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Colombia
2 Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United

Kingdom
3 JILA, University of Colorado, Boulder, CO 80309, U.S.A.
4 Department of Physics, University of Miami, Coral Gables, FL 33124, U.S.A.

E-mail: fj.gomez34@uniandes.edu.co

Abstract. The ability to modify light-matter coupling in time (e.g.

using external pulses) opens up the exciting possibility of generating

and probing new aspects of quantum correlations in many-body light-

matter systems. Here we study the impact of such a pulsed coupling

on the light-matter entanglement in the Dicke model as well as the

respective subsystem quantum dynamics. Our dynamical many-body

analysis exploits the natural partition between the radiation and matter

degrees of freedom, allowing us to explore time-dependent intra-subsystem

quantum correlations by means of squeezing parameters, and the inter-

subsystem Schmidt gap for different pulse duration (i.e. ramping velocity)

regimes – from the near adiabatic to the sudden quench limits. Our

results reveal that both types of quantities indicate the emergence of the

superradiant phase when crossing the quantum critical point. In addition,

at the end of the pulse light and matter remain entangled even though they

become uncoupled, which could be exploited to generate entangled states

in non-interacting systems.
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1. Introduction

The understanding, characterization and manipulation of non-equilibrium correlated

many-body systems has benefitted from several remarkable experimental and theoretical

advances in recent years [1, 2]. Although, by definition, any laboratory sample will

necessarily interact with its laboratory environment [3], modern technologies have

succeeded in isolating quantum systems to a significant degree within a large variety of

experimental settings [4, 5, 6]. Many of these realizations can be regarded as particular

cases of an interaction between matter and radiation, or some other form of bosonic

excitation field. From a theoretical point of view, many of these systems can be

modeled to a reasonable approximation by considering the matter subsystem as two-

level systems (qubits) and the radiation subsystem as a set of independent harmonic

oscillators. Examples of such modeling include cavity Quantum Electrodynamics

(QED) [7, 8] and circuit QED [9, 10], impurities immersed in Bose-Einstein condensates

(BECs) [11, 12, 13], and artificial atoms of semiconductor heterostructures interacting

with light [14] or with plasmonic excitations [15]. Since these systems contain various

degrees of freedom, their theoretical study has been traditionally approached using

approximate perturbative methods [3].

Most of the theoretical treatments to date rely on the assumption that the matter-

radiation interaction is static, and either very weak or very strong. However from

an empirical perspective, these regimes do not represent any technological boundary –

indeed, the coupling strength in real systems is quite likely to be in between these limits.

The potential richness of effects in this intermediate case and in the regime of non-static

coupling, is therefore of significant interest for temporal quantum control in practical

quantum information processing and quantum computation. On a more fundamental

level, an open-dynamics quantum simulator would be invaluable for shedding new light

on core issues at the foundations of physics, ranging from the quantum-to-classical

transition and quantum measurement theory [16] to the characterization of Markovian

and non-Markovian systems [17, 18, 19].

In our work we explore this dynamical regime which is opened up by manipulating

the strength of the light-matter coupling in time – for example using external pulses that

generate a coupling that cycles from weak to strong and back again. Specifically, we use a

general, time-dependent many-body Hamiltonian, namely the Dicke model, to study the

impact of a single pulse in the light-matter coupling, on the quantum correlations at the

collective and subsystem levels. Exploiting the natural partition between the radiation

and matter degrees of freedom, we explore the time-dependent squeezing parameters of

each subsystem, and the entanglement spectrum through the Schmidt gap, for different

pulse duration (i.e. ramping velocity) regimes, ranging from the near-adiabatic to the

sudden quench limits. The results show that both the inter-subsystem and and intra-

subsystem quantum correlations signal the emergence of the superradiant phase. In

addition, in the intermediate ramping regimen, both subsystems remain entangled at

the end of the applied pulse, which should be of interest for quantum control schemes.
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The paper is organized as follows. In Section 2 we describe the time-dependent

light-matter model that we analyze. In Section 3 we present our main results for the

driven dynamics, starting with the coherence and squeezing of the light and matter

subsystems, and then considering the Schmidt gap for the light-matter bipartition. We

provide a discussion of our results in Section 4. Finally we present our conclusions in

Section 5.

2. Model and methods

The time-dependent light-matter system that we choose for our study is the non-

equilibrium Dicke Model (NE-DM) [20], which consists of a set of qubits coupled to

a single radiation mode. Its Hamiltonian is given by (~ = 1)

Ĥ (λ (t)) = εĴz + ωâ†â+
2λ(t)√
N
Ĵx
(
â† + â

)
. (1)

Here N is the number of qubits, Ĵα = 1
2

∑N
i=1 σ

(i)
α (α = x, z) denote collective angular

momentum operators of the qubits acting on the totally symmetric manifold (known as

the Dicke manifold), â† (â) is the creation (annihilation) operator of the radiation field,

ε and ω represent the qubit and field transition frequencies respectively, and λ (t) is the

time-dependent coupling between matter and light subsystems. For all the numerical

results in this paper, we consider the resonant case between the qubits and the radiation

frequency, and set the energy scale by taking ε = ω = 1. Though we focus on light-

matter systems, other realizations are possible – including those where the bosonic mode

corresponds to vibrational degrees of freedom.

The static properties of Dicke Model have been widely studied and characterized

in the last two decades [21, 22]. It is well known that, in the thermodynamic limit

N →∞, it exhibits a second-order quantum phase transition (QPT) [23] at λc =
√
εω/2

with order parameter â†â/J , separating the normal phase at λc <
√
εω/2 from the

superradiant phase in which there is a finite value of the macroscopic order parameter,

e.g. finite boson expectation number [20]. Now we discuss its dynamical properties

under the time-dependent model in Eq. 1. We obtain the full NE-DM instantaneous

state |ψ (t)〉 by numerically solving the time-dependent Schrödinger equation. Our

numerical solution of the NE-DM profits from the fact that the operator Ĵ2 =
∑

α Ĵ
2
α

is a constant of motion with eigenvalue J (J + 1), and that the parity operator P̂ =

exp
(
ıπ
[
â†â+ Jz + J

])
is also conserved and commutes with Ĵ2. Since we are seeking

results that have general validity, we avoid making the rotating-wave approximation

that is commonly used to solve the static version of the NE-DM and which makes it

Bethe ansatz integrable [24]. The general structure of the state |ψ (t)〉 at any time t is

given by

|ψ (t)〉 =

N/2∑
mz=−N/2

χ∑
n=0

Cn,mz (t) |mz, n〉 . (2)
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Here χ is the truncation parameter of the size of the bosonic Fock space, whose value

we choose to be large enough to ensure that the numerical results converge [20]. The

basis states |mz, n〉 = |mz〉 ⊗ |n〉 are defined such that |mz〉 is an eigenvector of Jz in

the subspace of even parity with eigenvalue mz, and |n〉 is a bosonic Fock state with

occupation n. The initial state of the dynamics at t = 0, with negligible light-matter

coupling λ(t) = 0, is the non-interacting ground state |ψ(0)〉 =
⊗N

i=1 |↓〉 ⊗ |n = 0〉 =∣∣−N
2
, 0
〉
, where both the matter and light subsystems have zero excitations. All qubits

are polarized in the state with 〈σz〉 = −1, and the field is in the Fock state of zero

photons. Since the total angular momentum and parity are conserved quantities, we

can without loss of generality restrict our study to the maximum angular momentum

sector J = N/2 and P = 1.

We obtain the time-evolution of the system in response to an up-down pulse in

λ(t), which is chosen so that the system dynamically crosses the QPT on both the

up and down portion of the λ(t) pulse cycle. For simplicity and considering the

successful and actual experimental platform for driving light-matter interaction in Dicke

Model [25, 26, 27], we consider λ(t) to rise and fall linearly in time t during the pulse,

i.e. it has the form υt, and thus establishes a triangular ramping of the light-matter

interaction. The rate υ = dλ
dt

acts as a control parameter and is known as the annealing

velocity, which is characterized by a finite time τ such that υ = 1/τ . The particular

choice of λ(t), implies that the quantum critical point is crossed twice during the cycle,

first when t = τ/2, and second when t = 3τ/2.

Several experimental realizations of the DM have been discussed during the past

few decades, with many being built around implementations in circuit QED where

superconducting qubits play the role of the matter subsystem [25, 26, 27]. Additionally

to date, important experimental scenarios have shown efficient and effective ways to

simulate radiation-matter interaction systems with time-varying couplings. Some of the

most promising experimental possibilities are thermal gases of atoms [28], and BECs

using momentum [29] and hyperfine states [30]. However, we believe that the branch

of experiments deserving most attention is that demonstrating DM superradiance in

ultra-cold atom optical traps, especially 87Rb Bose-Einstein condensates [31, 29, 32, 33].

Indeed, these atom-trap experiments are so promising that a brief description of them is

pertinent here, following Ref. [31]. Figure 1 depicts a schematic of the main components

of the atom-trap DM realization. It corresponds to an ultracold cloud of N ∼ 105 87Rb

atoms confined by a magneto-optical trap inside a high finesse Fabri-Perot cavity. The

cloud is driven by a transverse pump laser whose wavelength is the same as that of the

fundamental mode of the cavity. The combined cavity and pump laser setting produces

an optical lattice potential that affects the motion of the atoms in the cloud through

coupling with far-detuned atomic resonances. This coupling causes the atoms to interact

with each other through the mediating presence of the radiation mode. At low intensity

pump power εp, the BEC remains in its (almost spatially uniform) translational ground

state. However, when a critical value of εp is reached, the ground state becomes a grid-

like matter wave as the one shown in Fig 1. This change of configuration constitutes
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Figure 1. (Color online) Schematic of recent successful realizations of the Dicke Model

in a BEC of 87Rb atoms confined by a magneto-optical trap. The atoms (qubits) are

made to interact with the field mode of a high finesse cavity by means of a pumped

transverse field. [31]

the QPT whose spontaneous symmetry breaking is caused by the fact that two matter

wave configurations, which are distinguishable only by a phase difference of π, have the

same lowest possible energy. The effective two-level (qubit) system is composed of the

ground BEC translational state and the fundamental grid-like matter wave state for each

atom. There are several ways to monitor the system. The two most fundamental are

(1) addressing the radiation field by coupling one of the (unavoidably) leaky walls of the

cavity to a detector, and (2) using time-of-flight methods to measure the matter wave

modes. Note that each technique measures the state of one of the two main components

of the DM, i.e. light and matter respectively.

3. Results

We now proceed to characterize the complete dynamical QPT profile by focusing on

properties of each subsystem, namely the matter subsystem composed by the all-to-all

(qubit) spin network, and the radiation mode subsystem. We analyze a wide range

of annealing velocities v, and use a logarithmic scale for showing these values of the

velocity, defined by Γ = log2(v). This range varies from the slow near adiabatic regime,

through the intermediate regime, to the fast sudden-quench regime. In previous papers,

we showed how the values of the velocity for which the change of regime is manifested

depend on system size [34, 20, 35, 36]. Here, on the other hand, we take a fixed size of

the qubit subsystem, namely N = 81, for all the numerical calculations.
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Figure 2. (Color online) Projection of reduced density matrix for each subsystem.

Upper panels: 〈n|ρB |n〉. Lower panels: 〈mz|ρQ|mz〉. The values of velocities are, from

left to right: Γ = −7.76, −5.76, −4.76, −2.76. The color scale was adjusted to improve

visualization of the results.

3.1. Coherence and Squeezing

We begin our discussion of the driven dynamics of the Dicke model by considering the

diagonal elements of the reduced density matrices of the bipartition. Figure 2 shows

the instantaneous projection of the reduced density matrix for the matter and radiation

subsystems over the Jz and Fock basis respectively, for several values of the annealing

velocity. For the slowest ramping (Γ = −7.76), both the radiation mode and qubits

remain entirely unexcited before crossing the quantum critical point λc when increasing

λ, with only the respective states of n = 0 and mz = −N/2 being populated. After

crossing λc the population is transferred to states of larger n and mz, a process that

continues up to the time where λ starts decreasing. With the reversal of λ the population

of large values of mz and n is transferred back to lower values, in a highly-symmetrical

form with respect to the turning point. When λc is crossed again, both the radiation

field and the set of qubits become almost completely unexcited, with only the lowest

values of mz and n being populated. Since the reversal of the matter and light dynamics

is not completely achieved, this corresponds to a near-adiabatic regime instead of a true

adiabatic one (e.g. see results on Section 3.2 for lower velocities). For larger annealing

velocities, the dynamic population of states with mz > −N/2 and n > 0 remains

qualitatively similar to that of the near-adiabatic limit during the linear increase of λ.

However two main qualitative differences are observed. First, this population transfer

occurs further and further away from λc as v increases, indicating that the ground-state

QPT is not being immediately captured. Second, larger values of n and mz are reached,

since a faster ramping velocity provides a stronger excitation to the system. On the
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other hand, the population dynamics of the λ reversal regime is very different to that

close to adiabaticity. Even though the population is also transferred back to states of

lower quantum numbers, the symmetry with respect to the turning point is lost, and at

the end of the dynamics, when the matter and radiation become uncoupled, they are

still highly excited. This already indicates that for large annealing velocities, the system

gets so excited that it does not simply follow the decrease of λ, which is of course only

expected in the adiabatic limit. Similar asymmetric results are found in the squeezing

and entanglement spectrum results shown below.

Now we describe the squeezing parameter for both subsystems, starting with the

light degrees of freedom. The squeezing of light states has widely been studied in the

literature. A squeezed state of light arises in a simple quantum model comprising non-

linear optical processes such as optical parametric oscillation and four-wave mixing. The

fundamental importance of the squeezed state is characterized by the property that the

variance of the quadrature operator x̂ is less than the value 1/2 associated with the

vacuum and coherent state. The squeezing parameter in the field mode ξ2
B is expressed

in terms of the variance (Var) and covariance (Cov) of the field quadratures as [37]

ξ2
B = Var (x̂) + Var (p̂)−

√
(Var (x̂)− Var (p̂))2 + 4Cov (x̂, p̂)2. (3)

In the left panel of Figure 3, we present a novel way to generate a photon squeezed

state. At t = 0 the quantum cavity starts in the vacuum state |n = 0〉. As before, the

radiation-matter parameter varies as a simple linear up-down pulse, forming a triangular

ramping. Our results show the existence of a specific regime of annealing velocities such

that while the pulse is applied, the photon squeezing tends to increase (besides small

oscillations) even after the reversal ramping of λ(t) has started. Furthermore, we note

that for this velocity regime, the final state of light has high squeezing when the final

radiation-matter parameter is zero.

Now we discuss the dynamics of spin squeezing, which has also been the object of

intense research in the past few decades. For example, the natural idea of transferring

squeezing from light to atoms has been attracting attention both theoretically and

experimentally. The notion of spin squeezing has arisen mainly from two considerations:

the study of particle correlations and entanglement [38, 39, 40], as well as the

improvement of measurement precision in experiments [41]. The experimental proposals

for transferring squeezing from light to atoms include placing the latter in a high-Q

cavity so they interact repeatedly with a single-field (not squeezed) mode [42], and

illuminating bichromatic light on atoms in a bad cavity [43]. The intrinsic spin squeezing

in a large atomic radiating system was studied in Ref. [44], where spin-squeezed states

were generated by means of strong interatomic correlations induced by photon-exchange.

Spin squeezing can also be produced via a squeezing exchange between motional and

internal degrees of freedom of atoms [45]. For a detailed review, we refer to Ref. [46].

The definition of spin-squeezing is not unique [46]. For our propose we use the

definition given in Ref. [38], in which a relation between entanglement for a two-qubit

subsystem as measured by the Wootters concurrence cw [47] and the spin squeezing
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Figure 3. (Color online) Dynamic profiles of the matter subsystem in which, for

fixed annealing velocities, time varies according to the direction of arrows. Left panel:

Evolution 1 − ξ2B , as defined in Eq. 3, whenever it is greater that zero (squeezed

radiation). Right: Two qubit concurrence cw (N − 1) = 1− ξ2Q.

parameter ξQ was established, namely

ξ2
Q = 1− (N − 1) cw. (4)

Since each qubit is equally entangled with each other, the monogamic character of

entanglement is manifested in Eq. 4 by the N − 1 factor.

In the right panel of Fig. 3 we show the spin squeezing for a wide range of velocities.

We find a regime of intermediate annealing velocities for which the squeezing is large

at the end of the pulse, which coincides with the velocity regime for which the photonic

squeezing is magnified. In previous works by some of us, we showed that the intermediate

velocity regime allows for the generation of entanglement [34, 35]; this is manifested in

the generation of squeezing in both light and matter. A fundamental and novel feature

of our results is that there is no need of ultra-strong coupling to have squeezing in both

light and matter. In addition, we note that the squeezing after the pulse widely exceeds

the values that would be achieved through a near-adiabatic evolution.

3.2. Schmidt gap

The observation several years ago of the fundamental role of entanglement on quantum

criticality led to intense research on characterizing QPTs by means of different measures

such as entanglement entropy and concurrence [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58].

Shortly after, it was shown that the entanglement spectrum, i.e. the set of eigenvalues

of the reduced density matrix of one subsystem resulting from a bipartition, provides

valuable information on the properties of topological phases [59], and remarkably even

more than the entanglement entropy. Since then, several works have analyzed the

behavior of the entanglement spectrum, and in particular of the Schmidt gap (the
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difference between the two largest eigenvalues) close to criticality for different scenarios.

These include zero-temperature QPTs [60, 61, 62], where the Schmidt gap has been

suggested as an order parameter, many-body localization [63], and dynamical crossings

of QPTs at different speeds [64, 65, 66, 67, 68]. The latter situation, corresponding to

our point of interest in the present work, has been mostly studied for quantum spin

chains. Now we discuss the dynamics of the Schmidt gap of the non-equilibrium Dicke

model.

In contrast to several condensed-matter systems, the Dicke model immediately

suggests a bipartition which allows for a direct study of the physical properties of

subsystems of different nature, i.e. the set of qubits and the radiation field. Thus

we calculate the entanglement spectrum for this bipartition. In general, the dynamical

state of the total system |ψ (t)〉 is represented by the bipartite form in Eq. 2. A standard

singular-value-decomposition therefore allows us to rewrite this state as

|ψ (t)〉 =
Ξ∑
α=1

Sα (t)
∣∣Φ[mz ]

α (t)
〉
⊗
∣∣Φ[n]

α (t)
〉
, (5)

with ∣∣Φ[mz ]
α (t)

〉
=

N/2∑
m=−N/2

Um,α (t) |mz〉 ,
∣∣Φ[n]

α (t)
〉

=

χ∑
n=0

Vα,n (t) |n〉 ,

and where the unitary matrices U and V are defined on the corresponding subspaces

Hmz and Hn of the set of qubits and radiation field respectively. The new orthonor-

mal states
{∣∣∣Φ[mz ]

α (t)
〉}

and
{∣∣∣Φ[n]

α (t)
〉}

are known as Schmidt states. The diagonal

elements Sα ≥ 0 in the expansion of Eq. 5 are the Schmidt coefficients, which satisfy∑
α S

2
α = 1 due to the normalization of the state and are assumed to be arranged in

descending order with α. Finally Ξ = min(N + 1, χ + 1) is the Schmidt rank, which

corresponds to the total number of coefficients in the decomposition.

The reduced density matrices for the two subsystems, ρmz (t) = trn (|ψ (t)〉 〈ψ (t)|)
and ρn (t) = trmz (|ψ (t)〉 〈ψ (t)|), follow directly from the Schmidt decomposition of

Eq. 5 and are given by

ρmz (t) =
Ξ∑
α=1

S2
α (t)

∣∣Φ[mz ]
α (t)

〉 〈
Φ[mz ]
α (t)

∣∣
ρn (t) =

Ξ∑
α=1

S2
α (t)

∣∣Φ[n]
α (t)

〉 〈
Φ[n]
α (t)

∣∣ ,
which immediately shows that both ρmz (t) and ρn (t) are diagonal in their respective

Schmidt basis and have identical spectra. As a result, the Schmidt gap ∆S is defined as

∆S ≡
∣∣S2

2 − S2
1

∣∣ , (6)

corresponding to the difference between the two largest eigenvalues of the reduced den-

sity matrix of any of the two subsystems, and is thus a property shared by both. In the
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following we describe the behavior of the Schmidt gap as the QPT of the Dicke model

is crossed with the triangular ramping at different annealing velocities v.

Figure 4. (Color online) Left panel. Schmidt gap ∆S as a function of the annealing

velocity Γ = log2(v) and the time-dependent light-matter interaction λ(t). Right panel.

Comparison of the λ values where the Schmidt gap vanishes, and where the maximal

squeezing of both qubits and photons takes place, for the same annealing velocities of

the left panel and the ramping of increase of λ.

We first consider the crossing of the quantum critical point λc = 1/2 during the

linear increase of λ(t), corresponding to the 0 → 1 regime in the left panel of Fig 4.

Since the initial state |ψ(t = 0)〉 is simply a product, only S1(t = 0) = 1 is finite, while

the other Schmidt coefficients are zero; thus ∆S(t = 0) = 1. During the subsequent

dynamics ∆S monotonically decreases, at a Γ−dependent rate. In the near adiabatic

regime (Γ . −10) S1 and S2 cross and the Schmidt gap closes slightly above λc, which

suggests that it actually captures the QPT between normal and superradiant states.

This is similar to previous results of adiabatic dynamical crossings of QPTs in spin

chains [64, 65, 66], where the gap closes near to the corresponding transition. However,

in contrast to these cases where the Schmidt coefficients separate and continue crossing

during the subsequent dynamics, here ∆S remains being zero. As the annealing velocity

increases up to the intermediate regime, the Schmidt gap maintains the same qualitative

decay with λ, closes further away from λc similarly to dynamical crossings on spin chains,

and remains zero afterwards. However for even faster ramping processes, in the sudden

quench regime (−3 . Γ), the decay of the gap is so slow that it remains finite when the

reversal of λ begins.

Now we discuss the dynamical crossing when λ is reversed, depicted in the 1 → 0

regime of the left panel of Fig 4. The main feature of the near adiabatic ramping is that

slightly above λc the Schmidt gap becomes finite again, signaling the return of the system

to the normal phase. Moreover, the system actually goes back to the initial product state
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|ψ(0)〉, since the Schmidt gap reaches the value ∆S = 1 when λ = 0. For higher annealing

velocities (−10 . Γ . −7) the gap shows an initial fast non-monotonic growth, after

which it tends to saturate to a finite value following an oscillatory dynamics. This

indicates that even though the qubit and radiation subsystems become disconnected

at the end of the pulse, the total state is not just a simple product but an entangled

configuration. Thus this intermediate far-from-adiabatic triangular ramping could be

exploited as a protocol for preparing entangled states of non-interacting subsystems.

For larger annealing velocities but before the sudden quench regime, where the Schmidt

gap became zero before starting the light-matter coupling reversal (−7 . Γ . −5), it

emerges again before crossing λc but exhibits complex dynamics including more points

of closure. For somewhat higher velocities we observe a scenario where the gap remains

finite during the first stage of the driving, but since the dynamics is not so slow it still

becomes zero shortly after the start of the reversal stage, before crossing λc for the

second time (−5 . Γ . −3). This no longer occurs in the sudden quench regime, where

due to the very slow dynamics the Schmidt gap never closes.

4. Discussion

The results presented in Section 3, in particular the similar qualitative profiles of the

squeezing parameters and the Schmidt gap as a function of Γ and λ, suggest that both

might serve as indicators of the same non-equilibrium phenomenon. Now we briefly

discuss this connection, along with a simple approach to the problem, and a possible

future application.

4.1. Squeezing functions and Schmidt gap

In the right panel of Fig. 4 we show, for each annealing velocity considered, the

value of λ at which the Schmidt gap becomes zero during its increase ramping. As

previously discussed, the gap vanishes at higher values of λ > λc as the velocity

increases, moving away from the near adiabatic limit. Close to the sudden quench

regime (−5 . Γ . −2) this general trend continuous, even though the increase is non-

monotonic as the dynamics (and thus determining the exact closing point) becomes

more involved. In spite of this behavior we find that remarkably, the closure of the

gap coincides (quite well for low velocities, approximately for high velocities) with the

points in which the maximal squeezing parameters of both qubits and photons take

place. This is also shown in the right panel of Fig. 4, where the different scenarios are

plotted simultaneously.

Furthermore this also agrees with the values of λ in which the qubit and radiation

order parameters become finite (see Ref. [35]). Thus the Schmidt gap can be considered

as a complementary quantity to the order parameters of the Dicke model [66], as the

former is finite when the latter are zero and vice versa [35]. These results suggest that

both the Schmidt gap and the squeezing parameters are indicators of the emergence of
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the superradiant state when dynamically crossing the QPT, even at high velocity.

The behavior of these quantities is far more complex during the reversal stage. Due

to the strongly-oscillating behavior at low velocities and the more erratic dynamics at

high velocities, determining correctly the vanishing point of the Schmidt gap is much

more complicated. However the qualitative form of the squeezing parameters depicted

in Fig. 3 suggests that the connection between both types of quantities remains valid.

4.2. Landau-Zener-Stuckelberg approach

A common theme running through our results is the appearance of large quantum

correlations in the regime of intermediate pulse duration in the variation in λ(t), or

equivalently intermediate ramping velocity. A full many-body theory of this dynamical

generation of quantum correlations is not possible at the present, and would likely

require a novel theoretical technique for treating Eq. 1 in a non-perturbative way.

However as a first step towards understanding the complex dynamics discussed here, we

consider the simplest version of what happens to a quantum system when it crosses a

quantum critical point driven by a time-dependent Hamiltonian. Specifically we provide

a heuristic treatment by appealing to the phenomenon of Landau-Zener-Stuckelberg

interferometry, by means of which possible trajectories of a quantum system interfere

with each other when a transition between energy levels at an avoided crossing (a

Landau-Zener transition) is crossed. As discussed in detail in Ref. [1], when a two-

level system is subject to periodic driving with sufficiently large amplitude, a sequence

of transitions occurs. The phase accumulated between transitions (commonly known as

the Stuckelberg phase) may result in constructive or destructive interference.

Following this heuristic approach, we imagine that we can approximate the complex

energy-level diagram of this many-body light-matter system as simply a ground state

and a excited-state manifold, separated by some minimum energy gap ∆ during the

driving process. During the up-sweep alone, there is a single pass through the avoided

crossing (i.e. remnant of the critical point) and so the probability that the system then

ends up in this excited state manifold is given by P+ = PLZ = exp(−2π∆2/4v) [1].

A similar result follows for the down-sweep alone. However since a pulse involves the

double-passage through the avoided crossing region, the resulting probability is given

by P+ = 4PLZ(1 − PLZ)sin2Φ, where Φ is the sum of two separate phase contributions:

one through the quasi-adiabatic portion and one through the non-adiabatic portion.

Averaging over these phases, and hence averaging over the fine-scale oscillations seen

in our results, the probability that the system ends up in the excited state manifold

following the pulse is given by P+ = 2PLZ(1 − PLZ). As a crude approximate energy

scale we set ∆ = 0.5, which is the value of λ at which a purely static QPT occurs

in Eq. 1. As v increases, P+ rises from zero to a maximum and then decays back to

zero. Its maximum value is 0.5 which corresponds to the maximum entropy scenario in

a simple two-level system. We then obtain numerically that P+ starts decaying from

its maximum when v ≈ 1. This suggests that the correlation features that we observe
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should also fall off for v → 1 (Γ→ 0), as observed.

4.3. Future application: system-environment entanglement

Our findings are also relevant in an entirely different way: if we consider the matter

subsystem as the system of interest, and the radiation subsystem as the environment,

then our results provide new insight into how a system and its environment become en-

tangled over time, as the system-environment interaction varies. To explore this in the

future, instead of considering a single pulse as we do here, the system-environment inter-

action could be chosen to be a sequence of such pulses which may arrive randomly (e.g.

following a Poisson distribution) or become correlated in terms of their arrival times.

As such, our model and analysis can provide a first step toward a better understanding

of environmental decoherence – and its flip side, quantum control – over time. This is

important since a primary goal of quantum control is to reliably manipulate quantum

systems while preserving advantageous properties such as coherence, entanglement, and

purity. Instead of the complex interaction between the system (e.g. matter) and its sur-

roundings (e.g. radiation) being assumed to hamper the system’s evolution, it is possible

that a suitable sequence of corrective pulses might be used to provide positive feedback

to the system and hence maintain its quantum coherences. We leave this for future work.

5. Conclusions

We have presented theoretical results for the quantum correlations that develop in a

many-body light-matter system, as a result of dynamically manipulating the strength

of the light-matter coupling – specifically, in the form of a single pulse. Our approach

was to solve numerically a general, time-dependent many-body Hamiltonian, and exploit

the natural partition between radiation and matter degrees of freedom. Specifically, we

presented results on intra-subsystem quantum correlations, namely the time-dependent

matter and radiation squeezing parameters, and the inter-subsystem Schmidt gap for

different pulse duration (i.e. ramping velocity) regimes, from the near adiabatic to

the sudden quench limits. The results reveal that both types of quantities signal the

emergence of the superradiant state when the quantum critical point is dynamically

crossed, by the maximal value of the squeezing parameters and the vanishing of the gap.

It is also observed that beyond the near adiabatic limit, the light and matter subsystems

remain entangled even when they become uncoupled at the end of the pulse, which could

be exploited as a protocol to engineer entangled states of non-interacting systems. Thus

our results should also be of interest for temporal control schemes in practical quantum

information processing and quantum computation. On a more fundamental level, our

results may be helpful for the development of an open-dynamics quantum simulator, for

shedding new light on core issues at the foundations of physics, including the quantum-

to-classical transition and quantum measurement theory [16], and characterization of
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Markovianity in quantum systems [17, 18, 19]. Our findings could also help shed light

on system-environment entanglement, if we view the matter subsystem as the system of

interest and the radiation subsystem as the environment, and if the system-environment

interaction is chosen to be a sequence of pulses with different correlation properties.
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Hümmer T, Solano E, Marx A and Gross R 2010 Nature Phys. 6 772

[10] Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A and Petta J R 2012

Nature 490 380

[11] Ng H T and Bose S 2008 Phys. Rev. A 78(2) 023610

[12] Haikka P, McEndoo S, De Chiara G, Palma G M and Maniscalco S 2011 Phys. Rev. A 84(3)

031602

[13] Sab́ın C, White A, Hackermuller L and Fuentes I 2014 Sci. Rep. 4 6436

[14] Mostame S, Rebentrost P, Eisfeld A, Kerman A J, Tsomokos D I and Aspuru-Guzik A 2012 New

Journal of Physics 14 105013

[15] Dzsotjan D, Sørensen A S and Fleischhauer M 2010 Phys. Rev. B 82(7) 075427

[16] Zurek W H 2003 Rev. Mod. Phys. 75(3) 715–775

[17] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103(21) 210401

[18] Rodŕıguez F J, Quiroga L, Tejedor C, Martin M D, Vina L and Andre R 2008 Phys. Rev. B 78

035312

[19] Cosco F, Borrelli M, Mendoza-Arenas J J, Plastina F, Jaksch D and Maniscalco S 2017 arXiv

1706.09148
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