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The quantum mechanical treatment of molecular systems in computational chemistry offers in-

sight into the nature of chemical bonding, reaction mechanisms, and many experimental observables.

An improved treatment of the molecular electronic structure is tied to an increase of computational

resources. This work explores two families of approximations for electronic structure that reduce

the computational cost without significantly sacrificing accuracy.

One approximation explored is quantum Monte Carlo methods, which stochastically solve

the Schrödinger equation. Here, the diffusion Monte Carlo formulation is used to provide insight

into chemical systems that are not well described by the commonly utilized Density Functional

Theory. Two systems are explored: a hydrogen atom chemisorbed to the surface of graphene and a

model non-valence correlation-bound anion. The diffusion Monte Carlo approach is systematically

improvable for most approximations, except for the fixed node error which can often be addressed

through a careful choice of trial wave functions. Trial wave functions composed of multi-Slater

determinants as generated by a selected configuration interaction procedure are investigated as they

produce a compact determinant expansion through selecting the most important determinants for a

specific system in an iterative fashion.

The second approach is the development of a fragment selection scheme through unsupervised

machine learning. Fragmentation approaches are motivated by the short-range nature of correlation

effects. The full system is approximated by subsystems which are each treated at a certain level

of theory and an estimate of the interactions between them. For this approach to return valuable

results, the chemical domains need to capture the most important physics of the desired problem.

In this work, an unsupervised machine learning based method is developed for the systematic

identification of important chemical domains with minimal quantum mechanical data which can

improve transferability and automation of fragmentation approaches.
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1.0 Introduction

“The general theory of quantum mechanics is now almost complete, . . . . The underlying physical
laws necessary for the mathematical theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the exact application of these laws leads
to equations much too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which can lead to an
explanation of the main features of complex atomic systems without too much computation.”-Dirac1

Electronic structure methods aim to accurately describe the electrons within a molecule or

solid. This becomes computationally expensive when attempting to describe correlated electrons,

generating competing goals of obtaining accurate results and feasible computational cost. One can

avoid this complexity by treating the system with Hartree-Fock, however electron correlation will not

be accounted for. Neglecting electron correlation is not always appropriate for property prediction.

As such, incorporating correlation accurately and affordably is necessary. Full Configuration

Interaction, which is formally exact in a complete basis, has prohibitive N! scaling, where N is

representative of system size. Whereas the coupled-cluster singles doubles with perturbative triples

method is often regarded as the “gold standard” level of theory, but incurs an N7 scaling. The high

scaling restricts the application of these methods to small systems while many of the chemical

processes of interest involve much larger systems.

On the other hand, one of the most frequently applied methods is Density Functional Theory, a

mean field approach that has a favorable scaling like Hartree-Fock, but approximates the missing

correlation energy through an exchange-correlation functional. Although Density Functional Theory

has demonstrated the ability to successfully describe many molecular and periodic systems, there

are many occasions in which this approximation falls short, e.g., systems which exhibit strong

correlation, systems in which the physics used to construct the functional may differ from that

being treated, and in situations targeting properties beyond total energies as exchange-correlation

functionals are often benchmarked against energies only.

In this work, two approaches are explored which aim to treat only a subspace of the full

electronic structure calculation which can accurately incorporate the correlation energy while

reducing the computational demand. The first approach is the application of a stochastic sampling to

solve the Schrödinger equation through quantum Monte Carlo approaches. The second is molecular
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partitioning for fragmentation determined by unsupervised machine learning methods. These two

projects are introduced briefly in the Section 1.1.1 and Section 1.1.2. In the chapters to follow,

relevant theoretical background is provided in Chapter 2, the quantum Monte Carlo related works

are discussed in Chapter 4 and Chapter 5, and the fragmentation work is presented in Chapter 6.

1.1 Project Summaries

1.1.1 Quantum Monte Carlo Applications

One way to allow for the treatment of the electronic structure for larger systems is to use a

stochastic approach to solve the Schrödinger equation. When sampled with a Monte Carlo-type

approach, these are collectively are known as quantum Monte Carlo (QMC) methods, though there

are many formulations. We demonstrate the ability of QMC to accurately describe two challenging

chemical problems where Density Functional Theory (DFT) provides inconsistent or incorrect

results: hydrogen chemisorbed to a graphene surface and a model non-valence correlation-bound

(NVCB) anion system, (H2O)4.

The first application is describing a hydrogen atom chemisorbed to graphene. The unique

electronic, optical, and transport properties of graphene make it an important system for a wide

range of applications, many of which involve or are impacted by the adsorption of atoms or

molecules. To bring these applications to fruition, a deeper understanding of the interaction of

atoms and molecules with graphene is required. As such, these systems have been the subject

of several experimental and theoretical studies.2–14 Most computational studies of adsorption of

atoms and molecules on graphene have employed DFT, primarily due to its favorable scaling with

system size. However, a reliable theoretical description of interactions at the graphene surface has

proven to be challenging for DFT.2,7,8,15 The diffusion Monte Carlo (DMC)16 method, a real-space

QMC approach, is particularly attractive given its low scaling with the number of electrons and

high parallelizability. DMC also has the advantages of being systematically improvable and its

energy being much less sensitive to the basis set employed than methods that work in the space of

Slater determinants. DMC has been used to describe the adsorption of various species on graphene
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including O2,10 a water molecule,9,17 and a platinum atom.11 In the present work, we use the DMC

method to calculate the binding energy of H to graphene in the chemisorbed state.

The second challenging chemical system explored using QMC methods is a model non-valence

correlation-bound (NVCB) anion system, (H2O)4. In recent years, there has been growing interest

in NVCB anions in which long-range correlation effects are crucial for the binding of the excess

electron.18–31 By definition, NVCB anions are unbound in the HF approximation. As NVCBs are

relevant to image potential states of larger species such as C60 and graphitic systems, a method

which enables an accurate ab initio treatment will allow for furthered understandings of these

systems. Usual methods for treating these systems are restricted by a rather large scaling with

system size, so it is of interest to know if DMC can provide an accurate description. This particular

model system is useful as there is no net dipole.18,25 Additionally, the coordinates of the water

molecules can be tuned to regimes with dominant NVCB character or to regimes in which the

NVCB character is lessened or non-existent. Although many of the approximations in DMC are

systematically improvable, the fixed node error discussed in Section 2.3 needs care in ensuring the

effects of the approximation are minimal. The nodes of the wave function are fixed to that of the

initial trial wave function. This model system will allow us to also understand the quality of the trial

wave function needed to allow for an accurate DMC treatment. Various trial wave functions are

explored, from single determinant methods like HF and DFT, to multi-Slater determinant expansions.

The multi-Slater determinant trial wave functions are generated from Configuration Interaction

truncation schemes. The truncation schemes used are a manually defined orbital space/excitation

degree scheme and through an automated approach of selected CI methods such as perturbatively

selected configuration interaction scheme (CIPSI).32–36 Understanding how multideterminant trial

wave functions can impact QMC treatments is an active area of research.37–39

1.1.2 Real Space Partitioning Methods

To compensate for high computational scaling, fragmentation approaches estimate the energy

and other properties of large molecular systems by partitioning the system into small subsystems,

where the final estimate of the energy becomes the accumulation of the parts. This can be very

successful as electron correlation is often a short-range phenomenon. The accuracy of the fragmen-
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tation approach hinges on the electronic structure treatment of each fragment, the approach used to

describe the interaction between the fragments, and the way in which the molecule is partitioned.

In the fragmentation schemes, the best case scenario for scaling becomes O(N p) → NfragO( f p),

where N f rag is the number of fragments, f is representative of the fragment size, and p is the expo-

nential value dependent on the level of electronic structure theory utilized.40,41 This partitioning of

a single, very costly calculation into N f rag smaller calculations achieves two important objectives:

1) computational scaling with system size is reduced with reasonable fragment definition and 2)

trivial parallelization is possible by treating subsystems separately, with the potential to efficiently

utilize high performance computing resources.

As pointed out by Herbert, the choice of fragments for a system is not well-defined, but affects

the quality of results obtained.40 In some systems, a natural approach towards partitioning arises

when there is a stark difference in the types of bonding present in the system. However, the choice

of fragments is not always as clear-cut. In such cases, fragment definition relies on the comparison

of total energies, dipoles, or polarizabilities, based on predefined functional groups, or chosen

manually.42 However, functional group definition may become ambiguous. For example, there is no

set number of monomers to include from a polymer backbone to acquire and accurate description

capture the chemical behavior. Additionally, a fragment definition based only on functional groups

may not consider the interacting chemical environment. If instead a more general approach could

be developed that can consider the molecular system in an automatic and unbiased fashion, work

would be made possible related to various fields such as quantum embedding approaches, Quantum

Mechanics-Molecular Mechanics approaches, quantum computing efforts, and the description of

large systems with ab initio methods. A desirable approach to fragment definition would have low

computational cost and prioritize keeping associated molecular components intact to treat fully with

quantum mechanics while the estimation of their interactions should occur only at the most weakly

interacting atoms. Here, a proof of concept is presented for an unsupervised machine learning

methods to identify the strongly interacting substructures of the system. Clustering methods are a

form of unsupervised machine learning used to identify substructures in data sets. To this end, a set

of clustering algorithms (spectral, agglomerative, k-means, and affinity propagation) were studied

in combination with various molecular representations, including those incorporating bonding

information derived from quantum mechanics. The performance for the clustering/descriptor
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combinations was assessed for test systems spanning a range from easily distinguishable fragments

such as non-covalently bonded water cluster to oligomers in which lowest-loss fragmentation is

ambiguous.
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2.0 Theoretical Background

Electronic structure methods are theoretical approaches which attempt to describe the behavior

of electrons in a chemical system to gain insight into the properties of that system. The system can

be described by a wave function Ψ, which contains all information about a state. We specifically

denote the wave function of all particles as Ψ(R⃗i . . . R⃗M; x⃗ j . . . x⃗N) where Ri is a position vectors for

ion i of M ions, and x j is the coordinate vector representing spin and position of N electrons. When

Ψ is acted on by an operator, observables of the system can be obtained. Specifically, let us consider

the non-relativistic Schrödinger equation:

ĤΨ = EΨ (1)

where Ĥ is the Hamiltonian, an operator which is applied to Ψ, to return the eigenvalues representing

the energies of the state, E. If Ψ is the true ground state wave function, the ground state energy of

the system will be returned as the lowest eigenvalue. The full molecular Hamiltonian and has the

following form:

Ĥ =
M

∑
A
− 1

2mA
∇

2
A +

N

∑
i=1
− h̄2

2me
∇

2
i +

e2

4πε0

∑
i< j

1∣∣⃗ri− r⃗ j
∣∣ − N

∑
i=1

M

∑
A=1

ZA

r⃗i− R⃗A
+ ∑

A<B

ZAZB∣∣∣R⃗A− R⃗B

∣∣∣
 (2)

where the first summation is over M ions, mA is the mass of the ion, the second summation is over

N electrons, ri is the position vector of the ith electron, h̄ is the reduced Planck’s constant, me is

the mass of an electron, e is the elementary charge, ε0 is the vacuum permittivity, Z is the atomic

number of the nuclei, and RA is the position of the ions. The first is the kinetic energy operator of

the ions, the second term is the electronic kinetic energy operator, while the last three terms are

potential energy terms resulting from Coulomb interactions between electron-electron, electron-ion,

and ion-ion. To simplify this, Hartree atomic units will be used throughout this work which reduces

the electron mass (me), the expression 4πε0, reduced Planck’s constant, and the elementary charge

to 1.

In practice, finding and exact solution to Equation 2 is unfeasible except for systems containing

a few particles. Describing larger systems requires approximations to be introduced. One of the
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most commonly utilized approximations, the Born-Oppenheimer approximation enforces that the

electrons are moving within a fixed field of ions. This is a reasonable approximation as the larger

mass of ions compared to the mass of the electrons will cause the relative speed of the ions to be

much slower. This allows the wave function to depend only on the coordinates of the electron

(Ψ(⃗ri . . .⃗rN)) and a simplification of the Hamiltonian to:

Ĥ = ∑
i

−1
2

∇
2
i −∑

iA

ZA∣∣∣⃗ri− R⃗A|
∣∣∣
+∑

i< j

1∣∣⃗ri− r⃗ j
∣∣ (3)

Separating this expression into the one-electron and two-electron terms results in:

Ĥ = ∑
i

ĥ(i)+∑
i< j

v̂(i, j) (4)

where ĥ(i) is the one-electron operator that contains the electron kinetic energy and the electron-ion

potential terms, and v̂(i, j) is the two-electron operator that describes the electron-electron repulsion

energy.

Additional approximations are often introduced for the wave function as the full wave function

is often too complex to fully describe. One approximation for the wave function is known as the

Hartree product that treats the full wave function as a product of individual particle wave functions.

This simple product is physically correct for Bosonic systems, but will fail to describe a Fermionic

system as the Hartree product will not enforce that electrons are indistinguishable, i.e. that the wave

function exhibits antisymmetry. To enforce antisymmetry of the wave function, Slater determinants

are used. The Slater determinant has the form:

Ψ =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (x1) χ2 (x1) · · · χN (x1)

χ1 (x2) χ2 (x2) · · · χN (x2)
...

... . . . ...

χ1 (xN) χ2 (xN) · · · χN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣
where χi is a single particle orbital. The single particle orbitals in computational chemistry can

have many forms. Plane waves are often used for materials calculation and molecular systems are
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often represented by molecular orbitals (MOs) composed of linear combination of atomic orbitals

(LCAO) centered on atoms:

|χi⟩ = ∑
v

Cviφv (5)

where χ are MOs and C are the linear coefficients for the atomic orbitals, φ . Within a single

particle basis, the one- and two-electron terms can be expressed as integrals over the orbitals. The

one-electron term becomes

⟨i| ĥ | j⟩=
∫

dx1χ
∗
i (x1)ĥ(1)χ j(x1) (6)

The two-electron term can be expressed as

⟨i j| v̂ |kl⟩=
∫

dx1dx2χ
∗
i (x1)χ

∗
j (x2)v̂(1,2)χk(x1)χl(x2) (7)

which is known as the physicists’ notation, or one can express this in chemists’ notation as:

[i j|kl] =
∫

dx1dx2χ
∗
i (x1)χ j(x1)v̂χ

∗
k (x2)χl(x2). (8)

Finding the an exact many-body wave function for most systems would require an infinite basis.

This is not feasible due to the associated cost and instead the wave function is approximated by a

finite basis. The variational principle can be used to inform the quality of the result obtained by

the approximate wave function. The variational principle states that an approximate wave function

satisfying the boundary conditions of the problem will have an expectation value of the Hamiltonian

that is a minimum for the ground state energy, but will be greater than or equal to the true ground

state energy for a given state:

Ev =

∫
dRΨ∗(R)ĤΨ(R)∫
dRΨ∗(R) Ψ(R)

≥ E0. (9)

Here, R = (⃗r1,⃗r2, . . . ,⃗rN) representing the positions of all electrons, Ev is the energy of the approxi-

mate wave function, and E0 is the true ground state energy. Thus, if a method obeys the variational

principle then the improvement of an approximate wave function will lead to a minimization of the

variational energy.

Currently, the problem is presented as placing identical particles in orbitals. This interpretation

lends itself well to another expression of these equations known as second quantization. Second

quantization expressions will be exceptionally helpful when discussing wave function methods

22



such as Configuration Interaction. The basics of the formalism are given here, but details of can be

found in Reference.43 Second quantization can be understood as a Slater determinant representing

an occupation vector

|nα⟩ = |n1,n2,n3, . . . ,nα , . . .⟩ (10)

where the values of the occupation a Fermionic system will be 1 or 0 to indicate whether an orbital

is occupied or unoccupied. This maintains that the sum over the occupied orbitals in the vector

will result in the total number of electrons ∑α nα = N. The occupation of specific orbitals within

the vector can be indicated through the use of creation operators, a†
i , and annihilation operators ai.

The creation operator will place a particle within the ith orbital, while the annihilation operator will

remove a particle from the ith orbital. The molecular Hamiltonian (non-relativistic and within the

Born-Oppenheimer approximation) in second quantized form is:

Ĥ = ∑
i

ĥ(i)+∑
i< j

v̂(i, j)

Ĥ = ∑
pq

hpqa†
paq + ∑

pq,rs
vpqrsa†

pa†
qaras +VNN (11)

where hpq are the one electron Hamiltonian terms for orbital pair pq, vpqrs are the two-electron

terms for pqrs orbitals, and VNN is the potential resulting from the fixed ions.

2.1 Mean Field Methods

2.1.1 Hartree-Fock Theory

The Hartree-Fock (HF) approach is one of the fundamental approximations for quantum

chemistry applications. This method provides a description of an electron in the mean field of

the other particles. The formulation of the method can be understood as finding the best set of

spin orbitals for a single Slater determinant resulting in the best estimation of our ground state

wave function within the mean field. Following from the variational principle, the best orbitals will
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be those that result in the lowest ground state energy. The energy expression for a single Slater

determinant in the HF formalism is given by:

EHF = ∑
i
⟨i|h |i⟩+ 1

2 ∑
i j
[ii| j j]− [i j| ji] (12)

where i and j are the occupied orbitals. As shown in Equation 8, the full expression of the

two-electron terms in chemists’ notation are:

[ii| j j] =
∫

dx1dx2χ
∗
i (x1)χi(x1)

1
r12

χ
∗
j (x2)χ j(x2) (13)

[i j| ji] =
∫

dx1dx2χ
∗
i (x1)χ j(x1)

1
r12

χ
∗
j (x2)χi(x2). (14)

These terms are components of the Fock operator whose eigenvalues are the optimal MOs to

minimize EHF .

f (x1) = h(x1)+∑
j ̸=i

(J j(x1)−K j(x1)) (15)

where J (Equation 16) is Coulomb interaction of electron in spatial orbital χi with the average

charge distribution of all other electrons. The second term, K , is the exchange operator which does

not have a classical analog, but follows from the antisymmetry requirement of the wave function

(Equation 17).

J (x1) =
∫

dx2|χi(x2)|2r−1
12 (16)

K (x1)χi(x1) =

[∫
dx2χ

∗
j (x2)r−1

12 χi(x2)

]
χ j(x1) (17)

The restriction on the summation of i ̸= j would require a Fock matrix defined for each orbital,

but since cases where i = j, the term [J −K ]χi = 0 the restriction on the sum can be removed

and a single Fock matrix can be used for all orbitals. The HF equations can then be solved by

employing the method of Lagrange multipliers with additional constraints to ensure that the MOs

remain orthonormal.

The HF equations defined within a single particle basis result in the Roothaan equations. Using

an LCAO basis from Equation 5, the matrix form of the equations become:

∑
ν

FµνCν i = εi ∑
ν

SµνCν i (18)
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where µν are indices of the atomic orbitals and i is the index of the molecular orbital, S is the

overlap matrix and C contains the coefficients for the atomic orbitals. The HF approach is an

example of a self-consistent method consisting of iterations of the following steps: forming the Fock

matrix, diagonalizing the Fock matrix, and checking for convergence. The convergence measures

are typically for the energy and/or the density.

Due to the fact that HF is a mean-field approach, electrons are not correlated to one another.

Correlation energy can be important to describe many chemical phenomena. In fact, the difference

in energy of the true system within the nonrelativistic treatment from the energy described with the

HF method is defined as the correlation energy, Ecorr = ETrue−EHF . Methods discussed in the next

sections this are attempting to recover Ecorr through approximate approaches to treat interacting

electrons.

2.1.2 Density Functional Theory

Density Functional Theory (DFT) is a mean field approach that attempts to estimates the missing

correlation energy. DFT is one of the most common methods used in solving the electronic structure

in chemistry applications as it offers an approximation of the effects of electron correlation, while

still having low computational scaling (∼ N3).

Fundamentally, the energy of a system can be understood as the interactions of the electrons

and an external potential induced by the interaction of electrons with nuclei and additional sources:

E = ⟨Ψ| Ĥ |Ψ⟩ = ⟨Ψ| T̂ +V̂ee |Ψ⟩ +
∫

dRνext(R)n(R) (19)

where T̂ and V̂ee are the kinetic energy and electron-electron potential operators, respectively. Since

the Ψ is dependent on vext , all terms in this equation are also dependent on vext . In other words,

the energy can be understood as a functional of the external potential, which can be represented as

E[vext ]. Hohenberg and Kohn postulated that the many-particle wave function can be represented by

a reduced variable of the electron density44,45 It follows that if the exact ground state electron density

is found, the exact ground state energy is recovered. The formulation of a universal functional was

defined which will be valid for any Vext :

FHK[n] = ⟨T ⟩+ ⟨Vee⟩ (20)
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and an energy functional defined as:

EHK[n,vext ] = F [n]+
∫

drvext(R)n(R). (21)

The Hohenberg-Kohn formulation chooses the density as the quantity to form the functional around,

however, this only allows for an explicit expression for the external potential and the average

Coulomb Hartree term, while the rest of the functional is unknown. For quantum chemistry

applications, a further approximation of DFT is often used to simplify finding an accurate energy

functional. Introduced by Kohn and Sham, the theorem states that a non-interacting system can be

used to represent the electron density of the interacting system, where the auxiliary system is chosen

to reproduce some but not all properties of a system.46 This changes the expression of the energy to

EKS[n] = Tip[n]+
∫

dRvext(R)n(R)+EH [n]+Exc[n] (22)

where Tip is now the independent particle kinetic energy, EH is the Hartree potential, and Exc is the

exchange correlation energy can be understood as:

Exc[n] = ⟨T ⟩−Ti p[n]+ ⟨Vee⟩−EH (23)

where ⟨T ⟩ is the true kinetic energy, Tip is the kinetic energy of the system in absence of any

electron-electron interactions, ⟨Vee⟩ is the true electron interaction potential, and EH is the Hartree

potential. From Equation 22, all terms can be solved exactly except for Exc, thus much of the

following discussion describes how Exc values are approximated.47
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2.1.2.1 Exchange-Correlation Functionals

The Exc value is determined through the use of an exchange-correlation functional. Since the

exact form of the functional is not known, there have been many approximations. Families of

functionals exist that are characterized by the information incorporated. The families of functionals

are colloquially referred to as rungs of Jacob’s ladder48 and are discussed briefly here.49 As more

ingredients are incorporated into the functional, the accuracy of the functional generally increases.

However, it must be emphasized that DFT is not systematically improvable. In the following

paragraphs, a short description of the rungs is given.

The first rung contains the local density approximation (LDA) functional, which is based on the

uniform electron gas (UEG). Since there is no analytical form for the LDA correlation functional,

parameterized data from QMC results for the UEG produced by Ceperly and Alder50 are used.

The UEG is a good approximation for homogeneous systems and as a result the LDA functional

can give reasonable descriptions in cases which resemble the UEG, but often falls short for many

molecules, surfaces, and solids containing defects. which are inhomogenous. The second rung in

the ladder contains generalized gradient approximation (GGA) functionals which improve upon

LDA functionals by introducing inhomogeneity correction factors through the density gradient.

GGA functionals correct for the overestimation of the interaction energy of the LDA functional. The

next rung of Jacob’s ladder contains meta-generalized gradient approximation (mGGA) functionals,

which are an extension of GGA functionals that include further improvements to the describe the

density. Two different improvements can be included, the Laplacian of the density or the kinetic

energy density. The flexibility in the functional form provided by the inclusion of the kinetic energy

density make it a more common functional component. The mGGA functionals can improve upon

GGA results, but are often more sensitive to the integration grid.

The functionals listed above all exhibit self-interaction error that results from the approximate

exchange formulation. Hybrid functionals introduce exact exchange from HF in an attempt to

correct for self-interaction error.51,52 However, the inclusion of exact exchange increases the scaling

and memory requirements of the calculation. Hybrid functionals will be explored in Chapter 4

as a tool to describe hydrogen chemisorbed to the surface of graphene. Further improvements

to the functional form to correct for self-interaction error are incorporated into range separated
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functionals.53 Beyond these main rungs of Jacob’s ladder, there are other improvements to functional

accuracy which can be based on dispersion corrections or inclusion of data from wave function

methods.54–57

The choices of functional are vast, but the lack of a systematically improvable framework can

bring result in variability in the DFT results. Additionally, there are many systems which are a

formidable challenge for DFT. Systems which exhibit strong correlation are poorly described by

DFT. This is due to strong correlation requiring multireference wave functions to be captured

accurately. The single reference nature of DFT leads to shortcomings in the description of these

systems. The metal-insulator transition of Mott is a well-studied example.58,59

There have been efforts to incorporate strong correlation into various functionals.60–62 Another

approach is the use of the Hubbard model as a way to capture the effects of strong correlation.63,64

The model can be used as a simplification of a solid state system where long range interaction are

ignored, and site-wise interactions can be introduced by U and J parameters. The U parameter

captures strong on-site Coulomb interaction of localized electrons with an additional Hubbard-like

term and J is an exchange coupling term. These methods have been successful in many cases.65

Though, the selection of the U and J parameters are often empirically determined diminishing the ab

initio nature of DFT. More recently, the parameters have been determined through machine learning

approaches trained on QMC-based calculations.56

There have also been efforts to go beyond standard DFT to describe strongly correlated sys-

tems.66 One such approach for materials is the use of model Hamiltonians.67 These approaches

involve downfolded Hamiltonians, tight-binding models, dynamical mean-field theory (DMFT).

DMFT methods map a many-body lattice problem to a local model called an impurity model.68,69

This approach has been used to successfully describe the Mott insulator transition mentioned

above.70
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2.2 Wave Function Methods

2.2.1 Configuration Interaction

In the Configuration Interaction (CI) approach, the wave function becomes a linear expansion

of Slater determinants.

|ΨCI⟩ = ∑
k

cCI
k |D

CI
k ⟩ (24)

ECIcCI
k = ∑

l
⟨DCI

k | Ĥ |D
CI
l ⟩ (25)

The level of excitation contained in the CI can be truncated to only include certain levels of

excitations. The wave function then can be expressed in second quantized form as:

|ΨCI⟩ = (1 + ∑
ia

ca
i a†

aai + ∑
i jab

cab
i j a†

aa†
baia j + . . .) |ΦHF⟩ (26)

where a and a† are discussed in Chapter 2 and i and j are occupied orbitals and a and b are

virtual orbitals and ΦHF is a reference determinant of HF orbitals, though other single determinant

references can be used. If all possible excitations are chosen, this is known as Full Configuration

Interaction (FCI). FCI provides the exact solution within a single particle basis. The approach is

size extensive (energy grows linearly with the number of electrons) and size consistent (energy of

the system is strictly separable.) However, the drawback of this method is the scaling of N! as it

considers all N electrons in 2n orbitals. This scaling can be slightly reduced by enforcing an Sz

value ( the z component of the angular momenta), but the scaling still remains exponential.

2.2.1.1 Truncation of the Full Configuration Interaction Space

In many instances, many of the Slater determinants in the full Hilbert space are not necessary

for an accurate descriptions of the system.71,72 For instance, in many systems the FCI expansion

places the largest coefficient on the HF determinant. If the coefficient on the HF determinant

is large enough, a small determinant expansion can often provide accurate results. Once one is

considering a truncated CI, the methods are no longer guaranteed to be size-consistent or size-

extensive. Determining a subspace of the full Hilbert space can be done in two ways:

• choosing only certain orbitals and/or allowing only certain excitations

29



• selected CI approaches: a family of algorithms which incorporate determinants in a system

agnostic way

A reduction of the number of the determinants can be accomplished through a restriction on

the level of excitation included. If only single excitations are considered, this is referred to as

Configuration Interaction Singles (CIS), where Configuration Interaction Singles and Doubles

(CISD) incorporates singles and doubles, and this pattern continues for including triple CISDT and

quadruple CISDTQ excitations. Restrictions on the orbitals also allows for a significant reduction

in the CI cost. This approach defines an active space of orbitals that excitations are allowed to and

from. One form of this type of restriction is freezing the core orbitals. On the other end of things,

the high-lying virtual orbitals can be frozen since the excitations into this space offer only small

contribution to the wave function. However, this does lead to an ambiguity in the choice of active

space for a given system. If one is defining a subset of orbitals and allowing all excitations within

that subset, this approach is known as Complete Active Space Configuration Interaction (CASCI).

The reduction of both excitation level and orbital spaces is also a possibility.

In selected CI methods, the determinants are not chosen a priori but instead are selected during

a process based on how the determinant contributes to the FCI wave function. There are various

formulations of selected CI approaches, some of which were first presented in 1960,73 but selected

CI methods are experiencing a renaissance in recent years. Some of the formulations are heat

bath-CI,74,75 full configure interaction quantum Monte Carlo (FCIQMC),76 adaptive CI,77 and

perturbatively selected configuration interaction scheme (CIPSI).32,33 The work presented here

employs the CIPSI approach.

In the CIPSI method, an initial zeroth-order wave function is defined as an initial determinant

expansion:

|Ψ(0)⟩= ∑
I

cI |DI⟩ (27)

where I = 1 if using a single determinant or I > 1 if a small multideterminant wave function was

generated from a truncated CI scheme, such as CIS. The variational energy, E(0), can be evaluated

as:

E(0) =
⟨Ψ(0)| Ĥ |Ψ(0)⟩
⟨Ψ(0)|Ψ(0)⟩

. (28)

From the |Ψ(0)⟩, determinants external to this reference space are generated, |α⟩. The external
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determinants are the set of all single and double excitations from the reference space. The set of

|α⟩ determinants is evaluated using a perturbative criteria, the Epstein-Nesbet perturbative energy

(Equation 29) to give an estimate of the correlation energy recovered by the inclusion of |α⟩ into

the variational wave function:

e(2)α =
⟨Ψ(0)| Ĥ |α⟩2

E(0)−⟨α|Ĥ|α⟩
. (29)

This can provide a second order energy correction to the variational energy

E(2) = ∑
α

e(2)α (30)

where E(2) gives an approximation of the correlation energy that Ψ(0) is neglecting. A CIPSI

iteration consists of the following steps:

1. Define a variational wave function which is an expansion over a set of internal determinants, I

|Ψ(0)⟩= ∑
I∈In

cI |DI⟩

2. Assess the variational energy according to Equation 27

3. Generate An, the set of all external determinants α /∈In and ⟨Ψ(0)| Ĥ |α⟩ ̸= 0

4. Compute the perturbative contribution according to Equation 30

5. The α determinants with the largest e(2) contribution are incorporated into In+1

6. Iterate until the number of determinants included in the space exceeds a certain threshold or the

perturbative contribution to the energy from the external set of determinants contributes less

than a certain threshold.

The CIPSI method has its own formulation of calculating excited states, forces, and dipoles.36,78

However, it is often used a trial wave function for QMC techniques.37,79
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2.2.2 Coupled-Cluster

The CC approach uses an exponential ansatz of the form

ΨCC = eT̂ |Φ0⟩ (31)

where Φ0 is a reference wave function. The T̂ is a cluster operator which contains degrees of

excitations in the form T̂ = T̂1+ T̂2+ T̂3+ . . . and T̂1 = ∑ia tiaa†
i aa. The amplitudes of the cluster

coefficients and the ground state energy, E0, are found by solving the following set of nonlinear

equation:

⟨Φ0|e−T̂ ĤeT̂ |Φ0⟩ = E0,⟨Φ∗|e−T̂ ĤeT̂ |Φ0⟩ = 0 (32)

where Φ∗ is a specific excitation. This exponential ansatz guarantees the CC wave function is size

consistent and size extensive.

If one considered all excitation operators, the FCI wave function would be recovered as would

FCI’s prohibitive scaling. In practice, only certain excitation operators are used. In Coupled Cluster

Singles and Doubles (CCSD) only single and double excitations are considered. This approach

scales as n6 where n is the number of spatial orbitals. However, failings of CCSD in certain cases

motivate the inclusion of higher order excitations. If triple excitations are included, the CCSDT

scales as n8, which is prohibitive for many systems. Instead, the Coupled Cluster Singles, Doubles,

and Perturbative Triples (CCSD(T)) can be used that approximates the effect of the triple excitations

by a perturbative correction scales and has a computational scaling of n7. This method is often

referred to as the “gold" standard in computational quantum chemistry.

Additionally, as one makes trade-offs of treating larger systems sizes with the CC methods

containing a lower number of excitations to achieve a lower scaling, some chemical phenomena

will be poorly described. A method which attempts to overcome having to make this trade-off is

Domain-based Local Pair Natural Orbital Coupled-Cluster (DLPNO), which is a linear scaling

approximation to the CC methods.80
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2.2.3 Equation-of-Motion

CC methods can also be used to obtain excited states when used with linear response theory or

Equation-of-Motion (EOM), which can help explore photochemistry and spectroscopy questions.

The typical methods for excited state properties are ∆E methods are solving separately for the

energy of the ground state and an excited state. Equation-of-Motion (EOM) methods instead allow

us to solve for the excited state from a ground state reference.

Ψk = R |Φ0⟩ (33)

In particular, this discussion focuses on EOM-CC methods. The CC equations can be written

to express the impact of the cluster expansion on the reference state in the form of a normal

Hamiltonian81

ĤN = Ĥ−⟨Φ0| Ĥ |Φ0⟩ (34)

where the CC equation becomes:

ĤNeT̂ |Φ0⟩ = ∆E0eT̂ |Φ0⟩ (35)

where the correlation energy is ∆E0 = E0−⟨Φ0|eT Ĥe−T |Φ0⟩. These same expressions can be

used for the excited state, Ψk. The solution to the Schrödinger equation becomes

ĤN |Ψk⟩ = ∆Ek |Ψk⟩ (36)

ĤNR |Ψ0⟩ = ∆EkR |Ψ0⟩ (37)

where ∆Ek = Ek−⟨Φ0| Ĥ |Φ0⟩ and Ek is the energy of the targeted state.

Subtracting the EOM ansatz inserted into the Schrödinger equation (ĤR |Ψ0⟩ = EexR |Ψ0⟩)

from the application of the R operator onto the ground state (RĤ |Ψ0⟩ = E0R |Ψ⟩) results in:

[
ĤN ,R

]
|Ψ0⟩= ∆ωkR |Ψ0⟩ (38)

where ωk = Ek−E0 and represents the energy of the transition studied. The CC exponential ansatz

of Equation 31 can be substituted and the exponential cluster operator introduced through left

multiplication resulting in

e−T̂ [H,R]eT̂ |Φ0⟩= ∆ωke−T̂ RkeT̂ |Φ0⟩ . (39)
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If the normal-ordered Hamiltonian is reordered to:

H̄N = ⟨Φ0|e−T̂ ĤNeT̂ |Φ0⟩ (40)

the EOM equations can be expressed as an eigenvalue problem of H̄N :

H̄NR |Ψ0⟩ = ωkR |Ψ0⟩ (41)

However, H̄N is not Hermitian and thus, the right and left eigenvectors do not need to agree, but

do exhibit biorthogonality. The right-hand solution is shown in Equation 41 and the he left-hand

solution is a de-excitation operator, L̂:

⟨Ψ0| L̂H̄N = ⟨Ψ0| L̂ωk (42)

The excitation operator has a similar form of the cluster operator in CC methods:

R = r0 +∑
i

∑
a

ra
i a†

aai +∑
i, j

∑
a,b

rab
i j a†

aa†
baia j + ... (43)

The r coefficients can be solved through a coupled cluster approach. Due to the similarity in

form, this operator can use truncation schemes akin to those used in CC. The EOM solution will

often target a specific property such as an excitation energy, ionization potential, electron affinity,

or others. The solution results from a diagonalization of the H̄N operator within the appropriate

configurational subspace for the property. For example, the EE-EOM-CCSD subspace would be for

|Φa
i ⟩ and |Φab

i j ⟩

The EOM method shares similar scaling to CC when the same level of excitations is included

in the operator. This means that although the method provides a clear path to excited states, the

application will be restricted by scaling. DLPNO implementations of EOM exist to overcome the

scaling restrictions.82–84
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2.3 Stochastic Methods

The Hilbert space of quantum systems containing over a few atoms and a few orbitals is so large

that many-body integration becomes impossible. This is part of the problem referred to as the curse

of dimensionality A possible work around is to sample the phase space through a stochastic Monte

Carlo (MC) method.

2.3.1 Classical Monte Carlo

Stepping away from the electronic structure perspective, Monte Carlo integration methods

sample a multidimensional integral at a randomly selected set of points instead of assessing the

integral on a grid as is done in standard integration techniques. To generalize this, the naive MC

approach will take a function, sample random points within a volume element that one is integrating

over, and the values of the function at random points returned. Due to the law of large numbers, the

expected value of the integral can be understood as the mean result of the samples. In these methods,

the statistical error and statistical variance must be known to assess the reliability. This method is

based on a given probability distribution, Π, a random walk can be taken through the possible states

contributing to this distribution. This problem can be cast as a Markov chain where the samples

become a series of events which are described as a transition matrix T (s→ s′), where a transition to

s′ from the current state s only depends on s and no other states. This characteristic describes the

concept of ergodicity if the starting state information is unknown after a certain number of steps.

This requires that 1) one can move from one state to any other state in a finite number of steps with

non-zero probability, 2) the transition matrix is non-periodic, and 3) average return time to any state

is finite.

Detailed balance can be enforced to ensure only the intended distribution is sampled. In other

words, the flux from state “A" to state “B" is equal to the flux of going from “B" to “A". In practice,

the Metropolis-Hastings algorithm is used to enforce detailed balance. The Metropolis-Hastings

algorithm is given in Algorithm 1 and a simple visualization is shown in Figure 1.
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Algorithm 1: Metropolis-Hastings algorithm
1. Define the transition matrix and probability distribution

2. Set an initial state

3. Iterate M steps

• Sample s′ from T (s(n)→ s′), where s(n) is the state at current iteration

• Calculate the acceptance ratio A = Π(s′)T (s′→s(n))
Π(s(n))T (s(n)→s′)

• Accept or reject by drawing a random number from a un ∼U(0,1)

s(n+1) =

s′ A > un

s(n) A < un

2.3.2 Considerations for using MC for quantum systems

In this work and in many QMC methods, a correlated Slater-Jastrow wave function is used.85–88

ΨSJ(R) = D(ϕk(xi))e∑i< j u(xi,x j) (44)

where D is a determinant of the orbitals, ϕk, and the exponential term is the Jastrow correlation

factor. This can be reformulated over all electrons and expressed as correlations through 1-, 2-, and

3-body terms as

U(R) =
I

∑
i

u(riI)+
N

∑
i< j

u(ri j)+
N

∑
i< j

M

∑
I

u(riI,r jI,ri j). (45)

The Jastrow factor can have various forms.89,90 The forms used within this work are described in

subsequent the chapters.

2.3.3 Variational Monte Carlo

The variational Monte Carlo (VMC) approach is based on the variational theorem. The method

is used to optimize the Jastrow parameters of the trial wave function. In VMC a random walk is

used to sample the distribution:

Π(R) =
|ΨT (R)|2∫
|ΨT (R)|2 dr

(46)
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Figure 1: Schematic of a random walk, where a move is proposed from the black filled dot to

the purple dot within the gray square. The acceptance of the move will be determined by the

Metropolis-Hastings algorithm. Figure adapted from.45

where ΨT is the trial wave function. Equation 9 can then be rewritten as an average value of the

“local energy" over the distribution ΠT (R).

EV =
∫

dRΠT (R)EL(R) = ⟨EL(R)⟩Π (47)

where the local energy is defined as:

EL = Re
ĤΨT (R)
ΨT (R)

(48)

and an average variational energy over a number of steps in the random walk can be defined as:

ĒV =
1
M

M

∑
n=1

EL(R(n)). (49)

As discussed, the error bar information of the random walk is a necessary assessment of the

reliability of the results. For VMC, the variance of the energy can be assessed as

vT =

∫
dR |ΨT |2 (EL(R)−EV )

2∫
dR |ΨT |2

(50)

and can be expressed as an average variance value over M steps:

v̄T =
1
M

M

∑
n=1

(EL(R(n)) − ĒV )
2 (51)

This method is restricted by the quality of the ΨT . In other words, even with sufficient sampling,

VMC will produce an exact answer only if ΨT = Ψexact .
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2.3.4 Projector Monte Carlo

Projector Monte Carlo is an umbrella term for a variety of methods that all filter out the ground

state by repeatedly applying a many-body projector with a random walk.45,91 This formulation can

be understood if one begins with the time-dependent Schrödinger equation:

i
dΨ(R, t)

dt
= ĤΨ(R, t) (52)

As discussed, Ψ can be expressed as a linear combinations of eigenfunctions:

Ψ(R) = ∑
j

c jϕ j(R) (53)

Ĥϕi = Eiϕi (54)

To arrive at a form to be used with projector methods, a transformation to imaginary time through

the substitution t→ iτ is done
dΨ(r,τ)

dτ
= ĤΨ(r,τ). (55)

A formal solution to the imaginary time Schrödinger equation is

|Ψ(τ1 +δτ)⟩= e−Hδτ |Ψ(τ1)⟩ (56)

this can then be expanded into energy eigenstates, as is done in Equation 53

|Ψ(δτ)⟩=
∞

∑
i=0

cie−εiδτ |ϕi⟩ . (57)

Finally, a shift by ET is introduced to ensure a stationary solution as τ → ∞

|Ψ(δτ)⟩=
∞

∑
i=0

cie−εi−ET δτ |ϕi⟩ . (58)

Thus as imaginary time progresses through the repeated application of the projector, any state that is

not orthogonal to the ground state and is higher in energy will be dampened out leaving the ground

state projected out.

Here, the discussion will focus on diffusion Monte Carlo (DMC) as that is the main projector

Monte Carlo approach used in this work. The DMC projector is

ĜD = e−∆τ(Ĥ−ET ) (59)
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where ET is the trial energy and is introduced as a way to control the normalization and ∆τ is the

time step in imaginary time. However, the exponential operator requires the diagonalization of Ĥ

within a continuous real space basis, making ĜD intractable for many interesting systems. Instead

the application of the operator can be done in the short time expansion, which is made possible

through Trotter’s formula:92,93

E−τ(T̂+V̂ ) = lim
n→∞

(e−∆τT̂ e−∆τV̂ )n (60)

Furthermore, instead of sampling all real space configurations, the projection is carried out through

a random walk through the space of electron coordinates. The common approach to sampling is a

branching scheme where one is duplicating and terminating random walks. One can consider the

effect of the random walk through the impact of the Hamiltonian components individually. The

kinetic energy term in the absence of the potential term leads to a diffusive step and the random

walk progresses from R to R’ according to the diffusion probability:

Pd(R′← R) = (2π∆τ)
3N
2 exp(|R−R′|2/∆τ) (61)

If the potential term is considered in the absence of the kinetic term, branching steps are defined

according to exp(V (R′)−ET ). However, since T̂ and V̂ do not commute, an error is incurred. The

error can be controlled through alternating between branching and diffusive steps as well as by

utilizing the second order Trotter-Suzuki formula.94

Beyond the formulation of the method, there are a few practical considerations that must be

made to the algorithm to produce reliable results with efficient sampling.

Importance Sampling: Given a long enough propagation through imaginary time the ground state

will be projected out for any initial guess wave function which adheres to the boundary conditions

of the problem. However this is often unstable and inefficient. Instead, one can utilize importance

sampling, which introduces a guiding wave function, ΨG, that approximates the true ground state

wave function. The projector becomes

G(R← R′) = ΨG(R)⟨R|e−∆τ(Ĥ−ET ) |R′⟩ΨG(R′)−1 (62)

which results in higher sampling in areas where ΨG is large.
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Fixed Node Approximation: The Fermion wave function is not a probability distribution as it will

have positive and negative regions. The most common way to address the sign problem is to forbid

moves that would change the sign of the trial wave function. The fixed-node energy is an upper

bound to the exact ground state energy. The incorporation of this approximation is referred to as

FN-DMC The DMC investigations presented in Chapters 4 and 5 will utilize FN-DMC approach.

2.3.4.1 Considerations for Periodic Systems

In treating extended systems, there is often an interest in describing the behavior as one

approaches the thermodynamic limit. Modeling an infinite system by a smaller simulation cell

will incur some finite size errors as a periodic image may impact the simulation cell nonphysically.

Finite size effects for QMC calculations result from changes in the correlation functions as a

function of the electron density and differences resulting from representing the integration of k-

points on a finite mesh in reciprocal space as a summation.95 The finite size errors from interaction

between simulation cells can happen when the correlation length exceeds the simulation cell size.

These errors can typically be addressed by increasing the simulation cell size, extrapolation and/or

correction techniques, and twist boundary conditions.96 Twist boundary conditions are employed in

this work. Twist boundary conditions express the boundaries of a periodic wave function in terms

of an angle θα . A value of θα=0 is equivalent to periodic boundary conditions, but other angles

allow for a rotation of the phase of the particles in reciprocal space as a particle reaches a boundary.

This approach accomplishes a similar goal to that of Brillouin zone integration done in many DFT

calculations. Twist boundary conditions only incur a small computational cost since accumulating

the average this way also reduces the statistical noise of the calculation. Although twist boundary

conditions ease the impact of using a finite simulation cell, additional corrections are needed. For

instance, the long-range Coulomb potential cannot be modeled with the typical expression of 1
r ,

but instead relies on approximations such as the Ewald summation or model periodic Coulomb

potential.97,98 Impacts of finite size effects on the kinetic energy can be corrected using the Chiesa

correction.99 The correlation length becomes very large or diverges at phase transitions, though

methods have been developed to perform finite size extrapolations.100,101
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3.0 Fragmentation Methods

To overcome the high scaling of computational cost with system size, fragment approaches

approximate the energy and other properties of the system by partitioning into subsystems, where

the final result becomes the accumulation of the parts. One potential advantage of fragmentation is

to reduce the computational scaling from O(N p) to O(Nq
frag f p), where p is the scaling exponent for

the chosen electronic structure method, where N f rag is the number of fragments, f is representative

of the fragment size, and q is an exponential specific to the fragmentation approach. Judicious

choices in the fragment approach can lead to a reduction in overall computational scaling (q < p),

and in best cases linear scaling in the number of fragments can be obtained, O(Nfrag f p)≈O(Nfrag),

where constant fragment size f is assumed. Another appealing feature of fragment approaches is

that parallelization is facile since much of the workload for the individual subsystems can be treated

separately, which provides the potential to efficiently utilize high performance computing resources

to reduce the overall wall time of calculations. Beyond these computational advantages, fragment

approaches can quantify magnitudes and roles of inter-fragment interactions that can deepen

chemical understanding similar to analysis techniques such as energy decomposition analysis

or symmetry adapted perturbation theory.102–106 A perhaps surprising application of fragment

approaches was proposed for quantum computing, where it may offer a route to overcome the

challenges of system-environment interactions which hamper the integrity of results for quantum

simulations of large systems. Instead of treating an entire (large) system on a quantum computer,

fragment approaches were suggested so that the system could be partitioned into subsystems

which lead to circuits that are less susceptible to errors, while incorporating the most important

chemical interactions in the quantum domain.107 In summary, fragment approaches offer useful

features ranging from computational efficiency over chemical insights to potential applications in

unprecedented fields such as quantum computing.

The accuracy and efficiency of fragment approaches hinges on a number of factors, including

the choice of electronic structure treatment for each fragment, approaches to incorporate inter-

fragment interactions, and the specific choices for partitioning of the system. Significant attention

has been devoted to the treatment of inter- and intra-fragment interactions. These approaches will
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be discussed briefly, but are beyond the scope of the current work and interested readers are directed

towards a number of helpful reviews.40,108 In contrast, this work investigates how a number of

strategies for the selection of fragments impact the accuracy and efficiency of the results.

3.1 Inter-fragment Treatments

Although improving the treatment of inter- and intrafragment interactions is not a focus of the

current body of work, a brief overview of the main families of methods are given for context. These

methods can be categorized as, many-body expansion (MBE) approaches, and multilayer composite

approaches. (“ONIOM” scheme), approximate functional group additivity approaches.

The many body expansion approaches can have many flavors, but they essentially look to

take the energy of each fragment and estimate the energy of including many body terms into the

energy. The estimation of many-body effects to the energy is done by studying groups of fragments

according to Equation 63

E = ∑
I

EI +∑
I

∑
J>I

∆EIJ +∑
I

∑
J>I

∑
K>J

∆EIJK + . . . (63)

where the ∆E terms represent additions of the many body terms to the initial fragment energy,

i.e., the energy of the isolated fragments subtracted from the energy of combined fragment. For a

concrete example, the two body form of this term is

∆EIJ = EIJ−EI−EJ (64)

The popular quantum chemistry method of fragment molecular orbitals fall under the umbrella of a

MBE. The many-body terms will be truncated at a certain level of interaction.

A different family of methods are known as multilayer approaches which break the system into

areas of interest to estimate the full system as a combination of subsystems treated at varying levels

of theory. This in theory would allow one to employ a high level of theory to a realm which one

knows interesting physics is occurring, but then switch to a medium or low level theory for those

areas participating less in the area of interest. Methods that fall under this family are ONIOM109–111

and molecule-in-molecule (MIM) approaches.112–114 The third type of fragmentation method
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attempts to determine the size of the fragments through an iterative scheme until convergence of the

property with changing fragment size.
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4.0 The Binding of Atomic Hydrogen on Graphene from Density Functional Theory and

Diffusion Monte Carlo Calculations

The test and figures in this chapter have been adapted from A. Dumi, S. Upadhyay, L. Bernasconi,

H. Shin, A. Benali, and K.D. Jordan The binding of atomic hydrogen on graphene from density

functional theory and diffusion Monte Carlo calculations, J. Chem. Phys., 2022, 156, 144702,

DOI:10.1063/5.0085982.with the permission of AIP Publishing. The author’s contribution to the

work included performing trial wave function generation calculations, generation of images, setting

up the QMC workflow with S. Upadhyay, along with performing analysis and assisting with figures,

and editing/revising the manuscript.

4.1 Summary

In this work Density Functional Theory (DFT) and diffusion Monte Carlo (DMC) methods are

used to calculate the binding energy of a H atom chemisorbed on the graphene surface. The DMC

value of the binding energy is about 16% smaller in magnitude than the Perdew-Burke-Ernzerhof

(PBE) result. The inclusion of exact exchange through the use of the Heyd–Scuseria–Ernzerhof

(HSE) functional brings the DFT value of the binding energy closer in line with the DMC result. It

is also found that there are significant differences in the charge distributions determined using PBE

and DMC approaches.

4.2 Introduction

The unique electronic, optical, and transport properties of graphene make it an important system

for a wide range of applications, many of which involve or are impacted by the adsorption of atoms

or molecules. To bring these applications to fruition, a deeper understanding of the interaction of

atoms and molecules with graphene is required, and, not surprisingly, this has been the subject of
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several experimental and theoretical studies.2–14

The adsorption of H atoms on graphene has been the subject of multiple studies.3–6,8,115 It is

known that there is both a weakly absorbed state in which barriers for diffusion are small and a

much more strongly bound chemisorbed state,116,117 which is the focus of this work. Chemisorbed

H atoms open up the band gap and allow for tuning of electronic properties.118 It has been demon-

strated that even a single chemisorbed hydrogen atom causes an extended magnetic moment in the

graphene sheet.119,120 On the other hand, there is evidence that given the ready diffusion of H in the

physisorbed state, the H atoms tend to pair up on the surface leading to non-magnetic species.120

Finally, interest in the hydrogen/graphene system has also been motivated by the potential use of

graphene and graphitic surfaces for hydrogen storage.14 In spite of the interest in H chemisorbed on

graphene, we are unaware of experimental values of the binding energy.

Most computational studies of adsorption of atoms and molecules on graphene have employed

Density Functional Theory (DFT), primarily due to its favorable scaling with system size, allowing

for the treatment of larger periodic structures. However, a reliable theoretical description of

interactions at the graphene surface has proven to be challenging for DFT.2,7,8,15 In recent years

considerable progress has been made in extending correlated wave function methods to periodic

systems.79,121–125 Among these methods, the diffusion Monte Carlo (DMC)16 method, which is

a real-space stochastic approach to solving the many-body Schrödinger equation is particularly

attractive given its low scaling with the number of electrons and high parallelizability. DMC also has

the advantages of being systematically improvable and its energy being much less sensitive to the

basis set employed than methods that work in the space of Slater determinants. In DMC calculations,

the atomic basis set is important only to the extent that it impacts the nodal surface. DMC has been

used to describe the adsorption of various species on graphene including O2,10 a water molecule,9,17

and a platinum atom.11 In a study of a physisorbed H atom on graphene, Ma et al. found that

different DFT functionals gave binding energies ranging from 5 to 97 meV, while DMC calculations

gave a value of only 5 ± 5 meV.8 Various DFT calculations utilizing the Perdew-Burke-Ernzerhof

(PBE)126 and Perdew-Wang (PW91)127 functionals predict the chemisorbed H atom species to

be bound by 480 to 1,440 meV.128–136 However, this large spread is primarily a result of some

calculations employing small supercells resulting in an unphysical description of the low-coverage

situation, too small a k-point grid, or small atom-localized basis sets that do not adequately describe
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the binding and introduce large basis set superposition error (BSSE). In the present work, we use

the DMC method to calculate the binding energy of H to graphene in the chemisorbed state.

4.3 Methods

All calculations reported in this study used a 5x5x1 supercell of graphene, as it was large enough

to make inconsequential the interaction between periodic images of the adsorbed hydrogen atom

and to assure that there are essentially unperturbed C atoms between the buckled regions in adjacent

images in the x and y directions. The geometries of graphene, both pristine and with a chemisorbed

H atom, were provided by Kim et al.,137 and were obtained using the PBE+D3 DFT method.126,138

For all systems, a vacuum spacing of 16 Å was used.

4.3.1 Density Functional Theory Calculations

The single particle orbitals used in the trial wave functions for variational Monte Carlo (VMC)

and DMC calculations were calculated using the PBE functional with the correlation consistent

electron core potential (ccECP)139,140 pseudopotentials and a plane wave basis with an energy cutoff

of 3,400 eV. Monkhorst-Pack k-point grid meshes141 were employed with a 13.6 meV Marzari-

Vanderbilt-DeVita-Payne cold smearing of the occupations.142 The PBE results were converged at

a 6x6x1 k-point grid to 1 meV for graphene and graphene with an adsorbed hydrogen atom. The

hydrogen atom trial was generated using a 1x1x1 k-point grid. Convergence studies can be found in

Table S1 and S2 of the Supplementary Material.

In addition to the PBE calculations used to generate the trial wave functions for DMC, DFT

calculations were carried out with the PBE0143 and Heyd–Scuseria–Ernzerhof (HSE) functionals144

to determine if inclusion of exact exchange proves important for the adsorption energy. Due to the

inclusion of exact exchange, these calculations would be computationally prohibitive in a plane wave

basis, particularly with the high energetic cutoff required by the ccECP pseudopotential. For this

reason, they were carried out all-electron with the POB-TZVP Gaussian type orbital (GTO) basis

set.145 Due to the use of GTOs, these calculations suffer from basis set superposition error (BSSE),
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which we corrected using Grimme’s geometry-dependent counterpoise correction scheme.146,147

This correction resulted in a 113 meV reduction in the magnitude of the binding energy when using

the PBE0 functional. For the PBE0 and self-interaction calculations, a 12x12x1 k-point grid was

used to assure binding energies converged to within 2meV. Convergence data are supplied in Table

S3 of the Supplementary Material.

The plane wave DFT calculations were carried out with the QUANTUM ESPRESSO version

6.3 code.148–150 The Gaussian basis DFT calculations were carried out with CRYSTAL17,151,152

save for the HSE calculation of the isolated hydrogen atom which was carried out using NWChem

version 6.8153 using the same basis as the calculations in CRYSTAL17.

4.3.2 Quantum Monte Carlo Calculations

DMC is a projector quantum Monte Carlo (QMC) method, solving the Schrödinger equation

in imaginary time τ = it; any initial state |ψ⟩, that is not orthogonal to the true ground state |φ0⟩ ,

will evolve to the ground state in the long time limit. When dealing with Fermionic particles, the

DMC method requires the use of the fixed-node approximation154 to maintain the antisymmetric

property of the wave function. For efficient sampling and to reduce statistical fluctuations, we use

a Slater-Jastrow trial wave function fixing the nodes through a Slater determinant comprised of

single-particle orbitals, which, in this work, are expanded in a B-spline basis. The Jastrow factor

is a function that reduces the variance by explicitly describing dynamic correlation. The Jastrow

factor contains terms for one-body (electron-ion), two-body (electron-electron) and three-body

(electron-electron-ion) interactions. The one- and two-body terms were described with spline

functions,155 while the three-body terms were represented by polynomials.156 10 parameters were

used for the one-body terms per atom type, and 10 parameters were employed per spin-channel for

the two-body terms. The cutoffs on the one- and two-body terms were fixed to the Wigner-Seitz

radius of the simulation cell. The three-body terms were comprised of 26 parameters per term with a

cutoff of 10 Bohr. The parameters in the Jastrow factor were separately optimized for each geometry

with the linear method157 using VMC. To reduce the cost of the DMC calculations as well as to

reduce the fluctuations near the ionic core regions, ccECP pseudopotentials were used to replace the

core electrons.139,140 The ccECP pseudopotentials were designed to be used with high-accuracy
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many-body methods. The non-local effects due to the pseudopotentials were addressed using the
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Figure 2: Perpendicular view of the simulation cell (top) and a parallel view obtained by projection

onto the xz-plane (bottom). The carbon atoms are colored gray and the hydrogen atom is denoted as

white. For the perpendicular view, the cyan line represents the slice of the cell used to visualized

electron density differences. For the parallel view, the dotted cyan line represents the mean carbon z

position. Blue outlined atoms are greater than one standard deviation away from the mean carbon z

position, whereas yellow atoms are between 0.5-1.0 σ .

determinant-localization approximation along with the t-moves method (DLTM).158,159 Finite size

effects were addressed using twist averaging.96 The twist angles were chosen to be the symmetry

unique points of the 6x6x1 k-point grid shifted by half a grid step away from the gamma point in

each direction.

The DMC calculations were performed using the branching scheme proposed by Zen et al.

(ZSGMA)160 with a population control target of 8,192 walkers and a time step of 0.005 a.u., which

represented a balance between computational cost and finite timestep error in previous work.10

We define the binding energy as

Eb = Edgr+H− (Egr +EH) (65)
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where Edgr+H is the energy of the distorted graphene sheet with a chemisorbed atomic hydrogen,

EH is the energy of a hydrogen atom, and Egr is the energy of a pristine graphene sheet. In the

chemisorbed state, the hydrogen atom bonds directly over a carbon atom, causing this carbon to

be pulled out of the sheet towards the hydrogen.161,162 The adjacent carbons are also pulled in the

direction of the hydrogen leading to a distorted graphene sheet.

The QMC calculations were carried out using the QMCPACK code, with the workflow between

QUANTUM ESPRESSO and QMCPACK managed by Nexus.163–165 Figures 2 and 4 were rendered

with matplotlib166 and the density plots were generated using VESTA.167

4.4 Results & Discussion

4.4.1 Binding Energy

Table 1 contains a summary of the binding energies of a hydrogen atom chemisorbed on

graphene from this work and selected values from previous publications using the PW91 and PBE

functionals. These literature values range from -790 to -980 meV. This wide spread of binding

energies is caused by (1) the use in some studies of small supercells for which there are sizable

interactions between the CH groups in adjacent cells, and (2) the use in some studies of small

atom-centered basis sets without corrections for BSSE. Our calculations with the PBE functional in

conjunction with a plane wave basis set give a binding energy of -821 meV. This should be contrasted

with our -691 ± 19 meV DMC result. There are several possible sources for the difference between

the PBE and DMC values of the binding energy. These include errors in the DFT calculations due

to self-interaction and planar graphene having more multiconfigurational character than H/graphene,

with this being better described with DMC than with PBE. We note that the inclusion of the D3

dispersion correction with the PBE functional only changes the magnitude of the binding energy by

0.03 eV.

The PBE binding energy is 51 meV lower in magnitude in the plane wave than in the GTO

basis set when the same k-point grid is used, and this value is used as a correction for the basis set

incompleteness error for the results with other functionals in Table 1. The calculations in the GTO
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Table 1: Binding energy (meV) of a hydrogen atom chemisorbed on graphene calculated with

various DFT functionals and with DMC.

Method Binding energy

This Work

PBE1 -821

PBE2 -871

PBE02 -851 (-800)

HSE2 -794 (-743)

DMC -691 ± 19

Previous Work

PW91 -810 to -830,129 -870130

PBE -790,131 -840,132 -980133

1 Calculation was done in the plane wave basis
2 Calculation was done in the Gaussian basis set with cor-

rections for BSSE. Values in parentheses include a cor-

rection for the basis set incompleteness as described in

the text.

basis set give a slightly smaller in magnitude binding energy with PBE0 than with PBE. However,

with HSE, we obtain a binding energy 77 meV smaller in magnitude than the PBE result. Applying

the correction for the basis set incompleteness error, we obtain -800 meV for the PBE0 binding

energy and -743 meV for the HSE binding energy, with the latter being in reasonable agreement

with the DMC result of -691 meV. Although the 130 meV difference between the plane-wave PBE

and DMC values of the binding energy may appear to be small, this energy difference, of that

magnitude is consistent with an order of magnitude change in the hydrogen evolution current at

room temperature on graphene electrodes.137

In order to better understand the origin of the difference in the PBE and HSE H-atom adsorption
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energies, we also carried out non-self-consistent calculations, using PBE densities to evaluate the

HSE energies. These calculations gave a binding energy only 21 meV smaller in magnitude than

obtained from the self-consistent HSE calculations. This demonstrates that the functional is more

important than the density in establishing the binding energy. Detailed information can be found in

Table S4 of the Supplementary Material.

Detailed results of the DMC calculations can be found in Appendix B.

4.4.2 Binding Density

It is instructive to examine the change in the electron density associated with the binding of the

H atom to the distorted graphene as determined from the PBE and DMC calculations. The density

change is given by

ρb = ρdgr+H− (ρdgr +ρH), (66)

where ρH is the charge density of the hydrogen atom, and ρdgr+H and ρdgr are the charge densities

of the distorted graphene sheet with and without hydrogen, respectively. For the QMC density, the

density was accumulated during the VMC and DMC calculations, the mixed estimator bias was

found to be insignificant, and was thus not corrected.

The ρb density differences for both DMC and PBE are shown in Figure 3. The dark blue and

gold regions represent a loss and gain of electron density, respectively. As expected, there is a

shift in electron density from the carbon atom participating in the carbon-hydrogen bond as well

as to the three adjacent carbon atoms. These qualitative changes in the density are consistent with

previous theoretical and experimental studies.161,162 The rehybridization from sp2 to sp3 of the

carbon participating in the CH bond and the weakening of the π bonds due to the distortion of the

graphene lead to the electron density shift. The change in the charge distribution is similar for PBE

and DMC, with the most noticeable difference being a greater increase of density at remote C atoms

in the DMC than in the PBE calculations.

4.4.3 Charge Density Differences Between DMC and PBE

In this section, the difference between the DMC and PBE charge densities for distorted graphene

with the adsorbed hydrogen atom as well as for pristine planar graphene without the adsorbed
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Figure 3: Change of the electron density due to the adsorption of the H atom to the distorted

graphene sheet (Eq. 66). ρb from PBE calculations is shown from an oblique angle (A) and aligned

along the c axis (B). ρb from DMC calculations (C) and (D) is shown from the same perspectives.

Gold and blue represent a gain and loss of electron density, respectively. Note that there is a region

of increased charge density at the C-H bond that is enveloped by a region of loss in the charge

density. The binding density was visualized using an isovalue of 2.8×10−5 for DMC and 3.9×10−5

for PBE, in both cases capturing 95% of the differential charge density.
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hydrogen atom are considered. The charge density difference for each system is calculated according

to

∆ρsystem = ρ
DMC
system−ρ

PBE
system, (67)

where ρDMC
system is the DMC charge density of a given system (either distorted graphene with the

adsorbed hydrogen or pristine graphene) and ρPBE
system is the corresponding PBE charge density. ∆ρgr

and ∆ρdgr+H are reported in Figure 4 along the 110 slice through the unit cell, which captures

the carbon-hydrogen bond. From the top-down perspective in Figure 2, the 110 lattice plane

bisects the cell diagonally through the longer of the two diagonals and is indicated by the solid

cyan line. In Figure 4, blue represents areas where the PBE density is larger, while gold areas

represent areas where the DMC density is larger. The DMC density, in comparison with the PBE

density, has greater weight in the bonding region between atoms. We note that the HSE density

displays similar differences as the PBE density. Figure S2 of the Supplementary Material includes a

visualization of the DMC-HSE density difference. This is the case for both the planar graphene

without hydrogen and the system with hydrogen chemisorbed to graphene. Even though there are

significant differences between the PBE and DMC densities for both systems, the difference is

similar in the two systems, consistent with it not introducing a large error in the PBE value of the

binding energy.

4.5 Conclusions

Calculations of the binding energy of a hydrogen atom on a graphene sheet were carried out

using various DFT methods and with DMC. The DMC calculations provide a benchmark value of

the binding energy. Our best estimate of the binding energy from DMC calculations is -691 ± 19

meV. The PBE result obtained with a plane-wave basis set gives a binding energy about 20% larger

in magnitude than the DMC result. The global hybrid functional, PBE0, gives a binding energy

close to that of PBE. In comparison, HSE, a range-separated hybrid functional, gives a smaller

binding energy of -743 meV, after a correction applied for the basis set incompleteness error, and is

much closer to the value from DMC calculations. Interestingly, there are significant differences in

the DMC and PBE charge densities of both graphene and H/graphene.
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Figure 4: Visualization of the difference of PBE and DMC densities sliced along the 110 lattice

plane of the unit cell for the graphene sheet, ∆ρgr, (top) and H adsorbed onto graphene, ∆ρdgr+H ,

(bottom). The abscissa represents traversing the 110 plane in fractional coordinates, while the

ordinate represents traversing the c axis in fractional coordinates. Blue regions represent places

where the PBE density is larger, while the gold color represents regions where the DMC density is

larger.
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5.0 The Role of High-Order Electron Correlation Effects in a Model System for

Non-valence Correlation-bound Anions

The test and figures in this chapter have been adapted from The Role of High-Order Electron

Correlation Effects in a Model System for Non-valence Correlation-bound Anions, J. Chem. Phys.,

2020, 153, 224118, DOI: 10.1063/5.0030942 with the permission of AIP. The author’s contribution

to the work included performing CIPSI calculations and the subsequent DMC calculations, along

with performing analysis and assisting with figures, and editing/revising the manuscript.

5.1 Summary

Non-valence correlation bound anions (NVCB) are molecules in which the primary binding

interaction comes from electron correlation, thus methods which capture electron correlation are

necessary for an accurate description. The diffusion Monte Carlo (DMC), auxiliary field quantum

Monte Carlo (AFQMC), and equation-of-motion coupled cluster (EOM-CC) methods are used

to calculate the electron binding energy (EBE) of the non-valence anion state of a model (H2O)4

cluster. The viability of the CIPSI procedure to select determinants to describe the binding of

the electron for the NVCB system is explored. Two geometries are considered, one at which the

anion is unbound and the other at which it is bound in the Hartree-Fock (HF) approximation. It

is demonstrated that DMC calculations can recover from the use of a HF trial wave function that

has collapsed onto a discretized continuum solution, although larger electron binding energies are

obtained when using a trial wave function for the anion that provides a more realistic description of

the charge distribution, and, hence, of the nodal surface. For the geometry at which the cluster has a

non-valence correlation-bound anion, both the inclusion of triples in the EOM-CC method and the

inclusion of supplemental diffuse d functions in the basis set are important. DMC calculations with

suitable trial wave functions give EBE values in good agreement with our best estimate EOM-CC

result. AFQMC using a trial wave function for the anion with a realistic electron density gives a

value of the EBE nearly identical to the EOM-CC result when using the same basis set. For the
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geometry at which the anion is bound in the HF approximation, the inclusion of triple excitations

in the EOM-CC calculations is much less important. The best estimate EOM-CC EBE value is in

good agreement with the results of DMC calculations with appropriate trial wave functions.

5.2 Introduction

In recent years, there has been growing interest in a class of anions known as non-valence

correlation-bound (NVCB) anions in which long-range correlation effects are crucial for the binding

of the excess electron.18–31 By definition, NVCB anions are unbound in the Hartree-Fock (HF)

approximation. Due to their highly spatially extended charge distributions, large, flexible basis sets

are required for the theoretical characterization of NVCB anions. However, with such basis sets,

the wave function from Hartree-Fock (HF) calculations on the excess electron system collapses

onto the neutral plus an electron in an orbital that can be viewed as a discretized representation of a

continuum solution.18 Methods that start from the HF wave function including second-order Møller-

Plesset perturbation theory (MP2)168 or coupled-cluster singles and doubles with perturbative triples

(CCSD(T))169 do not recover from this collapse onto the continuum, while methods such as orbital-

optimized MP2 (OOMP2)170 or Bruckner coupled-cluster171 can overcome this problem.18 The

majority of calculations of NVCB anions have employed the equation-of-motion coupled-cluster

singles and doubles (EOM-CCSD) method.172 Among the NVCB anions studied computationally

to date are C60, C6F6, TCNE, (NaCl)2, Xen clusters, large polyaromatic hydrocarbons, and certain

(H2O)n clusters.18–25,30,31

The EOM-CCSD method displays an O(N6) scaling with system size, and higher order EOM-

CC methods are even more computationally demanding. As a result, most of the calculations of

NVCB anions carried out to date have not been fully converged with respect to basis set or the level

of excitations treated in the EOM procedure. We note, however, that by using domain-based local

pair natural orbitals (DLPNO), electron affinity EOM-CCSD calculations have recently been carried

out on systems described by up to 4,500 basis functions.80

In the present work, we apply two quantum Monte Carlo (QMC) methods to the problem of

calculating the electron binding energy (EBE) of the non-valence anion of a model (H2O)4 cluster.
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The first approach considered is fixed-node diffusion Monte Carlo (DMC),97,173–175 using various

single Slater determinant (SD) and multideterminant (MD) trial wave functions. DMC is a real-space

method, with the major sources of error resulting from the use of finite time steps and the fixed-node

approximation. The finite time step error can be largely eliminated by running calculations at

different time steps and then extrapolating to the zero time step limit. The fixed-node error results

from imposition of a nodal surface via a trial wave function, which is necessary to ensure Fermionic

behavior, and can be addressed by a variety of means including expanding the number of Slater

determinants in the trial wave function or by applying the backflow transformation.176 It is important

to note that, by virtue of working in real space, fixed-node DMC energies are much less sensitive

to the choice of the atomic basis set than methods such as EOM-CCSD that operate in a space of

Slater determinants.

The second QMC approach considered is the auxiliary field QMC (AFQMC) method.177–183

AFQMC calculations sample an over-complete space of nonorthogonal Slater determinants. The

finite time step error can be mitigated as in DMC. The error that arises from constraining the phase

of the wave function to zero can be systematically reduced by improving the trial wave function.

Phaseless AFQMC is additionally subject to the limitations of the atomic basis set employed.

DMC scales as ∼ O(N3) with system size, while AFQMC displays an ∼ O(N4) scaling in most

implementations. One of the goals of these calculations is to determine whether DMC calculations

can recover from the use of a trial wave function that has collapsed onto a discretized continuum

orbital in the case of the excess electron. Additionally, we explore whether correlation effects that

are missing in EOM-CCSD are important for electron binding.

In our calculations, we employ a model (H2O)4 cluster that has been investigated in earlier

studies by our group.18,25 In this model, depicted in Figure 5, the monomers are arranged so that

the net dipole moment is zero. If the distance R is varied, with all other geometrical parameters

held fixed, the system can be tuned from a regime (large R) that the excess electron weakly binds in

the HF approximation to one (small R) at which it is not bound in the HF approximation. i.e., at

which it is NVCB in nature.
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Figure 5: The model (H2O)4 system considered in this study. R
′
held fixed at 3.46105 Å, and R is

either 4 Å or 7 Å. Image generated using VMD.184

5.3 Computational Details

5.3.1 EOM Coupled Cluster

The EOM methods considered in this study are EOM-MP2185 , EOM-CCSD,172 EOM-

CCSD(T)(a)∗,186 and EOM-CCSDT,187,188 listed in order of increasing sophistication in terms of

treatment of correlation effects. In the EOM-MP2 and EOM-CCSD methods, the neutral molecule

is treated at the MP2 and CCSD levels, respectively, and the amplitudes from these calculations are

used to perform unitary transformation of the Hamiltonian. This “dressed” Hamiltonian is then used

to carry out a 1-particle plus 2-particle-1-hole CI calculation on the anion. In the EOM-CCSDT

method, the neutral species is first treated at the CCSDT level, and the transformed Hamiltonian

is used to do CI calculation on the anion that includes up to 3-particle-2-hole configurations. The

EOM-CCSD(T)(a)∗ method includes in an approximate manner both triple excitations in the ground

state coupled cluster calculations and 3-particle-2-hole excitations in the treatment of the anion.186

The main basis set used for the EOM calculations reported in this study is aug-cc-pVTZ+7s7p,

formed by supplementing the aug-cc-pVTZ Gaussian-type orbital (GTO) basis set189,190 with a

7s7p set of diffuse functions centered at the middle of the cluster and similar to the set from Ref.18

The exponents of the supplemental functions start at 0.023622, with each successive exponent
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Table 2: Dependence of the total energies and the EBE of the model (H2O)4 cluster at R = 4 Å on

the supplemental diffuse basis functions. Results obtained using the EOM-CCSD method.

basis set neutral (Ha) anion (Ha) EBE (meV)

aug-cc-pVTZ -305.327947 -305.331344 92.4

aug-cc-pVTZ+1s -305.327953 -305.332359 119.9

aug-cc-pVTZ+2s -305.327957 -305.334226 170.6

aug-cc-pVTZ+3s -305.327958 -305.334460 176.9

aug-cc-pVTZ+7s -305.327958 -305.334462 177.0

aug-cc-pVTZ+7s1p -305.327979 -305.334604 180.3

aug-cc-pVTZ+7s7p -305.327987 -305.334622 180.6

aug-cc-pVTZ+3s1p -305.327979 -305.334602 180.2

being smaller by a factor of 3.2. However, as seen from Table 2, the supplemental 7s7p set of

diffuse functions can be truncated to 3s1p without significantly impacting the EBE as calculated

at the EOM-CCSD level. Moreover, as shown in Table 3, expanding the main basis set (i.e., the

non-supplemented portion) from aug-cc-pVTZ to aug-cc-pVQZ189,190 makes only a small impact

on the EBE ( 4% at R = 4 Å) . In contrast, reducing the main basis set to aug-cc-pVDZ189,190 leads

to a 14% reduction in the EBE. (These results were obtained using the EOM-MP2 method, but as

seen from comparison of the results in Tables 2 and 3, using the aug-cc-pVTZ+3s1p basis set in both

cases, the EBEs from the calculations with the EOM-CCSD and EOM-MP2 methods agree to within

0.5 meV.) The smaller aug-cc-pVDZ+3s1p basis will be used in the EOM-CCSDT calculations,

which would have been computationally prohibitive with aug-cc-pVTZ+7s7p or aug-cc-pVTZ+3s1p

basis sets. Finally, EOM-CCSD(T)(a)* calculations were carried out with aug-cc-pVTZ+3s1p3d

basis sets, where the exponents of the d functions match those of the s and p functions, to assess the

importance of supplemental d functions on the EBEs. The EOM calculations utilized the frozen

core approximation and were carried out using the Coupled-Cluster techniques for Computational

Chemistry (CFOUR) program package.191,192
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Table 3: Sensitivity of the EBE of the (H2O)4 model to the “core” basis set. Results obtained using

the EOM-MP2 method

Neutral (Ha) Anion (Ha) EBE (meV)

R = 4.0 Å

aug-cc-pVDZ+3s1p -305.0371957 -305.0428558 154.0

aug-cc-pVTZ+3s1p -305.3092869 -305.3159306 180.8

aug-cc-pVQZ+3s1p -305.4008845 -305.4078074 188.4

R = 7.0 Å

aug-cc-pVDZ+3s1p -305.0383747 -305.0432259 132.0

aug-cc-pVTZ+3s1p -305.3104923 -305.3157472 143.0

aug-cc-pVQZ+3s1p -305.4021640 -305.4075716 147.1

5.3.2 DMC

The DMC calculations were carried out using trial wave functions represented as products of one

or more Slater determinants with a Jastrow factor with one-, two-, and three-body terms.163,193,194

The parameters in the Jastrow factors were optimized using variational Monte Carlo (VMC), and

the resulting trial wave functions were then employed in subsequent DMC calculations. Three types

of SD trial wave functions were employed. These used HF orbitals, Becke-Lee-Yang-Parr (B3LYP)

DFT orbitals,195–198 and natural orbitals (NOs) from small restricted single plus double excitation

configuration interaction (SDCI) calculations designed to bind the excess electron when it is not

bound in the HF approximation. In addition, DMC calculation were carried out using MD trial wave

functions, with the determinants being determined either from the restricted SDCI procedure or

from configuration interaction using a perturbative selection made iteratively (CIPSI) calculations.32

Details on these calculations are provided below.

To reduce the computational cost of the DMC calculations, the ccECP pseudopotentials139,140

were employed together with GTO basis sets that we designate as cc-pVDZ / ccECP, aug-cc-pVDZ

/ ccECP, aug-cc-pVDZ / ccECP+3s1p, and aug-cc-pVDZ / ccECP+7s7p. The“core” cc-pVDZ /
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ccECP139,140 basis set was designed for use with the ccECP pseudopotentials; the “aug” indicates

that the diffuse aug functions from the aug-cc-pVDZ basis sets of Dunning and co-workers are

included; and the 7s7p set of diffuse functions are those described above in the Section 5.3.1.190

The T-moves scheme was used to control the localization error for nonlocal pseudopotentials.199

The double-zeta rather than the larger triple-zeta basis set was used as the core basis set due

to the relative insensitivity of DMC calculations to the choice of the atomic basis set. For most

of the DMC calculations a fixed population of 16,000 walkers and time steps of 0.001, 0.003,

and 0.005 a.u. were employed, with the reported results obtained by linear extrapolation to zero

time step. However, this population is much larger and the time steps much smaller than what

is actually required to achieve well converged energies with minimized finite time step and fixed

population errors. Indeed, DMC calculations using Hartree-Fock trial wave functions, larger time

steps (specifically 0.05, 0.1, and 0.2 a.u.) and a smaller population of only 1,000 walkers produce

an electron binding energy within error bars of that obtained using the smaller time steps and larger

populations. Additionally, a DMC calculation with a B3LYP trial wave function with a time step of

0.05 is in agreement with the values obtained with the smaller time steps and larger populations

suggesting that these parameters do not depend strongly on the choice of starting orbitals. In

light of this, the 0.05 a.u. time step and smaller walker population were employed in the DMC

calculations using CIPSI trial wave functions to mitigate the additional cost associated with the

MD space. The VMC and DMC calculations were carried out using the QMCPACK code.163,164

The orbitals for the SD-based trial wave functions and the restricted SDCI MD wave function were

both generated using the General Atomic and Molecular Electronic Structure System (GAMESS)

program package,200–202 whereas the CIPSI wave functions were generated using the Quantum

Package 2.0 code.33

5.3.3 Restricted CI and CIPSI-generated Trial Wave Functions for DMC Calculations

The restricted SDCI procedure employed the HF wave function for the neutral molecule and a

specially tailored SDCI wave function for the anion, which included all symmetry-allowed single

and double excitations, with the latter restricted so that one of the electrons excited is from the

orbital occupied by the excess electron in the HF wave function. This approach, when used with
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a flexible basis, gives a bound anion. NOs were generated from the SDCI wave function of the

anion and were used in a SD trial wave function for subsequent DMC calculations. In addition, the

SDCI wave function itself (expanded in terms of HF orbitals) was used in MD DMC calculations

on the anion for R = 4 Å. In this case, a threshold of 0.001 on the magnitude of coefficients in the

CI expansion was used in choosing the retained determinants. This resulted in a wave function with

1,392 Slater determinants.

By design, the restricted SDCI wave function does not allow for change of the correlation

energy of the valence electrons due to the presence of the excess electron. This possibility is allowed

for in the CIPSI MD trial wave functions. The CIPSI calculations were carried out using B3LYP

orbitals rather than Hartree-Fock orbitals because the former avoids the problem of collapse onto a

discretized continuum solution at R = 4 Å.195–197 Since the CIPSI calculations have not approached

the full configuration interaction limit as indicated by the second-order perturbative correction to

the energy, a judicious choice of starting orbitals is required to construct a physically meaningful

trial wave function. In order to generate compact wave functions for both the anion and the neutral,

NOs were iteratively refined through successive CIPSI calculations, each beginning from a single

determinant reference of natural orbitals from the previous iteration. For each NO-generating CIPSI

calculation, approximately 100,000 determinants were retained and used to generate NOs for the

next iteration, for a total of six NO generation cycles. With the determinant of resulting NOs as a

reference, a final CIPSI calculation was carried out, stopping when at least 150,000 determinants

were included in the variational space for the anion and at least 100,000 determinants for the neutral.

The resulting determinant spaces were used as the DMC trial wave functions.

Both the restricted SDCI and the CIPSI calculations used to generate the trial wave functions

for subsequent DMC calculations were carried out using the ccECP pseudopotentials. The aug-cc-

pVDZ/ccECP+7s7p and aug-cc-pVDZ/ccECP+3s1p basis sets were used for the CIPSI and CIPSI

calculations, respectively.

5.3.4 AFQMC

AFQMC177–183 utilizes the Hubbard-Stratonovich transformation203 to represent the imaginary-

time propagator as a multi-dimensional integral over auxiliary-fields. Ground-state properties
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are sampled from a random walk in the space of non-orthogonal Slater determinants subject to

the phaseless constraint180 introducing a bias which can be systematically reduced based on the

quality of the nodal surface of the trial wave function employed. While sophisticated trial wave

functions generated from regularized orbital-optimized MP2 (κ-OOMP2)204 or complete active

space self-consistent field (CASSCF)205–207 are required to obtain quantitative predictions for some

biradicaloids and transition metals, high accuracy has been obtained, even for systems exhibiting

non-trivial electron correlation such as dipole-bound anions,208 with single-determinant trial wave

functions consisting of HF or Kohn-Sham orbitals.208,209

In this work, we perform calculations with a graphics processing unit (GPU) implementation

of AFQMC,210 utilizing single-precision floating-point arithmetic and two-electron integrals de-

composed via a modified Cholesky decomposition (10−5 cutoff).211 These calculations made use

of the aug-cc-pVTZ+7s7p basis set, a small imaginary-time step of 0.005 a.u, and correlated all

electrons. For the neutral species and electrostatically bound anion (R = 7 Å), the Hartree-Fock

wave function was used as the trial wave function. For the NVCB anionic species (R = 4 Å), a SD

trial wave function comprised of natural orbitals from the restricted SDCI calculation as detailed in

Section 5.3.3 (but now carried out without pseudopotentials) was used.

5.3.5 Radial Orbital Densities

To compare the description of the charge distribution of the excess electron as calculated using

different theoretical methods, we generate radial electron density plots. This choice is motivated by

the fact that the excess electron occupies an orbital belonging to the totally symmetric representation.

The radial electron densities are generated by numerically integrating over the angular components

of the singly occupied molecular or natural orbital. First, Molden files are created from the output

data from the various generating programs using cclib when supported.212 With the Molden files

as input, PySCF is used to generate the electron density on a uniform radial grid and 5810 point

Lebedev-Laikov angular grid as tabulated in quadpy.213–216 Finally, a numerical integration is

performed over the angular components. An example of this workflow is presented in detail in the

Supplementary Information.
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5.4 Results and Discussion

The EBEs obtained from the EOM and AFQMC calculations are summarized in Table 4, and

the results from the various DMC calculations are summarized in Table 5. We consider first the

results obtained for R = 4 Å, for which HF calculations do not bind the excess electron.

5.4.1 Results for R = 4 Å: the Correlation Bound Region

From Table 4, it is seen that the EOM-CCSD/aug-cc-pVTZ+7s7p calculations give a value

of the EBE of 181 meV for the (H2O)4 cluster model at R = 4 Å. This increases to 196 meV

with the EOM-CCSD(T)(a)∗ method. The AFQMC calculations using the same basis set and for

the anion a single determinant of NOs from the restricted SDCI calculation for the trial wave

function produce an EBE value of 194 ± 10 meV, comparable to the EOM-CCSD(T)(a)∗ result.

The EOM-CCSD(T)(a)∗ and EOM-CCSD(T) EBE values calculated with this basis set are nearly

identical, demonstrating that the approximate treatment of triples in the former procedure introduces

a negligible error in the EBE. The contribution of supplemental diffuse functions was checked using

the EOM-CCSD(T)(a)∗ method and the aug-cc-pVTZ+3s1p2d basis set. These calculations reveal

that the inclusion of the supplemental diffuse d functions leads to a ∼10 meV increase in the EBE.

With the inclusion of this correction, we obtain an estimated EOM-CCSDT EBE of 212 meV. It is

expected that the inclusion of the supplemental d functions in the basis set used for the AFQMC

calculations would lead to a similar increase in the EBE obtained using that method.

The restricted SDCI procedure, by itself, is not expected to give an accurate value of the EBE

and is designed to generate appropriate trial wave functions for DMC or AFQMC calculations

on the anion. In fact, the EBE resulting from the HF treatment of the neutral and the restricted

SDCI treatment of the anion using the aug-cc-pVTZ+7s7p basis set is 345 meV, appreciably larger

than the EOM and AFQMC values. This over-binding is due in part to the fact that the restricted

SDCI wave function, like the HF wave function, overestimates the magnitude of the dipole moment

of the water molecules, resulting in a too favorable electrostatic interaction. We also constructed

a single determinant trial wave function for the anion using the natural orbitals of the restricted

SDCI expansion. We note also that the single determinant of NOs generated from the restricted
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SDCI wave function and using the aug-cc-pVTZ+7s7p basis set places the anion 160 meV above

the neutral when the latter is treated in the HF approximation. This is not surprising since this

calculation neglects correlation effects other than those incorporated in the determination of the

orbitals. What is important is that the approaches based on the restricted SDCI procedure provide a

realistic description of the orbital occupied by the excess electron and avoid the collapse onto the

discretized continuum as was observed with the HOMO in the HF calculations.

In light of the close agreement between the EOM-CCSD(T)(a)∗ and AFQMC values of the EBE

of the (H2O)4 model at R = 4 Å, when using a comparable basis sets in the two approaches it is

relevant to determine whether DMC calculations with sufficiently flexible trial wave functions give

an EBE close to the AFQMC and EOM values consistent with these results. DMC calculations

using HF trial wave functions together with the aug-cc-pVDZ/ccECP+7s7p basis set give an EBE of

183 ± 10 meV, appreciably smaller than the EOM-CCSD(T)(a)∗ and AFQMC values. Interestingly,

essentially the same EBE is obtained from the DMC calculations using a Slater determinant of HF

orbitals expanded in the aug-cc-pVDZ/ccECP basis set without the 7s7p supplemental set of diffuse

functions. However, if the aug diffuse functions are also removed, the DMC calculations fail to

bind the excess electron. We believe that this is a consequence of the fact that with the cc-pVDZ

basis set there is a near zero probability of sampling regions of space at large distances from the

molecule, which are important for describing the charge distribution of the excess electron.

A significantly larger value of the EBE is obtained from SD DMC calculations using B3LYP

orbitals in place of HF orbitals. The resulting EBE of 212 ± 11 meV, within statistical error, agrees

with the EOM-CCSD(T)(a)∗ and AFQMC values. A similar value of the EBE is obtained from

DMC calculations using a single determinant of HF orbitals for the neutral cluster and a single

determinant of natural orbitals from the restricted SDCI procedure described in Section 5.3.3 for the

anion. DMC calculations using a SD of HF orbitals for trial wave function of the neutral and a trial

wave function for the anion retaining 1,392 of the most important determinants from the restricted

SDCI calculation gives an EBE of 202 ± 12 meV, close to the values obtained using the single

determinants B3LYP orbitals or of NOs from the SDCI calculation (for the anion). The DMC value

of the EBE resulting from the anionic trial wave function using a SD of NOs from the restricted

1SD/X indicates that the trial wave function employed a single Slater determinant with X (either HF or B3LYP)
orbitals. When different types of trial wave functions are used for the neutral (N) and anion (A) this is indicated by the
double slash.
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Table 4: EBEs of the (H2O)4 model calculated using HF, EOM, and AFQMC methods and

employing the aug-cc-pVTZ+7s7p basis set.

Method EBE (meV)

R = 4.0 Å

HF -0.4

EOM-CCSD 180.6

EOM-CCSD(T)(a)∗ 195.8

EOM-CCSDT 197.51(212.0)2

AFQMC SD/HF(N)//SD/NO SDCI(A) 194 ± 10

R = 7.0 Å

HF 41.3

EOM-CCSD 140.2

EOM-CCSD(T)(a)∗ 141.7

EOM-CCSDT 143.31(154.2)2

AFQMC SD/HF 181 ± 5

1 This EOM-CCSDT/aug-cc-pVTZ+7s7p value was estimated by adding the difference of EBEs

from the EOM-CCSD(T)(a)∗ and EOM-CCSDT calculations with the aug-cc-pVDZ+3s1p

basis set to the value from EOM-CCSD(T)(a)∗/aug-cc-pVTZ+7s7p.
2 The EOM-CCSDT/aug-cc-pVTZ+7s7p3d value was estimated by adding the difference be-

tween the EBEs calculated with the EOM-CCSD(T)(a)∗ with the aug-cc-pVTZ+3s1p and

aug-cc-pVTZ+3s1p3d basis sets to the EOM-CCSDT/aug-cc-pVTZ+7s7p estimated value in

footnote [1] to assess the effect of incorporating diffuse d functions into the basis.

SDCI MD calculation results is 205 ± 10meV, similar to that from DMC calculations using as trial

wave functions the MD restricted SDCI wave function for the anion and the HF wave function for

the neutral.

Figure 6 compares the radial charge distributions of the singly occupied orbital from the HF and

67



Table 5: EBEs of the (H2O)4 model calculated using the DMC method and various trial wave

functions1

wave function basis set EBE (meV)

R = 4.0 Å

SD/HF aug-cc-pVDZ+7s7p 183 ± 10

SD/HF aug-cc-pVDZ 176 ± 12

SD/HF cc-pVDZ -528 ± 25

SD/B3LYP aug-cc-pVDZ+7s7p 212 ± 11

SD/HF(N)//SD/NO SDCI(A) aug-cc-pVDZ+7s7p 205 ± 10

SD/HF(N)//MD/NO SDCI(A) aug-cc-pVDZ+7s7p 202 ± 12

MD/CIPSI NO aug-cc-pVDZ+3s1p 190 ± 9

R = 7.0 Å

SD/HF aug-cc-pVDZ+7s7p 141 ± 14

SD/B3LYP aug-cc-pVDZ+7s7p 164 ± 9

SD/HF(N)//SD/NO SDCI(A) aug-cc-pVDZ+7s7p 160 ± 9

MD/CIPSI NO aug-cc-pVDZ+3s1p 159 ± 8
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B3LYP calculations on the excess electron system as well as of the NOs associated with the excess

electron from EOM-CCSD, restricted SDCI and CIPSI calculations. The collapse of the singly

occupied orbital from the HF calculations onto a discretized continuum orbital is readily apparent.

In contrast, the NOs from the EOM-CCSD and restricted SDCI calculations and the singly occupied

orbital from the B3LYP calculation on the anion are more localized and are qualitatively similar to

one another. These results are consistent with the nodal surface for the anion being significantly

improved when using a SD trial wave function that has a physically reasonable charge distribution

for the orbital occupied by the excess electron. Thus, although DMC calculations do recover from

the collapse of the HF trial wave function onto a discretized continuum solution in the case of the

anion, starting with such a trial function leads to a greater nodal surface error for the anion than

for the neutral cluster. However, we also note that the radial distribution function of the singly

occupied orbital from the B3LYP calculation on the anion has a spurious peak near 25 atomic

units from the center of the cluster. This is likely a consequence of the self-interaction error in the

B3LYP functional. The relevant NO extracted from the CIPSI calculations, which were carried

using B3LYP orbitals, exhibits a similar shoulder.

Our final set of DMC calculations at R = 4 Å used MD trial wave functions determined from

CIPSI calculations for the neutral and anionic clusters. The strategy used in performing the CIPSI

calculations was presented in Section 5.3.3, where it was noted that these calculations, unlike those

with the restricted SDCI wave functions, allow for the correlation between the valence electrons

change due to the presence of the excess electron. The DMC calculations using the CIPSI trial

wave function resulted in an EBE of 190 ± 9 meV for R = 4 Å, slightly under-binding compared

to the single determinant DMC value of the EBE obtained using B3LYP orbitals though in close

agreement with the results of DMC calculations carried out with the restricted SDCI trial wave

function.

5.4.2 Results for R = 7 Å: the Electrostatically Bound Region

We now consider the results obtained for the (H2O)4 cluster model at R = 7 Å, for which HF

calculations with the aug-cc-pVTZ+7s7p basis set bind the excess electron by 41 meV. In this

case, the EOM-CCSD and EOM-CCSD(T)(a)∗ calculations give EBEs of 140 meV and 142 meV,
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Figure 6: Radially integrated charge densities of the singly occupied orbitals from HF and B3LYP

calculations and the singly occupied natural orbital from EOM-CCSD, SDCI, and CIPSI calculations

of the model ((H2O)4) cluster anion at R = 4 Å. All plots generated using Matplotlib.166

.

respectively. Thus unlike the situation for R = 4 Å, the inclusion of triples in the EOM-CC procedure

is relatively unimportant at R = 7 Å. The DMC calculations using SD HF trial wave functions

give an EBE of 141 ± 14 meV, while the DMC calculations using as trial wave functions single

determinants of B3LYP orbitals, single determinants generated using the restricted SDCI procedure,

or MD trial wavefunctions generated using the CIPSI procedure give similar EBEs values ranging

from 159 ± 8 to 164 ± 9 meV.

Since the anion is bound in the HF approximation at R = 7 Å, we also were able to calculate

EBEs using separate, frozen-core coupled-cluster calculations for the neutral and anion with the

following coupled-cluster methods: coupled-cluster singles, doubles, and a perturbative treatment of

triples ∆CCSD(T),169 coupled-cluster singles, doubles, and triples (∆CCSDT),217–220 and CCSDT

with the perturbative treatment of quadruple excitations (∆CCSDT(Q)).221 methods. The ∆ indicates

that the EBE is derived from the energy difference between the separate calculations on the neutral
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and anion. The ∆CCSDT and ∆CCSDT(Q) calculations were carried out with only the aug-cc-

pVDZ+3s1p basis set. These calculations indicate that full treatment of the triples, and even

approximate treatment of the quadruple excitation contributions, has less than a 1 meV effect on

the EBE of the (H2O)4 cluster model at R = 7.0 Å. On the other hand, the inclusion of diffuse d

function in the supplemental set of functions leads to a 12 meV increase in the EBE. With this

correction we obtain an estimated EOM-CCSDT EBE of 154 meV, which is in good agreement

with the DMC results using suitable trial wave functions.

The AFQMC calculations give an EBE of 181 ± 5 meV, significantly larger than the EOM-CC

results or DMC values. This most likely reflects an inadequacy of the HF wave function used for

the anion in the AFQMC calculations. Support for this interpretation is provided by examination of

Figure 7, which shows the radial charge distribution of the excess electron for the (H2O)4 model

at R = 7 Å. From this figure it is seen that although that the HF wave function has not collapsed

onto the continuum as it did in the R = 4 Å cluster, it is still much more diffuse than that from

calculations that include correlation effects. It is also seen from comparisons of Figures 6 and 7 that

the charge distribution associated with the NO occupied by the excess electron in the EOM-CCSD

calculations for the cluster with R = 7 Å, is more radially extended than that at R = 4 Å. Another

noticeable difference between the charge density plots for R = 7 Å and 4 Å is the reduction of the

long-range shoulder in the radial charge distribution of the HOMO from the B3LYP calculations on

the anion and in the relevant NO from the CIPSI calculations on the anion carried out using B3LYP

orbitals, suggesting that self-interaction errors are less problematical at R = 7 Å.

5.5 Conclusion

In this study we have applied various EOM-CC methods and two different quantum Monte Carlo

methods to calculate the EBE of a model (H2O)4 cluster at two geometries, one at which the anion is

bound in the HF approximation and the other at which it is not. Diffusion Monte Carlo calculations

using single determinant trial functions based on Hartree-Fock orbitals are shown to bind the excess

electron even when the initial wave function for the anion has collapsed onto the neutral plus

discretized continuum orbital. However, such calculations significantly underestimate the EBE,
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Figure 7: Radially integrated charge densities of the singly occupied orbitals from HF and B3LYP

calculations and the singly occupied natural orbital from EOM-CCSD, restricted SDCI, and CIPSI

calculations of the model ((H2O)4) cluster anion at R = 7 Å.

whereas SD DMC calculations using trial wave functions for the anion with a more realistic charge

distribution for the excess electron give larger EBE values that are in close agreement with our best

estimate EOM-CCSDT values for both geometries considered.

For R = 4 Å, at which the anion is correlation bound, use of such trial wave functions accurately

reflecting the physical charge density resulted in AFQMC-predicted EBE values in agreement

with the EOM-CCSD(T)(a)∗ result (when using comparable basis sets). However, at R = 7 Å,

AFQMC calculations with HF trial wave functions significantly overestimate the EBE compared to

EOM-CC and DMC values, suggesting the need for an improved trial wave functions in this case.

For the (H2O)4 model system, the restricted SDCI represents an economical way to create trial

wave functions for QMC calculations on non-valence anions that are not bound in the Hartree-Fock

approximation. However, it remains to be seen if this strategy will be as effective for systems in

which the neutral species is more strongly correlated than the model (H2O)4 cluster.

Finally, we note that at R = 4 Å, for which the anion is NVCB in nature, the most frequently used

method to characterize such anions, EOM-CCSD, underestimates the EBE by about 10% compared
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to the result of EOM-CCSDT calculations. Both DMC and AFQMC are viable alternatives to

high order EOM methods, and while more computationally demanding for the (H2O)4 cluster, they

demonstrate lower scaling with system size than EOM methods, making them attractive for the

characterization of non-valence anions of much larger systems.
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6.0 Characterizing Chemical Fragmentation Definition Through Unsupervised Learning

Methods

The author’s contribution to the work included development of descriptors, writing of code,

running calculations, performing analysis, and writing/editing the manuscript. This work is in

preparation and will be submitted to the Journal of Chemical Physics.

6.1 Summary

In order to reduce the computational cost of large calculations, we look to fragmenting large

molecules into smaller subsystems which can best represent the whole. This work proposes a

scheme for automatic molecular fragmentation through unsupervised learning approaches in which

each fragment is chosen to best retain the important features of the bonding environment. This

chapter highlights the efforts at benchmarking the performance of our proposed method on a set

of test systems. To this end, a set of clustering algorithms (spectral, agglomerative, k-means, and

affinity propagation) were studied in combination with various molecular representations, including

those incorporating bonding information derived from quantum mechanics. The performance for

the clustering/descriptor combinations was assessed for test systems spanning a range from easily

distinguishable fragments such as non-covalently bound water cluster to oligomers in which lowest-

loss fragmentation is ambiguous. Overall, it is found that spectral clustering works well in all systems

tested, showing very little sensitivity to the representation employed. Spectral, agglomerative, and

k-means clustering produce reasonable fragments for systems with clear fragmentation patterns.

Though in the oligomer system, spectral clustering achieves the best performance as assessed by

offering a trade-off between lowest error and highest speed-up and is thus recommended as the

most robust clustering approach for molecular systems. The approach has the potential to improve

reproducibility and transferability by replacing manual fragmentation with quantitative partitioning

criteria.
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6.2 Introduction

Common quantum chemistry methods that provide an accurate description of molecules are

often restricted to small systems in terms of number of atoms or basis set size due to high scaling

of the computational cost with system size, N. For example, coupled-cluster singles doubles with

perturbative triples methods is often regarded as the “gold standar” level of theory, but incurs an

N7 scaling. Full Configuration Interaction (FCI), which is formally exact in a complete basis, has

prohibitive N! scaling. The higher scaling restricts the application of these methods to small systems

while many of the chemical processes of interest involve large molecules. To compensate for this

high scaling, fragmentation approaches estimate the energy and other properties of large molecular

systems by partitioning the system into small subsystems, where the final estimate of the energy

becomes the accumulation of the parts. The accuracy of this approach hinges on the electronic

structure treatment of each fragment, the approach used to describe the interaction between the

fragments, and the way in which the molecule is partitioned. The possible inter- and intra-fragment

treatment approaches are vast, but beyond the scope of the current article, though interested readers

are directed towards a number of helpful reviews.40,108 In the fragmentation schemes, the best case

scenario for scaling becomes O(N p) → NfragO( f p), where N f rag is the number of fragments, f is

representative of the fragment size, and p is the exponential value dependent on the level of electronic

structure theory utilized.40,41 This partitioning of a single, very costly calculation into N f rag smaller

calculations achieves two important objectives: 1) Computational scaling with system size is

reduced with reasonable fragment definition and 2) trivial parallelization is possible by treating

subsystems separately, with the potential to efficiently utilize high performance computing resources.

In addition to enabling the treatment of larger systems, fragmentation methods can provide detailed

insight into interfragment interactions when combined with analysis techniques such as energy

decomposition analysis or symmetry adapted perturbation theory.102–106 Fragmentation approaches

can also assist recent efforts of enabling quantum chemistry via quantum computers. Current

quantum computation is restricted as the integrity of the results can be sacrificed due to interactions

of the hardware with the environment. Fragmentation methods have been suggested as ways to

treat larger molecular systems on quantum computers. By breaking molecules into smaller domains

before treatment on a quantum computer, the most important chemical interactions can be efficiently
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described without succumbing to errors resulting from the quantum computing hardware.222

As pointed out by Herbert, the choice of fragments for a system is not well-defined, but affects

the quality of results obtained.40 In some systems, a natural approach towards partitioning arises

when there is a stark difference in the types of bonding present in the system, such as in non-covalent

molecular clusters. For covalent systems, however, the choice of fragments is not always as clear-cut.

In such cases, fragmentation requires the comparison of total energies, dipoles, or polarizabilities.

Often the fragment definition is based on predefined functional groups or chosen manually.42 Some

methods of energy estimation are defined based on specific fragmentation schemes such as the

systematic molecular fragmentation (SMF) and systematic molecular fragmentation by annihilation

(SMFA).223–227 In these methods, fragments are built around functional groups or larger fragments

made from their groupings. Ultimately, the level of fragmentation is at the discretion of the user to

achieve the desired level of accuracy. However, functional group definition may become ambiguous.

For example, there is no set number of monomers to include from a polymer backbone to acquire

and accurate description capture the chemical behavior. Additionally, a fragment definition based

only on functional groups may not consider the interacting chemical environment.

A desirable approach to choosing fragments would have low computational cost and prioritize

keeping associated molecular components intact to treat fully with quantum mechanics while the

estimation of their interactions should occur only at the most weakly bound points. To this end, we

propose an approach utilizing clustering methods to identify the strongly interacting substructures

of the system, which we term Unsupervised Molecular Fragmentation (UMF) approach. Clustering

methods are a form of unsupervised machine learning used to identify substructures in data sets, as

a result these approaches are fundamental to data-mining procedures. Previous work in chemistry

utilized clustering methods to identify structure-property relationships in large databases,228 to

determine the number of residues to treat in quantum refinement methods,229 and to partition

large proteins into peptides using an amino acids representation using graph based methods.230

The application of clustering methods to produce logical fragments of individual molecules at an

atomic level is an unexplored direction. The motivation is that these unsupervised machine learning

algorithms (UML) , given a certain level of molecular information, will be able to group the atoms

interacting most strongly with each other, ensuring that segmentation occurs between atoms which

are the most weakly connected. This approach is able to operate independent from functional
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group definition which will become useful for capturing non-covalent interactions and non-local

interactions in materials or biomolecules. Additionally, this approach is expected to overcome

shortcomings in other fragmentation approaches such as severing of double bonds or ring structures,

since the molecular representation should be designed to avoid this.

The article is organized as follows, Section 6.3.1 will discuss the clustering approaches used,

Section 6.3.2 will describe the representation of chemical data used as input for the clustering

approach, with validation methods described in Section 6.3.3, results and a discussion on clustering

performance follow in Section 6.4.

6.3 Methods

In UML approaches, the clustering depends fundamentally on two factors: the features used to

describe each data point and the algorithm used to identify domains within the data. This section

introduces UML (clustering) approaches along with molecular representations (features) upon which

fragment selection is based. Additionally, metrics are discussed to assess the quality of a chosen

partitioning and molecular test systems are presented. Four representations are explored in this work

and are described in Section 6.3.2. Several clustering approaches selected from a range of different

families of algorithm were considered. The main article focuses on agglomerative, k-means, and

spectral clustering; additional algorithms tested can be found in the supporting information. These

clustering methods are described in Section 6.3.1. The code used to explore the Unsupervised

Molecular Fragmentation approach can be found at https://github.com/amandadumi/molfrag.

Clustering approaches are utilizing the implementations contained within the scikit-learn Python

package.231

6.3.1 Clustering Approaches

This subsection describes the clustering methods explored in this work. This work explores

the application of three clustering algorithms, representing different approaches for the selection of

fragments: agglomerative, k-means, and spectral clustering.232–236 At a minimal level, all chosen
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algorithms require only one user input: the number of subsets to identify within the data, i.e., the

desired number of fragments. Starting from this user input, the clustering approaches automatically

determine fragments based on selected molecular representations, as outlined below.

Agglomerative clustering237 is performed in a bottom-up fashion where in each iteration the

most similar clusters are merged. In the initial iteration, all of the atoms are regarded as individual

clusters, which are then merged into larger clusters. Merging occurs according to a linkage criterion

which describes the similarity (or distance) between clusters. In this work, the Ward linkage criterion

is used, which chooses which clusters so that the variance of Euclidean distances within each cluster

is minimized. Here, the variance of a cluster is calculated as the residual sum of squares of all

variables in a cluster C,

dC = ∑
i, j∈C
||xi− x j||2, (68)

where i, j are observations (atoms) within a cluster with associated data points x. The Ward

criterion237 results in a more regular distribution of cluster sizes compared to other choices, which

is advantageous for the speed in a fragment calculation, as even distribution of fragment sizes

is associated with equal computational cost distribution. This process is repeated until the user-

specified number of fragments has been obtained. A visualization of this algorithm is shown in

Figure 8, where the progression of this algorithm can be understood as a dendrogram. The dots are

grouped through iterations until the desired number of clusters are found. The time complexity of the

agglomerative clustering method is O(n3), but can be reduced to O(n2) with various optimizations,

where n is the number of data points.232 A shortcoming of this method is that it is a greedy algorithm,

or in other words once an atom is assigned to a fragment only considering the local environment

and this assignment will not be reassessed.

The k-means clustering approach which iteratively minimizes the distance between the data

points xi and the cluster centers x̄c according to:

Minimize

{
J ≡

k

∑
c=1

nc

∑
i=1

∥∥∥x(c)i − x̄c

∥∥∥2
}

(69)

where c denotes a particular cluster, x(c)i a data point within this cluster, and x̄c is the centroid

associated with cluster c. k is the number of fragments requested by the user. During the first

iteration, the centroids are chosen randomly among the data points. Data points are then assigned to
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Figure 8: Visual representations of the three clustering approach explored in this work. The dots are

a minimal example of a set of data. Agglomerative clustering (left), k-means clustering (center),

and spectral clustering (right). Detailed descriptions of each method are found in the text.

different centroids (clusters) based on shortest distances; centroids are updated by averaging over

the data points associated with a given cluster,

x̄c = ∑
j∈c

x(c)j . (70)

This procedure of assigning points based on proximity to the centroids and update of centroids is

repeated iteratively until changes between centroids falls below a threshold. An illustration of this

approach is given in Figure 8.

It is interesting to note some differences and similarities between agglomerative and k-means

clustering. First, it is noted that at first glance the sum of squares used as objective function within k-

means clustering is related to Ward’s linkage criteria used within agglomerative clustering. However,

an important difference is that the k-means approach is non-greedy, meaning that a reassignment

of points between different clusters is possible between different iterations. This property implies

that k-means has the potential to generate a global solution, whereas agglomerative clustering

aims at a locally optimal solution. Another interesting difference is that k-means clustering is

an iterative procedure, meaning that termination and thus runtime depend on the specific data,
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whereas agglomerative clustering is guaranteed to terminate after a certain number of steps when

the user-requested number of clusters has been identified. The convergence of k-means clustering

implementations, specifically of Lloyd’s algorithm,234 varies significantly between average-case and

worst-case scenarios. For typical applications, k-means is observed to converge in few iterations,

leading to an average-case observed complexity that is linear, O(n), where we use O to denote an

approximate, observed scaling. In practice, k-means is therefore found to be more readily applicable

to larger data sets compared to agglomerative clustering. However, we do note that under worst-case

scenarios the number of iterations required for k-means convergence scales in a superpolynomial

fashion, leading to lower bounds of 2Ω(
√

n) for the worst-case computational scaling, where Ω

denotes a lower bound.238 Lastly, we note that the k-means procedure is typically repeated for

different (random) choices of initial centroids to ensure convergence to a global minimum, since

initial centroids may impact the convergence to a specific solution. For this reason, this work

reports k-means results over ten runs with different initial centroids for each calculation. In contrast,

agglomerative clustering always produces the same results for a given set of input data except in the

case of identical cluster distances; in such a case the final clusters would depend on the sorting of the

input data.239 For molecular representations using floating point numbers to map molecular structure,

it is unlikely to encounter exact degeneracies. However, some of the molecular representations

rounding these representations to integers, it would be possible to encounter degeneracies and thus

a dependency of agglomerative clustering results on sorting of the input data.

The third clustering algorithm explored here is spectral clustering.240–242 A visualization of this

method can be seen in Figure 8. Spectral clustering begins by defining an affinity matrix Ai j which

describes the similarity of each pair of data points, i j. In the present context, the similarity between

two data points can be understood as the presence of a bond or the strength of the bond. From the

affinity matrix, a degree matrix, D, is built, which sums the rows of A onto the diagonal of D. The

off-diagonal elements of A combined with and D are combined to form the graph Laplacian of the

data as L = D-A. The eigenvectors and eigenvalues resulting from the diagonalization of L represent

the data in a lower dimension space that leads to clearer separation for linear cuts. Following the

spectral decomposition, the eigenvalues are then clustered by another method such as k-means, a

discretized approach, or others..240,241,243 In this work, the k-means approach is utilized. The time

complexity of the spectral clustering method is O(n3), where n is the number of data points.
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Additionally, the application of affinity propagation and mean shift clustering were explored,

but were unsuccessful in producing useful molecular fragments. These methods are of interest since

the number of clusters are chosen automatically through an a variety of approaches to analyze the

density of a given set of data. However, these methods did not produce consistent results with the

molecular representations explored in this work and, in many cases, no viable subsystems resulted

from the fragmentation for the representations explored in this work. Although affinity propagation

had some success, it was not consistent across test sets. Results for these two additional methods

are included in the SI. These finding do not rule out the possible use of these clustering methods for

chemical fragmentation as a tailored the molecular representation for this method may be needed.

6.3.2 Molecular Representations

This subsection describes the molecular representation used to describe the chemical system.

The success of clustering depends on the representation, i.e. the features used to describe the rela-

tionship between the data points (here atoms). This work explores the application of four different

representations. Two descriptors are derived from structure information alone: Cartesian-based and

a covalent radii based bond matrix-based descriptors. The structure-only derived representation

provide a low-cost descriptor as no quantum mechanical information is incorporated. Alternatively,

incorporating bonding information from a quantum mechanical treatment should provide a more

detailed descriptor, though at a higher computational cost. Two descriptors that incorporate quantum

mechanic derived information are explored: the Mayer bond matrix descriptor and the rounded

Mayer bond matrix descriptor.

The descriptors are presented in a way that they represent an affinity or similarity matrix between

objects. The clustering methods utilize this information in different ways. Spectral clustering uses

the affinity matrix to perform the subspace search, agglomerative clustering will invert the affinity

matrix to indicate that those data points more strongly interacting are closer in space, and the k-mean

approach will use each row of the affinity matrix as a description of the dimensions in which the

vector norm is measured. The representation is the reciprocal of each element which is handled

automatically within the molfrag code.

The Cartesian representation describes the position of each atom as x, y, and z components.
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Distances between any two atoms, A and B, are calculated via the conventional Euclidean distance,

RAB =
√
(xA− xB)2 +(yA− yB)2 +(zA− zB)2. If used as a precomputed similarity matrix to

describe the strength of the interactions between molecules, the representation is given as Gxyz
AB = 1

RAB
.

In k-means and agglomerative clustering, the Cartesian coordinates are fed directly to the clustering

algorithm. In the spectral clustering algorithms, the Cartesian data must be represented by an affinity

matrix. The affinity matrix, A, defined as describes the strength of interactions between data pairs.

When a descriptor exhibits a more block diagonal structure in the descriptor, many clustering

methods including those explored here are able to distinguish easily between these sections. To

explore if this idea can assist in molecular fragmentation definition, a representation is constructed

around a bond matrix based on the covalent radii of the atoms (cr). The covalent radii has been

used in supervised machine learning as a way to numerically capture a chemical environment, thus

exploring this as a feature for unsupervised machine learning is sensible.244,245 This is a Boolean

matrix in which one indicates the presence of a bond as determined by

Gcr
AB =

1 if RAB ≤ 1.1(Acr +Bcr)

0 otherwise

where the Gcr
AB is the descriptor entry, RAB is the distance between atom A and atom B, and Acr (Bcr)

is the covalent radii of A (B).246,247

The remaining two representations incorporate information of the bonding environment via

the Mayer bond order as a surrogate for density matrix and thereby quantum mechanical bonding

information. The Mayer bond order is defined in terms of spin orbitals as:

GMbm
AB = 2 ∑

µ∈A
∑

ν∈B
(PS)µν(PS)νµ , (71)

where P is the density matrix and S is overlap matrix in an atomic orbital basis µ and ν .248 The

Mayer bond order matrix (GMbm) representation is a slight modification of the form of the values

into an affinity matrix, where the magnitude of the Mayer bond matrix element represents the

similarity between two atoms. As previously mentioned, some clustering methods benefit from a

more block diagonal structure of the descriptor, we also look to coarse grain the descriptor through
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rounding the values of the matrix. This results in the rounded Mayer bond order matrix (GrMbm)

representation which rounds GMbm
AB according to:

GrMbm
AB =

⌈BAB⌉, if {BAB} >= 0.5

⌊BAB⌋, otherwise.
(72)

The intention of this representation is to dampen out insignificant pairs, allowing only the most

strongly interacting pairs to be considered in the descriptor and making the cuts between clusters

more obvious. In general, it is expected that incorporating the bond order into the descriptor will

enable the fragmentation approach to preserve bonds between the most strongly interacting parts of

the molecules.

6.3.3 Validation

In this section, the means of defining successful partitioning of a molecular system is outlined.

In this work, two different approaches are used: one which ensures the expected fragmentation

is produced and another that quantifies the recovered energy of the full system. The set of water

clusters and methylthiophene tetramers were chosen that should produce very clear clustering

for a requested number of clusters. The performance of the clustering methods on these test

cases can be assessed through external validation, which compares the resulting cluster labels

to a expected/correct cluster labels.249,250 The external validation statistic used in this work is

the Adjusted Rand Index (ARI). The Rand index, 73, measures the frequency of occurrence of

agreement over the total pairs.

R
(
C ,C ′

)
=

N11 +N00

n(n−1)/2
(73)

Here C is the resulting clustering and C ′ is the expected clustering consisting of n total points. N00

and N11 are the number of data point pairs in the same clusters and different clusters respectively

for C and C′. However, since there is a small probability these data points could end up in the

same cluster by chance, the ARI is used. The ARI corrects for chance by using a baseline of

expected similarity from a random model. A value close to unity represents total agreement between

the expected and the actual fragmentation. The ARI approaching zero reflects an increase in the

difference between the expected and returned fragmentation. In the oligomer systems, the correct
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fragmentation is ambiguous and thus correct clustering is not known ahead of time. for these

systems the percent error of the fragmented system from supermolecular energy is used as the

metric of success.

6.3.4 Chemical Systems

To measure the success of the UMF approach, families of molecules are considered to explore

the performance in cases where the partitioning introducing the lowest error is apparent for nonco-

valently and covalently bound molecules and a case of more ambiguous fragmentation in oligomers.

Water Clusters: The performance of the UMF with the various descriptors on noncovalently

bound molecules, a set of water clusters were explored. Water clusters, (H2O)n for n=2 to n=21

optimized with the TIP4P water model were used from the Wales cluster database.251,252

Methylthiophenes: To benchmark performance of the fragmentation methods on covalently bound

systems with a clear desired fragmentation, a set of methylthiophene tetramers were explored. When

partitioning these systems, 4 fragments were requested. Coordinates for the tetramers were generated

with Open Babel by providing a SMILES representation with defined linkage atoms, indicated

by a box in Figure 9.253 The geometry of each molecule was determined at two levels of theory

to study the sensitivity of the fragmentation to small perturbations in the structure. The levels of

theory used optimize the structures were Hartree-Fock/6-311G** and ωB97X-D/6-311G**.254,255

Introduction of broken bonds within the molecule were treated by hydrogen capping. The hydrogen

cap contributions were then treated by subtracting the energy of all hydrogen atoms from that of the

fragment calculation.

Figure 9: The methylthiophene monomer 2-D structure with the linkage atoms highlighted in red.

Silyl ketene oligomers: Silyl ketene oligomers (SKs) provide a set of systems where ideal

fragmentation is ill-defined due to the backbone and side group interactions which may be essential

84



to describe their chemistry and as a result, not clear fragmentation pattern.SKs have the general

form of (RC=C=O), where R is a SiR3 group (Figure 10(left)). This class of molecule is a

candidate for chain polymerization and can avoid the undesired 2+2 cycloadditions observed in

aryl and alkyl ketenes. Previous work in our group has aimed to predict stable structures and

polymerization mechanisms.256 As large polymer units are considered, the computational cost

grows and fragmentation becomes an attractive and possibly necessary option. In this work,

oligomers of the SK monomers act as a test system to explore the performance of the clustering

approaches in terms of the clustering ability to reduce computational time while minimize the

difference in error when compared to the supermolecular calculation. The systems explored consist

of a dimer and trimer of the tert-Butyldiphenylsilyl monomer, with a methylonate nucleophile to

begin the polymerization displayed in Figure 10 (center, right). The SK structures were generated

with Avogadro2 and optimized at the Becke-3 Parameter-Lee-Yang-Parr (B3LYP) including the

Becke-Johnson dispersion correction (-D3(BJ)) level of theory with the pc-1 basis set.195–198 The

work by Mardirossian et al. suggests this optimization level represents a balance of computational

cost and accuracy.49 Introduction of broken bonds within the molecule were treated by hydrogen

capping. The hydrogen cap contributions were then treated by subtracting the energy of all hydrogen

atoms from that of the fragment calculation.

This test case also aimed to determine the sensitivity of the clustering methods to the level

of theory used for the Mayer bond order calculations. Using the optimized structure above, the

Mayer bond matrix was also calculated at varying levels of theory: Hartree-Fock, B3LYP,195–198

and ωB97M-V257 each level of theory is paired with four different basis sets: STO-3G,258,259

3-21G,260,261 cc-pVDZ, cc-pVTZ.262,263

Figure 10: Structure of a generic silyl ketene unit (left), the dimer (center) and trimer (right) used

for the clustering benchmark.
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6.4 Results and Discussion

6.4.1 Water Clusters

The agglomerative, k-means, and spectral clustering return the expected clustering as a com-

parison of the expected and true clustering results with an average ARI of 1 for all descriptors.

This indicates the non-covalently bound water structures are correctly clustered when the number

of clusters is predefined. This is expected as non-covalently bound systems have apparent non-

interacting or weakly interacting points are clearly represented by the representation and resolved

by the clustering algorithm. These results suggests these clustering methods could reliably find

reasonable fragments for non-covalently bonded systems.

In order to recover the total energy of a water cluster, often more than one water monomer

should be included in a fragment, placing importance on clustering methods which allow for the

selection of cluster numbers are valuable. Ideally, the clustering algorithms should resolve to keep

individual water molecules intact within each cluster as opposed to separating a molecule between

two fragments.40 Figure 11 demonstrates the fragmentation for spectral clustering with the Gxyz

descriptor in cases where the number of clusters is lower than the number of water monomers. In

this case the ideal returned fragments are defined as including one or more water monomers without

any segmentation of O-H bonds. Preservation of covalent bonds is observed for spectral clustering

and k-means clustering, but not for agglomerative clustering.

In addition to ensuring preservation of covalent bonds, achieving a relatively balanced number

of molecules (Nmol) in the clusters is also a priority. The balanced of the cluster sizes was used as

a metric to probe the clustering method/descriptor pairs. The (H2O)21 molecule was partitioned

N f rag = 2 . . .21 using the GMbm and Gxyz descriptors with both spectral and k-means clustering.

The results shown in Figure 12 demonstrate that spectral clustering with both descriptors return

fragments of a similar size over the range tested. The UMLk-means method with Gxyz descriptor

returns fragments of a similar size. Though when paired with the GMbm, requesting a smaller

number of fragments returns unevenly sized fragments, as shown in the black circle, where the

green fragment contains most of the water molecules and all other fragments contain one-two water

molecules.
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Figure 11: A demonstrative result for the preservation of covalent bonds in cases when the N f rag is

less than the Nmol . The N f rag requested decreases from 4 (requested on the left) to 2 (requesting

on the right), clusters are designated by the green outlines. This example is performed with

spectral clustering on the Cartesian representation for (H2O)4. Covalent bonds are preserved for all

descriptor/clustering algorithm combinations.

Figure 12: The standard deviation in cluster size for cases when the number of requested clusters is

less than the number of monomers. For for (H2O)21, the N f rag requested increases from 2 to 20.

Shown here for the GMbm and Gxyz descriptor.

The timing of the clustering itself is another important metric to consider, and the UMF has

negligible cost for generating fragments. Once the features of the descriptor are calculated, the
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Figure 13: Performance of clustering for the methylthiophene test set, measured as the average ARI

across the set of methylthiophenes. The colored dots at 1 indicate successful clustering of the full

test set, as the average ARI is 1 for the descriptor/clustering algorithm combination.

routine to set up the molecule, generate fragments, and create output files took approximately 2

seconds for all clustering methods on an 4 core laptop with a i5-5200 CPU. The UMF approach

thus offers a computationally efficient way to generate fragments which can then be used in

combination with any interfragment treatment approaches to estimate the energy and properties of

large molecules.

6.4.2 Methylthiophenes

The clustering method performance for the covalently bound methylthiophene tetramers into

four fragments are shown in Figure 13; The effects of geometry optimization on the fragmentation

results are also presented. Optimization are performed at the Hartree-Fock/6-311G** level of theory

subfigure a and ωB97X-D/6-311G** level of theory was used in subfigure b. Spectral clustering

performs well for all molecular representations with no dependence on the descriptor, level of

theory, or basis set used. Other clustering methods have a strong dependence on the descriptor used

and variation as the level of theory used in the geometry optimization changes. These structures are

challenging due to the descriptors maintaining less of a block diagonal structure, i.e more non-local
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interactions. A less block diagonal structure in the representation means cluster boundaries are much

less clear leading to problems for certain unsupervised learning algorithms. However, as spectral

clustering first embeds the representation into a lower dimensional space before clustering, it is

able to resolve the primary interactions. Notably, agglomerative, k-means and spectral clustering

perform well with the Cartesian descriptor.

6.4.3 Silyl Ketenes

Silyl ketenes, realistic systems with more ambiguity in the choice of partitioning, are challenging

applications for these clustering approaches. The dimer results are found in Figure 40 and trimer

results can be seen in Figure 14. The findings across the dimers and trimers are comparable and

suggest spectral clustering is the most robust clustering algorithm, achieving the lowest errors with

the largest speedups across all descriptor/method pairs. Interestingly, a fragmentation pattern with

the lowest error is found when the covalent radii bond matrix is used for the dimer or the Cartesian

descriptor is used for the trimer. The favorable fragmentation using these purely structure-based

descriptors suggests it may be possible to select fragments that result in high accuracies in molecular

properties without relying on the incorporation quantum mechanical information in the descriptor

for some systems.

Agglomerative clustering produces acceptable fragments, though in general, a larger deviation

from the supermolecular result is observed. On the other hand, only the Cartesian descriptor with

the k-means clustering algorithm yields reasonable result, which is likely due to the conserved

spatial information allowing for an accurate choice of centroids opposed to representations which

employ bonding environment as the features. Overall, the clustering approaches investigated are

relatively insensitive to the level of theory and basis set used to generate the Mayer bond matrix.

which is encouraging as it may allow for future computational savings in future applications on

larger more complex systems where a purely structure base descriptor may not incorporate the

necessary interaction important to the structure. If cases arise in larger systems where the quantum

mechanics based descriptors become necessary, the low level approximation to the bond order will

suffice as long as the bond matrix is meaningful.
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Figure 14: Assessment of fragmentation schemes on silyl ketene trimers: Presented is the percent

error of the energy and the speedup over the supermolecular calculation for the SK trimer to assess

the performance of the fragment approaches and descriptor quality.

Figure 15: Representative visualization of resulting fragmentation for silyl ketenes. Results from

agglomerative (left) and spectral (right) clustering on the GMbm descriptor. Colors represent fragment

identity.
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6.5 Conclusion

In this work we explore the Unsupervised Molecular Fragmentation (UMF) as an automated

partitioning scheme for molecular systems. UMF approach utilizes UML methods to determine

molecular domains in computationally efficient and transferable ways. Three classes of systems

were studied to assess the performance of the UMF approach: water clusters to investigate non-

covalently bonded molecules, methylthiophene tetramers to probe the behavior of UMF with ring

structures, and two silyl ketene oligomers to explore a realistic chemical case with ambiguous

fragmentation choices. Several clustering approaches and molecular representations were tested.

We find that this approach with various clustering methods can accurately identify meaningful

molecular domains for non-covalently bound molecular systems (water clusters) and in the case of

covalently bonded systems with aromatic units. Overall, a spectral clustering approach was able

to produce balanced and sensible molecular fragments as can be seen by the low error and high

speed up for the silyl ketene structures. The clustering is performed on molecular representations

derived from either the molecular structure alone or a low-level quantum mechanics prediction of

the Mayer bond matrix. Both classes of representations performed well for the systems studied,

though it is not yet clear whether more intricate, correlation-dependent, bonding schemes will

benefit from the quantum mechanical informed descriptors and we aim to explore this in future

work. The combination of spectral clustering with the Gxyz provides the most reliable clustering

with minimal preparation cost, thus we recommend this combination for molecules alike to those

studied here. The combination of these descriptors and UML techniques provide a low cost way to

determine acceptable fragments for computational chemistry for further, more accurate, quantum

mechanical calculations.
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7.0 Conclusions

In this work, two approaches were explored to approximate the description of electron cor-

relation in electronic structure calculations while minimizing or reducing the computational de-

mand. The first direction explored was through the application of stochastic sampling to solve

the Schrödinger equation through quantum Monte Carlo (QMC) approaches. Also explored was

the use of unsupervised machine learning (UML) methods to determine molecular partitions for

fragmentation schemes.

For the QMC applications, two systems were explored that are not well described by DFT:

a hydrogen atom chemisorbed to the surface of graphene and a non-valence correlation bound

anion model system, (H2O)4. Calculations of the binding energy of a hydrogen atom on a graphene

sheet were carried out using various DFT methods and with diffusion Monte Carlo (DMC). The

DMC calculations provide a benchmark value of the binding energy. Our best estimate of the

binding energy from DMC calculations is -691 ± 19 meV. The Perdew-Burke-Ernzerhof (PBE)

result obtained with a plane-wave basis set gives a binding energy about 20% larger in magnitude

than the DMC result. The global hybrid functional, PBE0, gives a binding energy close to that of

PBE. In comparison, Heyd–Scuseria–Ernzerhof (HSE), a range-separated hybrid functional, gives a

smaller binding energy of -743 meV, after a correction is applied for the basis set incompleteness

error, and is much closer to the value from DMC calculations. Interestingly, there are significant

differences in the DMC and PBE charge densities of both graphene and H/graphene. Moving

forward, there are cases that an inaccurate density can be the primary source of DFT errors. In these

cases density-corrected DFT can be used.264–269 Often HF densities are used, but exploring cases

where QMC data may help is of interest. Additionally, exploring further observables for the system

may provide more insight into the difference in binding energy observed between DMC and DFT.

For the (H2O)4 system, various Equation-of-Motion-Coupled Cluster ( EOM-CC) methods and

two different QMC to calculate the electron bindibg energy (EBE) of a model (H2O)4 cluster at two

geometries, one at which the anion is bound in the HF approximation and the other at which it is not.

DMC calculations using single determinant trial functions based on Hartree-Fock (HF) orbitals are

shown to bind the excess electron even when the initial wave function for the anion has collapsed
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onto the neutral plus discretized continuum orbital. However, such calculations significantly

underestimate the EBE, whereas SD DMC calculations using trial wave functions for the anion

with a more realistic charge distribution for the excess electron give larger EBE values that are in

close agreement with our best estimate of the EOM-CCSDT values for both geometries considered.

For the (H2O)4 model system, restricted single double configuration interaction represents an

economical way to create trial wave functions for QMC calculations on non-valence anions that

are not bound in the HF approximation. However, it remains to be seen if this strategy will be

as effective for systems in which the neutral species is more strongly correlated than the model

(H2O)4 cluster. Finally, we note that at a spacing of R = 4 Å for one side of the rectangle of water

molecules, for which the anion is NVCB in nature, the most frequently used method to characterize

such anions, EOM-Coupled Cluster Singles and Doubles, underestimates the EBE by about 10%

compared to the result of EOM-Coupled Cluster Singles, Doubles, and Triples calculations. Both

DMC and auxiliary field quantum Monte Carlo are viable alternatives to high order EOM methods,

and while more computationally demanding for the (H2O)4 cluster, they demonstrate lower scaling

with system size than EOM methods, making them attractive for the characterization of non-valence

anions of much larger systems.

The other approach explored was the molecular partitioning for fragmentation as determined by

UML methods. In this work we explore the Unsupervised Molecular Fragmentation (UMF) as an

automated partitioning scheme for molecular systems. UMF approach utilizes UML methods to

determine molecular domains that is both computationally efficient and system agnostic. Several

clustering approaches and molecular representations were tested. The molecular representations

are derived from either the molecular structure alone or a low-level quantum mechanics prediction

of the Mayer bond matrix. Three classes of systems were studied to assess the performance of the

UMF approach: water clusters to investigate non-covalently bonded molecules, methylthiophene

tetramers to probe the behavior of UMF with ring structures, and two silyl ketene oligomers to

explore a realistic chemical case with ambiguous fragmentation choices. We find that this approach

with various clustering methods can accurately identify meaningful molecular domains for non-

covalently bound molecular systems (water clusters) and in the case of covalently bonded systems

with aromatic units. Overall, a spectral clustering approach was able to produce balanced and

sensible molecular fragments as can be seen by the low error and high speed up for the silyl ketene
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structures. Both the Gxyz and GMbm representations performed well for the systems studied, though

it is not yet clear whether more intricate, correlation-dependent, bonding schemes will benefit from

the quantum mechanical informed descriptors. The combination of spectral clustering with the

Cartesian descriptor provides the most reliable clustering with minimal preparation cost, thus we

recommend this combination for molecules alike to those studied here. Beyond an exploration of

the quantum mechanics-derived descriptors on larger molecules, there are also interesting direction

which can look to creating descriptors that are based around a target area such as an adsorbate on a

surface or a protein binding pocket.
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Appendix A Additional works

As some of my research projects are not tied directly to the dissertation theme or are still

being developed, they are mentioned here. These works can briefly be described as improving

quantum computing emulators, an extension of the AFMC approach to regional embedding fragment

definition, and a density functional theory analysis of silyl ketene systems to inform experimental

synthesis.

A.1 Q-GPU: A Recipe of Optimizations for Quantum Circuit Simulation Using GPUs

The test and figures in this chapter have been adapted from Q-GPU: A Recipe of Optimizations

for Quantum Circuit Simulation Using GPUs, International Symposium on High-Performance

Computer Architecture, 2022, pp. 726-740, DOI: 10.1109/HPCA53966.2022.00059 with the

permission of IEEE. The author’s contribution to the work included composing the hydrogen chain

sample circuit and running timings for the circuit.

A.1.1 Summary

In recent years, quantum computing has undergone significant developments and has established

its supremacy in many application domains. Unfortunately, modern quantum computing is still

positioned in the Noisy Intermediate-Scale Quantum (NISQ) era that is limited by the number of

qubits, short qubit lifetime, and imperfect operations. While quantum hardware is accessible to the

public through the cloud environment, a robust and efficient quantum circuit simulator is necessary

to investigate the constraints and foster quantum computer development, such as quantum algorithm

development and quantum device architecture exploration. In this paper, we observe that most

of the publicly available quantum circuit simulators (e.g., QISKit from IBM) are not optimized

and suffer from slow simulation and poor scalability. To this end, we systematically studied the

deficiencies in modern quantum simulators and propose Q-GPU, a framework that leverages GPUs
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with comprehensive optimizations to allow efficient and scalable quantum circuit simulation (QCS).

Specifically, Q-GPU features i) proactive state amplitude transfer, ii) zero state amplitudes pruning,

iii) delayed qubit involvement, and iv) non-zero state compression. Experimental results across

eight representative quantum circuits indicate that Q-GPU significantly improves the simulation

performance over the state-of-the-art GPU-based QCS by 2.53× on average. It also outperforms

the most recent OpenMP CPU implementation, the Google Qsim-Cirq simulator, and the Microsoft

QDK simulator.

A.1.2 Introduction

Quantum computing is a promising computing paradigm that has the potential to solve problems

that cannot be handled by classical computers in a feasible amount of time.270 In the past decade,

there has been steady progress towards building a large quantum computer. The number of qubits

in a real quantum machine has increased from 14 in 2011271 to 76 in 2020.272 IBM promises

1000 qubits quantum machine by the year 2023.273 Despite this rapid progress, current quantum

computing is still positioned in the Noisy Intermediate-Scale Quantum (NISQ) era where the public

has very limited access to quantum machines. These machines are also constrained by the limited

number of qubits, short lifetimes of qubits, and imperfect operations.274 Thus, quantum circuit

simulation (QCS) toolsets provide an essential platform to satisfy many needs, e.g., developing

many different algorithms with a large number of qubits, validating and evaluating newly proposed

quantum circuits, and design space exploration of future quantum machine architectures. Many

companies, such as IBM, Google, Intel, and Microsoft have developed their quantum circuit

simulators to provide precise end-end simulation.

In general, QCS is challenging as it is both compute-intensive and memory-intensive.275,276

The reasons are: i) fully and accurately tracking the evolution of quantum system through classical

simulation277 requires storing all the quantum state amplitudes, which carries a memory cost that

grows exponentially as the number of qubits in the simulated quantum circuit increases, and ii)

applying a gate within a quantum circuit requires a traversal of all the stored state amplitudes,

leading to exponentially scaling computational complexity. Modern GPUs have been used to

fuel QCS in high-performance computing (HPC) platforms. Specifically, when applying a gate
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to a n-qubit quantum circuit, the 2n state amplitudes are evenly divided into groups, and each

group of amplitudes is updated independently in parallel by GPU threads. However, the promising

parallelism of GPUs is diminished by the limited GPU on-board memory capacity. For example,

simulating a quantum circuit with 34 qubits requires 256 GB of memory to store state amplitudes,

which is beyond the memory capacity of any modern GPUs.

There exist several works optimizing QCS, including multi-GPU supported simulation,278,279

OpenMP and MPI based CPU simulation,280–282 and CPU-GPU collaborative simulation.283 Most

of these works focus on distributed simulation while failing to benefit from GPU execution due to

the memory constraint. In particular, our characterization shows that the state-of-the-art GPU-based

simulation283 has low GPU utilization when the number of qubits in the quantum circuit is large. As

a result, most state amplitudes are stored and updated on the CPU, failing to take advantage of the

GPU parallelization. Moreover, the static and unbalanced allocation of state amplitudes introduces

frequent amplitude exchange between CPU and GPU, which introduces additional data movement

and synchronization overheads.

In this paper, we aim to provide a high-performance and scalable QCS using GPUs. We propose

Q-GPU, a framework that significantly enhances the simulation performance for practical quantum

circuits. The proposed framework leverages modern GPUs as the main execution engine and is

featured with several end-to-end optimizations to fully take advantage of the rich computational

parallelism on GPUs, while maintaining a minimum amount of data movement between the CPU and

GPU. Specifically, our approach includes four optimizations. First, instead of statically assigning

state amplitudes on GPU and CPU as done in prior works,283 Q-GPU dynamically allocates groups

of state amplitudes on the GPU and proactively exchanges the state amplitudes between CPU

and GPU. Doing so maximizes the overlap of data transfer between CPU and GPU, thereby

reducing the GPU idleness. Second, Q-GPU prunes zero state amplitudes to avoid unnecessary

data movement between CPU and GPU. Third, we also propose compiler-assisted quantum gate

reordering (complying with the gate dependencies) to enlarge the opportunity of pruning zero

state amplitudes. Finally, we propose efficient GPU-supported lossless data compression to further

reduce data transfer caused by non-zero amplitudes. This paper makes the following contributions:

• We use the popular IBM QISKit-Aer with its state-of-the-art CPU-GPU implementation,284

and conduct an in-depth characterization of the simulation performance. We observe that the
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performance degrades significantly as the number of qubits increases due to the unbalanced

amplitudes assignment, where most of the computation is done by the CPU.

• We implement a dynamic state amplitude assignment to allow the GPU to update all state

amplitudes. However, such an implementation did not provide any performance improvements

and even worsened compared to the CPU execution due to the massive and expensive data

movement between CPU and GPU.

• We propose Q-GPU, a framework comprising end-to-end optimizations to mitigate the data

movement overheads and unleash the CPU capability in QCS. Specifically, the proposed Q-GPU

is featured with the following major optimizations: i) dynamic state amplitudes allocation and

proactive data exchange between CPU and GPU, ii) dynamic zero state amplitude “pruning”, iii)

dependency-aware quantum gate reordering to enlarge the potential of zero amplitude pruning,

and iv) GPU-supported efficient lossless compression for non-zero amplitudes.

• We evaluate the proposed Q-GPU framework using eight practical quantum circuits. Experimen-

tal results indicate that in all circuits tested, Q-GPU significantly improves the QCS performance

and outperforms the baseline by 2.53× on average. We also compare Q-GPU with Google

Qsim-Cirq285 and Microsoft QDK,286 and results show that Q-GPU approach outperforms

Qsim-Cirq and QDK by 1.02× and 9.82×, respectively.

A.1.3 Background

A.1.3.1 Quantum Basics

Similar to the bit concept in classical computation, quantum computation is built upon the

quantum bit or qubit for short.287 A qubit is a two-level quantum system defined by two compu-

tational orthonormal basis states |0⟩ and |1⟩. A quantum state |ψ⟩ can be expressed by any linear

combination of the basis states.

|ψ⟩= a0|0⟩+a1|1⟩, (74)

where a0 and a1 are complex numbers whose squares represent the probability amplitudes of basis

states |0⟩ and |1⟩, respectively.. Note that we have |a0|2+ |a1|2 = 1, meaning that after measurement,

the read out of state |ψ⟩ is either |0⟩ or |1⟩, with probabilities |a0|2 and |a1|2, respectively. The

states of a quantum system are generally represented by state vectors as
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|0⟩=

1

0

 , |1⟩=

0

1

 . (75)

To be more general, for an n-qubit system, there are 2n state amplitudes. Then, the quantum

state |ψ⟩ can be expressed as a linear combination

|ψ⟩= a0...00|0 . . .00⟩+a0...01|0 . . .01⟩+ · · ·+a1...11|1 . . .11⟩. (76)

Similarly, the state of a n-qubit system can also be represented by a state vector with 2n dimensions

as

|ψ⟩= a0...00


1

0
...

0

+a0...01


0

1
...

0

+ · · ·+a1...11


0

0
...

1

=


a0...00

a0...01
...

a1...11

 . (77)

Quantum computation describes changes occurring in this state vector. A quantum computer is

built upon a quantum circuit containing quantum gates (or quantum operations), and a quantum

algorithm is described by a specific quantum circuit. In simple terms, quantum gates are represented

by unitary operations that are applied on qubits to map one quantum state to another. A quantum

gate that acts on k qubits is represented by a 2k×2k unitary matrix.

To illustrate how a quantum gate is applied to a state vector, let us consider a 2-qubit system

with a Hadamard gate/operation operating on qubit 0. A Hadamard gate can be represented as

H ≡ 1√
2

1 1

1 −1

 . (78)

Then the state vector of this 2-qubit system is updated through

a′00

a′01

=
1√
2

1 1

1 −1

a00

a01

 , (79)

a′10

a′11

=
1√
2

1 1

1 −1

a10

a11

 . (80)

For an n-qubit system, when a H gate is applied to qubit j the amplitudes are transformed as:288
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a′×···×0 j×···×

a′×···×1 j×···×

=
1√
2

1 1

1 −1

a×···×0 j×···×

a×···×1 j×···×

 (81)

Therefore, the indices of every pair of amplitudes have either 0 or 1 in the jth bit, while all other

bits remain the same1. Note that each pair of amplitudes can be updated in parallel.

A.1.3.2 Quantum Circuit Simulation (QCS)

The purpose of QCS is to mimic the dynamics of a quantum system,277 and to reproduce the

outcomes of a quantum circuit with high accuracy. There are several approaches to simulating a

quantum circuit, each offering different advantages and drawbacks. We summarize the three most

widely used approaches below.

• Schrödinger style simulation: Schrödinger simulation describes the evolution of a quantum

system by tracking its quantum state. It tracks the transformations of the state vector according

to Equation 81. Note that one can also track the density matrix ρ = |ψ⟩⟨ψ|, which is useful

when measurement is required during simulation.277,278 In this work, we only consider quantum

measurements at the end of circuits.

• Stabilizer formalism: Simulation based on the stabilizer formalism is efficient for a restricted

class of quantum circuits.277,287,289 Specifically, stabilizer circuits (a.k.a Clifford circuits) can

be simulated in O(poly(n)) space and time costs. Rather than tracking the state vector, the

quantum state is uniquely represented and tracked by its stabilizers, which is essentially a group

of operators derived from the Clifford group. A detailed description can be found in.289

• Tensor network: Tensor network simulators are useful when a single or few amplitudes of the

full state vector are being updated as tensor networks.290–293 For example, one type of tensor

network that are extremely common are matrix product states (MPS). When applied to a single

amplitude in Equation 76, the resulting state resembles a long string of matrix multiplications

|ψ⟩= ∑
j0... jn−1 jn

a j0... jn−1 jn| j0 . . . jn−1 jn⟩ (82)

= ∑
j0... jn−1 jn

Tr[A j0 . . .A jn−1A jn]| j0 . . . jn−1 jn⟩ (83)

1“×” can be 0 or 1; the “×” in the same position of a×××××××0 and a×××××××1 are the same.
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The matrices A (rank-2 tensors) in Equation 83 can be thought of as a decomposition of the

full coefficient tensor a. Despite the restriction of returning a limited number of amplitudes,

tensor networks states are efficient as they compress the dimension of the problem from O(2n)

to O(nd2) where d is the dimension of the individual tensors in Equation 83.

Among all these simulation methods, Schrödinger style simulation is widely used as the main-

stream simulation method, and has been widely adopted in prior research works.275,280–283,288,294–297

Also, industrial quantum circuit simulators such as IBM QISKit,284 Google Qsim-Cirq280,295 and

Microsoft QDK286 use full state vector simulations. In this work, we build Q-GPU based on

IBM QISKit-Aer, a high-performance C++ simulation backend of QISKit, since it contains the

state-of-the-art GPU support.

A.1.4 Characterization of QCS

A.1.4.1 Quantum Circuit Benchmarks

In this paper, we characterize the performance of QCS using a rich set of quantum circuits.

Table 6 lists the circuit benchmarks.

• hchain: This circuit which describes a system of hydrogen atoms arranged linearly is a

representative quantum chemistry application.307–311 This circuit incorporates increased circuit

depth and an early entanglement in terms of total operations.

• rqc: The random quantum circuit from Google270,312 is used to represent the quantum

supremacy compared to classical computers.

• qaoa: Quantum approximate optimization is a promising quantum algorithm in the NISQ era

that produces approximate solutions for combinatorial optimization problems .299

• gs: This circuit is used to prepare graph states313 that are multi-particle entangled states.

Examples include many-body spin states of distributed quantum systems that are important in

quantum error correction.314

• hlf: This benchmark circuit solves the 2D hidden linear function problem.302

• qft: The quantum Fourier transform circuit303 is the quantum analog of the inverse discrete

Fourier transform. It is an important function in Shor’s algorithm.315
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Table 6: List of quantum circuit benchmarks

Abbrv. Application

hchain Linear hydrogen atom chain298

rqc Random quantum circuit270

qaoa
Quantum approximate

optimization algorithm299

gs Graph state300,301

hlf Hidden linear function302

qft Quantum Fourier transform303

iqp
Instantaneous quantum

polynomial-time304,305

qf Quadratic form306

• iqp: The instantaneous quantum polynomial circuit provides evidence that sampling the output

probability distribution of a quantum circuit is difficult when using classical approaches.304,305

• qf: This circuit implements a quadratic form on binary variables encoded in qubit registers. It

is used to solve the quadratic unconstrained binary optimization problems.306

A.1.4.2 Baseline QCS

Step 1: State vector partitioning: QISKit-Aer first partitions the state vectors into "chunks".

Chunk is the granularity used in the simulator to update the state vector. For illustrative purposes,

let us assume we have a 7-qubit circuit, i.e., that there are in total 27 different state amplitudes from

a0000000 to a1111111. All the states are stored in a vector (i.e., the state vector), and this state vector

is partitioned into chunks. For example, assuming we divide the state vector into 8 chunks, each

chunk contains 16 state amplitudes as shown in Figure 16. The three most significant bits are used

to index the chunks, and the remaining bits are as offsets within a chunk.
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Step 2: Static chunk allocation: After partitioning, these chunks are allocated into GPU memory

based on the GPU memory availability. As illustrated in Figure 16, if a GPU can only store 3

chunks, the remaining 5 chunks will be stored in the host CPU memory. For example, when 64 GB

memory is needed to simulate 32 qubits, the first 16 GB is allocated in GPU memory (in P100 GPU

with 16 GB memory) and the remaining 48 GB is in the CPU memory.

Step 3: Reactive chunk exchange: During circuit simulation, a chunk exchange between the GPU

and the CPU arises when the requested state amplitudes are not locally available on the GPU. In

QISKit-Aer, the chunk exchange between the CPU and the GPU is triggered on-demand. That is,

when both the chunks on the CPU and the GPU are involved in one state-update calculation, the

corresponding CPU chunks are transferred to GPU for updating. After the operation, the updated

chunks are transferred back to the CPU. Note that, the amount of data exchange in the following

scenarios is dependent on the qubits in the specific gate simulation.

• Case 1: All the indices of the qubits involved in the current gate are smaller than the

chunk size:. For example, a gate on qubit 0 requires amplitudes a×××××××0 and a×××××××1

(see Equation 81). In this case, each chunk can be updated independently without requiring

extra data movement.

• Case 2: Some indices of qubits involved in the current gate are outside the chunk boundary:

In this scenario, let us assume there is a gate that operates on q6, thereby the required pairs of

amplitudes are a×0×××××× and a×1××××××. However, as depicted in Figure 16, none of the

chunks contains a pair of required amplitudes, i.e., the computation for updating amplitudes

involves more than one chunk. Specifically, to update the pairs of amplitudes, we need (chunk0,

chunk2), (chunk1, chunk3), . . . , and (chunk5, chunk7). However, (chunk1, chunk3) involves one

chunk on the GPU and one chunk on the CPU. In this scenario, data exchange is required. In

the baseline QISKit-Aer simulation, the requested chunks are always copied from CPU to GPU.

That is, in the example above, the CPU copies chunk3 to GPU. After the chunk3 is updated

together with chunk1, it is copied back to the CPU memory.

Note that, as the GPU memory capacity is much less compared to the CPU host memory, a large

number of chunks are statically allocated on CPU memory when the number of qubits is large. For

instance, on the P100 GPU with 16 GB memory, we observe from experiments that when simulating
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a circuit that has 34 qubits, the state vector is divided into 8192 chunks, 496 chunks are allocated on

GPU, while the remaining 7696 chunks are all on CPU. Therefore, one can expect that most of the

time, the CPU does the state amplitude update without benefiting from the GPU acceleration.

0000000~0001111

0010000~0011111

0100000~0101111

0110000~0111111

1000000~1001111

1010000~1011111

1110000~1111111

1100000~1101111

0000000~0001111

0010000~0011111

0100000~0101111

0110000~0111111

1000000~1001111

1010000~1011111

1110000~1111111

1100000~1101111

CPU memory

GPU memory

𝒄𝒉𝒖𝒏𝒌𝟎
𝒄𝒉𝒖𝒏𝒌𝟏

…
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Figure 16: Example of baseline execution where the state vector is statically partitioned and

allocated on CPU and GPU.

A.1.4.3 Characterization and Observations

In this section, we quantify the simulation performance of the baseline QISKit-Aer. We first

study the scalability when the number of qubits increases. We observe that, if there are less than 30

qubits in the circuit, the baseline GPU simulates much faster than compared CPU-based simulation

(e.g. 9.67× speedup for 29-qubit circuits on average), since the entire state vector fits in the P100

GPU memory and there is no need for data exchange and synchronization. However, the baseline

GPU performance significantly drops when the number of qubits is larger than 30. It becomes even

worse than running on the CPU alone when the number of qubits reaches 32. In particular, we

observe a factor of 1.8× slowdown for qft_332 as an example.

To investigate the reason for this slowdown, we show the breakdown of the execution time

in Figure 17. One can observe that, on average, 89.34% of the execution is spent on the CPU,

indicating that the GPUs are not properly used in the baseline execution for large number qubit

circuits. Moreover, the overheads involve amplitude exchange and synchronization occupies 9.91%

of the average execution time, and the computation time of GPU only occupies 0.71% of total time

2In this paper, we use n in the circuit name (e.g., circ_n) to represent a circuit with n qubits.
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Figure 17: Baseline execution time breakdown.

on average. In other words, most of the computation is performed by the CPU and the GPU is idle

due to the static state chunk allocation in the baseline GPU execution. In Figure 21, I depicts the

execution timeline of the baseline.

A.1.4.4 Will a Naive Optimization Work?

To improve the GPU utilization during simulation, an intuitive optimization would dynamically

allocate the chunks and transfer the chunks to GPU for updates. In this section, we investigate

whether the naive implementation works well or not.
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Figure 18: Normalized execution time of naive approach.

We implemented the dynamic state vector chunk allocation in QISKit-Aer. Figure 18 depicts

the execution time of the naive optimization normalized to the baseline execution. Surprisingly,

none of the quantum circuits we studied show improvements when using dynamic allocation. To

further investigate the reason, we break down the execution time and show the results in Figure 19.

As can be seen from the figure, while CPU execution time significantly reduces and the data

movement dominates, indicating that the GPU is waiting for data most of the time during execution.

Therefore, naive dynamic allocation alone does not work to deliver good QCS performance. More
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Figure 19: Execution time breakdown of naive optimization.
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Figure 20: High level overview of Q-GPU.

sophisticated end-to-end optimizations are required to systematically improve the QCS performance

and scalability.

A.1.5 Q-GPU

In this paper, we propose Q-GPU, a framework that features several end-to-end optimizations.

Figure 20 depicts the high-level overview of Q-GPU. ( 1 ) Q-GPU performs proactive state amplitude

transfer to fully utilize the bi-directional data transfer bandwidth between CPU and GPU (Section

A.1.5.1). ( 2 ) Before copying state amplitudes to GPU, Q-GPU performs dynamic redundancy

elimination that prunes zero state amplitudes to avoid unnecessary data movements (Section

A.1.5.2). ( 3 ) Q-GPU features a compiler-assisted, dependency-aware quantum gate reordering

to enlarge the potential of pruning (i.e., the number of zero amplitudes). ( 4 ) Q-GPU implements

a GPU-supported, lossless amplitude compression to further reduce the data transfer caused by
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non-zero state amplitudes with minimal runtime overheads (Section A.1.5.4).

A.1.5.1 Proactive State Amplitudes Transfer

In the naive execution, one reason behind the poor GPU utilization is the sequential state

amplitude transfer between CPU and GPU. Specifically, when the GPU finishes updating all local

chunks, those chunks are first copied back to CPU memory before the CPU can transfer the next

batch of un-updated chunks to the GPU. This restriction is reasonable in the scenarios when

particular chunks are involved in consecutive updates since the chunks being copied from the

GPU’s memory cannot be overwritten during the copying. In other words, data movements are

synchronized to avoid data conflicts. However, if the subsequent chunks from the CPU are not

copied to the same memory locations on the GPU where current chunks are stored, such data conflict

does not exist. As a result, one can transfer the chunks simultaneously from the CPU to the GPU

and from the GPU to the CPU.

In our work, Q-GPU leverages CUDA streams to enable concurrent and bi-directional chunk

copy to fully utilize the available bandwidth between the CPU and GPU. To avoid potential data

conflict, Q-GPU implements two CUDA streams and partitions the GPU memory into two halves.

One stream is responsible for the first half partition that acts as a buffer holding the chunks the GPU

is currently updating. The other stream is responsible for the second half partition that acts as a

buffer for “prefetching” the next chunks for the GPU to update. The two memory partitions work

as “circular buffers” to feed the GPU with the required chunks. These two streams can potentially

overlap and execute concurrently.

Figure 21 illustrates the timeline of the baseline and each of our optimizations. The proposed

proactive state amplitude transfer ( III ) achieves A cycles savings compared with the baseline ( I ).

We also show that the naive approach ( II ) performs worse than the baseline.

A.1.5.2 Pruning Zero State Amplitudes

While overlapping improves the bandwidth utilization, the total amount of amplitudes that are

transferred remains unchanged. To reduce the data movement, we observe that there exist a

considerable amount of zero state amplitudes that do not need to be updated during simulation.
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Figure 21: Time-line graph showing the benefits of each optimization in Q-GPU.

Thus, those zero state amplitudes can be pruned before transferring the chunks.

Source of zero amplitudes: Let us assume there are n qubits, the initial states are usually set as

|0⟩⊗n in the general QCS, indicating that all qubits have zero probability of being measured as |1⟩.

Hence, all state amplitudes are zeros, except for a0102...0n which is 1. As the state of a particular

qubit is unchanged until an operation is being applied on it, its state remains |0⟩ until that operation

happens. For instance, if a particular qubit qk is |0⟩, all the state amplitudes a×···×1k×···× are zeros

since qk has zero probability to be measured as |1⟩. In general, if m of n-qubits are not involved,

amplitudes a×0k1×0k2 ···×0km×× are possible to be non-zero values, whereas the remaining amplitudes

are guaranteed to be zero values, i.e. 2n−2n−m amplitudes are zero values. Therefore, even if only

one qubit is not involved, then half of the state amplitudes are zeros.

Pruning potential: To investigate the potential of pruning, Table 7 lists the number of total

operations and the number of operations before all qubits are involved. For circuits like iqp, we can

expect a significant reduction of data movement after pruning since many qubits are not involved

until the end of execution. However, for qft and qf, all qubits are involved at the beginning of

execution, diminishing the potential of pruning benefits. We also use hchain_18 as an example and

plot the distribution of state amplitudes after each operation (i.e., quantum gate) being applied in a

quantum circuit. Figure 22 shows the state amplitude distribution after 0, 30, 60 and 90 operations.

One can observe that a large portion of state amplitudes are zeros at the beginning of the simulation.

During simulation, the amplitudes are gradually updated to non-zero values since more qubits are
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involved.
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Figure 22: State amplitudes distribution of hchain_18, after 0, 30, 60 and 90 operations from left

to right. Blue and orange lines denote real and imaginary parts of an amplitude respectively.

In general, let us assume we have an operation involving m states, if all of the states are zero,

these m states remain zeros after applying any operation. As a result, we do not need to transfer

the zero state amplitudes to the GPU as their values will not change. Therefore, one can reduce

the data movement between CPU and GPU by pruning the zero state amplitudes. One intuitive

approach is to check each state value by traversing all states. However, a more efficient approach

can be adopted, as we illustrate below.

Pruning Mechanism: In the proposed Q-GPU, we use bits in a binary string as flags to indi-

cate whether a qubit has been involved after a set of gate operations (denoted as involvement in

Algorithm 2). Initially, all the bits in involvement are set to 0. When qk is involved, the kth bit

in involvement is set to 1. Recall that the state vector is partitioned into chunks, the index of a

chunk, i.e., iChunk, determines whether a chunk will be transferred or not. To compare iChunk with

flag bits in involvement, we define iChunk′ as the left-shifted iChunk to align with involvements.

When iChunk′ is larger than involvement, it indicates that at least one bit of iChunk′ is 1 and the

corresponding flag bit in involvement is 0. In this situation, the corresponding qubit (i.e., indexed

by this flag bit) has not been involved by any operation. As such, we skip the remaining chunks

and stop the iteration (line 5). On the other hand, if iChunk′ is smaller than or equal to involvement,

the redundancy within a chunk is determined by iChunk′ & involvement (line 8). For a qubit

whose corresponding bit in iChunk′ is 1, if it has already been involved by previous operations, its

corresponding bit in involvement is also 1. Therefore, for all the qubits that is 1 in iChunk′, if all of

them have already been involved by previous operations, iChunk′ & involvement results in iChunk′
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Table 7: The number of total operations and the number of operations before all qubits are involved

for all circuits with 34 qubits.

Circuit Total Operations
Operations Before

Completely Involved

hchain 1786 272

rqc 124 54

qaoa 754 19

gs 37 16

hlf 48 16

qft 184 13

iqp 146 132

qf 222 16

itself. Otherwise, all the state amplitudes within this chunk are zeros, and we can prune this chunk.

Moreover, the chunkSize here is dynamically determined rather than a statically fixed value, which

enhances the benefit of the above-discussed strategy. Specifically, we select chunkSize by finding

the least non-zero bit of involvement. This is useful, especially at the beginning of the simulation

where many state amplitudes are zeros. For instance, assuming we have an 8-qubit circuit and the

involvement flag is 00000011 at the early execution stage, the chunkSize is dynamically set to 2,

which has fewer zeros within a chunk compared to a larger chunk. The involvement flag bits are

updated according to the qubits involved in each operation (line 14). In Figure 21, the proposed

pruning mechanism ( IV ) further saves ( B ) cycle over III .

A.1.5.3 Reordering to Delay Qubit Involvement

In order to enlarge the potential of pruning, such that more state amplitudes are zeros during

simulation, we propose compiler-assisted, dependency-aware quantum operation reordering to delay
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Algorithm 2: Pruning zero state amplitudes.
Variable list : N Total chunks number in CPU,

involvementFlag indicating which qubits are involved

1 /* Determine chunkSize by locating the least non-zero bit of involvement

*/

2 chunkSize, N = getChunkSize(involvement)

3 for iChunk← 0 to N−1 do

4 iChunk′ = iChunk << chunkSize

5 if iChunk′ > involvement then

6 break

7 if iChunk′&involvement ̸= iChunk′ then

8 continue

9 /* Amplitudes update */

10 . . .

11 updateInvolvement(involvement)
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Figure 23: A walk-through example to illustrate the reordering benefits using gs_5. The red number

denotes the operation orders before and after reordering.

the involvement of qubits. Specifically, when applying a gate, we choose the one that incurs the

minimum number of additional qubits to be involved with those qubits that have been already

involved by previous operations. For example, Figure 23a shows the gs_5 circuit in the original
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execution order. The first five gates are H gates, where each gate applies to an individual qubit. As

a result, once these gates have been applied, all the five qubits are involved. The next operation is

a CNOT gate applied to qubits q0 and q1 (CNOT6). All the state amplitudes are likely non-zero

because the qubits are involved by the H gates. Therefore, applying this CNOT gate requires

updating all the non-zero amplitudes in the state vector, leading to moving and traversing the entire

state vector on the GPU. However, the CNOT6 can be executed before some of the H gates without

violating the circuit semantics. This gate reordering allows more zero state amplitudes (fewer data

movements) when simulating the CNOT6 gate. It is also important to emphasize that any reordering

must ensure that the gate dependencies are presented. For instance, CNOT6 and CNOT7 cannot be

reordered due to the dependency on q0.

To this end, we propose a compiler-assisted optimization to reorder the gate sequence with

the goal of delaying the qubit involvement. Specifically, gates that are applied on different qubits

in a quantum circuit can be executed independently in any order and the execution sequence of

these independent gates does not affect the final simulation result.275,299,316 This provides us the

opportunity to reorder the independent gates, we use a directed acyclic graph (DAG) to represent

the gate dependency in a circuit. Based on the DAG, we reorder the independent gates such that

the simulation sequence involves the minimum number of new qubits when simulating each gate.

Specifically, we investigate two heuristic strategies: 1) greedy reordering, and 2) forward-looking

reordering.

Greedy reordering: greedy reordering traverses the DAG in topological order and greedily selects

the gate (i.e., node in the DAG) that introduces the minimum number of new qubits to the list

of updated qubits. The details of this method are illustrated in Algorithm 3. First, gates without

predecessors in the DAG can be executed at the first steps and are put into exeList. Second, we

traverse the gates in exeList and find the one that introduces the minimum number of newly involved

qubits (lines 13 to 19). Then, we remove this gate from exeList and append it to the list of re-

ordered gates. Third, we traverse the descendants of this gate and if a descendant does not have any

predecessors other than this current gate, it will be added to exeList (lines 22 to 27). The second and

the third steps are repeated until exeList is empty. In the rest of this section, we use Figure 23a as the

example to illustrate how we perform reordering. At first, the exeList is [g1, g2, g3, g4, g5]. Since

each of these five gates involves one new qubit, we randomly select one gate among them to start
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Algorithm 3: Quantum operation reorder.
Input : DAG A DAG representing circuit dependencies.

Output : gatesList List of gates after reordering,

1 gatesList = [ ]

2 exeList = [ ]

3 /* First we build DAG and push gates without predecessors to an

execution list */

4 for g in DAG do

5 if g.numPredecessors()== 0 then

6 exeList.append(g)

7 /* Then we traverse DAG in topological order and greedily decides the

execution order of the gates */

8 while exeList ̸= /0 do

9 nextGate = NULL

10 minCost = 0

11 for g in exeList do

12 cost = g.getCost()

13 if cost < minCost then

14 minCost = cost

15 nextGate = g

16 exeList.erase(nextGate)

17 gatesList.append(nextGate)

18 for g in nextGate.descendants() do

19 g.numPredecessors()= g.numPredecessors()−1

20 if g.numPredecessors()== 0 then

21 exeList.append(g)
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simulation. In this example, g1 is selected as the starting gate. After traversing all its descendants,

no new gates can be added into exeList. Next, the exeList becomes [g2, g3, g4, g5]. In the next three

steps, we randomly select g3, g5 and g2 since no new gates can be executed and all gates in exeList

have equal priority. Then the exeList becomes [g4, g6]. At this time, involvedQubits is [q0, q1, q2,

q4]. Therefore, g4 involves one new qubit (q3), whereas g6 will not introduce any new qubits since

it acts on q0 and q1 that are already in the involved list. Therefore, we will greedily select g4 to

execute since it involves the least new qubits. One can follow these reordering steps to reach the

new ordering shown in Figure 23b. As a result, the number of involved qubits at each step is 1→ 2

→ 3→ 4→ 4→ 4→ 5→ 5→ 5. Since the baseline is 1→ 2→ 3→ 4→ 5→ 5→ 5→ 5→ 5,

the final involvement is delayed by two steps. However, a better solution for reordering is to select

g2 and g6 in the second and the third step, since applying these two gates only adds one qubit to

exeList, while applying g3 and g5 adds two. Thus greedy reordering may misses the optimal choice.

Forward-looking reordering: To address the deficiency in greedy-reordering, we propose Forward-

looking reordering that looks ahead of all the equal-priority gate candidates before making a decision.

We implemented a cost counter to determine the priority of the gates in exeList. In greedy reordering,

the cost is simply computed by counting new involved qubits (line 3-8 in Algorithm 4). The cost in

forward-looking reordering is computed using Algorithm 4. Note that, exeList and involvedQubits

are just copies of the original ones, thus their original values are not changed. In forward-looking

reordering, the cost of selecting a gate in exeList consists of two components: costCurrent and

costLookAhead (line 1). The costCurrent is the same with the cost used in greedy reordering.

Let us still use the example in Figure 23a to illustrate Algorithm 4. Initially, the exeList is also

[g1, g2, g3, g4, g5]. We take g1 as an example to explain the computation of costLookAhead.

First, we assume g1 has already been executed. Then, the costCurrent is 1 and involvedQubits

becomes [q0] (lines 3-8). Since no descendants of g1 can be executed, the exeList becomes [g2,

g3, g4, g5] (lines 9-14). Then, we traverse the exeList. For each gate in exeList, we compute the

cost of selecting this gate by counting the new involved qubits (lines 18-21) and selecting the

least cost as costLookAhead. Now, executing any gate in exeList will involve one new qubit, thus

costLookAhead is computed as 1 (lines 16-26). Similarly, one can find that all gates at the first step

have equal priority. For the purpose of illustration, we assume g1 is randomly selected. Then the

exeList becomes [g2, g3, g4, g5]. Although all gates still have equal costCurrent, we can find that
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g2 has the least costLookAhead. The reason is that, when we assume executing g2 and look ahead

from g2, we find that executing g6 introduces no new qubits. In contrast, look ahead after executing

other gates will introduce new qubits. Finally, we get the result of forward-looking reorder as shown

in Figure 23c. Clearly, the involvement at each step become 1→ 2→ 2→ 3→ 3→ 4→ 4→ 4

→ 5. Compared with greedy reordering, we further delay the final involvement by two steps.
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Figure 24: Qubit Involvement during simulation in three representative circuits.

Reorder effectiveness: To assess the performance of the reordering algorithms discussed above, we

implement them to reorder the original operation sequences for all benchmark circuits that have 22

qubits and plot the involvement (Algorithm 2 in Section A.1.5.2) after each gate has been applied.

For the purpose of illustration, we depict the results of three representative benchmark circuits

in Figure 24. For each order, i.e original order, greedy-reorder, and forward-looking reorder, the

“speed” of reaching the maximum involvement indicates the pruning potential. We observe that,

forward-looking reordering results in the largest pruning potential, while greedy reordering only

works for qft_22 and even results less pruning potential than baseline for gs_22. Particularly. for

gs_22 and qft_22, forward-looking reordering effectively delays the involvement of qubits. Thus,

we can expect the pruning potentials of these circuits to be enlarged by forward looking reordering.

However, for qaoa_22, none of the reordering algorithms work due to the prevalent dependencies

among the gates. Refering back to Figure 21, when reordering ( V ) is employed, we can prune more

chunks, which saves additional C cycles compared to IV .

A.1.5.4 Non-zero State Compression

Compressibility: While pruning removes the zero state amplitudes, those non-zero amplitudes still

cause data movement overheads especially for circuits that do not have large pruning potentials (e.g.,
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qaoa in Figure 24). Targeting reducing the data movement caused by non-zero state amplitudes,

we investigate the potential compressibility and propose a GPU-supported efficient lossless data

compression in Q-GPU. Specifically, we observe that many non-zero entries within a state vector,

after each operation, have similar amplitude values. In other words, there is a significant “spatial”

similarly among consecutive state amplitudes in the state vector. To demonstrate the compressibility,

we use qaoa_20 and iqp_20 as examples and show the residuals by subtracting the consecutive

state amplitudes. As one can observe from Figure 25, for qaoa_20, most of the residuals are zero

or very close to zero, indicating a potential for residual-based compression. However, iqp will be

less compressible due to more diverse distribution.
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Figure 25: Residual distributions for qaoa_20 and iqp_20.
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Figure 26: Overview of compression in Q-GPU.

Compression Strategy: We use the GFC algorithm317 in Q-GPU. We implement the GFC as GPU

kernels to perform the compression in parallel, thereby reducing the compression and decompression

overheads. Specifically, the amplitudes on the GPU are partitioned into micro-chunks with a size

of 32 amplitudes. Each GPU warp iteratively compresses/decompresses in parallel. Figure 26
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(on the top) shows the compressed format. For the 32 values of a micro-chunk, we first store a

4-bit prefix for each of them, where one bit is used to record the sign of the residual and another

three bits are a count of leading zero bytes of the residual. Figure 26 also illustrates the GPU

support of compression and decompression in Q-GPU. The compression is performed on the GPU

after updating the chunk before copying it to the CPU. All of the chunks are equally divided into

“segments”. We empirically choose the segment size to match the GPU parallelism such that the

GPU is properly utilized during compression. The compressed segments are transferred to the

CPU instead of the original state chunks. The CPU keeps the compressed segments and copies

the compressed segments to the GPUs upon request. Once the chunks are copied to the GPU,

the amplitudes are decompressed, updated, and then compressed. As can be seen from Figure 21,

compression ( VI ) saves D cycles over V and introduces negligible overhead. Later, in section

A.1.6, we quantify the overheads incurred by the compression and decompression procedures.

A.1.6 Experimental Evaluation

In this section, we evaluate Q-GPU using the eight circuits in Table 6. We implement Q-GPU

by substantially extending IBM QISKit-Aer. The evaluation is conducted on the same CPU-GPU

platform used for characterization. For all experiments, the default optimizations in QISKit-Aer are

turned on in both baseline and Q-GPU evaluation. To show the effectiveness of each optimization,

we test six different versions of executions for all quantum circuit benchmarks:

• Baseline: This version is the implementation with state-of-the-art GPU support284 in QISKit-

Aer that supports GPU acceleration. As illustrated in Section A.1.4.2, state amplitudes are

statically allocated on the GPU and CPU in this version.

• Naive: This version is the intuitive implementation discussed in Section A.1.4.4, which

dynamically allocates state amplitudes to GPU. The performance of this version is dominated

by expensive data movements.

• Overlap: This version implements the first optimization – proactive state amplitude transfer –

in Q-GPU. This version is built upon the Naive version and its details are discussed in Section

A.1.5.1.
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Figure 27: Normalized simulation time for circuits with different number of qubits (the lower the

better).

• Pruning: This version adds the proposed pruning mechanism (Section A.1.5.2) to Overlap. By

skipping the data movement of zero state amplitudes, the amount of data movement is reduced.

• Reorder: In this version, we implement forward-looking reorder algorithm (Section A.1.5.3)

to enlarge the potential for pruning. This reordering is performed by a simple compiler pass

integrated in the Q-GPU.

• Compression/Q-GPU: In this version, all optimizations are employed with compression. We

also call it Q-GPU. Compression (Section A.1.5.4) is added on top of Reorder. This version

achieved the best performance.

A.1.6.1 Overall Performance

Figure 27 shows the overall performance and scalability among the six versions for all eight

quantum circuits. The y-axis in the figure denotes the normalized execution time to the Baseline

version. From the figure, one can make the following observations. First, by adding the proposed

optimization in Q-GPU, our approach significantly reduces the execution time of QCS across all

the circuits. Specifically, Overlap, Pruning, Reorder, and Compression/Q-GPU see a 24.96%,

44.54%, 56.78%, and 71.66% execution time reduction over the baseline execution for the largest

number of qubits that can run on our platform. Second, the scalability of QCS performances

is significantly improved by “breaking” the memory capacity in Q-GPU. The average achieved

118



0
0.1
0.2
0.3
0.4
0.5
0.6

N
o

rm
a

li
z
e

d
 D

a
ta

 
T

ra
n

s
fe

r 
T

im
e

Overlap Pruning Reorder Compression

Figure 28: Normalized data transfer time (lower the better).

performance outperforms baseline by 2.53× for 34 qubits. Although we only simulate up to 34

qubits due to the CPU memory limitation (384 GB) in our system (Section A.1.4.3), one can

infer from the trend that our optimizations are scalable to larger sized circuits. Third, Q-GPU

has different accelerations for different circuits. Specifically, for gs, qft, qaoa and iqp, higher

execution time reduction is observed, whereas for hchain and rqc, less speedup is observed. This is

because, for hchain and rqc, reordering cannot enlarge the pruning potential because of dependent

gates. Their amplitude residuals also have disperse distribution (similar to iqp in Figure 25). Thus,

either Reorder or Compression improves little for these two benchmarks. Finally, for different

circuits, a certain version may not have the same acceleration effects. For example, Overlap version

generates a similar execution time reduction in all circuits tested. However, for Pruning, Reorder and

Compression, the runtime reduction is different between different circuits. For example, Pruning

and Reorder improve little for qaoa and qf because these two circuits do not have much potential

of pruning the zero amplitudes. That is, their qubits get involved quickly with dependent operations.

However, qaoa achieves significant benefits by compression as the great potential of compressibility.

(discussed in Section A.1.5.4).

To further understand the execution reduction, Figure 28 plots, for each version, the exposed

data movement time. In this figure, the y-axis represents the data movement time normalized to

the Naive version. Clearly, one can observe a step-wise data movement reduction in the versions

with our optimizations. First, Overlap uniformly reduces the data transfer time by an average of

46.14%. Note that, the savings generated in Overlap are independent of circuit types, that is the

reason behind execution time reduction in Figure 27. For Pruning and Reorder, the reduction of

data movement time varies in different circuits. This is because the number of zero state amplitudes
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and the potential of pruning heavily rely on the circuit type. For example, qaoa, qft, and qf get

all qubits involved at early stage of simulation. Hence, pruning is less effective for these circuits

compared to others. Also, as discussed in Section A.1.5.3, Reorder has little effects on hchain,

rqc, qaoa, and qf due to dependent operations in these circuits. Therefore, Reorder delivers similar

data transfer time reduction with Pruning for these circuits. However, for those circuits with less

dependent operations, Reorder significantly reduces their data movement time by enlarging the

pruning potential. For circuits like qaoa, gs, qft and qf, Compression effectively reduces the

data movement by leveraging the spatial similarity discussed in Section A.1.5.4. In a nutshell, for

all circuit benchmarks tested, the reductions of data transfer time are the main reason behind the

execution time reduction in Figure 27.

We also quantify the computation time of compression and decompression in Figure 29. Overall,

the compression and decompression overhead is 3.12% and 2.74% of the GPU execution time.

Potentially one may further optimize the compression and decompression by overlapping them on

GPU, but we found the overhead is negligible compared to the significant reduction in execution

time that we achieved. We also want to emphasize that the execution times reported in Figure 27

have all the sources of overhead included.

A.1.6.2 Comparison with OpenMP

Many publicly available quantum simulators and existing works employ OpenMP to parallelize

the QCS on CPUs.275,282,295 We compare Q-GPU with these OpenMP implementations. Specifically,

we chose the OpenMP implementation in the most recent QISKit simulator and plot the results in
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Figure 30: Comparison with OpenMP.

Figure 30. We also compared our approach with other simulators in the next section, where the

OpenMP is used by default in the simulators. On average, across eight circuits, Q-GPU outperforms

the OpenMP QISKit by 1.79×. Particularly, Q-GPU achieved 12.79× speedup in qft. For gs, iqp

and qf, Q-GPU achieves more than 2× speedup. However, for hchain and rqc, Q-GPU performs

worse than OpenMP. This is because the pruning potential and the compressibility are low in both

circuits where Q-GPU is less effective.

A.1.6.3 Comparison with Other Simulators
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Figure 31: Comparisons of Q-GPU to the simulator from Microsoft QDK v0.15 and Google Qsim-

Cirq v0.8.0.

.

We compare Q-GPU with other simulators, including Google Qsim-Cirq v0.8.0 plus Cirq

v0.9.2285 and Microsoft QDK v0.15.286 In our experiments, we run these simulators on the same

CPU (Section A.1.4.2). Note that, both Qsim-Cirq and QDK are OpenMP enabled and we observe

that they used all available threads during execution on the CPU. We report the results in Figure 31.
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It is important to note that, to enable the simulation of the same circuits on Qsim-Cirq, we need

to first transform our circuit benchmarks into OpenQASM codes.318 Then, we need to import the

OpenQASM codes to Qsim-Cirq for execution. Unfortunately, not all the transformed circuits can

be simulated on Qsim-Cirq due to the lack of support for particular gates (i.e., the “cp” gate cannot

be recognized by Qsim-Cirq). As a result, we can only run gs and hlf successfully. This motivates

our future research on uniform support of Quantum programming models. Figure 31a shows the

normalized speedup of the proposed Q-GPU compared to Qsim-Cirq. Q-GPU outperforms the

Google Qsim-Cirq by 1.02× on average.

To run the same quantum circuit on Microsoft QDK v0.15, we have to further convert the

OpenQASM codes to “qsharp", i.e., the quantum language used in Microsoft. The conversion only

succeeded for qft, iqp, hlf, and gs. The normalized simulation time is plotted in Figure 31b. On

average, Q-GPU performs 9.82× better than Microsoft QDK.

A.1.7 Related Works

To the best of our knowledge, Q-GPU is the first work that systematically optimizes quantum

circuit simulation on a GPUs. We summarize the related prior efforts below.

Prior works have focused on QCS optimizations on different platforms, from readily available

devices to cloud environments.275,280–282,291,294,295,319 Thomas et al. simulated 45-qubits circuit

using 8,192 nodes.280 They optimized single node performance by using automatic code generation

and optimization of compute kernels. Edwin et al. claimed to simulate more than 49 qubits by

partitioning quantum circuits to “subcircuits” and delay their entanglements.282 In,281 the authors

proposed lossy data compression to reduce the memory requirement of simulating large-scale

quantum circuits. Aneeqa et al. focused on fully exploiting single CPU performance for simulating

a large number of qubits.275 The developed algorithm aims to reorder circuits such that more gates

can be simulated in parallel. Compared with all these efforts, Q-GPU takes advantage of GPUs while

managing the data movement between CPU and GPU. First, we identify the source of zero state

amplitudes in QCS, and propose a pruning mechanism to safely reduce unnecessary computation on

these states, which saves not only computation but also data movement. Unlike prior works using

reordering to aggregate gates,275,299,320 we propose reordering algorithms to enlarge the pruning
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potential. Moreover, Q-GPU is the first framework that leverages the GPU to implement a lossless

compression that does not affect accuracy of QCS. Finally, it is important to emphasize that Q-GPU

is complementary to existing cloud-based quantum simulation frameworks, and can be integrated

within these frameworks for further QCS improvements.

There are also several works that utilize GPUs to accelerate QCS.278,279,283,297,321–323 Most of

these works have limited capability in simulating large quantum circuits due to the limited memory

capacity of GPUs. Ang et al. proposed a multi-GPU centric QCS framework that tracks the density

matrix.278 However, their framework cannot simulate a large number of qubits since it is limited

by the aggregated memory capacity of multi-GPUs. For a single-node, they can only simulate up

to 14 qubits on an NVIDIA V100 GPU. Jun et al. proposed a CPU-GPU co-simulation method

that enables simulation using a GPU even when the required memory exceeds the GPU memory

capacity. Their method is also integrated into the IBM QISKit and is used as the baseline in this

paper.283 In summary, compared to prior work, Q-GPU breaks the GPU memory capacity limitation,

i.e., it is able to simulate 34 qubits which require 256 GB memory on a 16 GB memory GPU, and

fully takes advantage of GPU parallelization. The fundamental design innovation behind this is

to dynamically and proactively transfer the state amplitudes through end-to-end optimizations to

minimize the data movement overheads caused by state amplitudes transfer.

A.1.8 Concluding Remarks

In this paper, we propose Q-GPU, a framework tailored with GPU optimizations to effectively

improve the quantum circuit simulation performance for quantum circuits with a large number of

qubits. The Q-GPU is able to deliver scalable simulation performance based on the four internal

end-to-end optimizations, including i) proactive state amplitudes transfer, ii) zero state amplitudes

pruning, iii) delayed qubit involvement, and iv) lossless non-zero state compression. Experimental

results across eight representative quantum circuits indicate that Q-GPU achieves 2.53× average

execution time reduction on a single GPU. It also outperforms the most recent OpenMP CPU

implementation and other publicly available quantum simulators.
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A.2 UMF Application to Regional Embedding

Collaborators: Shiv Upadhyay and Daniel S. Lambrecht.

In the previous chapter, we looked at partitioning an entire molecule into important domains

in systems where there is no focal interaction. However, there are many cases in which a focal

area of the calculation is known such as an adsorbate to a surface, a polymer chain growth site, or

an enzyme in a binding pocket. One way in which these calculation are made more affordable is

through localization schemes. A recent scheme was proposed for a regional embedding approach

in which localization of the occupied and virtual molecular orbitals (MOs) occurs separately for

a fragment area of interest. This fragment region was not defined in the original work requiring

a set of convergence test for each system studied, taking away from the speed-ups granted by the

method. In this chapter, the utility of the UMF approach to determining this fragment area is

presented. Specifically, the spectral clustering approaches as proposed in our previous work with a

newly-developed descriptor that is tailored to target an area of interest within a chemical system.

This approach allows for a reliable definition of the fragment area over which localization of the

molecular orbitals occurs, which removes the necessity of convergence testing for fragment size.

Though these preliminary results are brief, they do suggest a path forward in using fragmentation

approaches with regional embedding schemes, or other localization schemes. To move this work

forward, the characterization of the current descriptors must be applied to a wider variety of systems

to understand how system agnostic the descriptors can be. Additionally, other forms of descriptors

should be investigated.

A.3 Characterization of Silyl Ketenes

Collaborators Krista Schoonover, Ian Baxter, Sarah Mitchell, Emily Pentzer and Daniel S.

Lambrecht.

A joint experimental and computational study to explore the preference for nucleophilic addition

or deprotonation of combinations of different anions and different silyl ketene units. Specifically,

the silyl ketene with TBDPS functional groups paired with various nucleophiles were explored with
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DFT. The addition reaction was thermodynamically favored, while deprotonation was primarily

kinetically favored. The author’s contribution to this work were in the calculation of the molecular

electrostatic potential and small contributions in discussion to the machine learning study which

was led and performed by Daniel. S. Lambrecht. This manuscript is currently in preparation.
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Algorithm 4: Cost calculation in forward-looking reordering.
Input : g Gates from exeList,

exeList List of gates that are executable,

involvedQubitsSet of qubits which have already been acted on.

Output : cost Potential involved qubits after executing g.

1 costCurrent = 0,costLookAhead = 0

2 /* First we compute additional qubits that will be acted on by

executing current gate */

3 for q in g.qubits() do

4 if q not in involvedQubits then

5 costCurrent = costCurrent +1

6 involvedQubits.insert(q)

7 exeList.erase(g)

8 for g′ in g.descendants() do

9 if g′.numPredecessors() == 1 then

10 exeList.push(g′)

11 /* Then we traverse current exeList and compute the cost of selecting a

gate that involve least additional qubits */

12 for g′′ in exeList do

13 curCostLookAhead = 0

14 for q′ in g′′.qubits() do

15 if q′ not in involvedQubits then

16 curCostLookAhead = curCostLookAhead +1

17 if curCostLookAhead < costLookAhead then

18 costLookAhead = curCostLookAhead

19 cost = costCurrent + costLookAhead

20 return cost
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Appendix B Supplemental Material for Chapter 4

The Supplementary Material document includes the total energies and error bars for the quantum

Monte Carlo calculations, the total energies for the DFT calculations, and details of the convergence

of the DFT total energies with respect to the k-point grid and kinetic energy cutoff of the plane wave

basis, and a comparison of the density difference of DMC-PBE and DMC-HSE.

B.1 Convergence of PBE Total and Binding Energies with Respect to Relevant Parameters

In this section, the sensitivity of PBE total and binding energies with respect to k-point grid and

cutoff of the kinetic energy of the wave function for the plane wave basis.
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Table 8: PBE total energies of each system and binding energies (eV) with respect to increasing the

Monkhorst-Pack k-point grid. The hydrogen total energy value used to calculate the binding energy

was for a 1x1x1 k-grid with a 250 Ry wave function cutoff.

k-point grid hydrogen on graphene graphene H binding energy

2x2x1 -7759.736 -7745.293 -13.604 -0.839

3x3x1 -7759.751 -7745.339 -13.604 -0.808

4x4x1 -7759.749 -7745.323 -13.604 -0.823

5x5x1 -7759.749 -7745.322 -13.604 -0.824

6x6x1 -7759.749 -7745.325 -13.604 -0.820

Table 9: PBE total and binding energies (eV) with respect to varying the kinetic energy cutoff values

of the wave function on a 4x4x1 k-point grid. The hydrogen total energy value used to calculate the

binding energy was for a 1x1x1 k-grid with a 250 Ry wave function cutoff.

kinetic energy cutoff hydrogen on graphene graphene H binding energy

150 -7758.435 -7744.019 -13.603 -0.813

250 -7759.749 -7745.323 -13.604 -0.823

300 -7759.790 -7745.362 -13.604 -0.824

350 -7759.799 -7745.372 -13.604 -0.824

128



B.2 Hybrid Functional Total and Binding Energies (eV) with Respect to k-point Grid

Table 10: PBE0 and HSE total energies and binding energies (eV) with respect to increasing the

Monkhorst-Pack k-point grid.

functional k-point grid hydrogen on graphene graphene H binding energy

PBE0 6x6x1 -51820.644 -51806.227 -13.537 -0.880

PBE0 10x10x1 -51820.644 -51806.255 -13.537 -0.851

PBE0 12x12x1 -51820.644 -51806.253 -13.537 -0.854

HSE 6x6x1 -51820.264 -51805.892 -13.565 -0.807

HSE 10x10x1 -51820.264 -51805.907 -13.565 -0.792

HSE 12x12x1 -51820.264 -51805.905 -13.565 -0.794

B.3 Non-self-consistent Field Calculations details

Table 11: Non-self-consistent field calculations: system and binding energies used to calculate the

differences in Table II of the manuscript, reported without basis set superposition error correction.

density functional energy functional graphene H Hgraphene binding energies

pbe pbe -1903.884 -0.496 -1904.415 -.962

hse pbe -1903.883 -0.496 -1904.414 -.947

pbe hse -1903.989 -0.498 -1904.520 -.879

hse hse -1903.989 -0.498 -1904.521 -.905
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B.3.1 DMC Calculation Details

B.3.1.1 Total Energies for DMC Calculations

Table 12: Total and binding energies (eV) of a hydrogen atom on graphene calculated with QMC.

Trial wave function hydrogen on graphene graphene hydrogen binding energy

PBE -7748.200 ± 0.012 -7733.893 ± 0.014 -13.616 ± 0.002 -0.691 ± 0.019
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B.3.1.2 Total Energies per Twist Angle

Table 13: Total energies (eV) at each twist angle used for graphene DMC treatment

Twist number Total Energy

1 -7733.872 ± 0.046

2 -7734.059 ± 0.057

3 -7734.074 ± 0.058

4 -7733.851 ± 0.041

5 -7733.492 ± 0.052

6 -7733.467 ± 0.048

7 -7733.080 ± 0.057

8 -7734.137 ± 0.047

9 -7734.080 ± 0.041

10 -7733.853 ± 0.047

11 -7734.444 ± 0.050

12 -7733.983 ± 0.048
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Table 14: Total energies (eV) at each twist angle used for hydrogen atom chemisorbed on graphene

DMC treatment.

Twist number Total Energy

1 -7748.443 ± 0.057

2 -7748.474 ± 0.045

3 -7748.283 ± 0.046

4 -7748.294 ± 0.047

5 -7748.006 ± 0.050

6 -7747.736 ± 0.056

7 -7748.748 ± 0.045

8 -7748.092 ± 0.063

9 -7747.601 ± 0.042

10 -7748.488 ± 0.047

11 -7747.941 ± 0.041

12 -7747.779 ± 0.050

13 -7747.761 ± 0.051

14 -7748.275 ± 0.045

15 -7748.655 ± 0.054

16 -7748.380 ± 0.053

17 -7748.037 ± 0.058

18 -7748.615 ± 0.047
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B.3.2 DMC-DFT Density Difference

Figure 32: Similar to Figure 3 in the main text. DMC-PBE density (top) is reproduced from the main

text and compared with the DMC-HSE density (bottom). We attribute the differences to primarily

the difference in basis sets, plane waves vs Gaussian orbitals, and the use of pseudopotentials in the

plane wave calculation.
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Appendix C Supplemental Material for Chapter 5

Additional simulation details such as input files are available at: https://github.com/

shivupa/Water4_JCP_Special_Issue_Supplemental_Material.

C.1 Geometries

The geometries are given in xyz format for the (H2O)4 structures in Angstroms.

C.1.1 Geometry at R = 4 Å

13

WATER 4 SYSTEM 4.0 Angstroms

X 0.000000 0.000000 0.000000

O 0.000000 1.730527 2.893437

H 0.000000 1.387569 2.000001

H 0.000000 2.681413 2.785434

O 0.000000 -1.730527 2.893437

H 0.000000 -1.387569 2.000001

H 0.000000 -2.681413 2.785434

O 0.000000 1.730527 -2.893437

H 0.000000 1.387569 -2.000001

H 0.000000 2.681413 -2.785434

O 0.000000 -1.730527 -2.893437

H 0.000000 -1.387569 -2.000001

H 0.000000 -2.681413 -2.785434
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C.1.2 Geometry at R = 7 Å

13

WATER 4 SYSTEM 7.0 Angstroms

X 0.000000 0.000000 0.000000

O 0.000000 1.730527 4.393437

H 0.000000 1.387569 3.500001

H 0.000000 2.681413 4.285434

O 0.000000 -1.730527 4.393437

H 0.000000 -1.387569 3.500001

H 0.000000 -2.681413 4.285434

O 0.000000 1.730527 -4.393437

H 0.000000 1.387569 -3.500001

H 0.000000 2.681413 -4.285434

O 0.000000 -1.730527 -4.393437

H 0.000000 -1.387569 -3.500001

H 0.000000 -2.681413 -4.285434
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C.2 Supplemental Basis Functions

The exponents for the 7s7p and 3s1p diffuse Gaussian type orbitals are given below in the

GAMESS format.

C.2.1 7s7p

S 1

1 0.02362232 1.0

S 1

1 0.00738198 1.0

S 1

1 0.00230687 1.0

S 1

1 0.00072090 1.0

S 1

1 0.00022528 1.0

S 1

1 0.00007040 1.0

S 1

1 0.00002200 1.0

P 1

1 0.02362232 1.0

P 1

1 0.00738198 1.0

P 1

1 0.00230687 1.0

P 1

1 0.00072090 1.0

P 1
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1 0.00022528 1.0

P 1

1 0.00007040 1.0

P 1

1 0.00002200 1.0

C.2.2 3s1p

S 1

1 0.02362232 1.0

S 1

1 0.00738198 1.0

S 1

1 0.00230687 1.0

P 1

1 0.02362232 1.0

C.2.3 3s1p3d

S 1

1 0.02362232 1.0

S 1

1 0.00738198 1.0

S 1

1 0.00230687 1.0

P 1

1 0.02362232 1.0

D 1

1 0.02362232 1.0

D 1

1 0.00738198 1.0
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D 1

1 0.00230687 1.0
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C.3 DMC Extrapolation

Summaries of the zero time step linear extrapolation are plotted below for the w(H2O)4 system,

the R parameter is indicated in each plot title. The blue shaded region corresponds to the error in

the fit of the DMC energies at the three timesteps (0.001, 0.003, 0.005).
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C.4 AFQMC Energies

Table 15: AFQMC total energies at used to calculate the electron binding energies. AFQMC

calculation details can be found in the manuscript.

R (Å) neutral energy (Ha) anion energy (Ha)

4 305.464859 ± 0.000274 -305.472004 ± 0.000266

7 -305.432678 ± 0.000121 -305.439315 ± 0.000121
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C.5 Radial Orbital Density Plots

The radial orbital density, ψ2(r), plots are created by integrating over angular portion of the

norm of the single particle wave function.

ψ
2(r) =

∫ 2π

0

∫
π

0
ψ

2(r,θ ,φ)r2 sin(θ)dθdφ (84)

Discretizing this expression using a uniform radial grid and a Lebedev-Laikov quadrature for

the angular components, yields a form that can be readily evaluated.

ψ
2(ri) = 4πr2

i

Nang

∑
j

wang
j ψ

2(ri,θ j,φ j) (85)

The function ψ2(ri) from Equation 85 can be plotted with the points ri serving as the abscissa.

Since the singly occupied orbitals are normalized, the proximity of the sum of the radial quadrature

to unity is used as a check.

Nrad

∑
i

ψ
2(ri)wrad

i =
Nrad

∑
i

ψ
2(ri)∆r ≈ 1 (86)

C.5.1 Required Software Versions

Required software version

numpy 1.18.4

quadpy 0.16.2

pyscf 1.7.0

cclib 1.6.3

1. Step 1: Generating a Molden file Molden files were generated using cclib, with the exception

of the natural orbital from the CIPSI calculations. Since QuantumPackage is not supported

by cclib, Molden files were created using the native utility in QuantumPackage 2.0. For

the Molden files generated with cclib, the -g/–ghost flag indicates the presence of a ghost

atom. By default the only molecular orbitals can be written to a Molden file, therefore the

-n/–naturalorbtials flag was created to allow natural orbitals to be written in place of
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molecular orbitals. This flag is not yet available in the official distribution, but a request

to incorporate it in the official distribution has been opened (https://github.com/cclib/

cclib/pull/948).

$ ccwrite molden -g "X" -n QUANTUM_CHEMISTRY_OUTPUT_FILE

2. Step 2: Integrating over the angular components of the singly occupied orbital

quadpy was used to generate the Lebedev-Laikov integration weights and points. The singly

occupied molecular/natural orbital was evaluated at these points using PySCF.

import numpy

import quadpy

import pyscf

import pyscf.tools

filename = "FILENAME.molden"

r_max = 100

num_radial_pts = 1000

mo_idx = 20

# use pyscf to load the molden

mol, mo_energy, mo_coeff, mo_occ, irrep_labels, spins = pyscf.tools.molden.load(

filename

)

# extract the singly occupied orbital coefficients

singly_occ_orb = mo_coeff[:, mo_idx]

# generate the angular points and weights using quadpy

lebedev_laikov = quadpy.u3.schemes["lebedev_131"]()

angular_pts = lebedev_laikov.theta_phi

angular_weights = lebedev_laikov.weights

num_angular_pts = len(angular_pts[0])

# generate the radial points and weights using numpy

radial_pts = numpy.linspace(r_max, 0, num_radial_pts, endpoint=False)[::-1]

radial_weights = numpy.ones_like(radial_pts) * (radial_pts[1] - radial_pts[0])
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# a helper function to convert radial and angular points to cartesian

def sph2cart(r, theta_phi):

theta = theta_phi[0]

phi = theta_phi[1]

x = r * numpy.cos(theta) * numpy.sin(phi)

y = r * numpy.sin(theta) * numpy.sin(phi)

z = r * numpy.cos(phi)

return numpy.vstack((x, y, z)).T

# integrate over the angular points for each radial point

values = []

for r in radial_pts:

r_pts = r * numpy.ones(num_angular_pts)

coords = sph2cart(r_pts, angular_pts)

ao = mol.eval_gto("GTOval_cart", coords)

value = angular_weights @ ao @ singly_occ_orb

values.append(4 * numpy.pi * r * r * value ** 2)

# output the values

values = numpy.array(values)

numpy.savetxt("{} _values.txt".format(filename), values)

numpy.savetxt("{} _r.txt".format(filename), radial_pts)

# check the norm of the orbital

print(radial_weights @ values)
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Appendix D Supplemental Material for Chapter 6

This appendix includes both a more detailed view of the averaged data presented in the

manuscript and presents the data for methods that did not produce viable fragments when paired

with the current molecular representations. For the test systems below, the ARI for each molecule

in the test set is given. Each plot corresponds to a clustering algorithm, where each molecular

representation is included. The data for the water clusters is presented in Section D.1 followed by a

the additional information for the methylthiophenes in Section D.2. For the raw data, structures,

and production scripts please see at GitHub hosted data at https://github.com/amandadumi/

a1_supporting_info.

D.1 Water Clusters

For the test set of water clusters, the ARI across the test set are reported for each structure. A

more detailed view of agglomerative, spectral, and k-means clustering are provides. Additionally,

data is provided for the clustering methods that did not provide chemically-relevant fragments,

either inconsistently or not at all.

The additional methods explored which did not produce viable fragments with the current

system, either inconsistently or not at all, are also included. Affinity propagation, shown in

Figure 33. Mean shift, shown in Figure 34. For affinity propagation, the Cartesian descriptor

resulted in a cluster number greater than the number of water monomers for systems that included

more than 6 monomers. This resulted in segmented covalent bonds. This likely results from the fact

that the difference in the representation between bonded and non-bonded pairs was not sensitive

enough. Affinity propagation can be sensitive to the preference of each data-point, which basically

describes how likely a given point is to be a cluster center. In this work, we also looked to tuning

this preference value by trying a few different options. The typical affinity matrix construction

was attempted by placing the sum of distances for a given molecule along the diagonal. A second

approach was explored which placed the sum of the covalent-radii determined bond matrix valued
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Figure 33: Water cluster test set treated with affinity propagation clustering. All molecular represen-

tations are shown and their markings indicated in the legend.

Figure 34: Water cluster test set treated with mean shift clustering. All molecular representations

are shown and their markings indicated in the legend. This clustering algorithm with our current

descriptor formulation did not produce meaningful fragments.
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Figure 35: Methylthiophene test set treated with agglomerative clustering. The structures were

optimized at either the Hartree-Fock level of theory (left) or ω-B97X-D level of theory (right).

for a given atom along the diagonal. We then looked to instead incorporating the Mayer bond

matrix of values for a given molecule along the diagonal. The later did slightly improve the results,

though not quite enough to give us reliable results. The quantum mechanics-based (QM) descriptors,

GrMbm and GMbm, when used with affinity propagation performed well, though this performance

was not maintained in the methylthiophene molecular test sets as seen in the next section. The mean

shift clustering results are shown in Figure 34. This algorithm did not perform well with the current

descriptors as can be seen by the ARI of 0 for all molecules. Again, more clusters than the number

of water monomers were chosen.

D.2 Methylthiophenes

The result below are for the methylthiophene test set of molecules at both the HF and ω-B97X-D

level of theory. Methods which did not produce molecular fragments in accordance with chemical

intuition when used to cluster the current molecular representations are also included.

Agglomerative clustering results are shown in Figure 35, k-means clustering results are shown

in Figure 36, spectral clustering shown in Figure 37. The effect of the level of theory used to

optimize the structure had on the clustering/molecular representation can be seen by comparing
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Figure 36: Methylthiophene test set treated with k-means clustering. The structures were optimized

at either the Hartree-Fock level of theory (left) or ω-B97X-D level of theory (right).

Figure 37: Methylthiophene test set treated with spectral clustering, which worked well for all

descriptors. The structures were optimized at either the Hartree-Fock level of theory (left) or

ω-B97X-D level of theory (right). All molecular representations are shown and their markings

indicated in the legend. Two molecules resulting in different clustering upon the improved level of

theory.
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Figure 38: Methylthiophene test set treated with affinity propagation clustering. The structures

optimized were at either the Hartree-Fock level of theory (left) or ω-B97X-D level of theory (right).

All molecular representations are shown and their markings indicated in the legend.

the right and left image from each figure. Generally, agglomerative clustering was able to perform

well for the molecular representation explored, except the GrMbm which had lost too much detail

in the descriptor, making any meaningful groupings difficult for this algorithm. Worth noting is

that agglomerative clustering was improved when a better level of theory was used to generate

the Gxyz, while more variation was introduced for the GrMbm. The k-means clustering with the

Cartesian descriptor show a few structures form fragments with slight variations of the correct

fragments, while other descriptors show very little or no variation. Generally performance is poor

for all but the Cartesian descriptor. Spectral clustering was the most robust, showing a high ARI for

all representations. The effect of the level of theory is small, but two molecules in the test set did

depend on the higher level of theory to produce the correct clusters.

Results for affinity propagation clustering results are included in Figure 38. Oddly, for affinity

propagation, the Cartesian descriptor which performed poorly in the water cluster test set, is the only

descriptor that produces reliable fragments for the methylthiophene test set. Although we do see

good performance of affinity propagation in both test sets, the reliance on molecular representation

warrants further exploration and potentially a more widely applicable descriptor generated for

this descriptor. Since a single representation was not viable for both test sets, this method was

not pursued further. Mean shift clustering results are shown in 39. Mean shift clustering on the
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Figure 39: Methylthiophene test set treated with mean shift clustering. The structures were

optimized at either the Hartree-Fock level of theory (left) or ω-B97X-D level of theory (right). The

explored representations were not formulated for mean shift, and the clustering results were not

viable.

explored descriptors results in a low ARI value for all representation indicating the current molecular

descriptors are not constructed in a way with compliments this clustering method.
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D.3 Silyl Ketenes

Figure 40: Percent error of the energy and the speedup over the supermolecular calculation for the

SK dimer to assess the performance of the fragment approaches and descriptor quality.
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