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The electricity industry is facing significant expectations and requirements to optimize

the energy operation, secure the electrical system and critical infrastructure that depend on

electric power against cyber or physical attacks, and maintain system stability. Power and

energy optimization problem is one of the most fundamental concerns that must be dealt

with in electrical power system management. During the operation of electric power systems,

the distribution lines may experience faults caused by unpredictable natural disasters or

accidents. Also, Sub-Synchronous Oscillations (SSOs) have recently emerged as a critical

concern in modern power systems primarily due to the rapid proliferation of grid-connected

wind power plants and installation of series-compensated transmission lines.

To create an economical and optimal power system, this thesis proposes a novel algorithm

by leveraging linear approximation and convex relaxation for the non-convex AC Optimal

Power Flow (ACOPF) problems, making it effective to get the global near-optimal solutions.

To improve the stability and resiliency of power systems, two deep learning models are

developed for fault recognition and SSO detection: a real-time deep learning model based on

convolution neural network (ConvNet) is developed to classify the fault types and localize

the fault with the access to the measured data, and the single observability as its superiority

guarantees the performance with limited data access or measurement devices; the second

deep learning model integrates ConvNet and long short-term memory (LSTM) techniques

for SSO detection and evaluation that harnesses the full potential in pseudo-continuous

quadrature wavelet transform (PCQ-WT).

By utilizing mathematical and artificial intelligence techniques, this thesis proposes algo-

rithms for system optimal operation and faulty status detection to guarantee an economical

and resilient power system.
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1.0 Introduction

The electrical power system consists of three major components: generation, a high-

voltage transmission grid, and a distribution system. With the fast increasing trend of pur-

suing environmental benefit and vigorously enforced emission restriction recently, the electric

power system is experiencing a rapid proliferation and integration of eco-friendly wind power

generation. However, sub-synchronous oscillations (SSOs) have recently emerged as a critical

concern in modern power systems primarily due to the rapid proliferation of grid-connected

wind power plants and installation of series-compensated transmission lines. During the

operation of the power system, the distribution lines may experience some undesirable faults

caused by natural hazards. These abnormal conditions would bring security risks as well as

large economical loss if they were not dealt with promptly. Therefore, it is urgent to rec-

ognize and repair these faulty conditions as soon as possible. Moreover, optimal power and

energy allocation is the most concerned issue during the normal operation of power system,

which focuses on solving the alternating current optimal power flow (ACOPF) problems. In

this context, this dissertation proposes artificial intelligence techniques for the recognition

of faulty conditions, and mathematical algorithms for the optimal operation of the power

system to maintain an economic, stable modernized power system.

The present chapter expounds upon the underlying impetus of this dissertation, which

is centered on the normal optimal operation of bulk power systems and analyzing the power

grids against faults, incidents, and contingencies through the application of optimization

modeling and artificial intelligence methodologies.

1.1 AC Optimal Power Flow Problems

Alternating current optimal power flow (ACOPF) is an optimization problem that con-

siders the full AC power flow equations and it exists in multiple fields of power systems. One

of the most common issues is the minimization of generation cost while satisfying physical
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laws and engineering constraints. Generally, ACOPF problems are non-convex due to the

nonlinear power flow equations which makes the OPF problem NP-hard [3]. Due to its non-

linearity and non-convexity, numerous researches have been done on ACOPF. The common

algorithms based on ACOPF problems can be classified into two types: linearization and

convexification.

The linearized version of ACOPF is known as DC optimal power flow (DCOPF) which

is very fast and scalable. It considers the power flows in a linearized form but ignores the

ohmic losses and reactive power in the system.

Due to the inaccuracy and high level of approximation in DCOPF, ACOPF-based meth-

ods got more attention with convexified methods. Among these algorithms, semi-definite

programming (SDP) [4, 5] and second-order cone programming (SOCP) [6, 7] were widely

used and well-established. Based on these methods, some improved algorithms such as con-

vex iteration have developed with more efficiency [8]. The reference [4] proposed solving the

non-convex ACOPF problem by dealing with its Lagrangian dual problem which is a convex

semi-definite programming and recovered a primal solution from a dual optimal solution.

The [8] exploited sparsity technique and strengthened SOCP relaxation of ACOPF through

enforcing submatrices corresponding to maximal cliques and minimal chordless cycles in the

cycle basis positive semi-definite by using convex iteration in the proposed solver. This

algorithm added virtual lines in minimal chordless cycles to decompose each of them into

3-node cycles and the resulting convex relaxation had a tight gap. A penalized perturbed

SDP relation is suggested in [9] to increase the real part of some entries of Hermitian ma-

trix to ensure the rank-1 solution of this matrix at optimality condition. In particular, the

larger value of regularized coefficient leads to the higher penalty on the rank of Hermitian

matrix. The existence of a rank-1 SDP solution is also studied in [10] for the recovery of a

global solution of SCOPF with line contingencies. They developed a graph-theoretic convex

program to identify the problematic lines of the network and incorporate the loss over those

lines into the objective as a penalization (regularization) term, leading to a penalized SDP

problem when the relaxation is not exact. A novel parabolic relaxation in the form of convex

quadratically constrained quadratic programs (QCQPs) proposed in [11] with penalization

technique which is compatible with the SDP, SOCP, and parabolic relaxations and guaran-

2



tees the recovery of feasible solutions for OPF, under certain assumptions. These methods

have two main issues: 1) in many cases the value of penalized factor and term are predefined

and set based on heuristics; 2) the regularized terms change the value of original objective

cost function in original OPF as these additional terms do not disappear in global optimal

solution.

However, these algorithms cannot guarantee global optimum [12] in ideal situation.

Therefore, it is urgent and important to develop a globally optimal algorithm for ACOPF

problems to tackle the aforementioned issues. Inspired by the penalized SDP algorithm, we

add a penalty term in the objective function that push the rank of the Hermitian matrix W

to 1, which will be disappeared in the objective function at global optimum solution. Our

penalized SDP formulation will be crafted as a canonical quadratic programming with linear

constraints (LCQP) problem. Finally, we propose a successive linear programming (SLP)

and SLPBB (Branch & Bound) algorithms to solve this LCQP problem find a ϵ-approximate

solution.

1.2 Fault Recognition

During the operation of electric power systems, the distribution lines may experience

faults caused by unpredictable natural disasters or accidents. These faults can induce sup-

ply interruptions and fire hazards which are dangerous to people and may cause enormous

economical losses. To avoid these dangers and losses, the protective relays and other control

devices were widely installed to support circuit breakers to take appropriate actions, and

minimize damage and length of interruption at the maximum desired resiliency level [13].

However, with the increased number of faults and incidents occurring in power networks due

to natural hazards and technical system issues, the behavior and effect of faults in wildfires

become more complex. As a result, the faulty assets may not only cause the incident en-

ergy and sparks but also lead to the misoperation and breakouts of the circuit breakers [14].

The faults in distribution systems can cause tremendous disasters to the power equipment

which is a big loss to the companies. Also, there are potential safety hazards that existed
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Figure 1: Wildfire sparked by power lines and electrical equipment burned the most acreage

in California in 2015 [1].

in them such as fire hazards and explosions that can pose much risk to our society. The

explosive failure of overhead lines and other electrical equipment has frequently rated among

the top three singular origins of California wildfires for the last several years. Figure 1

shows the power-related wildfire reported data in 2015, electrical power problems sparked

the burning of 149,241 acres which was greater than almost twice the amount from any other

causes. Therefore, accurate fault localization and quick potential fire detection are urgent

and necessary in power distribution grids.

Sparking and arc flash, as defined by [15], is “an electric arc event with thermal energy

dissipated as radiant, convective, and conductive heat.” The electric arc can form, due to

equipment malfunction or failure, poor operation and maintenance, tools dropped while ener-

gized, tools left in equipment during de-energized maintenance, animals, and poor electrical

connections that cause a fault to occur and allow current to flow through the air. Depending

upon the severity, it can cause a wildfire and then injure or kill people. In the USA, the

California Department of Forestry and Fire Protection reported that these sparking and arc

flashes started a fire when trees and branches touched the overhead distribution lines. One

such fire, the Redwood Fire, burned over 36,000 acres, destroyed 543 structures, and resulted
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Figure 2: Wildfire created by fault incident energy.

in nine civilian deaths [16].

Figure 2 indicates a simple electrical fault caused by trees, their branches, and dry grass

that can cause sparking, arc flash, and finally wildfire due to the released incident energy.

Therefore, the wildfire is set by incident energy as a function of the electrical faults.

Generally, there are four main fault types that occur in distribution systems: single

line-to-ground fault (LG), line-to-line fault (LL), double line-to-ground fault (LLG), and

three-phase to-ground fault (LLLG). In recent years, lots of research and methods have been

put forward to fault localization in power systems. These methods can be classified into two

types: conventional techniques and artificial intelligent techniques.

Conventional techniques include the traveling wave-based method and impedance-based

methods. The authors in [17] proposed a new low-cost device that is part of a system

that should include several units installed in couples at the two ends of MV cable lines for

fault location in the power distribution system. The system exploited a two-end traveling

wave technique that depends on data synchronization. However, it is worth noting that the

traveling wave-based method is sensitive to inaccuracies in electrical line parameters and it

is costly because of the requirements of GPS devices and sensors. [18] introduced a new

impedance-based fault location scheme for overhead unbalanced radial distribution networks

using Clarke transformation of voltage and current measurements at one-end substation

5



only. Also, it calculated the distance to the fault for all fault types by using one quadratic

formula and two groups of constants. However, this method needs modal transformation

for the measured voltages and currents, and the fault distance d is obtained by solving a

quadratic formula which needs further analysis to delete one impossible solution. Although it

is more economical to implement an impedance-based method, the accuracy of this method

is vulnerable to the system characteristics, measurement errors and other factors.

Due to the complexity of distribution systems and various uncertainty factors that are

difficult to address by using conventional techniques, a knowledge-based technique was ap-

plied for locating faults recently [19]. In general, the technique requires information such

as feeder measurement, substation, feeder switch status, and some additional information

provided by fault detection devices installed along the feeders and atmospheric conditions

such as Digital Fault Recorder (DFR) and/or Remote Fault Indicator (RFI). This informa-

tion can be then analyzed by using artificial intelligence methods [20, 21, 22, 23]. Several

techniques have been applied in fault localization and detection in distribution systems such

as, Decision Tree (DT) methodology [24, 25], Artificial Neural Network (ANN) [26], Support

Vector Machine (SVM) [27], Fuzzy Logic [28], Convolutional Neural Network (ConvNet) [29]

and so on. [24] proposed the DT approach in classifying and detecting fault signals which

were extracted by the wavelet-decomposition method. In [25], the J48 DT algorithm was

used to locate the single-phase faults that occurred in a 34-bus distribution system. But

this paper located the fault based on the knowledge of only one fault type. [30] aimed at

high impedance fault (HIF) detection and location in overhead distribution feeders by us-

ing the proposed enhanced FTU (feeder terminal unit). The enhanced FTU which is the

retrofitting of the ready-made FTU with an embedded digital signal processor (DSP) and a

high-frequency current sensor includes wavelet transform for extracting the features of the

HIF signals and neural network for HIF detection. In [31], the authors proposed a faulted line

localization method based on ConvNet classifier using bus voltages and it is able to localize

the faulted line to a small neighborhood with high probability under low observability of the

buses by using phasor measurement units (PMU) placement strategy. Compared with neural

networks or ConvNet algorithms, DT algorithm is non-robust because of the non-parametric

property: a small change in the training data can result in a large change in the tree and
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consequently the final predictions. Also, the problem of learning an optimal decision tree is

NP-complete. ConvNet is a transfer-learning algorithm that it learns the hidden relation-

ship between the input features and output labels, resulting in a more robust and universal

model. In fact, the papers mentioned above mostly focused on one side: locating the fault or

fault type classification but ignored the special features of the fault type which are essential

in fault localization and calculation of the released energy that can contribute to wildfire

management.

In this research, a new fault recognition algorithm based on ConvNet technique was

proposed, resulting in fault type classification and localization. The main contributions of

this algorithm are summarized in four aspects: 1) feature vectors were extracted from the

measured voltages and currents with real phases (a, b, c) to determine the fault types by using

ConvNet Model-C; 2) the positive, negative and zero asymmetrical component sequences

were added in the feature vectors to locate the fault occurred in the system with ConvNet

Model-L. These three sequences have many contributions to the unbalanced faults; 3) the

presented intelligent models are established based on training and testing dataset which is a

function of the fault location d. This functionality creates an extensive dataset that can lead

to accurate fault localization; 4) in terms of the limited number of measurements (sensor)

in the distribution system, our method possesses the Single Observability characteristic: we

train and test the feature vectors extracted from each single measurement device. Therefore,

we may do classification and localization by having the information of a single measurement

device.

1.3 Sub-Synchronous Oscillation Detection

With the trend of pursuing environmental benefits and vigorously enforced emission re-

strictions in the modern world, the electric power system is experiencing a rapid proliferation

and integration of renewable energy. As a consequence, the power system dynamics are af-

fected greatly by the increasing renewable penetration. One of the undesirable consequences

is a sub-synchronous oscillation (SSO), which is caused by the interaction between renewable
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energy sources and power system components. The first sub-synchronous torsional vibration

event that occurred in Square Butte in North Dakota (1977) has resulted from the interac-

tion of High Voltage Direct Current (HVDC) controls with a turbine generator. Recently,

more and more destructive incidents by SSOs were reported globally.

Generally, SSO can be classified into four categories: sub-synchronous resonance (SSR),

device-dependent SSO (DDSSO), sub-synchronous control interaction (SSCI), and sub-synchronous

torsional interaction (SSTI). Among them, SSR and SSCI are the most commonly occurring

events. SSCI typically has a fast-growing nature but does not involve any kind of mechan-

ical interactions nor fixed oscillation frequencies [32, 33]. Also, SSR raised by the poorly

damped oscillations around the electrical resonant frequency, or the natural mechanical tor-

sional oscillation can cause a slow but intensive energy exchange between generator and the

power grid, which results in growing fatigue and critical failure on the generator turbine

shaft. Therefore, an effective strategy for quickly detection and mitigating the SSCI and

SSR phenomena is of significant importance.

To address the SSCI and/or SSR detection problem, [34] applied Discrete Time Fourier

Transform (DTFT) to the sampled waveform data to directly extract the frequency and

amplitude of SSCI. However, the trade-off between the high frequency resolution and the

long-time delay of the data observation window will limit the performance of this approach.

Also, this DTFT method was not tested in a real-time operation condition. In [35], an SSR

detection method through comparing the half-cycle time of positive or negative voltage sig-

nal with the damping and trip thresholds was proposed. [36] proposed a Kalman Filter (KF)

based SSR detection and mitigation scheme, where KF was used for sub-synchronous compo-

nents state estimation and a KF-damping controller was developed to select and suppress the

frequency sub-synchronous components. An SSR detection and characterization algorithm

was proposed in [37], where, the voltage and current waveforms captured from two ends of

the series capacitor compensated transmission line were used to identify the SSR current

magnitude, frequency, an event and its characteristics. However, two waveform measure-

ment units at both ends were required which means it cannot work on waveforms captured

from single end. In [38], a dynamic frequency scanning method considering the wind turbine

generator nonlinearities was derived, and then it was applied for evaluating and analyzing
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the wind turbine SSCI phenomenon. At the same time, the electrical damping analysis was

developed through approximating the electromagnetic torque at low frequencies. A wide

area protection scheme against unstable SSCI was proposed in [39], where distributed pro-

tection relays measured the local wind farms’ real-time sub-synchronous impedances. Then,

a centralized protection coordinator collected those impedances and determined the tripping

action for each wind farm. However, the SSCI detection time was 0.5s which is relatively

slow and it will take another 0.1s to trip. A time-series analysis approach through non-linear

dynamics originated method was proposed in [40] for detecting sub-synchronous oscillation

in power systems. In this method, nonlinear oscillation was evaluated through the maximum

Lyapunov exponent without filtering. This approach is capable of deciding whether the SSCI

phenomenon tends to damp or not, but it still relies on a threshold setting and has to wait

for more than one second to provide the detection results.

As discussed above, many approaches have been proposed to mitigate the SSCI or SSR

phenomenons. However, the actuation of any migration actions relies on the accurate detec-

tion of the existence of any type of Sub-synchronous Oscillations (SSOs). Also, the escala-

tion or decline of SSO amplitude can also be used as an indicator to instruct the trip action.

Therefore, the ultimate problem of SSO detection can be melted down into the identification

of the SSO occurrence and evaluation of SSO amplitude trend. Inspired by the concept of

waveform pattern extraction techniques [41, 42, 43], the event detection and prediction using

artificial intelligence [44], we proposed a rapid SSO detection which provides:

• Fast SSO detection compared with the conventional approaches.

• Accurate SSO amplitude trend evaluation and prediction of the growth of SSO

• Isolation command to protective relays for preventing wind turbines and other energy

resources from SSO damage.

Consequently, the trip action of wind turbines under SSO will not rely on a fixed thresh-

old, and then, the development of fatigue in the wind turbines’ mechanical and the risk of

damaging electrical components can be potentially reduced. This proposed scheme gathers

the original waveforms locally at the node of interest in the power grid and achieves an online

surveillance mechanism with fast and accurate event detection and prediction.
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The rest of this thesis is organized as follows: In Chapter 2, the ACOPF, fault recognition

and SSO detection problems are introduced; Chapter 3 illustrates the proposed mathematical

and intelligent models for these problems; The simulation results are shown in Chapter 4

and conclusions are summarized in Chapter 5;
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2.0 Problem Formulation

Based on the discussions in Chapter 1, this chapter will discuss about the problem formu-

lations of ACOPF, fault recognition in distribution system and SSO detection which include:

the classical ACOPF problem considered in this research, as well as feature extractions for

these two faulty conditions.

2.1 ACOPF Problem

To solve ACOPF problems, one of the most common formulations: minimizing the gen-

eration cost while satisfying physical laws and engineering constraints was considered. In

this case, the formulation of an nb-bus power system is as follows:

min
∑
k∈G

fk(PGk)

s.t. PGk
− PDk

= Vdk

nb∑
i=1

(GikVdi −BikVqi)

+ Vqk

nb∑
i=1

(BikVdi +GikVqi),

QGk
−QDk

= Vdk

nb∑
i=1

(−BikVdi −GikVqi)

+ Vqk

nb∑
i=1

(GikVdi −BikVqi),

Pmin
k ≤ PGk

≤ Pmax
k , Qmin

k ≤ QGk
≤ Qmax

k ,

(V min
k )2 ≤ V 2

dk + V 2
qk ≤ (V max

k )2, k ∈ N .

(2-1)

where G is the set of generator buses, N = {1, 2, ..., nb} is the set of all buses in the system.

PGk, PDk, QGk, QDk are the active and reactive power of generators and demands, respec-

tively. Vdk and Vqk are the real parts and imaginary parts of the complex voltages Vk, Gik

and Bik are the real parts and imaginary parts of the admittance matrix Y.
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In (2-1), the quadratic voltage forms in the active and reactive power flow equations make

the ACOPF problems non-convex and NP-hard. To solve this non-convex and nonlinear

ACOPF problem, we adopted the penalized semi-definite programming (SDP) algorithm

from [9] which is introduced in the next section.

2.2 Fault Recognition Problem - Feature Vector

An n-bus power distribution grid is considered in this research, where a single line may

face one of the common faults: LG, LL, LLG, and LLLG. We focus on real-time fault

and possible fire localization in the power distribution system. Therefore, the data from

measurement devices such as PMU (phasor measurement units), DFR, and RFI will be

used before and during the fault occurrence to extract the feature vectors, and Deep CNN

(ConvNet) algorithm will be applied on them. This section will introduce the extraction

of the feature vectors which are used for the CNN algorithm.

Suppose that the fault occurs at the line between bus i and bus j, as shown in Figure 3

(a). It is clear that the impedance between these two buses will change when there is a

fault occurred between them. Meanwhile, the voltage and current at these two buses will

also be affected. Based on Ohm’s Law, the bus voltage V abc−pref ∈ Cn and bus current

Iabc−pref ∈ Cn in the steady state has the following relationship,

Iabc−pref = Y abc−prefV abc−pref (2-2)

where Y abc−pref ∈ Cn×n is the admittance matrix of the system and can be expressed as,

Y abc−pref =



Y abc
11 . . . Y abc

1i . . . Y abc
1j . . . Y abc

1n

. . . . . . . . . . . . . . . . . . . . .

Y abc
i1 . . . Y abc

ii . . . Y abc
ij . . . Y abc

in

. . . . . . . . . . . . . . . . . . . . .

Y abc
j1 . . . Y abc

ji . . . Y abc
jj . . . Y abc

jn

. . . . . . . . . . . . . . . . . . . . .

Y abc
n1 . . . Y abc

ni . . . Y abc
nj . . . Y abc

nn


. (2-3)
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Figure 3: Faulted feeder model with fault at distance d: (a) Location of measurement

devices in faulty feeder, (b) Pre-fault nominal-π feeder model of affected section, (c) Faulted

nominal-π feeder model of affected section.

When the fault occurs at the line between bus i and bus j, the new admittance matrix

Y abc−f has the following format,

Y abc
11 . . . Y abc

1i . . . Y abc
1j . . . Y abc

1n

. . . . . . . . . . . . . . . . . . . . .

Y abc
i1 . . . Y

′abc
ii . . . Y

′abc
ij . . . Y abc

in

. . . . . . . . . . . . . . . . . . . . . yabc
f

Y abc
j1 . . . Y

′abc
ji . . . Y

′abc
jj . . . Y abc

jn

. . . . . . . . . . . . . . . . . . . . .

Y abc
n1 . . . Y

′abc
ni . . . Y

′abc
nj . . . Y abc

nn

yabc T
f Y abc

ff


where,

yabc
f = [0 . . . Y ′abc

i(n+1) 0 . . . Y ′abc
j(n+1) 0 . . . 0]T ∈ Cn×1 (2-4)
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which is the admittance between the faulted point and the n buses. Y abc
ff is the self-

admittance of the faulted point, and the changed admittance can be represented by,

Y ′abc
ij = Y ′abc

ji = 0,

Y ′abc
ii = Y abc

ii −
Y abc
Lij

2
− 1

Zabc
Lij

+
d · Y abc

Lij

2
+

1

d · Zabc
Lij

,

Y ′abc
jj = Y abc

jj −
Y abc
Lij

2
− 1

Zabc
Lij

+
(1− d) · Y abc

Lij

2
+

1

(1− d) · Zabc
Lij

,

Y ′abc
i(n+1) = Y ′abc

(n+1)i = − 1

d · Zabc
Lij

,

Y ′abc
j(n+1) = Y ′abc

(n+1)j = − 1

(1− d) · Zabc
Lij

,

Y abc
ff =

Y abc
Lij

2
+

1

d · Zabc
Lij

+
1

(1− d) · Zabc
Lij

,

(2-5)

where d is the fault distance between the faulted point and bus i, and also the length between

bus i and bus j is supposed to be one per-unit L = 1(pu). Therefore, the difference between

the pre-fault voltage, current and during-fault voltage, current of each phase at bus i and

bus j can be written as a function of impedance matrix’s elements in Zf (d) = Y f−1

(d) and

Y f (d),

∆Viabc = V f
iabc

− V pre−f
iabc

= Z ′abc
ii (d)I ′i − Zabc

ii (d)Ii − Zabc
ij (d)Ij,

∆Vjabc = V f
jabc

− V pre−f
jabc

= Z ′abc
jj (d)I

′
j − Zabc

jj (d)Ij − Zabc
ij (d)Ii,

∆Iiabc = Ifiabc − Ipre−f
iabc

= Y ′abc
ii (d)V ′

i − Y abc
ii (d)Vi − Y abc

ij (d)Vj,

∆Ijabc = Ifjabc − Ipre−f
jabc

= Y ′abc
jj (d)V

′
j − Y abc

jj (d)Vj − Y abc
ij (d)Vi.

(2-6)

2.2.1 Feature Vector for Fault Classification

The voltage and current differences before and during the fault in (2-6) have contribution

to the fault type classification and fault localization based on the admittance differences.

Consequently, the feature vector for the fault type classification is defined as,

φt = {∆V (d),∆I(d)} (2-7)
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where, φt is a complex variable, both of its real and imaginary parts have effect on the fault

type and localization. Therefore, we redefine the feature vector for fault type classification

with the magnitude voltage difference, magnitude current difference and their phase angles’

difference of each phase in (2-8),

φt = {|∆V abc(d)|, |∆Iabc(d)|,∆θabc
V ,∆θabc

I }. (2-8)

2.2.2 Feature Vector for Fault Localization

Except the feature vector φt for the fault type classification, we also realized that the

zero (Z), negative (N) and positive (P ) sequences (Z,N, P ) contain valuable information

that can improve the accuracy of fault localization. The main reason is that the behavior of

the unbalanced faults, LG, LL, and LLG in (Z,N, P ) domain in terms of special magnitude

changes and phase angle rotations can provide an additional knowledge about the fault

position. The computation of these three sequences on χ = V or I (phase voltages and

phase currents) is,

χa0 =
χa + χb + χc

3

χa1 =
χa + aχb + a2χc

3

χa2 =
χa + a2χb + aχc

3

(2-9)

where a = 1∠120◦ = −0.5 + j0.866, and a2 = 1∠240◦ = −0.5 − j0.866. Therefore, the

augmented feature vector for fault localization is defined as,

φl = {|∆V abc|, |∆Iabc|,∆θabc
V ,∆θabc

I ,V ZNP , IZNP}. (2-10)
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2.3 Sub-Synchronous Oscillation: Waveform Modeling

The electrical power waveform (voltages and currents) captured at the point of mea-

surement carries valuable information of the undergoing events in the power grid. Based on

the study in [37], the magnitudes of fundamental frequency components generally remain

constant during the SSO phenomenon establishes, and the voltage in each phase is mainly

determined by the grid voltage. Therefore, current waveforms can be used to examine the

existence of sub-synchronous current which reflects the intensity of the SSR. The sampled

current waveform through analog to digital conversion can be written as

i(t) = I1cos (ω1t+ ϕ1) + ISScos (ωSSt+ ϕSS) (2-11)

where, I1, ω1, and ϕ1 are respectively the fundamental frequency component’s magnitude,

frequency, and phase angle. And ISS, ωSS, and ϕSS are respectively the sub-synchronous com-

ponent’s magnitude, frequency, and phase angle respectively. One can see, if the second term

(sub-synchronous current) on the right hand side of (2-11) is obtained, the SSO detection

can be easily solved. However, in practice, only i(t) is available. Therefore, the main target

in the proposed analytics will be focusing on the SSO pattern extraction process.

2.3.1 Wavelet Transform

Short-time Fourier transform (STFT) via a slide window can be used to calculate the

sub-synchronous component in real time if the time efficiency requirement is low. However, it

would be time-consuming since a higher STFT resolution requires larger buffer length under

the same sampling rate which compromises the time resolution. A higher sampling rate can

be achieved but at the cost of a high computational complexity [45, 46], which still slows

down the processing speed. On the contrary, if the frequency measurement is not required,

wavelet transform can be used for waveform feature extractions with a low requirement of

frequency resolutions, and meanwhile, it requires a relatively lower computing complexity

[47].
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In Figure 4, a comparison of the spectrogram from STFT and scalogram from Morlet

WT is presented. Obviously, from the spectrum in Figure 4a, one can find that, the STFT

can accurately extract the frequency components within the waveform, i.e the yellow bar

is the fundamental frequency and the light blue bars are the harmonic components. Also,

the scalogram in Figure 4b can tell the existence of the harmonic components, however, the

frequency measurement accuracy is compromised in WT. In the SSO detection application,

the existence of the sub-synchronous component, which ranges from 5Hz to 55Hz in a 60Hz

system, is of much interest. Therefore, the scalogram of current signal can be used to detect

the SSO.

(a) STFT (b) Morlet

Figure 4: STFT vs Morlet WT under harmonic distortion condition (start at t=100ms) with

harmonic order 3, 5, 7.

The wavelet transform can be seen as a linear transformation of the signal of interest

x(t) with a series of basis functions, where x(t) is the measured single-phase waveform. The

WT calculation is defined as follows:

X(ω|a, b) =
∫ ∞

−∞
x(t)Ψ*(

t− b

a
)dt (2-12)

where a, b are the scaling factor and time shift; Ψ(t) is the scaled and shifted basis function,

i.e., the selected wavelet. When a = 1 and b = 0, Ψ(t) is called mother wavelet. And

“*” denotes the complex conjugate operator. With different selected values of a and b,

Ψ( t−b
a
) becomes the “daughter wavelets” of Ψ(t) [48, 49], and a determines a range of pseudo
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frequency. Typically in digital computing devices, discrete WT is used and (2-12) can be

written as following:

X[ω|ak, bk] =
W−1∑
n=0

x[n]Ψ*[
nTs − bk

ak
] (2-13)

where Ts is the sampling time, and W stands for sampled waveform data in the buffer. A

buffer with larger size will bring more computing burden and buffer size will directly affect

the feature extraction performance. Therefore, with a fixed-length buffer, selecting a proper

type of wavelet is of great importance. Tuning the parameters correctly also matters, since

they will affect the feature extraction performance and the computing speed. Meanwhile, one

should notice that the real-time feature extraction and event detection require un-congested

real-time data streaming and processing.
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3.0 Proposed Computational Techniques

To create a stable and robust power system, a mathematical algorithm is proposed to

solve the non-convex ACOPF problems. The solutions of ACOPF problem represent the

steady states of the system which can be used to recognize the faulty conditions: an intelligent

model based on convolutional neural network is developed to classify and localize the faults

occured in distribution system; combined the convolutional neural network with long short-

term memory, an SSO detection model is developed to detect and predict SSO events which

usually occur in generation & transmission systems.

3.1 Penalized SDP Relaxation for ACOPF Problems

To solve the non-convex and nonlinear ACOPF problems, we first relax the general

ACOPF problem (2-1) by using semi-definite programming (SDP) that linearize the con-

straints, transferring the solution goal to get the rank-1 solution of the new-generated posi-

tive semi-definite W matrix. Then some penalized terms are added in the objective function

that aim to push getting the rank-1 solution. As a result, the original ACOPF problem is

transferred to a quadratic programming with linear constraints (LCQP). For solving SDP

problems, [50] proposed a nonlinear programming via low-rank factorization. [51] developed

a framework to compute structured low-rank approximations of a matrix from a random

linear image with lower dimension than the original matrix. These algorithms proposed

good theoretical improvements and proofs but they are not practical to be used in power

system problems since they rather ignore the constraints or need to solve some sub-problems.

For solving LCQP problems, [52, 53] developed branch&bound (B&B) approach for QP us-

ing SDP. [54] further adopted the so-called completely co-positive program to improve the

B&B approach for LCQP. As reported in [54], these B&B-based global solvers can solve

many small-scale LCQP instances, but may run out of time/memory and return only a

sub-optimal solution when the problem size is large.
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The penalty terms in the objective function make the problem to be nonlinear again and

the quadratic terms may have some negative eigenvalues. Therefore, Difference Convex and

linear programming are utilized to transfer the objective into a bi-convex format. To solve

this bi-convex problem, we propose a new successive linear programming (SLP) algorithm

which is different from [55] (where the nonlinear terms must be differentiable and the gradi-

ents are used for linearization). The proposed SLP algorithm cannot find a global optimum

when the number of negative eigenvalues is larger than 1. To tackle this issue, we propose

the SLPBB algorithm which combines the SLP with a new B&B method to get the optimal

solutions of the LCQP problem.

3.1.1 SDP Relaxation

To start with, we first define our notations: ek is the k-th standard basis vector, v =

[Vd1, Vd2, ..., Vdnb
, Vq1, Vq2, ..., Vqnb

]T is the voltage vector of an nb-bus power system. Let

Yk = eke
T
kY, W = vvT which is a 2nb×2nb symmetric matrix, then (2-1) can be reformulated

as,

min
∑
k∈G

fk(PGk)

s.t. PGk
− PDk

= tr(YkW ), QGk
−QDk

= tr(YkW )

Pmin
k ≤ PGk

≤ Pmax
k , Qmin

k ≤ QGk
≤ Qmax

k ,

(V min
k )2 ≤ Wkk +W(k+nb)(k+nb) ≤ (V max

k )2,

rank(W ) = 1,W ⪰ 0, k ∈ N .

(3-1)

where tr indicates the matrix trace operator (i.e., sum of the diagonal elements), ⪰ implies

that W is a positive semi-definite matrix. Wkk is the k-th diagonal term in W matrix that

satisfy Wkk = V 2
dk, W(k+nb)(k+nb) = V 2

qk and

Yk =
1

2

Re(Yk + Y T
k ) Im(Y T

k − Yk)

Im(Y T
k − Yk) Re(Yk + Y T

k )

 ,
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Yk = −1

2

Im(Yk + Y T
k ) Re(Y T

k − Yk)

Re(Y T
k − Yk) Im(Yk + Y T

k )

 .

In this case, the solutions that satisfy the rank−1 standard of symmetric W matrix can

be identified as the optimal solutions of the ACOPF problems.

Proposition 3.1.1. The rank−1 solutions of W matrix can be recovered by the second-order

determinants of W , since we have,

1. If the rank of W matrix is 1, it implies that the ranks of all second-order determinants

of W also equal to 1.

2. Also, the ohmic losses constraints can guarantee that the second-order terms are non-

negative.

Proof. Statement 1 follows easily with the definition of the matrix rank.

About Statement 2, first consider the line loss between bus i and j which can be denoted

as,

Sloss,ij = Ploss,ij + jQloss,ij

= gij(Wii +Wjj − 2Wij)

− jbij(W(i+n)(i+n) +W(j+n)(j+n)

− 2W(i+n)(j+n)),

where gij > 0 and bij < 0 can be derived from the admittance Yij = − 1
zij

= −gij − bij.

Since the ohmic loss Ploss,ij and reactive lossQloss,ij in the system are always non-negative,

it implies that,

Wii +Wjj − 2Wij ≥ 0,

W(i+n)(i+n) +W(j+n)(j+n) − 2W(i+n)(j+n) ≥ 0,

where Wii, Wjj, W(i+n)(i+n) and W(j+n)(j+n) are all non-negative because they are quadratic

to the real or imaginary voltages.
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If the rank of W matrix is 1, it implies that the ranks of all second-order determinants

of W also equal to 1. For example, suppose W is a 4× 4 symmetric matrix,

W =


W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44


Since W is a symmetric matrix, there are W12 = W21, W13 = W31, W23 = W32, and etc. If

the rank of W is 1, it implies that W11 × W22 = W 2
12, W11 × W33 = W 2

13, and vice versa.

With this property, we proposed the penalized SDP relaxation by adding these quadratic

constraints into (3-1) to push the rank of W matrix reach to 1.

3.1.2 Penalized SDP Relaxation

The penalized SDP relaxation of (3-1) can be written as,

min
∑
k∈G

fk(PGk) +
∑

λi(WiiWjj −W 2
ij)

s.t. PGk
− PDk

= tr(YkW ), QGk
−QDk

= tr(YkW )

Pmin
k ≤ PGk

≤ Pmax
k , Qmin

k ≤ QGk
≤ Qmax

k ,

(V min
k )2 ≤ Wkk +W(k+nb)(k+nb) ≤ (V max

k )2,

W ⪰ 0, k ∈ N .

(3-2)

The penalty terms WiiWjj −W 2
ij are from the second-order determinants of the W matrix

and λi is adjustable.

In (3-2), the objective function with linear constraints is quadratic and has some negative

eigenvalues, leading to a typical quadratic programming problem with linear constraints

(LCQP). In the next subsection, we will illustrate the successive linear programming (SLP)

and SLPBB algorithms for the LCQP problems.
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3.1.3 Successive Linear Programming

To begin with, we first show the canonical quadratic format of problem (3-2) to make it

easier to express,

min f(w) = wTQw + qTw

s.t. w ∈ F , F = {w ∈ Rn : Aw ≤ b}
(3-3)

where w ∈ Rn, Q ∈ Rn×n, A ∈ Rm×n, q ∈ Rn, b ∈ Rm. It should be noted that the w in (3-3)

is a vector form of W matrix in (3-1) and (3-2) by considering the symmetrical property of

the W matrix with the new dimension of n = nb(1 + 2nb).

Since Q has some negative eigenvalues, we can rewrite the quadratic term in the objective

function via the so-called Difference Convex (D.C.) program [56],

wTQw = wTQ+w − wTQ−w

= wTQ+w − ∥Cw∥2,
(3-4)

where both Q+ and Q− are symmetric positive semi-definite matrices derived from the

singular value decomposition of Q, C ∈ ℜr×n and r is the number of negative eigenvalues of

Q (the definition of matrix C is given in 3.1.4.1). Then, problem (3-3) can be recast as the

following lifted optimization problem,

min
(w,t)∈Ft

wTQ+w + qTw − ∥t∥2, (3-5)

Ft = {(w, t)| Aw ≤ b, Cw − t = 0, tl ≤ t ≤ tu},

and tl, tu ∈ ℜr are lower and upper bounds via solving the following linear optimization

problems,

til = min
w∈F

cTi w, tiu = max
w∈F

cTi w, i = 1, ..., r, (3-6)

where cTi is the i-th row vector of matrix C. Next, we consider a special Lagrangian method

for problem (3-5) as follows,

L(w, t, λ) = wTQ+w + qTw − ∥t∥2 + λT (Cw − t), (3-7)
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where the Lagrangian multipliers are applied to the constraint Cw − t = 0. By examining

the Karush–Kuhn–Tucker (KKT) conditions of the above Lagrangian function with respect

to t, we have ∂L(w,t,λ)
∂t

= −2t− λ = 0, which implies

λ = −2t. (3-8)

Recall that the optimal solution of problem (3-3) must be a KKT point of the above La-

grangian function [57], then problem (3-3) can be expressed as the following bi-convex opti-

mization problem,

min wTQ+w + qTw − 2tTCw + ∥t∥2

s.t. w ∈ F
(3-9)

We should mention that the idea of recasting non-convex QP problems as bi-convex

optimization has been widely used in the literature [58, 59, 60]. The novelty of model (3-9)

lies in the fact that there are no constraints in t while other existing bi-convex models for

non-convex QP problems usually involve certain constraints on t. It is easy to see that for

any given t ∈ [tl, tu], problem (3-9) is feasible and well-defined. Therefore, we have:

Proposition 3.1.2. If w̄ is an optimal solution of problem (3-9) with t = Cw̄, then w̄ is a

KKT point of problem.

Let S(t) denote the optimal solution set of problem (3-9) and w(t) ∈ S(t). The following

proposition summarizes the properties of Cw(t) as a map of t.

Proposition 3.1.3. Let w(t) ∈ S(t). We have

1. If w ∈ F satisfies the following inequality

∥Cw − t∥ ≤ ∥Cw(t)− t∥,

then it must hold

f(w) ≥ f(w(t))

2. Let w∗ be the global optimal solution of problem. Then

∥Cw(t)− t∥ ≤ ∥Cw∗ − t∥, (3-10)
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3. The map Cw(t) is monotone with respect to t in the sense that

(t1 − t2)
T [Cw(t1)− Cw(t2)] ≥ 0 (3-11)

where

t1 ̸= t2 ∈ [tl, tu], w(t1) ∈ S(t1), w(t2) ∈ S(t2)

Proof. Statement 1 follows easily from the fact that w(t) is the optimal solution of problem

(3-9) and that ∥Cw − t∥ ≤ ∥Cw(t)− t∥.

Now, we turn to Statement 2. Since w∗ is the global solution of problem and w(t) ∈ F ,

we have

f(w(t)) ≥ f(h∗). (3-12)

Recall that w∗ is a feasible solution of problem (3-9). Since w(t) ∈ S(t), we have

f(w(t)) + ∥Cw(t)− t∥2 ≤ f(w∗) + ∥Cw∗ − t∥2. (3-13)

It follows from (3-12) and (3-13) that

∥Cw(t)− t∥ ≤ ∥Cw∗ − t∥.

This proofs Statement 2.

Next, we consider about Statement 3. Let t1 ̸= t2 ∈ [tl, tu], w(t1) ∈ S(t1), and w(t2) ∈

S(t2). From the optimal conditions of problem (3-9), we obtain

f(w(t1)) + ∥Cw(t1)− t1∥2 ≤ f(w(t2)) + ∥Cw(t2)− t1∥2,

f(w(t2)) + ∥Cw(t2)− t2∥2 ≤ f(w(t1)) + ∥Cw(t1)− t2∥2.

Adding the above two inequalities together, we derive

tT2Cw(t2) + tT1Cw(t1) ≥ tT2Cw(t1) + tT1Cw(t2)

⇐⇒ (t1 − t2)
TC(w(t1)− w(t2)) ≥ 0,

which yields relation (3-11). This completes the proof.
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Based on (3-9), the successive linear programming (SLP) method for LCQP problems

can be illustrated as follows,

Algorithm 1 Successive Linear Programming SLP(w0, ϵ)

Input: Initial parameter w0 and stop criteria ϵ > 0;

Step 0 Set k = 0, tk = Cwk;

Step 1 Solve (3-9) with t = tk for optimal solution w(tk). Set wk+1 = w(tk), tk+1 = Cwk+1;

Step 2 If ∥tk+1 − tk >
√
ϵ∥, then set k = k + 1 and go back to step 1; Otherwise stop, and

output (wk+1, tk+1) as the final solution.

In the sequel, we need the following assumption:

Assumption 3.1.1. The constrained set F is bounded.

Lemma 3.1.1. Let the two sequences {wk} and {tk} be generated by the SLP algorithm and

w∗ be the global solution of (3-3). We have,

1. The sequence {tk} is monotone in the sense that,

(tk − tk−1)T (tk+1 − tk) ≥ 0;

2. f(wk−1)− f(wk) ≥ ∥tk−1 − tk∥2, for all k;

3. f(w∗) ≤ f(wk) ≤ f(w∗) + ∥t∗ − tk−1∥2 for all k.

Proof. Statement 1 follows from Statement 3) of Proposition 3.1.3 and the SLP algorithm.

Next, we consider about Statement 2.

From Step 1 in the SLP algorithm, since wk is the optimal solution of (3-9) with t = tk−1

and wk−1 ∈ F , we can deduce,

f(wk) + ∥Cwk − tk−1∥2 ≤ f(wk−1) + ∥Cwk−1 − tk−1∥2,

which, together with the fact that Cwk−1 = tk−1, yields

f(wk−1)− f(wk) ≥ ∥tk − tk−1∥2, ∀k ≥ 1.

About Statement 3, since w∗ is the global solution of problem (3-3) and wk ∈ F , we have

f(wk) ≥ f(w∗), for all k. (3-14)
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Also, wk is the optimal solution of problem (3-9) with t = tk and w∗ ∈ F , we have

f(wk) + ∥Cwk − tk−1∥2 ≤ f(w∗) + ∥Cw∗ − tk−1∥2. (3-15)

It then follows from (3-14) and (3-15) that

f(w∗) ≤ f(wk) ≤ f(w∗) + ∥Cw∗ − tk−1∥2.

This completes the proof.

Next, we characterize the properties of the accumulation point of a sequence generated

from the SLP algorithm. For such a purpose, we introduce the so-called ϵ-local minimizer

as follows.

Definition 3.1.1. w∗ ∈ F is called an ϵ-local minimizer of problem (3-3) with respect to a

neighborhood,

N (w∗, δ) = {w : ∥w − w∗∥ ≤ δ},

if for every w ∈ N (w∗, δ), the following relation

f(w∗) ≤ f(w) + ϵ

holds.

The above definition can be viewed as an extension of the so-called ϵ-solution introduced

in [61]. Then we have,

Theorem 3.1.1. Suppose that w(t) is the optimal solution to (3-9) for some t ∈ [tl, tu]. If

t = Cw(t), then w(t) is an ϵ-local solution of the function f(w) in a suitable neighborhood.
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Proof. Since w(t) is the optimal solution to problem (3-9) and t = Cw(t), we have

f(w) + ∥Cw(t)− Cw∥2 ≥ f(w(t)), ∀w ∈ F . (3-16)

For a given ϵ, define

δ =

√
ϵ

∥C∥
.

It follows that

∥Cw − Cw(t)∥2 ≤ ∥C∥2∥w − w(t)∥2 ≤ ϵ,

∀∥w − w(t)∥ ≤ δ,

which, together with (3-16), yields

f(w) ≥ f(w(t))− ϵ.

This completes the proof.

Based on Theorem 3.1.1 and Lemma 3.1.1, we can obtain the convergence results of the

SLP algorithm to an ϵ-local minimizer of problem (3-3) as follows,

Theorem 3.1.2. Let {(wk, tk)} be a sequence generated from the SLP algorithm with ϵ = 0

and (w̄, t̄) be an accumulation point of the sequence. Then w̄ is both a KKT point and an

ϵ-local minimizer of problem.

Proof. Statement 2 in Lemma 3.1.1 implies that {f(wk)} is a non-increasing sequence. Since

F is compact and {wk} ⊆ F , {f(wk)} is bounded, {f(wk)} converges and consequently

f(wk−1)− f(wk) → 0. It then follows that,

lim
k→∞

∥tk−1 − tk∥ = 0. (3-17)

Let (w̄, t̄) be an accumulation point of {(wk, tk)}. Then, there exists a subsequence {(wkj , tkj)}

such that,

wkj → w̄, tkj → t̄, where j → ∞
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By (3-17), we can obtain tkj−1 → t̄ as j → ∞. Since tk = Cwk for all k, we have t̄ = Cw̄.

The closeness of F implies h̄ ∈ F . Since wkj is an optimal solution of problem (3-9) with

t = tkj−1, we have,

wTQ+w + qTw − 2(tkj−1)TCw + ∥tkj−1∥2

≥ (wkj)TQ+w
kj + qTwkj − 2(tkj−1)TCwkj + ∥tkj−1∥2,

∀w ∈ F .

By taking the limit on both sides of the inequality as j → ∞, we can obtain,

wTQ+w + qTw − 2(t̄)TCw + ∥t̄∥2

≥ w̄TQ+w̄ + qT w̄ − 2t̄TCw̄ + ∥t̄∥2, ∀h ∈ F .

This implies that w̄ is an optimal solution of (3-9) with t = t̄ = Cw̄. Therefore, it illustrates

that w̄ is both an ϵ-local solution and a KKT point of problem. This completes the proof.

However, when r > 1, SLP Algorithm may fail to find the optimal solutions to problem

(3-3) via searching the convex hull constructed from the accumulation points provided by the

SLP algorithm. Luckily, the SLP algorithm can locate a very good feasible solution which

can be used as an upper bound in the new Branch & Bound (B&B) approach.

3.1.4 SLPBB Algorithm

In this section, we develop a new global algorithm that can find a globally optimal solution

to problem (2-1) within a pre-specified ϵ-tolerance by combining the SLO algorithm, branch-

and-bound (B&B) framework and convex relaxation techniques. The convergence of the

algorithm and its complexity are also established.
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3.1.4.1 Convex Relaxation of the Lifted Problem

We start by considering a restricted version of the lifted problem (3-5) where the variable

t is in a subbox [l, u] with l, u ∈ ℜr, [l, u] ⊆ [tl, tu],

min f(w, t) = wTQ+w + qTw − ∥t∥2,

s.t. Cw − t = 0,

w ∈ F , t ∈ [l, u].

(3-18)

Let cTi denote the i-th row vector of matrix C. Let λi, i = 1, ..., r be the absolute value

of the negative eigenvalues of Q, pi be the corresponding orthogonal unit eigenvector, and

si = t2i . By using the singular value decomposition (SVD) of Q, ti = cTi w =
√
λip

T
i w. Since∑n

i=1 pip
T
i = I, we have,

r∑
i=1

si
λi

=
r∑

i=1

wT (pip
T
i )w

≤ wT (
r∑

i=1

pip
T
i )w = wTw ≤ ūTw, ∀w ∈ F .

where ū ∈ Rn is the upper bound of w over F . On the other hand, when t ∈ [l, u], we have

si = t2i ≤ (li + ui)ti − liui, i = 1, ..., r.

Therefore, we can derive the following convex relaxation for problem (3-18):

min wTQ+w + qTw −
r∑

i=1

si,

s.t. Cw − t = 0,

t2i ≤ si, si ≤ (li + ui)ti − liui, i = 1, ..., r,

r∑
i=1

si
λi

≤ ūTw, w ∈ F , t ∈ [l, u].

(3-19)

Next, we compare the objective values at the optimal solutions to problem (3-18) and its

relaxation (3-19). We have,
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Theorem 3.1.3. Let f ∗
[l,u] and v[l,u] be the optimal values of (3-18) and its relaxation (3-19),

respectively. Let (w̄, s̄, t̄) be the optimal solution to (3-19). Then we have,

0 ≤ f ∗
[l,u] − v[l,u] ≤ f(w̄, t̄)− v[l,u] ≤

∥u− 1∥2

4
.

Proof. Clearly, (w̄, t̄) is a feasible solution to eqrefres. Since (3-19) is a convex relaxation

of (3-18), it follows from the choice of f ∗
[l,u] that

0 ≤ f ∗
[l,u] − v[l,u] ≤ f(w̄, t̄)− v[l,u]

=
r∑

i=1

(s̄i − t̄2i ) (3-20)

≤
r∑

i=1

[−t̄2i + (li + ui)t̄i − liui]

≤ 1

4

r∑
i=1

(ui − li)
2 =

1

4
∥u− l∥2,

where the second inequality follows from the constraints on si in (3-19). This completes the

proof.

From the proof of Theorem 3.1.3, we have,

Proposition 3.1.4. Let (w̄, s̄, t̄) be the optimal solution to (3-19) and ϵ > 0. If
∑r

i=1[s̄i −

t̄i
2] ≤ ϵ, then (w̄, t̄) is an ϵ-optimal solution of (3-18).

Proof. Note that (w̄, t̄) is a feasible solution to problem (3-18). It follows from (3-20) that,

0 ≤ f(w̄, t̄)− f ∗
[l,u] ≤ f(w̄, t̄)− vl,u ≤

r∑
i=1

(s̄i − t̄2i ) ≤ ϵ.

Then, f(w̄, t̄) ≤ f ∗
[l,u] + ϵ which implies that (w̄, t̄) is an ϵ-optimal solution of (3-18). This

completes the proof.

Note that, for a given feasible point w∗, we can carefully choose a neighborhood N (w∗, δ)

that meets the following constraint,

ti ∈
[
li = (Cw∗)i −

√
ϵ/r, ui = (Cw∗)i +

√
ϵ/r

]
. (3-21)

From Theorem 3.1.3, we can obtain the following Theorem.
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Theorem 3.1.4. Given w∗ ∈ F and a neighborhood N (w∗, δ) satisfying all the constraints

in (3-21). Let (w̄, s̄, t̄) be the optimal solution to the relaxed problem (3-19). Then, (h̄, t̄) is

an ϵ-local solution to (3-18) with respect to N (w∗, δ).

Proof. Let f ∗
[l,u] and v[l,u] be the optimal values of (3-18) and its relaxation (3-19), respec-

tively. By Theorem 3.1.3, we have,

f(w̄, t̄)− f ∗
[l,u] ≤ f(w̄, t̄)− vl,u ≤ ∥u− l∥2/4.

Together with (3-21), we can obtain,

f(w̄, t̄) ≤ f ∗
[l,u] + |u− l∥2/4 ≤ min

w∈N (w∗,δ),t∈[l,u]
f(w, t) + ϵ.

Therefore, (w̄, t̄) is an ϵ-local solution to (3-18) with respect to N (w∗, δ). This completes

the proof.

Based on Theorem 3.1.4, we can divide each interval [til, t
i
u] into

⌈√
r(tiu−til)

2
√
ϵ

⌉
sub-intervals

[li, ui], where til, t
i
u are defined by . Correspondingly, the feasible region F can be divided

into many sub-regions where each sub-region is bounded with box constraints like ti ∈

[li, ui], ui − li ≤ 2
√

ϵ/r. Then, (3-19) can be solved in all the sub-regions to obtain an

ϵ-local approximation in each sub-region. Among these ϵ-local solutions, we choose the one

with the minimal objective function value as the final solution, which is clearly a global

ϵ-approximate solution to the original problem (3-3). Therefore, such partitioning procedure

can provide an ϵ-approximation to (3-3). For convenience, we call this procedure the brutal

force algorithm. The following Theorem implies the above discussion.

Theorem 3.1.5. The brutal force algorithm can find a global ϵ-approximate solution to (3-3)

in O
(∏r

i=1

⌈√
r(tiu−til)

2
√
ϵ

⌉
N
)
time, where N is the complexity to solve (3-19).
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3.1.4.2 Proposed SLPBB Algorithm

Based on (3-19), the proposed SLPBB algorithm for LCQP problems is described as

follows,

Algorithm 2 The SLPBB Algorithm

Input: Q, q,A, b, and stop criteria ϵ > 0.

Step 0 (Initialization)

(i) Set k := 0, ∆k := [lk, uk] with l0 = tl, u
0 = tu, where tl and tu are computed by (3-6),

vk := −∞, Ω := {(∆k, vk)}.

(ii) For j ∈ 1, ..., 2r, solve problem min(w,t)∈Ft u
T
j t with uj ∈ (−1, 1)r to get the optimal

solution (wj, tj), respectively.

Step 1 (SLP) Find ϵ-local solutions wk
j of (3-3) by running SLP(t0, ϵ) with t0 = tj. Set

w∗ := argmin{f(wk
j )} and v∗ = f(w∗).

Step 2 (Termination) If Ω ̸= ∅, go to Step 3; Else, w∗ is an approximate optimal solution

to (3-3), stop.

Step 3 (Node Selection) Choose the node (∆k, vk) from Ω with the smallest vk and

remove it from Ω. Solve (3-19) over ∆k. If it is infeasible, go to Step 2; else, denote

(wk, sk, tk) and vk as its optimal solution and optimal value, respectively.

Step 4 If vk ≥ v∗ − ϵ, go to Step 2; else if
∑r

i=1[s
k
i − (tki )

2] ≤ ϵ, then wk is an ϵ-solution

to (3-18) over ∆k, update v∗ and delete all the nodes (∆j, vj) in Ω with vj ≥ v∗ − ϵ, go to

Step 2; else, go to Step 5.

Step 5 (Restart SLP) If f(wk) < v∗, then find an ϵ-local solution wk of (3-3) by running

SLP(t0, ϵ) with t0 = Cwk, update v∗ and delete all the nodes (∆j, vj) in Ω with vj ≥ v∗−ϵ.

Step 6 (Partition) Choose i∗ maximizing ski − (tki )
2. Set ωi∗ =

lk
i∗+lk

u∗
2

and partition

∆k into two sub-rectangles ∆k
1 and ∆k

2 along the edge [lki∗ , u
k
i∗ ]. Set vk1 := vk2 := vk,

Ω := Ω ∪ {(∆k
1, v

k
1), (∆

k
2, v

k
2)}.

Step 7 Set k = k + 1 and go to Step 3.

We have the following remarks regarding the steps of the SLPBB algorithm.

1. In Step 1, the SLP algorithm is applied with different feasible points of the lifted problem

as starting point to find a good ϵ-local solution of (3-3).
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2. In Step 5, the SLP algorithm is restarted to find a better ϵ-local solution if the objective

value at the feasible point derived from the solution of the relaxation problem is less than

the current upper bound.

3. In Step 6, the optimal solution of the relaxation problem is cut off after each iteration

so that the lower bound will be improved.

We next establish the convergence of the SLPBB Algorithm. Let ∆̄ = [l̄, ū] be a sub-

rectangular satisfying,

ūi − l̄i ≤ 2
√

ϵ/r, i = 1, ..., r. (3-22)

Let (w̄, s̄, t̄) be an optimal solution of (3-19) over ∆̄. From (3-20), there is,

s̄i − t̄2i ≤
1

4
(ūi − l̄i)

2, i = 1, ..., r, (3-23)

which implies that,
r∑

i=1

[s̄i − t̄i)
2] ≤ ϵ. (3-24)

By Proposition 3.1.4, w̄ is an ϵ-optimal solution to (3-18) over ∆̄. According to Step 3

and Step 4 of the SLPBB algorithm, this sub-rectangle ∆̄ will be permanently deleted from

Ω. In other words, a sub-rectangle ∆ satisfying (3-22) will never be divided further in the

algorithm. Then for a current sub-problem to be considered further, if its optimal solution

(w̄, s̄, t̄) does not satisfy (3-24), then there exists i∗ ∈ 1, ..., r such that s̄i∗ − t̄2i∗ > ϵ/r, which

in turn by (3-23) implies that ūi∗ − l̄i∗ > 2
√
ϵ/r. That is, the i∗-th edge of the corresponding

sub-rectangular must be longer than 2
√

ϵ/r. Based on Step 6, it will be divided at the point

t̄i∗ or the midpoint of this edge. Furthermore, all the edges of sub-rectangle corresponding

to a sub-problem required to be solved will never be shorter than 2
√
ϵ/r. Therefore, every

edge of the initial rectangle will be divided into at most
⌈√

r(tiu−til)

2
√
ϵ

⌉
sub-intervals. That is,

to get an ϵ-optimal solution to (3-3), the number of the relaxed sub-problems required to be

solved with the SLPBB algorithm is bounded by,
r∏

i=1

⌈√r(tiu − til)

2
√
ϵ

⌉
.

From the discussion above, we have,

Theorem 3.1.6. The SLPBB Algorithm can find a global ϵ-approximate solution to problem

in at most O(
∏r

i=1[
√
r(tiu−til)

2
√
ϵ

]N) time, where N is the complexity to solve problem (3-19).
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3.2 Fault Recognition Algorithm

As a category of deep neural networks, convolutional neural network (CNN, or ConvNet)

has been applied in multiple fields: image and video recognition, recommender systems,

image classification, natural language processing, et al [62, 63]. Based on the shared-weights

architecture and translation invariance characteristics [64], ConvNet utilizes the hierarchical

pattern in data and assembles complex patterns with smaller and simpler patterns.

To classify and localize the four faults occurred in distribution systems, we develop

Model-C (fault classification) and Model-L (fault localization) based on ConvNet with the

input feature vectors extracted from Chapter 2.2.

3.2.1 ConvNet Algorithm

Generally, there are four primary operations in ConvNet: convolution, non linearity,

pooling and classification. After importing the feature vector φl or φt extracted in Section

II as the input data and label vector y which represents the fault types or fault localization,

the networks will learn the input data by forward propagation and the parameters of the

networks will be optimized by backpropogation with the errors between the output and labels

[65].

In convolution, the main propose of it is to extract features from the input data and

preserve the spatial relationship between them. Suppose the input of the l−th convolutional

layer is X l, and the kernels of this layer are W l. Then The output of the convolution

computation between X l and W l with defined stride size and padding size is,

C l = X l ⊗W l. (3-25)

The second layer after convolution layer is usually the nonlinear rectified linear unit

(ReLU) layer which keeps the items to be non-negative by changing the negative items to

zeros. The output of this layer can be expressed by,

Rl = max(C l, 0). (3-26)
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Figure 5: The structure of ConvNet algorithm.

The Pooling layer is linked after the ReLU layer which picks the maximum or average

value within a defined size of neighborhood. Also, users can define the stride and padding size

of this layer which are similar to the convolution layer. In this paper, we use MaxPooling

that can be shown as,

P l = MaxPooling(Rl). (3-27)

In practice, these layers can be combined with each other multiple times and a fully

connected layer is followed after the last layer of them to compute the probabilities for each

label by using the softmax function,

pj[n×K] =
[efj ][n×K]

[
∑K

k=1 e
fk ][n×1]

, j = 1, ..., K (3-28)

where fk is the k− th item of the last fully connected layer and the total summation of pj is

1. The position of the largest pj will be the output label which is compared with the input

label. Figure 5 shows the structure of the ConvNet algorithm with all used operators.

3.2.2 Fault Recognition (Fault-RE) Algorithm

In order to quickly and accurately determine the fault type and location occurred in the

system, an algorithm named Fault-RE is proposed and is shown below:

Algorithm 3 The Fault-RE Algorithm

Input: Voltages V pref
abc , V f

abc, currents I
pref
abc , Ifabc and corresponding phase angles θpref(V/I)abc,

θf(V/I)abc before and during the fault occurred in the power system
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Step 1 (Feature vector φt) Calculate the voltage differences ∆Vabc = V f
abc − V pref

abc ,

current differences ∆Iabc = Ifabc − Iprefabc , phase angle differences ∆θ(V/I)abc = θf(V/I)abc −

θpref(V/I)abc. Create the feature vector φt defined in (2-8).

Step 2 (Fault classification) Insert the feature vector φt and fault type labels as the

inputs of the ConveNet fault type model (Model-C), obtain the information of the fault

types.

Step 3 (Feature vector φl) Calculate the zero, negative and positive (Z,N, P ) sequences

of voltages and currents for each phase as defined in (2-9), then augment them into φt as

the feature vector φl (defined in (2-10)).

Step 4 (Fault localization) Insert the feature vector φl and fault location labels as the

inputs of the ConveNet fault localization model (Model-L), obtain the information of the

fault locations.

By using this algorithm, we can get the information of the fault types and locations.

3.3 Sub-Synchronous Oscillation Detection Model

To get a better and faster feature-extraction performance, we propose the Psudo-Continuous

Quadrature WT (PCQWT) which can keep both of the fundamental and SSO features.

Inspired by event detection & prediction in video processing, an SSO detection model is

developed based on CNN and LSTM techniques which aim to detect and predict the SSO

events.

3.3.1 Feature Extraction through Pseudo-Continuous Quadrature WT

As the frequency range of SSO is known, choosing a set of the scaling factors ak in (2-13)

and ensuring a better coverage of the SSO frequency range can provide sufficient information

about the existence of the SSO and its development trend. Also, using less number of scaling

factors ak while maintaining the similar feature extraction performance is desired.

Fig. 6 illustrates a performance comparison of three different wavelet transforms on the

current waveform obtained from three different SSO events. In an SSO escalating event (Fig.
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6(a)), the oscillation of active power starts to intensify. The extracted features from single

phase current through different wavelet transforms are shown in Fig. 6(b)(c)(d). One can

see that the SSO current features become more obvious and this phenomenon match the

active power oscillation. When in a constant SSO event (Fig. 6(e)), the SSO features in

Fig. 6(f)(g)(h) are different with each other, the intensities still remain constant. In an SSO

damping event (Fig. 6(i)), the intensities of features damp in Fig. 6(j)(k)(l) as the active

power oscillation damps too.

It is very obvious that, the SSO features obtained from Morlet are the finest, and there-

fore, Morlet can be the candidate for SSO detection. However, the features appear periodi-

cally in twice of the fundamental frequency, which matches the waveform’s peak and valley.

To remove the intermittent pattern and ease the event detection in the next stage, a complex

Morlet is the most desirable wavelet, it is written as:

ΨCMor(t) =
1√
πβ

e−
t2

2β ejωct (3-29)

where, β controls the shape of Gaussian window and ωc is the center frequency. We can see

that, WT using complex Morlet is Gaussian-windowed sinusoids for time-frequency decom-

position in quadrature plane, because the other complex pair is neglected. Consequently, the

feature related to the rotating phasor is extracted instead of the waveform amplitude. And

the proof is as follows: quadrature WT of a complex Morlet on a sinusoidal waveform with

magnitude A, frequency ω and phase ϕ with considering scaling factor a and time shift b can

be written as:

X(ω|a, b) =
∫ ∞

−∞
A cos(ωt+ ϕ)Ψ*

CMor(
t− b

a
)dt

=

∫ ∞

−∞
A cos(ωt+ ϕ) 1√

πβ
e

(
− (t−b)2

2βa2
−jωc(

t−b
a

)

)
dt

(3-30)

By applying the Hubbard-Stratonovich transformation [66]:

√
2πα · e−

α
2
x2

=

∫ ∞

−∞
e−

y2

2α2−jxydy, (3-31)

(3-30) can be simplified as:

X(ω|a, b)=
aA√
2
[ejω(ϕ+b)e

-β(ωc−aω)2

2 + e−jω(ϕ+b)e
-β(ωc+aω)2

2︸ ︷︷ ︸
≈0

] (3-32)
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Figure 6: Demonstration of different wavelet transforms on current signals from simulated

SSO events (start at t=75ms). (a)(e)(i): Active powers from three different SSO events.

(b)-(d): extracted current waveform features for (a). (f)-(h): extracted current waveform

features for (e). (j)-(l): extracted current waveform features for (i).
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For simplicity, set b as a constant value, and select different values of a with a length of K.

Then the implemented wavelet bank can be written as

ΨK×W=
[
Ψ[nTs−b1

a1
], · · · ,Ψ[nTs−bk

ak
], · · · ,Ψ[nTs−bK

aK
]
]T

. (3-33)

And the extracted features using complex Morlet WT at time instant n are expressed as:

|X(ω|ak, b)| ≈
akA√

2
e
-β(ωc−akω)

2

2 (3-34)

Now, the SSO features can be extracted by selecting the set of a since the extracted features

are determined by the value of ak in (3-34) and the SSO appears at the certain frequency and

the feature reaches peak when ωc/ak. Also, one should note that low frequency component

is amplified by the scaling factor, which is also desired. Typically, a set of discrete scaling

factors (in forms of ai), wherein, i is an integer, which is used in discrete WT. In order

to achieve high-wealth waveform features and have redundant pseudo frequency coverage in

the scalogram, a set of linearly-increasing real numbers are assigned to i in the proposed

Pseudo-Continuous-Quadrature-WT. Similar to the discrete WT, the proposed PCQ-WT

can be directly implemented by using (2-13).

3.3.2 Long Short-term Memory (LSTM) Technique

As an improvement of recurrent neural networks (RNN), long short-term memory (LSTM)

networks are capable of learning long-term dependencies and avoid the vanishing gradient

problems existed in the traditional RNN by incorporating gating functions into their state

dynamics [67]. An LSTM network consists of the input layer, hidden layer and output layer.

The main characteristics of LSTM are the memory cells which include memory blocks in the

hidden layers [68, 2]. Each block contains one or more self-connected memory cells and three

multiplicative units—the input, output and forget gates—that provide continuous analogues

of write, read and reset operations for the cells [69]. Fig. 7 shows the diagram of the LSTM

network at time t.
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Figure 7: LSTM network at time t [2].

Given an input sequence vector x = (x1, ..., xT ), the LSTM network calculates the hidden

vector and output vector by using the following unit activation equations [68, 69],

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi),

ft = σ(Wfxxt +Whfht−1 +Wcfct−1 + bf ),

ot = σ(Woxxt +Wohht−1 +Wocct + bo),

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxxt +Wchht−1 + bc),

ht = ot ⊙ tanh(ct),

yt = Wyhht−1 + by,

t = 1, ..., T.

(3-35)

where W are the weight matrices, i.e., Wix represents the weight matrix from the input to

the input gate, σ is the logistic sigmoid function. i, f , o and c denote the activation vectors

of input gate, forget gate, output gate and cell, respectively. Since the values of all the

gating vectors vary for each time step, the model can learn how to represent information

over multiple time steps.
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3.3.3 Event Detection and Prediction Through CNN-LSTM

The SSO event detection and amplitude trend evaluation is inspired by the concept of

event detection and prediction in the video processing, as show in Fig. 8,

• Before the player hit the ball, we can use the tennis ball’s and the racket’s relative posi-

tions from previous observations (Frame B1–B4) to decide the likelihood of a successful

hit. And that the ball being hit can be determined immediately if the observation in B5

is made.

• After the ball was hit by the player, the trajectory and possible location of the tennis

ball in H6 can be predicted using the previous observations in Frame H1–H5. The tennis

ball’s previous true locations are marked by red dots in Frame H6.

The same concept can be applied in the SSO detection and prediction by using a series

of extracted features as the input. However, in real-time application, a fast detection and

prediction are required while maintaining accuracy. The scalograms in Fig. 6 cannot be used

as each of them requires to wait at least 350ms to generate. Therefore, a sequence of short

scalogram segments is desired, because (i) the newest scalogram segment can be processed

with minimum delay, if SSO is observed, the positive detection is reported, (ii) a sequence

of small segments can be stored in memory to predict the trend of SSO amplitude.
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Figure 8: An example of event detection and prediction using video frames.
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4.0 Numerical Simulations

To validate the performances of the proposed optimization algorithms for ACOPF prob-

lem and the intelligent models for fault recognition as well as SSO detection, this chapter

will discuss about the simulation results of these three topics.

4.1 Simulation Results of ACOPF Problems

In this section, we tested two small and one large scale power systems to examine the

efficiency of our proposed algorithm for ACOPF problems. We also compared the results of

the performance of SLP and SLPBB algorithms for small systems with the associated local

results of in [70] and large system with [71].

4.1.1 Case 1: Two-bus Test System

Figure 9 shows the two-bus system, where bus− 1 is the power generator as a slack bus,

and bus− 2 is the load bus with (352.5 MW, 358 MVars) active and reactive power demand.

Figure 9: Two-bus power system.

Based on Figure. 9, the admittance matrix of this system is,

Y2−bus =

 0.961− j4.807 −0.961 + j4.807

−0.961 + j4.807 0.961− j4.807


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The penalized SDP relaxation formulation of this two-bus power system can be written as

follows,

min
W∈ℜ4×4

2PG1 + λ1(W11W22 −W 2
12) + λ2(W33W44 −W 2

34)

s.t. 0 ≤ PG1 = 0.961W11 + 0.961W33 − 0.961W12

− 0.961W34 − 4.807W14 + 4.807W23 ≤ 5,

− 4 ≤ QG1 = 4.807W11 + 4.807W33 − 4.807W12

− 4.807W34 + 0.961W14 − 0.961W23 ≤ 4,

− PD2 = 0.961W22 + 0.961W44 − 0.961W12

+ 4.807W14 − 4.807W23 − 0.961W34,

−QD2 = 4.807W22 + 4.807W44 − 4.807W12

− 4.807W34 − 0.961W14 + 0.961W23,

(0.95)2 ≤ W11 +W33 ≤ (1.05)2,

(0.95)2 ≤ W22 +W44 ≤ (1.05)2.

(4-1)

Utilizing the presented SLP and SLPBB algorithms to solve problem (4-1), the results

are shown in Table 1 when (λ1 = λ2 = 1),

Table 1: Simulation Results of Case 1.

Solution Type PG1(MW ) QG1(MV ar) V1∠θ1 V2∠θ2

SLP(BB) Results 438.44 92.39 0.95∠0◦ 1.05∠−45◦

Results [70] 452.86 164.32 0.95∠0◦ 0.98∠−64.94◦

From Table 1, we can see that the power generation of the SLP algorithm is less than

the local result which means that there is less loss in the system and the results are closer

to the optimal ones.
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4.1.2 Case 2: Three-bus Test System

In this case, we did simulations for a three-bus power system, which is shown in Figure 10.

In this system, bus− 1 is the power generator which was identified as the slack bus, bus− 2

and bus− 3 are the demand buses in which the active power demands are 120 MW and 68

MW, the reactive power demands are 86 MVAr and 50 MVAr, respectively.

Figure 10: Three-bus power system.

Based on Figure. 10, the admittance matrix Y3−bus of this system is,
0.961− j4.807 −0.961 + j4.807 0

−0.961 + j4.807 4.571− j19.396 −3.61 + j15.714

0 −3.61 + j15.714 3.61− j14.589


In order to run the simulation with limited number of penalized terms, we tried different

combinations of them and found that the variables which also existed in the constraints

had better effect since they were used in two ways: satisfy the constraints as well as get

the rank − 1 solutions. Hence, the objective function of this three-bus system is as follows

(λ1 = λ2 = λ3 = ... = λ8 = 1),

min
W∈ℜ6×6

2PG1 + λ1(W
2
12 −W11W22) + λ2(W

2
15 −W11W55)

+ λ3(W
2
24 −W22W44) + λ4(W

2
45 −W44W55)

+ λ5(W
2
23 −W22W33) + λ6(W

2
26 −W22W66)

+ λ7(W
2
35 −W33W55) + λ8(W

2
56 −W55W66).

(4-2)
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The simulation results of Case 2 are shown in Table 2. It’s noticeable that the power

generation of the SLP or SLPBB algorithm is also less than the local result and the results

are more optimal and much closer to the optimal ones.

Table 2: Simulation Results of Case 2.

Solution Type PG1(MW ) QG1(MV ar) V1∠θ1 V2∠θ2 V3∠θ3

SLP(BB) Results 196.97 63.75 0.95∠0◦ 1.022∠−12.04◦ 1.05∠−71.81◦

Results [70] 208.62 8.93 0.95∠0◦ 0.95∠−27.25◦ 0.98∠−30.36◦

4.1.3 Case 3: 30-bus Test System

Consider the IEEE 30-bus system with the linear cost function
∑

k∈G ckPGk, where the

cost function coeffcinet of six generation units are c1 = 1, c2 = 10, c13 = 1, c33 = 10, c23 =

100, c27 = 1 [71] with λ1 = ... = λ1830 = 1. The results of our proposed algorithms compared

with the penalized factor ϵ = 0 which is shown the better optimal results when it satisfied

KKT conditions in 98.5% with comparing to the 96.6% in [71].

Figure 11: 30-bus test system results.
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4.2 Simulation Results of Fault Recognition Problems

The studied network is a real power distribution feeder of a Rural Electricity Distribution

Company with a length of 17 km main feeder, which includes a main route and some substa-

tions. This feeder is powered by a distribution substation that has two 30 MVA transformers

with an open tie-switch under normal conditions. The impedance of the above distribution

transformer is equal to 12.5% and the short circuit capacity of 63 kV upstream network is

3, 450 MVA. The substation is equipped with grounding transformer (with solid ground). It

has a zero impedance of 40 ohms for each phase. Figure 12 shows a single-line diagram of

the studied feeder. The main feeder contains 51 pole mounted distribution transformers, and

476 poles, with 6.43 MW and 3.7 MVar total real and reactive power demand respectively.

Figure 12: The real rural power distribution system.
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In the studied network, 25 micro-PMUs as the meter (with phasor measurement capabil-

ity) are installed in the indicated locations. Meters m1 to m10 are located in the main feeder

path or feeder T-offs that measure the current flow of a branch. Meters m11 to m25 measure

the operating parameters of a distribution transformers at the secondary side. In order to

create the training and testing data sets, 10 fault zones are considered with corresponding

letters F1 to F10 which are labeled in Fig. 12. The impact of the fault distance d = 0.1

(km) is also incorporated to support the accuracy of the fault localization.

4.2.1 Fault Type Classification Model-C

We aim to classify the fault type by using a ConvNet model called “Model-C”. There

are 5000 dataset for the fault type classification with 80% and 20% budgets for the training

and validation processes, respectively. The fault type classification is evaluated by the fault

type classification accuracy (FTCA) ηt,

ηt =
the number of faults correctly categorised

total number of faults
. (4-3)

The proposed ConvNet structure of Model-C is shown in Table 3. There are totally four

layers in this model: The input size is 1 × 12 and we use two Maxpooling operators, one

fully connected layer and one output layer. In each convolution operator, the kernel size is

1 by 3 which was set based on the input data size with the ones padding size and 4 kernels

are used which are denoted as [1 3] ⊗ 4. In Maxpooling layer, the kernel size is 1 by 2 and

the stride size is 2 which is denoted as [1 2]@2. The output of this model is 4 by 1 that

represents the four fault types.
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Table 3: The ConvNet structure of Model-C

Layer NO. Layer Type Kernel Size Output

the 1st layer
Convolution

Maxpooling

[1 3]⊗ 4

[1 2]@2

[1 12]⊗ 4

[1 6]⊗ 4

the 2nd layer Convolution [1 3]⊗ 4 [1 6]⊗ 4

the 3rd layer Convolution [1 3]⊗ 4 [1 6]⊗ 4

the 4th layer Convolution [1 3]⊗ 4 [1 6]⊗ 4

Maxpooling [1 2]@2 [1 3]⊗ 4

fully connected layer vectorize ... 10

Output Softmax ... 4

During the training process of this model, “Adam” optimizer with the decay parameter

α = 0.9 was utilized after comparing it with Rmsprop and stochastic gradient descent (SGD)

optimizers. The initial learning rate was 0.001 which is the default value for ”Adam” solver

and it will drop every 20 period. λ = 0.01 which is the L2 regularization. The simulation

results of Model-C are shown in Figure 13 and Table 4 illustrates the simulation summary

of this model. Figure 13 shows that the Model-C with 3 layers reaches to the accuracy rate

100% quickly and smoothly with the best performance among the four models.

Table 4: The simulation summary of Model-C

CNN layer number 1 2 3 4

Elapsed time(s) 12 15 19 20

Epoch 10 10 10 10

Learning Rate 0.001 0.001 0.001 0.001

Validation accuracy 99.8% 99.5% 100% 100%
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(a) One layer (b) Two layers

(c) Three layers (d) Four layers

Figure 13: The Simulation Results of Model-C with Different Number of Layers.
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4.2.2 Fault Localization Model-L

To localize the fault for the four fault types, the ConvNet model named “Model-L” is

developed. Since LLLG is symmetric, only the zero sequence was added in the feature vector

of it. There are 1250 dataset for LG and LLG, 1000 dataset for LL and LLLG, respectively.

The fault localization performance is evaluated by the localization accuracy (LA) ηl,

ηl =
the number of faults correctly located

total number of faults
(4-4)

Table 5: The ConvNet Structure of Model-L

Layer NO. Layer Type Kernel Size Output

the 1st layer Convolution [1 3]⊗ 24 [1 24]⊗ 24

the 2nd layer
Convolution

Maxpooling

[1 3]⊗ 36

[1 2]@2

[1 24]⊗ 36

[1 12]⊗ 36

the 3rd layer Convolution [1 3]⊗ 48 [1 12]⊗ 48

the 4th layer Convolution [1 3]⊗ 48 [1 12]⊗ 48

the 5th layer Convolution [1 3]⊗ 60 [1 12]⊗ 60

the 6th layer Convolution [1 3]⊗ 60 [1 12]⊗ 60

the 7th layer Convolution [1 3]⊗ 72 [1 12]⊗ 72

the 8th layer Convolution [1 3]⊗ 72 [1 12]⊗ 72

the 9th layer
Convolution

Maxpooling

[1 3]⊗ 84

[1 2]@2

[112]⊗ 84

[1 6]⊗ 84

the 10th layer
Convolution

Maxpooling

[1 3]⊗ 96

[1 2]@2

[1 6]⊗ 96

[1 3]⊗ 96

fully connected layer vectorize ... 144

fully connected layer vectorize ... 72

fully connected layer vectorize ... 10

Output Softmax ... 10
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The ConvNet structure of Model-L is shown in Table 5. The kernel size of the convolution

operator in each layer is 1 by 3 with the same paddings but they use different number of

kernels in each layer. The Maxpooling operation has the same property as the one in Model-

C, kernel size of 1 by 2 with the stride size of 2.

During the training process, “Adam” optimizer with the same properties was used. The

initial learning rate for Model-L was set at 0.001 with the same drop rate 0.5 and period 10 as

Model-C. The simulation results of these faults are presented in Figure 14 and Table 6. The

results show that the unbalanced faults with zero sequence current and voltage have better

accuracy rate, because the zero sequences of current and voltage provide more information

in augmented feature vectors.

Table 6: The simulation summary of Model-L

Fault Type LG LLG LLLG LL

Elapsed time(s) 177 172 172 174

Epoch 50 100 100 100

Accuracy 85.2% 98.4% 77% 78.5%

Starting learning rate 0.001 0.001 0.001 0.001

Meanwhile, we also tested the model with these fault types under different fault resis-

tances. Table 7, 8, 9, 10 show the test results of LG, LL, LLG and LLLG under different

fault resistances separately.

Table 7: Test results of LG with different fault resistance

Fault resistance R = 20 R = 15 R = 10 R = 5 R = 0

Accuracy 94.8% 88.8% 91.6% 93.2% 94.4%
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(a) Line to ground fault (b) Double line to ground fault

(c) Line to line fault (d) Three-phase to ground fault

Figure 14: The simulation results of Model-L on different fault types.
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Table 8: Test results of LLG with different fault resistance

Fault

resistance

Rl = 3

RG = 10

Rl = 2

RG = 5

Rl = 5

RG = 0

Rl = 0

RG = 5

Rl = 0

RG = 0

Accuracy 92.0% 95.6% 95.2% 93.6% 95.2%

Table 9: Test results of LLLG with different fault resistance

Fault resistance R = 20 R = 15 R = 10 R = 5 R = 0

Accuracy 72.5% 80.4% 79.0% 73.6% 74.8%

Table 10: Test results of LL with different fault resistance

Fault resistance R = 20 R = 15 R = 10 R = 5 R = 0

Accuracy 79.8% 83.5% 85.6% 83.5% 84.4%

4.2.3 Single Observability Validation

During the training process of the ConvNet models, we trained the feature vector of each

meter separately which makes the model possess the single observability characteristic. As a

result, the models perform well even if there are only partial available meters in the system.

To validate this performance of Model-C and Model-L, we take tests on the system with

partial meters under 20%, 30%, 50%, 80% observability.

4.2.3.1 Validation of Model-C

We test the validation of Model-C with 20%, 30%, 50% and 80% meters. The results

confirm the 100% accuracy rates. It is clear the single observability of Model-C is robust to

the system with partial meters.
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4.2.3.2 Validation of Model-L

Along with testing the single observability of Model-C, we also test it for Model-L with

the same percentage of accessible meters. Figure 15 presents the result summary of this

model and validates the robustness of the single observability within Model-L.

Figure 15: Test results of Model-L with partial observability.

4.2.4 Implication of Distributed Generation

Distributed generation (DG) is electrical generation and storage performed by a variety

of small, grid-connected or distribution system-connected devices referred to as distributed

energy resources (DER). When a DG source is connected to the distribution feeder, the

system will be affected and it may perform differently when a fault occurs. To learn about

these effects, we measured the current values when different faults occurred with different

positions as well as under different lengths between substation and the DG. We assumed the

DG has the wye-grounded stator winding configuration. Figure 16 shows the fault current

ratio (If,DG/If ) between the original system when DG is disconnected (If ), and the fault

current when DG is connected to the system (If,DG) when the fault distance is varying and

length of the main feeder is fixed.

From Figure 16, it is clear that the current in the system is indeed affected when a DG is

connected, especially when the feeder length between the substation and DG is longer, the
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(a) Current ratio on fault distance (b) Current ratio on feeder length

Figure 16: Current ratio on fault distance and feeder length.

fault current ratio is also getting larger, drastically with smaller series impedance behind the

voltage of the DG. However, when the fault distance is getting longer (end-far fault location

along the feeder), the current ratio decreases. Figure 17 shows the 3-D figure of these aspects

that the DG has decreased the short circuit level of the system when the size of the DG is

considerable with smaller DG’s series impedance. The accuracy of the training and testing

processes have also changed with 0.86 percentage error when DG are disconnected.

Figure 17: 3-D interpretation under these two atmospheres.
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Figure 18: Proposed SSO detection and prediction CNN-LSTM architecture

4.3 Simulation Results of SSO Detection

4.3.1 PCQ-WT and CNN-LSTM Parameter Setting

In this thesis, a sampling rate of Fs = 2kHz is used, the complex Morlet PCQ-WT wavelet

bank in (3-33) uses 32 scaling factors defined as a = 2i, where i is uniformly selected from 1

to 8. Each wavelet filter has a length of 60 samples (30ms) and shares the same waveform

buffer which caches 90 samples (45ms) of the sampled input waveform. For simplicity,

set all the time-shift bk = 30 (15ms) for k = 1, 2, ..., 32. The central frequency is set as

ωm = 2π × 500rad, and the window shape constant value β is chosen to be 200 in (3-29).

The PCQ-WT is performed every 5ms, therefore, to cover the feature of a 5Hz SSO’s full

cycle, a sequence containing 32 feature images is needed. Consequently, 32 small CNNmodels

are used in the proposed CNN-LSTM network, which is shown in Fig. 18. The input of Fig.

18 is an example of extracted SSO waveform feature images via PCQ-WT. We can see that

the feature of fundamental component (dark red area) is constant, and peculiarities—the

features of SSO—are observed below the fundamental component’s features, and they are

intermittent since current waveform anomalies caused by SSO are varied slowly along time.
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Table 11: Network Configuration of the CNN-LSTM Model

Layer NO. Layer Type Kernel Size Output

1st layer Convolution [4 8]⊗16 [15 42]⊗16

2nd layer MaxPooling [2 2]@2 [8 21]⊗16

3nd layer Convolution [3 3]⊗32 [3 10]⊗32

4th layer LSTM 50⊗2 ...

FC layer vectorize ... 50

Output1-SSO

detection
Softmax ... 2

Output2-SSO

prediction
Softmax ... 4

The network configuration of the proposed CNN-LSTM model is shown in Table 11.

There are seven layers in the model: convolution layer-1 includes 16 kernels and the kernel

size is 4 by 8 which is denoted as [4 8]⊗ 16; in the MaxPooling layer, the kernel size is 2 by

2 and the stride size is 2 which is denoted as [2 2]@2; convolution layer-2 contains 32 kernels

with the kernel size 3 by 3; in the LSTM layer, the hidden size is set to 50 and 2 recurrent

layers are used which are represent as 50 ⊗ 2; the fully-connected (FC) layer is linked with

the LSTM layer and it vectorizes the output of the LSTM; after the FC layer, two output

layers are set to output the results of the SSO detection and prediction.

The parameters of the test bed system are based on a real case study in radial system.

The turbine model is a 1.5MW generic detailed DFIG model for transient studies. And a

wind farm of total capacity of 200WM is formed using this model. The line configuration

data is from [72].

59



Figure 19: The test radial system with a 200WM wind farm.

4.3.2 Test Scenario Specifications and Data Preparation

To generate comprehensive test scenarios for training the proposed framework and make a

frequency scan for all possible SSO frequencies of the wind farm, the maximum and minimum

parameter specifications such as compensation level of the series capacitor variation, wind

speed, number of wind turbine in service, and the equivalent power network condition, are

listed in Table 12. When generating each test scenario, all the parameters are uniformly

selected in the designated range. In total, 20,000 test scenarios are generated. For each test

scenario, the generated current waveform is cut by a sliding window (waveform buffer) of

45ms with overlap 40ms, which matches the PCQ-WT execution rate, i.e., every 5ms. Then

the waveform feature in each sliding window is extracted, therefore, in each test scenario,

an extremely long feature sequence which consists of many scalograms sequentially in forms

of images is generated. As mentioned before, a sequence only containing 32 feature images

is used as the input of the proposed CNN-LSTM framework. To avoid confusion, here, we

name this 32-feature-image sequence as ”input feature sequence“. Since each test scenario

can generate thousands of input feature sequences, in total, millions of possible input feature

sequences could be obtained. To make the detection and prediction actions as well as the

proposed CNN-LSTM training process performed in a rationale way, a labeling process is

conducted as follows:

• Each extracted feature image in the feature sequence is labeled individually according to

Label-1 in Table 13.
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Table 12: Test system parameter specification

Parameter Category Min Value Max Value

Compensation Level 10% 70%

Wind Speed 6 30

Wind Turbine in Service 10% 100%

Equivalent Positive 1.48+j0.026 5.82+j0.104

Network Impedance Negative 8.28+j0.090 32.58+j0.356

• If the input feature sequence contains feature images involving SSO event, then this input

feature sequence is labeled by Label-2 in Table 13.

In such way, (i) if the newest input feature image contains SSO-event and all the previous

feature images do not, then, an SSO occurrence event is reported, as no more previous

information regarding SSO exists, prediction operation is not executed. (ii) If the newest

input feature image contains non-SSO event, then a damped SSO event (non-SSO event)

can be reported, prediction operation is no longer needed.

The input feature sequence used as the training data for C0, C1-0, C1-1, and C1-2 are

randomly selected and balanced. Each class has 21,520 samples, thus, the ratio of data

sample non-SSO vs SSO event is 1:3. And the training, validation and testing data ratio is

8:1:1. The workstation used for training the proposed CNN-LSTM model is equiped with

Intel Core i7-8700K CPU and Nvidia GeForce GTX 2080Ti GPU.

After the training process is completed, two test cases are used to verify the propopsed

scheme:

• Case 1: Additional three SSO events (damping, slow damping and rapid) are generated

from the radial system (Fig. 19) and used for online tests. And these three events are

absent in the training process.

• Case 2: A portion of the ERCOT grid with high penetration of wind generation which

exports power through a series-compensated line from [33] is used to generate SSO events
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Figure 20: ERCOT grid portion with series-compensated line.

(see Fig. 20). N-4 is the minimum contingency rank that can lead to SSO risk and radial

condition in this test bed according to [33]. The definition of this contingency is marked

by red dashed line in Fig. 20. Under 100% turbines and 100% dispatch operating

conditions, two non-damp SSO events are generated during transmission system with all

switch shunts in service and out of service, respectively. Also, the method proposed from

[33], which uses Prony and Eigensystem Realization Algorithm (ERA), and a moving

FFT, is used for comparison. Here, the method in [33] is named as ”Hybrid”.

4.3.3 Experimental Results and Analysis: Case 1

The best detection and prediction accuracy obtained after training is 98.95% and 98.22%,

respectively. And the online test results of Case 1 are shown in Fig. 21, Fig. 22 and Fig.

23. Also, the elapsed time of each execution of the proposed framework is monitored and

recorded to verify the real-time operating performance of the proposed framework.
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Table 13: Feature label

Label-1 SSO Event Specification

C0 None No SSO is observed

C1 Detected SSO observed

Label-2 SSO Event Specification

C1-0 Damping SSO quickly damped within 95ms

C1-1 Non-damping

the active power oscillation failed to damp within 2%

of the rated power within 95ms

C1-2 Started
SSO localized within the first observation of the input

feature sequence

4.3.3.1 Non-damping SSO Event

The detection and prediction result of an escalating SSO event is shown in Fig. 21, where

the SSO event occurs at t = 53ms. The active power in Fig. 21(a) started oscillating at

the occurrence of SSO event, and its oscillating amplitude increases at around t = 100ms.

The C1 (SSO) event is detected at t = 70 ms in detection result plot (Fig. 21(b)) and the

detection module keeps reporting C1 as the SSO event lasts. Meanwhile, for the prediction

module, once the C1 event is reported, the C1-2 event (SSO started) is reported at t = 85ms,

then a prediction of C1-1 event (non-damping SSO) occurrence is reported at t = 115ms

and this prediction result lasts as this escalating SSO event lasts in Fig. 21(c). In this

test, the detection time for SSO event is 17ms and the SSO growth prediction time is 62ms.

One should notice that, in Fig. 21(d), the elapsed time for the detection and prediction is

around or under 2ms, which is less than the execution rate of the entire proposed framework.

Therefore, there would be sufficient time redundancy for the whole process.
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Figure 21: Online test results: Case 1 — escalating SSO event.
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Figure 22: Online test results: Case 1 — slow damping SSO event
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4.3.3.2 Slow-damping SSO Event

During an SSO event with a slow damping amplitude (Fig. 22(a)) occurred at t =

53ms, the amplitude is still above the threshold, therefore, the detection result in Fig. 22(b)

constantly reports a C1 event starting at t = 85ms. As the proposed framework is able

to predict the growth of the SSO event based on the amplitude trend, even though a slow-

damping SSO has occurred but the tendency of the SSO amplitude shows no sign of decaying

by the preset time limit (95ms), then a C1-1 prediction is made at t = 110ms in Fig. 22(c).

This result proves that the proposed framework can be used for online protection applications

since the slow damping SSO can still cause undesired energy exchange and lead fatigue and

critical failure on the generator turbine shaft. In this slow-damping SSO event, the overall

detection time is 32ms and prediction time is 57ms, which can be potentially used for issuing

the trip command for the wind turbines during SSO events. And the elapsed time for each

execution of the proposed framework is still around 2ms in Fig. 22(d).

4.3.3.3 Quick damped SSO Event

Due to load change or transmission line switching, variation of the output power can

be observed in forms of a quick damped SSO event. In this scenario, SSO events might be

observed and the corresponded features would reveal, however, the trip actions are unnec-

essary for this case. So in this test scenario, an rapid damped SSO event is simulated in

Fig. 23, where the active power is 0.74 pu before the SSO at t = 53ms (Fig. 23(a)) but its

amplitude begins to decrease at t = 80ms and finally damped below the 2% threshold at t

= 140ms. In Fig. 23(b) the detection module reports C1 starting at t = 85ms and C0 at t

= 175ms. Between t = 85ms and 175ms in Fig. 23(c), the prediction module is active and

an SSO growth prediction—C1-0 (damped SS)—is given at t = 115ms and this prediction

result ends as the detection reports C0 again. In this test, the detection time is 32ms and

35ms, respectively; the prediction time is 62ms, which again verified the performance of the

proposed SSO detection and prediction framework. Also, the elapsed time is around 2ms.
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Figure 23: Online test results: Case 1 — damping SSO event.
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4.3.4 Experimental Results and Analysis: Case 2

4.3.4.1 Transmission line switched shunts out of service scenario

The test result of Case 2 under switched shunts out of service scenario is shown in Fig. 24.

The occurrence of the radial condition between the wind farm and the series-compensated

line is placed at t = 53ms (Fig. 24(a)). The frequency of oscillation is detected at 12Hz.

The SSO event is reported at t = 70ms for the proposed approach (see Fig. 24(b)), which is

only 17ms after the occurrence of the SSO event; the prediction module provides the non-

damping alert at t = 105ms (Fig. 24(c)), i.e., 52ms after non-damping SSO occurred. One

should notice that, the result from the proposed approach is reported every 5ms, so slops

can be observed in the detection and prediction results. For ”Hybrid” method, the SSO

detection is reported at t = 85ms, which is 32ms after SSO starts. In ”Hybrid” method, the

SSO non-damping alert (protection signal) is always designated to be sent after there cycles

(50ms) of the SSO detection is reported, which is equivalent to the non-damping prediction

used in this paper at Fig. 24(c). So the earliest protection action can be issued at t = 135ms

from ”Hybrid” method, which 82ms after SSO starts equivalently in this paper.

4.3.4.2 Transmission line switched shunts in service scenario

The frequency of oscillation is detected at 15Hz in test results of Case 2 with switched

shunts in service scenario. Similarly, the occurrence of SSO is shifted and placed at t = 53ms

in Fig. 25(a). In this test scenario, the SSO detection of the proposed method is at t = 75ms

(22ms after SSO starts, see Fig. 25(b)) and the non-damping prediction is first reported at

t = 105ms (52ms after SSO starts, see Fig. 25(c)). And for ”Hybrid” method. the detection

and non-damping prediction are reported at t = 90 and t = 140ms respectively, which is

37ms and 87ms after the SSO event starts.

In all, the test results in Case 1 and Case 2 verified the efficiency and performance of

the proposed approach. And the comparison in Case 2 with and without switched shunts

in service confirms the performance improvement of the proposed work in this paper. Also,

during a transition period when SSO starts, as the waveform which contains the SSO feature
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Figure 24: Case 2: test results under switched shunts out of service.
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Figure 25: Case 2: test results under switched shunts in of service.
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takes time to fully move into the waveform data buffer which is equivalent to 45ms in length,

thus a detection delay is observed. However, a noticeable finding is that, the proposed

approach itself shows improved performance in Case 2 compared to Case 1, this is because

at the beginning of SSO in Case 2, the active power reveals immediate variations, which

indicates that, there are sudden changes in current waveform caused by SSO. The proposed

work utilizes and processes feature extraction from the current waveform, so the sudden

changes in current waveform would provide more distinctive features that are in support of

SSO detection for the proposed approach.

The prediction module in this paper requires a sequence of feature images to gather

sufficient information, thus the prediction time is slightly longer than the detection time,

but the prediction result can be provided in 62ms at maximum. Nevertheless, there would

be a potential to improve the detection time and prediction time as the execution rate of

the proposed framework can be increased. But even using such a conservative execution

interval of 5ms, this proposed framework still provides promising performances in all the

experimental tests, and therefore, it can be applied for the SSO online monitoring and

protection applications when connected with protective relays.
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5.0 Conclusions and Future Work

5.1 Conclusions

In this thesis, three topics are conducted to improve the optimal operation, security

and resiliency of the power system: 1) The proposed SLP and SLPBB algorithms are able

to find the global near-optimal solutions for the non-convex ACOPF problems. Preliminary

experiments illustrated the effectiveness of these two algorithms, and the results also satisfied

the KKT conditions; 2) Two intelligent models (Model-C & Model-L) based on ConvNet

technique are developed to classify the fault and determine its location in power distribution

systems. The main achievements of this method are: quick fault type classification in 100%

accuracy; meaningful and significant feature vectors’ extraction for the fault localization

in both (a, b, c) and (Z,N, P ) domains as a function of fault distance d; robust and more

effective ConvNet with single observability characteristic for different fault types (average

accuracy of 85%). As a result, these two intelligent models are more practical and economical

when there are limited micro-PMUs installed, and limited access to the data in the system;

3) A novel SSO detection & prediction framework that utilizes waveform feature extraction

and deep learning techniques is , which can detect the SSO within the 45ms input waveform

buffer length and provide trip signal within 70ms. This framework detects the SSO by

using waveform features and bypasses the frequency measurement process, which can be

applied to monitor the system with different configurations if the system model is provided.

And this approach is built under the developers’ specification and settings, thus it can

be adjusted to different protective requirements. Test results prove that the framework is

capable of detecting the presence of SSO and providing high accuracy in both SSO detection

& prediction for different dispatch capacities. Therefore, this framework is very promising

in real-time SSO monitoring applications. Also, this proposed design can be used to assist

relays to guarantee a reliable trip action or used independently for providing trip commands.
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5.2 Future Work

In the future, some improvements of these three research areas will be considered: 1) For

the ACOPF problems, the complexity of SLPBB algorithm grows exponentially in terms of

the increasing number of negative eigenvalues of the Hessian matrix in the objective function.

This indicates SLPBB may not be effective for larger scale power systems because of the

large number of negative eigenvalues. For the future researches, one interesting direction is

to study whether we can develop effective global algorithms for generic QP problems, as well

as further investigation on the minimum number of penalized terms added in the objective

function; 2) About the fault recognition problems, the single observability characteristic

causes the accuracy rate of some fault types and situations is not much high (less than

90%). This is one problem we will improve in the future. Next, we will work more on

the feature vectors and ConvNet optimization for fault localization to improve its accuracy

rate, especially with single observability and limited access to the data. Also, we will take

researches on computing the distance between the fault and the terminal bus to provide more

exact information, as well as validate our methodology on real daily-life data, not merely the

simulated ones; 3) For the SSO detection & recognition problem, current intelligent model is

based on ConvNet and LSTM algorithms. However, there are some limitations about LSTM

such as it cannot provide proper attention to lengthy input sequences. As an attention-based

technique, transformer can avoid this problem and perform better than LSTM. Therefore,

transformer technique will be considered to replace the LSTM in the future research, and

develop a more efficient intelligent model for SSO detections.
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