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Abstract
We study the non-equilibrium transport properties of a highly anisotropic two-

dimensional lattice of −spin 1

2
particles governed by a Heisenberg XXZ Hamil-

tonian. The anisotropy of the lattice allows us to approximate the system at finite
temperature as an array of incoherently coupled one-dimensional chains. We
show that in the regime of strong intrachain interactions, the weak interchain
coupling considerably boosts spin transport in the driven system. Interestingly,
we show that this enhancement increases with the length of the chains, which is
related to superdiffusive spin transport. We describe the mechanism behind this
effect, compare it to a similar phenomenon in single chains induced by
dephasing, and explain why the former is much stronger.
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1. Introduction

Since the experimental discovery that quantum coherent dynamics is present in excitation
energy transport in biological light harvesting complexes [1] and theoretical work
demonstrating that environmental fluctuations can be used to optimize transport efficiency
[2, 3], a great deal of interest has focused on the beneficial consequences that the unavoidable
coupling of a quantum system to its environment can have [4–11]. In particular, it has been
found that the optimal regime for excitation transport through various systems consists of a
balance between coherent and incoherent phenomena, or, more specifically, the interplay
between coherent electronic dynamics and the vibrational environment [2, 3, 12, 13]. Most of
this effort to characterize and understand environment-assisted transport has been restricted to
single-particle effects [2, 3, 12, 14, 15], given that light-harvesting complexes under
physiological conditions usually contain very few excitations at the same time due to the
low intensity of ambient sunlight [16, 17]. Nevertheless, since the interplay between coherent
and incoherent phenomena is relevant beyond a biological context, it is important to consider its
impact on the transport properties of many-body systems.

It has been known for many years that coherent and incoherent particle transport processes
take place in various condensed matter systems. These include cuprates [18–20] and several
organic conductors such as conjugated polymers [21, 22], layered organic metals [23, 24] as
well as Bechgaard and Fabre salts [25–27]. As illustrated in figures 1(a), (b) these systems share
a common feature, which is a highly anisotropic structure consisting of lattice sites strongly
coupled in one or two directions and weakly coupled in other directions. At not-too-low
temperatures, particle transport along the strongly coupled directions is predominantly coherent,
while the transport along directions with weak coupling occurs via incoherent hopping
processes. This simple picture is incomplete, however. There exist several competing effects
that may contribute to the transport behaviour, depending on the material in question. These
include static disorder, interparticle interactions, local dissipation, and spatially correlated noise.
It is thus expected that a rich variety of phenomena emerges from the interplay between these
different processes.

In order to disentangle the contributions from these various effects, a natural strategy is to
analyse the competition between just a few of them first, which can be non-trivial. For instance,
it is well known that static disorder results in Anderson localization, which is broken by weak
dissipation or decoherence effects [2, 28]. On the other hand, the interplay between interactions
and disorder is not fully understood, and is still the object of intense research [29–31]. In the
present work, we focus exclusively on the physics resulting from the combination of coherent
interactions and incoherent processes, neglecting disorder and other complications. This sets the
stage for a more complete future analysis that includes all of these elements.

Several interesting effects resulting from the competition between coherent and incoherent
processes in the presence of strong interactions have recently been found [32–34]. In particular,
previous research by some of us has uncovered a novel mechanism of dephasing-enhanced
transport in linear homogeneous strongly interacting systems [35, 36]. Nevertheless, the physics
resulting from this interplay still represents relatively uncharted territory.

Thus, motivated by the existence of coherent and incoherent hopping processes in several
anisotropic condensed matter systems, we propose a concrete minimal model that contains these
features, as shown in figure 1(c). Specifically, we consider excitation transport through arrays of
incoherently coupled one-dimensional (1D) quantum spin chains, including the possibility of
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strong interactions between excitations on the same chain. We study dc transport properties by
imposing a net current flowing in one direction through the system. We find that the effective
environment furnished by nearby chains significantly enhances intrachain transport for
sufficiently strong interactions between excitations. In addition, such a transport enhancement
increases with the size of the chains, indicating the relevance of the mechanism for bulk
materials. Furthermore, the incoherent hopping of spin excitations between chains results in a
much more pronounced effect than that produced by pure dephasing due to, for example, lattice
vibrations [35, 36]. We emphasize that the simple model we consider does not account for
several effects, e.g. dissipation and disorder, expected to be relevant for real systems such as
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Figure 1. Illustration of systems of incoherently coupled chains. The red solid and green
dashed lines represent interchain and intrachain hopping, respectively. (a) Excitation
transport in a conjugated polymer system. Interchain hopping of excitons, observed to
be incoherent [21, 22], occurs where polymeric chains are close to each other. (b)
Excitation hopping in organic salts. Coherent hopping occurs along one direction of the
system, while incoherent hopping takes place along another direction, mediated by a
scaffolding of different molecules. (c) System of three incoherently coupled spin chains,
with intrachain hopping τ, interaction strength Δ and interchain coupling γ. The blue
arrows represent the right-to-left driving of the system, while the red arrows correspond
to the left-to-right driving.



organic conductors and cuprates. Nevertheless the results we present in this work are general
and do not depend on the particular form of the interaction. Therefore we believe that they
constitute a meaningful contribution towards the understanding of the rich phenomenology
arising from the interplay between coherent and incoherent effects.

The paper is organized as follows. In section 2 we describe the model to be studied and the
approximations considered. In section 3 we study weakly interacting systems, where the
incoherent coupling only degrades the transport. In section 4 we analyse the case of strong
interactions, where current enhancement due to incoherent coupling is observed. The origin of
this effect is explained, and compared to that resulting from dephasing processes [35, 36].
Finally, our conclusions are discussed in section 5.

2. Model of non-equilibrium incoherently coupled spin chains

In this work we consider a Λ×N rectangular two-dimensional (2D) lattice, consisting of Λ
chains with N sites each (see figure 1(c)). The model for coherent intrachain transport should
describe conserved excitations that can hop between lattice sites and interact with each other.
We therefore choose the simple spin–1

2
XXZ Hamiltonian to govern the dynamics of each chain

[37, 38]

∑τ σ σ σ σ Δσ σ= + +λ λ λ λ λ λ λ

=

−

+ + +( )H , (1)( ) ( ) ( ) ( ) ( ) ( ) ( )
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where the super-index λ( ) refers to any operator of chain λ, σ λ( )
i
k ( =k x y z, , ) are Pauli matrices

at lattice site i of chain λ, τ is the exchange coupling between nearest neighbours (in the
following we take units of energy and time such that τ = 1 and = 1), and Δ is the anisotropy
(we consider Δ > 0 only), where both parameters are assumed to be the same for every chain.
The presence of an excitation at a certain site corresponds to a spin pointing up, while the
absence of an excitation corresponds to a spin pointing down. The hopping is encapsulated by
the first two terms of equation (1), while the final term corresponds to an energy penalty for
nearest-neighbour lattice sites in the same spin state, creating an interaction between spin
excitations. In this sense, we will refer to a strongly interacting model if Δ > 1, which is an
energy-gapped regime.

We assume that hopping also occurs between nearest-neighbour sites of neighbouring
chains, with a hopping rate η. In addition, we suppose that the interchain coupling is much
weaker than the coupling between sites on the same chain, so that η τ≪ . Let ϕt denote the time

taken for a spin excitation to lose its phase coherence, either from collisions with other spin
excitations on the same chain or due to dephasing induced by an external bath, e.g. phonons. If
η ≪ ϕ

−t 1, it is reasonable to neglect quantum correlations between sites of neighbouring chains,

and treat the interchain coupling as a purely incoherent hopping process [25]. This is expected
to be a good approximation for temperatures intermediate between the two hopping energy
scales, i.e. η τ≪ ≪k TB . This is easily satisfied in several systems. For example, η ∼ 100 K
and τ ∼ 1000 K for typical Bechgaard salts [39]. In general, this separation of energy scales can
occur for a number of reasons. For example, the interchain distance may be much larger than
the separation between sites on the same chain. Alternatively, the hopping in the interchain
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direction might be mediated by a scaffolding of different molecules in between [26] (see
figure 1(b)).

By means of a Jordan–Wigner transformation, the present model can be mapped onto an
interacting spinless fermion system [40], as we demonstrate in appendix A. The parameter τ
then corresponds to nearest-neighbour hopping, and τΔ to nearest-neighbour Coulomb
repulsion, up to factors of order unity. Normally such a transformation is not feasible in a
2D system, due to the appearance of non-local Jordan–Wigner string operators (see equation
(A.8)) which enforce the correct exchange phase between fermions at different sites. However,
due to the purely incoherent nature of the interchain coupling, there is no need to maintain a
definite phase relation between fermion states localized on different chains. This equivalence
between fermion and spin representations makes our model relevant for describing not only
spin transport, but also particle transport of hard-core bosons or fermions.

We describe the combination of coherent and incoherent dynamics by a quantum master
equation of Lindblad form [41]:

ρ
ρ ρ

∂
∂

= − + [ ] ( )
t

i H, , (2)

where ρ is the density matrix of the total system, = ∑λ
λH H ( ) is the total Hamiltonian, and ρ ( )

is the dissipator describing the interaction of the spin chains with the environment and each
other. The dissipator is given by

∑ ∑ρ ρ ρ ρ= = −† †⎜ ⎟⎛
⎝

⎞
⎠  { }( ) ( ) L L L L

1
2

, , (3)
k

k
k

k k k k

with Lk the jump operators describing each incoherent process and { }.,. the anticommutator of
two operators.

The incoherent coupling between two spin chains is modelled by the jump operators

γ σ σ δ=λ μ μ λ
λ μ

+ −
±L , (4)( ) ( ) ( )

i i i
,

, 1

with σ σ σ= ±λ λ λ± ( )i1 2( ) ( ) ( )
i i

x
i
y , which represents the transfer of a spin excitation from site i of

chain λ to site i of chain μ λ= ± 1, with rate γ. Simple Golden Rule arguments [25] indicate

that the incoherent hopping rate is of order γ η∼ ϕt
2 . Due to the large number of factors that can

contribute to this hopping rate (e.g. temperature, collision rate, interchain distance, etc), we treat
γ as a free parameter that can be varied independently.

To analyse the transport properties of this system, we drive it into a non-equilibrium
configuration by coupling its boundaries to unequal reservoirs, as depicted in figure 1(c). This
driving scheme imposes a magnetization imbalance on each chain, and thus induces a spin
current. We assume that the correlation time of the reservoirs is negligibly small, and that the
energy dependence of the incoherent transition rates may be neglected. We also assume that
the points of contact between the bath and any pair of neighbouring chains are further apart than
the correlation length6, leading to independent driving reservoirs for each chain. Under these
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conditions, it was shown in [42] that the reservoir degrees of freedom can be traced out under
the standard Born–Markov approximation [41]. The action of the reservoirs driving the system
out of equilibrium is therefore represented by the following Lindblad operators

Γ σ Γ σ= ± = ∓λ λ λ λ+ + − −( ) ( )L f L f1 2 1 2 . (5)( ) ( ) ( ) ( )
N NL,R 1, L,R 1,

Here, Γ is the strength of the coupling to the reservoirs (we choose Γ = 1 in all our numerical
calculations), and f is the driving parameter. The driving operators are such that when applied to

the boundary spins in isolation, they induce a state with magnetization σ =λ f( )z
1 and

σ = −λ f( )
N
z . At f = 0 there is no magnetization imbalance between the boundaries of the

chains, so there is no net spin transport. As f increases, so does the imbalance between the
boundaries, forcing a spin current to flow from the left to the right boundary of each chain.
Equivalently, the Lindblad driving operators can be seen as injecting and ejecting spin
excitations at different rates at each boundary, with f determining the imbalance between these
rates. Our simulations are performed with the weak driving f = 0.1, thus staying in the linear
response regime [35, 42].

Due to the finite temperature, we would also expect local dephasing processes to exist,
described by jump operators of the form

γ σ=λ λL 2 , (6)( ) ( )
i i

z
d

with γ
d
the dephasing rate. However, in order to simplify the analysis, in most of the paper we

will assume that, apart from driving, the only effect of the environment is to generate incoherent
hopping between chains. We show in section 4.2 that the large current enhancement induced by
incoherent coupling cannot result solely from dephasing processes. We also show in appendix
C that our qualitative conclusions about the enhancement due to incoherent coupling remain
valid in the simultaneous presence of dephasing.

2.1. Mean-field approximation (MFA)

To gain insight into the properties of the system, we calculate its non-equilibrium steady state
(NESS), which emerges in the long-time limit of equation (2) from the interplay between
coherent and incoherent processes. Computing the NESS for a strongly correlated 2D system
represents a formidable challenge, therefore an approximation scheme is necessary. In appendix
B we present an exact solution for two incoherently coupled chains in the non-interacting limit

Δ = 0, demonstrating that the NESS factorizes as ρ ρ ρ= ⊗ + ( )O f
1 2

2 . Since magnetization

and current expectation values are of order O(f), the lowest order contribution to the NESS is
sufficient to compute transport observables accurately. This observation motivates the following
MFA, according to which the state of the entire system is a direct product of the states of each
spin chain

ρ ρ ρ ρ= ⊗ ⊗ ⋯ ⊗ Λ, (7)
1 2

thus discarding both quantum and classical correlations between different chains. Using this
mean-field ansatz, we can obtain the master equation for each chain separately after tracing out
the state of the other chains. This provides a considerable advantage in numerical simulations,
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which would be very demanding if all correlations between the chains are kept in the
description.

The resulting MFA master equation for chain λ is

∑
ρ

ρ γ σ ρ σ ρ σ σ

γ σ ρσ ρ σ σ

γ Γ δ δ

γ σ σ γ γ

γ Γ δ δ

γ σ σ γ γ

= − + ˜ −
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+ + + = ˜ + ˜
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+ − − = ˜ + ˜

λ λ
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λ λ

λ λ λ
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λ λ λ λ
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1
2
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N
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m
z

m
z

m m

m i i N

m
z

m
z

m m

1

,1 ,

1 1 d i

,1 ,

1 1 d i

where the superscripts d and i refer to driving and incoherent coupling terms, respectively.
Within the MFA, the incoherent interchain coupling turns into local gain and loss processes at
each chain, with rates depending on the magnetization of the neighbouring chains. In this form,
the density matrix of each chain can be evolved separately from the others by the simulation of
its own master equation, with the coupling to neighbouring chains being effectively described
by expectation values of local operators. This type of evolution can be performed efficiently by
means of a parallel implementation of the mixed-state time evolving block decimation (TEBD)
algorithm [43, 44]. Our code is based on the open-source tensor network theory (TNT) library
[45].

In order to verify that the MFA gives reasonable results, we have also performed TEBD
simulations of two coupled chains without the MFA for comparison. In figure 2 we plot the
steady-state currents (defined in section 2.3) obtained within each approach for a pair of
incoherently coupled chains of length N = 20. The two sets of results are clearly in close
agreement, however the accuracy of MFA calculations is higher for smaller values of γ and Δ.
The maximum error is 3.8%, when Δ = 2 and γ = 1.2. We are therefore confident that this
approximation gives accurate results for greater numbers of coupled chains, when quasi-exact
TEBD simulations are not feasible.

2.2. Approximation for an infinite number of coupled chains

In the case of an infinite number of chains, the reduced density operators of all the chains are
exactly the same at any time. So as observed from equation (8), the problem of simulating the
evolution of the entire system is reduced to that of performing the calculation for a single chain
coupled twice with itself. The resulting Lindblad master equation of each chain, describing an
effective non-linear self-consistent time evolution, is
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∑ρ
ρ γ σ ρσ ρ σ σ γ σ ρσ ρ σ σ= − + ˜ − + ˜ −

=

+ + − − + − − + + −⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥[ ] { } { }

t
i H

d

d
,

1
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,
1
2

, , (9)
m

N

m m m m m m m m m m
1

where the index λ( ) has been dropped for simplicity, and

γ γ γ σ γ γ γ σ˜ = ˜ + + ˜ = ˜ + −+ + − −( ) ( )1 1 (10)
m m m

z
m m m

zd d

are the effective gain and decay rates at site m.

2.3. Spin current

We now derive the expression for the spin current through the system. It is obtained from the
local magnetization rate of change, calculated from the master equation directly. For site i of
chain λ, we have in the NESS

σ
σ

ρ
γ σ

γ σ

= = − + ˜ −

− ˜ + =

λ
λ λ λ λ λ λ

λ λ

−
+

−

⎛
⎝⎜

⎞
⎠⎟ ( )

( )
t t

j j
d

d
Tr

d

d
1

1 0, (11)

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

i
z

i
z

i i i i
z

i i
z

1

where λj ( )
i

is the longitudinal spin current through site i of chain λ,

σ σ σ σ= −λ λ λ λ λ
+ +( )j 2 . (12)( ) ( ) ( ) ( ) ( )

i i
x

i
y

i
y

i
x

1 1

This expression is equivalent to that of the spin current through a 1D spin chain [42]. Here,
in contrast to that case, the longitudinal spin current is site-dependent in the NESS. For
example, in the bulk of the system, < <i N1 , the difference of spin currents through nearest
neighbours is
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MFA. Mean-field current expectation values are shown as symbols, and expectation
values obtained without the MFA are shown as lines.



γ σ σ σ− = + −λ λ λ λ λ
−

+ −( )j j 2 . (13)( ) ( ) ( ) ( ) ( )
i i i

z
i
z

i
z

1
1 1

Now consider, for example, the left boundary i = 1. Since equation (12) is not defined for
i = 0, in the NESS equation (11) gives

γ σ σ σ Γ Γ σ= + − + −λ λ λ λ λ+ −( )j f2 . (14)( ) ( ) ( ) ( ) ( )z z z z

1 1
1

1
1

1 1

A similar equation holds for the right boundary i = N. This leads to a natural definition of

boundary currents λj ( )
0

and λj( )
N

, which allow equation (13) to be valid along the entire

chain. These currents, which indicate the direct injection and ejection of spin excitations on the
chain by the boundary reservoirs, are thus given by

Γ Γ σ Γ Γ σ= − = +λ λ λ λj f j f . (15)( ) ( ) ( ) ( )z

N N
z

0 1

We can associate the right-hand side of equation (13) to the difference of spin flows
between chain λ and its neighbouring chains, by defining a transversal spin current

γ σ σ= − −λ λ λ
⊥

+( )j . (16)( ) ( ) ( )
i i

z
i
z

,
1

In this form, equation (13) can be rewritten as

+ = +λ λ λ λ
− ⊥

−
⊥j j j j . (17)( ) ( ) ( ) ( )

i i i i1 ,
1

,

This balance between the longitudinal and transversal currents is illustrated in figure 3(a).
From equation (13) it follows that in the absence of incoherent coupling, the current

through each chain is homogeneous in the NESS, =λj const( )
i

, i = 0,…,N. In addition, from

straightforward calculation, it is easily shown that in the presence of incoherent coupling, the

total current per site = ∑λ
Λ λ
=J j ( )

i i1
is homogeneous, i.e. that − =−J J 0i i 1 . Also note

that due to the symmetry of the system considered, ∑ =λ
Λ λ
=
−

⊥j 0( )
i1

1

,
for all sites i.

A concrete example of the longitudinal spin current profiles (equation (12)) for three
chains is shown in figure 3(b), including the boundary currents defined in equation (15). Due to
the symmetry of the incoherent coupling, the state and thus the currents of chains λ = 1, 3 are
equal. The corresponding transversal spin currents, defined in equation (16), are shown in
figure 3(c). When moving from the boundary sites =i N1, towards the centre of the system,
the currents through chains λ = 1, 3 significantly increase at the expense of the current in the
middle chain. This strong site dependence is reflected in large transversal currents, flowing in
opposite directions. In the central sites of the system, the transversal currents are very small
since the local magnetizations of neighbouring chains are very similar (see equation (16)). This
is expected since the magnetization of each chain must pass through zero at the same position in
the centre due to the symmetric driving.

The NESS spin currents through the system, together with the magnetization profile,
determine the nature of the transport. If it is diffusive, the currents satisfy a diffusion equation:

κ σ= −λ λ λj , (18)( ) ( ) ( )
i i

z

New J. Phys. 16 (2014) 053016 J J Mendoza-Arenas et al

9



where κ λ( ) is the (N-independent) spin conductivity of chain λ and

σ σ σ= −λ λ λ
+ (19)( ) ( ) ( )

i
z

i
z

i
z

1

is the magnetization difference between neighboring spins of chain λ. On the other hand, if the

transport is ballistic κ λ( ) diverges, resulting in a size-independent spin current. Ballistic transport
has been observed in single dephasing-free chains when Δ < 1 [42, 46], while diffusive
transport has been found in the linear response regime for Δ > 1 and no dephasing [42, 46],
and for finite dephasing and any interaction strength [28, 47, 48]. Note that since the transversal
current of equation (16) is proportional to the local magnetization difference along the
transversal direction, it is diffusive by construction.

We now discuss the spin transport properties of the system in both the weakly (Δ < 1) and
strongly (Δ > 1) interacting regimes, which show a completely different behaviour in the
presence of incoherent interchain coupling. For this, instead of observing the spin current
through each chain, we consider the total spin current per chain, noted by J, i.e. Λ=J Ji .
Thus ΛJ is the total spin current per site in the NESS. We refer to J in the rest of the paper
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Figure 3. (a) Diagram of three incoherently coupled spin chains, showing the different
currents flowing through site i of chain λ. The straight lines correspond to coherent
coupling, while the curved lines represent incoherent coupling. (b) Longitudinal spin
current for each chain of the system, and spin current per chain Λ=J Ji , with Λ = 3,
N = 40, Δ = 0.5 and γ = 0.5. (c) Transversal spin currents for the same parameters.



simply as the spin current; it is shown in figure 3(b) for a particular example. Its homogeneity
along the system is a good indication of the obtention of the NESS.

3. Transport in weakly interacting incoherently coupled spin chains

We initially consider the non-interacting case Δ = 0, which leads to the same nearest-neighbour
coherent coupling as is frequently considered in toy models of exciton transport in light
harvesting complexes [12, 49]. The analytical method presented in [47, 48] can be extended to
two incoherently coupled non-interacting chains, as explained in appendix B. This allows us to
extract the exact current and magnetization expectation values. The former is given by

Γ Γ γ
=

+ + −( ) ( ) ( )
J

f

N

4

4 4 1 4
, (20)

while the magnetization profile is linear in the bulk, see equation (B.11). These results agree
with TEBD simulations, as indicated in figure 4. Note that if γ = 0, the current is independent
of the size of the spin chains, indicating ballistic transport [47, 48]. On the other hand, a finite
incoherent coupling induces a decay of the current with the length of the system ∝ −N 1, typical

of a diffusive conductor. In fact the bulk conductivities are easily shown to be κ γ= 8( )1,2 . So,
similarly to dephasing processes on a single non-interacting chain [47, 48], incoherent
interchain couplings induce a non-equilibrium phase transition between ballistic and diffusive
regimes, with a spin current monotonically degraded by the interchain hopping.

New J. Phys. 16 (2014) 053016 J J Mendoza-Arenas et al

11

Figure 4. Spin current as a function of incoherent coupling γ for several numbers of
non-interacting (Δ = 0) chains of N = 40. The arrow indicates the decreasing tendency
of the current as Λ increases. The dashed lines correspond to results of TEBD
simulations (Λ = 2, 3, 4, 6, 10). The red solid line indicates an extrapolation of results
of a finite number of chains (up to Λ = 10) to Λ → ∞, using a simple rational function.
The symbols indicate the analytical calculation for Λ = 2 (○) and Λ → ∞ (□). Inset:
magnetization profile of a chain in the centre of the system (Λ 2 for Λ even, Λ +( )1 2
for Λ odd) for γ = 0.3 and the same number of chains shown in the main panel. The
solid lines correspond to the magnetizations obtained from TEBD results, and the
symbols (□) to the analytical approach for the self-coupled chain.



In the limit of an infinite number of chains, described by the self-coupled chain (see
section 2.2), the analytical method used for two chains can also be applied (see appendix B).
We thus obtain exact expressions for the current and magnetization, given by equations (20)
and (B.11) respectively, with γ 2 instead of γ 4. The conductivity is thus κ γ= 4 , reduced
compared to the case of Λ = 2. This is because each chain has two nearest neighbours rather
than one, leading to a stronger degrading effect of the incoherent hopping.

In the intermediate case, i.e. for a finite number of chains Λ > 2, we use the TEBD method
to obtain the NESS of the system. Characteristic results for the current and for the magnetization
profiles are shown in figure 4. The same qualitative features of the cases Λ = 2 and Λ → ∞ are
found, namely the spin current monotonically decreases with γ and the magnetization profile is
almost linear in the bulk. In addition, for a fixed incoherent coupling, the current decreases with
the number of chains, rapidly for small values of Λ and very slowly for large values. An
extrapolation of these results to the limit Λ → ∞ agrees with the analytical approach for the
self-coupled chain, as shown in figure 4.

Similarly to the cases of two and an infinite number of chains, the transport response
induced by incoherent coupling on a system of several chains is characteristic of diffusive
conductors. To see this explicitly, we observe that each chain satisfies the local diffusion
equation (18). Since the spin current through each chain is site-dependent, we have verified that

the ratio σλ λj ( ) ( )
i i

z (i.e. the conductivity) is homogeneous for each λ, so the diffusion

equation (18) holds. In addition, similarly to the analytically-solvable cases, the conductivity of
each chain decays monotonically with the incoherent coupling rate, as shown in figure 5. We
also note that for λ Λ< < −2 1 the conductivity is almost indistinguishable from that of
λ Λ= −2, 1, due to the weak effect of the boundary chains.

Now we consider weak interactions Δ< <0 1. We find that the effect of incoherent
interchain coupling on the system is very similar to that on non-interacting chains. Namely a
finite incoherent coupling induces a transition from ballistic (γ = 0) to diffusive (γ > 0)
behaviour. The magnetization profiles become linear, and the spin current and the conductivities
of each chain decrease monotonically with γ, as shown in figure 5. The current also decreases
with Λ, approaching a limiting value when Λ → ∞. In figure 5 it is also seen that for fixed
values of Λ and γ, the spin transport diminishes as Δ increases, a known result for single chains
in the massless regime [28, 37].

4. Transport enhancement for strong intrachain coupling

We now consider the effect of incoherent interchain coupling on the transport properties of
strongly interacting spin chains (Δ > 1).

4.1. Environment assisted transport

Due to the strong correlations between spin excitations, the regime Δ > 1 presents a completely
different response to environmental effects to the case of weak interactions Δ < 1. It has been
found [35] that for single 1D chains, dephasing processes can lead to a surprisingly large
enhancement of the current even at weak driving. Now we show that the ability of excitations to
jump incoherently across different chains leads to an even larger transport enhancement, which
constitutes the main result of our work.
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As shown in figure 6, the presence of incoherent interchain coupling increases the spin
current through the system, compared to that of γ = 0, for a wide range of rates γ. The optimal
coupling maximizing the current γ

opt
, which is obtained by fitting the peak to a polynomial

function, strongly depends on the interaction strength, increasing with Δ. Similarly, the current
enhancement grows with Δ. For example, the current increases by up to 39% for Δ = 1.2 and
up to 91% for Δ = 2.

We now consider the effect of the system size on the transport enhancement. The optimal
current Jopt remains almost constant for all values of Λ considered. In addition, the optimal

coupling monotonically decreases with Λ as shown in figure 7, and the range of beneficial
couplings narrows. Importantly, extrapolations to Λ → ∞ strongly suggest the existence of a
finite optimal incoherent coupling γ∞

opt
in this limit. We have confirmed this result from

simulations of a self-coupled chain with Δ = 2, as shown in the inset of figure 7. The results of
both approaches agree very well, giving optimal couplings of γ =∞ 0.146

opt
for the extrapolation

and γ = 0.144
opt

for the self-coupled chain. Because of this agreement, we henceforth denote by

γ∞
opt

the optimal coupling for the self-coupled chain.

Note that a simple argument qualitatively explains the decay of γ
opt

with Λ. Consider first
the case Λ = 2. Since each chain is only affected by just a single neighbouring chain, it is
expected that γ Λ γ= ∼ ∞( )2 2

opt opt
, as seen in figure 7. For Λ = 3, the boundary chains are

coupled to a single neighbour, so their transport is optimized by γ γ∼ ∞2
opt
. The central chain,

being coupled to two neighbours, is optimized by γ γ∼ ∞
opt
. Assuming that an average incoherent

New J. Phys. 16 (2014) 053016 J J Mendoza-Arenas et al

13

Figure 5. Spin current as a function of γ for Λ = 10, N = 40 and different interaction
strengths Δ < 1. The symbols correspond to TEBD results: blue (○) to Δ = 0, red (□)
to Δ = 0.5 and black (⋄) to Δ = 0.9; the solid lines are guides to the eye. The qualitative
behaviour of the current, i.e. its monotonic decay with γ, is observed for any other value
of Λ. Inset: conductivities for λ = 1 (○, solid lines), indicating the behaviour at the
boundary chains of the system, and of λ = 2 (□, dashed lines), corresponding to the
bulk. The symbols are TEBD results, and the lines are guides to the eye. The colors
correspond to the same interaction strengths Δ of the main panel.
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Figure 6. Spin transport enhancement in the strongly interacting regime due to
incoherent interchain hopping. For clarity we plot the rescaled spin current J Jopt as a
function of γ. The solid blue line corresponds to Δ = 1.2, Λ = 3 and N = 40. The other
lines indicate the effect on the spin current when some parameters of the system are
modified, i.e. when the number of chains increases (dashed red line, Δ = 1.2 and
Λ = 10), and when the interaction is stronger (dot-dashed black line, Δ = 2 and
Λ = 3). When γ = 0, = × −J 4.25 10 3 for Δ = 2, and = × −J 1.19 10 2 for Δ = 1.2.
The corresponding optimal currents are = × −J 8.0 10opt

3 and = × −J 1.65 10opt
2

respectively.

Figure 7. Optimal incoherent coupling as a function of the number of coupled chains Λ,
for N = 40 and Δ = 2 (○), and the optimal coupling for a self-coupled chain (□). The
power law fit γ Λ γ= +− ∞a b

opt opt
is shown (solid line), which results in an optimal

coupling at Λ → ∞ of γ =∞ ( )0.146 5
opt

; = ( )a 0.33 1 , = ( )b 1.3 1 . Inset: simulations of

the self-coupled chain provide an alternative method for finding the optimal coupling in
the limit Λ → ∞. Fitting the results of the simulations around the peak (○) to a
polynomial function (solid line), we find the maximum current at γ =∞ 0.144

opt
,

consistent with the scaling analysis.



coupling optimizes the transport of the entire system, we get γ Λ γ= ∼ ∞( )3 5 3
opt opt

. In general,

for Λ chains, we expect

γ Λ
Λ γ γ

Λ

γ

Λ
γ∼

− +
= +

∞ ∞ ∞
∞( )

( )2 4 2
. (21)

opt

opt opt opt

opt

This simple scaling provides a good approximation to that found from the power law fit of
the results of a finite number of chains, as indicated in figure 7.

To observe how the enhancement effect scales with the length of the system, we have
analysed both the optimal current and the optimal coupling for self-coupled chains with
different values of N. We found that an exponential decay of the optimal coupling of the form
γ = +∞ −ae cbN

opt
yields a finite optimal coupling in the thermodynamic limit of

γ → ∞ = =∞ ( ) ( )N c 0.057 9
opt

. Nevertheless, a power law decay of the form γ =∞ −aN b
opt

also

fits well to our results. This means that we are not able to assess whether the optimal coupling is
finite for an infinite system. The scaling results indicate, however, that for very large but finite
systems, an enhancement effect of the current is still expected for very small incoherent
couplings. This does not mean that the increase of the current becomes less important as the
system gets larger. In fact, although it is restricted to a narrower range on incoherent coupling
rates, the enhancement effect becomes stronger as the size of the system increases. This is
shown in figure 8, where the enhancement factor γ =( )J J 0opt is seen to increase with N. We

therefore expect that spin transport can be significantly enhanced by environmental processes
even in macroscopic (anisotropic) 2D systems, and thus can be observed experimentally in bulk
materials.

To understand the origin of the increase of the enhancement ratio with N, it is important to
study the nature of the spin transport in the enhancement regime. To address this point we
analyse the scaling with N of the spin current through a strongly interacting self-coupled chain.
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Figure 8. Spin current enhancement factor γ =( )J J 0opt as a function of the length of
the system for a self-coupled chain with Δ = 2 (○). The solid line is a guide to the eye.



The results are shown in figure 9. In the presence of diffusive spin transport, the magnetization
profile of the chain is linear in the bulk. The local magnetization difference is thus
homogeneous, and defined as

σ Δσ Δσ σ σ=
−

= −−N 5
with , (22)i

z
z

z
N
z z

2 3

where −N 5 corresponds to removing two sites from either end to diminish boundary effects.
Diffusive spin transport is evidenced if the system satisfies the diffusion equation

Δσ
κ= −
− α( )

J

N 5
, (23)z

with κ the spin conductivity and α = 1. As shown in figure 9 for weak incoherent coupling, the
results of our TEBD simulations are well described by this equation, but with α < 1. This
means that in the regime of transport enhancement, the system presents a spin current which
decreases with N slower than normal diffusion, i.e. it shows superdiffusive behaviour. Thus the
optimal current also shows a slower decrease than that of a diffusive conductor. Since for the
diffusive regime γ = ∝ −( )J N0 1, a divergence of the enhancement ratio with N is found.

Finally, as shown in the upper inset of figure 9, the exponent α gets closer to 1 when
increasing γ, the transport thus tending towards being described by normal diffusion when the
incoherent effects become stronger. When γ is too large the enhancement effect disappears,
since the system is perturbed so frequently that it is prevented from evolving, i.e. the Zeno
effect emerges [41].

4.2. Enhancement mechanism

We now discuss the origin of the transport enhancement in the strongly interacting regime,
which is similar to that found in single chains due to dephasing processes [35, 36]. For
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Figure 9. Scaling of ΔσJ z of the self-coupled chain, for Δ = 2, γ = 0.05 (□) and
γ = 0.20 (○). The results of the simulations fit very well to equation (23), giving
κ = ( )0.93 6 and α = ( )0.81 2 for γ = 0.05 (dashed red line), and κ = ( )1.53 3 and

α = ( )0.959 6 for γ = 0.20 (solid blue line). Lower inset: corresponding magnetization
profiles of N = 60. Upper inset: α−1 as a function of γ.



interaction strengths Δ > 1, the spectrum of the XXZ Hamiltonian given by equation (1) consists
of several bands whose energetic separation is proportional to Δ (see figure 10). The highest
bands are almost flat, possessing very low conductivity. These bands correspond to bound states
of spin excitations, where several spins are clumped together, thus having large potential
energy.

When the system is driven out of equilibrium, population is transferred to various
eigenstates, depending on the strength of the driving. For example, at f = 1 only the highest
bands are populated, leading the system to an insulating NESS [35, 42]. Even in the weak-
driving regime as considered here, some population is transferred to the highest bands, which
then gives a small contribution to the conduction of the system. However, if energy-dissipating
processes take place in the system, transitions from these slow bands to lower bands of larger
conductivity are induced, leading to an enhancement of the current. In other words, if the
energy of spin bound states is dissipated, these break into states of lower potential (and total)
energy, but of much higher kinetic energy, thus increasing the conductivity.

The enhancement described in our work emerges from the energy dissipation induced by
the incoherent interchain coupling. To clarify this point, consider for simplicity the self-coupled
chain configuration described by equation (9)7. A straightforward calculation of the energy
dissipation rate corresponding to the incoherent coupling gives
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Figure 10. Cartoon of the band structure of the XXZ Hamiltonian in the strongly
interacting regime. The highest bands consist of bound states with low conductivity,
while lower bands contain more mobile states. The red arrows indicate possible
transitions induced by energy dissipation, between states of the same or different spin
sectors. The energy values were obtained from a chain of N = 7 and Δ = 10.

7 The calculation of the rate of energy dissipation is also easily performed for a finite number of chains. In this
case, we obtain a sum over λ of terms like those of equation (24), but instead of the magnetization at site +i 1 of
each chain, the magnetizations of the neighbouring chains at site +i 1 appear. Nevertheless, since the
magnetizations of all chains are similar, equation (24) corresponds to a good approximation.



∑ ∑ρ γ σ σ σ σ γΔ σ σ σ σ= − + − −
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where ρ ( )inc is the dissipator describing the incoherent coupling. The first term in the energy
dissipation rate appears due to the loss of phase coherence between neighbouring sites [35], and
is proportional to the hopping energy

∑ σ σ σ σ= +
=
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The second term is proportional to the sum of nearest-neighbour connected spin-spin
correlations

∑ σ σ σ σ= −
=

−

+ +( )C ,
i

N

i
z

i
z

i
z

i
z

1

1

1 1

and corresponds to a direct dissipation of the interaction energy due to the incoherent hopping,
which rips spin excitations away from their nearest neighbours8.

Intuitively, if C is positive, the spin excitations of the system are bunched together on
average, while if <C 0 the excitations are spread out. Therefore, the sign of C gives a simple
indication of how population is distributed between the bound states (bunched) and mobile
states (spread out). In the absence of incoherent coupling, we have found that C undergoes a
marked transition from taking negative to positive values as the interaction strength crosses the
critical point Δ = 1 (see figure 11(a)). This behaviour is a manifestation of the well known non-
equilibrium phase transition from ballistic to diffusive conduction at Δ = 1 [35, 42], and
demonstrates a tendency of the spin excitations to clump together in the strongly interacting
regime of the driven system. Importantly, even when the incoherent coupling is incorporated,
our simulations always show that >C 0 when Δ > 1 (see figures 11(b), (c)). More precisely, C
diminishes with γ, indicating the decrease of population in bound (correlated) states with
incoherent processes, but remains positive. Similarly, we always found that >K 0 in the
strongly interacting regime. This indicates that energy is being dissipated from the system due
to the incoherent interchain hopping (see equation (24)), transferring population from bound to
mobile states and thus leading to transport enhancement.

It is important to note that the transport enhancement induced by incoherent interchain
coupling is much larger than that of pure dephasing processes described by equation (6). For
example, as shown in figure 12 for Δ = 2, the spin current is increased up to 37% by dephasing
[35], and up to 91% by incoherent coupling. This difference can be explained by looking at the
energy dissipation rate due to dephasing,

∑ρ γ σ σ σ σ= − +
=

−

+ +( )( )HTr 2 , (25)
j

N

i
x

i
x

i
y
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d d
1
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8 As observed during the derivation of equation (24), the terms σ σ +i
z

i
z

1 are a direct consequence of the non-
conserving nature of the jump operators (i.e. they result from any incoherent process described by jump operators
σ+ or σ−). In addition, the terms σ σ +i

z
i
z

1 appear because the effective rates γ̃+
m
and γ̃−

m
are different (see equation

(10)).



with ρ ( )d the dephasing dissipator. This rate is compared to the dissipation rate from
incoherent coupling in figure 12. Since its maximal magnitude is significantly smaller than that
of incoherent coupling, more energy is dissipated by the latter, resulting in more population
transfer from flat to mobile energy bands and thus to a larger current. This also shows that for
Δ ≠ 0, the effects of incoherent coupling cannot be reproduced just by dephasing processes. In
appendix C we also show that in the simultaneous presence of dephasing and incoherent
coupling, the latter dominates the energy dissipation, and the current enhancement is still larger
than that of dephasing alone.
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Figure 11. Nearest-neighbour connected correlation function for different parameters of
the self-coupled chain of N = 20. (a) For γ = 0 and several interaction strengths Δ. From
bottom to top, the solid lines correspond to Δ = 0.8, 1.0, 1.05, 1.1, 1.2. The dashed
line refers to Δ = 0. (b) For Δ = 1.4 and several incoherent coupling rates γ. From top
to bottom, the lines correspond to γ = 0, 0.01, 0.03, 0.1, 0.5. (c) Sum of the nearest-
neighbour correlation functions C as a function of γ for Δ = 1.4.



5. Summary and conclusions

We have studied the spin transport in an anisotropic 2D spin–1

2
lattice driven out of equilibrium

by Markovian boundary reservoirs. The assumption of highly anisotropic coupling allowed us
to consider the system as an array of incoherently coupled chains. Each chain is described by an
XXZ Hamiltonian, which contains the basic elements that constitute many-body lattice systems,
namely particle hopping and interactions. Employing a MFA, we calculated the spin current and
magnetization of the NESS of the system for several parameters. This approximation, found to
reproduce the transport properties of two coupled chains, facilitates an accurate and efficient
dynamical simulation of the system using a parallel implementation of the TEBD algorithm
[45].

We found that in the presence of weak intrachain interactions, the incoherent coupling
monotonically degrades the spin conductivity of the chains. However, in the strongly
interacting regime we found a significant transport enhancement due to the incoherent coupling.
This enhancement can be understood as the result of incoherent transitions from bound states to
mobile bands of energy eigenstates, similar to the effect of dephasing on spin and heat transport
in 1D systems [35, 36]. However, the direct breakdown of bound states by the incoherent
hopping between neighbouring chains, which opens more paths for spin excitations to flow,
provides a greater improvement than dephasing effects alone.

A self-consistent extension of the MFA enabled us to perform simulations directly in the
limit of an infinite number of chains. In this configuration, we found that the enhancement of
the spin current increases with the size of the system, which reveals the importance that the
enhancement effect can have in bulk materials. The origin of this scaling was related to the
existence of superdiffusive transport in the regime of current enhancement, becoming closer to
normal diffusion as the incoherent coupling increases.
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Figure 12. Comparison of the rate of energy dissipation due to bulk dephasing
processes (equation (25)), and incoherent self coupling (equation (24)). Both cases
correspond to Δ = 2 and N = 40. For these parameters, the current for a single isolated
chain is ≈ × −J 4.2 10 3. Inset: corresponding spin currents.



Finally, we note that the effects described in our work has so far not been found
experimentally. Real materials such as organic conductors and cuprates involve more
complicated effects than those considered here, which would have a significant impact on
their transport properties, and may obstruct a direct observation of the enhancement and
degradation mechanisms we have described. In particular, in the absence of interactions, we
expect that incoherent interchain hopping destroys disorder-induced localization. However,
when interactions are added to the picture, it is not clear how the two transport enhancement
effects would combine. A model incorporating disordered site energies alongside interactions
and incoherent hopping would be amenable to a numerical study using the methods described in
this work. This constitutes an interesting topic for future research. Alternatively, quantum
simulators such as ultracold atom systems are intrinsically free of disorder. Moreover, several
experimental [50, 51] and theoretical [52, 53] advances aimed at simulating quantum transport
in such systems have recently been made. This offers the prospect of observing the effects
described in this work and studying them in the laboratory using current or near-future
technology.
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Appendix A. Equivalence of fermion and spin representations for incoherently coupled
chains

We start from a fermionic tight-binding model, describing Λ incoherently coupled 1D chains of
N sites each. Using the Jordan–Wigner transformation, we can map this system onto the spin
model described in the main text. We consider only the incoherent interchain coupling, since
the Jordan–Wigner mapping for the boundary driving Lindblad operators is detailed in [42]. To
carry out the proof, it is simplest to work in the Heisenberg picture. The evolution of an operator
O is given by

∑ ∑∑∂
∂

= +
λ

Λ
λ

λ

Λ
λ

= =

−

=

†⎡⎣ ⎤⎦  ( )O

t
i H O O, . (A.1)( ) ( )

F
j

N

j
1 1

1

1
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The Hamiltonian of each chain is

∑τ Δ= − + −λ λ λ λ λ λ λ

=

−
†

+ +
†

+( )H c c c c n n2 2 , (A.2)( ) ( ) ( ) ( ) ( ) ( ) ( )
F

j

N

j j j j j j
1

1

1 1 1

where the ladder operators satisfy δ δ=λ μ
λ μ

†{ }c c,( ) ( )
j k j k, , , and =λ λ λ†n c c( ) ( ) ( )

j j j . The adjoint

dissipator describing the hopping between sites j of chains λ and λ + 1 is

= − + −λ λ λ λ λ λ λ λ λ† † † † † { } { }( )O A OA A A O A OA A A O
1
2

,
1
2

, , (A.3)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
j j j j j j j j j

where

γ=λ λ λ+ †A c c . (A.4)( ) ( ) ( )
j j j

1

Each site of the system is associated to an index pair λ( )j, specifying its position, which

we order by the following prescription. If μ λ< then μ λ<( ) ( )k j, , for all j and k. If μ λ=
then μ λ<( ) ( )k j, , only if <k j. Now we can define the spin representation of the fermion
ladder operators

σ σ= ⊗λ

μ λ

μ λ

<

−c , (A.5)( )

( ) ( )

( ) ( )
j

k j
k
z

j
, ,

which satisfy the required anticommutation relations by construction.
Applying this transformation to the Hamiltonian of each chain and discarding a constant

energy shift yields

∑Δ σ Δ σ σ= + − +λ λ λ λ λ

=
( )H H 2 , (A.6)( ) ( ) ( ) ( ) ( )

F
j

N

j
z z

N
z

1
1

where λH ( ) is given by equation (1). The second term represents a homogeneous magnetic field,
which makes no difference to steady-state magnetization and current expectation values and can
be thrown away [36]. The third term represents magnetic fields acting on the boundary sites,
which can be neglected for large N. We have checked numerically that the effect of
incorporating these boundary fields disappears as N increases.

Now we consider how the transformation acts on the dissipators equation (A.3). The
Lindblad operators transform as

= −λ λ λA S L , (A.7)( ) ( ) ( )
j j j

where the Jordan–Wigner string is defined by

σ= ⊗λ

λ μ λ

μ

< < +
S , (A.8)( )

( ) ( ) ( )

( )
j

j k j
k
z

, , , 1

while =λ λ λ+L L( ) ( )
j j

, 1 is defined by equation (4). Note also that =λ λ⎡⎣ ⎤⎦L S, 0( ) ( )
j j . Equation (A.7)

implies that the anticommutator terms in equation (A.3) have a simple transformation, since

=λ λ λ λ† †A A L L( ) ( ) ( ) ( )
j j j j and =λ λ λ λ† †A A L L( ) ( ) ( ) ( )

j j j j . The ‘sandwich’ terms transform, for example, as

= =λ λ λ λ λ λ λ λ λ λ λ λ† † † †A OA L S OS L A OA L S OS L . (A.9)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
j j j j j j j j j j j j
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The only observables we consider are linear combinations of the operators

σ= +λ λ( )n 1( ) ( )
j j

z1

2
, λ λ

+n n( ) ( )
j j 1 and σ σ= −λ λ λ λ†

+
+

+
−c c( ) ( ) ( ) ( )

j j j j1 1 , along with their Hermitian conjugates

and the identity operator. Operators that commute with λn ( )
j also commute with the string

operators equation (A.8), which therefore disappear from equation (A.9) since =λ( )S 1( )
j

2
.

However, the hopping operators λ λ†
+c c( ) ( )

j j 1 do not commute with λn ( )
j and must therefore be

considered in more detail. The string λS ( )
j contains all σ z operators acting on the sites from

λ+( )j 1, to λ− +( )j 1, 1 , inclusive. Therefore, the strings appearing in the sandwich terms of
μ †( )

k commute with λ λ†
+c c( ) ( )

j j 1 unless μ λ=( ) ( )k j, , or μ λ= + −( ) ( )k j, 1, 1 . Nevertheless, in

these two special cases the sandwich terms identically vanish and therefore

= =λ λ λ λ λ λ λ λ†
+

† †
+

†A c c A L c c L 0, (A.10)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
j j j j j j j j1 1

and similar relations hold for the other potentially troublesome sandwich terms.
Gathering all the results, we find that the evolution equation for each observable of interest

can be written as

∑ ∑∑∂
∂

= +
λ

Λ
λ

λ

Λ
λ

= = =

†⎡⎣ ⎤⎦  ( )O

t
i H O O, , (A.11)( ) ( )

j

N

j
1 1 1

where

= − + −λ λ λ λ λ λ λ λ λ† † † † † { } { }( )O L OL L L O L OL L L O
1
2

,
1
2

, . (A.12)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
j j j j j j j j j

Transforming back to the Schrödinger picture, we arrive at the master equation described
in section 2. Dephasing terms can also be straightforwardly included, since the dephasing

Lindblad operators σ = −λ λn2 1( ) ( )
j
z

j have a local representation in terms of both spins and

fermions.

Appendix B. Analytic approach for incoherently coupled non-interacting spin chains

Following the method proposed by Žnidarič [47, 48], we derive an analytic approximation for
the state of two limit cases of the system of non-interacting (Δ = 0) incoherently coupled spin
chains, namely for Λ = 2 and Λ → ∞. We consider first the case of two chains, and propose
the following ansatz for the NESS of the entire system:

ρ = + + + ⋯( )I A B
1

2
. (B.1)

N2

Here I is the identity operator of the entire system, and A and B are functions of spin
operators in z direction and spin currents, respectively:

∑∑ ∑∑σ= =
λ

λ λ

λ

λ

= = = =

−

A a B
b

j
8

. (B.2)( ) ( ) ( )

j

N

j j
z

k

N

k
1

2

1 1

2

1

1

As seen below, A and B scale with f, so the approximation only gives the NESS up to first
order in the driving strength. Nevertheless, this is enough to obtain exact results of the current
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and magnetization of the chains for all values of f, since to obtain r-point correlation functions,
an expansion up to order r is needed [47]. It is easily shown that the local magnetization and the
spin current are given by

σ ρσ ρ= = = =λ λ λ λ λ( ) ( )a j j bTr Tr . (B.3)( ) ( ) ( ) ( ) ( )
j
z

j
z

j k k

The master equation for the NESS reads

ρ ρ ρ ρ∂ ∂ = + + =  ( ) ( ) ( )t 0, (B.4)H driv inc

where ρ ρ= − [ ]( ) i H,H , and ρ ( )driv and ρ ( )inc are the Lindblad terms corresponding to
driving at the boundaries and interchain coupling, respectively, with the jump operators of
equations (4) and (5). Now we introduce the ansatz equation (B.1) in the master equation. Since

both chains are equal, they have the same dynamics and steady state, so we set =λa a( )
j j. We

then obtain the following results for each process:

∑ ∑ρ σ σ= − + −
λ

λ λ λ

= =

−

+

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )( ) b a a j

1

2
(B.5)( ) ( ) ( )

N N
z z

i

N

i i iH 2
1

2

1
1

1

1

∑ρ Γ σ σ= − −
λ

λ λ λ

=

⎜ ⎟⎛
⎝

⎞
⎠ ( ) f a

b
j

1

2 2
2 2

8
(B.6)( ) ( ) ( )

N
z z

driv
L

2
1

2

1 1 1 1

∑ρ Γ σ σ= − + +
λ

λ λ λ

=
−

⎜ ⎟⎛
⎝

⎞
⎠ ( ) f a

b
j

1

2 2
2 2

8
(B.7)( ) ( ) ( )

N N
z

N N
z

Ndriv
R

2
1

2

1

where we divided the contribution of the driving into its left (L) and right (R) components
( ρ ρ ρ= +  ( ) ( ) ( )driv driv

L
driv
R ), and

∑∑ρ γ= −
λ

λ

= =

−

 ( ) b
j

2 8
. (B.8)( )

N
k

N

kinc 2
1

2

1

1

To obtain the +N 1 coefficients b and ai we need +N 1 different equations, which result

from equating to zero the coefficients in front of each operator. Explicitly, in front of σ λ( )z
1 and

σ λ( )
N
z we have

Γ Γ
Γ

Γ Γ
Γ

− − = → = −

− − + = → = − + = −

f a b a f
b

f a b a f
b

a

0

0 . (B.9)N N

1 1

1

Similarly, the coefficient in front of λj ( )
i

is

γ Γ δ δ− − − + =+ −( )( )a a
b

b
8 16

0. (B.10)i i i i N1 ,1 , 1

The solution of this system of equations gives the magnetization in the bulk ( >i 1)

Γ
Γ

γ= − + + −⎜ ⎟⎛
⎝

⎞
⎠( )a f b i

16
1

1
8

, (B.11)i

New J. Phys. 16 (2014) 053016 J J Mendoza-Arenas et al

24



and the spin current

Γ Γ γ
=

+ + −( ) ( ) ( ) ( )
b

f

N

4

4 4 1 4
. (B.12)

Note that up to O(f), the total state of the system ρ is a product of the states of each chain
(ρ

1
and ρ

2
). So, if we have

∑ ∑ρ σ= + +λ
λ λ

= =

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟I a

b
j

1

2 8
, (B.13)( ) ( )

N
j

N

j j
z

k

N

k
1 1

1

it follows that, up to O(f), ρ ρ ρ= ⊗
1 2

(MFA), with ρ given by the ansatz of equation (B.1).
For the case Λ → ∞ with homogeneous incoherent coupling γ, described in section 2.2

(self-coupled chain), we follow a similar process. Assuming an ansatz for the NESS of the chain
like that of equation (B.1), with normalization to 2N , we obtain

∑ρ γ= −
=

−

 ( ) b
j

2 4
. (B.14)

N
k

N

kinc
1

1

The NESS is then equivalent to that of of two chains, but with γ 2 instead of γ 4 in the
factors ai and b.

Appendix C. Simultaneous presence of incoherent coupling and dephasing

We have performed simulations of chains with incoherent self-coupling and dephasing at the
same time, and verified that the former tends to be dominant. In figure B1 we show the spin
current through the system as a function of the incoherent coupling, for fixed dephasing rates.
For all the cases the currents are reduced from those of γ = 0

d
, but are still larger than those of
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Figure B1. Spin current through a strongly interacting system (Δ = 2 and N = 40) when
both dephasing and incoherent self-coupling take place, as a function of γ, for different
dephasing rates (γ = 0.52

d
is the optimal dephasing in the absence of incoherent

coupling. Note that here γ
d
is defined to be twice that of [35]).



dephasing alone (compare to the inset of figure 12). This indicates that the current enhancement
induced by the incoherent coupling is still the dominant mechanism. This conclusion is
reinforced by looking at the rates of energy dissipation corresponding to both the incoherent
coupling (equation (24)) and dephasing (equation (25)). We found that for both a large and a
small dephasing rate, the amplitude of the energy dissipation rate coming from the incoherent
coupling is significantly larger than that of dephasing, except for very small incoherent
couplings.
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