the system for each regime, and show that the same regimes
of response remain even when the integrability of the system
is broken.

FIG. 10. (Color online) (a) The optimal dephasing rate γopt as a
function of �, for N = 40, f = 0.1, and � = 1. The circles indicate
TEBD results, and the solid line corresponds to the fitted function
γopt ∝ (� − �0)β , with β = 0.819 and �0 = 1.07. The inset plots
show the generic behavior of 〈J 〉 with γ above and below �0.
(b) The scaling of �0 with N for f = 0.1 and � = 1, along with the
fitted power-law shown, where a = 3.906, b = 1.066, and c = 0.995.

A. Transition at |�| = 1

The interaction strength |�| = 1 is of particular signifi-
cance to the Hamiltonian of Eq. (1). At zero-temperature and
in the absence of magnetic field, it separates the gapless and
magnetically ordered (ferro- and antiferromagnetic) gapped
equilibrium phases. More generally, it divides a continuous
eigenspectrum for |�| < 1 from one with numerous gaps for
|�| > 1,58,59 as illustrated in Fig. 6(a). In the system driven by
the jump operators of Eq. (4), it was previously observed that
|�| ≈ 1 also separates ballistic and diffusive transport regimes
for weak driving.36 However, it is not a priori clear that |�| = 1
necessarily separates the regimes of transport degradation and
enhancement by dephasing. We now show that this is indeed
the case.

In Fig. 10(a), the optimal dephasing rate γopt is shown for
weak driving as a function of �. A threshold of �0 ≈ 1.07 is
apparent where for |�| < �0, γopt = 0, indicating dephasing-
degraded transport, while for |�| > �0, γopt is nonzero,
indicating dephasing-enhanced transport, and increases mono-
tonically with |�|. The latter behavior is a consequence
of the enhancement mechanism. As the interaction strength
increases, so do the gaps between flattened and mobile bands,
so a larger energy dissipation is required to populate the latter
and increase the current. The value of �0 is size-dependent,
and a scaling analysis shown in Fig. 10(b) demonstrates that,
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to good approximation, �0 = 1 separates the two transport
regimes in the thermodynamic limit.

From the results discussed above, it is tempting to associate
the nature of the ground state, namely gapped or gapless, with
a certain type of particle transport or response to dephasing.
This impression is misleading, as can be understood by
considering a homogeneous on-site potential B

∑
j nj . This

potential shifts the equilibrium quantum critical points,59 but
leaves the particle transport of the steady state unaltered.
The latter occurs because the Hamiltonian and the current
operator are particle-conserving, so the sectors of different
particle numbers are only incoherently connected due to
the driving and the NESS is block diagonal. The internal
structure of the various particle number sectors, unmodified
by the homogeneous on-site potential, is thus what determines
the steady-state transport through the chain, not the relative
positions of the different sectors within the eigenspectrum.60

This shows that a qualitative change of the ground state does
not imply a change of nonequilibrium properties. Instead,
it is the overall structure of the eigenspectrum that leads to
the NDC and dephasing-enhanced transport effects at strong
interactions, as discussed in Secs. IV and V.

B. Correlations and dephasing

Similar to equilibrium phases, the transition between the
two different transport regimes, namely of current degradation
and enhancement by dephasing, can also be distinguished from
the correlations through the system. First, we consider a typical
two-point density-density correlation function

Cij = 〈ninj 〉 − 〈ni〉〈nj 〉, (17)

with sites i and j symmetrically positioned around the center
of the chain. This is conveniently represented as C(r) where
r = |i − j |/N is the fractional separation of the points for the
system size N . In Fig. 11(a), C(r) is plotted for different sizes
N in the strongly interacting regime for a moderate dephasing
rate. Finite correlations are seen to exist even for a large
fractional separation r . Although these correlations decay with
r , the fraction of the system they span increases with N . This
property has been argued, for γ = 0 and |�| > 0.91, to be
evidence that the NESS possesses genuine long-range order
even in the thermodynamic limit.62 Here, our results indicate
that this long-range order persists even in the presence of
moderate dephasing, and so correlations similar to those at
γ = 0 exist in the dephasing enhanced NESS. The situation for
strong dephasing, shown in Fig. 11(b), is markedly different.
Now correlations are smaller and diminish faster with r than at
weaker dephasing rates. In addition, the fraction of the system
over which the correlations extend diminishes as N increases, a
behavior previously observed for weak interactions and γ > 0,
as well as for large dephasing rates γ independently of the
interaction strength |�|.39,53 So like the current and density
profiles, the two-point correlation functions in the strongly
interacting regime become increasingly similar to those of the
weakly interacting regime for large dephasing, washing out the
transition.

The signature of the nonequilibrium transition between
weakly and strongly interacting regimes with moderate
dephasing, already suggested by two-point correlation

FIG. 11. (Color online) The NESS density-density correlations
|C(r)| across the chain as a function of the fraction distance r about
the center for � = 2 and f = 0.1. In (a), a moderate dephasing
γ = 0.05 is included. The correlations are long-ranged and extend
over a larger fraction when increasing N . This is evidenced by
the kink, coming from C(r) changing sign, moving to larger r . In
(b), a strong dephasing γ = 1 is present and the correlations are
short ranged, as shown by their diminishing size and extent with
increasing N .

functions, can be refined by adopting a more general measure
of correlations. Specifically, we compute the entropy46,52,61

S = −
∑

α

λ2
α log2 λ2

α (18)

of the Schmidt coefficients λα arising when the full NESS
density operator ρ is factorized into two half-chains as

ρ =
∑

α

λαOA
α OB

α , (19)

where OA
α and OB

α are Hilbert-Schmidt orthogonal operators
for the two halves. Both quantum and classical correlations
between the two halves of the chain are quantified by S,
which is readily accessible from the TEBD numerics. For
zero dephasing and weak driving, Fig. 12 shows that S

peaks at � ≈ 1. This indicates that a significant elevation
in correlations occurs as the NESS reorganizes itself across
the expected nonequilibrium phase transition between ballistic
and diffusive transport in this region.

In Fig. 12, we also show that for finite dephasing the entropy
S monotonically decreases with γ , but interestingly the peak
is maintained for moderate rates, shifting slightly to larger
�. Therefore the abrupt on-set of dephasing enhancement
shown in Fig. 10 occurs when the many-body correlations
are strongest, indicating that it is an effect that applies far
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FIG. 12. (Color online) The half-chain entropy S as a function of
� for different γ ’s, f = 0.1, and N = 40. The Schmidt coefficients
λα were normalized so the largest coefficient is λ1 = 1.

beyond the effective single-particle picture of the toy model.
This distinguishing feature in S is progressively washed out
by increasing the dephasing as the system becomes diffusive
for all �.39,53,56 Despite this, the response of the system to the
dephasing processes is seen to offer an alternative and clear
signature of the underlying nonequilibrium phase transition
between two qualitatively different steady states.

C. Enhancement and integrability

The Hamiltonian in Eq. (1) describing the full system is
integrable,58 so it could be considered that the dephasing
enhancement observed in the present work is an artifact of
this property. To show this is not the case, we obtain the NESS
of the system when adding a staggered local potential

Hs = B

N∑
j=1

(−1)jnj (20)

that breaks its integrability. For γ = 0, this has the effect of
turning the system into a diffusive conductor in the gapless
regime |�| < 1 for any driving, while not affecting the
existence of NDC at large drivings for |�| > 1.36 In Fig. 13(a),
we see that for weak interactions, dephasing monotonically
decreases the current, while for strong interactions we confirm,
for a variety of field strengths B, that dephasing-enhanced
transport occurs, as shown in Fig. 13(b). Thus the existence
of NDC and dephasing enhancement, characterizing the
nonequilibrium phase transition between weakly and strongly
interacting regimes, is independent of integrability. Both
effects arise as long as the eigenstructure of the system
possesses the features discussed in Secs. IV and V, which for
the case considered in this work is valid even if the integrability
is broken, as shown in the inset of Fig. 13(b).

From the eigenstructure of the nonintegrable system, the
most notable features of the dephasing-enhanced transport can
be understood. Namely, the increase of the optimal dephasing
rate γopt with B results from the splitting of the energy bands
due to the staggered potential, as shown in Fig. 13(b) [compare
to Fig. 6(a)]. This split emerges from different energy shifts
of the eigenstates of the system, which depend on their spatial
distribution.64 Due to the band splitting and the emergence of

FIG. 13. (Color online) The current through the system for several
staggered potential strengths B, for N = 40, f = 0.1, and � = 1,
with (a) � = 0.5 and (b) � = 2.0. Inset: energy eigenspectrum for
one (blue) and two (red) excitations of a chain of N = 20, with
staggered potential B = 2 and interaction � = 10.

new energy gaps, the states of wide bands of lowest energy
become harder to populate, so a larger energy dissipation
is required to induce transitions towards them, and thus to
enhance the transport. In addition, note that the staggered
potential also flattens all the energy bands, reducing the
conductivity through the chain.

VII. CONCLUSIONS

We have presented a detailed study of the effects of
dephasing on the transport properties of a boundary driven
one-dimensional interacting spinless fermion chain. The
appearance of a cooperative many-body NESS exhibiting NDC
at strong interactions provides a previously unexplored form
of dephasing enhanced transport, distinct in origin from earlier
examples in noninteracting systems. Using a toy model for the
very strongly interacting regime, we isolated the minimum re-
quirements for observing NDC and dephasing enhanced trans-
port. These consist of the emergence of a gapped eigenstructure
with bands of eigenstates possessing different mobility, and
the transitions between states of different bands induced by
incoherent processes. At maximal driving and no dephasing,
approximate dark states are preferentially populated, inducing
an insulating steady state. The introduction of dephasing
populates mobile bands due to energy dissipation, turning
the system into a diffusive conductor. A similar mechanism
occurs even in the linear response regime of very large systems,
leading to a significant enhancement of the current.
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While our discussion of the transport properties has been
focused on the NESS of the driven interacting system, it is also
highly relevant for transient dynamics. Specifically, since the
growth of a particle domain requires the propagation of holes
toward the left boundary, the increasing suppression of this
process in each successive particle number sector n leads to an
exponentially slow convergence to the NESS.36 The transient
current is effectively suppressed even for a small domain n > 5
and this is the physical reason why our numerical calculation
of the NESS for f = 1 is limited to relatively small systems
when γ = 0. As such, the existence of approximate dark states
|�D(n)〉 at f = 1 heavily influences the dynamics far from
stationarity and indicates that dephasing enhancement will be
significant in the transient regime as well.

For moderate dephasing, the different nature of the NESS at
weak and strong interactions was revealed by the emergence of
large correlations, and reflects an underlying nonequilibrium
phase transition in the system. As such, dephasing enhance-
ment as well as the NDC for |�| → 1 are truly many-body
phenomena. A recent study has also observed both NDC and
dephasing enhancement of heat transport in the same system
with strong interactions.60 These effects are also unrelated to
integrability, suggesting that our findings will also apply to
more realistic strongly correlated systems such as the t − J or
Hubbard models.

Dephasing enhancement is also expected to be found in
nonequilibrium systems with a different transport process. The
most important example corresponds to that of the expansion
on an initially trapped wave packet.19,20,63 Tantalizing signs of
noise induced breakup of bound states and subsequent increase
of the expansion of a strongly interacting packet have already
been observed in a recent cold-atom simulation.18 The general
enhancement mechanism predicted in the present work also
provides an explanation for this result when applied to this type
of transient dynamics. Furthermore, given the recent advances
in experiments on transport of ultracold atomic gases, the
prospects of verifying more directly both NDC and dephasing
enhancement are promising.33,34
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APPENDIX A: EXISTENCE OF AN INSULATING STATE
AT f = 1 WHEN |�| � 1

Formally, a dark state |ψ〉 of an open quantum system is a
pure state, which is simultaneously an eigenstate of the Hamil-
tonian H |ψ〉 = E|ψ〉 and a zero-eigenvalue eigenstate of all
the jump operators comprising the dissipator L(|ψ〉〈ψ |) = 0
that describes the noise acting on the system. In this section,
we show that deep in the strongly interacting limit |�|  1,
with maximal driving f = 1, as indicated in Fig. 14(a), there
exists a state |�D〉 that, as the system size N grows, becomes
exponentially close to satisfying these requirements and is

thus an approximate dark state. As described in Sec. IV, the
demonstration consists of two parts.

1. Existence of a dark state for maximal driving f = 1

As shown in Fig. 6(b), the driving scheme of the strongly
interacting limit |�| → ∞ couples the four eigenstates
|0x0〉,|0x1〉,|1x0〉,|1x1〉, establishing a quadruplet defined by
the string x. At f = 1, the states |1x0〉 become dark, of which
the n-particle domain configurations |Bn〉 play a prominent
role. Namely, for finite but large interaction |�|, they weakly
hybridize with break-away configurations, resulting in the
high-energy bound eigenstates |�D(n)〉. In Fig. 14(b), the
pattern of incoherent driving transitions and coherent hopping
for N = 4 is illustrated. Note that in this case |B2〉 = |1100〉
has no direct coherent transition to any configurations that
couple to the f = 1 driving. It only couples to the state
|1010〉, which is also a dark configuration. More generally,
so long as N � 4 and n � 2, the break-away configuration for
any domain state |Bn〉 is also a dark configuration of its own
quadruplet.

We now compute the high-order corrections to the states
|Bn〉 due to hopping to build a perturbative picture of the
bound eigenstates |�D(n)〉. Since |�|  1, it is instructive to
do this approximately by focusing on states describing a single
break-away particle or hole propagating away from the domain
wall at site n. These have the form cj c

†
k|Bn〉, where 1 � j � n

and n < k � N . Since the repeated action of hopping on |Bn〉
originates around the domain wall, and is also detuned by the
gap �, we find that hopping mixes in configurations where
the particle and/or hole have hopped x times in total, with
an amplitude scaling as O(|2�|−x). This indicates that the
particle/hole propagation through the empty/unit-filled regions
is suppressed with its distance from the domain wall. For
each n, the eigenstate |�D(n)〉 is therefore predicted by this
particle-hole (ph) picture to have a domain wall that remains
exponentially localized at site n, within a length scale ξ ∼
1/ ln(|2�|),36 and a deviation δn(j ) from the perfect domain
configuration |Bn〉 given by

δph
n (j ) =

{(
1

|2�|
)2(n−j+1)

, 1 � j � n,(
1

|2�|
)2(j−n)

, n < j � N.
(A1)

The validity of this picture is established by comparing this
to the actual density deviation δn(j ) of the exact eigenstate
|�D(n)〉. In Fig. 15, this is done for |�D(N/2)〉 with N = 12
and � = 10, and the agreement between δn(j ) and δ

ph
n (j ) is

seen to be excellent everywhere but the boundaries.
Since hopping predominately connects |Bn〉 with dark

configurations of the form |1x0〉, the leading order contribution
to the amplitude in |�D(n)〉 for a configuration that is not dark
is O(|�|−min(n,|n−N/2|)). This corresponds to whether the hole
or particle has the shortest path to the left or right boundary,
respectively. In the |�|  1 limit, we therefore conclude that
the eigenstates |�D(n)〉, with 0 � n � N/2, form a hierarchy
of states with n, characterized by a decreasing amplitude for
any configuration to be coupled to the f = 1 boundary driving.
Eigenstates |�D(n)〉 with a domain size n scaling with N thus
become exponentially close to being zero eigenstates of the
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FIG. 14. (Color online) (a) A schematic of the system, showing the coherent hopping τ , the nearest-neighbor density-density interaction
�, dephasing γ , and the incoherent boundary driving in the strong driving limit f = 1 where the bias is maximal. In this case, the driving
incoherently pumps particles into the system at site 1 and ejects them at site N , both at a rate �. (b) For N = 4 sites and f = 1, the complete
set of driving quadruplets and the transitions induced by coherent hopping between them from the half-filled domain state |1100〉 is shown. The
vertical axis displays the particle number sectors and energy gaps between configurations. We observe that for N = 4 one hop connects |1100〉
to |1010〉, which is a dark configuration of its quadruplet, and a further hop is needed before it is coherently connected to a configuration that
is not dark to the f = 1 driving. This disconnection between the half-filled domain configuration and the driving only occurs for N � 4, and
so this is the smallest size that displays NDC.

f = 1 driving with increasing system size. Of these states,
the one with n = N/2, where the domain spans exactly half the
chain, has the most suppressed coupling O(|�|−N/2) to the
driving and is thus the closest approximation of all of them

FIG. 15. (Color online) For the eigenstate |�D(6)〉 for N = 12
and � = 10, the exact density deviation δn(j ) from the corresponding
boundary domain configuration |Bn〉 is shown (�), along with δph

n (j )
predicted by considering single particle/hole propagation (solid line).
The inset shows a schematic of the expected exponential localization
of the domain wall.

to an exact dark state. Now we show that this is precisely the
state preferentially populated by the driving process.

2. Structure of the NESS in the |�| � 1 limit

The open dynamics of particle number conserving systems
like that considered here have been studied extensively36,45

with regard to their ergodic and mixing properties, and it has
been established that a unique NESS exists for any f . The key
property ensuring this is that for a finite hopping amplitude
every configuration within each particle number sector can be
reached from any other, while the incoherent ejection/injection
of particles by the driving connects neighboring sectors. As a
result, the complete state space of the system can be accessed.
Furthermore, the NESS for this open system will be block
diagonal in the number sectors. At f = 1, the approximate
dark states |�D(n)〉 for each sector n are expected to play a
prominent role due to their ability to trap population. This
can be better understood by approximating the NESS as a
statistical mixture, with probabilities pn, of these eigenstates
in each sector as

ρ =
N∑

n=0

pn|�D(n)〉〈�D(n) |. (A2)
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FIG. 16. (Color online) (a) The probability pn on a logarithmic
scale of the NESS ρ occupying the n particle sector is shown for an
exact calculation (�) for N = 6 and � = 10, and the predicted form
(solid line) given in Eq. (A4). (b) The purity 1 − tr(ρ2) against � of
the NESS ρ on a logarithmic scale for an exact calculation (×) for
N = 6 and the predicted form (solid line) given in Eq. (A5). The inset
shows a schematic of the detailed balance approximation applied to
compute these predictions.

The purity of the NESS in this approximation, tr(ρ2) =∑N
n=0 p2

n, is reduced only through mixing between sectors.
The probabilities pn are then determined by demanding
that at stationarity there is a detailed balance condition
between the incoherent transition rates connecting neigh-
boring number sectors [see inset of Fig. 16(b)]. For sector
n, assumed to be frozen in the state |�D(n)〉, the output
transition rates scale with the probability of a hole being
at the left boundary as �〈�D(n)|c1c

†
1|�D(n)〉 ∼ �|2�|−2n,

and the probability of a particle being at the right boundary
as �〈�D(n) |c†NcN |�D(n)〉 ∼ �|2�|−2(N−n). Considering sec-
tors n − 1, n and n + 1 we then have the equality of incoming
and outgoing transitions in n as

pn

[(
1

|2�|
)2n

+
(

1

|2�|
)2(N−n)]

= pn−1

(
1

|2�|
)2(n−1)

+ pn+1

(
1

|2�|
)2(N−n−1)

. (A3)

These equations are solved inwards from the extremal
n = 0 and n = N sectors, where |�D(0)〉 = |00 . . . 00〉 and
|�D(N )〉 = |11 . . . 11〉, to give

pn = p

(
1

|2�|
)2|n−N/2|2

, (A4)

for n = 0,1, . . . ,N and where p = pN/2 is fixed by the
normalization condition

∑N
n=0 pn = 1. In Fig. 16(a), these

predicted probabilities of occupation for each sector n are
plotted against the exact values for the NESS with N = 6 and
� = 10 and found to yield excellent agreement aside from the
extremal sectors. Owing to the hierarchy of approximate dark
states, this indicates that the NESS will be predominately a
mixture of |�D(n)〉 peaked around the “best” dark state with
n = N/2. This result also predicts that to lowest order in |�|−1,
the purity of ρ is given by

tr(ρ2) ≈ p2
N/2 ≈ 1 − 1

|�|2 + · · · , (A5)

which is independent of the size of the system. In Fig. 16(b),
this prediction is plotted against the exact value of 1 − tr(ρ2)
of the NESS for N = 6 as a function of �, again showing
excellent agreement even as � → 1.

APPENDIX B: EQUIVALENCE OF DEPHASING
AND DRIVING EFFECTS IN THE TOY MODEL

AT LARGE DRIVING

The correspondence between a slight increase of dephasing
from zero and a slight decrease of the driving f from unity,
indicated in Eq. (16), is confirmed in Fig. 17(a) in an exact
calculation for the toy model with K = 20. This equivalence
is understood by considering the mean backward flow process
introduced when driving slightly below f = 1. In this limit,
the rate of driving from |K〉 → |s〉 taking the state out of
|�D〉 is given by 1

2 (1 − f )� and therefore slow. In contrast the
rate of driving |s〉 → |K〉 back is 1

2 (1 + f )�, and therefore
rapid. Focusing on the dynamics of these two driving processes

FIG. 17. (Color online) (a) The NESS current 〈J 〉, rescaled by �2,
for K = 20 is shown as a function of the driving f and dephasing
γ zoomed in around the limit f = 1, γ = 0 insulating point [see
Fig. 8(a)]. The behavior at f = 1 with γ is emphasized by the
additional (red) line. (b) In the strong driving limit f ∼ 1, the −

R

process |K〉 → |s〉 occurs at a rate ∝ (1 − f ) � 1 making it slow (as
indicated by being faded out), while the +

R process |s〉 → |K〉 occurs
at a rate ∝ f ≈ 1 and so is rapid. The dominant driving process is
therefore |K〉 → |s〉 → |K〉, which has the effect of destroying any
coherence |K〉 has with other states, such as |K − 1〉.
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alone, as in Fig. 17(b), we suppose that the initial state of the
system over the configurations |s〉,|K − 1〉, and |K〉 has the
form

ρ(0) =

⎛
⎜⎝ 0 0 0

0 ρK−1(0) ρK−1,K (0)

0 ρ∗
K−1,K (0) ρK (0)

⎞
⎟⎠ , (B1)

where there is some coherence between |K − 1〉 and |K〉, but
no population initially in |s〉. Evolving this state according
only to these driving processes yields solutions

ρs(t) = 1
2 (1 − f )�(1 − e−�t )ρK (0),

ρK (t) = e−�tρK (0) + 1
2 (1 + f )�(1 − e−�t )ρK (0),

(B2)
ρK−1(t) = ρK−1(0),

ρK−1,K (t) = e
− 1

4 (1−f )�t
ρK−1,K (0).

We therefore find that for the populations, the sta-
tionary t → ∞ limit is approached at a rate � to

give

ρs(∞) = 1
2 (1 − f )�ρK (0),

(B3)
ρK (∞) = 1

2 (1 + f )�ρK (0),

while the coherence ρK−1,K (t) decays exponentially to zero
at a rate 1

4 (1 − f )�. Now, by considering only the dephasing
process, we instead find that the populations are unchanged
while the coherence decays as

ρK−1,K (t) = e−2γ tρK−1,K (0). (B4)

Matching of these decoherence rates again yields Eq. (16). We
therefore conclude that the emergence of a nonzero current
when reducing f from unity is, to leading order, caused by the
resulting decoherence of the dark state |�D〉, identical to the
effect of dephasing alone. This behavior with f around f = 1,
combined with 〈J 〉 = 0 at f = 0 and the continuity of 〈J 〉
with f , is already enough to imply that NDC behavior will be
observed in the current-driving profile. Thus NDC and dephas-
ing enhancement are underpinned by the same mechanism.
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54X. Zotos, F. Naef, and P. Prelovšek, Phys. Rev. B 55, 11029 (1997).
55T. Prosen, Phys. Rev. Lett. 107, 137201 (2011).
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