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In the present work we propose that two-time correlations of Majorana edge localized fermions constitute a
novel and versatile toolbox for assessing the topological phases of one-dimensional open lattices. Using analytical
and numerical calculations in the Kitaev model, we uncover universal relationships between the decay of the short-
time correlations and a particular family of out-of-time-ordered correlators, which provide direct experimental
alternatives to the quantitative analysis of the system regime, either normal or topological. Furthermore, we show
that the saturation of two-time correlations possesses features of an order parameter. Finally, we find that violations
of Leggett-Garg inequalities can indicate the topological-normal phase transition by looking at different qubits
formed by pairing local and nonlocal edge Majorana fermions.
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I. INTRODUCTION

In the last few years, the development of new quantum
devices has fueled the search for novel materials and control
mechanisms to engineer unprecedented technologies. Along
this path, topological systems have been identified as robust
entities with potential applications in quantum computation
and information processing due to their unusual braiding prop-
erties [1–3]. Candidates for topological qubits include chains of
magnetic atoms on top of a superconducting surface [4], hybrid
systems between s-wave superconductors and topological
insulators [5], p-wave superconductors [6], fractional quantum
Hall systems [7], and one-dimensional (1D) semiconductor-
superconductor heterostructure-based quantum wires [8–10].
Notably, the latter have aroused great interest given their high
experimental accessibility and controllability [11]. In addition,
edge-localized Majorana zero modes, expected to be robust
against dephasing and dissipation [12–15], have been predicted
to exist in these systems. The search for new topological
configurations allowing for Majorana zero modes has also been
extended to Josephson-junction-based nanostructures [16–20].
Concurrent with the chase for novel materials is the search
for experimentally accessible properties to identify their truly
nonclassical features, such as topological quantum phases.
A large number of protocols have been proposed to this
end, and a particularly important subset corresponds to those
based on spatial nonlocal correlations as embodied in Bell
inequalities [13,21,22]. More recently, there has been a surge
of theoretical and experimental interest in using temporal
correlations instead for similar purposes since in some scenar-
ios nonlocal measurements are quite challenging. Thus, local
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measurements such as two-time correlations (TTCs) can be
used to gain further access to the underlying physics [23,24].

Here we consider an extension of that interest to assess
the interplay between time correlations and nonlocal quantum
objects in Majorana fermion chains by focusing mainly on the
Kitaev chain [25]. In particular we address the open question of
detecting true quantum temporal correlations in a topological
quantum phase. Correlations for two types of objects will
be explored: (i) local Dirac fermions formed by pairing two
Majorana fermions on the same edge site and (ii) nonlocal
Dirac fermions coming from the pairing of Majorana fermions
located at the two opposed edge sites of the chain. In this way
we will address the pivotal role that TTCs play in detecting
large memory effects of local and nonlocal Majorana edge
qubits.

Specifically, we will show how the longtime limit of several
boundary TTCs possesses features of an order parameter,
providing information on the quantum phase transitions of the
Majorana fermion system. Moreover, for the purposes of the
present work, TTCs can be used to assess the quantumness of
a system in a form similar to how spatial correlations identify
quantum behavior through Bell inequalities. Namely, combi-
nations of TTCs allow for testing Leggett-Garg inequalities
(LGIs) [26–28]. These inequalities are satisfied in macroscopic
classical systems, characterized by macrorealism (a system’s
property is well defined at every time regardless of whether
it is observed) and noninvasive measurability (a system is
unaffected by measurements). Their violation indicates the
existence of macroscopic quantum coherence.

Not only has there been an intense search for experimental
schemes in which LGI violations can be observed [29–36], but
several applications for them have also been proposed, includ-
ing identification of order-disorder quantum phase transitions
in many-body systems [37] and characterization of quantum
transport [38]. Indeed, it is also interesting to extend the range
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of LGI violation features as a detection tool for topological
phase transitions. Along this line, our results provide a first
step for understanding the link between correlations in space
and time domains in a concrete topological condensed-matter
setup. Moreover, we stress that all of our results remain valid
for an edge spin in the transverse field Ising open chain by
applying a Jordan-Wigner transformation to the open Kitaev
chain model.

This paper is organized as follows. Section II gives a brief
review of specific Majorana fermion chains (in the language
of the 1D Kitaev model), their exact diagonalization, and
theoretical aspects of Majorana qubit two-time correlations.
In Sec. III numerical results of Majorana-qubit-TTC behavior
for short-, intermediate-, and long-time regimes are discussed.
In Sec. IV a brief recap of LGI is given, with a focus on the
intermediate-time regime. Both analytical and numerical re-
sults are provided and contrasted whenever possible. Section V
is devoted to possible experimental implementations where
TTC and LGI behaviors of Majorana-based qubits could be
tested. Finally, in Sec. VI we present a summary of this work.

II. THEORETICAL FRAMEWORK

A. Majorana fermion chain

We focus on a concrete realization of a Majorana fermion
chain in terms of the Kitaev model [25]. It is described by the
Hamiltonian

Ĥ = −μ

2

N∑
j=1

(2n̂j − 1) − ω

N−1∑
j=1

(ĉ†j ĉj+1 + ĉ
†
j+1ĉj )

+�

N−1∑
j=1

(ĉj ĉj+1 + ĉ
†
j+1ĉ

†
j ), (1)

representing a system of noninteracting spinless fermions on
an open-end chain of N sites labeled by j = 1, . . . ,N . The
single-site fermion occupation operator is denoted by n̂j =
ĉ
†
j ĉj ; the chemical potential is μ, taken to be uniform along the

chain; ω is the hopping amplitude between nearest-neighbor
sites [we assume ω � 0 without loss of generality because the
case with ω � 0 can be obtained by a unitary transformation:
ĉj → −ι̇(−1)j ĉj ]; and � is the p-wave paring gap, which
is assumed to be real, with � � 0 (the case � � 0 can be
obtained by the transformation ĉj → ι̇ ĉj for all j ). This model
captures the physics of a 1D topological superconductor with
a phase transition between topological and nontopological
(trivial) phases at μ = 2� for � = ω. Notice that for this
symmetric hopping-pairing Kitaev Hamiltonian, i.e., ω = �, a
Jordan-Wigner transformation leads directly to the transverse
field Ising model [39]. Thus, from now on we will refer to
the Majorana fermion chain as either the Kitaev chain or the
transverse field Ising model.

Let us introduce Majorana operators γ̂j to express the real-
space spinless fermion annihilation and creation operators as

ĉj = 1
2 (γ̂2j−1 + ι̇γ̂2j ), ĉ

†
j = 1

2 (γ̂2j−1 − ι̇γ̂2j ). (2)

These are Hermitian operators (γ̂j = γ̂
†
j ), satisfy the property

(γ̂j )2 = (γ̂ †
i )

2 = 1, and obey the modified anticommutation

relations {γ̂i ,γ̂j } = 2δi,j , with i,j = 1, . . . ,2N . From the def-
inition of Majorana operators (2) it is evident that for each
spinless fermion on site j , two Majorana fermions are assigned
to that site, denoted by γ̂2j−1 and γ̂2j . They allow the Kitaev
Hamiltonian in Eq. (1) to be written in the equivalent form:

Ĥ = −ι̇
μ

2

N∑
j=1

γ̂2j−1γ̂2j + ι̇

2

N−1∑
j=1

[(ω + �) γ̂2j γ̂2j+1

− (ω − �) γ̂2j−1γ̂2j+2]. (3)

In order to put the Majorana fermion Hamiltonian in Eq. (1)
[or, equivalently, in Eq. (3)] in diagonal form, a standard
Bogoliubov transformation (see the Supplemental Material
(SM) [40]) is performed:

ĉ
†
j =

N∑
k=1

(u2k,j d̂k + v2k,j d̂
†
k ),

(4)

ĉj =
N∑

k=1

(u2k,j d̂
†
k + v2k,j d̂k),

where k denotes a single-fermion mode, u2k,j and v2k,j are
real numbers, and the canonical fermion anticommutation
relations for the new operators d̂k and d̂

†
k remain true, that

is, {d̂k,d̂
†
k′ } = δk,k′ , {d̂†

k ,d̂
†
k′ } = {d̂k,d̂k′ } = 0. Thus, the exact

diagonalization of the Kitaev Hamiltonian in Eq. (1), in
terms of the new independent fermion mode operators d̂(d̂†),
leads to

Ĥ =
N∑

k=1

εk

[
d̂
†
k d̂k − 1

2

]
, (5)

where the new fermion mode energies εk � 0 are to be
numerically calculated for a Kitaev chain with open ends
(although analytical exact results may be found in some cases;
see [41]). The matrix representation of Eq. (5) is explicitly
written in the SM [40].

B. Two-time correlations

The key quantity of interest in the present work is the
symmetrized TTC C(t1,t2), as given by the expression [37]

C(t1,t2) = 1
2 〈{Q̂(t2),Q̂(t1)}〉, (6)

where Q̂ denotes a single-qubit operator (a dichotomic ob-
servable, i.e., with eigenvalues q = ±1) to be specified later,
{Q̂,Q̂′} is an anticommutator, and Q̂(tn) is the qubit operator
at time tn. Since the TTC is to be evaluated for stationary
states, it does not depend on the individual times t1 and
t2, only on their difference t = t2 − t1, leading simply to
C(t1,t2) = C(t,0) = C(t).

In the following sections, we present an analytical approach
for the evaluation of TTCs for single- and double-Majorana
qubits, together with extensive supporting numerical data. In
particular in Sec. II C we obtain the early-time TTC behavior
for different local and nonlocal qubits, demonstrating that for
the local single- and double-Majorana-qubit cases universal
features (independent of the chain quantum state itself, as
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well as chain size) can be identified, providing local infor-
mation about the global-system many-body quantum phase.
We also link the TTCs short-time evolution to a special kind
of recently established many-time correlator, the so-called
out-of-time-ordered correlators, which are gaining growing
interest. Moreover, in Sec. II D we provide analytical results for
single- and double-Majorana TTCs for arbitrary times, show-
ing how the former serves as a test of topological criticality by
directly indicating the existence of edge-localized zero-energy
modes. These results are then fully evaluated numerically in
Sec. III.

C. TTC short-time behavior and out-of-time-ordered
correlation function

In order to assess the sensitivity of TTCs for detecting
quantum phase transitions by looking at a single local site,
we connect the short-time TTC behavior to a second-order
expansion with the out-of-time-ordered correlation function
T (t) = 〈Ô†

1(t)Ô†
2(0)Ô1(t)Ô2(0)〉 [42–45]. Let us expand up to

second order in time the TTC as given by Eq. (6), yielding

C(t) = 1

2
〈{eι̇Ĥ t Q̂e−ι̇Ĥ t ,Q̂}〉

� 1 − t2

2
〈−[Ĥ ,Q̂]2〉 + O(t4). (7)

Note that the second line in the above equation holds for any
single-site qubit observable Q̂ such that Q̂2 = 1̂, evolving
under the action of an arbitrary (local or global) Hamiltonian
Ĥ . Moreover, and most interestingly, the first line in Eq. (7)
is nothing but the real part of the T (t) corresponding to
a Hermitian single-qubit operator Ô2 = Q̂ and the unitary
operator Ô1(t) = e−iH t .

First, let us consider the TTC for a single-edge Majorana
fermion j = 1, i.e., Q̂ = γ̂1. By resorting to Eq. (3) it is
easy to check that [Ĥ ,γ̂1]2 = −μ2, a scalar quantity, thus
producing for the real part of the corresponding T (t) the
simple and universal result 〈−[Ĥ ,γ̂1]2〉 = μ2, valid for any
Majorana fermion chain pure state |ψK〉 or mixed state ρ̂K .
Note that via the Jordan-Wigner transformation, this qubit
operator corresponds to σ̂ x

1 for the transverse field Ising
model, i.e., γ̂1 = σ̂ x

1 , the x-spin operator of an edge chain site.
Consequently, we rewrite the TTC in Eq. (7) as C(x)

1 (t),

C(x)
1 (t) = 1

2
〈{γ̂1(t),γ̂1}〉 � 1 − μ2

2
t2 + O(t4). (8)

As a second case, we consider a two-Majorana edge qubit
such as Q̂ = 2n̂1 − 1̂ = −ι̇ γ̂1γ̂2. This qubit corresponds, via
the Jordan-Wigner transformation, to the σ̂ z

1 edge spin operator
for the transverse field Ising model, i.e., −ι̇ γ̂1γ̂2 = σ̂ z

1 . Now it
is straightforward to show that [Ĥ ,−ι̇ γ̂1γ̂2]2 = −4�2, again a
scalar quantity, hence producing a result valid for any Majorana
fermion chain pure state |ψK〉 or mixed state ρ̂K . Thus, the
second derivative of the real part of T (t) reduces to the
universal value 〈−[Ĥ ,−ι̇ γ̂1γ̂2]2〉 = 4�2, and consequently,
the short-time expression for C(z)

1 (t) becomes

C(z)
1 (t) = − 1

2 〈{γ̂1(t)γ̂2(t),γ̂1γ̂2}〉
� 1 − 2�2t2 + O(t4). (9)

FIG. 1. Short-time curvature for the nonlocal two-Majorana qubit
C1,N (t) (green solid line) and its second derivative with respect to
μ (green dashed line), as a function of μ/�. The latter presents a
clear dip at the topological quantum critical point. Inset: TTC initial
curvature for local Majorana qubits, Cx

1 (t) (red line) and Cz
1(t) (blue

line), showing a crossing just at the critical point.

As a third case, we analyze the short-time behavior of the
nonlocal Dirac fermion formed by coupling two Majorana
operators located at the two edges of the chain, Q̂1,N = ι̇ γ̂1γ̂2N .
The expansion of the corresponding TTC leads to

C1,N (t) = − 1
2 〈{γ̂1(t)γ̂2N (t),γ̂1γ̂2N }〉

� 1 − μ2(1 − 〈γ̂1γ̂2γ̂2N−1γ̂2N 〉) t2 + O(t4).

(10)

It is evident that this TTC features a nonuniversal short-time
evolution, given that it depends on the specific quantum state of
the Majorana fermion chain. This is indicated by the expected
value of the four-Majorana-operator term 〈γ̂1γ̂2γ̂2N−1γ̂2N 〉 =
〈γ̂1γ̂2〉〈γ̂2N−1γ̂2N 〉 + 〈γ̂1γ̂2N 〉〈γ̂2γ̂2N−1〉, which for a suffi-
ciently long chain can be approximated to 〈γ̂1γ̂2γ̂2N−1γ̂2N 〉 �
〈γ̂1γ̂2〉2 in the ground state.

In Fig. 1 the short-time curvature (second time derivative) of
the edge TTCs corresponding to single- and double-Majorana
fermions is depicted as a function of μ/�. In the main panel
the nonlocal case of C1,N (t) is plotted (solid line), while in
the inset those of C(x)

1 (t) and C(z)
1 (t) are depicted. Clearly, by

comparing Eqs. (8) and (9), a universal crossing of initial TTC
curvatures occurs for μ = 2�, which signals the critical point
for the topological-trivial phase transition in the Kitaev model,
or, equivalently, for the ferromagnetic-paramagnetic transition
in the transverse field Ising model. This remarkable universal
behavior, i.e., the independence from the Majorana fermion
chain quantum state, holds true only for the edge sites of both
these models as realized by the Kitaev chain and transverse
field Ising systems. By contrast, the nonlocal C1,N (t) shows
a nonuniversal behavior depending on the specific quantum
state of the Majorana fermion chain. The results plotted in
the main panel of Fig. 1 have been obtained numerically, as
explained below, for a Kitaev chain in the ground state. In the
same panel the second derivative of the curvature with respect
to μ is also plotted (dashed line), which clearly presents a
dip at the critical point μ/� = 2. Thus, we observe that the
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early-time correlators, with both universal and nonuniversal
behavior, are sensitive to the topological phase transition.

D. General two-time correlation behavior of Majorana qubits

Having established the relevance of TTCs and a related
family of out-of-time-ordered correlations for edge sites in
the Majorana fermion chain, we proceed to explore the TTC
behavior for qubits formed by any combination of edge and/or
bulk sites for arbitrary times. By developing the Majorana
qubits in terms of Bogoliubov operators (see SM [40]) we
proceed to express both the single- and double-Majorana TTCs
in convenient forms for numerical analysis. We follow the same
notation for Bogoliubov coefficients used in Ref. [46]. As we
discuss below, this numerical procedure is essential to further
progress, except in special cases for C(x)

1 (t) where an exact
closed form has been obtained.

1. Single-Majorana edge two-time correlations

First, we note that the C(x)
1 (t) TTC admits a universal exact

closed expression for arbitrary pure or mixed quantum states
of the Majorana fermion chain (see SM [40]). We found that

C(x)
1 (t) =

∞∑
m=0

(−1)m

(2m)!
(2�t)2mNm(u2), (11)

where u = μ

2�
andNm(x) = ∑m

n=1 Nm,nx
n are the well-known

Narayana polynomials, which involve the Narayana numbers
Nm,n = 1

m

(
m

n−1

)(
m

n

)
[47,48]. Note that the critical point cor-

responds to u = 1, for which Nm(1) = Cm = 1
m+1

(2m

m

)
, the

most famous Catalan numbers. Importantly, Eq. (11) can be
calculated in a closed form at the critical point u = 1, yielding
the simple expression

C(x)
1 (t) = J1(4�t)

2�t
(12)

in terms of the Bessel function of the first kind J1(z). To
the best of our knowledge this compact result has not been
discussed neither in the literature on the Ising nor in that of
the Kitaev model. We emphasize that the expressions given
by Eqs. (11) and (12) are always valid, and thus, they are of
universal reach, independent of the pure or mixed state of the
Majorana fermion chain. Consequently, they hold true even at
infinite temperature.

For other values of u such a simple form has yet to
be found. However, the analytics can be developed further,
leading to deeper insights on the general behavior of the TTCs.
First, Eq. (11) allows for establishing a link of C(x)

1 (t) TTC
on both phases around the critical point u = 1, which will
come in handy afterwards. Since the Narayana polynomi-
als are symmetric, the property Nm( 1

x
) = 1

xm+1 Nm(x) holds.
Consequently,

C(x)
1

(
t,

1

u

)
= 1 − 1

u2
+ 1

u2
C(x)

1

(
t

u
,u

)
, (13)

indicating that the x TTC behaves in one phase (reduced
chemical potential 1

u
) as it would in the complementary phase

(reduced chemical potential u) but with a scaled time t
u

.
Furthermore, for numerical calculations the time

evolution of a single-Majorana-edge-fermion operator,

γ̂i(t) = eiĤ t γ̂i(0)e−iĤ t , is found to be

γ̂2j−1(t) =
N∑

m=1

{γ̂2m−1 g
(+,+)
m,j (t) + γ̂2m h

(−,+)
m,j (t)},

γ̂2j (t) =
N∑

m=1

{γ̂2m g
(−,−)
m,j (t) − γ̂2m−1 h

(+,−)
m,j (t)}, (14)

where

g
(ν,ν)
m,j (t) =

∑
k

cos(εk t) (u2k,m + νv2k,m) (u2k,j + νv2k,j ),

h
(ν,−ν)
m,j (t) =

∑
k

sin(εk t) (u2k,m − νv2k,m) (u2k,j + νv2k,j ),

(15)

with ν = +,−. A direct application of these relations allows
us to obtain an analytical expression for the full time evolution
of C(x)

1 (t) as

C(x)
1 (t) =

∑
k

cos(εk t)(u2k,1 + v2k,1)2, (16)

where 〈γ2iγ2j−1〉 = −i
∑

k (u2k,i − v2k,i)(u2k,j + v2k,j ) and
〈γ2iγ2j 〉 = 〈γ2i−1γ2j−1〉 = δi,j have been used. By expanding
Eq. (16) up to second order in time and comparing it with the
universal result quoted in Eq. (8), the following identity holds
true: ∑

k

ε2
k (u2k,1 + v2k,1)2 = μ2, (17)

which is valid for open Kitaev and transverse field Ising models
(with μ replaced by the transverse magnetic field) of arbitrary
chain length. The identity given by Eq. (17) provides by itself
a consistency check of numerical calculations.

Now let us look at the long-time limit of C(x)
1 (t) by averaging

Eq. (16) over a long time period. As the time average of
cos(εk t) vanishes unless some fermion mode has energy εM =
0, i.e., a zero-energy Majorana mode exists (for which the
average is 1), we can readily ensure that for the topological
regime

lim
t→∞ C(x)

1 (t) � (uM,1 + vM,1)2 = 4u2
M,1 (18)

since uM,1 = vM,1, i.e., the electron and hole contributions for
the zero-energy Majorana mode k = M at site j = 1 are the
same. Consequently, we propose that a measurement of the
long-time saturation value of the edge C(x)

1 TTC provides a
witness of the topological ( �=0) and nontopological (= 0) phase
transition of the Majorana fermion chain systems, as it probes
directly the existence of zero-energy modes. Additionally, it
gives direct access to the electron-hole weight of such modes.

2. Two-time correlations of double-Majorana qubits

We focus now on qubits formed by any pair of Majorana
fermions such as γ̂2i−1 and γ̂2j ; details of the calculations are
given in the SM [40]. We define

θ̂i,j = 1
2 (γ̂2i−1 + ι̇ γ̂2j ), θ̂

†
i,j = 1

2 (γ̂2i−1 − ι̇ γ̂2j ). (19)

Notice that i = j implies that the forming Majorana modes are
located on the same physical site, and the Kitaev operators in
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FIG. 2. Edge single- and double-Majorana-qubit TTC in the topological phase (μ/� = 1.5, left panel), at the transition point (μ/� = 2,
middle panel), and in the nontopological phase (μ/� = 2.5, right panel). In all panels the red line depicts the C(x)

1 (t) TTC, the blue line represents
the C(z)

1 (t) TTC, and the green line corresponds to C1,N (t).

Eq. (1) are recovered, i.e., θ̂j,j = ĉj . On the other hand, for i �=
j the Majorana fermions are located on different physical sites.
It is easy to check that the usual Dirac fermion relations hold
true for operators θ̂i,j and θ̂

†
i,j as {θ̂i,j ,θ̂

†
i,j } = 1, {θ̂ †

i,j ,θ̂
†
i,j } =

{θ̂i,j ,θ̂i,j } = 0. Thus, we can define nonlocal Majorana qubits
as Q̂i,j = 2θ̂

†
i,j θ̂i,j − 1, which have eigenvalues ±1. Express-

ing Q̂i,j (t) = 1
2 [γ̂2i−1(t) − i γ̂2j (t)][γ̂2i−1(t) + i γ̂2j (t)] − 1 =

1
2 [ĉi(t) + ĉ

†
i (t),ĉj (t) − ĉ

†
j (t)] in terms of commutators of diag-

onal fermionic mode operators, it becomes possible to evaluate
the corresponding TTC not only for the ground state but for
any excited eigenstate |ψK〉 of the Kitaev chain. The TTC for
general Majorana qubits turns out to be

Ci,j (t) = 1 −
N∑

k=1

N∑
q=1

{
sin2

(
εk + εq

2
t

)
[(u2k,i + v2k,i)

× (u2q,j − v2q,j ) − (u2q,i + v2q,i)(u2k,j − v2k,j )]2

× [1 − (nq − nk)2] + sin2

(
εk−εq

2
t

)
[(u2k,i +v2k,i)

× (u2q,j − v2q,j ) + (u2q,i + v2q,i)(u2k,j − v2k,j )]2

× (nq − nk)2

}
, (20)

where nk = 0 denotes the kth fermion mode is empty, while
nk = 1 means it is occupied. By focusing on the edge TTC,
i.e., i = j = 1 and C1,1(t) = C(z)

1 (t), expanding the right-hand
side of Eq. (20) up to second order in time, and comparing it
to the universal result quoted in Eq. (9), a new identity results:

N∑
k=1

N∑
q=1

(εk + εq)2(u2k,1v2q,1 − u2q,1v2k,1)2 = 2�2, (21)

which is valid for both open-boundary Kitaev and transverse
field Ising models (with � replaced by the spin-exchange
interaction) for arbitrary chain lengths. Like before, the identity
given by Eq. (21) turns out to be another important consistency
check for numerical calculations.

III. RESULTS AND DISCUSSION

Now we evaluate numerically the different time correlations
discussed in Sec. II D. All the results we describe below corre-
spond to an open-ended Majorana fermion chain with N = 101
sites in the many-body ground state, |ψK〉 = ⊗N

k=1 |0〉, with
symmetric hopping-pairing energies, i.e., ω = � = 1, which
also fixes the energy scale. Their inverse fixes the timescale
through the dimensionless variable �t . In Fig. 2 the time
evolution of both single-Majorana edge qubits C(x)

1 (t) and two-
Majorana edge qubits C(z)

1 (t) and C1,N (t) is displayed for three
specific values of the chemical potential, namely, μ/� = 1.5
(left panel), μ/� = 2.0 (middle panel), and μ/� = 2.5 (right
panel). Oscillatory features are dominant for both short- and
intermediate-time regimes �t < 10, which subsequently are
attenuated until the TTCs reach stationary or asymptotical
values for �t > 10. We first discuss this long-time regime.

It can be seen that the asymptotic behaviors of C(x)
1 (t)

and C1,N (t) TTCs are very different from that of C(z)
1 (t) TTC

crossing the critical point to the trivial phase. We found
that these three TTCs remain finite in the topological phase
even at infinite time, which agrees with the numerically
based observation in Ref. [49] that long coherence times for
edge sites in open-boundary Majorana fermion chains are
possible. However, the long-time limits of C(x)

1 (t) and C1,N (t)
vanish when the system enters the nontopological or trivial
phase [C(z)

1 (t) saturates to finite values at both phases]. This
order-parameter-like behavior of the TTC long-time limit is
displayed in Fig. 3. Furthermore, by both numerical fitting and
the exact general duality property expressed in Eq. (13), we
establish that the long-time limit of the single-Majorana edge
C(x)

1 (t) TTC has a simple specific functional behavior given by

lim
t→∞ C(x)

1 (t) =
{

1 − (
μ

2�

)2
for μ < 2�,

0 for μ > 2�.
(22)

On the other hand, the decay of the limit value of the
nonlocal C1,N (t) TTC as a function of μ/� has been evaluated
numerically, showing a gradual transition, instead of an abrupt
one, from one phase to the other. Note that these results are
strictly valid for an infinitely long chain or for times below
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FIG. 3. Long-time limits of edge TTCs as a function of μ/�:
single-Majorana edge C(x)

1 (t) TTC (top) and nonlocal double-
Majorana edge C1,N (t) TTC (bottom). The order-parameter-like be-
havior exhibited by the long-time limits is evident. TP: topological
phase, NTP: nontopological phase.

a certain limit where finite-size effects could emerge, such
as possible interference or revivals coming from the reflected
influence of the other edge (not shown here). In addition, the
quantum behavior of single-site TTCs for the edge single-
and double-Majorana qubits is similar to the x and z spin
correlations of the transverse Ising model, and consequently,
its quantum critical point could also be detected by TTC
measurements [37].

Finally, we end this section with a comparison between
edge and bulk TTCs. In Fig. 4 the short- and intermediate-time
behaviors of the Ci,j (t) TTC are illustrated for edge Majorana
qubits, namely, the local case i,j = 1 and the nonlocal case
i,j = 1,N , and a bulk two-Majorana qubit i,j = N+1

2 ,N+1
2 .

We conclude that apart from a different oscillation amplitude,
the local two-Majorana TTCs, located either at the edge or at a
bulk site, are very similar in going to a finite long-time limit in
any phase; thus we are not able to detect such a phase transition
by looking at that specific feature. This behavior contrasts
with that of the two-Majorana nonlocal edge TTC and even,
as discussed above, with that shown by the single-Majorana
edge TTC. Next, we focus on the consequences of these
TTC features when assessing macroscopic quantum coherence
through the Leggett-Garg inequality violations by both local-
and nonlocal TTCs.

IV. LEGGETT-GARG INEQUALITY

Leggett and Garg [26,27] showed that temporal correlations
obey inequalities similar to those of spatial nonlocal measure-
ments such as those performed in a Bell inequality test setup.
They approached this by first codifying our intuition about the
macroscopic world into three principles:

(i) Macroscopic realism. A system’s property is well defined
at every time regardless of whether or not it is observed.

FIG. 4. Ci,j (t) TTC as a function of the dimensionless time �t

in the short- and intermediate-time regimes. Left panels display
the TTCs for two-Majorana qubits; the blue (green) line shows
the C1,1(t) = C(z)

1 (t) local TTC [C1,N (t) nonlocal TTC]. Right panels
illustrate the time evolution behavior of TTCs for a local bulk
two-Majorana qubit [middle site of the Majorana fermion chain
C N+1

2 , N+1
2

(t)]. The chemical potentials are μ/� = 1.5 (top), μ/� =
2.0 (middle), and μ/� = 2.5 (bottom).

(ii) Noninvasive measurability. The system’s evolution is
unaffected by measurements taken on it.

(iii) Arrow of time. The outcome of a measurement cannot
be affected by a subsequent measurement.

We will focus on the following form of a LGI:

Ci,j (t2 − t1) + Ci,j (t3 − t2) − Ci,j (t3 − t1) � 1, (23)

where Ci,j (tα,tβ) is a two-time correlation [see Eq. (6)] of the
qubit nonlocal Majorana operator Q̂i,j (with eigenvalues ±1)
between times tα and tβ and t1 < t2 < t3. We concentrate on
the case of identical time intervals, i.e., t2 − t1 = t3 − t2 = t ,
defining a LGI function Ki,j (t) as [37]

Ki,j (t) = 2Ci,j (t) − Ci,j (2t) � 1. (24)

Like the Bell inequality test, any system that violates this
LGI can be guaranteed to behave in a nonclassical sense.
From now on, we will take larger violations of the LGI as
an indication that a system has more quantum characteristics
than another one.

Figure 5 displays the evolution, as a function of �t , of the
LGI function Ki,j (t) given by Eq. (24) for the same parameters
as used in Fig. 4. We first note that the inequality is always
violated at very early times, a result that can be already
understood from the O(t2) expansions given in Eqs. (8) and (9).
Specifically, the C(x)

1 (t)-TTC-based LGI, denoted by K(x)
1 (t), is

given by

K(x)
1 (t) � 1 + μ2t2 + O(t4), (25)
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FIG. 5. Two-Majorana Ki,j (t) LGI function as a function of �t .
Panels and colored lines have the same meaning as in Fig. 4. The
upper blue zones represent violations of the LGI given by Eq. (24).

while that based on C(z)
1 (t), denoted by K(z)

1 (t), is

K(z)
1 (t) � 1 + 4�2t2 + O(t4). (26)

Thus, the initial growth of both inequality violations is captured
again by the universal initial curvatures of the corresponding
TTCs. Furthermore, the early-time violations for K(x)

1 (t) and
K(z)

1 (t) become identical at μ = 2�, i.e., the critical point.
This conclusion provides an alternative route to identifying
the topological phase transition.

Now we consider different inequalities for longer times. It is
evident that LGI functions based on local two-Majorana TTCs
such as edge C1,1(t) and bulk C N+1

2 , N+1
2

(t) follow a similar trend,
which is very different from that of the nonlocal two-Majorana
TTC given by C1,N (t) when crossing from one phase to the
other. The local LGI violations turn out to be stronger in the
topological phase, while the nonlocal LGI violation increases
when going from the topological to the trivial phase. This con-
trasting behavior can also be seen in Fig. 6, where we compare
the maximum LGI violation KMax(μ) as a function of μ (left
panel) for single- and double-Majorana qubits, as well as the
times for which that maximum violation occurs tKMax (μ) for the
same qubits (right panel). Interestingly, for the nonlocal edge
two-Majorana case, the second derivative of KMax(μ) with
respect to μ shows a dip signaling the phase transition, again
a feature inherited from the corresponding time correlations
C1,N (t) (see Fig. 1). Thus, we can conclude that LGI violations
by nonlocal Majorana qubits are sensitive to the topological
features of the underlying phase, and consequently, they could
be explored in properly designed experimental setups.

V. EXPERIMENTAL IMPLEMENTATIONS

Among the most promising candidates for experimentally
detecting Majorana edge fermions in condensed-matter sys-

FIG. 6. Top left: maximum violation of LGI as a function of μ/�.
Right: time of maximum LGI violation as a function of μ/�. Bottom
left: second derivative of the maximum LGI violation with respect to
μ showing a dip signaling the phase transition for the nonlocal edges
two-Majorana case. Red lines depict the C(x)

1 (t)-TTC-based LGI, the
blue lines represent the C(z)

1 (t)-TTC-based LGI, and the green lines
correspond to C1,N (t)-TTC-based LGI.

tems are chains of magnetic atoms on superconducting surfaces
[4,5,50] and semiconducting nanowires with large Rashba
spin-orbit interaction under an applied magnetic field and in-
duced superconductivity by proximity effects [51,52]. Previous
works have focused on local sensitive tunneling signatures
of the topological phase transition in the boundary fermion
occupation (Kitaev chain) or boundary spin (transverse field
Ising chain).

In the Rashba nanowire setup Sticlet et al. [51] defined local
Majorana pseudospins and argued that they could be measured
by spin-polarized STM, allowing one to directly visualize the
Majorana fermionic states and to test the topological character
of the 1D system. On the other hand, Deng et al. [53] reported
that highly sensitive experiments were recently conducted in
which the nonlocality of Majorana qubits can be locally probed
by a quantum dot at one end of the nanowire. These state-of-
the-art experiments could evolve to develop time-dependent
sensitivity as required for detecting local and nonlocal TTCs.
Recently, there has been great interest in contrasting distinctive
signatures of spin polarization for Andreev and Majorana
bound states [54] since, when identifying topological phases,
effects resulting from the presence of quasiparticle states inside
the superconducting gap should be carefully eliminated [55].
Thus, it is most desirable to have additional signatures avail-
able (besides tunneling conductance signatures of Majorana
fermions) that would allow one to identify the topological
phase transition. References [51,53] have proposed how to
distinguish such differences between Andreev and Majorana
signatures by accessing true nonlocal features. In this way,
our results as given by the behavior of local C(x)

1 (t) and, most
importantly, by nonlocal C1,N (t) and their LGI combinations
should be relevant for extending that kind of search for true
Majorana behavior.

Furthermore, recently, spin noise spectroscopy was shown
to be a powerful tool to experimentally access the autocorre-
lation function [56,57]. The universal short-time behavior de-
scribed by Eqs. (7) and (8) could be exploited in spin fluctuation
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measurements as an alternative route to get information about
the dynamics [58]. Such a rich variety of behaviors would also
permit the study of temporal effects as well as different kinds
of susceptibilities, through their Fourier transform equivalents,
in topological quantum computing settings.

Therefore, in light of recent experiments, we demonstrate
in the present work that TTC and LGI behaviors exhibit a
quantum-phase-sensitive signature due to the appearance of
zero-energy modes in the topological phase that will manifest
themselves in the long-time behavior of both local and nonlocal
qubit TTCs. This provides an experimentally useful diagnostic
tool to detect topological phase transitions.

VI. CONCLUDING REMARKS

In summary, we have provided evidence that time correla-
tions and violations of LGIs establish new testable signatures
of topological phase transitions. The behavior of that sort of
inequality is a direct consequence of time correlations in local
and nonlocal Majorana qubits. Specifically, we have identified
signatures of the Majorana fermion chain topological phase
transition in three time domains: (i) In the short-time limit
we found universal features such as the out-of-time-ordered
correlation and a dip in the second μ derivative marking the
phase transition. (ii) In the intermediate-time region, the LGI
violations are sensitive to the quantum phase of the system. (iii)
Finally, in the long-time limit, the asymptotic values of single-
and double-Majorana edge TTCs act as order-parameter-like

indicators. Specifically, we proposed that a measurement of
the long-time saturation value of the local edge C(x)

1 TTC as
well as the nonlocal edge C1,N TTC provides a witness of
the topological ( �=0) vs nontopological (=0) phase transition
of Majorana fermion chain systems, as it directly probes the
existence of zero-energy modes. Additionally, in the former
case it gives direct access to the electron-hole weight of
such modes. The results are especially relevant because the
whole question of quantum coherence in complex mesoscopic
systems is taking up a new impulse in the community and is
of interest to researchers not only of quantum information and
foundations but also of condensed matter.
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