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Self-induced entanglement resonance in a disordered Bose-Fermi mixture
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2H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK

3Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

Different regimes of entanglement growth under measurement have been demonstrated for quan-
tum many-body systems, with an entangling phase for low measurement rates and a disentangling
phase for high rates (quantum Zeno effect). Here we study entanglement growth on a disordered
Bose-Fermi mixture with the bosons playing the role of the effective self-induced measurement for
the fermions. Due to the interplay between the disorder and a non-Abelian symmetry, the model
features an entanglement growth resonance when the boson-fermion interaction strength is varied.
With the addition of a magnetic field, the model acquires a dynamical symmetry leading to ex-
perimentally measurable long-time local oscillations. At the entanglement growth resonance, we
demonstrate the emergence of the cleanest oscillations. Furthermore, we show that this resonance is
distinct from both noise enhanced transport and a standard stochastic resonance. Our work paves
the way for experimental realizations of self-induced correlated phases in multi-species systems.

Introduction — A crucial question in non-equilibrium
physics is how a quantum system thermalizes. This has
been understood in recent years in terms of quantum in-
formation scrambling [1, 2], i.e. a quantum many-body
system, even when isolated from the environment, dy-
namically encodes quantum information present in the
initial state into non-local degrees of freedom by gener-
ating entanglement, leaving the local information indis-
tinguishable from that of a thermal state that does not
change in time. Such a process maximises entropy.

Likewise, further maximising entropy by adding exter-
nal environmental noise to a small system oscillating in
time is often believed to decrease the quality of the os-
cillations. However, stochastic resonance is a fascinating
phenomenon whereby an optimal amount of noise can
actually increase the strength of a signal [3] in certain
simple quantum or classical systems. In the 90’s and
2000’s it was intensely studied in a wide variety of bio-
logical (e.g. signals in mechanoreceptor neurons) [4] and
chemical systems (e.g. reaction-rates) [5], and also for en-
gineering problems (e.g. network optimization) [6]. On
the quantum level it has mostly been studied for single
(or few) particle systems in an external bath [6–10].

On the other hand, for quantum many body systems
only very recently has it been demonstrated that mea-
surements, functioning as an external effective noise, can
induce different entanglement entropy growth phases [11–
14]. These are realized on the level of the individual
measurement trajectories and not the ensemble averaged
dynamics. Such non-equilibrium physics could be ob-
served experimentally in cold atom systems, which pro-
vide a long-standing platform for accessing many-body
phenomena under controllable conditions [15]. Here, the
most straightforward measurements are those of local ob-
servables.

It is known that entanglement growth in many-body
systems can exhibit long-time oscillations close to criti-
cality [16]. On the other hand, the theory of dynamical

symmetries [17], which are a special kind of spectrum
generating algebra [18] fulfilling the principles of exten-
sivity and/or locality, gives the conditions under which
persistent oscillations will manifest in local observables.
It has been applied to several manifestations of non-
stationary dynamics including both closed [19], Floquet
[20] and dissipative [17, 21–26] time crystals, quantum
many-body scars [27–32], attractors [33], synchronization
[34, 35] and dynamical superconductivity [36]. Notably,
some systems that have been intensely both studied ex-
perimentally [37–42] and theoretically [43–52], and that
possess dynamical symmetries, are cold-atom Bose-Fermi
mixtures, with the bosons playing the role of an emergent
bath for the fermions. Although distinct from measure-
ments, such baths have the potential to realise different
entanglement growth regimes. More specifically, different
disorder realizations play the role of different trajectories,
with the coupling between the bosons and fermions func-
tioning as a mutual source of measurement, effectively
self-inducing such behaviours. This is advantageous in
terms of experimental measurements compared to other
phenomena such as measurement induced phase transi-
tion [12], dissipative freezing [23, 53, 54] and dark state
phase transitions [55], because it does not require indirect
observation via e.g. photon counting statistics.

In this Letter we demonstrate the appearance of an en-

tanglement growth resonance in the Boson-Fermion cou-
pling strength for a disordered Bose-Fermi gas in an 1D
optical lattice with a dynamical symmetry. We show an-
alytically and numerically that measuring local magneti-
zation oscillations, implied by the dynamical symmetry,
it is possible to qualitatively distinguish between different
entanglement growth regimes. Our setup, of a standard
local quench from a pure state, features the interplay
between non-Abelian subsystem symmetries and disor-
der. As a result, below and above the resonance, where
entanglement grows slowly, the oscillations at the single
realization level are largely irregular. On the other hand,
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at the resonance, where the growth is maximal, the clean-
est oscillations emerge. Thus one may readily distinguish
between these different entangling dynamics without the
need for measuring entanglement or post-selection. We
finally show that the entanglement growth resonance is
distinct from both well-known stochastic resonances and
noise enhanced transport [56–63], signalling a novel be-
haviour of quantum matter.
Model and setup — Our proposal of establishing an

entanglement growth resonance is based on a mixture
of hard-core bosons and spin-1/2 fermions, depicted in
Fig. 1 and described by the one-dimensional Bose-Fermi-
Hubbard model

HBF = HB +HF + UBF

∑

j

nB
j

(

nF
j,↑ + nF

j,↓

)

. (1)

Here HB is the bosonic Hamiltonian, given by

HB = −tB
∑

〈i,j〉

(

b†i bj +H.c.
)

, (2)

and HF is the fermionic component, corresponding to

HF = −tF
∑

〈i,j〉,σ

(

f †
i,σfj,σ +H.c.

)

+
∑

j

[

UFF nF
j,↑n

F
j,↓ + ǫjn

F
j +

B

2

(

nF
j,↑ − nF

j,↓

)

]

.

(3)

We consider a lattice of L sites. Operator b†j (bj) creates

(annihilates) a boson on site j, nB
j = b†jbj is the local

boson number operator, f †
j,σ (fj,σ) creates (annihilates)

a fermion with spin σ =↑, ↓ on site j, and nF
j,σ = f †

j,σfj,σ
is the local fermion number operator for spin σ. We also
define nF

j = nF
j,↑ + nF

j,↓. The bosonic Hamiltonian in
Eq. (2) corresponds to nearest-neighbor (〈i, j〉) hopping
processes with amplitude tB; there are no on-site inter-
actions due to the hard-core nature of the bosons. The
fermionic Hamiltonian in Eq. (3) incorporates nearest-
neighbor hopping with amplitude tF, on-site interaction
UFF, magnetic field B and site-dependent on-site poten-
tial ǫj selected as a uniformly-distributed random num-
ber in the interval [0, h]. Finally, UBF in Eq. (1) is the
boson-fermion coupling, which gives the amplitude of the
noise on the fermions due to the bosons and vice versa.
In this form each species serves as a non-Markovian bath
to the other, which we consider explicitly rather than
tracing one of them out. We note that such a system
can be implemented with a mixture of 174Yb, which is
a bosonic isotope with zero nuclear spin, and 171Yb, be-
ing a fermionic isotope with nuclear spin I = 1/2 [64].
Furthermore, recent experimental advances might be ex-
ploited to engineer systems where only one species expe-
riences disorder [65].
To assess the entanglement growth resonance phe-

nomenon, we calculate the dynamics of the system under

FIG. 1. Scheme of the Bose-Fermi mixture showing entan-
glement growth resonance. The blue circles represent the
hard-core bosons, which hop between neighboring sites. The
orange circles represent the fermions with spin initially pro-
jected along the x axis. These hop between nearest neighbors,
repel each other and the bosons on the same site, experience
an external magnetic field and disorder. Initially, only the
first half of the lattice is occupied.

a quench. The initial product state is given by a fermion
and a boson on sites j = 1, ..., L/2, with the second half
of the lattice being empty. In addition, the spin of each
fermion is initially projected along the x axis, thus being

on a state 1/
√
2
(

f †
↓ + f †

↑

)

|0〉. We set the energy scale

by taking tB = tF=1, and consider interacting fermions
with UFF = 1, B = 16, h = 8 and several values of
UBF. We simulate the time evolution for L = 24, a fi-
nal time T = 12 and up to 50 disorder realizations using
the time-evolving block decimation, describing the sys-
tem as a matrix product state (MPS) [66, 67], which is
largely applied to boson-fermion mixtures [68, 69]. Our
calculations were performed using the open-source Ten-
sor Network Theory library [70].
Entanglement growth in a Bose-Fermi mixture — The

model has a dynamical symmetry. The disordered po-
tential and the fermion-boson coupling break the usual
SU(2) η-pairing symmetry of the system [71] leaving only
the spin SU(2) symmetry,

[HF, S
z] = 0, [HF, S

±] = ±BS±, (4)

where Sα =
∑L

j= Sα
j , S

z
j =

[

nF
j,↑ − nF

j,↓

]

, S+
j = f †

j,↑fj,↓

and S−
j = f †

j,↓fj,↑. The dynamical symmetry is based on
this trivial SU(2) spin symmetry. However, it has non-
trivial implications in the presence of the disorder and
coupling to bosons. More specifically,

[H,As ⊗ 1b] = BAs ⊗ 1b, (5)

where As = S+ and 1b is the boson identity operator.
As this dynamical symmetry fulfills the trivial SU(2) al-
gebra, we may eliminate the magnetic field by means of
transformation to a co-rotating basis U(t) = exp[iBSzt],
and obtain

Hrot = U(t)HBFU(t)† = HBF − B

2
Sz, (6)

i.e. [Hrot, As ⊗ 1] = [Hrot, A
†
s ⊗ 1] = 0. Then invok-

ing thermalization arguments [72] we know that, follow-
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ing a generic quench, the time evolution in the rotat-
ing frame will drive the system into an effective max-
imal entropy state. This state is fully determined by
the generalized temperatures given by the initial ex-
pectation values of the only conserved extensive oper-
ators, namely 〈Hrot〉, 〈Sz〉, 〈S±〉, 〈NF〉 and 〈NB〉, where
NF/B =

∑

j n
F/B
j is the total fermion/boson number.

In particular, generalised temperatures µ± correspond
to the expectation values 〈S±〉, where µ+ = (µ−)∗ due
to hermiticity. Transforming back gives that µ± be-
come time-dependent with frequency B, namely µ± →
µ±e±iBt. That is, in the laboratory frame, the only long-
time oscillations take place at frequency ω = B for local
observables O that have non-zero overlap with S±, i.e.
〈S+O〉 6= 0 [17, 19]. The dynamics will proceed generi-
cally through scrambling up to the (dynamical) symme-
tries. Therefore, the largest entropy will be associated to
oscillations at frequency ω = B only. The transient dy-
namics, before the system has reached maximum entropy,
can feature oscillations at more frequencies. This imme-
diately implies that maximum entropy gives the cleanest
oscillations.

To illustrate this, we simulate the time evolution of the
initial state for several values of the boson-fermion cou-
pling UBF, and focus on fermionic observables. Namely,
in Fig. 2(a) we show the magnetization along the x di-
rection 〈Sx

j 〉 = 〈S+
j + S−

j 〉 on the first initially-empty
site (j = 13) as a function of time for a few UBF val-
ues and the same disorder realization. In the absence of
boson-fermion coupling, due to the disorder being only
in one of the SU(2) symmetry sectors, the fermions are
not fully localized and a finite but slow transport is ex-
pected [73]. This is appreciated in the corresponding low
magnetization shown in Fig. 2(a). On the other hand,
it is widely appreciated that external noise can enhance
transport in such situations [74], and even melt full local-
ization in other models [75, 76]. In our case, such effect
is provided by the bosons, which do not experience disor-
der. Indeed, turning on the boson-fermion coupling ini-
tially enhances the propagation of fermions (see below),
leading to a larger magnetization, as seen in Fig. 2(a).
Notably, the oscillations emerging from the dynamical
symmetries of the model, which result in non-stationarity
[17, 36], feature the cleanest pattern (in the sense of the
most homogeneous amplitude) for an intermediate value
of UBF, here UBF = 2. Stronger boson-fermion cou-
plings might lead to larger amplitudes, but the oscilla-
tions become more irregular; even larger coupling, which
results in slow-moving interspecies composite quasiparti-
cles and thus decreases the magnetization signal (i.e. a
corresponding quantum Zeno effect), leads to highly un-
even oscillations. The same behavior is seen for the other
initially-empty sites of the lattice, and crucially, for the
different simulated disorder realizations. Thus, at the
single-realization level, an intermediate noise induces the

FIG. 2. (a) Spin oscillations on site L

2
+1 along the x axis for

the same disorder realization and different values of UBF . (b)
Disorder-averaged von Neumann entropy 〈S〉 as a function of
time for the central bipartition and different values of UBF.
The dotted black lines correspond to power law fits, with
α = 0.23(12), 0.68(2), 0.732(3), 0.562(4), 0.26(4), 0 for UBF =
0, 0.5, 2, 3, 5, 8.

cleanest signal.
Remarkably, this boson-fermion coupling also results

in maximal entanglement across the system. We show
this by calculating the time evolution of the von Neu-
mann entropy S of the bipartition corresponding to the
initially occupied and empty lattice sites, readily ob-
tained from the numerical method. This is defined as

S = −tr (ρo log2 ρo) = −
∑

α

λ2
α log2 λ

2
α, (7)

with ρo the reduced density matrix of the initially-
occupied half of the system, and λ2

α its eigenvalues. Note
that S incorporates the quantum correlations of both
fermions and bosons, and is directly related to the size
of the MPS describing the system.
The dynamics of the von Neumann entropy, averaged

over several realizations, is shown in Fig. 2(b). In agree-
ment with the argument discussed above, the fastest en-
tanglement growth takes place at UBF = 2. Moreover,
up to the final simulated time, the evolution is consistent
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FIG. 3. Final von Neumann entropy at the central biparti-
tion as a function of UBF. Main panel: Examples of single
realizations, where the same disorder distribution is used for
each curve. Inset: Average over all disorder realizations.

with a power law, S ∝ tα, with α < 1 being maximal
at the same boson-fermion coupling. Also, for UBF ≫ 1
we find saturation to an area law behavior (S ∝ t0). Im-
portantly, this is true also at the single realization level.
We exemplify this in Fig. 3 for five different disorder re-
alizations, and see that the final entropy is maximal at
(or very close to) UBF = 2, a behavior that translates
directly into the average (see inset). For these realiza-
tions, we checked that the cleanest oscillations also oc-
curred at the same value of UBF. Our observations thus
suggest a strategy to determine conditions that optimize
entanglement by performing measurements of single-site
observables.
We emphasize that the unravelled phenomenon is fun-

damentally different from a stochastic resonance origi-
nated from the enhancement of fermionic transport due
to the noise caused by the bosons. To illustrate this, we
depict in Fig. 4(a) the maximum of the Fourier transform
of the x magnetization averaged over the initially-empty
half of the system, 〈Sx〉 =

∑L

j=L

2
+1〈Sx

j 〉, for the same

five disorder realizations of Fig. 3, and in Fig. 4(b) we
show the final number of fermions in the same subsystem,
〈NF,e〉 = ∑L

j=L

2
+1〈nF

j 〉; the insets correspond to the av-

erages over all the disorder realizations. Even though the
latter present a maximum at UBF = 2, this does not hold
at the single disorder realization level. For each one, the
optimal transport of fermions coincides with the high-
est Fourier peak of the magnetization oscillations. This
indicates that the stochastic resonance (largest oscilla-
tions) results when the fermions maximally populate the
second half of the system, and that it manifests without
any external bath but rather is emergent by the many-
body system itself. However, it can occur at weaker or
stronger boson-fermion couplings than that of the entan-

FIG. 4. (a) Maximum of Fourier transform of magnetization
oscillations in x averaged over the second half of the lattice,
as a function of UBF , for the same disorder realizations of Fig.
3. (b) Final population of fermions in the second half of the
lattice, as a function of UBF , for the same disorder realizations
of (a). Insets: Averages over all disorder realizations.

glement growth resonance, depending on the particular
details of the realization; the mechanism of both reso-
nances is thus different.

Finally, a few important points are in order. On the
one hand, the dynamics of the bosons is quite different
to that of the fermions. They do not feature a resonance
as in Fig. 4(b); instead their population on the initially-
empty half of the system (at a given time) generally de-
cays monotonically with UBF (not shown). For very large
boson-fermion couplings, they get localized along with
the fermions, as a result of heavy quasiparticle forma-
tion; this could be pictured as a quantum Zeno mecha-
nism of the fermions on the bosons. Also, for a system
without disorder, the non-Abelian symmetry alone does
not induce a clean entanglement resonance.

Conclusion — Based on the theory of dynamical sym-
metries, we have shown that a prototypical model of a
Bose-Fermi mixture in an optical lattice features an en-
tanglement growth resonance, which presents the clean-
est persistent oscillations of the transverse magnetiza-
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tion in one half of the lattice following a local quench.
Remarkably, since such oscillations correspond to single-
site observables, this motivates the design of protocols to
maximise entanglement in many-body systems guided by
local measurements.

The origin of this phenomenon is fundamentally differ-
ent from the usual single-particle non-extensive stochas-
tic resonance [6]. Firstly, it occurs in an extensive quan-
tum many-body system. Secondly, it occurs without in-
troducing an external bath at some temperature; our
many-body model functions as its own bath emerging
from a pure initial state quench, self-inducing the reso-
nance. Finally, it is based on a complex interplay of dis-
order, dynamical symmetries, quantum Zeno effect and
noise-enhanced transport, being beyond a stochastic res-
onance mechanism caused solely by the latter.

Our results motivate the exploration of the interplay
between dynamical symmetries and other types of non-
Markovian baths. Furthermore, they inspire future re-
search on connections between entanglement growth and
transport properties of multi-species systems with dy-
namical symmetries. Isolated disordered fermionic lat-
tices already feature nontrivial relaxation when the dis-
order is coupled to a particular type of degrees of freedom
[73], and their interaction with clean baths of a small
number of particles leads to even richer physics such as
proximity effects [65, 77, 78]. In addition, our setup could
be exploited to design novel mechanisms of dynamical su-
perfluidity in Bose-Fermi mixtures [36].
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