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Beyond mean-field bistability in driven-dissipative lattices: Bunching-antibunching
transition and quantum simulation
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In the present work we investigate the existence of multiple nonequilibrium steady states in a coherently driven
XY lattice of dissipative two-level systems. A commonly used mean-field ansatz, in which spatial correlations
are neglected, predicts a bistable behavior with a sharp shift between low- and high-density states. In contrast
one-dimensional matrix product methods reveal these effects to be artifacts of the mean-field approach, with both
disappearing once correlations are taken fully into account. Instead, a bunching-antibunching transition emerges.
This indicates that alternative approaches should be considered for higher spatial dimensions, where classical
simulations are currently infeasible. Thus we propose a circuit QED quantum simulator implementable with
current technology to enable an experimental investigation of the model considered.
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I. INTRODUCTION

Nonequilibrium steady states (NESSs) of driven-dissipative
many-body quantum systems are of increasing interest, both
theoretically and experimentally, due to their potentially
strong response to external changes in technologically relevant
contexts. For example, intense research has been recently
performed on quantum transport through nanoscale systems
driven at their boundaries. For molecular or quantum dot
junctions, predictions of correlation-induced current oscilla-
tions and current-voltage bistability have been made [1–3],
while for spin chains sharp changes in magnetic conductance
are expected due to a nonequilibrium phase transition [4–8].
Other interesting examples include recent studies of remnants
of equilibrium phase transitions in dissipative settings [9–14],
repulsively induced photon superbunching [15], and potential
supersolid phases in driven resonator arrays [16]. A rigorous
study of these open nonequilibrium quantum systems is
very challenging, particularly in high dimensions, given the
exponential growth of the associated Hilbert space, which
prohibits direct classical simulation. So a natural question
is whether their physics can be correctly determined from
approximate schemes with reasonable computational cost.

A frequently used method of describing interacting quan-
tum lattice systems is to employ a mean-field product ansatz,
in which spatial correlations are neglected. In equilibrium this
approach can often yield qualitatively correct features such
as the presence of phase transitions, although it can fail to
correctly identify the exact location and critical exponents,
especially in low dimensions [17,18]. For nonequilibrium
systems the situation is quite different. Even though mean-field
calculations offer a first step to help uncover the intricate
dynamics taking place and have been used in several recent
studies of driven-dissipative models [9–12,19–28], it is not
clear that they can provide even a qualitatively correct physical

description. Furthermore, reasoning based on the Ginzburg
criterion, according to which equilibrium critical phenomena
are correctly described by mean-field theory above a critical
spatial dimension [17], cannot be relied upon in nonequilib-
rium settings. This has motivated the recent development of
several new methods to analyze driven-dissipative models,
namely, the self-consistent Mori projector technique [29], a
variational minimization calculation [30–32], a corner-space
renormalization [33], and algorithms based on matrix product
operators (MPOs) for one-dimensional lattices [34,35].

A notable effect predicted by mean-field descriptions of
driven-dissipative models is that of bistability [19–26]. Here
the existence of two distinct NESSs is observed in a particular
parameter regime, with the actual state obtained depending
on the history of the system. However, it is usually expected
for systems described by a Lindblad master equation [36,37],
such as those featuring mean-field bistability [20–26], to have
a unique NESS [29,38]. This raises the question of whether this
bistability is physical or an artifact of the mean-field approxi-
mation, originating from the effective nonlinearity introduced
by self-consistently factorizing the long-range correlations. In
fact, recent studies have found that the bistability is washed
out when correlations are taken into account [29–31,39].
The impact of long-range correlations, however, is still not
clear [40], and interesting effects that might emerge are yet to
be uncovered.

Since bistability is a basic and ubiquitous feature of
driven nonlinear systems [41], in this paper we examine
in detail whether multiple NESSs exist in a dissipative
coherently driven quantum lattice system. In particular, we
contrast predictions from mean-field analysis with results
from tensor network theory (TNT) methods in one spatial
dimension [42,43], in which states are described by a matrix
product ansatz. These calculations show that as long-range
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correlations are progressively handled more exactly, a single
NESS emerges. In its place a bunching-antibunching transition
is found. This points to major qualitative errors in describing
driven-dissipative interacting systems if these correlations are
neglected. Also, given the formidable challenge to classically
simulate such open quantum lattices, even using sophisticated
TNT methods [44–52], obtaining sound insight into the
physics of these systems without uncontrolled approximations
necessitates experimental realization and verification. Thus
we also discuss how a quantum simulation of the model
considered here in higher spatial dimensions could be imple-
mented using current circuit quantum electrodynamics (QED)
technology. This would also allow experimentalists to confirm
our predictions for one-dimensional (1D) systems.

This paper is organized as follows. In Sec. II we describe the
driven-dissipative model to be considered. In Sec. III we show
the bistable behavior resulting from mean-field calculations of
the NESS. In Sec. IV we discuss the impact of correlations
in one-dimensional lattices, namely, the breaking of the
bistability and the emergence of a bunching-antibunching
transition. In Sec. V we describe a possible experimental
implementation based on transmon qubits in circuit QED.
Finally, we present our conclusions in Sec. VI.

II. DRIVEN-DISSIPATIVE LATTICE MODEL

In this work we restrict our attention to a concrete minimal
model which nevertheless possesses features common to more
complex quantum lattice models. Specifically, we consider a
lattice of two-level systems (TLSs), each one with an upper
level |1〉 and a lower level |0〉, featuring coherent hopping
linking adjacent sites, bulk coherent driving, and incoherent
loss processes. The model is schematically shown in Fig. 1.

The TLSs are described by Pauli transition matrices σ±
j and

an external driving field detuned by � from the TLS resonance.
In a frame rotating with the driving field the Hamiltonian
is (� = 1)

H =
∑

j

[�σ+
j σ̂−

j + �(σ+
j + σ−

j )] − J
∑
〈j,j ′〉

σ+
j σ−

j ′ . (1)

Here J is the coherent tunneling amplitude between neighbor-
ing TLSs, and � is the Rabi frequency of the driving field. The
index j runs over the discrete lattice sites, and 〈j,j ′〉 denotes
the set of nearest neighbors. Since the hopping term can be
rewritten as a coupling of XY type, this is known as the XY

Hamiltonian.

FIG. 1. A schematic of the generalized XY model showing three
adjacent sites of a one-dimensional chain. Each site j contains a TLS
which is coherently coupled to its z (=2 for 1D) nearest neighbors
with amplitude J . Circular red arrows represent coherent driving �,
while the dashed vertical lines depict the dissipation γ .

Finally, we incorporate a generic local loss term γ which
acts to incoherently deexcite the upper level |1〉 of each TLS
to its lower level |0〉. The evolution of the total system density
matrix ρ is then described by a quantum master equation ρ̇ =
L[ρ] in Lindblad form, where

L[ρ] = 1

i
[H,ρ] + γ

2

∑
j

(2σ−
j ρσ+

j − σ+
j σ−

j ρ − ρσ+
j σ−

j ).

(2)
A NESS ρNESS of the system satisfies L[ρNESS] = 0, and all
observables O are measured with respect to this state, so
〈O〉 ≡ Tr(OρNESS). We also note that our calculations are
performed with open boundary conditions. Thus the system
does not satisfy translational invariance but is symmetric with
respect to its center [53]. In addition, we have verified that our
results remain essentially unchanged when considering system
sizes larger than those used in the calculations discussed in
this paper.

III. MEAN-FIELD APPROACH

We start by discussing the physics of the driven-dissipative
system resulting from a single-site mean-field analysis. This
can be done by means of two different methods, namely, by
obtaining the NESS of the system through a simulation of the
mean-field master equation and by performing a Monte Carlo
wave-function calculation [36,37,54,55] in the mean-field
approximation. We now show that both methods indicate the
existence of bistable behavior for one- and two-dimensional
lattices.

A. Product density matrix solution

Initially, we assume that for every time t , the density matrix
of a driven-dissipative XY lattice of N sites can be factorized
in the form

ρ(t) =
N⊗

j=1

ρj (t). (3)

This mean-field ansatz captures the local physics but neglects
all classical and quantum intersite correlations. When inserting
this approximation into the master equation (2), as described in
Appendix A, we obtain that the coherent dynamics of each TLS
is governed by an effective mean-field (mf) local Hamiltonian.
For site j this is given by

Hmf
j = �σ+

j σ−
j + �jσ

+
j + �∗

j σ
−
j , (4)

where the nearest-neighbor hopping is effectively taken into
account by modified site-dependent coherent driving ampli-
tudes

�j = � − J
∑
j ′

〈σ−
j ′ 〉, (5)

with the sums performed over the sites j ′ coupled to site
j . Thus the equation of motion of each TLS [see Eqs. (A6)
and (A7)] becomes dependent on expectation values of neigh-
boring sites, leading to nonlinear dynamics. The corresponding
NESS is obtained by performing the time evolution for
a particular initial state ρ(0) in the long-time limit, until
convergence is reached.
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FIG. 2. (a) Density profiles of the one-dimensional driven-
dissipative model for different values of �/γ and the R-L sweep.
The results correspond to J/γ = 2, �/γ = 1, and N = 61. (b)
Exponential decay of oscillations in the low-density regime. The
colors and line types correspond to the same parameters as in (a). The
symbols correspond to the results of the simulations, and the lines
correspond to the fits to Eq. (6). For �/γ = −0.5, A = 0.08(2),
φ = −7.9(2), r = 7.0(8), and k = 1.73(2). For �/γ = 0.2, A =
−0.11(2), φ = −12.6(2), r = 5.6(3), and k = 1.48(1).

It is usually expected that in the absence of very particular
symmetries [56], an open system governed by a Lindblad
master equation such as Eq. (2) relaxes to a unique NESS,
independent of the initial state [6,29,38]. However, as reported
in previous mean-field studies of driven-dissipative mod-
els [20–26], a bistable behavior emerges in certain parameter
regimes, corresponding to the existence of two different stable
NESSs. Whether the systems relax to one or the other NESS
depends on which domain of attraction the initial condition
lies in.

To verify whether the system under consideration features
a bistable behavior, we proceed as follows. First, for a
one-dimensional lattice with fixed values of J , �, and γ , we
take a detuning value �0 such that �0/γ � 1 and obtain
its NESS for different random initial states. After verifying
that such a NESS is unique, we use it as the initial state for
the calculations of detuning values � < �0, sweeping from
higher to lower values of �; this is the right to left (R-L)
sweep. Subsequently, we perform a similar sweep process
but in the opposite direction. Thus we take a new detuning
�0/γ < 0 whose unique NESS serves as the initial state for
simulations of values of � > �0; this is the left to right (L-R)
sweep. A bistable zone is manifested as a parameter regime

FIG. 3. (a) Hysteresis of the central-site density 〈nc〉 as a function
of �/γ for the one-dimensional lattice. The results correspond
to J/γ = 2, �/γ = 1, and N = 61. (b) Bistable regions in the
(�/γ,J/γ ) plane for different values of �/γ . The vertical dashed
line indicates the bistable region depicted in (a).

where the solutions of the two sweeps are different, i.e., a
hysteresis region.

We first discuss the results for the R-L sweep. In Fig. 2(a)
we show the corresponding local densities 〈nj 〉 = 〈σ+

j σ−
j 〉

for all sites j and different values of �/γ . Here we can
already observe two qualitatively different types of NESS.
For �/γ > (�/γ )c ≈ 0.28, the state corresponds to a flat
high-density configuration. On the other hand, for �/γ <

(�/γ )c, the bulk of the lattice is in a low-density state, which,
as depicted in Fig. 2(b), shows density oscillations δnj that
decay exponentially towards the bulk density average n̄, in
the form

δnj ≡ nj − n̄ = Ae−j/r sin(kj + φ). (6)

Notably, as shown in Fig. 3(a) for the central site (i.e., for
site j = 	N/2
, with density 〈nc〉), the shift from the low-
to the high-density NESS taking place at the critical value
(�/γ )c is very sharp.

For the L-R sweep similar results are obtained, with
an important difference. Namely, as shown in Fig. 3(a), a
different critical value for the sharp shift between the low-
and high-density regimes is found, (�/γ )c ≈ 0.40. Thus the
mean-field treatment of the driven-dissipative model suggests
the existence of bistable behavior. In Fig. 3(b) we depict the
bistability zones for a wider parameter regime, i.e., for different
driving amplitudes �/γ in the (�/γ,J/γ ) plane. These zones
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FIG. 4. (a) Density profiles of the two-dimensional driven-
dissipative model for J/γ = 2, �/γ = 1, an 8 × 8 lattice (N = 64),
and the R-L sweep. The low-density profile corresponds to �/γ =
0.7, and the high-density regime corresponds to �/γ = 0.8. (b)
Density 〈nc〉 for a central site of the lattice, the L-R and R-L sweeps,
and the same parameters as in (a) as a function of �/γ , indicating
hysteresis. For the R-L sweep the critical detuning separating the low-
and high-density regimes is (�/γ )c = 0.73, while for the L-R sweep
it is (�/γ )c = 1.22.

have trianglelike shapes and become broader and shift to lower
�/γ for larger values of �.

Similar physics is obtained for two-dimensional (2D)
lattices. As shown in Fig. 4(a), the density profiles 〈nj,k〉 =
〈σ+

j,kσ
−
j,k〉 for all pairs of sites (j,k) indicate the existence of two

distinct nonequilibrium phases of the driven-dissipative model:
a high-density NESS with a flat profile and a low-density NESS
with decaying oscillations towards the center of the lattice. In
addition, as depicted in Fig. 4(b), the location of the sharp shift
between both types of states depends on the direction of the
parameter sweep, indicating bistable behavior.

B. Monte Carlo wave-function approach

An alternative way to study an open quantum system
described by a Lindblad master equation of the form (2)
corresponds to a Monte Carlo–type calculation. Here instead of
time evolving the density operator of the lattice, the evolution
of several independent realizations (or trajectories) of the
system is performed, each described by a pure state. Due to
the dissipative processes from the environmental coupling,
the evolution in each trajectory is governed by a modified
Hamiltonian, and at random times quantum jumps describing
such a coupling are applied to the lattice. Finally, expectation

FIG. 5. Distribution of central populations 〈nc〉 obtained from
each time-averaged trajectory as a function of �/γ for J/γ = 2 and
�/γ = 1, and averaged over Ntraj = 1000 trajectories (black solid
lines). (a) Results for a one-dimensional lattice of N = 61 sites. (b)
Results for a two-dimensional 8 × 8 lattice of N = 64.

values are obtained by performing averages over the sample
of simulated trajectories. This technique is well known in the
quantum optics community and is described in detail in several
studies (e.g., see [36,37,54,55,57]).

To perform a mean-field Monte Carlo wave-function
calculation, we simply assume that at every time the pure
state of each realization is a product. Namely, for trajectory r

the state for a lattice of N sites is

|	(r)(t)〉 = ∣∣ψ (r)
1 (t)

〉 ⊗ ∣∣ψ (r)
2 (t)

〉 ⊗ · · · ⊗ ∣∣ψ (r)
N (t)

〉
. (7)

First, we take a random product of the latter form as the initial
state of each trajectory. Then we perform the time evolution
as described in Appendix B for long-enough times to obtain
the NESS of the system. In our particular case, we evolved for
a total time of T = 200/γ , with a time step δt = 2 × 10−3.
Finally, we obtain the NESS expectation values of interest
by performing an average over a sample of Ntraj = 1000
trajectories. To further smoothen the results, we also average
over the final 30% of time steps.

The resulting distribution of time-averaged populations
〈nc〉 for a central site is depicted in Fig. 5 for both one-
and two-dimensional lattices and the parameters of Figs. 3(a)
and 4(b). In addition, we show on top the average value over all
trajectories (black solid lines). We observe in both cases that
close to the L-R shift of the product density matrix solution,
the distributions are centered around two distinct population
values for the same detuning �/γ . Thus the mean-field
trajectory simulations also indicate the existence of bistability
in the driven-dissipative model.

Note, however, that the bistable regimes obtained from
the product-state Monte Carlo approach are notably more
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narrow than those shown in Sec. III A. In particular, for the
two-dimensional case the hysteresis zone has collapsed into
a very narrow �/γ regime, located at the L-R shift of the
product density matrix solution. This is because the methods,
although corresponding to a mean-field approximation, are not
equivalent. In particular, each individual trajectory |	(r)(t)〉
leads to a contribution |	(r)(t)〉〈	(r)(t)| to the density matrix
of the system, which does not have any classical or quantum
correlations. However, by averaging over all Ntraj trajectories
and NT contributions at times tl from each trajectory, we are
formally describing the NESS of the system by the density
matrix of the form

ρ ∝
∑
r,�

|	(r)(t�)〉〈	(r)(t�)|, (8)

which does not have a product form as in Eq. (3). Thus in
the product density matrix approach all spatial correlations
are neglected, while the mean-field trajectory approach fully
discards entanglement while retaining other types of correla-
tions [58]. As seen in Fig. 5, this already has a strong impact on
the NESS of the driven-dissipative model. It is then natural to
ask whether considering more correlations might eventually
suppress the bistable response completely. This question is
addressed in Sec. IV by including long-range correlations in
the description of the system.

IV. MATRIX PRODUCT DESCRIPTION

After analyzing the bistability featured by the mean-
field driven-dissipative XY model, we wish to determine
whether such a behavior is maintained when spatial quantum
correlations are taken into account or if it is an artifact
of the nonlinearity induced by the mean-field description.
Furthermore, we expect to observe whether other interesting
effects emerge due to these correlations.

To assess the effect of retaining correlations, we employ an
MPO description [42–44] of the NESS ρ for one-dimensional
systems. This approach gives an approximate way to account
for quantum and classical correlations in the NESS. Intuitively,
the parameter χ controlling the size of the MPO matrices gives
a measure of the intersite correlations, of either classical or
quantum origin, so highly correlated states require a larger
χ for an accurate description. In the extreme case χ = 1 the
MPO reduces to the mean-field product ansatz of Eq. (3). By
solving the NESS with increasing χ we connect the mean-
field approximation with the formally exact but unobtainable
limit χ → ∞. For each χ considered, the corresponding MPO
density matrix is efficiently evolved in time under Eq. (2) using
the time-evolving block decimation algorithm [42–44], where
the NESS is obtained by taking the large time limit. We also
perform Monte Carlo wave-function simulations, where each
quantum trajectory is calculated within a matrix product state
(MPS) description [45,46]. Our implementation of both these
methods is based on the open-source Tensor Network Theory
(TNT) library [47].

A. Disappearance of mean-field bistability

First, we observe what happens to the bistable behavior
when increasing the value of χ in the MPO description of the

FIG. 6. (a) Central site density 〈nc〉 as a function of �/γ for
different scenarios, namely, L-R and R-L sweeps for the MPO
approach with χ = 1 (i.e., mean field) and χ = 5, a single sweep
for χ = 11,50,100,200 (where the latter three coincide), and a
trajectory simulation for χ̃ = 50. For the latter, a time average was
performed over the final 80% of the total time of evolution, for
which convergence was verified. The results correspond to J/γ = 2,
�/γ = 1, and N = 61. (b) Density profiles for MPOs with χ = 200
for the same values of �/γ of Fig. 2(a).

NESS. As shown in Fig. 6(a) for the central density 〈nc〉,
a significant change occurs with respect to the mean-field
results when taking χ = 5, where just a small amount of
correlation is retained across the system. Even though the
bistability is still present, it shifts towards larger values of
�/γ , and the high-density regime is notably lower than its
mean-field counterpart. Also, the bistability extends over a
wider range of �/γ values, which might initially suggest that
the bistable behavior is strengthened by correlations. However,
taking larger values of χ shows that this is not the case. In fact,
for χ = 11 we find that the L-R and R-L sweeps give identical
NESSs, so the bistable behavior has already disappeared. In
addition, the shift from the low- to the high-density regime
is no longer sharp [59]. Further increases of χ improve the
NESS, smoothening the shift between the two density regimes.
Finally, from χ ≈ 50 the NESS remains essentially unchanged
with increasing χ . This is indicated in Fig. 6(a) for the central
density and also for the density profiles in Fig. 6(b), where
the results for χ = 50,100,200 coincide. A similarity to the
mean-field limit remains, however, which can be seen when
comparing Fig. 2(a) with Fig. 6(b). Namely, the high-density
regimes also have flat profiles, while the low-density case
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shows density oscillations that decay when approaching the
center of the lattice.

To provide more support to our results, we also obtain
the NESS properties of the system from a Monte Carlo
wave-function approach. In this case we represent the wave
function of each independent trajectory by a MPS with
maximum matrix size χ̃ limiting the corresponding amount of
quantum entanglement. For each value of �/γ considered we
simulated at least ten trajectories. To smoothen the results we
also averaged over several hundreds of time steps, resulting in
an effective average over thousands of trajectories. As shown
in Fig. 6(a), densities for χ̃ = 50 already agree with those
of χ � 50 for a MPO description of the density matrix and
thus further confirm that the bistability is broken when enough
correlations are taken into account.

In summary, we have shown that the physics of the
driven-dissipative system obtained from mean-field theory is
qualitatively wrong, with the bistability being an artifact of the
nonlinearity induced by the ansatz of Eq. (3). When a MPO or
a quantum trajectory MPS description of the NESS are used
with large values of χ and the calculation becomes formally
closer to the exact result, the bistability and sharp shift between
low- and high-density regimes are washed out by correlations.

B. Correlations and bunching-antibunching transition

Now we show that a new interesting property, not captured
by mean-field approaches, emerges in the driven-dissipative
system when correlations are taken into account. For this we
consider the normalized correlations [60]

C(j,r) =
〈
σ z

j σ z
j+r

〉
〈
σ z

j

〉〈
σ z

j+r

〉 , (9)

which tend to 1 in the mean-field limit. In Fig. 7(a) we show the
correlations around the center of the system (i.e., for site j =
	N/2
), simply denoted as C(r), for r = 1,2,3,4 and χ = 200
as a function of �/γ . We have verified that the same results
are obtained for correlations centered around any other site in
the bulk of the chain.

First note that, as expected, the normalized correlations
tend to the mean-field limit as � becomes the dominant
energy scale in the system. Additionally, for r > 1, they always
remain above unity and decrease monotonically as r increases.
However, the most important observation corresponds to the
correlations C(1), which as depicted in Fig. 7(a) cross unity
at �/γ = 0.91. This indicates a transition from a regime
in which neighboring excitations tend to cluster together
(�/γ < 0.91) to a configuration where the existence of such
clusters is disfavored and excitations tend to spread out
(�/γ > 0.91). In other words, our simulations show that the
system features a bunching-antibunching transition. As �/γ

increases C(1) continues decreasing until �/γ = 1.94, where
it reaches its minimum value. Then C(1) grows again towards
the mean-field limit, as �/γ becomes very large.

Finally, we calculate an alternative quantity which measures
the amount of both classical and quantum correlations, namely,
the entropy [6,7]

S = −
∑

α

λ2
α log2 λ2

α, (10)

FIG. 7. (a) Two-site correlations C(r) from the central site of the
system and r = 1,2,3,4 as a function of �/γ for J/γ = 2, �/γ =
1, N = 61, and χ = 200. (b) Entropy S and first derivative of the
nearest-neighbor normalized correlation C(1) with respect to �/γ .
The locations of the maximum S and minimum δC(1) were obtained
by fitting the surrounding hill and valley to quadratic functions. In
both panels the vertical line indicates the point of fastest decay of
correlations C(1).

calculated from the Schmidt coefficients λα which result when
the full NESS density matrix ρ is factorized into two half
chains as

ρ =
∑

α

λαOA
α OB

α (11)

and normalized so the first coefficient is λ1 = 1. Note that
for the mean-field product density matrix S = 0. In Fig. 7(b)
we show the entropy, together with the first derivative of
the nearest-neighbor normalized correlation C(1) with respect
to �/γ , denoted as δC(1). The maximal entropy occurs at
�/γ = 1.19, which is very close to the point of fastest decay of
C(1), namely, at �/γ = 1.15. This correspondence between
maximal entropy and fastest immersion within the antibunched
phase indicates that the transition is indeed a strong-correlation
effect.

V. PHYSICAL IMPLEMENTATION IN CIRCUIT QED

We have shown that in 1D the bistability observed in a
mean-field description of the driven-dissipative XY model
is broken when enough correlations are taken into account.
This result agrees with previous calculations based on TNT
methods and on a recently proposed technique which intro-
duces correlations among neighboring sites of the lattice [29].
In addition, we have shown that a bunching-antibunching
transition emerges instead. However, the physics in higher
dimensions is not fully understood. First, unlike equilibrium
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systems, there is no reason to believe that mean-field theory
will be more accurate despite the higher coordination num-
ber. Second, in spite of important recent developments in
TNT methods for studying two-dimensional quantum lattices
[48–50,61–63], classical simulations of sufficiently large
driven open quantum systems to meaningfully compare results
to mean-field theory are currently out of reach. Our mean-field
Monte Carlo calculations in 2D driven-dissipative lattices
already indicate a large impact of the retained correlations on
the bistable behavior. Moreover, the methods of Refs. [29,30]
indicate that beyond mean field, correlations among neighbors
break the bistability in 2D; however, determining the impact
of long-range correlations is beyond their capabilities. Thus,
gaining key insight into driven-dissipative quantum systems
by determining their behavior in higher dimensions is a com-
pelling reason to instead develop a quantum simulator [64–66].
In addition, this would provide an experimental setup to
confirm the one-dimensional effects discussed in Sec. IV
and to explore other interesting effects found in correlated
driven-dissipative models such as dynamic hysteresis [67].
In the following we propose a platform for this quantum
simulator, accessible using current technology.

A. Circuit QED with transmon qubits

Circuit QED [68–70], which involves the interaction be-
tween on-chip coplanar waveguides resonators (CWR) and su-
perconducting qubits made of Josephson junctions, represents
a prime candidate to simulating many-body physics [71–76].
Furthermore, recent experimental achievements may pave the
way to the implementation of complex and scalable arrays
of superconducting circuits [77]. In this sense, one could
implement driven-dissipative many-body dynamics by means
of an array of several transmon qubits [78] coupled to CWR, as
depicted in Fig. 8(a). Here, each coplanar waveguide resonator

FIG. 8. (a) Circuit QED configuration that involves an array of
transmon qubits and coplanar waveguide resonators (cavities). Each
horizontal cavity (blue or red) is coupled to two transmon qubits
via electrostatic interaction. In addition, each transmon is coupled
to an additional cavity (green, vertically oriented) for manipulating
and readout of the transmon state. (b) Spatial distribution of the first
electromagnetic mode supported by an extended superconducting
cavity. (c) Spatial distribution of the second electromagnetic mode.

or cavity (blue or red, horizontally oriented) interacts via
electrostatic energy with two transmon qubits, and there is
no direct transmon-transmon interaction. In addition, each
transmon is coupled to an additional cavity (green, vertically
oriented) which is used to manipulate the qubit state via
classical microwaves, as well as qubit readout. In what follows,
we present the basic tools to simulating the ferromagnetic or
antiferromagnetic XY model.

First, each CWR represents an extended superconducting
device which supports a discrete number of electromagnetic
modes determined by specific boundary conditions. In our
case, we need open boundary conditions such that the voltage
distribution at the cavity edges is a maximum. The quantization
of an extended cavity can be found elsewhere [79], so we will
present the main results. The CWR can be described by the
voltage distribution

V (x,t) = i
∑

n

(
�ωn

2Cr

)1/2

(a†
n − an)un(x), (12)

where an (a†
n) is the annihilation (creation) bosonic operator,

ωn is the nth cavity frequency, and Cr is the total capacitance of
the cavity. The eigenfunction un(x) = An cos(knx) takes into
account the spatial distribution of the cavity with wave vectors
defined by kn = nπ/L (n ∈ Z+), and L is the cavity length.
The spatial distributions for the first (n = 1) and second (n =
2) cavity modes are shown in Figs. 8(b) and 8(c), respectively.

Second, the electrostatic interaction between a transmon
and a coplanar waveguide resonator reads [78]

Hint = 2eβn̂V (x,t), (13)

where e is the electron charge, β is a dimensionless parameter,
and n̂ is the Cooper-pair number in the superconducting island
which defines the transmon device. Because of the slight
anharmonicity of the transmon spectrum [78], we can control
and define a TLS or qubit interacting with a single mode of the
electromagnetic field via the Jaynes-Cummings interaction

H = ω0σ
+σ− + ωa†a + g(σ+a + σ−a†). (14)

Notice that the sign of the qubit-cavity coupling strength g

depends on the position of the transmon along the cavity and
the specific mode that we choose to work with [see Figs. 8(b)
and 8(c)]. This is our starting point for the simulation of the
ferromagnetic or antiferromagnetic XY model in circuit QED.

B. Quantum simulation of the XY model

Let us consider the situation depicted in Fig. 8(a), where we
assume identical transmon qubits with energy ωc and cavities
with frequencies such that ωj = ωj+2 and ωj �= ωj+1. The
above condition can be satisfied for cavities with different
lengths, as represented in our scheme with horizontal blue
and red cavities. In addition, we consider that each qubit
is manipulated by a classical microwave of amplitude �

and driving frequency ωL. In this case, the Hamiltonian that
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describes the quantum dynamics is

H = ωc

∑
j

σ+
j σ−

j +
∑

j

ωja
†
j aj

+�
∑

j

(σ+
j e−iωLt + σ−

j eiωLt )

+
∑

j

[gj+1(σ+
j aj+1 + σ−

j a
†
j+1) ∓ gj (σ+

j aj + σ−
j a

†
j )],

(15)

where the coupling strengths satisfy the conditions gj = gj+2

and gj �= gj+1. The qubits are described by Pauli transition

matrices σ±
j , and the bosonic fields are described by creation

and annihilation operators a
†
j ,aj . The minus and plus signs that

appear in the qubit-cavity interaction come from the choice of
the first and second mode of each cavity, respectively. As we
show below, they result in the simulation of ferromagnetic and
antiferromagnetic XY models, respectively.

The XY model can be implemented if we consider the
dispersive regime such that virtual photons provide the direct
qubit-qubit coupling. In a reference frame rotating with the
driving frequency ωL, the interaction Hamiltonian reads

HI (t) = �c

∑
j

σ+
j σ−

j −
∑

j

�ja
†
j aj + �

∑
j

(σ+
j + σ−

j )

+
∑

j

[gj+1(σ+
j aj+1 + σ−

j a
†
j+1)

∓gj (σ+
j aj + σ−

j a
†
j )], (16)

where we define the detunings �c = ωc − ωL and
�j = ωL − ωj , the latter satisfying the conditions
�j = �j+2, �j �= �j+1 according to the previous definition
of frequencies. One can access the dispersive regime if the
condition |�j | � {gj ,�c} is satisfied. For example, consider
an array of three transmon qubits and four cavities. In this
case, the effective second-order Hamiltonian is

Heff =
(

�c + g2
1

�1
+ g2

2

�2

)∑
j

σ+
j σ−

j + �
∑

j

(σ+
j + σ−

j )

+ 1

�1

[
2g2

1σ
+
1 σ−

1 − (
g2

1 + �2
1

)]
a
†
1a1

+ 1

�2

[
2g2

2(σ+
1 σ−

1 + σ+
2 σ−

2 ) − (
2g2

2 + �2
2

)]
a
†
2a2

+ 1

�1

[
2g2

1(σ+
2 σ−

2 + σ+
3 σ−

3 ) − (
2g2

1 + �2
1

)]
a
†
3a3

+ 1

�2

[
2g2

2σ
+
3 σ−

3 − (
g2

2 + �2
2

)]
a
†
4a4

∓ g2
1

�1
(σ+

1 σ−
2 + σ−

1 σ+
2 ) ∓ g2

2

�2
(σ+

2 σ−
3 + σ−

2 σ+
3 )

+ g1g2

2

(
1

�1
+ 1

�2

)
(a†

1a2e
i(�1−�2)t + H.c.)

+ g1g2

2

(
1

�1
+ 1

�2

)
(a†

2a3e
i(�2−�1)t + H.c.). (17)

FIG. 9. Expectation value of operator nj = (1 + σ z
j )/2 for j = 1

(green solid line), j = 2 (blue dashed line), and j = 3 (black dot-
dashed line). The lines correspond to the dynamics governed by the
exact ferromagnetic XY model, while the markers correspond to the
simulated model. Here we have fixed the detuning parameters in
units of the qubit-cavity coupling g1, namely, �1 = 30g1 and �2 =
20g1, and have taken g1 = 1, which results in an effective coherent
tunneling rate Jeff = g2

1/�1 = 0.0333. We have also chosen �c =
� = Jeff .

This Hamiltonian can implement the ferromagnetic or
antiferromagnetic XY model if there are no photons
initially present in the dynamics and if the condition
|�1 − �2| � J12,J23 is satisfied, where

J12 = g1g2

2

(
1

�1
+ 1

�2

)
, J23 = g2g3

2

(
1

�1
+ 1

�2

)
, (18)

and g2
2 = g2

1(�2/�1). In addition, the Stark shifts associated
with each qubit can be suppressed by changing the qubit
frequencies, which can be achieved by the application of an
external flux on each transmon [78]. The extension to a large
number of transmon qubits and cavities is straightforward.

We have performed numerical simulations starting from
the Hamiltonian of Eq. (16) (ferromagnetic case) to test our
approach and then compared them to the exact XY model.
In Fig. 9 we depict the expectation value of the population
nj for each qubit j , without including decay processes. The
results show a quite good matching between the simulated
ferromagnetic XY model (markers) and the exact model (solid,
dashed and dot-dashed lines) if we change

�c → � − g2
1

�1
− g2

2

�2
, (19)

where � is the simulated detuning that appears in Eq. (1).

C. Realistic parameter regime

The main features of the driven-dissipative many-body
system appear in a well-defined range of system parameters.
In terms of the decay rate of qubits γ , the driving amplitude �

ranges from 0.1γ to 2γ , the detuning �c ranges from −2γ to
10γ , and the coherent tunneling rate J ranges from 0 to 10γ .
It is important to mention that in a realistic scenario the qubits
experience relaxation and dephasing with typical coherence
times of about T1 ∼ 1 μs and T2 ∼ 0.6 μs [80]. In the latter
experiment, the qubits have frequencies ω(1)

c /2π = 6 GHz
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±2 MHz, ω(2)
c /2π = 7 GHz ±2 MHz, and ω(3)

c /2π = 8 GHz
±2 MHz. The coherence time T1 gives a relaxation rate γ1 ∼
1 MHz, so � ranges from 0.1 to 2 MHz, �c ranges from −2
to 10 MHz, and J ranges from 0 to 10 MHz.

The above parameter regimes can be obtained with state-
of-the-art circuit QED technology. The driving amplitude �

is limited by the cryostat cooling power, and it may range
from 0 to 2π × 0.7 GHz [81]. The driving frequency ωL

may range from 0 to 2π × 18 GHz. The effective coherent
tunneling rate Jeff can be tuned from zero to a maximal
value if we consider a transmon with Purcell protection
and tunable qubit-cavity coupling [82]. In addition, if the
maximal qubit-cavity coupling is about g1/2π ∼ 100 MHz,
the detuning �1 in Eq. (16) must be �1 ∼ 2π × 6 GHz in
order to reach Jeff = 10 MHz. This value of �1 is attainable
since the resonator frequency ω1/2π ranges from 2 to 10 GHz.

VI. CONCLUSIONS

In the present work we have discussed how a mean-
field product ansatz, while being qualitatively successful in
describing equilibrium settings, can lead to dubious physical
conclusions for driven-dissipative nonequilibrium systems. In
particular, we have shown that single-site mean-field calcula-
tions of the NESS of a coherently driven XY model with local
dissipation predict bistable behavior. This is manifested in the
existence of two different history-dependent values of a critical
driving field detuning �/γ at which a sharp shift between
low- and high-density regimes occurs. However, when the
dynamics of a one-dimensional lattice is simulated with a
matrix-product description, which considers both classical and
quantum correlations, the bistability disappears along with the
sharp shift between the two different density states. Instead, the
density profile becomes smooth, and a bunching-antibunching
transition, which cannot be determined from a mean-field
approach, emerges in the nearest-neighbor correlations.

Our findings highlight the challenges in describing nonequi-
librium quantum lattice systems and motivate their quantum
simulation, especially in higher spatial dimensions where
accurate classical simulations are not currently feasible. With
this in mind, we have elucidated a possible experimental
realization of such a quantum simulator using transmon qubits
in a circuit QED, which can be implemented using current
technology.
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APPENDIX A: MEAN-FIELD APPROXIMATION FOR
MASTER-EQUATION DYNAMICS

Here we present the mean-field approximation used to study
the dynamics and NESS of the system. We describe the total
time-dependent state of the system ρ(t) of N sites by means
of the ansatz of Eq. (3), where the reduced density operator of
site j is given by

ρj (t) =
(

ρ11
j (t) ρ10

j (t)

ρ01
j (t) ρ00

j (t)

)
. (A1)

Here ρ11
j (t) corresponds to the population of the “up” state

of site j at time t , ρ00
j (t) corresponds to the population of

the “down” state, and ρ10
j (t) and ρ10

j (t) are the coherences. We
insert Eq. (3) into the master equation describing the dynamics
of the system, namely,

dρ

dt
= −i[H,ρ] + D(ρ), (A2)

where H is the total Hamiltonian and D(ρ) is the dissipative
component. Tracing out all degrees of freedom except those of
site j [which we denote by Tr(. . .)j ′], we obtain the equation
for the reduced density operator of site j ,

dρj

dt
= Tr

(
dρj

dt

)
j ′

= −i
[
Hmf

j ,ρj

] + D(ρj ), (A3)

with the local mean-field Hamiltonian

Hmf
j = �σ+

j σ−
j +

[
� − J

∑
k

〈σ−
k 〉

]
σ+

j

+
[
� − J

∑
k

〈σ+
k 〉

]
σ−

j

= �σ+
j σ−

j + �jσ
+
j + �∗

j σ
−
j , (A4)

with the sums performed over the nearest neighbors k of site
j , effective driving amplitudes �j as defined in Eq. (5), and
local dissipator

D(ρj ) = γ
(
σ−

j ρjσ
+
j − 1

2σ+
j σ−

j ρj − 1
2ρjσ

+
j σ−

j

)
. (A5)

This leads to a nonlinear set of equations for the components
ρ

αβ

j (t) of each local reduced density operator, which depend
on expectation values of neighboring sites. Defining �ρj =
(ρ00

j ,ρ01
j ,ρ11

j ,ρ10
j )T, this set of equations is given by

d

dt
�ρj = Lmf

j �ρj , (A6)

Lmf
j =

⎛
⎜⎜⎝

0 i�j γ −i�∗
j

i�∗
j i� − γ

2 −i�∗
j 0

0 −i�j −γ i�∗
j

−i�j 0 i�j −i� − γ

2

⎞
⎟⎟⎠. (A7)

The total evolution of the system is thus calculated by
evaluating the evolution of each site during small time intervals
of length δt , using expectation values of the immediately
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previous time, namely,

�ρj (t + δt) = eL
mf
j (t)δt �ρj (t). (A8)

Evolving for a very long time, until the disappearance of the
transient dynamics, we obtained the mean-field NESS of the
system discussed in Sec. III A.

APPENDIX B: MEAN-FIELD APPROXIMATION FOR THE
MONTE CARLO WAVE-FUNCTION METHOD

As described in the main text, an alternative way to
analyze the physics of driven-dissipative systems corresponds
to the simulation of several independent stochastic trajectories,
whose average in the long time limit gives the NESS.

Here we briefly mention a few points of the method in the
mean-field limit, used in Sec. III B, to show the existence of
bistability in the absence of quantum correlations. To stay in

this limit we assume that at every time step the pure state of
each trajectory is given by a product of the form in Eq. (7). It
then follows that between the application of jump operators,
the evolution of the full lattice for trajectory r can be performed
by evolving each site separately at each time step, as∣∣ψ (r)

j (t + δt)
〉 = e−iHeff(r)

j (t)δt
∣∣ψ (r)

j (t)
〉
, (B1)

with the effective mean-field Hamiltonian

Heff(r)
j (t) = Hmf(r)

j (t) − i

2
γ σ+

j σ−
j , (B2)

where the imaginary term results from the coupling of the
lattice to the environment. We have explicitly pointed out
the time and trajectory dependence of the effective Hamil-
tonian, coming from the dependence of Hmf

j on neighboring
expectation values, which are different for each trajectory
due to the random application of jump operators across the
time evolution.
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[5] M. Žnidarič, Phys. Rev. Lett. 106, 220601 (2011).
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