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Rényi entropy singularities as signatures of topological criticality in coupled photon-fermion systems
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We show that the topological phase transition for a Kitaev chain embedded in a cavity can be identified
by measuring experimentally accessible photon observables such as the Fano factor and the cavity quadrature
amplitudes. Moreover, based on density matrix renormalization group numerical calculations, endorsed by an
analytical Gaussian approximation for the cavity state, we propose a direct link between those observables and
quantum entropy singularities. We study two bipartite entanglement measures, the von Neumann and Rényi
entanglement entropies, between light and matter subsystems. Even though both display singularities at the
topological phase transition points, remarkably only the Rényi entropy can be analytically connected to the
measurable Fano factor. Consequently, we show a method to recover the bipartite entanglement of the system
from a cavity observable. Thus, we put forward a path to experimentally access the control and detection of
a topological quantum phase transition via the Rényi entropy, which can be measured by standard low noise
linear amplification techniques in superconducting circuits. In this way, the main quantum information features
of Majorana polaritons in photon-fermion systems can be addressed in feasible experimental setups.
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I. INTRODUCTION

The understanding of correlated matter strongly coupled
to quantum light has been an intense area of research both
theoretically and experimentally in the last few years. Hybrid
photonic technologies for control of complex systems have
been constantly improving, now acting as cornerstones for
quantum simulations in cutting-edge platforms such as optical
lattices. Namely, trapped ions are subjected to high control
by laser beams allowing the manipulation of the main system
parameters [1–5]. Strong light-matter couplings have been
generated in superfluid and Bose-Einstein gases embedded
in cavities now available to study systems with exquisitely
tailored properties [6–10]. Furthermore, the analysis of light-
controlled condensed matter systems has led to predictions of
a rich variety of phenomena, including the enhancement of
electron-photon superconductivity by cavity mediated fields
[11–15]. Experimentally, new physical features as well as con-
trol opportunities in the ultrastrong and deep-strong-coupling
regimes, where coupling strengths are comparable to or larger
than subsystem energies, have been observed recently using
circuit quantum electrodynamics microwave cavities [16,17].
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Motivated by these remarkable advances, we are encour-
aged to establishing new feasible hybrid cavity scenarios
for the detection and control of nonlocal correlated features
in solid-state setups such as topological materials [18–20].
A great deal of attention has been recently devoted to as-
sessing nonlocal Majorana fermion quasiparticles in chains
with strong spin-orbit coupling disposed over an s-wave
superconductor [21–24]. Majorana fermions, as topological
quasiparticles in solid-state environments, have been widely
searched due to their unconventional properties against local
decoherence and hence for possible technological solutions to
fault-tolerant quantum computing protocols [25–28].

Since the seminal work by Kitaev [29] where a one-
dimensional spinless fermion chain was shown to fea-
ture Majorana physics, topological properties of hybrid
semiconductor-superconductor systems [21–24] have been
explored looking for the presence of the so-called zero energy
modes (ZEM), corresponding to quasiparticles localized at
the boundaries of the chain. The fact that these quasiparti-
cles have zero energy makes them potential candidates for
the implementation of non-Abelian gate operations within
two-dimensional (2D) arrangements [30–34]. However, some
open questions still remain about the experimental occurrence
of these modes since the reported phenomena observed in
those experiments could be caused by a variety of alter-
native competing effects [35]. Therefore, new experimental
frames are highly desirable to find unambiguous signs of such
quasiparticles.

An important question in this context is whether the topo-
logical phase transition of Majorana polaritons, for instance
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FIG. 1. Schematic illustration of a Kitaev chain embedded in a
single-microwave cavity. The blue curve denotes the profile of the
fundamental mode of the cavity. Majorana fermion quasiparticles
are depicted as blue and red spheres (bulk) and as green spheres for
the edge unpaired quasiparticles for an isolated Kitaev chain in the
topological phase. The light red regions illustrate the hybridization
effect yielding to Majorana polaritons.

in a fermion chain embedded in a microwave cavity [36–38],
can be detected by accessing observables such as the mean
number of photons, field quadratures or cavity Fano factor
(FF). In this paper, we report on an information-theoretic
approach based on the analysis of the Rényi entropy (SR)
of order two between light and matter subsystems, for con-
necting its singular behavior, resulting from the topological
transition, with the FF. Consequently, we show a path to char-
acterize the bipartite entanglement of the light-matter system
and how to use it as a witness to identify quantum phase
transitions. Additionally, we show that in a wide parameter
coupling regime the cavity state is faithfully represented by
a Gaussian state (GS). Within this description, measurements
of the Fano parameter and single-mode quadrature amplitudes
yield directly to assessing the Rényi entropy. This approach
allows us to link directly accessible microwave observables
to quantum light-matter correlations [39–41], and clarifies the
role of topological phases hosted by cavity-fermion coupled
systems.

Our paper is organized as follows. Section II gives the
description of the Kitaev model embedded in a microwave
cavity. In Sec. III, we present the mean-field approach of the
system, which is useful to predict the response of the cavity.
In Sec. IV, we present the phase diagram of the composite
system obtained numerically. In Sec. V we show that the
composite system signals the phase transitions in the von
Neumann entropy and that the state of the cavity can be
approximated by a single-mode Gaussian state . In Sec. VI we
show the connection between the Fano factor and the Rényi
entropy. Finally, in Sec. VII we present a summary of our
work.

II. PHOTON-FERMION MODEL

We consider a Kitaev chain embedded in a single-mode mi-
crowave cavity as schematically shown in Fig. 1. The system
is described by the Hamiltonian

Ĥ = ĤC + ĤK + ĤInt. (1)

Here ĤC = ωâ†â is the Hamiltonian describing the mi-
crowave single-mode cavity, with â(â†) the annihilation
(creation) microwave photon operator, and ω is the energy
of the cavity; we set the energy scale by taking ω = 1. The
isolated open-end Kitaev chain Hamiltonian ĤK is given by

ĤK = −μ

2

L∑
j=1

[2ĉ†
j ĉ j − 1̂] − t

L−1∑
j=1

[ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j]

+ �

L−1∑
j=1

[ĉ j ĉ j+1 + ĉ†
j+1ĉ†

j ]. (2)

Here ĉ j (ĉ
†
j ) is the annihilation (creation) operator of spinless

fermions at site j = 1, . . . , L, μ is the chemical potential, t
is the hopping amplitude between nearest-neighbor sites (we
assume t � 0 without loss of generality), and � is the nearest-
neighbor superconducting induced pairing interaction. The
Kitaev model features two phases: a topological and a trivial
phase. In the former the Majorana ZEM emerge, which occurs
whenever |μ| < ±2� for the symmetric hopping-pairing Ki-
taev Hamiltonian, i.e., t = �, the case we restrict ourselves
from now on [29,31]. Additionally, the general interaction
Hamiltonian is given by [36]

ĤInt =
(

â† + â√
L

)[
λ0

L∑
j=1

ĉ†
j ĉ j + λ1

2

L−1∑
j=1

(
ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j

)]
.

(3)

Thus, for the light-matter coupling, we shall consider a gen-
eral case which incorporates both on-site (λ0) as well as
hoppinglike (λ1) terms (without loss of generality we will
assume λ0, λ1 > 0). In Ref. [36], a typical value of the on-site
chain-cavity coupling, λ0 � 0.1ω was estimated for a fermion
chain length of L = 100 sites. Note that the whole chain is
assumed to be coupled to the same cavity field.

III. MEAN-FIELD APPROACH

In order to gain physical insights on how the original topo-
logical phase of the Kitaev chain is modified by its coupling
to a cavity, we start by performing a mean-field (MF) treat-
ment. Although we develop the MF analysis for a chain with
periodic boundary conditions, the relations we will discuss
in this section are indeed useful guides for interpreting the
quasiexact results obtained by density matrix renormalization
group (DMRG) numerical simulations in chains with open
boundary conditions, as illustrated below.

We start by separating the cavity and the chain subsys-
tems by describing their interaction as the mean effect of
one subsystem over the other. Applying the traditional MF
approximation to the interaction Hamiltonian ĤInt, we set
quantum fluctuations of products of bosonic and fermionic
operators to 0, therefore

(â† + â − 〈â† + â〉)(ĉ†
j ĉ j − 〈ĉ†

j ĉ j〉) = 0. (4)

Following a similar procedure for the hoppinglike light-matter
interaction term and setting periodic boundary conditions, the
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new interaction Hamiltonian is given by

ĤMF
Int ≈ L[λ1D + λ0(1 − Sz )][X̂ − x]

+ 2x

⎡
⎣λ0

L∑
j=1

ĉ†
j ĉ j + λ1

2

L∑
j=1

(ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j )

⎤
⎦. (5)

Here we define

X̂ = (â + â†)/2
√

L, x = 〈X̂ 〉,

Sz = 1 − 2

L

∑
j

〈ĉ†
j ĉ j〉,

D = 1

L

∑
j

〈ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j〉, (6)

where expectation values are taken with respect to the photon-
fermion ground state. The resulting Hamiltonian is that of a
displaced harmonic oscillator, with photon number 〈â†â〉 ≡
〈n̂〉 = Lx2, and a Kitaev chain with effective chemical poten-
tial μeff ≡ μ − 2λ0x and hopping interaction teff ≡ � − λ1x
(see Appendix B for more details on this MF approach).

The minimization of the MF Hamiltonian expected value,
∂〈ĤMF〉/∂x = 0, yields

λ0Sz = λ0 + λ1D + 2ωx, (7)

which shows the interdependence of the cavity and chain
states parameters. Since x ∈ [− 2λ0+λ1

2ω
, 0], the effective MF

renormalized Kitaev parameters turns out to be μeff � μ and
teff � �. By choosing λ1 = 0, it is easy to see that x will be
related to the magnetization in the equivalent transverse Ising
chain [42–45], while when choosing λ0 = 0, x will be asso-
ciated to the occupancy of first neighbor nonlocal Majorana
fermions in the Kitaev chain [25].

IV. PHASE DIAGRAM

The ground state of the system has been obtained by
performing DMRG simulations in a matrix product state de-
scription [46,47], using the open-source TNT library [48,49].
Notably, matrix product algorithms have been successfully
applied to correlated systems embedded in a cavity [50,51], as
well as to different interacting systems in starlike geometries
[52–55]. In the following analysis, we consider separately
each kind of cavity-chain coupling term and we sweep
over μ.

The topological phase of the chain will be assessed through
the two-end correlations Q, defined as Q ≡ 2〈ĉ1ĉ†

L + ĉLĉ†
1〉.

This value is an indicator of the locality of edge modes, which
is connected to the topology of the system [56,57]. For an
infinite isolated Kitaev chain, its value is 1 in the topological
phase while it goes to 0 in the trivial one. However, for finite
sizes the value of Q takes on continuous values in between,
leaving a value of 1 at the point of maximum correlations [cf.
Figs. 7(e) and 7(f), see Appendix C]. Whenever Q > QTrigger

the phase is said to be topological, where QTrigger was defined
as the lowest Q that allows for ZEM to emerge in an isolated
Kitaev chain with the same � and L as in the simulated
light-coupled case. In Appendix C, we show the agreement
of this definition of the topological phase with the description

FIG. 2. Photon-fermion phase diagrams. NP, normal phase; TP,
topological phase; and SP, asymptotically super-radiant phase.
(a) Chemical potential-like coupling. (b) Hoppinglike coupling. The
Kitaev-cavity parameters are L = 100 and � = 0.6ω.

provided by a topological invariant, namely, the Majorana
number [29].

For both types of cavity couplings, second-order phase
transitions arise in the composite light-matter model (an ex-
ample is shown in Appendix D), a result for which DMRG
and MF are in full agreement for a wide range of coupling
values. The phase diagram for the on-site coupling (λ0 	= 0
and λ1 = 0) is presented in Fig. 2(a), whereas that for the hop-
pinglike coupling (λ0 = 0 and λ1 	= 0) is depicted in Fig. 2(b).

For the on-site coupling, the critical points and the max-
imum of correlations move asymmetrically to lower values
of the chemical potential as the coupling strength increases
(see Appendix C). The boundary between the topological
phase (TP) and the asymptotically super-radiant phase (SP),
in which the number of photons approaches the maximum ob-
tained by MF [cf. Fig. 7(a), see Appendix C], is affected more
dramatically causing the TP to disappear beyond λ0/ω =
1.39 ± 0.01. For larger values of λ0, there will only be one
second-order phase transition between the normal phase (NP),
which is topologically trivial and does not present radiation,
and SP, holding only a trivial ordering of the chain.

For the hoppinglike photon-chain coupling case, the phase
transition points are symmetrical with respect to the trans-
formation μ → −μ (see Appendix D). Whenever the cavity
resides in a super-radiant phase, the chain is in the topological
phase (see Appendix C); thus the mean number of photons
acts as an orderlike parameter that correlates well with the
quantum state of the chain. It is evident that this type of
cavity-chain coupling widens the topological phase allowed
region. However, as the TP gets wider the maximum value
of Q decreases, indicating the degrading of nonlocal chain
correlations at high coupling values.

V. VON NEUMANN ENTROPY, CRITICALITY,
AND GAUSSIAN STATES

A result well beyond the MF analysis for this photon-
fermion system is that phase transitions are associated with
singularities in the light-matter quantum von Neumann en-
tropy, SN [2,49,58], as shown in Fig. 3. Critical lines, as
obtained from the nonlocal Q-correlation behavior, are fully
consistent with results extracted from the second derivative
of the energy and SN behavior (see Appendix D). More-
over, the maximum nonlocal edge correlation Q = 1 coincides
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FIG. 3. von Neumann entropy SN as a function of the chemi-
cal potential of the chain μ/2� for any subsystem in the bipartite
cavity-chain system. Symbols (lines) indicate DMRG (Gaussian)
results. (a) Local photon-fermion couplings λ0 = 0.1ω (weak cou-
pling, black symbols and line) and λ0 = 0.4ω (moderate coupling,
red symbols and line). (b) Nonlocal photon-fermion coupling λ1 =
0.07ω (weak coupling, black symbols and line) and λ1 = 0.4ω (mod-
erate coupling, red symbols and line). Other parameters are L = 100,
ω = 1, and � = 0.6ω

with the minimum of SN [compare Figs. 7(e) and 7(f) with
Fig. 3(a)]. Consistency with SN singularities is also found for
the hoppinglike coupling, as shown in Fig. 3(b). In any case,
singularities in SN are intimately connected to the phase tran-
sitions for an ample domain of coupling strength parameters
(see also weak-coupling behaviors in Fig. 3 for λ0 = 0.1ω and
λ1 = 0.07ω).

The MF analytical description, which involves a single
coherent state for the cavity, provides an accurate description
of the bulk expectation values in the chain, the mean number
of cavity photons, the cavity quadratures, and the energy of
the whole system (see Appendix D). However, this effective
theory is unable to account for entanglement properties be-
tween subsystems and higher interaction terms such as the
FF. Many of the properties of GS have been broadly studied
[59–62], being one of the most outstanding the fact that it
is fully characterized by its 2 × 2 covariance matrix σ and
first moments of the field-quadrature canonical variables given
by q̂ = (â† + â)/

√
2 and p̂ = i(â† − â)/

√
2. The covariance

matrix for a single-mode GS is simply

σ =
( 〈q̂2〉 − 〈q̂〉2 〈q̂ p̂ + p̂q̂〉 − 〈q̂〉〈p̂〉

〈q̂ p̂ + p̂q̂〉 − 〈q̂〉〈p̂〉 〈p̂2〉 − 〈p̂〉
)

. (8)

Remarkably, an accurate description of the reduced photon
system density matrix is possible by means of a single mode
GS. Any single-mode GS can be expressed in terms of a fic-
tional thermal state on which squeezed (Ŝξ ) and displacement
(D̂α) operators act in the form:

ρ̂GS = D̂α Ŝξ

Nâ†â

(1 + N )a†a
S†

ξ D†
α, (9)

with the operators defined as

D̂α = exp[αâ† − α∗â],

Ŝξ = exp[(ξ ∗(â)2 − ξ (â†)2)/2], (10)

where α ∈ C, ξ = reiφ is an arbitrary complex number with
modulus r and argument φ, and N is the thermal state pa-
rameter [59]. Furthermore, a well-known property is that SN

is maximized for a single-mode GS at given quadrature vari-

ances and it is simply expressed as [60,61,63]

SN = (N + 1) ln [N + 1] − N ln [N]. (11)

In order to get the α, N , r, and φ Gaussian parameters, the
covariance matrix and quadratures are numerically extracted
from the corresponding expected values using ground-state
DMRG calculations. The imaginary part of α and φ must be 0
to reach the ground state. Therefore, the relations that endorse
us with the Gaussian parameters are the following [59]:

〈q̂〉 =
√

2Re[α], (12a)

〈p̂〉 =
√

2Im[α], (12b)

〈q̂2〉 − 〈q̂〉2 = 1 + 2N

2
(cosh [2r] + sinh [2r] cos [φ]),

(12c)

〈p̂2〉 − 〈p̂〉2 = 1 + 2N

2
(cosh [2r] − sinh [2r] cos [φ]),

(12d)

〈q̂ p̂+ p̂q̂〉−〈q̂〉〈p̂〉 = 1 + 2N

2
(sinh [2r] sin [φ]). (12e)

Results for SN obtained from DMRG and analytical GS cal-
culations of Eq. (11) are in excellent agreement for different
coupling types and strengths, as shown in Fig. 3, thus confirm-
ing the adequacy of a GS photon description for the present
photon-fermion system (see also Appendix E).

VI. RÉNYI ENTROPY AND FANO FACTOR

The Rényi entropies, defined as

Sη(ρ̂ ) = (1 − η)−1 ln [tr[ρ̂η]] (13)

for a state ρ̂, have been identified as powerful indicators of
quantum correlations in multipartite systems [64]. The von
Neumann entropy SN is retrieved as the Rényi entropy in
the limit η → 1. It has also been established that the Rényi
entropy of order η = 2 is well adapted for extracting corre-
lation information from GS. Thus, from now on we restrict
ourselves to consider only S2(ρ) = − ln [tr(ρ2)] which we
will simply denote as SR [2,3,27]. Specifically, SR for a GS
can be simply expressed in terms of the GS covariance matrix
σ as SR = 1

2 ln [det(σ )] [60].
We also consider the photon FF, which is defined as FF =

Var(n̂)/〈n̂〉, with Var(n̂) = 〈n̂2〉 − 〈n̂〉2. For further reference,
FF = 1 for a single coherent state (MF result) while it denotes
either a sub- (FF < 1) or super- (FF > 1) Poissonian photon
state. We now argue that the GS approximation allows us
to analytically work out a relation between the FF and the
entanglement entropy SR, raising them as both reliable and
accessible indicators of phase transitions in composed photon-
fermion systems. For a cavity GS, the FF and the SR can be
analytically expressed as [59,60,63]:

FF = (N + 1/2)2 cosh [4r] + (1 + 2N )e2rα2 − 1/2

(N + 1/2) cosh [2r] + α2 − 1/2
, (14)

SR = 2 ln [1 + N] + ln

[
1 −

(
N

1 + N

)2]
. (15)
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FIG. 4. [(a) and (c)] Rényi entropy SR and [(b) and (d)] Fano
factor (FF −1) of the cavity state as a function of the chemical
potential of the chain μ/2�. Symbols (lines) indicate DMRG (GS)
results. [(a) and (b)] Results for local photon-fermion coupling, λ0 =
0.1ω (black) and λ0 = 0.4ω (red). [(c) and (d)] Results for nonlocal
photon-fermion coupling, λ1 = 0.07ω (black) and λ1 = 0.4ω (red).
Other parameters are L = 100, ω = 1, and � = 0.6ω.

For both kinds of photon-fermion couplings, results ob-
tained from these analytical expressions fit exactly the
numerical ones extracted from full DMRG calculations. As-
suming a GS, the inequalities N, r � |α| and N, r � 1,
which allow to clearly see the connection between both quan-
tities, are reliable and well justified for the range of parameters
of experimental interest (see Appendix E). Keeping first or-
der terms in r and N , in Eqs. (14) and (15), we finally get
FF = 1 + 2(r + N ) (i.e., a super-Poissonian photon state) and
SR = 2N , from which a simple relation between SR, FF and
the squeezing parameter r immediately follows as

SR = FF − 2r − 1. (16)

It must be stressed that this last relation between the Rényi
entropy and cavity observables does not rely on a MF analysis
or equivalently on the assumption of a single coherent state
for the cavity, but rather it comes exclusively from numer-
ical DMRG calculations and their analytical backing by a
Gaussian-state approximation.

The validity of this important result is illustrated in Fig. 4
regardless of the photon-fermion coupling type. In spite of
the similar behavior through a topological phase transition
(and corresponding analytical expressions for a GS) of von
Neumann and Rényi entropies, it is important to note that an
equivalent relation to that in Eq. (16) but involving SN instead
of SR is hardly workable. Therefore, we stress the relevance
of this connection between a theoretical quantum informa-
tion entropy, SR, and measurable photon field observables, FF
and r.

Figures 4(a) and 4(b) exhibit the behavior of different terms
involved in Eq. (16) for the local photon-fermion coupling
(λ0 = 0.1ω and 0.4ω), and show an excellent agreement be-
tween the results directly obtained from DMRG and those
assuming a cavity GS. This validates Eq. (16), according to
which SR + 2r and FF − 1 coincide. Very small deviations

FIG. 5. Scaling of FF (black symbols and left scale) and SR (red
symbols and right scale) with the lattice size at the critical point
between the TP and SP for the on-site coupling. The correspondent
colored solid lines are the result of a linear fit, which is the typical
form of the growth of entanglement at criticality for one-dimensional
systems. The parameters are � = 0.6ω and λ0 = 0.49ω.

between GS and DMRG results at the topological phase tran-
sition are observed for the stronger coupling value. However,
the locations of the singularities predicted by the analytical
and numerical results coincide. Similarly, Figs. 4(c) and 4(d)
display respective calculations for a hoppinglike coupled sys-
tem (λ1 = 0.07 and 0.4), showing that GS results seem to
slightly drift apart from the numerically exact DMRG ones
for the highest coupling.

We observe that the squeezing gets larger as the light-
matter subsystems more entangled at the critical point (note
the behavior of the r parameter comparing the different curves
in Fig. 4, see also Appendix E). In order to measure the
squeezing parameter r, one can resort to a homodyne de-
tection technique which has been recently extended to the
microwave spectral region [65–67]. On the other hand, the
FF can be assessed from measurements of the second-order
correlation function g(2)(for the relation between both see
Refs. [59,63]), which has successfully been measured in ex-
periments [68]. Moreover, in Fig. 5 we show a scaling analysis
on the value of both, FF and SR, at criticality. The results
reveals a logarithmic growth with the size of the chain, which
is reminiscent of the behavior of entanglement at criticality
in 1D systems [69]. From the results of Fig. 5 together with
Eq. (16) it is straightforward to see that the squeezing at criti-
cality depends logarithmically with the size of the chain. This
behavior is not unique to the chemical potential-like coupling,
but we found this logarithmic response of the cavity for the
hoppinglike interaction as well. Thus, the FF behavior and its
very close relation to SR turn out to be measurable, reliable and
accurate indicators of entanglement for this light-matter inter-
acting system. Aside from the fact that it is always interesting
to establish the connections between different approaches,
our main result in Eq. (16) raises the question of whether a
GS approximation remains valid for quantum open systems
and/or stronger light-matter coupling strengths. For example,
photon loss from the cavity is a ubiquitous deleterious effect
in experimental setups, but key to measure the state of the
cavity field. These subjects merit considerably further studies,
motivated by our work.
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VII. CONCLUSIONS

In this work, we have developed a direct link between
accessible microwave observables and quantum entanglement
entropies in quantum matter featuring topological phase tran-
sitions. By resorting to a GS description for the photon
subsystem, as supported by DMRG calculations, we found a
simple but powerful relation between the photon Fano factor,
single-mode quadrature amplitudes and the light-matter Rényi
entropy. Singularities in the latter can then be of help for char-
acterizing topological phase transitions and their connection
to nonmonotonic nonlocal correlations in a fermionic chain.
We also provide evidence of how the topological phase can be
modified with both on-site as well as hopping terms of photon-
fermion interactions, yielding in some cases to a more robust
topological phase. The possibility of extracting nonlocal or
topological information of the Kitaev chain from the photonic
field itself should be highly timely given the continuous chal-
lenges to assess in a clean way Majorana features in transport
experiments. Moreover, our results also open novel questions
which motivate further studies of the role of decoherence on
this quantum light-matter system.
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APPENDIX A: MATRIX PRODUCT OPERATOR
REPRESENTATION

To find the ground state of the fermion-photon system with
DMRG, it is necessary to find a way to write the Hamiltonian
in Eq. (1) in a matrix product operator (MPO) representation.
The latter can be interpreted as describing any system operator
of interest as a product of matrices that only contains opera-
tors of a single site, in a 1D arrangement of the system. For
instance, a Hamiltonian Ĥ acting over a 1D lattice with L sites
is required to be represented as Ĥ = ∏L

i=1 W i, where W i is a
matrix that only contains operators of site i.

The Hamiltonian we consider here describes a chain, with
nearest-neighbor interactions, coupled to a global site [a single
cavity field in the case of the Hamiltonian Eq. (1)], thus having
a starlike geometry. The cavity field is assumed to interact
with the whole chain. The Hamiltonian can thus be written

in the following way:

Ĥ =
L∑

i=1

ĥi +
α∑

k=1

L−1∑
i=1

m̂k
i n̂k

i+1 +
β∑

k=1

Âk
L−1∑
i=1

x̂k
i ŷk

i+1

+
γ∑

k=1

B̂k
L∑

i=1

ẑk
i + Ĉ, (A1)

where L is the size of the chain. Here Âk , B̂k , and Ĉ are
operators that act on the global site (cavity). On the other
hand, ĥi, m̂k

i , n̂k
i , x̂k

i , ŷk
i , and ẑk

i are single-site chain operators.
Additionally, α, β, and γ denote, respectively, the minimum
number of operators needed to conform terms corresponding
to nearest-neighbor interactions in the chain (�), nearest-
neighbor interactions in the chain with the global site (λ1),
and on-site chain terms coupled with the cavity (λ0). It is
important to note that in this way we resort to a generalized
1D system which consists of L + 1 sites, where the global site
is located at the left edge of the 1D arrangement. Denoting the
site 0 as the global site, we designed an MPO for this type of
Hamiltonian with matrices W i defined as follows:

(a) For site L, W L
a = W L

a,1, the matrix will be the first
column vector of the corresponding matrix for the bulk.

(b) For i ∈ [1, L − 1], W i ∈ T (d × d ) with d = 2 + 2β +
γ + α and T (m × n) the set of tensors with size m × n, with
elements

W i
n,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1̂ if n = m = a, with
a ∈ {1, d} ∪ {b|b = 2k + 1, k ∈ [1, β]}
∪{c|c = k + 2β + 1, k ∈ [1, γ ]},

ŷk
i if n = 2k, m = 1, with k ∈ [1, β],

x̂k
i if n = 2k + 1, m = 2k, with k ∈ [1, β],

ẑk
i if n = 2β + k + 1, m = 1, with k ∈ [1, γ ],

n̂k
i if n = 2β + γ + k + 1, m = 1 with k ∈ [1, α],

m̂k
i if n = d, m = 2β + γ + k + 1 with k ∈ [1, α],

ĥi if n = d, m = 1,

0 otherwise.

(c) For the global site, i.e., site i = 0, we have a row vector
with the form:

W 0
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĉ if m = 1,

Âk if m = 2k + 1, k ∈ [1, β],

B̂k if m = 2β + k + 1, k ∈ [1, β],

1̂ if m = d,

0 otherwise.
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In this way, the Hamiltonian of Eq. (1) is represented with the
following MPO under a Jordan-Wigner transformation:

W i∈[2,L]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1̂ 0 0 0 0 0 0 0
σ̂x 0 0 0 0 0 0 0

0 λ1

4
√

L
σ̂x 1̂ 0 0 0 0 0

σ̂y 0 0 0 0 0 0 0

0 0 λ1

4
√

L
σ̂y 1̂ 0 0 0 0

λ0

2
√

L
σ̂z 0 0 0 0 1̂ 0 0

σ̂y 0 0 0 0 0 0 0
μ

2 σ̂z 0 0 0 0 0 −�σ̂y 1̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A2)

W L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1̂
σ̂x

0
σ̂y

0
λ0

2
√

L
σ̂z

σy
μ

2 σz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

W 0 = (ωâ†â + λ0LX̂ 0 2
√

LX̂ 0 2
√

LX̂ 2
√

LX̂ 0 1̂),
(A4)

where σ̂x, σ̂y, and σ̂z are the Pauli matrices.

APPENDIX B: MEAN-FIELD APPROACH

In Sec. III we obtained the MF interaction term. This al-
lows us to write the Hamiltonian, Eq. (1), as the contribution
of two independent systems corresponding to a Kitaev chain
(in terms of fermionic operators) and a forced harmonic oscil-
lator (bosonic operators), plus a constant energy. Then the MF
Hamiltonian can be written as ĤMF ≈ ĤMF

C + ĤMF
K + ĤMF

Const.
The MF Hamiltonians are defined as

ĤMF
C = ωâ†â + L[λ1D + λ0(1 − Sz )]X̂ , (B1a)

ĤMF
K = −

[μ

2
− λ0x

] L∑
j=1

[2ĉ†
j ĉ j − 1̂]

− [t − λ1x]
L∑

j=1

[ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j]

+�

L∑
j=1

[ĉ j ĉ j+1 + ĉ†
j+1ĉ†

j ], (B1b)

ĤMF
Const = L(λ0Sz − λ1D)x. (B1c)

Thus, the eigenstates of the Hamiltonian are just products
of chain and cavity states. With the MF Hamiltonian ĤMF

being identified, we proceed to describe the thermodynam-
ics of the composed system (at finite temperature T , which
later on will tend to zero) by simply replacing new effective
parameters in the Kitaev Hamiltonian. The coupling with the
cavity produces a displacement of both the chemical potential

and the hopping terms in the form μ → μeff ≡ μ − 2λ0x and
t → teff ≡ t − λ1x, thus defining ĤMF

K . The Hamiltonian ĤMF
C

is the sum of all bosonic terms, and ĤMF
Const consists of the

remaining constant terms.
The canonical partition function is given by

Z = tr[exp[−βĤMF]], (B2)

with β = 1/(kBT ) and kB the Boltzmann constant, and is
the product of three different terms, namely Z = ZC ∗ ZK ∗
ZConst. Following the common procedure to diagonalize the
Kitaev Hamiltonian through a Bogoliubov-de Gennes quasi-
particle description [30,43,70], we find

ĤMF
K (x) =

∑
k

2ωk (x)

(
d̂†

k d̂k − 1

2

)
, (B3)

where d̂k (d̂†
k ) is the annihilation (creation) operator of Bogoli-

ubov quasiparticles in momentum space k at the first Brillouin
zone. The dispersion relation is

ωk (x) =
√

[teff cos(k) + μeff/2]2 + �2 sin2(k). (B4)

This results in the chain partition function ZK =∏
k 2 cosh(βωk ). The cavity term can be diagonalized by

the displacement of the bosonic field, from which it is
straightforward to obtain the partition function for the cavity
term as well, given by

ZC = exp [βφ2/ω]

(1 − exp [−βω])
, (B5)

with φ = √
L[λ1D + λ0(1 − Sz )]/2. For the constant term, the

effect in the partition function is trivial, namely

ZConst = exp [−βL(λ0Sz − λ1D)x]. (B6)

Following the product form of Z , the free energy, defined as
F = − ln [Z]/β, is given by the addition of three terms: F =
FK + FC + FConst. The free energy F thus reads

F = FK + 1

βL
ln[1 − e−βω] − φ2

ω
+ L(λ0Sz − λ1D)x.

(B7)

Therefore, Eq. (7) can be recovered from the free energy when
performing the minimization ∂F/∂Sz = 0.

By direct substitution of Eq. (7) on Eq. (B7), the free
energy per site, f ≡ F/L, results in an expression that only
depends on the cavity expected value x:

f (x) = fK (x) + ωx2 + λ0x + 1

βL
ln[1 − e−βω], (B8)

where the photonic part of the ground state will be defined by
the x value that minimizes the free energy. The state of the
cavity will be represented by a single coherent state |x√L〉.
Note that this coherent state label does not have any imaginary
part. The reason for this is that only the position quadrature
explicitly appears in the Hamiltonian (X̂ term, see Ref. [71]).
The momentum quadrature, which is directly related to the
imaginary part of a coherent state (see Ref. [72]), is only
implicitly regarded in the mean number of photons, 〈â†â〉,
that appears in the Hamiltonian in Eq. (1). Since the effect
of the imaginary part of a coherent state upon which the
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FIG. 6. Density plot of the Kitaev mean-field free energy, fK ≡
fK (x = 0) with β = 100 as a function of μ and �. The black diago-
nal lines mark down the phase transition μ = ±2�.

Hamiltonian of Eq. (1) acts is to add energy to the system,
it sets the momentum quadrature to zero. Consequently, the
mean number of photons satisfies 〈â†â〉 ≡ 〈n̂〉 = Lx2. Last,
the free energy of the Kitaev term reads

fK (x) = − 1

βL

∑
k

ln [2 cosh [βωk (x)]], (B9)

which is shown in Fig. 6. Then, when the system supports
super-radiance in the ground state, the free energy must meet
the following condition for a given x 	= 0:

fK (x) + ωx2 + λ0x − fK (0) < 0. (B10)

A state with an expected value x that satisfies the previous
inequality will be less energetic than a state with no radiation
in the composite system. This leads to a redefinition of the
ground state compared to the case of the isolated Kitaev
chain. The latter means that the state of the cavity controls
the free energy of the Kitaev chain by creating effective dis-
placements, which are characterized by super-radiance in the
cavity.

APPENDIX C: PHASE CHARACTERIZATION

To understand the many-body phases that are bounded by
the critical points, we may recur to different observables of
the chain and cavity. Let us start with the state of the cavity.
Inspired by the Dicke model, the main observable of the
cavity to characterize the phase of the system is the number
of photons [73]. From our analysis we were able to find three
different behaviors of radiation in the cavity; namely, trivial,
super-radiant, and asymptotically super-radiant. All three are
displayed in Figs. 7(a) and 7(b) for the two types of light-
matter coupling; the borderlines in this figure were signaled
by the maximum in the absolute value of the derivative of the
number of photons with respect to μ. The trivial behavior of
the cavity is characterized by the absence of photons as occurs
in the NP for both couplings. We refer to the super-radiant
behavior as that where there are photons in the cavity, but their
number is lower than the maximum allowed by Eq. (7). The

FIG. 7. Characterization of the phases of the system. Panels (a),
(c), and (e) [(b), (d), and (f)] are results for the chemical potential-like
(hoppinglike) coupling. [(a) and (b)] Number of photons normalized
by the maximum value predicted by MF in the phase diagrams.
[(c) and (d)] Majorana number topological invariant [Eq. (C1)] in the
phase diagrams. The white regions have M = −1 which accounts for
the topological phase. The black regions correspond to M = 1, which
represents a phase that is topologically trivial. [(e) and (f)] Two ends
correlations Q in the phase diagrams. The Kitaev-cavity parameters
are L = 100 and � = 0.6ω.

coupled system shows a super-radiant when the phase of the
chain is topological, that is, when it is located in the TP of
the phase diagram. Finally, the asymptotically super-radiant
phase is the phase where the number of photons asymptot-
ically reaches the maximum value allowed by the physical
restrictions [i.e., Eq. (7)]. The asymptotically super-radiant
phase emerges only with the on-site interaction; the normal-
ized value of the number of photons rapidly approaches 1 in
this phase [cf. Fig. 7(a)]. We refer to the latter behavior of the
radiance, together with a trivial ordering of the chain, as the
SP phase.

On the other hand, to describe the phase of the chain
we need to assess its topological properties. The Majorana
number is a topological invariant that indicates the presence
of ZEM in one-dimensional systems [29]. From our MF
approach we can recover the Majorana number by simply
replacing the effective chemical potential and hopping in its
expression for the isolated Kitaev chain, which yields to

M = sgn(μeff − 4teff ). (C1)
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FIG. 8. Observables for the on-site coupling. (a) FF of the cavity.
Insets: Other expected values of the system that show singulari-
ties at the critical points of phase transition; each plot depicts the
corresponding expected values for different sizes of the chain. The
mean-field (MF) results are shown by the dashed black line. Upper
inset: Second derivative of the energy with respect to μ/2�. Lower
inset: First derivative of the number of photons. Each curve is nor-
malized by the respective maximum. (b) von Neumann entropy of
the system with a bipartition between photons and the Kitaev chain.
Insets: Scaling of the critical points with the size of the chain; the MF
value is shown with the dashed line. The parameters for these plots
are ω = 1, � = 0.6ω, λ0 = 0.49ω, and λ1 = 0.

The Majorana number takes the value −1 when a system has
a topological ordering and 1 when the ordering is trivial. In
Figs. 7(c) and 7(d) we show the Majorana number behavior
for different parameters in the phase diagram; the value of
μeff and teff was obtained by DMRG taking the expected value
x. However, we can recover more information about the state
of the chain with the two end correlations Q described in
Sec. IV. Since Q is a quantification of the localization of the
ZEM, with higher values of Q the emergent Majoranas are
expected to be more topologically protected. The behavior
of Q for the phase diagram of both couplings is reported in
Figs. 7(e) and 7(f); the boundaries of the phases in this figure
were built from the point where Q exceeds QTrigger. The latter
was defined as 10−2 by comparison with exact diagonalization
as described in Sec. IV. Nevertheless, the phase transition
points obtanied by the Majorana number and the definition of
QTrigger are consistent with each other. Moreover, in Fig. 7(e)
we can appreciate that the on-site coupling shifts the point of
maximum localization of ZEM in the chain.

In summary, comparing Figs. 7(a) and 7(b) and Figs. 7(e)
and 7(f); we can identify the definition of the phases. The NP
is topologically trivial and does not experience radiance in the
cavity. The TP is topological in the chain and super-radiant in

the cavity. Finally, the SP phase is topologically trivial in the
chain and asymptotically super-radiant in the cavity.

APPENDIX D: DENSITY MATRIX RENORMALIZATION
GROUP VS. MEAN FIELD

For the on-site coupling, we can identify the two second-
order phase transitions with the upper inset of Fig. 8(a) for
different sizes of the chain; the result shows a rapid con-
vergence to what is obtained from the MF scheme. For an
isolated chain, with the parameters used for Fig. 8, the phase
transition should occur at μ/2� = ±1. For a chain-cavity
coupled system with λ0 = 0.49ω and λ1 = 0ω, in contrast,
they now occur at μ/2� = −1.04 ± 0.02 and 0.64 ± 0.02. In
Fig. 8, we find that the maximum of the FF and the first
derivative of the number of photons match with the critical
points predicted by the second derivative of the energy. The
FF curve shares a similar shape to that of the von Neumann
entropy [cf. Fig. 8(b)]. This fact, along with the FF behavior,
let us conclude that the chain and the cavity increase their
entanglement at the critical points, thus driving the cavity into
a super-Poissonian state.

FIG. 9. Gaussian parameters and number of photons: The
squeezing parameter r is depicted in (a) and (e), the coherent param-
eter α in (b) and (f), the thermal parameter N in (c) and (g). The mean
number of photons obtained with DMRG (GS) is shown by symbols
(lines) in (d) and (h). The on-site coupling strength is λ0 = 0.4ω for
(a), (b), (c), and (d). The hoppinglike coupling strength is λ1 = 0.4ω

for (e), (f), (g), and (h). The other parameters for the cavity-Kitaev
system are L = 100 and � = 0.6ω.
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The shift of the critical points can be understood consider-
ing Eq. (B8) and the Kitaev chain free energy in Eq. (B9). This
last equation, at a fixed � and with λ0, λ1 = 0, is a U-shaped
curve with a maximum at μ = 0, a curve that decays faster as
we get farther from the critical point (cf. Fig. 6). Then, the free
energy of the whole system would allow super-radiance if μeff

gets farther from the maximum in Eq. (B9). Since μeff > μ,
the system enters slightly earlier into the topological phase
(from −μ to μ) and leaves it highly sooner. The U-shaped free
energy will require x to be the minimum possible value as we
get farther from the maximum on the right. As a consequence,
in such a region the number of cavity photons will asymptoti-
cally approach n = (λ0/ω)2, generating the SP. Deep into the
region at the left of the maximum, the free energy will require
the maximum x possible; then 〈n̂〉 will vanish. In the transition
between the nonradiant and asymptotic phases, we can find
the TP, which is super-radiant for the cavity. Therefore, the
topological phase can be recognized as the phase between
peaks in the first derivative of the number of photons, as
shown in the lowest inset in Fig. 8(a). In the left inset of
Fig. 8(b), we can see that the critical points accurately con-
verge to the result predicted by the MF. Slight disagreements
are higher for μc2, since the cavity, and therefore correlations,
play a more significant role for that parameter region because
it is easier to generate radiation.

For the hoppinglike interaction, the phase transition is sym-
metrical with respect to μ since now μeff = μ. The effect of

teff in the free energy can be understood again by considering
the isolated Kitaev free energy. Regarding � as the indepen-
dent variable, holding μ constant and using λ0, λ1 = 0, the
free energy is again a U-shaped curve with a maximum at � =
0 (cf. Fig. 6). Then x will allow super-radiance to minimize the
free energy of the whole system. The most remarkable result
of this kind of nonlocal coupling is the behavior of the cavity
as a control device since there are only photons in the cavity
when the chain is in the topological phase.

APPENDIX E: GAUSSIAN PARAMETERS

The fundamental Gaussian information was build from
DMRG ground-state expected values as discussed in
Secs. V, VI. As mentioned in Appendix B, the imaginary part
of α is equal to zero, leading to α ∈ IR for all parameters;
thus 〈q̂ p̂ + p̂q̂〉 = 0. Looking at the results for N , r and α the
approximations N, r � |α| and N, r � 1 are justified in the
analyzed parameter window (cf. Fig. 9). We also compared
the mean number of photons obtained with DMRG and with
the Gaussian approximation. The latter leads to

〈n̂〉 = (N + 1/2) cosh[2r] + α2 − 1/2, (E1)

which under the approximations defined above is 〈n̂〉 ≈ α2.
As seen in Fig. 9, the GS approximation results agree well
with those obtained directly from DMRG simulations.
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