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Coexistence of energy diffusion and local thermalization in nonequilibrium X X Z spin chains
with integrability breaking
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In this work we analyze the simultaneous emergence of diffusive energy transport and local thermalization in
a nonequilibrium one-dimensional quantum system, as a result of integrability breaking. Specifically, we discuss
the local properties of the steady state induced by thermal boundary driving in a XXZ spin chain with staggered
magnetic field. By means of efficient large-scale matrix product simulations of the equation of motion of the
system, we calculate its steady state in the long-time limit. We start by discussing the energy transport supported
by the system, finding it to be ballistic in the integrable limit and diffusive when the staggered field is finite.
Subsequently, we examine the reduced density operators of neighboring sites and find that for large systems they
are well approximated by local thermal states of the underlying Hamiltonian in the nonintegrable regime, even
for weak staggered fields. In the integrable limit, on the other hand, this behavior is lost, and the identification of
local temperatures is no longer possible. Our results agree with the intuitive connection between energy diffusion
and thermalization.
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I. INTRODUCTION

In recent years the interest on the physics of nonequilibrium
quantum systems has received a major impulse due to seminal
developments in quantum simulation schemes [1,2]. In partic-
ular, ultracold atomic gases have emerged as some of the most
attractive candidates to help unravel challenging questions
on the physics of many-body interacting quantum systems
[3–5]. Their high degree of controllability, isolation from the
environment, and the existence of schemes for single-atom
resolution [6,7], make them ideal to simulate the physics of a
vast variety of systems [1,4].

One of the most studied areas within the community
of ultracold atomic gases corresponds to the dynamics of
nonequilibrium interacting quantum systems [8–11]. Since
the identification of the nature of transport supported even by
testbed models of condensed matter systems is far from trivial,
it is expected that their simulation in a highly controllable
environment will help resolve several open questions. In
particular, the relation between particle and energy transport
through a quantum system and the integrability of its Hamil-
tonian, although intensively studied, is not fully understood.
It has been shown that in integrable systems, the existence
of nontrivial (local or quasilocal) conservation laws leads to
ballistic conduction, as long as such laws have a finite overlap
with the current operators [12–14]. For nonintegrable models,
in which nontrivial local conservation laws are absent, it is
expected that a diffusion equation with finite conductivity is
satisfied, i.e., that the transport is diffusive. Even though this
is in fact the result found for several models [15–25], ballistic
transport in some nonintegrable systems has been reported
[20,21,26] or could not be ruled out [15,17].

The simulation of interacting systems in ultracold atomic
gases could be determinant for establishing a definitive relation
between integrability and transport [10,11]. A significant
step towards this goal has been accomplished recently, due
to the development of cold-atom configurations inducing
particle transport through a mesoscopic channel connecting

two reservoirs with population imbalance [27,28]. Moreover,
by establishing different temperatures at the two reservoirs,
thermoelectric effects have also been observed [29]. The
use of these nonequilibrium configurations thus offers the
possibility to study transport properties of quantum sys-
tems under widely differing conditions, with unprecedented
control.

A second problem whose research has been boosted by
these experimental achievements with ultracold atomic gases
is the relation between thermalization and integrability [30].
Specifically, it was suggested that for closed quantum systems
taken to a nonequilibrium configuration, their local reduced
density matrices do not relax to a thermal state if the
Hamiltonian is integrable [31] but tend towards a generalized
Gibbs state incorporating the corresponding conservation laws
[32]. On the other hand, several nonintegrable systems have
been found to relax to a Gibbs state. A large amount of evidence
indicates that this is achieved by means of a mechanism known
as eigenstate thermalization [33–37]. However, these pictures
are still under active debate [38–42]. Moreover, thermalization
of open driven systems is much less well known, although bulk
thermalization in systems with nonintegrable Hamiltonian was
found to be induced by thermal driving [43].

Considering the impact of integrability on the transport and
thermalization properties of quantum systems, the question
of whether these phenomena are directly related naturally
arises. Indeed, it would be expected that a system featuring
ballistic transport does not tent towards a thermal state, due to
the absence of scattering mechanisms which could equilibrate
different parts of the system. It is also tempting to associate
the relaxation towards a thermal state with diffusive transport,
where dissipative mechanisms due to inelastic scattering
take place. Even though this relation between transport and
thermalization appears intuitive, it has yet to be explored.
For example, just recently a connection between the relax-
ation towards a generalized Gibbs state and ballistic particle
transport has been determined in a closed quantum system
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[44]. To establish rigorously whether a general connection
between the two types of phenomena actually exists, the
coincidence of particular transport and thermalization regimes
has to be shown first. In the present work we investigate the
latter problem in a thermally-driven one-dimensional quantum
system, extending the concept of local thermal states [45–50]
to nonequilibirum configurations. As the main result of our
work, we show the coexistence of diffusive energy transport
and local thermalization in large nonintegrable systems. In the
integrable regime, where ballistic energy transport emerges,
local thermalization does not occur.

The paper is organized as follows. In Sec. II we describe
the model to be studied, corresponding to a spin chain
thermally driven at its boundaries so an energy current is
induced. In Sec. III we discuss the properties of the energy
transport resulting from a temperature imbalance across the
spin chain, illustrating the transition between ballistic and
diffusive regimes due to integrability breaking. Then we study
in Sec. IV the description of the thermally driven system by
means of local thermal states and its relation to integrability.
Our conclusions are presented in Sec. V.

II. MODEL OF BOUNDARY-DRIVEN SYSTEM

A. Spin chain model and boundary driving

We start by describing the model to be considered in
the present work, depicted in Fig. 1. The configuration
consists of two thermal reservoirs of different temperature
and/or chemical potential, located at the two edges of a
one-dimensional spin chain. Due to the imposed imbalance,
the chain is driven to a nonequilibrium steady state (NESS)
supporting energy and/or spin currents. This setup is strongly
motivated by the recent development of similar configurations
in cold atomic systems [27–29].

We describe the chain by the spin − 1
2 XXZ Hamiltonian,

which corresponds to an archetypical model to analyze
transport and thermalization properties of low-dimensional
quantum systems [12–24,35,36,40,51–55]. To investigate the
effect of integrability breaking, we apply a staggered magnetic
field in the z direction to the lattice [19,22,24]. Thus the

...

FIG. 1. (Color online) Scheme of the nonequilibrium system
studied. At the left (L) and right (R) boundaries of a spin chain,
thermal reservoirs of temperatures T

L,R
targ and chemical potentials

μ
L,R
targ induce local grand-canonical states on two neighboring spins.

This leads to energy currents J XXZ [Eq. (5)] and/or spin currents
J S [Eq. (6)] through the chain. In the scheme, they flow from the
left (red) to the right (blue) reservoir, assuming T L

targ > T R
targ and/or

μL
targ > μR

targ.

Hamiltonian is given by

H =τ

N−1∑
j=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + �σz
j σ z

j+1

) + B

N∑
j=1

(−1)j σ z
j .

(1)
Here � = 1, σα

j (α = x,y,z) are the Pauli matrices at site j ,
N is the number of sites, τ is the nearest-neighbor exchange
coupling, � is the anisotropy parameter, which corresponds to
the interaction strength between neighboring spin excitations,
and B is the amplitude of the staggered magnetic field.

To study the nonequilibrium properties of the spin chain
thermally driven at its boundaries, we follow the proposal
of Refs. [18,43,56], which allows for an efficient numerical
simulation [57,58]. Specifically, we assume that the state of
the system ρ satisfies a Lindblad master equation

dρ

dt
≡ L(ρ) = −i[H,ρ] + LL(ρ) + LR(ρ), (2)

where the first term represents the coherent dynamics, and the
dissipators Lk(ρ) correspond to the effect of the left (k = L)
and right (k = R) reservoirs. Each superoperator Lk(ρ) is such
that it induces a grand-canonical state of temperature T and
chemical potential μ, namely

ρ2(T ,μ) = Z−1e(−εj,j+1+μMj,j+1)/T ,

Z = Tr[e(−εj,j+1+μMj,j+1)/T ], (3)

when acting on two spins j,j + 1, with magnetization operator
Mj,j+1 = σ z

j + σ z
j+1, coupled by an XXZ local Hamiltonian,

εj,j+1 = τ
(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + �σz
j σ z

j+1

)
+ (−1)jB

2

[
(1 + δj,1)σ z

j − (1 + δj+1,N )σ z
j+1

]
. (4)

The reason for using these types of dissipators is that at
least two sites are necessary to induce finite-temperature
thermal states defined by the Hamiltonian couplings of interest
(i.e., nearest-neighbor XXZ interactions). Details of their
implementation are given in Appendix A.

To drive the system to a nonequilibrium configuration,
we apply these superoperators to its leftmost and rightmost
pairs of spins, with target temperatures T L

targ and T R
targ and

chemical potentials μL
targ and μR

targ for the left (L) and right
(R) boundaries.1 The transport and thermalization properties
of different sets of parameters are studied in the corresponding
NESSs, obtained by simulating the long-time evolution of the
system using the mixed-state time evolving block decimation
algorithm [57,58]. This method allows us to reach system
sizes much larger than those considered in previous studies of
energy transport in interacting thermally-driven spin chains
[59–62]. Our implementation is based on the open-source
Tensor Network Theory (TNT) library [63]. We note that
our study is restricted to high temperatures (T � τ,τ�,B),

1The target temperatures Ttarg and chemical potentials μtarg are those
that the reservoirs try to impose on the corresponding two boundary
spins. For driving with no temperature imbalance, the values of the
actual temperatures induced are, in most cases, approximately 2Ttarg,
due to strong boundary effects [56].
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given that the calculations become considerably hard at low
temperatures due to strong boundary effects and correlations
[56].

B. Driving-induced NESSs and currents

By selecting different target temperatures and chemical
potentials, a large variety of effects can be studied. Namely,
if T L

targ = T R
targ and μL

targ = μR
targ = 0, the steady state of the

system does not show any net energy or magnetization flow
and thermalizes if the underlying Hamiltonian is nonintegrable
[43]. If a temperature imbalance is established, a NESS with
an energy current is induced. The local energy current at site i

is given by the expectation value of the operator

JXXZ
i = 2τ 2

(
σ

y

i−1σ
z
i σ x

i+1 − σx
i−1σ

z
i σ

y

i+1

)
+�τ 2

(
σ z

i−1σ
x
i σ

y

i+1 − σ
y

i−1σ
x
i σ z

i+1

)
+�τ 2(σx

i−1σ
y

i σ z
i+1 − σ z

i−1σ
y

i σ x
i+1

)
, (5)

as obtained from the continuity equation for the energy density
in the bulk of the XXZ spin chain [12]. If only a chemical
potential imbalance is considered, with μL

targ = −μR
targ and

T L
targ = T R

targ, spin transport at zero average magnetization and
finite [56,64] or infinite [51] temperatures can be simulated.
In this case, the local spin current is given by the expectation
value of the operator

J S
i = 2τ

(
σx

i σ
y

i+1 − σ
y

i σ x
i+1

)
, (6)

obtained from the continuity equation of the local magne-
tization operator [12,19]. Furthermore, if there is a thermal
or magnetization imbalance, and μL

targ �= −μR
targ so a finite

magnetization is imposed to the system, magnetothermal
effects arise, namely Seebeck and Peltier effects [65–67]. This
situation is briefly discussed in Appendix B for the integrable
limit, where we show that the nature of the magnetothermal
response depends on the particular form in which it is induced.

Note that in the absence of bulk energy and magnetization
dissipation, the energy and spin currents are homogeneous
in the corresponding NESS [54]. We thus denote them as
JXXZ ≡ 〈JXXZ

j 〉/τ 2 and J S ≡ 〈J S
j 〉/τ , respectively.

III. DIRECT ENERGY TRANSPORT
AND INTEGRABILITY

We now consider the main question of our work, focusing
on the impact of integrability breaking on the local properties
of the NESS of thermally-driven systems. Thus during the rest
of the paper we consider chains only driven by a temperature
imbalance (T L

targ > T R
targ), with zero target chemical potentials.

Also note that from here on, the numerical values of all the
energies will be quoted in ratios of τ , and for brevity the values
of B/τ , T/τ , etc., will be referred to simply as B, T , etc., in
figures and the main text.

We start our investigation by examining the nature of
the direct energy transport through an XXZ spin chain. We
consider, first, the integrable case, with no staggered magnetic
field (B = 0). In Fig. 2(a) we show for three interaction
strengths � that the energy current through the system is
independent of its size. In addition, we show in Fig. 2(b)
that the energy profiles are flat in the bulk. This indicates that

FIG. 2. (Color online) Energy transport properties of integrable
XXZ spin chains. The results correspond to T L

targ = ∞, T R
targ = 20

and different interactions �. (a) Energy current as a function of N .
(b) Energy profiles for N = 80. Note the strong boundary effects of
the thermal driving.

the energy transport is ballistic for the different interaction
regimes of the XXZ model. This result thus provides strong
evidence to support the picture of ballistic energy transport in
integrable quantum systems, as discussed in previous works
by means of different techniques [12,15,17,21,23,65,68–70].
Note that studies of energy transport in integrable systems with
single-site thermal driving also suggested ballistic conduction,
for � = 0 [59] and � = 1 [71], but for much smaller systems
(of up to 12 sites).

Next we consider the nonintegrable case with finite stag-
gered magnetic field. First, we note that while the simulations
for the case B = 0 converged to the NESS quite fast, those of
finite values of B were found to be more demanding, with their
convergence time scaling in a form ∼B−1. For this reason we
identified the amplitude B = 0.1 as approximately the lowest
one for which the NESS can be obtained with a reasonable
computational effort. Thus we considered field amplitudes
within the range 0.1 � B � 0.4 for our study.

The most important features of the high-temperature energy
transport of the nonintegrable system are shown in Fig. 3. We
restrict the results to a single interaction strength, � = 1.5;
a similar qualitative behavior was found for other � values.
Specifically, as depicted in Fig. 3(a), the energy profiles are no
longer flat but acquire a ramp form that becomes steeper as B

increases. Also, as shown in Fig. 3(b), the energy current is no
longer independent of the size of the system but decreases with
N . Thus the energy transport is no longer ballistic. Instead, as
indicated in Fig. 3(c), it satisfies a diffusion equation in the
bulk, namely

JXXZ

�E
= κXXZ

(N−2n−2)α
, �E = 〈εN−n−1,N−n〉 − 〈εn+1,n+2〉

(7)
with κXXZ the energy conductivity, n the number of sites
discarded at each edge of the chain due to strong boundary
effects [18], �E the energy difference between the leftmost
and rightmost pairs of sites retained, and α ≈ 1. In addition,
as shown in Fig. 3(d), the energy conductivity diverges with
the staggered magnetic field as κXXZ ∼ B−2 when B → 0,
as expected from previous calculations [16,22]. So our results
indicate that when the integrability of the Hamiltonian is bro-
ken, the energy transport becomes diffusive. This conclusion is
consistent with recent calculations of current autocorrelation
functions in systems with staggered magnetic fields [21,22,24]
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FIG. 3. (Color online) Energy transport properties of the XXZ

model with staggered magnetic field. The simulations correspond to
� = 1.5, T L

targ = ∞, and T R
targ = 20. (a) Examples of energy profiles

for two staggered magnetic fields. (b) Corresponding energy currents
as a function of N . The symbols represent the TNT results, and
the lines are guides to the eye. (c) Scaling of the ratio 〈J XXZ〉/�E

with the size of the system. The symbols are the numerical data, and
the lines represent the fits to Eq. (7). To perform the fit, we have
discarded n = 15 sites at each boundary of the chain for all values of
N considered. Larger values of n do not modify the results, since the
energy gradient is homogeneous in the region of the chain retained.
For B = 0.15, the fit gives κXXZ = 145(5) and α = 0.98(1), and for
B = 0.30 it gives κXXZ = 40.6(5) and α = 0.97(1). (d) Conductivity
of the system as a function of B. The solid line corresponds to the fit
κXXZ = 4.0(1.3)B−1.9(1).

and with previous studies in which the integrability is broken
by means of other types of couplings.2

We have therefore demonstrated, by using a transport
scheme differing from those considered in previous work,
the existence of ballistic energy transport for an integrable
Hamiltonian. On the other hand, the energy transport becomes
diffusive when the integrability is broken, in this case by a
staggered magnetic field.

Now we examine the thermalization regimes in the same
nonequilibrium configurations. We show the absence and
emergence of thermalization on a local scale for sufficiently
large chains with integrable and nonintegrable Hamiltonians,
respectively, coinciding with ballistic and diffusive energy
transport regimes.

2Diffusive energy transport has been reported in systems with
interchain couplings [15,16,23] and next-nearest-neighbor coupling
leading to frustration [15]. For dimerized systems, the nature of the
energy transport is less clear, since different studies have obtained
ballistic [21] and diffusive [15,17] regimes. Preliminary calculations
with our nonequilibrium setup indicate diffusive energy conduction
at high temperatures.

IV. LOCAL THERMAL STATES AND INTEGRABILITY

An important problem regarding the nature of the NESS of
a driven quantum system corresponds to whether, and under
which conditions, it can be described by local equilibrium.
If so, local temperatures and chemical potentials can be
established, determining the simplest form in which a system
can deviate from global equilibrium [72,73]. In addition,
considering the relation between relaxation to Gibbs-like states
and nonlocal conservation laws in closed quantum systems
[32,33,44], it becomes natural to ask whether Hamiltonian
integrability is related to such a local equilibrium picture.

Here we study these questions by analyzing the concept
of local thermalization in high-temperature thermally-driven
systems. We find that the definition of local temperatures is
possible in these configurations, depending on the integrability
of the Hamiltonian. Namely, for large nonintegrable systems
local thermalization arises, while it does not for integrable
models.

A. Correlation functions

A first point to evaluate regarding the possible existence of
local thermal states in the NESS of the system is whether long-
range correlations emerge. In Ref. [72] it was shown that when
boundary driving induces spin transport at infinite temperature,
long-range correlations emerge at interaction strengths � �
0.91. At finite temperature long-range correlations were also
found for � = 1.5. It was proposed that these results could
demonstrate the absence of well-defined local temperatures
in nonequilibrium one-dimensional many-body systems. But
interestingly, as discussed in the following sections of our
work, this turns out not to be the case in nonintegrable systems
driven out of equilibrium by a thermal imbalance. Thus it is
illustrative to observe first the behavior of spatial correlations
across the system. In Fig. 4 we plot the bulk-averaged
correlation functions C(r) = 〈C(j,r)〉j , with

C(j,r) = 〈
σ z

j σ z
j+r

〉 − 〈
σ z

j

〉〈
σ z

j+r

〉
, (8)

FIG. 4. (Color online) Spin-spin correlations of the XXZ model
with staggered magnetic field, for � = 1.5, N = 100, T L

targ = ∞,
and T R

targ = 20. From top to bottom, the lines correspond to
B = 0,0.15,0.20,0.30,0.35. The field amplitude B thus increases
as indicated by the arrow.
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as a function of the separation r between spins. The notation
〈.〉j indicates spatial average of the correlations C(j,r) with
fixed r , excluding sites near the boundaries. The main
observation from Fig. 4 is that the correlations, which oscillate
due to the staggered field, strongly decay with B, up to two
orders of magnitude from B = 0 to B = 0.4. In addition,
for B > 0 the correlations are of O(10−5) − O(10−6) for
r = 15, which indicates a much faster spatial decay than that
of long-range correlations in Ref. [72]. This suggests that as
the integrability-breaking parameter gets larger, a description
of the system by means of local properties becomes more
feasible.

B. Determination of local thermal states

To determine whether the thermally driven system can be
locally described by thermal states, we proceed as follows.
First, we calculate the reduced density operators of each pair
of neighboring sites (j,j + 1) in the bulk of the driven system,
which we denote as ρ̃2(j,j + 1).3 Then we find the local two-
site thermal state,

ρ2(j,j+1)=Z−1
j,j+1

× exp
[−(

εj,j+1+μjσ
z
j +μj+1σ

z
j+1

)
/Tj,j+1

]
,

Zj,j+1 =Tr
{
exp

[−(
εj,j+1+μjσ

z
j +μj+1σ

z
j+1

)
/Tj,j+1

]}
,

(9)

with local temperature Tj,j+1 and chemical potentials μj

and μj+1, closest to ρ̃2(j,j + 1). This state is identified by
determining the free parameters Tj,j+1, μj , and μj+1 that
minimize the trace distance [74]

D(ρ2,ρ̃2) = 1
2 Tr

[√
(ρ2 − ρ̃2)2

]
. (10)

This calculation is performed self-consistently. First, for
each pair (j,j + 1) we fix the local chemical potentials to
a particular value [see Eq. (16)] and sweep over a range
of trial temperatures Tj,j+1 (with temperature step δT ), as
exemplified in Fig. 5 for the two central sites of the chain. The
temperatures that minimize the trace distance are selected and
then used to find new values of the local chemical potentials,
following a similar minimization from a sweep over trial
values. The process is repeated until convergence is obtained;
see Appendix C for more details of this procedure. Finally, we
compare expectation values of each ρ̃2 with those of the closest
thermal state found. If their difference is much smaller than
the actual values of the expectation values (i.e., if the relative
difference is small), ρ̃2 corresponds to a local thermal state.

A few points must be discussed before presenting our
results. First, note that this method represents an improvement
over procedures used in other works to find local temperatures
[43,62,75], which only relied on analyzing and comparing
a few expectation values to determine thermalization. To
understand why, consider two states ρ and σ , and an ob-
servable G with spectral decomposition G = ∑

j gj |j 〉〈j |. If

3Reduced density operators are denoted by ρ̃n, identified by the ∼
symbol. Thermal states are simply denoted as ρn. The subindex n

refers to the number of sites of the density operators.

FIG. 5. (Color online) Trace distance between the reduced den-
sity operator ρ̃2 of the two central sites and two-site states (9) with
temperature T N

2 , N
2 +1 for various staggered fields B. The calculations

correspond to N = 100, T L
targ → ∞, T R

targ = 20, � = 1.5, δT = 10−2,
and the final iteration of the self-consistent procedure.

pj = Tr(ρ|j 〉〈j |) and qj = Tr(σ |j 〉〈j |) denote the probabili-
ties of obtaining outcome j in a measurement of G, then the
corresponding expectation values are

〈G〉ρ = Tr(ρG) =
∑

j

gjpj , 〈G〉σ = Tr(σG) =
∑

j

gjqj .

(11)

Their difference is

|〈G〉ρ − 〈G〉σ | =
∣∣∣∣∣∣
∑

j

gj (pj − qj )

∣∣∣∣∣∣ � |g∗|
∑

j

|pj − qj |

≡ 2|g∗|D(pj ,qj ) � 2|g∗|D(ρ,σ ), (12)

where g∗ is the eigenvalue of G of maximal amplitude,
D(pj ,qj ) is the L1 distance between the probability distri-
butions {pj } and {qj }, and where we have used that the trace
distance D(ρ,σ ) upper-bounds D(pj ,qj ) [74]. Thus the trace
distance of two states upper-bounds the difference between
the corresponding expectation values of any observable (with
finite eigenvalues). Its calculation then constitutes a well-
motivated measure of distance to determine the closest thermal
state ρ2(j,j + 1) to each ρ̃2(j,j + 1). The sole value of the
trace distance between both states, however, is not enough
to determine whether ρ̃2(j,j + 1) is actually thermal, since it
does not give any indication of the relative difference between
expectation values of the two states. This is why after finding
the closest ρ2(j,j + 1), a comparison of its expectation values
to those of ρ̃2(j,j + 1) is still required.

Second, it is important to discuss why we use the state
of Eq. (9) to perform our study. An intuitive justification
can be drawn from considerations on global thermal states
at high temperature T . For such cases, where the total density
operator is

ρN = Z−1 exp(−H/T ) ≈ 1

2N

[
IN − 1

T
H + O

(
1

T

)2
]

,

(13)
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with Im the identity operator of m sites, the reduced density
operator of sites j and j + 1 is very well approximated by

ρ̃2(j,j + 1) = Tr(ρN )(j,j+1)′ ≈ 1

4

[
I2 − 1

T
εj,j+1 + O

(
1

T

)2
]

= Z−1 exp(−εj,j+1/T ), (14)

with Z the corresponding local partition function [48]. The
states of Eq. (14), however, do not account for the coupling of
the pair of sites (j,j + 1) to the rest of the chain, even under
some approximation. An initial improvement corresponds to
assuming a mean-field (MF) coupling between the pair and
the neighboring sites, namely

σα
j−1σ

α
j ≈ 〈

σα
j−1

〉
σα

j + σα
j−1

〈
σα

j

〉
, (15)

for α = x,y,z and similarly for pair (j + 1,j + 2). A reason-
ing similar to that of Eqs. (13) and (14) then leads to a state of
the form in Eq. (9), with

μj = τ�
〈
σ z

j−1

〉
, μj+1 = τ�

〈
σ z

j+2

〉
, (16)

when considering that only 〈σ z
j 〉 �= 0 when B > 0. Thus the

coupling of the two sites of interest to the rest of the chain
motivates the inclusion of site-dependent chemical potentials
on the local description of the NESS. To go beyond a mean-
field approximation, these are taken as fitting parameters.

Even though we do not have a global thermal state but a
system with temperature imbalance and energy transport, we
consider states of Eq. (9) for our local analysis. This was further
motivated by verifying numerically that the two-site reduced
density operators of the XXZ driven systems ρ̃2(j,j + 1) have
the form

ρ̃2 = 1

4

(
I2 + djσ

z
j + dj+1σ

z
j+1 +

∑
α=x,y,z

cα
j,j+1σ

α
j σ α

j+1

)
,

(17)
with dj = 〈σ z

j 〉 and cα
j,j+1 = 〈σα

j σ α
j+1〉. Since only the terms

of Eq. (17) are generated by the exponential of Eq. (9),4 using
it for the local description of a nonequilibrium setup stands as
a very appealing and natural choice. Finally, note that since
the operators describing the energy current correspond to three
neighboring sites [see Eq. (5)], they are not incorporated in our
two-site description. However, they should be included in an
analysis of the reduced density operators of more than two
sites. Establishing a well-motivated ansatz for the description
of such reduced density operators remains an open question.

C. Impact of integrability on local thermalization

Now we discuss whether the two-site reduced density
operators of thermally-driven systems of a fixed system size,
namely N = 100 spins, can be well approximated by the
two-site thermal states of Eq. (9). As described in Sec. IV B, we
start by identifying the local thermal state ρ2(j,j + 1) closest

4Its is readily verified from simple algebra that any nth
power of εj,j+1 has the form εn

j,j+1 = C1I2 + C2σ
z
j + C3σ

z
j+1 +∑

α Cα,ασ
α
j σ α

j+1, with Cα and Cα,α coefficients that depend on the
Hamiltonian parameters. Thus the exponential of the Hamiltonian
also has the same type of expansion.

FIG. 6. (Color online) Temperature profiles across the system for
the parameters of Fig. 5. The (flat) profile of B = 0 is not shown since
it corresponds to temperatures ≈95.

to the reduced density operator ρ̃2(j,j + 1) of each pair of
neighboring spins of the driven chain. The determination of
the local temperature is illustrated in Fig. 5 for the two central
sites and various staggered magnetic fields B. Notably, the
trace distance between the two types of states decreases and
gets sharper as the staggered field B increases. The resulting
local temperatures for each value of B are shown in Fig. 6. As
expected, they describe well-defined linear profiles. Note also
that the obtained temperatures at the boundaries significantly
differ from the target temperatures. This occurs due to the
strong boundary effects of the two-site driving [43,56]. In
particular, the temperature at the left boundary is finite, while
T L

targ → ∞. This results from the coupling of the two leftmost
spins to the rest of the chain, which has finite local temperatures
due to the finite value of T R

targ. Additionally, observe that
as B increases the temperature profiles become steeper, an
expected result since the system goes deeper into the diffusive
regime. However, due to the different strength of boundary
effects at each boundary (being stronger at low temperatures
[56]), this steepening is asymmetric, resulting in the different
temperature profiles crossing away from the center of the spin
chain.

Then we compare the corresponding 〈σα
j σ α

j+1〉 expectation
values of the two types of states. In Fig. 7 we present the
comparison for α = z; the results for α = x,y have the same
features, so they are not shown. For B = 0, the maximum
difference of expectation values is ≈9%. It is significantly
diminished for B = 0.1 (≈2%), and becomes very small for
B = 0.4 (0.7%). These relative differences are consistent with
the corresponding trace distance [see Eq. (12)]. Thus we
conclude that away from the integrable limit, the NESS of
the thermally-driven system of N = 100 spins is locally well
described by thermal states of the form in Eq. (9). Close to and
at integrability, this local description does not hold.

This conclusion is reinforced when looking at the mag-
netization profiles of the NESS. In Fig. 8(a) we show the
staggered magnetization of the chain for B = 0.4, along with
the profiles obtained when fitting the local reduced density
operators ρ̃2 with different versions of Eq. (9). Local thermal
states with zero or mean-field chemical potentials reproduce
the oscillatory form of the profile. However, the staggered
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FIG. 7. (Color online) Comparison between expectation values
〈σ z

i σ z
i+1〉 directly obtained from the numerical simulations of driven

systems with temperature imbalance (dashed lines) and those of the
chosen two-site thermal states (solid lines). Each indicated value
of B refers to the closest solid and dashed line. For clarity, the
dashed lines correspond to B = 0 (dash-dot), B = 0.1 (long-dashed),
B = 0.2 (medium-dashed), and B = 0.4 (short-dashed). Also, the
results for the 10 leftmost and rightmost sites have not been plotted.
The calculations correspond to the parameters of Fig. 5.

FIG. 8. (Color online) (a) Comparison between expectation val-
ues 〈σ z

j 〉 directly obtained from the numerical simulations of driven
systems with temperature imbalance (◦) and those of various two-site
thermal states in Eq. (9). The red dashed line refers to states with no
local chemical potential. The black solid line corresponds to states
with the mean-field chemical potentials in Eq. (16). The solid blue
(oscillating) line represents the results when using μj and μj+1 as
fitting parameters. (b) Values of μj minimizing the trace distance
between the two-site reduced and thermal states of sites (j,j + 1).
The calculations correspond to B = 0.4 and the other parameters of
Fig. 5.

magnetization has an additional staggering amplitude on top
of it, which is not captured by any of these two limits.
This additional residual staggering is reproduced well when
taking μj and μj+1 as free parameters, as seen in Fig. 8(a).
The corresponding values of μj obtained for each pair of
sites (j,j + 1) are shown in Fig. 8(b). In the bulk, these
chemical potentials form an oscillating profile around a
linearly increasing trend, resembling the increase of the
magnetization profile.

On the other hand, for Hamiltonians close to integrability
the magnetization values of the NESS are much lower and
cannot be reproduced even when μj and μj+1 are free
parameters. For example, for B = 0.1, differences between the
〈σ z

j 〉 values of the NESS and the states in Eq. (9) minimizing
the corresponding trace distance are of up to 20% (not shown).

D. Local states close to and at integrability

We have noted in Sec. IV B that the two-site reduced
density operators ρ̃2 of the thermally driven XXZ spin chains
have the form specified in Eq. (17). Since this result holds
independently of the value of the staggered magnetic field, it
is natural to ask whether close to and at the integrable limit,
the system can be described locally by states of the form of
Eq. (9) but with an effective local Hamiltonian,

ε̃j,j+1 = τ̃j

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + �̃jσ
z
j σ z

j+1

)
+ (−1)jB

2

[
(1 + δj,1)σ z

j − σ z
j+1(1 + δj+1,N )

]
, (18)

where τ̃j and �̃j are free fit parameters corresponding to
effective site-dependent hopping rates and interaction
strengths, respectively (following the convention described
in Sec. III, the numerical values of τ̃j /τ are just denoted
by τ̃j ). We verified that this is in fact the case for several
staggered magnetic field, including B = 0. However, since
the parameters τ̃j and �̃j obtained by this fitting deviate from
the couplings of the parent Hamiltonian, there is no true local
thermalization, and no local temperatures can be assigned to
the system.

Specifically, we found for each two-site reduced density
operator in the bulk of the system a state in Eq. (9) with
effective local Hamiltonian of Eq. (18), so their trace distance
is of O(10−6). In Fig. 9 we show the effective site-dependent
couplings that minimize the corresponding trace distance for
systems of size N = 100, interaction � = 1.5 and various
staggered fields. Deep in the nonintegrable regime (B = 0.4),
τ̃j ≈ 1 and �̃j ≈ 1.5 in the bulk. As the staggered field
decreases, the effective parameters notably deviate from the
values of the Hamiltonian couplings. Finally, this deviation
becomes very large in the integrable limit. In particular,
τ̃j ≈ 0.93 and �̃j ≈ 1.77 for B = 0 (not shown). These results
indicate, in a complementary form to that of Sec. IV C, that
thermally-driven strongly nonintegrable systems are locally
described by thermal states of the underlying Hamiltonian,
while in the integrable limit such a description is not valid.

There are, however, three specific instances of integrability
that require special attention, given that they satisfy the
conditions described above to argue the existence of local
thermalization. These correspond to the isotropic (� = 1),
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FIG. 9. (Color online) Effective site-dependent Hamiltonian
couplings of local two-site states for different staggered magnetic
fields B and interaction � = 1.5. (a) Effective hopping τ̃j . (b)
Effective coupling in the z direction �̃j . The calculations correspond
to the parameters of Fig. 5. The results of B = 0 are not shown since
they are located in significantly different ranges of the y axis, i.e.,
τ̃j ≈ 0.93 and �̃j ≈ 1.77 in the bulk.

XX (� = 0), and Ising (τ = 0, � → ∞) coupling limits.
To explain what makes these cases special, and to show that
their local two-site description by thermal states of the parent
Hamiltonian is an artifact of their high symmetry, we take
the first case as an example. Here, since all the directions are
completely equivalent, the two-site reduced density operators
ρ̃2(j,j + 1) must have the form

ρ̃2(j,j + 1) = 1

4

(
I2 + cj,j+1

∑
α=x,y,z

σ α
j σ α

j+1

)
, (19)

with cj,j+1 a local coefficient, equal for the three directions
α. Due to the symmetry of the � = 1 local Hamiltonian,
given by

hj,j+1 = τ
(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + σ z
j σ z

j+1

)
, (20)

it is easily shown that a two-site thermal state at temperature
T has the form5

ρ2(j,j + 1) = e−hj,j+1/T

Tr(e−hj,j+1/T )
= 1

4
[I2 + C(T )hj,j+1], (21)

with the coefficient

C(T ) = 〈
σα

j σ α
j+1

〉 = e−τ/T − e3τ/T

3e−τ/T + e3τ/T
. (22)

5The key point to derive this result is that all the powers of the � = 1
local Hamiltonian have the form hn

j,j+1 = τ n(an + bnhj,j+1), with
an = 3bn−1 and bn = (1 − (−3)n)/4. Thus exp(−hj,j+1/T ) ∝ hj,j+1.

So by selecting the temperature that satisfies τ C(T ) = cj,j+1,
each two-site reduced density operator of the driven system is
identified with a local thermal state with Hamiltonian hj,j+1, in
spite of the integrability. We have verified this result within our
numerical simulations, finding trace distances between states
ρ2(j,j + 1) and the closest ρ̃2(j,j + 1) of O(10−7) in the bulk.
Additionally, we have confirmed that τ̃j = 1 and �̃j = 1 when
looking for the effective Hamiltonian couplings that minimize
the trace distance.

Similar arguments can be derived for the XX and Ising lim-
its. This is because 〈σx

j σ x
j+1〉 = 〈σy

j σ
y

j+1〉 �= 0 and 〈σ z
j σ z

j+1〉 =
0 for the XX chain and only 〈σ z

j σ z
j+1〉 �= 0 for the Ising model.

As a result, both the two-site reduced density operators of the
thermally-driven system and the two-site thermal states are
proportional to the corresponding local Hamiltonian. By an
appropriate selection of the local temperatures, the two types
of local states coincide.

There is, however, a key difference between the results for
these particular integrable limits and those of nonintegrable
Hamiltonians studied above, which justifies our conclusion
that real thermalization emerges in the latter but not in the
former. This is that our discussions for nonintegrable systems
do extend to larger reduced density matrices. For instance,
we have verified for � = 1 that when T L

targ = T R
targ, only the

two-site reduced density operators correspond to thermal states
with local Hamiltonian (20). When more sites are taken, this
identification is no longer possible. Namely, the trace distance
between states ρ̃3(j,j + 1,j + 2) in the bulk and the closest
thermal state ρ3(j,j + 1,j + 2) is ≈4 × 10−4; in addition,
for states of four sites, the corresponding trace distance is
≈1 × 10−3. Indeed, several expectation values of the ρ̃n states
with n > 2 are not well reproduced by thermal states ρn, and
thus there is no thermalization. For nonintegrable systems this
is not the case. We have verified, for B = 0.4 and � = 1,
that the expectation values of the reduced density operators
of three and four sites are still well reproduced by thermal
states, with corresponding trace distances across the system
of O(10−5). Thus the conclusion of local thermalization for
nonintegrable cases is robust to considering more than two
sites.

E. Scaling with system size

Finally, we discuss the effect of the system size on its
local description by means of thermal states. For various
sizes N , we obtained the effective parameters τ̃j and �̃j

of the local Hamiltonian of Eq. (18) for the central pair of
spins and calculated their difference to the actual Hamiltonian
parameters. We consider first the integrable regime B = 0.
As shown in Fig. 10(a), the effective couplings diverge from
the couplings of the parent Hamiltonian as N increases. This
provides further evidence that in the integrable limit, the
system does not locally thermalize for any size, since as it
becomes larger, a local description by a thermal state of the
underlying Hamiltonian becomes increasingly worse.

The results differ entirely for the nonintegrable regime,
even for a weak staggered magnetic field. This is illustrated
for the two central spins and B = 0.15 in Fig. 10(b). Notably,
as the size of the system increases, τ̃ and �̃ approach τ and
�, respectively. For the sizes attainable with our numerical
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FIG. 10. (Color online) Scaling of the difference of effective and
real exchange coupling (�) and anisotropy (◦) with the system
size, for the central sites and � = 1.5. (a) For integrable regime,
B = 0. The solid lines are guides to the eye. (b) For nonintegrable
regime with B = 0.15. The solid lines are the corresponding linear
fits: (�̃ − �)/� = 1.16(8)N−1 − 6(13) × 10−4, and (τ − τ̃ )/τ =
0.49(4)N−1 − 3(6) × 10−4. The calculations correspond to the pa-
rameters of Fig. 5.

simulations, this approach is very well approximated by N−1,
as indicated by the fits shown in Fig. 10(b). This is consistent
with having τ̃ = τ and �̃ = � in the thermodynamic limit,
since the errors of the size-independent term of the fits are
larger than their actual value, as indicated in the caption of
the figure. These scaling results show that systems close to
integrability will tend to a local thermal description given by
their underlying Hamiltonian for sufficiently large sizes.

For the regime of parameters considered, we have estab-
lished coincident transport and thermalization phenomena,
depending on the integrability of the model. Namely, ballistic
energy transport occurs in the integrable regime, where
the system displays a total absence of local thermalization,
while diffusive energy transport and local thermalization
emerge in the nonintegrable regime. For the system sizes
simulated, the former is clearly identified for weak staggered
magnetic fields while the latter is not. However, a scaling
analysis of the local properties of the NESS suggests that
even there, energy diffusion and local thermalization occur
simultaneously for very large systems. Whether the transition
between the two transport and local thermalization regimes
occurs arbitrarily close to integrability remains an open
question.

V. CONCLUSIONS

In the present work we studied the NESS of high-
temperature thermally-driven one-dimensional spin-1/2 XXZ

chains, obtained by efficient matrix product simulations. We
focused on two distinct phenomena, namely energy diffusion
and local thermalization, which simultaneously arise from the
integrability breaking of the Hamiltonian.

Specifically, we first analyzed the energy transport sup-
ported by the system when different temperatures are imposed
at its boundaries by means of a two-site driving. The results
show that the integrable XXZ model features ballistic energy
transport. On the other hand, when the integrability of the
Hamiltonian is broken by means of a staggered magnetic
field, the energy transport becomes diffusive. Our results
thus provide new evidence to support this picture of energy
transport.

Subsequently, we studied the emergence of local thermal
states in the same thermally-driven systems. We observed
that deep in the nonintegrable regime the system is locally
described by thermal states of the underlying Hamiltonian.
Close to integrability this local description does not hold for
the system sizes attainable with our simulations. However,
a scaling analysis with N suggests the emergence of local
thermalization for very large sizes in such a regime. Finally, in
the integrable limit the system is not well described by local
thermal states of the underlying Hamiltonian (except for a few
symmetric limits). In fact, this description becomes worse as
the system size increases.

These results represent the first concrete connection be-
tween the integrability of a Hamiltonian and the emergence of
corresponding local thermal states in a global nonequilibrium
setup. More importantly, they suggest a close connection
between transport and thermalization properties. This has
been recently established for integrable closed systems [44].
Here we show, for open boundary-driven configurations, that
energy diffusion and local thermalization emerge in the same
(nonintegrable) regime for large chains, the latter being more
susceptible to the system size. Thus it is natural to expect
that an intimate relation between the two phenomena exists. A
rigorous proof of such a relation is still required.

We conclude by commenting on a connection between our
results and a recent numerical study of energy transport in
the XXZ model [21]. There, two semi-infinite spin chains,
initially in thermal states of different temperatures T L and
T R , are coupled through a single site. As the system evolves
in time, the energy current at the interface between both chains
saturates rapidly in the integrable limit, while it does not (in
the accessible time scales) when the Hamiltonian contains
staggered magnetic fields. This led to the conjecture that the
relaxation of the energy current to a steady-state value would
only occur for nonzero Drude weights. Additionally, even
if the current at the interface reaches a steady-state value,
the energy profile does not, given that the system is closed.
Thus in the ballistic regime the current “is not determined by
local temperature gradients” but has the form f (T L) − f (T R)
for some function f . Our research is consistent with this
observation by indicating that in the ballistic regime it is
not actually possible to provide a sensible definition of
local temperatures. It would be interesting to study local
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thermalization in the setup of Ref. [21], or other driving
schemes, to check the generality of the qualitative results we
have found.
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APPENDIX A: TWO-SITE THERMAL DRIVING

To drive the system out of equilibrium by a temperature
imbalance, we use the so-called two-site bath operators
[18,43,56]. These operators are designed to induce a Gibbs
state of a given target temperature and chemical potential on
a pair of isolated spins with Hamiltonian h = ε1,2 and total
magnetization operator M = σ z

1 + σ z
2 . So we wish to find a

superoperator LB(ρ) which satisfies the equation

LB(ρB) = 0, (A1)

with a Gibbs state ρB at temperature T and chemical potential
μ being the only eigenvector of LB with zero eigenvalue, all
the other eigenvalues being −1. This particular choice of the
driving leads to the fastest convergence to ρB [18]. To build
the superoperator LB , we start by diagonalizing the thermal
state of the target temperature,

ρB = V †dV, (A2)

with d = diag(d0,d1,d2,d3) a diagonal matrix. Now we
build the “diagonal” superoperator Ldiag

B , whose only zero-
eigenvalue eigenstate is d, i.e.,

Ldiag
B (d) = 0. (A3)

If we express the matrix d in the form

d = 1

4

3∑
n1,n2=0

cn1,n2σ
n1
1 ⊗ σ

n2
2 ≡

15∑
n=0

Cn

n, (A4)

with σ 0 = I (single-site identity), σ 1 = σ z, σ 2 = σx , and
σ 3 = σy , and with 
n = 1/4(σn1

1 ⊗ σ
n2
2 ) the basis elements

for two sites satisfying 4tr(
n†
m) = δnm, it is easily shown
that

d = C0

0 + C1


1 + C4

4 + C5


5, (A5)

with coefficients

C0 = d0 + d1 + d2 + d3, C1 = d0 − d1 + d2 − d3,

C4 = d0 + d1 − d2 − d3, C5 = d0 − d1 − d2 + d3.
(A6)

Then it is easily shown that Eq. (A3) holds for the chosen
basis, and the conditions specified above are satisfied if
the nonzero elements of the matrix representation of the
“diagonal” superoperator are(

Ldiag
B

)
m,m

= −1, m = 1, . . . ,15(
Ldiag

B

)
j,0 = Cj/C0, j = 1,4,5.

(A7)

We now use the “diagonal” superoperator to define the matrix
form of the superoperator LB inducing the thermal state ρB .
First, we express ρB in the 
n basis,

ρB =
15∑

n=0

ρn

n, (A8)

with ρn the components on each basis element. So the matrix
representations of the superoperators satisfy∑

m,n

Cm

(
Ldiag

B

)
m,n

Cn = 0,
∑
m,n

ρm(LB)m,nρn = 0, (A9)

for m,n = 0, . . . ,15. Using Eqs. (A2), (A4), and (A8) it is
shown that

Cm = 4
∑

n

ρntr(V 
nV †
m). (A10)

Replacing this result in the left equality of Eq. (A9), it is
obtained that

∑
i,j

ρi

(∑
m,n

(R†)im
(
Ldiag

B

)
m,n

Rn,j

)
ρj = 0, (A11)

where we have defined the matrix elements

Ri,j = 1
4 tr(V †
iV 
j ). (A12)

Comparing the second equality of Eq. (A9) and Eq. (A11), we
finally obtain

LB = R†Ldiag
B R, (A13)

which relates the matrix forms of the “diagonal” and complete
superoperators.

APPENDIX B: MAGNETOTHERMAL EFFECTS

Here we briefly show the range of physics accessible with
the two-site driving scheme. In particular we examine the
emergence of magnetothermal effects, depicted in Fig. 11,
motivated by the recent implementation of a thermoelectric
heat engine in a boundary-driven configuration of ultracold
atoms [29]. We consider only the integrable limit of the
Hamiltonian (B = 0) and illustrate how the nature of these
effects may depend on the form in which they are induced.

We first describe how an energy current can be induced
through the system in the absence of a temperature imbalance,
i.e., when T L

targ = T R
targ, which corresponds to the Peltier effect.

This response emerges when imposing a finite magnetization
on the spin chain, which breaks the symmetry between up
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FIG. 11. (Color online) Scheme of the magnetothermal effects
induced in boundary-driven systems with a finite average magneti-
zation. (a) Peltier effect, in which an energy current is induced by
a magnetic imbalance (μR

targ > μL
targ) with no temperature imbalance

(T L
targ = T R

targ = T ). (b) Seebeck effect, in which a spin current is
induced by a temperature imbalance (T R

targ > T L
targ) with no magneti-

zation imbalance (μL
targ = μR

targ = μ). The arrows indicate spin and
energy currents. The solid lines represent magnetization and energy
profiles.

and down spins, in addition to a magnetization imbalance. For
example, if the chemical potentials of the two boundary reser-
voirs satisfy μL

targ �= μR
targ > 0, a positive and homogeneous

magnetization is induced in the bulk of the chain, favoring
the energy current carried by spins up. A net flow of energy
results, in addition to the spin current directly induced by the
magnetization imbalance. As shown in Figs. 12(a) and 12(b),
these currents are independent of the size of the system, in both
the weakly and the strongly interacting regimes. Additionally,
the magnetization and energy profiles are flat in the bulk, as
shown in Figs. 12(c) and 12(d), respectively. Thus the induced
spin transport is ballistic, as expected from the finite overlap
between the spin and (conserved) energy current operators
[12], as well as the (magnetothermal) energy transport.

Importantly, a Peltier response can be induced in alternative
ways. Namely, the symmetry between up and down spins
could be broken by applying a homogeneous magnetic field

FIG. 12. (Color online) Transport properties induced by a mag-
netization imbalance across an XXZ chain, with finite magnetization.
The results correspond to μL

targ/T L
targ = 0.5, μR

targ/T R
targ = 0.7, and

T
L,R

targ = 100. The left panels show the spin (a) and energy currents (b)
as a function of N . The right panels correspond to the magnetization
(c) and energy profiles (d) for � = 1.5 and N = 100.

along the system. This would induce a component of the heat
current given by the product of the magnetic field and the spin
current J S , being ballistic for weak interactions (|�| < 1) and
diffusive in the strongly interacting regime (|�| > 1) [54].
Thus the nature of the magnetothermal response of the system
depends on the particular form in which it is induced.

Using the two-site driving to impose a finite and homo-
geneous magnetization on the system, it is also possible to
induce a spin current by means of a temperature imbalance,
a phenomenon known as Seebeck effect. We have verified
that when T L

targ > T R
targ and μL

targ = μR
targ > 0, so there is

temperature but no magnetization imbalance, the induced
transport of spin and energy is ballistic for the integrable
Hamiltonian for both weak and strong interactions. Since the
results have the same form than those shown in Fig. 12 for
the Peltier effect, i.e., flat magnetization and energy profiles in
the bulk and size-independent currents, they are not shown.

These results demonstrate that under the two-site driving
scheme used here, ballistic magnetothermal responses exist
in the integrable XXZ model for both weakly and strongly
interacting regimes [65,66].

APPENDIX C: OBTAINING LOCAL TEMPERATURES
AND CHEMICAL POTENTIALS

In Sec. IV B we briefly described how to determine local
temperatures and chemical potentials of the thermally-driven

FIG. 13. (Color online) Trace distance between the two-site re-
duced density operator ρ̃2( N

2 , N

2 + 1) and two-site thermal states ρ2

with trial temperatures T N
2 , N

2 +1 and chemical potentials μ N
2

and
μ N

2 +1. The results correspond to a system with B = 0.4 and the
parameters of Fig. 5. (a) Sweep over temperature for three iterations
k = 1,2,3 of the self-consistent process. Iteration k = 1 corresponds
to the mean-field chemical potentials of Eq. (16). (b) Sweep over
chemical potential of site N

2 + 1 for various fixed potentials of site
N

2 , for iteration k = 1. No more iterations are depicted here, since
they give the same trace distances than those of k = 1.
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spin chain. Now we present more details of this self-consistent
calculation.

We start by comparing the two-site reduced density operator
ρ̃2(j,j + 1) of each pair of neighboring sites with thermal
states ρ2 of the form in Eq. (9), with the mean-field chemical
potentials of Eq. (16) and trial temperatures within a range
[Tmin,Tmax], separated by a step δT . Then we select the
temperatures Tj,j+1 that minimize the trace distance of
Eq. (10) for each pair. This step is exemplified for the central
sites of a particular spin chain in Fig. 13(a) (blue solid line);
in this case, the temperature selected is TN

2 , N
2 +1 = 74.51.

Subsequently, we compare states ρ̃2(j,j + 1) to thermal states
ρ2 with the selected temperatures and trial chemical potentials
μj and μj+1 within a range [μmin,μmax] (separated by a step
δμ), again by means of the trace distance. This is illustrated
in Fig. 13(b) for the central sites of the chain, where for
different fixed values of μN

2
we show the corresponding trace

distances for a sweep over μN
2 +1. We then select the values

(μN
2
,μN

2 +1) that minimize D(ρ2,ρ̃2); in the example they are
(0.019,0.002). This corresponds to the first iteration (k = 1) of
the process. Afterwards, with the obtained values of chemical
potentials, we select a new temperature for each pair of sites
by means of the same process and then we identify new
values of chemical potentials. This corresponds to the second
iteration (k = 2), for which a large decrease of the minimal
trace distances is observed with respect to the first iteration
[see black dashed line of Fig. 13(a)]. The procedure is repeated
until the values of temperatures and chemical potentials remain
unaltered when increasing the number of iterations, up to
the accuracy given by the steps δT and δμ selected. In the
example of Fig. 13 this has been already achieved with the
third iteration (k = 3), for which the values of D(ρ2,ρ̃2) are
the same than those of the second iteration [see the symbols of
Fig. 13(a)].
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[18] T. Prosen and M. Žnidarič, J. Stat. Mech. (2009) P02035.
[19] G. Benenti, G. Casati, T. Prosen, D. Rossini, and M. Žnidarič,
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