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Giant rectification in strongly-interacting boundary-driven tilted systems
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Correlated quantum systems feature a wide range of nontrivial effects emerging from interactions
between their constituting particles. In nonequilibrium scenarios, these manifest in phenomena
such as many-body insulating states and anomalous scaling laws of currents of conserved quantities,
crucial for applications in quantum circuit technologies. In this work we propose a giant rectification
scheme based on the asymmetric interplay between strong particle interactions and a tilted potential,
each of which induces an insulating state on their own. While for reverse bias both cooperate and
induce a strengthened insulator with exponentially suppressed current, for forward conduction they
compete and, as a result, generate current resonances; this leads to a rectification coefficient of many
orders of magnitude. We uncover the mechanism underlying these resonances as enhanced coherences
between energy eigenstates occurring at avoid crossing in the system’s bulk energy spectrum. Our
proposal paves the way for implementing a perfect diode in currently-available quantum simulation
platforms.

INTRODUCTION

Due to their vast and exciting phenomenology, as well
as the rapid advances on their control protocols, many-
body quantum systems have become key ingredients for
the development of novel technologies at the nanoscale.
In particular, in nonequilibrium regimes such systems
feature properties which make them strongly appealing
for applications in quantum circuits [1–4]. This has been
exemplified in several platforms where tunable transport
of particles or heat can be induced and characterized, in-
cluding setups based on electronic devices such as molec-
ular electronics [5] and quantum dots [6, 7], or on quan-
tum simulators such as cold atoms [8, 9] and supercon-
ducting qubits [10, 11].
In parallel to these seminal experimental advances,

there have been numerous recent theoretical proposals to
use quantum systems of interacting particles as different
types of circuit elements that efficiently perform specific
tasks. This includes autonomous quantum thermal ma-
chines [12–14], transistors [15, 16], magnetoresistors [17],
and a quantum analogue of the Wheatstone bridge [18].
Much attention in this area has been directed towards
quantum diodes [19–30]. There, spatial asymmetries and
non-linearities are engineered together to allow transport
in one direction under a chemical potential, magnetic or
thermal bias, and to suppress it in the opposite direction
when the bias is inverted. These efforts include the pro-
posal of giant rectification setups [20, 25–28], which rely
on complicated geometries and potential landscapes to
induce rectification coefficients of several orders of mag-
nitude using finely-tuned parameters.
Here we put forward a rectification scheme which nat-

urally emerges over a broad range of parameters in tilted
interacting quantum lattices. These systems have been
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the object of intense recent research as they feature
disorder-free (Stark) many-body localization (MBL) [31–
35], quantum scars [36, 37], and counter-intuitive phe-
nomena such as time crystals [38] and transport opposite
to an applied electric field [39]. Moreover, they have been
implemented experimentally in several quantum simula-
tion platforms [40–44], making them attainable for state-
of-the-art applications in quantum technologies. Nei-
ther the spatial asymmetry of the tilted onsite-potential
nor the non-linearity of inter-particle interactions can on
their own induce rectification. However, the ability to
simultaneously implement both ingredients in such plat-
forms opens the possibility of rectification. Here we un-
veil the underlying mechanism of this interaction-tilt in-
terplay and show how the vastly differing transport prop-
erties [45] with the direction of bias give rise to giant
rectification even with moderate interactions.

RESULTS

Giant rectification scheme. Our quantum diode is
based on a boundary-driven configuration, which can be
biased from right to left (reverse driving) or left to right
(forward driving). For reverse driving, sketched in Fig.
1a, both interactions and tilt each support on their own
the formation of a high-energy current-blocking particle
domain at the right boundary. When interactions and
tilt coexist they thus cooperate to induce a high-energy
state with an enhanced insulating nature. For forward
driving, depicted in Fig. 1b, both strong interactions
and tilt favour on their own the formation of an insulat-
ing domain at the left boundary. For interactions alone
this state remains high-energy, while for the tilt alone
it is low-energy (see Fig. 1c). By being located at op-
posite ends of the energy spectrum interactions and tilt
now conflict with each other when they coexist. When
both are of similar order, this competition breaks the do-
mains and thus allows particle conduction. This forward-
reverse transport asymmetry makes the system behave as
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FIG. 1. Giant rectification in tilted strongly-interacting lattice. a For reverse transport, particles are mostly injected from a
reservoir on the right boundary of the system, and mostly ejected to a reservoir on the left. For interactions or tilt alone, the
resulting state is of high-energy, due to the adjacency of particles in the former case, or due to the particles filling the top of the
potential in the latter. An enhanced insulator is induced when both coexist. b For forward transport, particles flow from the
left to the right reservoir. The tilted noninteracting state is of low energy as particles now fill the bottom of the potential. Thus
tilt now competes with interactions, which favors conduction. c Sketch of the eigenstructure of a tilted interacting system. (i)
High-energy insulating eigenstate preferentially populated by reverse bias. (ii) High-energy insulating eigenstate preferentially
populated by forward bias and dominant interactions. (iii) Low-energy insulating eigenstate preferentially populated by forward
bias and very large tilt. (iv) The path from the interaction- to the tilt-dominated insulator, indicated by the dashed line,
features avoided crossings at intermediate regimes where occupation probability is transferred between eigenstates, enhancing
the transport. d Forward (F) and reverse (R) particle currents in a lattice of N = 4 and ∆ = 5 as a function of the tilt.
Currents have been rescaled by the maximum current J0 obtained with the same driving for a noninteracting homogeneous
system (see Supplementary Methods). e The corresponding rectification coefficient R.

a quantum diode.
To unveil this phenomenon we consider a simple

generic model of interacting particles: a one-dimensional
lattice of spinless fermions in a tilted potential. The
Hamiltonian for N sites is

H =

N−1
∑

j=1

[

J

2

(

c†jcj+1 +H.c.
)

+∆

(

nj −
1

2

)(

nj+1 −
1

2

)]

+

N
∑

j=1

(

µ+
E

2
j

)(

nj −
1

2

)

, (1)

where c†j (cj) creates (annihilates) a fermion on site j,

nj = c†jcj is the corresponding particle number operator,

J is the hopping amplitude (we take J = 1 to set the
energy scale), ∆ is the nearest-neighbor density-density
interaction, and µ is the diode’s chemical potential. We
take the tilt strength E > 0 so the potential always in-
creases from left to right. For the noninteracting case

∆ = 0, this model shows Wannier-Stark localization [46].
Furthermore, it was recently discovered that for strong
enough tilt the interacting model still features nonergodic
behavior in the absence of disorder, an effect known as
Stark MBL [31, 32].

To drive the system to a nonequilibrium state, we in-
corporate reservoirs with differing chemical potentials at
its boundaries. We assume a weak coupling to the system
(Born approximation), high-temperature memory-less
reservoirs (Markov approximation), and that the band-
widths of the reservoirs are much larger than those of the
system, which leads to frequency-independent system-
reservoir interactions (wide-band limit) [47]. Tracing out
the reservoir degrees of freedom leads to a Lindblad mas-
ter equation for the reduced density matrix ρ of the sys-
tem [48],

dρ

dt
= −i[H, ρ] +

∑

k

Lk(ρ), (2)
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FIG. 2. Formation of particle domains. a Site population 〈nj〉 for N = 4, ∆ = 5 and the resonant tilt values, for forward and
reverse driving. b Site population 〈nj〉 for a lattice of N = 8, E = 0 and different interactions ∆ for reverse driving. c Site
population 〈nx〉 for ∆ = 0, different system sizes and rescaled tilt V , with rescaled position x = j/N ∈ [0, 1].

with the dissipative superoperators Lk(ρ) defined by
jump operators Lk as

Lk(ρ) = LkρL
†
k −

1

2
{L†

kLk, ρ}. (3)

The driving is induced by boundary operators L+
1,N =

√

Γ(1± f)/8 c†1,N and L−
1,N =

√

Γ(1 ∓ f)/8 c1,N , where

Γ is the coupling strength (taken as Γ = 1) and the driv-
ing parameter −1 ≤ f ≤ 1 establishes the bias [4, 49, 50].
Namely, when f > 0, fermions are mostly created on site
1 and mostly annihilated on site N giving forward driv-
ing, while inverting the sign of f gives reverse driving.
The particle current corresponds to the expectation value
of the operator

Jj = i
J

2

(

c†jcj+1 − c†j+1cj

)

, j = 1, . . . , N − 1, (4)

which directly arises from the particle number continu-
ity equation [4]. We focus on the transport properties of
the nonequilibrium steady state (NESS), where the cur-
rent across the system is homogeneous, i.e. 〈Jj〉 = J .
In addition, we set |f | = 1 to consider maximal for-
ward/reverse driving, and take µ = −E(N + 1)/4 so
the system features charge conjugation and parity (CP)
symmetry. This choice will help make the rectification
mechanism transparent. Nonetheless, under the assumed
wide-band limit for the driving, the transport is indepen-
dent of µ [51] (see Methods).
This simple nonequilibrium scenario allows us to ob-

serve large rectification even for very small lattices. For
instance, in Fig. 1d we illustrate the widely differing re-
sponse of a system with N = 4 and ∆ = 5 when inverting
the direction of the bias. For reverse driving of fermions
down the tilted potential, the current decays rapidly and
monotonically with E. On the other hand, for forward
driving of fermions up the potential, the current features
much larger values at well-defined resonances with E. As
shown in Fig. 1e, this leads to rectification coefficients
of up to O(103), a value that can be vastly enhanced in
longer chains (see Fig. 4).

These properties are intimately linked to the presence
or absence of a particular distribution of fermions across
the system, as depicted in Fig. 2a. For reverse driving,
the particles are pinned to the right boundary forming a
domain half the size of the lattice, leaving the left half
essentially unoccupied. The domain Pauli blocks more
fermions from entering the system, resulting in an insu-
lating state. For forward bias near the resonant values
of E, the population profiles do not feature this con-
straint, so particles are allowed to move across the lattice.

Reverse driving insulating NESS.Domain formation
is a common feature induced by strong interactions and
tilt on their own, as depicted in Figs. 2b where E = 0
and 2c where ∆ = 0. In both these scenarios there is no
rectification; transport for forward and reverse drivings
are identical up to a direction inversion, so we focus our
attention to the latter.

For strongly-interacting homogeneous (E = 0) sys-
tems the insulating domain-like NESS is a well-known
phenomenon [4, 49, 50, 52], reproduced in Fig. 2b with
exact diagonalization calculations for small lattices (see
Methods). The system features a flat profile in the non-
interacting limit, typical of ballistic transport. As ∆ in-
creases so does the slope of the profile, until reaching
extreme population values at the boundaries for ∆ >∼ 1.
Increasing ∆ even further results in the creation of the
particle domain.

In contrast noninteracting (∆ = 0) boundary-driven
tilted systems have received much less attention [53] and
their manifestation of localization has remained unex-
plored. We perform such an analysis obtaining exactly
the site populations 〈nj〉 and particle current J for large
systems by reducing the Lindblad master equation (2) to
a set of linear equations (see Methods). We use a rescaled
tilt V = EN , to keep the on-site energy difference be-
tween boundaries approximately constant. This way the
density profiles of different system sizes collapse for each
V , evidencing the emergence of domains for small lattices
and large tilt, as well as for long lattices and low tilt. In
addition, for large systems the current decays exponen-
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FIG. 3. Transport resonance mechanism in interacting tilted lattice of N = 4 and ∆ = 5, illustrated in the “even” CP
symmetry sector of n = 2 filling (sector s = 2e). In all panels, the dotted vertical lines indicate the location of the forward
current resonances. a Eigenenergies Eν as a function of the tilt E. For low tilts, the eigenstate ν = 4 corresponds to the
corrected left domain state. The inset amplifies the first avoided crossing. The dashed lines correspond to second order
perturbative calculations of the eigenenergies (see Supplementary Methods). b Probabilities ρ2eν of eigenstates ν on the NESS.
The line of ν = 5,R corresponds to the highest energy eigenstate and reverse transport; all the others are for forward driving.
Also note that the curve of ν = 1 is peaked at the first two resonances, even though it is not involved in an avoided crossing.
This is because it corresponds to a perturbative correction of |1010〉 (see Supplementary Methods), which is strongly coupled to
the f = 1 driving. c Coherences ρ2eµ,ν of pairs of eigenstates µ, ν for forward transport. At the avoided crossing of eigenstates µ
and µ+1, ρ2eµ,µ+1 is maximal, which breaks the insulating nature of the NESS. Also, when getting away from avoided crossings,
the NESS is again mostly described by a single eigenstate suppressing transport.

tial with N and V (See Supplementary Discussion).

While the physical origin of the interaction- and
tilt-induced insulating states is different, they share the
same underlying mechanism that remains applicable for
tilted interacting lattices. Specifically, they arise from
the interplay between the gapped eigenstructure of the
system and the maximal driving. For small hopping
J ≪ ∆ or E, the highest energy eigenstate |ΨD

n 〉 of each
n particle sector (e.g. eigenstate ν = 5 of Fig. 3a) corre-
sponds to a perturbative correction to the configuration
state |00 . . . 0N−n11 . . . 1n〉 in which all n particles form
a domain pinned to the right. The energy gap between
this eigenstate and the rest, which increases with ∆ and
E, ensures that the amplitudes of configuration states
in |ΨD

n 〉 that couple to the f = −1 driving (where a
particle can be injected at site N or ejected at site 1) are
exponentially suppressed (see Supplementary Methods).
Thus the eigenstates |ΨD

n 〉 become exponentially close
to obeying

∑

k Lk(|ΨD
n 〉〈ΨD

n |) = 0, making them dark

states of the driving. The overall NESS density matrix
ρ of the system is very well captured by an analytical
Ansatz built from a statistical mixture of these darks
states (see Eq. (8) of Methods and Supplementary
Discussion). From this, we show that ρ is strongly
dominated by the contribution |ΨD

n 〉〈ΨD
n | with n = N/2,

corresponding to a state with occupied and empty
domains of equal size (e.g. near unit probability for
state ν = 5 for reverse driving in Fig. 3b). These results
directly lead to the insulating NESSs of equal empty and
occupied domains for systems with strong interactions
[50], tilt or both, whose currents monotonically and
exponentially decrease as they increase.

Forward driving resonances. Next we focus on the
forward driving setup with f = 1. Here, strong interac-
tions and tilt on their own would favor a NESS largely
dominated by perturbative corrections to the left domain
|11 . . .1N

2
00 . . . 0N

2
〉. However, this configuration is the

highest energy state of the n = N/2 particle number sec-
tor (degenerate with the right domain) for an interaction-
dominated scenario, while it is the lowest energy state
for a strongly tilted lattice. Thus, increasing ∆ raises
the energy of this state, while increasing E lowers it. For
instance, fixing ∆ and sweeping through E (as in Fig.
Fig. 3a) closes the energy gap from the initial NESS dark
state, eventually forcing it to cross through the bulk spec-
trum of the system (see sketch in Fig. 1c). As a result,
current resonances are induced. This effect is cleanly il-
lustrated by the half-filled even CP symmetric sector with
the same parameters of Fig. 1d as shown in Fig. 3a. Cru-
cially, since all the eigenstates have the same symmetry,
the no-crossing theorem [54] ensures that only avoided
crossings occur. Their location accurately pinpoints the
current resonances.

To understand the role of the avoided crossings we
evaluate the contributions to the particle current in the
energy eigenbasis. Since there are no coherences be-
tween different symmetry sectors, the current is given by
J =

∑

s

∑

µs,νs
ρsµs,νsJ s

νs,µs
(q), where s sums over all the

sectors, ρsµs,νs = 〈µs|ρ|νs〉 is the coherence between eigen-
states |µs〉 and |νs〉 of sector s, and Js

νs,µs
(q) = 〈νs|Jq|µs〉

is the corresponding current matrix element evaluated on
site q. From the probabilities ρsνs = ρsνs,νs and coher-
ences ρsµs,νs , shown in Figs. 3b and 3c respectively, the
following picture emerges. For very low tilts, the NESS
is solely dominated by the high-energy left domain-like
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FIG. 4. Transport and rectification in larger interacting tilted systems. a Reverse particle current JR as a function of tilt
for N = 8 and different interaction strengths. The solid lines correspond to exact diagonalization results, and the darker
dashed lines to currents obtained from our analytical Ansatz (see Methods). b Exact forward particle current JF for the same
parameters. c Corresponding rectification coefficient R. d Reverse particle current JR as a function of tilt for ∆ = 2 and
different system sizes. e Forward particle current JF for the same parameters. f Corresponding rectification coefficient R. The
legends of system sizes spread over d and e apply to the three bottom panels. Also, the currents have been rescaled by the
maximal current J0 obtained with the same driving for a noninteracting homogeneous system (see Supplementary Methods).

state, evidenced by its large probability. This eigenstate
has an energy ∼ 1

4 [∆(N − 3)–En(N − n)] + O(J2) to
lowest perturbative order (see Supplementary Methods),
so as E increases it dives down towards the lower eigenen-
ergies which have a weaker dependence on the tilt. As
it approaches another eigenstate they mix and probabil-
ity is transferred from the higher to the lower energy
states. Thus, in the proximity of the avoided crossing
the Hamiltonian no longer supports an eigenstate that
is dark to the f = 1 driving. This allows large coher-
ences to develop, enhancing the current. Further avoided
crossings occur for even larger E, with lower eigenstates
also getting populated. Eventually for very large E the
whole spectrum is crossed and the lowest-energy eigen-
state ν = 1 inherits the dominant role on the NESS. This
leads again to an insulating left domain-like dark state,
but now induced by the strong tilt.

The combination of this resonant behavior with the
enhanced insulating state of reverse driving results in siz-
able rectification coefficients R = −JF/JR even for the
small chain of the example (see Fig. 1e). Crucially, rec-
tification becomes more substantial and more robustly
achievable for larger system sizes N . The enhancement
in the maximum R with N follows from the differing
current scaling of reverse and forward drivings. Namely
JR ∼ exp(−N), characteristic of an insulator, while at
a resonance we expect JF ∼ N−α with some exponent

α > 0 characteristic of a conductor. As shown in Fig. 4c,
already for N = 8 with ∆ = 5 we find coefficients of up
to O(107) compared to O(103) for N = 4. In addition, R
is further enhanced by particle interactions. As depicted
in Figs. 4a-c, while increasing ∆ diminishes both reverse
and forward currents, the former decrease is more promi-
nent and thus their ratio features even higher resonances.

While in small systems achieving the maximum R re-
quires fine-tuning of E to locate a resonance, for larger
N this constraint is rapidly removed due to the expo-
nentially increasing number of eigenstates crossed within
the bulk of the spectrum. As a result the rectification is
broadened over the many-body bandwidth of the chain.
Moreover, the favourable scaling withN means that giant
rectification can be achieved with a reduced interaction
strength. To evidence these effects, using the insulating
Ansatz and tensor network simulations (see Methods) we
calculated reverse and forward currents for ∆ = 2 and
systems of N > 8, shown in Figs. 4d and 4e respectively.
From these we find R ∼ O(109) over a range of E, as
seen in Fig. 4f. This establishes larger rectification coef-
ficients than those previously obtained for different types
of non-homogeneous lattices [20, 25–28], with a more in-
tuitive and easily implementable setup [41–44].
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DISCUSSION

We have proposed a giant rectification scheme in cor-
related quantum systems, based on the natural asymme-
try between forward and reverse transport in tilted in-
teracting lattices. In our protocol, particles get locked
into an insulating domain NESS when attempting to
travel down the tilted potential (reverse bias). On the
other hand, they propagate uphill resonantly as avoided
crossings in the spectrum are approached (forward bias).
Our calculations show rectification coefficients of up to
O(109) for small chains, a number that can be pushed
even further without fine tuning and at moderate inter-
action strengths by considering larger systems.

We emphasize that most of the reported rectification
peaks are associated to sizeable values of the forward
particle currents. This is evidenced in Figs. 1 and 4 by
rescaling J with the maximal current J0 achievable un-
der the same driving scheme for a noninteracting lattice
with no tilt, which is a well-known size-independent bal-
listic current (see Supplementary Methods). This way it
is clear that at the resonances the system is truly con-
ducting in the forward direction while it is insulating in
reverse bias. Thus the observed giant rectification is not
an artifact of dividing two very small currents associated
to insulating states.

Our results pave the way for developing different types
of giant rectification protocols (e.g. of spin, charge or
heat) in a variety of driving schemes, including finite tem-
perature reservoirs, and magnetic or thermal biases. For
this purpose, recent approaches for accurately simulat-
ing more realistic reservoirs, even when they are strongly
coupled to the system, might be exploited [12, 55–57].
Furthermore, our proposal could be realized with exist-
ing quantum simulators. On the one hand, several ex-
periments have implemented trapped ion [40], cold-atom
[41–43] and superconducting qubit [44] setups with sim-
ilar tilt and/or interactions to those used in the present
work, and even in larger systems. In addition, exploit-
ing boundary-driven architectures in cold-atom platforms
[9, 19, 58] or reservoir engineering for irreversible parti-
cle injection in superconducting circuits [59], similar ver-
sions of our diode could be incorporated in state-of-the-
art nanoscale quantum circuits.

METHODS

Exact solution of noninteracting model. The rel-
evant observables for our transport analysis can be ob-
tained for large systems with ∆ = 0. For this we propose

the Ansatz for the density matrix [51, 60]

ρ =
1

2N
I +

N
∑

k=1

2ak

(

nk − 1

2

)

+

N
∑

l=2

N−l+1
∑

k=1

b
(l)
k B

(l)
k +

N
∑

l=2

N−l+1
∑

k=1

h
(l)
k H

(l)
k + · · ·

(5)

where we define the l−site operators

B
(l)
k = −2i

(

c†jcj+l−1 − c†j+l−1cj

)

H
(l)
k = 2

(

c†jcj+l−1 + c†j+l−1cj

)

,
(6)

which correspond to generalized current and energy den-

sity operators respectively; in particular, B
(2)
k = −4Jk.

Even though this is a first-order expansion in f [51, 60],
it leads to an exact solution of the parameters ak =

〈2nk − 1〉, b(l)k = 〈B(l)
k 〉/2 and h

(l)
k = 〈H(l)

k 〉/2. For this,
the Ansatz (5) in inserted into the master equation (2)
with the stationary condition dρ/dt = 0, which results in
a closed set of linear equations for the parameters when
grouping the coefficients in front of each operator (see
Supplementary Methods). Notably, through this linear
set it is straightforward to link the boundary population
and the current, since from the coefficients in front of
2n1 − 1 we get

a1 +
4b(2)

Γ
= f, with b(2) = b

(2)
k homogeneous. (7)

Exploiting the symmetric boundary driving, it is found
that several coefficients are equal to their counterpart
from the other half of the lattice (e.g., ak = aN−k+1, so
the population profile is symmetric around 0.5) or zero
(e.g., aN+1

2

= 0 for N odd). This leads to a system of

N2

2 + 1 unknowns for N even and (N−1)2

2 + 1 unknowns
for N odd, which can be solved with standard linear
algebra packages for lattices of several hundreds of sites.
Analytical solutions for small systems are provided in
the Supplementary Discussion.

Calculation of transport properties. The transport
properties of small lattices (N ≤ 8) was obtained exactly
by diagonalizing the full Lindblad superoperator, written
as a 4N × 4N matrix. The NESS is the eigenstate with
zero eigenvalue, reshaped as the 2N × 2N density matrix
ρ. For larger systems and forward transport, we describe
ρ as a matrix product state [61], and obtain the par-
ticle current using the time evolving block decimation
method [62, 63] implemented with the Tensor Network
Theory (TNT) library [64, 65]. Here, the evolution of an
arbitrary state should be simulated until the current be-
comes homogeneous, which indicates convergence. How-
ever, strong tilts and interactions commonly result in a
very slow approach to the NESS, making it impractical.
Thus, in such cases we focused on converging expectation
values on the first site only. This shortcut allowed us to
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reproduce very well the current of small lattices, so we
extended its application to longer chains.
ForN > 8 and reverse transport, where even the previous
shortcut is not enough due to exponentially slow conver-
gence to the NESS [49, 50], we calculate the current from
the analytical Ansatz for insulating states. This is given
by (see Supplementary Methods)

ρDom =

N
∑

n=0

pn|ΨD
n 〉〈ΨD

n |,
N
∑

n=0

pn = 1, (8)

which captures remarkably well the particle density
profile. The current is calculated from the population of
the first site, as Eq. (7) is generally valid [4, 52]. Since
the considered system sizes can have very low currents
J < 10−15, exact calculations from this Ansatz were
performed in MATLAB using the Variable-precision
arithmetic (vpa) function to take 32 digits of precision.

CP symmetry of tilted interacting model. Hamil-
tonian (1) is invariant under simultaneous charge con-
jugation and center-reflection operations, e.g. UnjU

† =
1−nN−j+1 for the CP symmetry operator U . Also, since
U2 = I, its eigenvalues are±1, corresponding to even and

odd symmetry. However, only at half filling U commutes
with the total particle number operator Ñ =

∑

j nj , since

UÑU † = N − Ñ . Thus, only in this case we can consider
particle number conservation and CP symmetry simulta-
neously. This property is used to build the Hamiltonian
of the even CP half-filled symmetry sector (see Supple-
mentary Methods) whose energy eigenspectrum features
the avoided crossings that coincide with the forward cur-
rent resonances (see Fig. 3a).
Crucially, this does not mean that our giant rectifica-
tion mechanism relies on the presence of CP symmetry.
In fact, the particle transport remains identical when
this symmetry is broken by taking µ 6= −E(N + 1)/4.
This occurs because within the assumed wide-band limit,
the energy gap between different particle number sectors
(controlled by µ) is irrelevant. Only the energy differ-
ences between eigenstates within each sector, which are
independent of µ, are important for our device. The CP
symmetry just allows us to isolate even and odd eigen-
states, transparently evidencing the connection between
the avoided crossings and current resonances.
In light of this discussion, also note that forward parti-
cle transport is identical (up to a direction change) to
reverse transport with inverted tilt −E.
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[63] F. Verstraete, J. J. Garćıa-Ripoll, and J. I. Cirac. Ma-
trix product density operators: Simulation of finite-
temperature and dissipative systems. Phys. Rev. Lett.,
93:207204, Nov 2004.

[64] S. Al-Assam, S. R. Clark, D. Jaksch, and TNT Devel-
opment Team. Tensor Network Theory Library, Beta
Version 1.2.0, 2016.

[65] S. Al-Assam, S. R. Clark, and D. Jaksch. The Tensor
Network Theory Library. J. Stat. Mech., 2017:093102,
2017.

[66] Jung-Hoon Jung and Jae Dong Noh. Guide to Exact
Diagonalization Study of Quantum Thermalization. J.

Korean Phys. Soc., 76:670, 2020.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support
from UK’s Engineering and Physical Sciences Research
Council (EPSRC) under grant EP/T028424/1.

AUTHOR CONTRIBUTIONS

J.J.M.A. proposed the rectification scheme and per-
formed the numerical and analytical calculations, under
the supervision of S.R.C.. J.J.M.A and S.R.C. analyzed
and discussed the results and the explanation of the phe-
nomenon, and contributed to writing the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.



10

SUPPLEMENTARY METHODS

Exact solution of noninteracting systems

Here we provide details of the NESS solution for tilted
systems with ∆ = 0, arbitrary Γ and f , sketched in Fig.
5, using the Ansatz (5) of the main text. As discussed in
Methods, due to the symmetric boundary driving several
coefficients of this Ansatz are zero or equal to others.
Assuming N even, the symmetry relations are

ak = −aN−k+1, k = 1, . . . ,
N

2
(9)

for the populations and

h
(l)
k = (−1)lh

(l)
N−l−k+2, b

(l)
k = (−1)lb

(l)
N−l−k+2 (10)

with k = 1, . . . N−2l′

2 +1, and where l = 2l′ for l even and
l = 2l′ − 1 for l odd. If N is odd the central population

vanishes, namely aN+1

2

= 0, the recursions for h
(l)
k and

b
(l)
k hold but for k = 1, . . . N−2l′+1

2 , and

h
(l)
N−l

2
+1

= b
(l)
N−l

2
+1

= 0 for l odd. (11)

Thus with N even we have N2

2 +1 unknown coefficients,

while for N odd we have (N−1)2

2 +1 unknown coefficients
and N zero coefficients. This indicates that the same
effort is required to solve systems of N = 2M and N =
2M + 1 sites.
Considering these symmetries, we obtain the following
set of equations after inserting the Ansatz in the master
equation and grouping the coefficients of each resulting
operator. From the coefficients in front of 2n1− 1 we get

a1 +
4b(2)

Γ
= f. (12)

From the coefficients in front of B
(2)
k (k = 1, . . . , N2 − 1)

we have

−Γ

2
b(2)δk,1 + 2J(ak − ak+1)

+ 2J
(

h
(3)
k−1 − h

(3)
k

)

− 2Eh
(2)
k = 0.

(13)

This equation is modified for k = N
2 (i.e. when reaching

the center of the system), since aN

2
= −aN

2
+1 and h

(3)
N

2

=

−h(3)N

2
−1

. Thus here we have

2JaN

2
+ 2Jh

(3)
N

2
−1

− Eh
(2)
N

2

= 0. (14)

From the coefficients in front of H
(2)
k (k = 1, . . . , N2 − 1)

we have

−Γ

2
h
(2)
1 δk,1 + 2J

(

b
(3)
k − b

(3)
k−1

)

+ 2Eb(2) = 0, (15)

FIG. 5. Nonequilibrium noninteracting lattice of spinless
fermions, with hopping J and tilt E > 0. The system is
taken out of equilibrium by injection and ejection of particles
at the boundaries, with imbalance f between both processes
and coupling Γ to both reservoirs.

which changes for k = N
2 since b

(3)
N

2

= −b(3)N

2
−1

, giving

−4Jb
(3)
N

2
−1

+ 2Eb(2) = 0. (16)

For l ≥ 3 even, from the coefficients in front of B
(l)
k (k =

1, . . . , N−l
2 ), we get

− Γ

2
b
(l)
1 δk,1 (1 + δlN ) + 2J

(

h
(l−1)
k+1 − h

(l−1)
k

)

+ 2J
(

h
(l+1)
k−1 − h

(l+1)
k

)

− 2(l − 1)Eh
(l)
k = 0,

(17)

and from the coefficients in front of H
(l)
k we have

− Γ

2
h
(l)
1 δk,1 (1 + δlN ) + 2J

(

b
(l−1)
k − b

(l−1)
k+1

)

+ 2J
(

b
(l+1)
k − b

(l+1)
k−1

)

+ 2(l− 1)Eb
(l)
k = 0,

(18)

where the δlN results because for the last l the driving
terms of both boundaries are equal and thus are summed.
For k = N−l

2 + 1, the corresponding equations are

−2Jh
(l−1)
N−l

2
+1

+ 2Jh
(l+1)
N−l

2

− (l − 1)Eh
(l)
N−l

2
+1

= 0 (19)

2Jb
(l−1)
N−l

2
+1

− 2Jb
(l+1)
N−l

2

+ (l − 1)Eb
(l)
N−l

2
+1

= 0. (20)

Finally, for l ≥ 3 odd, the same relations hold for

k = 1, . . . , N−l+1
2 . This completes the set of N2

2 + 1

linear equations for N even and of (N−1)2

2 + 1 equations
for N odd, which can be solved exactly for hundreds of
sites with standard linear algebra packages and a mod-
erate computational effort.
Importantly, if E = 0, this problem reduces to that of
a noninteracting ballistic conductor [51, 60]. Here the

equations for coefficients in front of H
(2)
k , H

(l)
k and B

(l)
k

for l ≥ 3 decouple from the rest, and form a set of homo-
geneous equations with the same number on unknowns;
the solution of this system is the trivial one where the cor-

responding coefficients h
(2)
k , h

(l)
k and b

(l)
k are zero. This

leads to the size-independent particle current

J =
2Γf

Γ2 + 16
, (21)

and a flat population profile in the bulk, as seen from Eq.
(13). In addition, if E 6= 0 but f = 0, the full system
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of equations is homogeneous, where only the trivial
solution of all parameters being zero is possible. This
corresponds to the NESS being equal to the identity
(infinite temperature state), as expected.

Ansatz for domain NESS

To unravel the structure of the insulating domain reverse-
driving NESSs, consider first J = 0, where the Hamil-
tonian eigenstates are products in the Fock basis. The
highest energy of the n particle sector corresponds to a
single eigenstate with a domain on the right (only degen-
erate with the domain on the left when E = 0), denoted
as |Bn〉 = |00 . . .0N−n11 . . .1n〉. Crucially, this state in-
creases its separation in energy from the rest as E or
∆ increase, and is a dark configuration of the f = −1
driving [50]. For low hopping J ≪ ∆ or E and right-to-
left particle transport, the associated eigenstate |ΨD

n 〉 is
perturbatively built from break-away configurations cor-
responding to the most inner particle moving to the left
and the most inner hole to the right. These are denoted
as |ψn

k 〉p and |ψn
k 〉h respectively for k hopping processes.

Due to the energy gap ∆ + k
2E between |Bn〉 and these

configurations, the kth order correction to |Bn〉 in per-
turbation theory is ∼ |ψn

k 〉h + |ψn
k 〉p with amplitude

dk =
Jk

(2∆ + E)(2∆ + 2E) · · · (2∆ + kE)

=
fj

(

2∆
E + 1

)(k)

(

J

E

)k

. (22)

Here we introduced the Pochhammer symbol y(k) = y(y+
1)(y + 2) · · · (y + k − 1) = Γ(y + k)/Γ(y), and a factor
fj different from 1 when the particle (hole) reaches site
j = 1 (j = N):

fj =











2∆+(N−n)E
∆+(N−n)E if j = 1
2∆+nE
∆+nE if j = N

1 otherwise.

(23)

In the noninteracting (∆ = 0) and homogeneous (E = 0)
limits the amplitude reduces to

dk =

{

1
k!

(

J
E

)k
= 1

k!e
−k/ξ(E) if ∆ = 0

(

J
2∆

)k
= e−k/ξ(2∆) if E = 0,

(24)

with localization length scale ξ(Q) = 1/ ln(Q/J). Thus,
in general the corrections to |Bn〉 are suppressed at least
exponentially with k. In addition, since only the configu-
rations with a particle on site 1 or a hole on site N are not
dark (i.e. they are affected by the f = −1 driving), |ΨD

n 〉
become exponentially close to being dark states of the
f = −1 driving. Note that an identical description can
be performed in the forward f = 1 driving scheme for the
homogeneous interacting case (with degenerate left and
right high-energy domains) and the noninteracting tilted
system (where the left domain is the state of lowest en-
ergy). However, when interactions and tilt coexist this
approach is no longer valid.

From the dark states |ΨD
n 〉 we define the statistical

mixture

ρDom =

N
∑

n=0

pn|ΨD(n)〉〈ΨD(n)|,
N
∑

n=0

pn = 1, (25)

where the probabilities pn are determined from a detailed
balance condition. Namely, if Pn→m is the transition
probability from particle number sector n to sectorm due
to the driving, the detailed balance condition is Pn→n+1+
Pn→n−1 = Pn−1→n + Pn+1→n, with probabilities

Pn→n+1 = pnΓ〈ΨD(n)|σ−
1 σ

+
1 |ΨD(n)〉

Pn→n−1 = pnΓ〈ΨD(n)|σ+
Nσ

−
N |ΨD(n)〉.

(26)

The solution of these equations for an even system gives

pN

2
+m =

p
∏|m|−1

j=−|m|+1

(

2∆
E + N

2 + j
)2(|m|−|j|)

(

J

E

)2|m|2

(27)

for −N/2 ≤ m ≤ N/2. Note that this distribution of
probabilities is symmetric, so pN

2
+m = pN

2
−m. Here

p = pN

2
is fixed by the normalization condition in Eq.

(8), and also is the highest of all the probabilities pn.
Thus, the NESS of the system is largely dominated by
the state with occupied and empty domains of equal size.

Implementation of CP symmetric Hamiltonian

To illustrate how the exact eigenstructure of the CP sym-
metric tilted Hamiltonian is obtained, we take N = 4.
We initially consider the half-filling sector, where the par-
ticle number operator Ñ and CP symmetry operator U
commute. First we identify each equivalent class (EC),
corresponding to each set of basis states that are equiv-
alent under CP symmetry, and their representative state
(RS) [66]. These are given in table I, along with the pe-
riod of each EC.
The basis elements of the even CP half-filled sector,

RS EC Period

1001 1001 2

0110

1100 1100 1

1010 1010 1

0101 0101 1

0011 0011 1

TABLE I. Representative states for N = 4 half-filled system,
states of the corresponding equivalent class and period.

which are common eigenstates of the number and CP
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FIG. 6. Eigenstructure of half-filled even CP symmetric sec-
tor for N = 10 and ∆ = 2. The solid lines correspond to
the eigenenergies, and the dashed lines to the second-order
perturbative corrections to the domains states pinned to the
right (green) and left (blue) boundaries, namely Eqs. (34).

symmetry operator, are thus

|1001,+〉 = 1√
2
(|1001〉+ |0110〉)

|1100,+〉 = |1100〉, |1010,+〉 = |1010〉,
|0101,+〉 = |0101〉, |0011,+〉 = |0011〉.

(28)

The Hamiltonian of this symmetry sector, with the given
order of basis elements, is

H2e =
1

4















−∆ 0 2
√
2J 2

√
2J 0

0 ∆ + 4E 2J 0 0

2
√
2J 2J −3∆ + 2E 0 0

2
√
2J 0 0 −3∆− 2E 2J

0 0 0 2J ∆− 4E















.

(29)

Its spectrum is depicted in Fig. 3a of the main text; due
to the no-crossing theorem [54], it only shows avoided
crossings. On the other hand, the half-filled odd CP sym-
metric sector only has one basis element, namely

|1001,−〉 = 1√
2
(|1001〉 − |0110〉), (30)

with energy −∆/4. This completes the 6 states of the
half-filling sector.

Beyond half filling the CP symmetry operator does not
commute with Ñ . Thus we can build sectors of fixed
number of particles or fixed symmetry, but not both.
However, each case has redundant information. In the
former scenario, the Hamiltonian of m particles is equal
to that of m holes. In the latter, the Hamiltonians of
even and odd CP symmetric sectors are also identical.
To see this, note that the basis elements of each sector
are the ± equal superpositions of the states of each EC

RS EC Period

1111 1111 2

0000

1110 1110 2

1000

1101 1101 2

0100

1011 1011 2

0010

0111 0111 2

0001

TABLE II. Representative states forN = 4 beyond half filling,
states of the corresponding equivalent class and period.

listed in table II, namely

|1111,±〉 = 1√
2
(|1111〉 ± |0000〉)

|1110,±〉 = 1√
2
(|1110〉 ± |1000〉)

|1101,±〉 = 1√
2
(|1101〉 ± |0100〉)

|1011,±〉 = 1√
2
(|1011〉 ± |0010〉)

|0111,±〉 = 1√
2
(|0111〉 ± |0001〉).

(31)

The ± superposition states of 0 and 4 particles are dis-
connected from the other basis elements, and have energy
3∆/4. The states of 1 and 3 particles are connected with
each other by the Hamiltonian, which has the matrix
representation

He/o =
1

4











∆+ 3E 2J 0 0

2J −∆+ E 2J 0

0 2J −∆− E 2J

0 0 2J ∆− 3E











.

(32)

Similarly to the half-filled case, the spectrum of this
Hamiltonian features avoided crossings only. This
completes the 10 states of the sectors beyond half filling,
and thus the 16 states of the N = 4 system.
The above construction can be directly extended to
larger systems. This is exemplified in Fig. 6 for the even
CP symmetry sector of 10 sites, which corresponds to
results presented in Fig. 4d-f of the main text.

Perturbative calculation of eigenenergies

Given the many-body nature of our problem, it is not fea-
sible to obtain exactly the eigenstructure of the Hamilto-
nian for large systems, even with the explicit use of the
CP symmetry described in the previous subsection. Con-
sidering that our giant rectification mechanism manifests
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FIG. 7. Population profiles for noninteracting lattices with N = 14, different tilts E and driving parameters f . a E = 0.3. b

E = 0.6. c E = 3.0.

for strong interactions, we perform a perturbative calcu-
lation of the most important eigenstates in this limit. For
this we consider first the case of zero hopping, where the
eigenstates are product states in the Fock basis. Here, the
energies for N sites and domains of n particles pinned to
the left (L) and right (R) boundaries are

En,L =
1

4
[∆(N − 3)− En(N − n)] ,

En,R =
1

4
[∆(N − 3) + En(N − n)] .

(33)

Clearly both states are degenerate and have the highest
energy of the n particle sector in the absence of tilt [50].
For a finite tilt, En,R is the highest eigenstate of the n
particle sector, while En,L is the second highest one for
low E and the lowest one for very large E.
When turning on a very weak hopping J , these energies
are corrected by second-order processes of the most in-
ner particle jumping to the neighboring empty site and
then jumping back. Assuming no degenerate states, the
corrected energies are

Ẽn,L = En,L +
J2

4∆− 2E
,

Ẽn,R = En,R +
J2

4∆+ 2E
.

(34)

For N = 4, we identify Ẽ2,R = Ẽ0011 as the energy ν = 5
of the half-filled even CP eigenstructure of Fig. 3a of
the main text, which monotonically increases with E.
Also, far from E = 2∆, Ẽ2,L = Ẽ1100 corresponds to the
eigenenergy whose avoided crossings in the exact spec-
trum match the forward transport resonances, namely to
ν = 4 for 0 ≤ E <∼ 2, ν = 3 for 2 <∼ E <∼ 4, ν = 2 for
4 <∼ E <∼ 8 and ν = 1 for E ≫ 1. Similarly, in Fig. 6 we

plot Ẽ5,R and Ẽ5,L for N = 10 sites, indicated by green
and blue dashed lines respectively.
We also focus on the case of L = 4 to perturbatively

calculate the other energies associated to the basis ele-
ments of the half-filled even CP symmetry sector. In the

zero hopping limit, these are

E1010 = Eν=1 = −1

4
(2E + 3∆),

E0101 = Eν=2 =
1

4
(2E − 3∆),

E1001,+ = Eν=3 = −∆

4
.

(35)

Turning on a weak hopping, and keeping up to O(J2),
the corrected energies are

Ẽ1010 = E1010 +
J2

2

[

1

E − 2∆
− 2

E +∆

]

,

Ẽ0101 = E0101 +
J2

2

[

2

E −∆
− 1

E + 2∆

]

,

Ẽ1001,+ = E1001,+ + J2

[

1

∆ + E
+

1

∆− E

]

.

(36)

For tilts lower than those of the divergences (E = ∆, 2∆),
these expressions work reasonably well, as seen in Fig. 3a
of the main text. In fact, the first crossing of Ẽ1100 and
Ẽ1001,+ takes place at E ≈ 2.08, which is very close to the
location of the first forward current resonance, E = 2.15.

SUPPLEMENTARY DISCUSSION

Analytical results for small noninteracting chains

Now we provide analytical results for the exact set of lin-
ear equations of ∆ = 0, focusing on the particle current
and population profile for small lattices. We take first
N = 4, which corresponds to a set of 9 equations and 9

unknowns, namely a1, a2, b
(2), h

(2)
1 , h

(2)
2 , b

(3)
1 , h

(3)
1 , b

(4)
1 and

h
(4)
1 . Even though this system can be easily solved, it

leads to cumbersome expressions for the transport prop-
erties. Thus we consider two limits. First, for E ≪ 1 the
particle current to lowest order in E is given by

J =
2Γf

Γ2 + 16
− 1

2
E2Γf

(160 + Γ2)

(16 + Γ2)2
. (37)
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FIG. 8. Particle current in noninteracting tilted lattices. a As a function of N for different values of V . The dashed lines
correspond to fits to exponential functions ∼ e−cN , with exponents c = 0.0133(1), 0.0410(2), 0.0626(2), 0.101(1), 0.231(1) for
V = 4.2, 4.5, 4.7, 5.0, 6.0 respectively. b As a function of V for different values of N . The dashed lines correspond to fits to
exponential functions ∼ e−dV , with exponents d = 5.60(5), 12.42(6), 24.1(3) for N = 50, 100, 200 respectively.

Thus the current decreases quadratically from the E = 0
result of Eq. (21). A more interesting situation is that
of very large tilt E ≫ 1. Here we get the current

J =
1

8
ΓfE−4 (38)

and the coefficients

a1 = f(1− E−4), a2 = f

(

1− 5

2
E−2

)

, (39)

with a3 = −a2 and a4 = −a1. This indicates that a
large tilt leads to an insulating state. The current is
suppressed as a power law of E, as well as the deviations
of the populations from (1 + f)/2 and (1 − f)/2 on the
left and right halves of the chain, respectively. Indeed, if
f = 1, as in our numerical calculations, the populations
〈nk〉 = (ak + 1)/2 of the chain are

〈n1〉 = 1− 1

2
E−4, 〈n2〉 = 1− 5

4
E−2,

〈n3〉 =
5

4
E−2, 〈n4〉 =

1

2
E−4.

(40)

This corresponds to the formation of almost fully-
occupied and empty domains on the left and right halves
of the system respectively. If f < 1 the system is also
insulating, with domains of population values closer to
1/2, as shown in Fig. 7 for larger systems.
Crucially, the f = 1 population results are reproduced
with the insulating Ansatz of Eq. (8). For instance, for
any even N ≥ 4 and keeping only m = ±1 in Eq. (27),
the probabilities of the Ansatz are up to O(E−2)

pN

2
= 1− 8

(

J

EN

)2

, pN

2
±1 = 4

(

J

EN

)2

. (41)

This leads to the general expression

〈

nN

2

〉

= 1−
(

J

E

)2
[

1 +

(

2

N

)2
]

, (42)

which agrees with the result of 〈n2〉 of Eq. (40) forN = 4.
We have also reproduced 〈n1〉 keeping up to O(E−4).
This provides a benchmark of the Ansatz of Eq. (8).
In addition, we calculated the exact solution of the linear
set of equations for N = 5, which has the same number
of unknowns. In the limit of low tilt E ≪ 1, we get

J S =
2Γf

Γ2 + 16
− 2E2Γf

(80 + Γ2)

(16 + Γ2)2
. (43)

It has a very similar form to that of N = 4, but with
larger deviation from the ballistic result. On the other
hand, in the limit E ≫ 1, we get the current

J =
1

32
ΓfE−4 (44)

and f = 1 populations

〈n1〉 = 1− 1

8
E−4, 〈n2〉 = 1− 1

2
E−2,

〈n3〉 = 0, 〈n4〉 =
1

2
E−2, 〈n5〉 =

1

8
E−4.

(45)

Thus in the large E limit the current for N = 5 is four
times lower than that of N = 4, and the populations are
closer to 1 on the left and to 0 on the right than those
of N = 4. This means that even though the observables
are of the same order in both sizes, the larger system
favors more the formation of particle domains.
Finally, it is important to note that these results already
show that there is no rectification when ∆ = 0, as the
current is ∝ f . Interactions are thus required in the
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FIG. 9. Comparison of noninteracting NESS expectation values from exact calculations and insulating Ansatz. a Populations
across a lattice of N = 10 and several values of E, for exact (solid lines) and perturbative (◦) calculations. b Comparison of
particle currents as a function of the system size; the same convention of panel a is used.

present scheme for it to behave as a diode.

Transport in noninteracting tilted lattice

Using the exact solution described in Supplementary
Methods, we calculate the transport properties for
noninteracting tilted systems larger than those obtained
analytically in the previous section. First we consider
different values of f and E on lattices of N = 14, as
show in Fig. 7. Similarly to the results for N = 4 of Eq.
(39), f just modifies the amplitude of the deviation of
the populations from the value 1/2, leaving the overall
form of the profile identical. The effect of E (and of
V = EN , shown in Fig. 2c of the main text) is different,
as it changes the form of the profiles. Indeed, as E
increases these become more flat on both halves of the
lattice, preventing the propagation of particles and thus
driving the system to an insulating NESS.
Furthermore, considering Eq. (12), the current is
proportional to f , as in the analytical results of
N = 4, 5. Given the latter, we analyze the current for
the maximally-driven f = 1 case only, when varying V
and N . First we evaluate J as a function of the system
size for several values of V ; the results are shown in Fig.
8a. The current decays monotonically both with V and
N , as expected. Also, for large V >∼ 4.5 an exponential
trend with the system size is clear, indicating insulating
behavior. For lower V the decay with N is much slower,
or even not appreciable in the scale of the plot (as for
V = 2); here we anticipate that the exponential fit will
emerge on length scales larger than the system size.
We also study the behavior of the current as a function
of V for fixed system sizes; the results are shown in
Fig. 8b. Importantly, for large-enough systems, we find
an exponential decay of J with V from a value that
decreases with N . These results evidence how rapidly
an insulating state develops due to the tilt.

Accuracy of NESS insulating Ansatz

Now we show that even for small noninteracting tilted
systems, the Ansatz of Eq. (8) captures very well the
observed insulating behavior. For this we compare the
values of the deviations of the populations from 1/2
(Fig. 9a) and the particle currents (Fig. 9b) obtained
from the Anstaz and from the exact solver for a lattice
of N = 10 sites. Remarkably, even down to E = 1 the
results from the Ansatz are very close to the exact ones.
In the presence of interactions, the comparison of both
types of calculations has been given in Fig. 4 of the main
text for reverse transport, again showing an excellent
agreement. These results demonstrate the huge power
of the Ansatz to describe the nonequilibrium properties
of a boundary-driven large-domain insulating NESS.
We emphasize that in spite of the similar descrip-
tion of the domain-like insulating NESSs induced by
interactions and tilt on their own, there are some
key differences. First, the former requires a minimun
value ∆ = 1, as for lower ∆ the transport is ballistic
[4, 49, 50, 52]; the latter can be achieved with any tilt
provided the chain is long enough. Second, as previously
discussed, insulating domains emerge for E = 0 and
strong interactions only at f ≈ 1, while they can do it
at any f for ∆ = 0 and long- or tilted-enough systems.

Mechanism of forward current resonances

Some final remarks are in order regarding the mecha-
nism underlying our quantum diode. First, such mech-
anism is not restricted to half filling; different particle
number sectors feature avoided crossings corresponding
to forward current maxima, which might even be absent
from the half-filled sector. Considering this, we have ac-
counted for every resonance reported in the main text.
Second, in addition to being associated to a large co-
herence, a forward current resonance takes place at an
avoided crossing if the corresponding current matrix ele-
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FIG. 10. Components of forward particle current in interacting tilted lattice of N = 4 and ∆ = 5. a Current matrix elements
J 2e

ν,µ(q = 2) corresponding to the parameters of Fig. 3 of the main text. b Product of coherences ρ2eµ,ν and matrix elements
J 2e

ν,µ(q = 2), which gives contribution of the sector to the total current (dashed line).

ment Js
νs,µs

(q) is significant. Otherwise, the contribution
of that coherence to the current is small. This is al-
ready evidenced from the coherences shown in Fig. 3a of
the main text, and the current matrix elements of Fig.
10a. The coherence between states µ, ν = 3, 4 has a large
current matrix element at the tilt of the first resonance;
similarly for the coherence between states µ, ν = 2, 3 at
the second resonance and (in lesser way) for that be-
tween states µ = 1, 2 at the third resonance. Because of

this, the product ρ2eµ,νJ 2e
ν,µ(q = 2) is large, as seen in Fig.

10b, and a resonance is clearly seen. On the other hand,
even though there is a large coherence between states
µ, ν = 4, 5 for E ≪ 1, the corresponding current matrix
element is strongly suppressed, leading to a barely-seen
current maximum around E ≈ 0. In conclusion, not ev-
ery large coherence, arising e.g. from an avoided crossing,
will correspond to a forward transport resonance.


