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Abstract 
Title Page 

An application of Quantitative Systems Pharmacology to Repurpose Drugs for Non-

Alcoholic Fatty Liver Disease  

 

Daniel Edward Lefever, PhD 

 

University of Pittsburgh, 2023 

 

 

 

 

Biological research, like most other fields of research and technology, has experienced an 

exponential growth in productivity since the 1950’s. However, drug discovery as one of the main 

practical applications of biological research has become exponentially more expensive and the 

efficiency of success remains low. Among the most important reasons for this low efficiency is 

that several major unmet medical needs involve diseases that are complex and heterogeneous, 

presenting challenges for traditional drug discovery approaches.  Non-alcoholic fatty liver disease 

(NAFLD) is one such disease in which despite billions being spent, the approaches used by current 

drug discovery efforts has not yielded any Food and Drug Administration (FDA) approved drugs 

in the US. NAFLD is a disease driven by multiple independent pathways and molecular targets 

which may not be amenable to single targeted therapeutics. This dissertation demonstrates how a 

relatively new approach to drug discovery, Quantitative Systems Pharmacology (QSP), can be 

used to discover drugs for NAFLD by predicting existing drugs for repurposing and by identifying 

disease networks comprising potential molecular targets for novel drug discovery.  

 Chapter 1 gives an overview of NAFLD and the rationale for using QSP. Chapter 2 

describes results using patient transcriptome data to comprehensively and unbiasedly define 

disease states that promote NAFLD progression. In Chapter 3, the Library of Integrated Network-

Based Cellular Signatures (LINCS) L1000 database was used to predict drugs able to normalize 

these disease states and were then experimentally tested in a human liver acinus microphysiology 
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system (LAMPS) of NAFLD. A proof-of-concept study in LAMPS demonstrated mitigation of 

steatosis, inflammation, and fibrosis especially with drug combinations. Chapter 4 further 

establishes the clinical relevancy of LAMPS as a model of NAFLD. Currently, experimental 

testing of more predicted compounds is being performed. In conjunction with iPSC-derived cells, 

this approach has the potential for developing personalized NAFLD therapeutic strategies, 

informing disease mechanisms, and defining optimal cohorts of patients for clinical trials. 
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1.0 Introduction 

1.1 NAFLD background 

1.1.1 NAFLD is a complex spectrum of liver diseases 

NAFLD consists of a spectrum of potentially progressive disease states that, within a 

heterogeneous patient population, can range in severity from being clinically asymptomatic to 

becoming fatal [1]. Fatty liver diseases were first recognized by clinicians in the 1800’s in 

sedentary individuals with unhealthy diets who overconsumed food and alcohol [2]. At that time, 

little distinction was made based on the disease etiology [2]. It was not until the 1980s that NAFLD 

was recognized as an independent condition [3]. As implied in the name, it shares many 

histological features with alcoholic liver disease [3]. The distinction is based on the underlying 

etiology; however, some morphological features are more prevalent in alcoholic liver disease than 

NAFLD [3]. Today, NAFLD is considered the hepatic manifestation of metabolic syndrome, and 

has been proposed by some gastroenterologists to be renamed metabolic associated fatty liver 

disease (MAFLD) to reflect this newfound appreciation of the disease [4].  

Non-alcoholic fatty liver (NAFL, also called simple steatosis) is at the least severe end of 

the NAFLD spectrum, and is diagnosed when the liver contains ≥5% fat (Figure 1A) [5]. Patients 

at this stage rarely have liver related complications [6]. NAFL is contrasted with non-alcoholic 

steatohepatitis (NASH), by the presence of notable inflammation, hepatocyte damage (i.e., 

ballooning), and often pericellular fibrosis (Figure 1B) [1, 7]. NAFL is considered the non-

progressive form of NAFLD, whereas NASH is progressive [8]. Patients with NASH are at greater 
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risk than those with NAFL of developing cirrhosis and then end-stage liver disease (Figure 1C) 

[9]. If the disease progresses to this point, the only available treatment option is liver 

transplantation [9]. NASH can also lead to hepatocellular carcinoma (HCC) that can progress 

insidiously before cirrhosis is diagnosed (Figure 1D) [10].  

Clinically NAFLD is diagnosed by observing a characteristic pattern of steatosis, 

inflammation, and fibrosis on a liver biopsy [11] (see Figure 1 for representative images). Non-

invasive methods have been developed but are not considered accurate enough for definitive 

diagnosis [12]. Due to the invasive nature, risk to the patient, and logistical requirements, biopsies 

are kept to a minimum [12]. This, combined with the fact that the disease is often subclinical, 

means that a diagnosis is not made until the pathophysiology has progressed to a late stage.  

 

Figure 1. Natural progression of NAFLD and pathological hallmarks of NASH, cirrhosis, and HCC 

A) H&E showing macrosteatosis in NAFLD; B) NASH is characterized by a combination of macroseatosis & immune 

cell infiltration (black arrow); C) Trichrome staining shows fibrosis (yellow arrow) in cirrhosis; D) H&E showing 

HCC with hepatocyte ballooning & death. Panel E shows the stage-wise rates of progression, which is considered 

reversible until cirrhosis. Adapted with permission from [13]. 
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1.1.2 NAFLD has a heterogenous clinical presentation 

NAFLD has traditionally been thought of as a disease which linearly progresses stage-wise 

over the course decades (left to right in Figure 1). However, the clinical presentation is subject to 

considerable inter-patient patient heterogeneity. NAFLD is usually diagnosed incidentally because 

most patients, even advanced patients with compensated cirrhosis, are asymptomatic [14]. Most 

patients who develop NAFL will not have liver related complications nor progress to NASH [1]. 

However, for those that do progress to NASH, it is not uncommon for patients to cycle back and 

forth between NAFL and NASH [15]. Although NAFL and NASH patients are at greater risk for 

liver related complications than the general public, cardiovascular diseases are the major driver of 

mortality within these patients [1].  

Fibrosis is arguably the most important feature of NAFLD, because it has the strongest 

association with disease severity and patient mortality [16, 17]. However, fibrosis progression, like 

NAFLD itself has a heterogeneous clinical presentation, and is an imperfect prognostic indicator. 

Typically, fibrosis will develop in patients who have developed NASH. However, some patients 

with NAFL and milder clinical symptoms directly develop fibrosis [18, 19].  Singh et al., showed 

that only ~1/3 of patients with NAFLD had fibrosis progression, the remaining patients either had 

no progression or an improvement of fibrosis [20]. Of those who did progress, it took an average 

of ~14 years for NAFL and ~7 years for NASH patients to progress 1 fibrosis stage [20]. Fibrosis 

progression is measured based semi-quantitative histopathological staging from 0-4; 0 being no 

fibrosis and 4 being cirrhosis. It should be stressed that this timeline is an average: ~20% of patients 

progress 3-4 fibrosis stages in <6 years [20].  
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1.1.3 Epidemiology and Natural History 

The overall proportion of adults with some form of NAFLD is estimated to be 30% in the 

US [8] and 25% worldwide [9] (Figure 1). The prevalence varies globally but is only projected to 

increase worldwide: current estimates for the Middle East and South America are ~30%, Europe 

24%, Asia 27%, and Africa 14% [9]. The estimates for NASH are 1.5-6.5% [9]. Among ethnic 

groups in the US, NAFLD is most highly prevalent in Hispanic individuals, followed by non-

Hispanic whites, and then African Americans [21]. Between 5-10% of children are estimated to 

have some form of NAFLD [22].  NAFLD rarely directly causes complications in children. 

However, the long-term consequences of developing NAFLD at a young age is unknown [5].  

As NAFLD is considered the hepatic manifestation of metabolic syndrome, it is strongly 

co-morbid with type 2 diabetes (T2D) (60-78%), and morbid obesity (60-95%) [23]. The incidence 

is >95% in obese individuals undergoing bariatric surgery [24]. However, despite the strong 

association with NAFLD and obesity, between 10-20% of normal weight individuals have NAFLD 

[25]. These individuals typically have a normal BMI but have features of metabolic syndrome 

(dyslipidemia, insulin resistance, visceral obesity, poor diet, and sedentary lifestyle) [25]. T2D has 

a complex bidirectional relationship with NAFLD: T2D appears to directly contribute to NAFLD 

progression, and vice-versa [26]. NAFLD doubles the risk of developing T2D when all other 

clinical features are controlled [26]. T2D appears to directly contribute to NAFLD, as well as 

increase the severity of disease [24].  

In addition to liver failure, NAFLD can lead to the development of liver cancers, notably 

hepatocellular carcinoma (HCC). The 5-year survival rate for patients with HCC varies according 

to stage at diagnosis and treatment, but can be less than 20% [27]. The exact risk is difficult to 

quantify at each stage of NAFLD, however, it is clear that patients with cirrhotic NASH are at the 
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highest risk of developing HCC [28]. The annual incidence in patients with cirrhotic NASH is .7-

2.6%, and ranges from 0.04% to 0.6% in NAFLD patients without cirrhosis [28]. An estimated 15-

20% of HCCs develop from NAFLD without cirrhosis [18]. 

The overall mortality rate for patients diagnosed with NAFLD is 26% after 15 years [1]. 

The most common cause of death in patients without cirrhosis is cardiovascular disease [29]. 

NAFLD is only projected to increase in prevalence and to become the most common cause for 

liver transplantation [1].  

1.1.4 Genetics and Mechanisms 

NAFLD is considered to be heritable, however the estimated contribution of heredity varies 

widely from 20-70% [30]. This wide range of estimates can be attributed to study design, 

confounders, and the study’s definition of NAFLD [30]. However, these estimates are similar to 

the ranges seen in metabolic syndrome [30]. Twin studies have given heritability estimates of 38-

50% [30] for NAFLD, and ~75% for steatosis and fibrosis [31]. Studies using unrelated individuals 

suggests heritability of 22-34% [30].   

Like most complex diseases, NAFLD is subject to the “missing heritability” problem [32], 

because the known variants explain 10-20% of heritability [30]. There are variants in 5 genes 

which are robustly associated with NAFLD: PNPLA3, TM6SF2, MBOAT7, GCKR, and 

HSD17B13. The PNPLA3 I148M (rs738409 C>G), TM6SF2 E167K (rs58542926 C>T), and 

MBOAT7 (rs641738 C>T) variants all increase steatosis and are associated with disease severity 

[33]. PNPLA3 I148M is not associated with increased insulin resistance, and MBOAT7 actually 

decreases risk for cardiovascular disease by decreasing lipids in circulation [33]. GCKR P446L is 
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thought to contribute to NAFLD by causing aberrant lipogenesis [30]. HSD17B13 has been 

associated with protection from NAFLD [30]. 

Efforts in untangling the mechanisms of NAFLD progression have been hampered by the 

difficulty in recapitulating the disease phenotype in traditional models. Early research into NAFLD 

using either high-fat diet or leptin deficient mouse models could induce a NAFL phenotype, but 

this did not progress to more advanced stages seen in some patients unless treated with LPS [7]. 

This lead to the ‘two-hit’ hypothesis: steatosis was considered largely incidental and required a 

pro-inflammatory insult for NAFLD progression occur [7]. This is now considered an 

oversimplification, because steatosis can be directly pathogenic.  

As with other metabolic diseases, NAFLD is thought to be caused by a combination of an 

unhealthy hypercaloric diet and sedentary lifestyle. Under healthy conditions, the liver metabolizes 

fatty acids via beta oxidation or exporting them as very-low-density lipoprotein [14]. Under 

metabolic syndrome (MS) conditions, the liver’s capacity to properly manage free-fatty acids is 

overwhelmed ultimately causing lipotoxicity [14]. Excessive calories, particularly in the form of 

carbohydrates, cause aberrant de novo lipogenesis leading to fat accumulation [14]. Fat also 

accumulates because of excessive free fatty acids being delivered to the liver [14]. Insulin 

resistance contributes to these processes by promoting lipolysis of adipose derived triglycerides 

causing excess fatty acids to be delivered to the liver [14].  

The consequences of lipotoxicity result in hepatocellular injury from ER and oxidant stress, 

and inflammasome activation [14]. ER stress induces apoptosis through several mechanisms 

including aberrant activation of unfolded protein response and JNK1 [7]. Stress induced apoptosis 

and necroptosis releases pro-inflammatory cytokines (IL-1β), IL-6, IL-18, TNF-α, TGF-β) which 

recruit pro-inflammatory immune cells such as macrophages, Kupffer cells, polymorphonuclear 



 7 

neutrophils [14]. This further causes the recruitment of hepatic stellate cells which leads to fibrosis 

[14]. The inflammatory cascade can be further activated from other insults such as LPS and 

palmitic acid through toll-like receptors [7]. This process also activates hepatic stellate cells 

through TGF-β and hedgehog signaling pathways [7].  

1.1.5 Gaps in understanding NAFLD have prevented finding effective treatments  

Although NAFLD is currently a considerable public health burden–which is projected to 

only increase–there are no approved drugs for this disease. This is in spite of billions having been 

spent on drugs which ultimately failed in late-stage clinical trials. Currently, Resmetirom a 

selective THR-β agonist, is the only compound which has successfully met its phase 3 endpoints 

[34].  This can be attributed to the disease heterogeneity which has been difficult to both track in 

patients and recapitulate in traditional models.   

Unlike some other metabolic diseases such as T2D, NAFLD cannot be diagnosed using a 

simple blood test.  NAFLD requires a liver biopsy for definitive diagnosis, because non-invasive 

methods are too inaccurate [12]. This is an invasive method with some (albeit small) risk to the 

patient which limits its use in clinical and research settings [35]. Logistical issues notwithstanding, 

biopsies can be subject to sampling variability [36] and human error [37] that can lead to an 

incorrect diagnosis.  

These issues together with the long time-course and patient heterogeneity make performing 

NAFLD clinical trials particularly challenging. Under normal circumstances, a sizable proportion 

of patients will have spontaneous (without treatment) regression of NAFLD.  For example, Singh 

et al. found that 1/3 of patients had a reduction of more than 1 stage of fibrosis [20]. This can make 
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it harder for clinical trials to observe drug efficacy [35]. It is also important to consider that the 

mechanisms between different subsets of patients may not necessarily be the same [14]. 

It is not clear from the clinical trial failures whether the trialed drugs have been targeting 

the wrong targets, targeting the right targets but are ineffective, or that NAFLD requires 

combination therapy similar to HIV [35]. Because there is no clear mechanism of NAFLD, the 

drugs brought to clinical trial have each been optimized to be selective for different targets [35]. 

Furthermore, it is not clear whether the mechanisms of disease progression differ between subsets 

of patients [35]. The difficulty in both characterizing NAFLD in patients and finding effective 

drugs reflects the trends seen with many other complex diseases. It is therefore evident that a new 

approach to NAFLD drug discovery is needed, which is discussed in the next subsection.   

1.2 Quantitative systems pharmacology background 

1.2.1 Drug development history 

In early modern drug discovery history, compounds were identified using classical or 

forward pharmacology. This is done by testing compounds against an in vivo model of disease 

without regard to the mechanism of action (MOA). This was done because most diseases did not 

have established targets [38]. Targets and MOA were only elucidated after a compound was found 

to be promising. Starting in the 1980’s, the industry as whole moved away from classical 

pharmacology to instead pursue reverse pharmacology. This is a reductionist approach in which 

compounds were tested against a molecular target, usually a protein [39]. This became possible 

with the advent of molecular biology in 80’s, and this trend was further extended in the 90’s with 
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the genomics revolution [38].  Biological research during this time period has experienced an 

unprecedented level of growth.  As just one example, sequencing has become many orders of 

magnitude cheaper and faster: the 1st human genome took $300 million and 10 years, it can now 

be done for less than $1000 and less than a day.  

It was thought that reverse pharmacology would obviate the labor intensive, trial and error 

approach required for classical pharmacology. Classical pharmacology was a very manual, low 

throughput process: realistically only a handful of compounds could be synthesized at a given time, 

which were then tested in in vivo models [40]. This made for a necessarily slow process [40]. 

Reverse pharmacology became in vogue when several technologies that were developed in the 

80’s and 90’s made it possible for high throughput screening of compounds against specific targets 

[40]. This should have in principle greatly increased the throughput over the classical approach 

[40]. However, this switch from classical to reverse pharmacology did not have the intended 

effect—drug discovery has continued to be inefficient and more expensive during this time.  

1.2.2 Eroom’s law 

This phenomena in which drug discovery productivity has progressively decreased despite 

the exponential growth of biological research has been dubbed tongue-in-cheek as Eroom’s law 

[39]. This is Moore’s law, the observation that the number of transistors on a microchip doubles 

every 2 years, spelled backwards. Moore’s law more generally refers to technologies that undergo 

accelerating change. Despite Moore’s law being applicable to biological research and 

technologies, the number of drugs per (inflation adjusted) billion $ spent has halved every 9 years 

since the 1950’s [39]. 



 10 

There are many reasons for this trend, which include the fact that the bars for safety and 

efficacy have become higher, meaning that it is objectively harder to get a drug approved than in 

prior generations [39]. However, this trend coincides with the widescale adoption of reverse 

pharmacology [41], and there are many reasons to suspect that this is perhaps the biggest 

contributor to Eroom’s law. The framework of reverse pharmacology leads to the idea that diseases 

are caused by single targets. This is likely an oversimplification for many, if not most, complex 

diseases (such as NAFLD) [39]. In fact, not only do most drugs not have single targets, but drug 

promiscuity—as opposed to selectivity—can be responsible for efficacy [39]. It was further 

recognized that despite the investment in reverse pharmacology, there is evidence suggesting that 

first in class drugs were more often discovered through phenotypic drug discovery [38]. 

However, simply performing classical pharmacology in the same way it was done in the 

50’s would likely not automatically reverse Eroom’s law. Many diseases lack in vivo models which 

are able to recapitulate the human phenotype [42]. Many models have poor translatability to 

humans: for example Alzheimer’s [43] and inflammatory [44] diseases. This is in contrast to 

animal models for infectious disease and seizures [45].  

1.2.3 Quantitative systems pharmacology as a proposed solution  

Many individuals within the pharmaceutical world have recognized Eroom’s law in one 

form or another [39, 41, 46-48]. In 2008 and 2010, the NIH held conferences to address the 

productivity issue plaguing drug discovery [49]. The results from these conferences were 

summarized in a white paper by Sorger et al., [49], which concluded that although reverse 

pharmacology has had some success, many diseases are simply too complex to be reduced down 

a single target. For example, successful psychiatric drugs are known to modulate several targets, 
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whereas highly specific drugs have not been successful [49]. Antibiotics would likely not have 

been discovered using reverse pharmacology owing to the fact that they target multiple 

transpeptidases [49]. 

The proposed solution was to combine a systems-based framework to drug discovery 

entitled: quantitative systems pharmacology. We have defined it as: “Determining the 

mechanism(s) of disease progression and mechanism(s) of action of drugs on multi-scale systems 

through iterative and integrated computational and experimental methods to optimize the 

development of therapeutic strategies”[50] (Figure 2). This seeks to combine what worked well 

in classical pharmacology (unbiased compound screening in a holistic model) with the advances 

in biological sciences (notably big data and omics). 

We consider the use of biomimetic models to be intrinsic to our QSP approach, because 

part of the productivity crisis can be attributed to the failure of pre-clinical results to translate to 

the clinic [42].  Traditional in vitro models (both immortalized cell lines, and primary cells) use 

culture conditions which do not reflect the in vivo physiological conditions [51]. Cells are typically 

grown as static monocultures in a 2D planar arrangement on mechanically stiff glass or plastic 

unlike the flexible, multiculture conditions in vivo [51]. The cell culture media used is typically 

very unlike blood: most media, among other additives, contains fetal serum with high amounts of 

glucose under 20% oxygen [51]. This ultimately results in model systems which poorly reflect the 

disease. Micro-physiology systems in contrast are able to mimic the multicellular 3D architecture 

of in vivo microenvironment [51]. These systems can also incorporate media flow which 

recapitulates the dynamic conditions in vivo through shear stress and oxygen/nutrient gradients 

[51].      
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Figure 2. Quantitative systems pharmacology (QSP) overview 

QSP: determining the mechanism(s) of disease progression and mechanism(s) of action of drugs on multi-scale 

systems through iterative and integrated computational (A) and experimental methods (B) to optimize the development 

of therapeutic strategies (C). A key component of QSP is the utilization of miniaturized functional units of organs, 

termed human microphysiological systems (MPS) models, which can be used to account for patient heterogeneity and 

complement animal models (D).  

1.3 Rationale/motivation for project 

1.3.1 Existing drug discovery approaches have not been successful to date 

Given the prevalence and potential public health consequences of NAFLD, there is an 

urgent need to develop treatments for this disease. To do this, it is necessary to understand why 

drug discovery efforts have failed so that these issues can be addressed. All of the drug trials for 

NAFLD have been performed using a reverse pharmacology framework, which has ultimately not 

produced any effective treatments for NAFLD. A paper by Drenth et al identified 10 drugs that 

were brought to clinical trial, with some making it to phase 3 [35]. These drugs had a variety of 

A B C D 
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different mechanisms which have been successful in pre-clinical models, however, these results 

did not translate to the clinic, with exception of Resmetirom which successfully met its phase 3 

endpoints [34].   

Ultimately no mouse model fully recapitulates the disease phenotype [52], as mice (for in 

vitro models see section 1.2.3) are in general resistant to developing advanced NAFLD [53]. For 

example, the severely obese strain ob/ob mice can develop notable steatosis, however, they are 

largely protected from developing liver related pathologies [53]. Liver fibrosis and inflammation 

can be induced by restricting dietary methionine and choline, however, these mice typically lose 

weight and are more sensitive to insulin [52]. Some of these differences can be directly related to 

the genome and subsequent gene regulation. For example, PNPLA3 (see section 1.1.4) is 

expressed mostly in adipose tissue in mice, unlike humans where it is mostly expressed in the liver 

[53]. These interspecies differences may mean that the targets discovered using models may be 

different than those which drive progression in patients. Lack of knowledge linking targets to the 

disease was identified as one of the reasons for drug failures [46].  

 

1.3.2 Our approach using QSP coupled with MPS 

The approach used in this dissertation addresses the inefficiencies identified for traditional 

drug discovery for NAFLD (Figure 3). Because the mechanisms of disease progression are 

unknown, we use RNA seq data from patients to define disease states (molecular phenotypes) [54, 

55]. We then use a type of surrogate phenotype drug discovery (PDD) by finding drugs which can 

normalize these disease states [55]. This partially addresses the issue of patient heterogeneity (by 

taking a data-centric view of NAFLD) and unbiasedly selects for the poly-pharmacology that is 
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required to address the pleiotropy that is intrinsic to the complex pathophysiology of NAFLD [56]. 

We then test the predicted compounds in a biomimetic model of NAFLD disease progression to 

maximize the chance of the pre-clinical results translating to patients [57-59].  

 

 

Figure 3. Roadmap of thesis project 

The project is organized into 3 integrated chapters, each comprised of a set of steps detailed in the respective chapter’s 

Methods and Results. Chapter 2 (A-D) identifies and clusters individual patient hepatic gene expression and enriched 

pathway profiles associated with clinical subtypes and categorizes the differentially enriched pathways among these 

clusters within our current framework of NAFLD pathophysiology (Figure 5-6; Table 2 & S1, and Data files S1-

S2). The rationale is presented in the Results for using clusters based on individual patient pathway enrichment profiles 
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as an alternative to the clinical classifications (compare Figure 6-8) for determining both differentially expressed 

genes and enriched pathways between different stages of disease progression. Chapter 3 (E-G) generates disease 

progression-based gene expression signatures (Table 3; Data file S3) and, using the Connectivity Map (CMap) 

databases, identifies drugs that can normalize these signatures (Tables 4, 6; and Data file S4-S5). The highly 

integrative steps shown in (H-J) maps known protein targets of the predicted drugs from (E-G) to a NAFLD 

subnetwork encompassing protein targets from the gene expression analysis within Chapter 2 (Figure S1; Table 7, 

and Data file S6). A network proximity score is then calculated that helps prioritize candidate drugs identified by 

CMap analysis for experimental testing, based on the proximity of their targets to the NAFLD subnetwork (Table 8; 

Data file S7). In K, the effects of the prioritized drugs on a diverse set NAFLD–associated biomarkers in a human 

MPS, independently shown to recapitulate critical aspects of NAFLD progression Chapter 4L (Figure 10, 13-17), 

are determined (Figure 11-12). Table 1 provides an index of tables, figures and data files associated with each step. 
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Table 1. Index of associated tables, figures, data files or notebook analyses for each step in Figure 3 

  

    Output  

Chapter Step Input data Figures Tables Data files 

2 A. Gene expression profiles of patient 
samples across different NAFLD 

subtypes  

Ensembl v94 Zerbino et al., 2017 [60] 

Transcriptome data Gerhard et al., 2018 [61] 

Figure 4  Analysis notebook 
Lefever, 2021 [62] 

B. Clustering using individual patient 

pathway enrichment profiling 

KEGG MSigDB v7.0 Liberzon et al., 2011 [63] 

Step A 

Figure 5 Table 2 Analysis notebook 

Lefever, 2021 [62] 

C. Identification of DEGs and 

differentially enriched pathways  

Steps A,B Figure 6 

Figure 7 

Figure 8 

Figure 9 

Table S1 Data files S1-S2 

 

D. Categorization of differentially 

enriched pathways based on NAFLD 
progression 

Step C Figure 6 

Figure 7 

Figure 8 

Figure 9 

Table S1 Data file S1 

3 E. Generating gene signatures based on 

DEGs/differentially enriched pathways 
from each category of each comparison 

Steps C,D  Table 3 Data file S3 

F. Predicting drugs using CMAP by 
screening L1000 database 

LINCS L1000 Subramanian et al., 2017 [64] 

Step E 

  Data file S4 

G. Prioritizing drugs based on signature 
frequency and rank 

Step F  Table 4 

Table 6 

Data file S5 

 H. Generating NAFLD related 
subnetwork based on KEGG pathways 

and liver PPIs 

BioSnap Marinka et al., 2018 [65] 

Step C 

Figure S1 Table 7 Data file S6 

I. Identification of targets for the top 

ranked drugs 

DrugBank v5.4.1 Wishart et al., 2018 [66] 

Step H 

  Analysis notebook 

Lefever, 2021 [62] 

J. Prioritizing the predicted drugs with 

Network Proximity 

Step I  Table 8 Data file S7 

 K. Testing predicted drugs in a human 

liver MPS model 

Steps G, J Figure 10 

Figure 11 

Figure 12 

Table 5  

 4 L. Establish clinical relevance of human 
liver MPS model 

Step A 

LAMPS transcriptome data 

Figure 13 

Figure 14 

Figure 15 

Figure 16 

Figure 17 

 Data file S8-S10 
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2.0 Identification of differentially expressed genes/pathways involved in NAFLD 

progression 

2.1 Introduction  

In comparison to other papers, the focus here was on comprehensively identifying disease 

states of NAFLD progression (as surrogate phenotypic drug discovery) [55]. To do this, I used an 

RNA-seq dataset [61] of 182 liver wedge biopsies encompassing the full spectrum of NAFLD (36 

normal, 46 steatosis, 50 lobular inflammation and 50 fibrosis ). Most liver transcriptome datasets 

are derived from needle biopsies which can be inconsistent [67]. Additionally, most of the 

microarray [68, 69] and RNA-seq papers [70, 71] tended to have few patients overall, and limited 

numbers with advanced disease (i.e., fibrosis 3-4). Other datasets [72-74] had limited patient 

metadata and apparent batch effects which precluded their use in this project.  

I first performed an unsupervised clustering analysis of the pathway expression data to 

identify groupings of patients that could be used for the subsequent analyses. This was done in lieu 

of directly using the histopathological classifications for the following reasons. First, the 

histopathological classifications can be susceptible to bias and subjectivity as indicated through 

poor inter- and modest intra-observer reliability [37]. Second, even if the diagnostic accuracy were 

not an issue, histological features between paired biopsies from the same patient can be remarkably 

different [36]. Considering these issues along with the intrinsic heterogeneity of the disease 

outlined in the introduction, I considered the cluster derived patient groupings to potentially be 

more biologically meaningful patient groupings than the clinical classifications. This is similar to 

motivation for clustering in single cell RNAseq [75].  
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This approach revealed 3 distinct clusters of patients which could be ordered with respect 

to disease progression, and were used to identify differentially expressed/enriched genes and 

pathways. We then grouped the pathways into 1 or more of 7 categories based on their literature 

derived role (or lack thereof) in NAFLD in order to gain systems level insights. This was done 

because although each of these identified differentially enriched pathways has the potential to be 

a drug target, their large number and diversity, the prospect of redundancy, and the uncertainty 

regarding their individual contribution to NAFLD pathogenesis, all present challenges to 

translating this information into revealing pathophysiological mechanisms and informing 

therapeutic strategies.  The results from this analysis were used in the subsequent chapter. 

2.2 Methods 

2.2.1 Generation of individual patient liver gene expression profiles 

The RNAseq data were derived from samples of wedge biopsies taken from the livers of 

patients undergoing bariatric surgery as previously described [61]. Patients were diagnosed and 

samples were labeled according to the predominant liver histology finding as Normal, Steatosis, 

Lobular inflammation, or Fibrosis [61]. The patient cohort [61] is summarized in Figure 5 and 

Table 2. The data processing is depicted in the context of the QSP workflow (Figure 3A) and the 

code used for these analyses can be found at: https://github.com/lefeverde/QSPpaper. Paired fastq-

files were pseudo-aligned to the human Ensembl [60] v94 transcriptome using the Kallisto pipeline 

[76]. The resulting transcript abundances were converted into gene-level estimates using Tximport 

[77] with the settings recommended for VOOM [78, 79]. An exploratory analysis of the gene 

https://github.com/lefeverde/QSPpaper
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expression distributions suggested a technical bias exclusive to some of the earliest collected 

normal and steatotic patient samples that was corrected by the quantile normalization option in the 

LIMMA-VOOM pipeline [78] (Figure 4A). Principal component analysis (PCA) (Figure 4B) 

revealed technical heterogeneity (i.e., batch effect) that was accounted for without an appreciable 

over-correction using surrogate variable analysis [80, 81] (Figure 4C). The patient-gene 

expression matrix encompassing 182 patients and 18,307 genes per patient can be accessed by 

following the instructions at https://github.com/lefeverde/QSPpaper and served as the primary 

input for the analyses described below.  

 

2.2.2 Clustering of individual patient KEGG pathway enrichment profiles associated with 

NAFLD clinical subtypes  

The pathophysiology of NAFLD is intrinsically complex and heterogeneous involving a 

complex interplay of diverse signaling pathways [7, 14].  As an initial step towards understanding 

the relationship between individual patient pathway enrichment profiles and clinical subtypes we 

performed gene set variation analysis (GSVA) [82] (Figure 3), in conjunction with MSigDB v7.0 

C2 KEGG pathways [63]. GSVA, being an intrinsically unsupervised method, enables individual 

patient pathway enrichment profiles to be generated across a heterogeneous population providing 

an advantage over GSEA [83], for example. Importantly and despite the known patient 

heterogeneity intrinsic to NAFLD, this classification was sufficient to identify and order the three 

clusters of distinct pathway enrichment profiles with different stages of NAFLD progression and 

serve as the basis for our subsequent studies. The aforementioned gene expression matrix provided 

the input for GSVA, resulting in a patient (column) by pathway enrichment (i.e., row of features) 

https://github.com/lefeverde/QSPpaper
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matrix. To enable relative comparisons across all identified features minimizing bias in the ensuing 

cluster analysis while preserving the presence of outliers within each feature, feature 

standardization (the mean for each value was subtracted then divided by the standard deviation 

across each KEGG pathway row) was performed [84]. The pathway enrichment matrix was then 

subjected to hierarchical clustering (Pearson correlation distance, Ward’s linkage; for details see 

https://github.com/lefeverde/QSPpaper ), and new groups were identified by cutting the column 

dendrogram at the 3rd level to create three clusters (Figure 3B; Figure 5). We chose the 3rd level 

because these clusters had a statistically significantly association (Pearson's Chi-squared Test) 

with NAFLD clinical subtype (p < 2.2e-16) and type 2 diabetes (T2D) status (p = 0.01). These 

clusters (Table 2) were named according to the predominant patient sub-classification in each 

cluster: the first encompassed almost entirely normal & steatosis (PN&S) patients, the second 

predominantly lobular inflammation (PLI) patients, and the third predominantly fibrosis (PF) 

patients. Cluster stability was evaluated using the bootstrapping method described in Hennig, 2007 

[85]. The 3 identified clusters were compared to new clusters generated from re-sampling using 

Jaccard coefficients, a metric of similarity between 2 sets [85]. The coefficients are 0.95,  0.62, and 

0.72 for PN&S, PLI, and PF, respectively and are above the minimum cutoff of 0.6 proposed by 

Hennig, 2007 [85].  

2.2.3 Identification of differential gene expression signatures for the three pairwise 

comparisons within the pathway enrichment clusters and within the clinical 

classifications  

Having shown an association between the pathway enrichment profiles resulting from 

unsupervised cluster analysis and the clinical phenotypes (Figure 3B), we next derived two sets 

https://github.com/lefeverde/QSPpaper
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of differential gene expression signatures associated with the processes involved in NAFLD 

development (Figure 3C). One set derived from the cluster analysis and the other from the clinical 

classifications. For the former, differentially expressed genes (DEGs) were identified from the 

aforementioned gene expression data applying the standard LIMMA-VOOM pipeline [78, 79] 

(Figure 3C) for three pairwise comparisons (PLI vs. PN&S, PF vs. PN&S, and PF vs. PLI) (Data 

file S2). Differentially enriched pathways were identified analogously except that the GSVA 

outputs were used (Figure 6; Table S1, and Data file S1). In total, 59, 125, 50 differentially 

enriched pathways (false discovery rate FDR p-value < .001) were identified for the 3 pairwise 

comparisons (Figure 6; Table S1, and Data file S1). A PubMed-directed literature search was 

performed to assign the differentially enriched pathways into one or more of seven categories (C) 

(Figure 3D). The first four categories, insulin resistance and oxidative stress (C1); cell stress, 

apoptosis and lipotoxicity (C2); inflammation (C3); and fibrosis (C4); comprise disease processes 

strongly associated with NAFLD and constitute our current conceptual framework of NAFLD 

progression [7]. The three additional categories include: general KEGG-annotated disease 

associated pathways (C5); pathways with limited literature association with NAFLD (C6); and 

pathways with no known association with NAFLD (C7) (Figure 3D).  
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2.3 Results 

2.3.1 Data QC and exploratory analyses  

Initial exploratory analysis suggested a technical artifact in the data which skewed the 

count distributions in a non-random manner (Figure 4A). This was corrected by applying quantile 

normalization which forces the distributions of the samples to be the same. Further exploratory 

analysis using PCA suggested the presence of further artifacts (Figure 4B) which were accounted 

for using surrogate variable analysis (SVA) (Figure 4C).  

 

Figure 4. Exploratory data analysis and PCA of the patient transcriptome 

A 

B C 
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A) Shows the boxplots (outliers are not shown) of the log2 transformed counts per million log2(CPM) gene expression 

values for each patient, ordered by the patient ID (i.e., the order the samples were processed). The distributions of 

normal and steatosis patients tend to vary in discrete blocks of samples in contrast to lobular inflammation, fibrosis, 

or a set of steatosis patients collected later on in the experiment. This suggests the presence of a technical artifact 

which affects the distribution that is confounded with the patient classifications. Hence, we used quantile 

normalization to correct for this effect. Principal component analysis (PCA) of the log2(CPM) gene expression values 

revealed the presence of a batch effect (B). We therefore used surrogate variable analysis (SVA) to estimate covariates 

that could account for this unwanted heterogeneity while still retaining the biological variation. C) Shows the PCA 

plot using the SVA corrected gene expression matrix. 

 

 

2.3.2 Cluster analysis using KEGG enrichment profiles  

To help distill NAFLD complexity at the molecular level and associate hepatic signaling 

network dysregulation with clinical subtypes, we performed an unsupervised gene set variation 

analysis (GSVA) derived from 182 individual patient liver biopsies representing different stages 

of NAFLD [61], that included 36 normal, 46 steatosis, 50 lobular inflammation and 50 fibrosis 

(Figure 3A-B). The resulting KEGG pathway enrichment profiles were then subjected to 

hierarchical clustering with the dendrogram cut at the third level to create three distinct clusters 

(see Methods) that were each enriched in different stages of the disease (Figures 3B, 5; Table 2; 

Methods). The first cluster is composed of 44% normal patients and 48% patients with simple 

steatosis (NAFL), termed Predominantly Normal & Steatosis (PN&S), highlighting the challenge 

of distinguishing these two cohorts by gene expression analysis alone when inflammation is not 

discernable; the second cluster is predominated by patients with lobular inflammation (70%) with 
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little or no fibrosis, termed Predominantly Lobular Inflammation (PLI); and the third is 

predominantly comprised of patients with advanced disease having fibrosis (61%), termed 

Predominantly Fibrosis (PF) (Figure 5; Table 2). 

The sample clustering is significantly associated (Pearson's Chi-squared Test) with 

NAFLD subclass (p < 2.2e-16) and T2D status (p = 0.01). Figure 5 also shows that the 

distributions of sex, body mass index (BMI), and age are similar across the different clusters. In 

contrast, the occurrence of T2D in cluster PF (55%) is higher than in clusters PN&S (32%) and 

PLI (32%), corroborating that among individuals with T2D and NAFLD, the prevalence of NASH 

and advanced fibrosis is enriched when compared to nondiabetics with NAFLD, as observed in 

independent analyses of this particular cohort [61] and other cohorts [86-88].This is most evident 

among the 40 patients diagnosed with fibrosis within the PF cluster, with 78% having T2D (Table 

2).  

We next investigated in more detail the association between distinct pathway enrichment 

profiles (i.e., molecular disease phenotypes) and clinical subtypes by determining the differential 

pathway enrichment profiles of the pairwise comparisons among the 3 clusters and among the 

corresponding clinical subtypes (Figure 3C).  
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Figure 5. Individual patient liver transcriptome analysis yields distinct clusters based on their KEGG 

pathway enrichment profiles 

The heatmap shows the hierarchical clustering of the liver KEGG pathway enrichment profiles (columns) from 

individual patients, determined by RNA sequencing and gene set variation analysis (GSVA) using MSigDB v7.0 C2 

KEGG pathways [63] (see 2.2 Methods). Pathways (rows) are grouped according to the top-level KEGG hierarchical 

classifications (labeled along the left ordinate) to which they belong. The color represents the enrichment score (ES; 

see the color-coded bar under the heatmap), which reflects the degree to which a pathway is over- or under-represented 

within that individual patient sample (see [82]). The plots above the heatmap show the patient metadata: the top two 

bars indicate the color-coded diagnosis (see panel on the right) and patient sex, the third indicates if the patient has 

been diagnosed with type 2 diabetes (T2D) (black bars), and the additional two plots show the body mass index (BMI) 
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and age of the patient. The clinical subtype distribution for each of the three clusters (PN&S, PLI, PF) is shown in 

Table 2. More details on this analysis can be found in the associated R notebooks [62]. 

 

Table 2. Distribution of NAFLD patient subtypes within the three clusters defined in Figure 5. 

The numbers of patients diagnosed with type 2 diabetes (T2D) are indicated in parentheses in each case.  The clusters 

of the cohort samples are significantly associated (Pearson's Chi-squared test) with NAFLD subtype (p < 2.2e-16) and 

T2D status (p = 0.01).  The red values denote the predominant clinical subtype within each cluster 

 

2.3.3 Differentially expressed/enriched genes and pathway results  

The pairwise cluster comparisons of PLI vs. PN&S, PF vs. PN&S and PF vs. PLI gene and 

pathway expression data yielded a total of 139 unique differentially enriched pathways (FDR p-

value < 0.001) (Figure 3C; Table S1; Data file S1). Analogously, clinical subtype comparisons 

of Lobular inflammation vs Normal & Steatosis (Lob vs. N&S), Fibrosis vs Normal & Steatosis 

(Fib vs. N&S), and Fibrosis vs Lobular inflammation (Fib vs. Lob) gene and pathway expression 

data yielded a total of 140 unique differentially enriched pathways (FDR p-value < 0.001) (Table 

S1; Data file S1). The distributions of these differentially enriched pathways within their 

respective top-level KEGG hierarchical classifications in each pairwise comparison are presented 

Clinical 
diagnosis Normal 

Steatosis (Grade) 
Lobular 

Inflammation 
(Score) 

Fibrosis 
(Score) 

Patients 
per cluster 

Cluster 2  3 1 2 3 3.5 4     

PN&S 
35 26 12 3 1 1 1 0 79   

(9) (8) (7) (1) (0) (0) (0) (0) (25)   

PLI 
0 2 1 23 3 1 3 4 37   

(0) (0) (0) (9) (0) (0) (1) (2) (12)   

PF 
1 4 1 11 9 15 11 14 66   

(0) (1) (0) (2) (2) (12) (9) (10) (36)   

total 
36 32 14 37 13 17 15 18  182   

(9) (9) (7) (12) (2) (12) (10) (12) (73)   



 27 

in Figure 6A and Figure 7A, respectively. Overall, these distributions are consistent with the 

intrinsic heterogeneity of NAFLD that reflects the diverse but convergent impacts of the 

environment, metabolism, comorbidities, and genetic risk factors [14]. 

 

Figure 6. Distribution of differentially enriched pathways and their respective KEGG groups and NAFLD 

categories among the pairwise cluster comparisons defined in Figure 5. 

The number of differentially enriched pathways identified between the PLI vs PN&S, PF vs PN&S, and PF vs. PLI 

pairwise comparisons were 59, 125, and 50, respectively (adj. p-value <0.001). Their distribution (and percent 
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contribution) with respect to KEGG Groups (A) and NAFLD categories (B) are detailed in Table S1 and Data file 

S1. The top ten differentially enriched pathways for each comparison (ranked by the FDR adjusted p values through 

the linear modelling equivalent of a two sample, moderated t-test) are shown along with their association (black 

circles) with NAFLD categories C1-4 (as indicated and defined in the Main Text) (C).  The colors of the bars represent 

the directionality and relative enrichment of each pathway for each of the pairwise comparisons. 
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Figure 7. Distribution of differentially enriched pathways and their respective KEGG groups and NAFLD 

categories of pairwise comparisons performed using the patient clinical classifications (complements Figure 6). 

The number of differentially enriched pathways identified between the Lobular inflammation vs Normal & Steatosis 

(Lob vs N&S), Fibrosis vs Normal & Steatosis (Fib vs N&S), and Fibrosis vs Lobular inflammation (Fib vs Lob), 

pairwise comparisons were 81, 122, and 48, respectively (adj. p-value <0.001). Their distribution (and percent 

contribution) with respect to KEGG Groups (A) and NAFLD categories (B) are detailed in Table S1 and Data file 

S1. The top ten differentially enriched pathways for each comparison (ranked by the FDR adjusted p values through 
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the linear modelling equivalent of a two sample, moderated t-test) are shown along with their association (black 

circles) with NAFLD categories C1-4 (as indicated and defined in section 2.2.3 ) (C).  The colors of the bars represent 

the directionality and relative enrichment of each pathway for each of the pairwise comparisons 

 

 

2.3.4 Categorization of pathways according to their role in NAFLD 

The differentially enriched pathways were associated with at least one of four categories 

that comprise our current conceptual framework of NAFLD progression (Figure 3D, Methods): 

C1) Insulin resistance and oxidative stress, C2) Cell stress, apoptosis, and lipotoxicity, C3) 

Inflammation, and C4) Fibrosis (Figures 6B, 7B)[7, 14].  Apart from these four main categories, 

other pathways have been observed that are less directly associated with NAFLD or the metabolic 

syndrome (Figures 3D, 6B, 7B).  

The 10 most differentially enriched pathways for all patient subgroup pairwise 

comparisons, and their association with the disease processes within these four categories (C1-C4) 

are shown in Figure 6C and Figure 7C. The 10 pathways for the PF vs. PN&S and the PLI vs. 

PN&S cluster-based comparisons, and the Fib vs. N&S and the Lob vs. N&S clinical subtype 

comparisons, are consistent with the metabolic underpinning, and the resultant cellular stress and 

inflammatory response intrinsic to NAFLD pathogenesis. Complementarily, the differentially 

enriched pathways within the comparisons between PF vs PLI and between Fib vs. Lob are 

consistent with fibrosis being the widely recognized hallmark of disease progression in NASH 

(Figures 6C, 7C). 
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The majority of the top 10 differentially enriched pathways in these comparisons have been 

shown to have a role in hepatic fibrosis [89-96] with several involved in hepatic stellate cell 

activation [89-91]. The majority of differentially enriched pathways derived from the unsupervised 

clusters are concordant with those derived from the clinical subtypes per se (Figure 8), 

corroborating an association of these pathways with NAFLD progression. The fraction of the top 

10 differentially enriched pathways playing a role in multiple disease categories in the PF vs PLI 

comparison was greater than the fractions in the other two comparisons, indicative of enhanced 

disease complexity during progression (Figure 6C). Details of the full list of differentially 

enriched pathways for each comparison can be found in Table S1 and Data file S1. Together, the 

analysis of this transcriptomic data set appears to have corroborated the clinical relevance of these 

differentially enriched pathways in the context of the current conceptual framework of NAFLD 

progression [7, 14]. 

 

Figure 8. Venn diagrams showing the overlap of differentially enriched pathways (FDR p-value < .001) 

identified in the cluster (left circle) and clinical label (right circle) pairwise comparisons (Supports Figure 6- 

7). 

Differentially enriched pathways (Table S1 & Data file S1) were identified using the GSVA-limma-voom approach 

described in the Methods. All of the overlapping pathways were concordant. 
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2.3.5 External validation of pathway results using microarray datasets 

A meta-analysis extending the unsupervised cluster comparisons to three independent 

NAFLD patient cohorts further supports an association of many of these differentially enriched 

pathways with NAFLD progression (Figure 9). 

 

Figure 9. Concordance analysis of the differentially enriched pathways in the cluster pairwise comparisons (left 

circle) and pathway list derived from microarray datasets (right circle). 

The microarray pathway list is the combined differentially enriched pathways found from re-analyzing the following 

datasets (the specific pairwise comparisons are indicated in the parenthesis): Ahrens et al., [68] (NASH vs healthy 

obese),  Arendt et al., [69] (NASH vs simple steatosis), Murphy et al., [97] (Advanced vs mild fibrosis). See Methods 

and https://github.com/lefeverde/QSPpaper for details.  Differentially enriched (FDR p-value < 0.05) pathways in the 

182 patient cohort were considered concordant if they were also differentially enriched in the same direction (i.e., up-

regulated or down-regulated) in one or more of the microarray cohorts. Conversely, discordance indicates that a 

pathway is still differentially enriched but in opposite directions.  **p-value <= .004 (Exact Binomial Test, % is 

estimated effect size) 
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2.4 Discussion 

An important outcome of the initial analysis in this study was the identification of 

differential pathway enrichment profiles among clinically defined stages of NAFLD progression. 

This information enabled disease states to be defined that could be targeted by systems-based 

approaches that are more comprehensive and less biased than traditional targeted approaches and 

therefore, may be better suited to address the heterogeneity and complex pathophysiology intrinsic 

to NAFLD. An unsupervised analysis of RNA-seq data from individual liver biopsies derived from 

a 182 NAFLD patient cohort encompassing a full spectrum of disease progression subtypes from 

simple steatosis to cirrhosis showed the presence of three patient clusters distinguishable by their 

pathway enrichment profiles and their predominant association with one of three clinical subtypes: 

normal/simple steatosis, lobular inflammation, or fibrosis. 

Pairwise comparisons among these clusters identified differentially enriched pathways 

consistent with the metabolic underpinning of NAFLD and the pathophysiological processes 

implicated in its progression that included lipotoxicity, insulin resistance, oxidative and cellular 

stress, apoptosis, inflammation, and fibrosis. The differentially enriched pathways identified 

among the pairwise comparisons of clusters originally derived from the unsupervised analysis 

showed significant congruence with those derived from the clinical subtypes within this patient 

cohort and through a meta-analysis, additional patient cohorts. 

Although from a traditional translational perspective each of these identified differentially 

enriched pathways has the potential to be a drug target, their large number and diversity, the 

prospect of redundancy, and the uncertainty regarding their individual contribution to NAFLD 

pathogenesis especially across a heterogeneous patient population, all present challenges to 

translating this information into therapeutic strategies.  The recent failures of several NASH 
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clinical trials due to lack of efficacy [98] are likely the result of this complex pathophysiology 

emphasizing the need to define and probe therapeutic targets more holistically from the perspective 

of disease states.  
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3.0 Predict drugs that could halt and/or reverse NAFLD progression using connectivity 

mapping and drug-target databases 

3.1 Introduction 

Connectivity Mapping (CMap) is an approach to drug discovery that uses large databases 

(e.g., LINCS [64]) of cellular responses to perturbations to identify compounds which can 

normalize a disease state. These perturbations and responses consist of a variety of different types, 

however, for the purposes here, we are focused on gene expression changes in response to small 

molecules. The benefit of CMap is that precise targets of neither the compounds nor the disease 

need to be known beforehand. The basic idea is if a disease state can be represented as a set of up- 

and a set of down-regulated genes, finding a compound which produces the inverse gene 

expression pattern would ameliorate the disease. This is analogous to phenotypic drug discovery 

(and has been dubbed surrogate phenotype drug discovery), in which a drug that reverts the disease 

phenotype in a model would do so in patients [55]. CMap has been used for a number of disease 

indications [99], and there is some evidence of this general concept working in liver disease. 

Growth hormone-releasing hormone (GHRH) has been shown to reduce steatosis and prevent 

fibrosis progression in HIV-induced NAFLD [100, 101]. Treatment with GHRH normalized 

pathway expression profiles, notably upregulating oxidative phosphorylation and down-regulating 

inflammatory and fibrotic pathways [101].  

In order for the CMap results to be meaningful it is critical that the gene signatures 

representing the disease states reflect the disease in question. To ensure that the gene signatures 

were able to best represent the disease states of NAFLD progression, we created DEG signatures 
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that map to differentially enriched pathways involved in the disease processes comprising the four 

NAFLD categories C1-C4 (see below and Figure 3E; Table 3; Data file S3; Methods). These 

signatures mirror emergent disease-specific networks (i.e., disease states) at different stages of 

disease progression. We then applied CMap using the LINCS 2017 and 2020 databases to identify 

compounds which have the potential to normalize the disease state. We performed a separate, 

complementary prioritization approach using network proximity. We hypothesize that 

pharmacologically normalizing these gene signatures using the integrative approach outlined in 

Figure 3E-J and below will similarly modify disease progression in a clinically relevant human 

MPS model of NAFLD (Figure 3K). 

As discussed in the introduction, NAFLD has been difficult to recapitulate in traditional 

animal models. We are therefore using the Human biomimetic Liver Acinus Microphysiology 

system (LAMPS) models of NAFLD. We have recently demonstrated that this model system 

recapitulates critical aspects of NAFLD progression including lipid accumulation, stellate cell 

activation, and the production of pro-inflammatory cytokines and fibrotic markers, using media 

containing key NAFLD drivers including increased levels of glucose, insulin and free fatty acids 

[58, 59] (Figure 10B; 3.2 Methods). The LAMPS model has been tested and reproduced by the 

Texas A&M Tissue Chip Validation Center (Tex-Val), one of the National Center for Advancing 

Translational Sciences (NCATS) funded Tissue Chip Testing Centers (TCTC) [102]. 

 



 37 

3.2 Methods 

3.2.1 Generation of Gene Signatures 

The first four NAFLD pathway categories (C1-C4) were used for the subsequent 

generation of NAFLD associated gene signatures (See Chapter 2).  The gene signatures were 

created by identifying DEGs (FDR p-value < .001) that were a component of the [103] 

differentially enriched pathways (FDR p-value < .001) associated with the disease processes in 

categories C1-C4 (Figure 3E; Table 3, and Data file S3) for each of the three pairwise 

comparisons among the three patient clusters (Figure 5). Four category-specific gene signatures 

were generated containing the aggregated up- and down-regulated genes for each of these three 

pairwise comparisons (12 gene signatures in total; Figure 3E; Table 3; and Data file S3). An 

analogous set of gene signatures was derived from the 3 pairwise clinical classification 

comparisons Lobular inflammation vs Normal & Steatosis  (Lob vs. N&S),  Fibrosis vs Normal & 

Steatosis  (Fib vs. N&S), and Fibrosis vs Lobular inflammation  (Fib vs. Lob) Figure 3E; Table 

3; Data file S3, for details see https://github.com/lefeverde/QSPpaper).  

In sum, two sets of 12 differentially expressed gene signatures were generated, one set 

derived from distinguishable pathway enrichment profiles associated with different clinical 

subtypes and the other set derived directly from the clinical classifications (Figure 3E; Table 3 

and Data file S3). The differentially expressed genes in each signature reflect pathway 

dysregulation in NAFLD-associated processes and the signatures themselves are indicative of a 

particular disease state at different stages of disease development. 

 

https://github.com/lefeverde/QSPpaper
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Table 3. Gene signature index (created using Data file S3) 

The 24 gene signatures (Data file S3) are composed of 2 sets of 12 signatures, with one set derived from the cluster 

groupings and the other from the clinical classifications (*). Each set is a unique combination of their respective 3 

pairwise comparisons  and 4 NAFLD pathway categories (see Methods for details on the methodology, see Figure 

6-8; Table S1; and Data file S1 for the distribution and details of these pathways in the pairwise comparisons) .  

 

NAFLD pathway category 
Cluster gene 
signature ID 

Cluster 
comparison 

 Clinical gene 
signature ID 

Clinical 
Comparison 

C1: Insulin resistance and oxidative 
stress 

s1 PLI vs. PN&S  s*1 Lob vs N&S 

C2: cell stress, apoptosis and 
lipotoxicity 

s2 PLI vs. PN&S  s*2 Lob vs N&S 

C3: Inflammation s3 PLI vs. PN&S  s*3 Lob vs N&S 

C4: Fibrosis s4 PLI vs. PN&S  s*4 Lob vs N&S 

C1: Insulin resistance and oxidative 
stress 

s5 PF vs. PN&S  s*5 Fib vs N&S 

C2: cell stress, apoptosis and 
lipotoxicity 

s6 PF vs. PN&S  s*6 Fib vs N&S 

C3: Inflammation s7 PF vs. PN&S  s*7 Fib vs N&S 

C4: Fibrosis s8 PF vs. PN&S  s*8 Fib vs N&S 

C1: Insulin resistance and oxidative 
stress 

s9 PF vs. PLI  s*9 Fib vs Lob 

C2: cell stress, apoptosis and 
lipotoxicity 

s10 PF vs. PLI  s*10 Fib vs Lob 

C3: Inflammation s11 PF vs. PLI  s*11 Fib vs Lob 

C4: Fibrosis s12 PF vs. PLI  s*12 Fib vs Lob 
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3.2.2 Drug predictions using the LINCS L1000 database 

Connectivity mapping (CMap) (15) (Figure 3F) was used to identify drugs and small 

molecule perturbagens with the potential to normalize the disease state by reverting the 

aforementioned NAFLD-associated gene signatures (Figure 3E; Table 3 and Data file S3). A 

pilot study using the two sets of 12 signatures obtained in the previous step were employed to 

query the LINCS L1000 level 5 (GSE92742, released in 2017) expression database [64] as the 

initial CMap resource. This database consists of perturbation instances, defined as compound-

induced differential gene expression output from a unique combination of cell type, time-point, 

compound, and compound concentration [64, 99]. A subset of the LINCS database with 

compounds that could be mapped to DrugBank [66] (v5.1.4 used in all analyses) annotations was 

created by matching the compounds by common name, then by SMILES and/or PubChem ID in 

cases where the common name differed between databases (see  

https://github.com/lefeverde/QSPpaper). In total, 1103 DrugBank compounds could be matched 

to 1495 LINCS compound IDs (there were cases of multiple LINCS compound IDs for the same 

compound in DrugBank). A LINCS-DrugBank database was generated, comprising a set of 41,710 

perturbation instances describing the response to 1103 DrugBank compounds for 70 cell types, at 

6 & 24 hr time-points, and a range of concentrations.   

During the course of our initial studies, an updated and expanded 2020 LINCS database 

was released (see https://clue.io) that we used to generate a 2020 LINCS-DrugBank database see  

https://github.com/lefeverde/QSPpaper. This version included the 1103 previously matched 

compounds and an additional 1033 compounds yielding 334,393 instances comprising 2136 

DrugBank compounds (2795 LINCS compounds IDs) across 228 cell types, and a range of time-

points and concentrations (https://clue.io).  

https://github.com/lefeverde/QSPpaper
https://github.com/lefeverde/QSPpaper
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The connectivity between each of these drug-induced perturbation instances and each of 

the 24 input gene signatures was measured by a CMap score (CS) [64, 104], composed of two 

enrichment scores, one for the upregulated genes (ESup) and the other for the downregulated genes 

(ESdown). The CS was calculated as follows: If the sign of ESup and ESdown are the same, CS = 0; 

otherwise, CS = (ESup – ESdown)/2 [64]. We obtained results using both the 2017 and 2020 

databases (Figure 3F; Data file S4). The former contains 41,710 CSs (one CS for each of the 

DrugBank perturbation instances), the latter 334,393 CSs (Data file S4). We calculated the p-

values for the CSs using methods adapted from Chen et al., 2017 [105]. For each gene signature, 

a distribution of random CSs was generated by calculating the CS between a random perturbation 

instance and random gene set with the same number of up- and down-regulated genes as the gene 

signature. This was repeated 50,000 times for each gene signature to calculate a p-value for each 

CS. The p-values represent the probability of observing the CS using a random set of genes with 

the same size as the gene signature. The p-values were adjusted for multiple testing using the FDR 

method [106].  

In order to rank compounds for each of the 24 signature queries, creating a representative 

CS (i.e., summary statistic) for each compound is necessary since multiple CSs exist for each 

compound in a single query (Figure 3G). Two approaches were used. The first approach is similar 

to that used by Liu, 2015[107] where the most negative CS (predictive of the compound having 

the largest effect for inverting the disease gene signature) was chosen for ranking compounds. This 

approach has the advantage of potentially identifying compounds with maximal efficacy in 

reversing the gene signature. However, relying on a single or small number of perturbation 

instances and, therefore limiting the connection to relevant biological context, may reduce the 

robustness for translating the CMap predictions to a particular experimental model or clinical 
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cohort. The second approach uses the maximum quantile statistic as described by Subramanian et 

al., 2017[64]. The instances are normalized by cell type then 33rd (Qlo) and 67th (Qhi) quantiles of 

the CSs are computed for each compound, and whichever is larger in magnitude becomes the 

summary score. If the CSs for a compound are predominantly  < 0, then the |Qlo| > |Qhi| and the 

summary score is Qlo, and vice-versa when the CSs are predominantly > 0 (|Qlo| < |Qhi| and so the 

summary score is Qhi. The advantage of the maximum quantile approach is that the score is 

representative of more biological contexts than the single most negative CS approach.  

We initially prioritized the CMap results from the 2017 LINCS database [64] by ranking 

each drug by the most negative CMap score among all instances for that particular drug, then 

retaining the top 20 drug predictions from each signature query (Figure 3G, Table 4 and Data file 

S5). The predictions were further filtered using a threshold of FDR p-value <0.05, and then ranked 

based on their frequency of appearance across the 12 cluster signatures (Figure 3G, Table 4 and 

Data file S5).  The top 25 compounds from this initial approach are shown in Table 4. We 

performed a similar approach in a follow up study using the expanded 2020 LINCS database 

(accessible at clue.io), except compounds were ranked (in ascending order) using the maximum 

quantile summary score (described above and in [64]) (Figure 3G, Table 6 and Data file S5). The 

top 25 predictions from the follow up study are shown Table 6. 

 

3.2.3 Drug prioritization using network proximity analysis  

As a complementary alternative to ranking compounds by frequency of appearance across 

the signature CMap queries, we adopted the network proximity method as previously described by 

Guney et al [108]. The method evaluates the distance between the compound’s targets and a given 
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disease module, based on the premise that a compound is effective against a disease if its target 

proteins are within or in the immediate vicinity of the disease module. In essence, this approach 

provides an independent criterion for selecting from amongst CMap-extracted compounds, to 

enable further prioritization for experimental testing (Figure 3H-J).  

For determining network proximity, information on a liver-specific PPI network (referred 

to as the background network) is required. The liver BioSnap network [65] which contains 3,180 

nodes and 48,409 edges was retrieved to this aim. A subnetwork from this background network 

representing the PPIs specific to NAFLD was generated as follows: we selected the KEGG 

pathway map of NAFLD which represents a stage-dependent progression of NAFLD (pathway id: 

hsa04932, [103, 109]) in addition to 10 interrelated pathways [103, 109]: TNF-signaling 

(hsa04668), insulin signaling (hsa04910), Type II diabetes mellitus (hsa04930), PI3K-Akt 

signaling (hsa04151), adipocytokine signaling (hsa04920), PPAR signaling (hsa03320), fatty acid 

biosynthesis (hsa00061), protein processing in the endoplasmic reticulum (hsa04141), oxidative 

phosphorylation (hsa00190) and apoptosis (hsa04210). We then created an initial subnetwork by 

taking the intersection of the background network and the genes from these 11 pathways, yielding 

390 nodes. We further filtered this initial subnetwork to only include the nodes that were 

differentially expressed in the three pairwise comparisons (PLI vs. PN&S, PF vs. PN&S and PF 

vs. PLI), resulting in a subnetwork of 234 nodes and 1,130 edges, termed the NAFLD subnetwork 

(Figures 3H, S1; Table 7, and Data File S6).  

We performed network proximity analysis (Figure 3I-J) on the results from the cluster 

signatures queried against the 2020 database prioritized by maximum quantile (Data File S5). The 

NAFLD subnetwork was used as the disease module to determine the proximity of the 126 CMap 

prioritized compounds (Data File S5) described above. Among these, 45 are known to target liver-
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expressed proteins and were subjected to network proximity analysis (Figure 3J, Data file S7) 

and summarized here. For each drug, we extracted the set of targets (T) from DrugBank v5.1.4 

[66], and a distance (d) to the NAFLD subnetwork of 234 nodes (S) was calculated using the liver 

PPI network as the shortest distance between node t (belonging to T) and the closest node s 

(belonging to S) averaged over all nodes in T, 

𝑑(𝑆, 𝑇) =  
1

‖𝑇‖
∑ mins∈S 𝑑(𝑠, 𝑡)

𝑡∈𝑇

 

A reference distance distribution was constructed, corresponding to the expected distance 

between two randomly selected groups of proteins of the same size and degree of distribution as 

the disease proteins and drug targets in the network. This bootstrapping procedure [32] was 

repeated 1,000 times and the mean (µ) and standard deviation (δ) of the reference distance 

distribution in conjunction with the distance (d) determined above were used to calculate a z-score 

(d-µ)/δ for each drug. The z-score provides a relative ranking of the drugs vis-à-vis each drug’s 

potential effects on the NAFLD disease module; a lower z-score means a drug’s target profile is 

closer to the disease module. The resulting top-ranking 25 compounds selected to be prioritized in 

experiments are presented in Table 8 and the full list of 45 compounds is in Data file S7. 

3.2.4 Experimental drug testing using the human Liver Acinus Microphysiology System 

(LAMPS) 

LAMPS studies (Figures 3K, 10-12; Table 6) were carried out as previously described 

[57, 58, 110, 111] using a single chamber commercial microfluidic device (HAR-V single channel 

device, SCC-001; Nortis, Inc.). LAMPS models were composed of four liver cell types: primary 

cryopreserved human hepatocytes (HU1960; ThermoFisher), primary liver sinusoidal endothelial 
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cells (LSECs; HL160019ECP1; LifeNet Health), and THP-1 (Kupffer cell; ATCC) and LX-2 

(stellate cell; EMD Millipore) human cell lines. The percentages of hepatocytes, THP-1, LSEC, 

and LX-2 cells are consistent with the scaling used in our previously published models [57, 58, 

110, 111]. For the drug testing studies described here, LAMPS models were assembled and 

maintained for 10 days under flow (5 ul/h) in early metabolic syndrome (EMS) media containing 

11.5 mM glucose, 10 nM insulin, 100 M palmitic acid and 200 M oleic acid [58]. LAMPS were 

maintained for this period in EMS containing (in triplicate for each condition) either vehicle 

control (0.1% DMSO) or the following drug treatments: 10 M obeticholic acid (Selleck 

Chemicals), 30 M pioglitazone (Selleck Chemicals), 1.7 M or 5 M vorinostat (Selleck 

Chemicals). For drug combination studies, 30 M pioglitazone was combined with either 1.7 M 

or 5 M vorinostat for the duration of the experimental time course. A panel of time course and 

endpoint NAFLD disease-specific metrics were then examined including albumin, blood urea 

nitrogen, lactate dehydrogenase secretion, lipid accumulation, stellate cell activation, secretion of 

the pro-fibrogenic markers pro-collagen 1a1 and TIMP-1, and secretion of the cytokines IL-1, 

IL-6, IL-8, TNF-, and MCP-1 [58]. A detailed description for both LAMPS assembly and 

NAFLD disease progression metrics is provided in the Supplementary Methods and the MPS-

Db (https://mps.csb.pitt.edu/assays/assaystudyset/27/) [58, 112] . 

 

https://mps.csb.pitt.edu/assays/assaystudyset/27/
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Figure 10. Using the Biomimetic Human Liver Acinus MicroPhysiology System (LAMPS) for proof-of-concept 

experimental testing of CMap-predicted drugs. 

A) Diagram illustrating the typical cell organization in the LAMPS model after cell seeding. The LAMPS is a 

polydimethylsiloxane (PDMS)-based all-human, single flow channel, microfluidic cell platform designed to partially 

recapitulate the structure and functions of the human liver acinus [57, 59, 102, 110, 111]. Primary hepatocytes are first 

seeded on a layer of collagen and fibronectin. Primary liver sinusoidal endothelial cells (LSEC) and Kupffer-like THP-

1 cells are seeded 18-24 h after hepatocytes on a layer of decellularized porcine liver extracellular matrix (LECM). 

Following this, the LX-2 stellate cell line is seeded last, settling in collagen that fills the chamber. The direction of 

media flow is indicated by the arrow. A detailed description of the model setup can be found in the Supplementary 

Materials section. (B) We have recently demonstrated that this model system recapitulates key aspects of NAFLD 

progression using media containing key NAFLD drivers including increased levels of glucose, insulin and free fatty 

acids [58, 59]. Using this platform, we examined a panel of metrics to monitor NAFLD disease-specific phenotypes, 

in the presence of CMap-predicted drugs, including model functionality (albumin and blood urea nitrogen (BUN) 

secretion) and cytotoxicity (lactate dehydrogenase secretion), hepatocellular steatosis (LipidTOXTM  labeling), 

stellate cell activation [α-smooth muscle actin (SMA) antibody staining], and the production of a panel of pro-

inflammatory cytokines (TNF-α , IL-6, IL-8, IL-1β and MCP-1) and fibrotic markers (Pro-collagen 1A1 and TIMP-

1).     
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3.3 Results 

3.3.1 Initial CMap Prioritization  

To predict drugs/small molecules that modulate individual components of NAFLD 

progression, we initially focused on the DEGs (Data file S2) that mapped to the categorized (four 

NAFLD categories, C1-C4; Methods) differentially enriched pathways (Figures 3D-E; Table S1; 

Data file S1; 3.2 Methods) identified above in each of the 3 comparisons of unsupervised clusters 

(i.e., PLI vs. PN&S, PF vs. PN&S and PF vs. PLI ) resulting in a total of 12 gene signatures (Table 

3; Data file S3; 3.2 Methods). Each of these 12 gene signatures was then used as input to perform 

connectivity mapping (CMap) on the LINCS database (see Subramanian et al., 2017 [64] and 

Methods). CMap connects the DEG signature between different disease states (including the non-

disease state) to drugs and other pharmacologically active compounds predicted to normalize the 

disease-associated gene signature (see 3.2 Methods)[64, 99, 104]. In the context of this study, the 

output of CMap [64, 99, 104] enables the pharmacologic testing of the hypothesis that 

normalization of the gene signatures between two disease states will halt or perhaps reverse disease 

progression in an experimental human NAFLD model (see below; 3.2 Methods). 

Since a key objective is to identify drugs that can be repurposed for preventing NAFLD 

progression, we focused on CMap outputs present in DrugBank (see 3.2 Methods) that could 

promote the normalization of the disease-associated gene signature in each NAFLD category (3.2 

Methods; Figure 3F). For our initial study using the 2017 LINCS database [64], we selected the 

top 20 drugs (ranked by their most negative CMap score among all instances for that particular 

drug, see Methods) for each of the 12 queries, resulting in 106 unique predicted drugs, 35 of which 

appeared as an output in more than one query (Figure 3G; Table 4; Data file S4). Given the 
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complex interplay among dysregulated metabolic pathways, oxidative and ER stress, 

inflammation, and fibrosis during NAFLD progression, our initial prioritization of 25 drugs 

focused on those predicted to modulate multiple gene expression signatures (Figure 3G; Table 

4). Enriched in this set are drugs with targets known to be associated with NAFLD and with the 

potential to act pleiotropically, to modulate several pathways. For example, vorinostat is predicted 

to normalize 5 of the 12 signatures focused primarily on inflammation and fibrosis and previous 

studies in rodent models of NAFLD suggested efficacy with other HDAC inhibitors [113, 114]. 

 

Table 4. 25 highest ranked predicted drugs based on initial CMap analysis 

For each gene signature (indexed in Table 3 & Data file S3, as signatures: s1-s12), the 20 highest ranking compounds 

were selected (FDR p-value < .05) using their respective most negative CMap score among the perturbation instances 

from the 2017 LINCS database [64] (see Methods). Drugs/small molecules perturbagens identified in more than 1 

gene signature-based query were prioritized based both on the number of occurrences across the 12 queries and termed: 

Gene signature-query frequency (Data Files S4-S5) and the number of unique LINCS perturbation instances across 

the gene signatures. Each signature-based query is  ordered (from highest to lowest) according to the relative rank of 

the drug within each query from which the drug was identified (i.e., occurrence). Each gene signature-based query is 

associated with a predominate feature (i.e., disease category) of NAFLD. The canonical targets derive from DrugBank 

(v5.1.4).   

Drug name 
(DrugBank ID) 

Gene signature-
query frequency 

Unique 
instances 

Gene signature indices (see Table 3) and their 
disease categorization Canonical targets 

vorinostat 
(DB02546) 5 4 

s11: Inflammation 
s8: Fibrosis 
s6: Cell Stress, Apoptosis and Lipotoxicity 
s3: Inflammation 
s7: Inflammation 

HDAC1, HDAC2, HDAC3, 
HDAC6, HDAC8 

SN-38 
(DB05482) 5 3 

s7: Inflammation 
s6: Cell Stress, Apoptosis and Lipotoxicity 
s2: Cell Stress, Apoptosis and Lipotoxicity 
s4: Fibrosis 
s5: Insulin Resistance and Oxidative Stress 

TOP1 
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Drug name 
(DrugBank ID) 

Gene signature-
query frequency 

Unique 
instances 

Gene signature indices (see Table 3) and their 
disease categorization Canonical targets 

auranofin 
(DB00995) 5 2 

s3: Inflammation 
s5: Insulin Resistance and Oxidative Stress 
s7: Inflammation 
s4: Fibrosis 
s8: Fibrosis 

PRDX5, IKBKB 

PX-12 
(DB05448) 5 2 

s5: Insulin Resistance and Oxidative Stress 
s6: Cell Stress, Apoptosis and Lipotoxicity 
s2: Cell Stress, Apoptosis and Lipotoxicity 
s3: Inflammation 
s8: Fibrosis 

TXNRD1 

methylene-blue 
(DB08167) 4 3 

s4: Fibrosis 
s8: Fibrosis 
s7: Inflammation 
s5: Insulin Resistance and Oxidative Stress 

ACHE 

teniposide 
(DB00444) 4 2 

s2: Cell Stress, Apoptosis and Lipotoxicity 
s6: Cell Stress, Apoptosis and Lipotoxicity 
s7: Inflammation 
s4: Fibrosis 

TOP2A 

trichostatin-a 
(DB04297) 3 3 

s3: Inflammation 
s5: Insulin Resistance and Oxidative Stress 
s7: Inflammation 

HDAC8, HDAC7 

camptothecin 
(DB04690) 3 2 

s2: Cell Stress, Apoptosis and Lipotoxicity 
s6: Cell Stress, Apoptosis and Lipotoxicity 
s7: Inflammation 

TOP1 

dexamethasone 
(DB01234) 3 2 

s1: Insulin Resistance and Oxidative Stress 
s5: Insulin Resistance and Oxidative Stress 
s4: Fibrosis 

NR3C1, NR0B1, ANXA1, 
NOS2, NR1I2 

geldanamycin 
(DB02424) 3 2 

s7: Inflammation 
s11: Inflammation 
s4: Fibrosis 

HSP90AB1, HSP90AA1, 
HSP90B1 

capsaicin 
(DB06774) 3 1 

s6: Cell Stress, Apoptosis and Lipotoxicity 
s7: Inflammation 
s3: Inflammation 

TRPV1, PHB2 

curcumin 
(DB11672) 3 1 

s8: Fibrosis 
s4: Fibrosis 
s6: Cell Stress, Apoptosis and Lipotoxicity 

PPARG, VDR, ABCC5, 
CBR1, GSTP1 

itraconazole 
(DB01167) 3 1 

s2: Cell Stress, Apoptosis and Lipotoxicity 
s1: Insulin Resistance and Oxidative Stress 
s6: Cell Stress, Apoptosis and Lipotoxicity 

CYP51A1 

midazolam 
(DB00683) 3 1 

s1: Insulin Resistance and Oxidative Stress 
s6: Cell Stress, Apoptosis and Lipotoxicity 
s2: Cell Stress, Apoptosis and Lipotoxicity 

GABRA1, GABRA2, 
GABRA5, GABRA3, 
GABRA4, GABRA6 
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Drug name 
(DrugBank ID) 

Gene signature-
query frequency 

Unique 
instances 

Gene signature indices (see Table 3) and their 
disease categorization Canonical targets 

olaparib 
(DB09074) 3 1 

s8: Fibrosis 
s4: Fibrosis 
s7: Inflammation 

PARP1, PARP2, PARP3 

chlorpromazine 
(DB00477) 2 2 s4: Fibrosis 

s3: Inflammation 

DRD2, DRD1, HTR1A, 
HTR2A, ADRA1A, 
ADRA1B, HRH1, KCNH2, 
DRD3, DRD4, DRD5, 
HTR2C, ADRA2A, 
CHRM1, CHRM3, 
SMPD1, CALM1, ORM1, 
HTR6, HTR7, HRH4 

fulvestrant 
(DB00947) 2 2 

s1: Insulin Resistance and Oxidative Stress 
s4: Fibrosis ESR1 

gemcitabine 
(DB00441) 2 2 s4: Fibrosis 

s7: Inflammation RRM1, TYMS, CMPK1 

alvocidib 
(DB03496) 2 1 s1: Insulin Resistance and Oxidative Stress 

s5: Insulin Resistance and Oxidative Stress 

CDK2, CDK5, CDK9, 
CDK1, CDK6, EGFR, 
CDK4, CDK8, CDK7, 
PYGM, PYGB, PYGL 

bromphenirami
ne (DB00835) 2 1 s1: Insulin Resistance and Oxidative Stress 

s6: Cell Stress, Apoptosis and Lipotoxicity 
HRH1, CHRM1, CHRM2, 
CHRM3, CHRM4, CHRM5 

cladribine 
(DB00242) 

2 1 s4: Fibrosis 
s3: Inflammation 

RRM1, RRM2, RRM2B, 
POLA1, POLE, POLE2, 
POLE3, POLE4, PNP 

dasatinib 
(DB01254) 2 1 s8: Fibrosis 

s4: Fibrosis 

ABL1, SRC, EPHA2, LCK, 
YES1, KIT, PDGFRB, 
STAT5B, ABL2, FYN, BTK, 
NR4A3, BCR, CSK, 
EPHA5, EPHB4, FGR, 
FRK, HSPA8, LYN, ZAK, 
MAPK14, PPAT 

dinoprost 
(DB12789) 2 1 s6: Cell Stress, Apoptosis and Lipotoxicity 

s5: Insulin Resistance and Oxidative Stress PTGDR2 

fexaramine 
(DB02545) 

2 1 
s2: Cell Stress, Apoptosis and Lipotoxicity 
s1: Insulin Resistance and Oxidative Stress 

NR1H4 

fexofenadine 
(DB00950) 2 1 s5: Insulin Resistance and Oxidative Stress 

s3: Inflammation HRH1 
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3.3.2 Proof-of-concept test in LAMPS 

We next used our LAMPS model of NAFLD to test the control and predicted drugs. The 

LAMPS model comprises an all-human cell platform containing primary hepatocytes and liver 

sinusoidal endothelial cells (LSECs) as well as Kupffer (differentiated THP-1) and stellate (LX-2) 

cell lines layered in a microfluidic device that recapitulates several key structural features and 

functions of the human liver acinus [57-59] (Figures 3K, 10; 3.2 Methods). We first examined 

the effects of two control drugs that have shown appreciable clinical benefit in NAFLD clinical 

trials, obeticholic acid (OCA) [115, 116] and pioglitazone (PGZ) [117] using the LAMPS 

experimental model (Figures 3K, 11). EMS conditions were selected since biomarker and imaging 

analysis indicate that steatosis, inflammation, and fibrosis are progressively induced during the 10-

day testing period [58]. We determined drug concentrations to test in LAMPS guided by the 

concentrations indicated in the LINCS L1000 database, reported PK/PD and by the absence of 

cytotoxicity at these concentrations during pre-testing in primary hepatocytes (Table 5). In 

addition, we determined the amount of each compound that was adsorbed by the PDMS component 

of the LAMPS device (Table 5). LAMPS were maintained for 10 days in EMS media containing 

either the indicated concentration of drug or DMSO vehicle control. We examined a panel of 

metrics to monitor disease-specific phenotypes including model functionality (albumin and blood 

urea nitrogen production), cytotoxicity (lactate dehydrogenase secretion), hepatocellular steatosis 

(LipidTOX® labeling), stellate cell activation (α-smooth muscle actin staining), and the 

production of a panel of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-1β and MCP-1) and 

fibrotic markers (Pro-collagen 1A1 and TIMP-1) [58] (Figure 10). LAMPS models were 

maintained for 10 days in EMS media containing 10 µM OCA, 30 µM PGZ, or vehicle control 

(Figure 11). Throughout the experimental time course, albumin, blood urea nitrogen and lactate 
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dehydrogenase showed no significant differences between vehicle control and drug treatment 

groups (Figure 11A-C), suggesting no overt cytotoxicity and loss of function. However, there was 

a significant decrease in LipidTOX® and α-SMA staining intensity in the OCA and PGZ treatment 

groups compared to vehicle control demonstrating that both hepatocellular steatosis (Figure 11D-

E) and stellate cell activation (Figure 11F-G) were reduced. Although there was a ~20% decrease 

in secretion of the pro-fibrotic marker Pro-collagen 1a1 (Figure 11H) with treatment of OCA, or 

PGZ, this decrease was not statistically significant. In addition, there was also no significant 

change in the secreted levels of TIMP-1, another pro-fibrotic marker, in any of the treatment 

groups compared to vehicle (Figure 11I). 

We next examined the effect of the HDAC inhibitor, vorinostat, the highested ranking drug 

predicted from our initial CMap analysis (Figures 3K, 11J-S; Table 4). LAMPS models 

maintained for 10 days in EMS disease media contained either vorinostat (1.7 µM or 5 µM), or 

DMSO vehicle control. As shown in Figure 11, albumin and blood urea nitrogen curves showed 

no significant differences between vehicle and drug treatment groups (Figure 11J-K), suggesting 

that these drug treatments do not induce appreciable loss of hepatic functionality. There was a 

significant decrease in LDH secretion (Figure 11C) at days 8 and 10 in the 5 µM vorinostat 

treatment group, suggesting that treatment with this drug alleviates disease media-induced 

cytotoxicity. This result is further supported by the overall significant decrease in the day 10 

measurements of stellate cell activation (Figure 11O-P; α-SMA intensity), production of the pro-

fibrotic markers pro-collagen 1a1 and TIMP-1 (Figure 11Q-R) and inflammatory cytokine 

production (Figure 11S) observed in the vorinostat treatment group. In contrast to PGZ and OCA, 

and despite its significant effect on profibrotic markers, vorinostat treatment did not appreciably 
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alleviate lipid accumulation at day 10 (Figure 11M-N), indicating no significant effect on 

steatosis.  

Overall, the CMap predicted drug vorinostat in comparison to the control drugs PGZ and 

OCA, exhibited complementary effects that mitigated NAFLD progression in the LAMPS. To 

extend our initial proof-of-concept (PoC) findings, we tested LAMPS models maintained in EMS 

media containing either control or combinations of pioglitazone (30 µM) and vorinostat (1.7 µM 

or 5 µM) and monitored the same panel of disease-specific metrics. As shown in Figure 12, while 

albumin secretion profiles showed no significant differences between vehicle and drug treatment 

groups, suggesting that these drug combinations did not result in loss of model functionality 

(Figure 12A), a significant increase in urea nitrogen secretion was observed in both drug 

combination groups compared to control, suggesting increased model metabolic activity (Figure 

12B). In addition, like the LDH profile in Figure 11, there was a significant decrease in LDH 

secretion (Figure 12C) in the 5 µM vorinostat treatment group, suggesting a reduction in disease-

induced cytotoxicity. In contrast to the individual drug testing studies shown in Figure 11, we 

found an effect on the full complement of disease progression markers measured in this study 

when pioglitazone and vorinostat were used in combination, as we observed a significant reduction 

in both lipid accumulation (Figure 12D-E) and stellate cell activation (Figure 12F-G), as well as 

in the production of the pro-fibrotic markers pro-collagen 1a1 and TIMP-1 (Figure 12H-I) and 

inflammatory cytokine production (Figure 12J). 
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Figure 11. Control and predicted drugs reduce different NAFLD disease phenotypes in LAMPS models treated 

with EMS media 

LAMPS models were maintained for 10 days in Early Metabolic Syndrome (EMS) media containing either vehicle 

control, 10 µM obeticholic acid (OCA) and 30 µM Pioglitazone (PGZ) [standard compounds], or vorinostat 

(suberoylanilide hydroxamic acid; SAHA) at 1.7 µM or 5 µM [predicted compounds]. A panel of metrics were 

examined to monitor disease-specific phenotypes. For standard drugs, albumin, blood urea nitrogen, and lactate 

dehydrogenase curves throughout the time course show no significant differences between vehicle and drug treatment 

groups, suggesting no overt model cytotoxicity or loss of function (A-C). At day 10, there is a significant decrease in 

steatosis (D & E; LipidTOXTM intensity) and stellate cell activation (F & G; α-SMA intensity) for both OCA and 

PGZ groups compared to vehicle. Panels D & F display representative 20X Day 10 LipidTOXTM (D) and and -SMA 

(F) images of LAMPS; Scale bar; 50 m. There is no significant change in the secreted levels of the pro-fibrotic 

markers Pro-Col 1a1 (H) TIMP-1 (I) in either treatment group compared to vehicle. For the predicted drug vorinostat 

(SAHA), albumin and blood urea nitrogen curves show no significant differences between vehicle and treatment 

groups (J & K), suggesting that these drug treatments do not result in loss of model functionality; however, a 

significant decrease in LDH secretion (L) at days 8 and 10 in the 5 µM vorinostat treatment group, suggesting 

decreased cytotoxicity. This is further supported by the significant decrease in stellate cell activation (O & P; α-SMA 

intensity), production of the pro-fibrotic markers pro-collagen 1a1 and TIMP-1 (Q & R) and inflammatory cytokine 

production (S) observed in the vorinostat group. In contrast, vorinostat does not reduce lipid accumulation compared 

to vehicle control (M & N), indicating no effect on steatosis. Panels M & O display representative 20X Day 10 

LipidTOXTM (D) and -SMA images of LAMPS under each treatment condition; Scale bar; 50 m. For each control 

and drug treatment group, n = 3 chips were analyzed and plotted  SEM for each assay and statistical significance was 

assessed using a One-Way ANOVA with Dunnett’s test to make comparisons between each drug treatment group and 

the vehicle control (* P< 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). 
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Figure 12. Pioglitazone and vorinostat used in combination results in the reduction of steatosis and stellate cell 

activation as well as the secretion of pro-fibrotic markers and production of inflammatory cytokines in LAMPS 

models treated with EMS media 

LAMPS models were maintained for 10 days in NAFLD disease media containing combinations of pioglitazone (30 

µM) and vorinostat (1.7 µM or 5 µM) or DMSO vehicle control. A panel of metrics were examined to monitor disease-

specific phenotypes under these treatment conditions. While albumin secretion profiles show no significant differences 

between vehicle and drug treatment groups, suggesting that these drug combinations do not result in loss of model 

functionality (A), a significant increase in urea nitrogen secretion is observed in both drug combination groups 

compared to control, suggesting increased model metabolic activity (B). In addition, like the LDH profile in Figure 
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11, there is a significant decrease in LDH secretion (C) in the 5 µM vorinostat treatment group, suggesting a reduction 

in cytotoxicity. Compared to the contrasting effects observed in the individual drug testing studies shown in Figure 

11, we observe an overall decrease in both lipid accumulation (D & E) and stellate cell activation (F & G), as well as 

in the production of the pro-fibrotic markers pro-collagen 1a1 and TIMP-1 (H & I) and inflammatory cytokine 

production (J) when pioglitazone and vorinostat are used in combination. Panels D & F display representative 20X 

Day 10 LipidTOX TM (D) and and -SMA (F) images of LAMPS under each treatment condition; Scale bar; 50 m. 

For each control and drug treatment group, n = 3 chips were analyzed and plotted  SEM for each assay and statistical 

significance was assessed using a One-Way ANOVA with Dunnett’s test to make comparisons between each drug 

treatment group and the vehicle control (* P< 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). 

 

Table 5. Drug binding and cytotoxicity profiles for compounds used in LAMPS studies 

To assess the drug binding capability of the polydimethylsiloxane (PDMS)-containing LAMPS device for compounds 

used in these studies, we used perfusion flow tests and mass spectrometry analysis of efflux collected from LAMPS 

devices at 72 h to determine the overall effective concentration of each compound compared to the starting 

concentration of drug as previously described [110, 111]. The TC50 (Toxic Concentration inducing 50% hepatocyte 

death) was determined in a 5-day hepatocyte cytotoxicity assay (Supplementary Methods).  ND- not determined. 

The TC50 assay was not conducted on Obetacholic acid or Pioglitazone.  The concentration of these compounds was 

based on previous experimentation in the LAMPS model. 

 

Compound Target LogP value 
(PubChem) 

% drug 
recovery at  

72 h 

TC50 (µM)  

Obeticholic Acid 
(OCA) 

FXR 5.1 90% ND 

Pioglitazone 
(PGZ)  

PPARγ 3.9 95% ND 

Vorinostat 
(SAHA) 

HDAC 1.4 86% 29.8 
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3.3.3 Expansion of CMap results using the updated 2020 LINCS database  

During the course of these initial studies the LINCS L1000 database (accessible at 

https://clue.io) was significantly expanded providing an additional 1033 drugs that were annotated 

in DrugBank and accordingly, a more comprehensive set of perturbation instances that also 

encompassed additional cell lines. We took advantage of this larger biological representation by 

incorporating a percentile statistic for defining an overall CMap score for ranking drugs (Figure 

3F-G; 3.2 Methods and [64]). Using this updated database, many drugs were identified ranking 

higher than vorinostat with the 25 highest shown in Table 6. Some of these drugs having canonical 

targets associated with NAFLD are predicted to revert 7 of the 12 cluster-based signatures. For 

example, the NSAID fenoprofen inhibits cyclooxygenase 1 and 2 to modulate prostaglandin 

synthesis and also activates the peroxisome proliferator receptors, alpha and gamma (PPAR/). 

The androgen receptor agonist oxandrolone, also predicted to revert 7 of the 12 signatures, 

promoted hepatic ketogenesis in an observational trial of adult males [118] consistent with 

enhanced fatty acid partitioning from intrahepatic triglycerides towards mitochondrial beta 

oxidation and 4-hydroxybutyrate formation as proposed for the reversal of NAFLD resulting from 

a short-term ketogenic diet [119, 120]. Although several of the ranked drugs (Table 6) were 

structurally steroid-like, considerable structural diversity was evident in the predicted antibiotic 

and oncology drug classes. The cephalosporin, cefotaxime, interacts with the family of organic 

anion transporters (OATs or SLC22) whose expression is significantly altered during NAFLD 

progression [121]. These transporters mediate the hepatic disposition of drugs, xenobiotic 

metabolites and endogenous intermediates and metabolites. Targeting NAFLD associated hepatic 

proteins that have critical roles both in xenobiotic and endobiotic metabolism may be an emerging 

theme ( see Discussion and [122]) that can be extended to nuclear receptor transcription factors as 
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the diverse drugs tetracycline, SN-38, and  the endogenous steroid, pregnanolone, have been 

shown to interact with PXR [123, 124]. In a parallel CMap analysis based on queries derived from 

12 patient subtype signatures (complementary to the set of 12 signatures derived from the 

unsupervised clusters, Table 3; Data files S3-5), 17/25 of the same predicted drugs (Table 6) were 

also identified and enriched in the highest ranked drugs. 

 

 
Table 6. The 25 highest ranked CMap-predicted drugs based on frequency of occurrence across multiple 

NAFLD-associated gene signature queries 

Drugs/small molecules perturbagens identified in more than 1 of the 12 cluster-based gene signature queries were 

prioritized according to the number of occurrences across the 12 queries and termed: Gene signature-query frequency  

(Data File S4-S5). Each signature-based query is indexed s1-12 (see Table 3 and Data file S3 ) and ordered (from 

highest to lowest) according to the relative rank of the drug within each query that the drug was identified (i.e., 

occurrence). Each gene signature-based query is associated with a predominate feature (i.e., disease category) of 

NAFLD (see Table 3; Data File S3, and Methods). The canonical targets derive from DrugBank (v5.1.4) except for 

(PXR) (explained in Results). Distinct from Table S5 CMap scores were calculated as percentile scores (see Methods, 

Results, and [64]) and the 2020 expanded LINCS Database was used as indicated in the Methods and Results. 

*Denotes compounds also found in a parallel top 25 CMap-predicted drug analysis using clinical classification-based 

signature queries (Table 3 and Data File S3).  

 

Drug name (DrugBank ID) 
Gene signature-

query frequency 

Gene signature indices (see Table 3) and 

their disease categorization 
Canonical targets 

eltanolone* (DB12308) 

(pregnanolone) 
7 

s5: Insulin Resistance and Oxidative Stress 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s7: Inflammation 

s3: Inflammation 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s8: Fibrosis 

s1: Insulin Resistance and Oxidative Stress 

(PXR) 
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Drug name (DrugBank ID) 
Gene signature-

query frequency 

Gene signature indices (see Table 3) and 

their disease categorization 
Canonical targets 

fenoprofen* (DB00573) 7 

s5: Insulin Resistance and Oxidative Stress 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s7: Inflammation 

s8: Fibrosis 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s3: Inflammation 

s4: Fibrosis 

PTGS2, PTGS1, 

PPARA, PPARG 

oxandrolone* (DB00621) 7 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s3: Inflammation 

s4: Fibrosis 

s8: Fibrosis 

s1: Insulin Resistance and Oxidative Stress 

s5: Insulin Resistance and Oxidative Stress 

AR 

cefotaxime* (DB00493) 6 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s1: Insulin Resistance and Oxidative Stress 

s7: Inflammation 

s3: Inflammation 

s5: Insulin Resistance and Oxidative Stress 

SLC22A6, 

SLC22A8, 

SLC22A11, 

SLC22A7, 

SLC15A1, ALB, 

SLC15A2 

amorolfine* (DB09056) 5 

s3: Inflammation 

s7: Inflammation 

s8: Fibrosis 

s5: Insulin Resistance and Oxidative Stress 

s6: Cell Stress, Apoptosis and Lipotoxicity 

 

dexamethasone* (DB01234) 5 

s3: Inflammation 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s7: Inflammation 

s12: Fibrosis 

NR3C1, NR0B1, 

ANXA1, NOS2, 

NR1I2 (PXR) 

proxyphylline (DB13449) 5 

s5: Insulin Resistance and Oxidative Stress 

s10: Cell Stress, Apoptosis and Lipotoxicity 

s11: Inflammation 

s12: Fibrosis 

s9: Insulin Resistance and Oxidative Stress 

 

sn-38* (DB05482) 5 

s4: Fibrosis 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s5: Insulin Resistance and Oxidative Stress 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s7: Inflammation 

TOP1, (PXR) 

sulfanitran*  (DB11463) 5 

s5: Insulin Resistance and Oxidative Stress 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s3: Inflammation 

s1: Insulin Resistance and Oxidative Stress 
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Drug name (DrugBank ID) 
Gene signature-

query frequency 

Gene signature indices (see Table 3) and 

their disease categorization 
Canonical targets 

tetracycline*  (DB00759) 4 

s12: Fibrosis 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s8: Fibrosis 

s7: Inflammation 

PRNP, PADI4, 

(PXR) 

7-hydroxystaurosporine* 

(DB01933) 
4 

s8: Fibrosis 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s4: Fibrosis 

PDPK1 

dopamine (DB00988) 4 

s12: Fibrosis 

s9: Insulin Resistance and Oxidative Stress 

s11: Inflammation 

s10: Cell Stress, Apoptosis and Lipotoxicity 

DRD2, DRD1, 

DRD5, DRD3, 

DRD4, SLC6A3, 

DBH, HTR1A, 

HTR7, SLC6A2, 

SLC6A4, HTR3A, 

HTR3B, SOD1, 

SLC18A2 

medrysone* (DB00253) 4 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s5: Insulin Resistance and Oxidative Stress 

s1: Insulin Resistance and Oxidative Stress 

NR3C1 

mestranol* (DB01357) 4 

s2: Cell Stress, Apoptosis and Lipotoxicity 

s6: Cell Stress, Apoptosis and Lipotoxicity 

s4: Fibrosis 

s7: Inflammation 

ESR1 

norethindrone* (DB00717) 4 

s10: Cell Stress, Apoptosis and Lipotoxicity 

s12: Fibrosis 

s9: Insulin Resistance and Oxidative Stress 

s8: Fibrosis 

PGR 

troxerutin* (DB13124) 4 

s5: Insulin Resistance and Oxidative Stress 

s8: Fibrosis 

s7: Inflammation 

s6: Cell Stress, Apoptosis and Lipotoxicity 

 

brequinar* (DB03523) 3 

s7: Inflammation 

s4: Fibrosis 

s3: Inflammation 

DHODH 

bromocriptine (DB01200) 3 

s1: Insulin Resistance and Oxidative Stress 

s11: Inflammation 

s12: Fibrosis 

DRD2, DRD3, 

HTR1D, ADRA2A, 

HTR1A, ADRA2C, 

ADRA2B, HTR2B, 

DRD4, HTR2A, 

HTR1B, HTR2C, 

DRD5, DRD1, 

ADRA1A, ADRA1B, 

ADRA1D, HTR7 

cebranopadol* (DB12830) 3 

s4: Fibrosis 

s7: Inflammation 

s8: Fibrosis 
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Drug name (DrugBank ID) 
Gene signature-

query frequency 

Gene signature indices (see Table 3) and 

their disease categorization 
Canonical targets 

flucloxacillin (DB00301) 3 

s9: Insulin Resistance and Oxidative Stress 

s11: Inflammation 

s2: Cell Stress, Apoptosis and Lipotoxicity 

 

granisetron (DB00889) 3 

s11: Inflammation 

s10: Cell Stress, Apoptosis and Lipotoxicity 

s12: Fibrosis 

HTR3A 

hexestrol (DB07931) 3 

s9: Insulin Resistance and Oxidative Stress 

s10: Cell Stress, Apoptosis and Lipotoxicity 

s11: Inflammation 

AKR1C1, ESR1, 

NR1I2 (PXR), 

NR1I3 

iohexol (DB01362) 3 

s1: Insulin Resistance and Oxidative Stress 

s4: Fibrosis 

s2: Cell Stress, Apoptosis and Lipotoxicity 

 

melphalan* (DB01042) 3 

s3: Inflammation 

s5: Insulin Resistance and Oxidative Stress 

s6: Cell Stress, Apoptosis and Lipotoxicity 

 

oxacillin (DB00713) 3 

s9: Insulin Resistance and Oxidative Stress 

s12: Fibrosis 

s11: Inflammation 

SLC15A1, SLC15A2 
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3.3.4 Network proximity results  

As a complementary approach to prioritizing the 126 drugs from the initial CMap analysis 

(Figure 3G; Tables 4, 6) we constructed a NAFLD subnetwork (Figures 3H, S1; 3.2 Methods) 

and used proximity to this network [108] as an approach to potentially enhance the specificity and 

relevance of the CMap analysis. In essence, this algorithm connects NAFLD-associated gene 

signatures to drug-target profiles and maps the targets of a particular drug to the network protein 

nodes (Figure 3H-J; 3.2 Methods). Drugs with target profiles that most closely overlap with a 

subset of protein nodes in the NAFLD network are prioritized for pharmacological testing in our 

human liver biomimetic MPS experimental models (Figure 3K and 3.2 Methods). The KEGG 

pathway database contains an annotated map of the stage-dependent progression of NAFLD 

(pathway id: hsa04932, [103, 109]). We used this NAFLD progression pathway as an anchor 

extending it with 10 interrelated pathways to generate a NAFLD subnetwork in the context of the 

liver protein-protein interactome (Figures 3H, S1; 3.2 Methods). From the total number of 9,904 

DEGs (FDR p-value < .001) in our three comparisons PLI vs. PN&S, PF vs. PN&S and PF vs. 

PLI, (Data file S2) 234 DEGs mapped to these 11 NAFLD associated pathways and the 

background liver PPI network (Figures 3H, S1; 3.2 Methods). The degrees of the subnetwork 

nodes range from 0 to 64, with 9.7 neighbors on average for the 234 DEGs and ranges from 0 to 

354, with 52.1 neighbors on average for the background liver network (Data file S6). Among the 

top 20 hub proteins (Table 7; Data file S6) were HSP90, MAP kinase 8 (MAPK8), NFΚB 

essential modulator (IKBKG), protein kinase C alpha (PRKCA), caspase 8 (CASP8), signal 

transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 

kinase 7 (MAP3K7), and protein kinase C zeta type (PRKCZ). 
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Among the 126 unique drugs identified by our CMap analysis per se, 45 had targets in the 

liver background network (see 3.2 Methods). These were further evaluated by determining the 

network proximity between their targets and the NAFLD subnetwork (Figure S1; 3.2 Methods) 

[108]. The network proximity measure for each drug was represented by a z-score ranging from -

2.8 to 2.1 (Data file S7; 3.2 Methods). Negative z-scores indicate that the targets of the drug are 

more intrinsic to the disease module than a random set of targets. Therefore, the lower the z-score 

of a predicted drug the more likely it is to modulate the signaling in the NAFLD disease module. 

The 25 highest priority drugs and their known targets are shown in Table 8. Among the highest 

ranked drugs was fenoprofen, also highly ranked by signature frequency (Table 6) bolstering its 

prioritization for future testing. The HSP90 inhibitor, alvespimycin was also highly ranked by 

network proximity, consistent with HSP90 being a critical hub protein in the NAFLD subnetwork 

(Figure S1; Table 8; Data file S6). In addition, a closely related HSP90 inhibitor has been reported 

to modulate the activation of the NLRP3 inflammasome resulting in efficacy in murine models of 

NASH [125]. A hallmark of NAFLD is hepatic calcium dyshomeostasis induced by steatosis that 

further promotes steatosis, insulin resistance and ROS that can be ameliorated in murine NASH 

models by the calcium channel blocker nifedipine [126, 127]. Nifedipine and another calcium 

channel blocker, cinnarizine, were among the drugs ranked higher by network proximity. Two 

statins, fluvastatin and mevastatin were also identified by network proximity, consistent with 

recent meta-analyses [128, 129], suggesting the benefit of statin use in NASH development and 

progression. 
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Table 7. The 20 highest ranked hubs (proteins/targets) by degree in the NAFLD subnetwork. 

The hubs are indicated by gene name and the degree is defined by the number of interactions with proteins encoded 

by other NAFLD DEGs. For comparison, the degree of the hub is also indicated in the context of the background 

human liver protein-protein interactome. This Table was generated using Data file S6 and provides additional detail 

to Figure S1. 

 

Rank Gene name Entrez gene ID NAFLD Subnetwork Degree Liver interactome Degree 

1 HSP90AA1 3320 64 354 

2 FBXO6 26270 40 220 

3 MAPK1 5594 35 192 

4 CDK2 1017 32 342 

5 HSP90AB1 3326 32 213 

6 IKBKG 8517 31 189 

7 TNFRSF1A 7132 30 126 

8 PIK3R1 5295 30 137 

9 STAT3 6774 30 134 

10 MAP3K7 6885 29 122 

11 HSPA5 3309 28 214 

12 MAPK8 5599 27 131 

13 SHC1 6464 27 123 

14 ATF2 1386 27 118 

15 MAPK14 1432 26 154 

16 CASP8 841 26 111 

17 PRKCZ 5590 25 105 

18 PRKCA 5578 25 166 

19 YWHAE 7531 24 162 

20 STUB1 10273 24 144 
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Table 8. Prioritization of CMap-predicted drugs and small-molecule perturbagens based on NAFLD 

subnetwork proximity. 

This table is derived from Data file S7. The common name of the drug/small molecule with the DrugBank ID in 

parenthesis is shown. The Z-scores were calculated as described in the 3.2 Methods and Guney et al.[108]. The targets 

are extracted from DrugBank (v5.1.4), those in red are directly in the NAFLD subnetwork (Figure S1; Table 7, and 

Data file S6). The CMap analysis was performed precisely as described in Table 4. 

 

Rank Drug name Z-score Targets 

1 
isoprenaline (DB01064) 

-2.78 
ADRB1, ADRB2, ADRB3, MAPK1, PIK3R1, 
PIK3R2, PIK3R3, PDE4A, SOD1 

2 fenoprofen (DB00573) -2.61 PTGS2, PTGS1, PPARA, PPARG 

3 streptozotocin (DB00428) -2.47 SLC2A2, MGEA5 

4 palbociclib (DB09073) -2.27 CDK4, CDK6 

5 
7-hydroxystaurosporine (DB01933) 

-2.23 PDPK1 

6 alvespimycin (DB12442) -1.96 HSP90AA1 

7 k-252a (DB02152) -1.44 MET, RNMT, MAP2K1 

8 
adenosine-phosphate (DB00131) 

-1.25 
CREB1, PIM1, PDE4B, PYGL, PRKAB1, 
HINT1, PDE4D, ACSS1, ACSS2, PRKAA1, 
PRKAB2, ADCY1, ACSL1, FBP1, ADK 

9 alfacalcidol (DB01436) -1.22 CYP27B1, VDR, RXRA 

10 

cinnarizine (DB00568) 

-0.77 
DHX8, HRH1, DHX34, CACNA1C, CACNA1D, 
CACNA1F, CACNA1S, CACNA1G, CACNA1H, 
CACNA1I, ENTHD1, DRD2, DRD1, CHRM1 

11 ambrisentan (DB06403) -0.75 EDNRA, EDNRB 

12 hexestrol (DB07931) -0.61 AKR1C1, ESR1, NR1I2, NR1I3 

13 
nifedipine (DB01115) 

-0.55 
CACNA1C, CACNA2D1, CACNB2, CACNA1D, 
CACNA1S, CALM1, KCNA1, CACNA1H, 
NR1I2 

14 mifepristone (DB00834) -0.31 PGR, NR3C1, KLK3, KLKB1, NR1I2 
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Rank Drug name Z-score Targets 

15 fluvastatin (DB01095) -0.26 HMGCR 

16 mevastatin (DB06693) -0.26 HMGCR 

17 cytarabine (DB00987) -0.19 POLB, POLG2 

18 
ephedrine (DB01364) 

0.12 SLC6A2, ADRA1D, ADRA1A, SLC18A2, ACHE 

19 ethinylestradiol (DB00977) 0.14 ESR1, NR1I2, SHBG 

20 tetracycline (DB00759) 0.14 PRNP, PADI4 

21 
fluocinolone (DB00591) 

0.21 
NR3C1, ANXA1, ANXA2, ANXA3, ANXA4, 
ANXA5 

22 indirubin (DB12379) 0.24 CYP1A1, AHR 

23 
dopamine (DB00988) 

0.27 
DRD2, DRD1, DRD5, DRD3, DRD4, SLC6A3, 
DBH, HTR1A, HTR7, SLC6A2, SLC6A4, 
HTR3A, HTR3B, SOD1, SLC18A2 

24 flucytosine (DB01099) 0.28 DNMT1 

25 vemurafenib (DB08881) 0.34 BRAF 
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3.4 Discussion 

Guided by systems-based concepts and building upon the gene expression and pathway 

enrichment analyses, we implemented a QSP approach for defining NAFLD states, predicting 

drugs that target these states and testing the predicted drugs in human clinically relevant liver MPS 

NAFLD models. We defined disease states by first identifying differentially expressed genes for 

each of the pairwise comparisons among either the three unsupervised cluster groupings or among 

the three clinically defined clinical groups associated with disease progression. The differentially 

expressed genes that mapped to differentially enriched pathways were then categorized according 

to one (or more) of four categories of NAFLD pathophysiological processes in which the pathways 

are known to participate. This analysis resulted in two sets of twelve gene expression signatures 

reflecting different states of NAFLD progression. These signatures were then used to query the 

LINCS L1000 database to identify and rank drugs predicted to revert these gene signatures and 

accordingly, normalize their respective corresponding disease states [64, 99]. Among the higher 

CMap-ranked drugs two complementary criteria, frequency of appearance within each set of 12 

signatures or NAFLD subnetwork proximity based on a predicted drug’s known target profile were 

used for further prioritization for experimental testing. 

To test the predicted drugs in a clinically relevant experimental system, we implemented a 

human liver acinus MPS, LAMPS, that recapitulates critical structural and functional features of 

the liver acinus [57, 110].  A large and diverse set of biomarkers and image-based analyses 

measured over time under different media that reflect normal fasting and early and late metabolic 

syndrome conditions, indicated that the human LAMPS also recapitulates critical aspects of 

NAFLD progression (e.g., simple steatosis, lipotoxicity, oxidative stress, insulin resistance, 

lobular inflammation, stellate cell activation and fibrosis) [58, 59]. Two mechanistically distinct 
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drugs, obeticholic acid and pioglitazone, that have shown some clinical benefit for NAFLD, were 

then tested as controls and both exhibited a hepatocellular antisteatotic effect and inhibition of 

stellate cell activation without an appreciable effect on profibrotic markers.  

We then tested the top ranked drug from an initial CMap analysis, the HDAC inhibitor 

vorinostat, predicted to primarily modulate inflammation and fibrosis. Consistent with the NAFLD 

CMap analysis and in contrast to the control drugs obeticholic acid and pioglitazone, vorinostat 

showed significant inhibition of proinflammatory and fibrotic biomarkers without an appreciable 

effect on steatosis. In addition, vorinostat ameliorated disease-induced cytotoxicity. Based on the 

complementary effects exhibited by vorinostat and the control drugs, the combination of vorinostat 

and pioglitazone was tested and demonstrated significant improvement across the full complement 

of NAFLD biomarkers. Altogether, these studies provide initial proof-of-concept for a patient-

derived QSP platform that can infer disease states from gene expression signatures, predict drugs 

and drug combinations that can target these disease states and experimentally test these predictions 

in clinically relevant NAFLD models. 

With the recent expansion of the LINCS L1000 database, we have identified several drugs 

predicted to be more efficacious than vorinostat for future testing and providing mechanistic 

inferences.  Several of these predicted drugs have known interactions with proteins associated with 

NAFLD such as nuclear receptors, and bile and fatty acid transporters. In contrast, others had no 

known interactions with targets associated with NAFLD despite being predicted to reverse many 

of the same signatures. These drugs were either highly selective for a particular target such as 

topoisomerase (e.g., SN-38) or were antibiotics having minimum interactions with human proteins. 

Further analysis suggested a common thread among many of the predicted drugs that involve 

nuclear receptors such as PXR [130] and the related constitutive androstane receptor. PXR is a 
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transcriptional regulator capable of interacting with diverse exogenous and endogenous ligand 

modulators that has evolved in the liver to have xenobiotic/endobiotic metabolic functions in 

addition to functions regulating glucose/lipid metabolism/energy, inflammation, and stellate cell 

activation. Traditional targeted drug discovery approaches have identified FXR and PPAR 

agonists converging on this broader family of nuclear receptors intimately associated with NAFLD 

pathophysiology.  
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4.0 Determine the extent that the experimental LAMPS NAFLD model of disease 

progression recapitulates patient progression at the transcriptome level 

4.1 Introduction 

As discussed in the main introduction, one of the limiting factors in drug discovery has 

been the use of models which are not predictive of response in humans [46, 51]. It is therefore 

critical that the mechanisms driving the phenotype in the experimental model translate to patients. 

This concept is called the “chain of transmissibility” which can be established through disease 

relevant gene expression patterns [54]. We have previously shown that the LAMPS NAFLD 

models are able to phenotypically recapitulate NAFLD [57-59, 102]. However it is important that 

the phenotypes occur through clinically relevant mechanisms [46]. For example, CCL4 treatment 

induces fibrosis in mice, but the pathogenesis is distinct from patients as other features such as 

insulin resistance are absent [131]. 

To further establish the chain of transmissibility between NAFLD patients and the LAMPS 

models, we compared the transcriptomes of the LAMPS NAFLD models to patients with similar 

disease phenotypes. This was done by first training a machine learning model, to differentiate 

between the disease stages using the patient transcriptome data, and then using this machine 

learning model to predict the disease stage of the individual LAMPS NAFLD models. More 

specifically, I used a multinomial logistic regression with elastic net penalization (MLENet) 

model, which have been used in a variety of applications [132-135]. This particular model was 

used because it is a feature selecting classifier, which unbiasedly selected the most biologically 

relevant genes while discarding irrelevant genes. Salvadores et al. [135], performed a study similar 
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to the one in this chapter in which they used an MLENet model to compare cancer cell lines to 

cancer subtypes [135]. 

We then examined the concordance of differentially expressed/enriched pathways and 

genes between the LAMPS and patient pairwise comparisons. This was done so that we could see 

if specific pathways were congruent with patient NAFLD. These results are important for 

determining qualitatively whether specific mechanisms are recapitulated in the LAMPS NAFLD 

models. This is in contrast to mouse models which have little overlap with patients [136]. 

 

4.2 Methods 

4.2.1 Performing RNA-seq on the LAMPS NAFLD models 

Separate LAMPS experiments were carried out as described above and previously from 

our group [58]: LAMPS devices were treated with media mimicking metabolic conditions such as 

normal fasting (NF), early metabolic syndrome (EMS), and late metabolic syndrome (LMS) 

(Figure 3L). The LAMPS experiments were carried out at 3-time points: 4, 7, and 10 days with 

all 3 media conditions (3-4 replicates). Total RNA was extracted from the liver LAMPS chips 

using Qiazol Reagent (Sigma, USA # R4533) and a 1-Bromo-3 chloropropane (BCP) (Sigma, 

USA #B9673) phase separation reagent. Further, the aqueous phase of the samples was adsorbed 

onto Qiagen RNEasy Mini cleanup columns (Qiagen#74204) and subjected to DNAse treatment 

(Qiagen#79254) to avoid DNA contamination. Subsequently, the purified RNA was eluted using 

RNase-free distilled water after washing with 80% ethanol. RNA purity was checked using the 
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Nanophotometer (IMPLEN, USA). RNA degradation and contamination was monitored on 1% 

agarose gels. The integrity of RNA was assessed by RNA Nano 6000 Assay Kitof the Agilent 

2100 bioanalyzer (Agilent Technologies, USA). Samples were required to have a minimum of 200 

ng RNA and RIN value greater than 4.0. 

A total of 1 μg of total RNA was used as input to each sample preparation. Sequencing 

libraries were generated using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA). 

Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. 

Fragmentation was carried out using divalent cations under elevated temperature in NEB Next 

First Strand Synthesis Reaction Buffer (5X). First strand cDNA was synthesized using random 

hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second strand cDNA synthesis 

was subsequently performed using DNA Polymerase I and RNase H. Remaining overhangs were 

converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3’ ends of 

DNA fragments, NEB Next Adaptor with hairpin loop structure were ligated to prepare for 

hybridization. To select cDNA fragments of preferentially 150~200 bp in length, the library 

fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl 

USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37 °C for 15 

min followed by 5 min at 95 °C before PCR. Then PCR was performed with Phusion High-Fidelity 

DNA polymerase, Universal PCR primers and Index (X) Primer. Then, PCR products were 

purified (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 

system. Samples were required to have a cDNA library concentration > 0.5 ng/microL, a single 

qPCR peak at 2nM-30nM, no adapter contaminations or primer dimers, and product size of 350-

520 bp.  
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The clustering of the index-coded samples was performed on a cBot Cluster Generation 

System using PE Cluster Kit cBot-HS (Illumina) according to the manufacturer’s instructions. 

After cluster generation, the library preparations were sequenced on an Illumina platform and 125 

bp/150 bp paired-end reads were generated. 

 

4.2.2 Concordance analysis of differentially enriched pathways in patients and LAMPS  

The raw LAMPS transcriptome data (accessible following the instructions at 

https://github.com/lefeverde/QSPpaper) were processed using the same pipeline as described for 

the patients (Figure 3L). Differentially expressed genes were identified using the standard 

LIMMA-VOOM protocol [78, 79]  in which the genes were fit with a linear model for media 

treatment and timepoint. As we are interested in the treatment effects, time point was treated here 

as confounding variable [137]. We identified differentially expressed genes (Data file S8) for 

LAMPS by performing three pairwise comparisons consisting of EMS vs NF, LMS vs NF, and 

LMS vs EMS, which are meant to be analogous to the patient pairwise comparisons (Lob vs. N&S, 

Fib vs. N&S, and Fib vs. Lob). The phenotypes of NF, EMS, and LMS range from minimal, 

moderate, and pronounced levels of steatosis, inflammation, and fibrosis, respectively [58] (Figure 

14B). Differentially enriched pathways were identified by ranking the genes by t-statistic for each 

pairwise comparison and then performing GSEA [83] using the MSigDB v7.0 C2 KEGG pathways 

[63] for both the LAMPS and patient comparisons (Figures 3L, 17; Data file S9).  

Using this differential enrichment pathway analysis as input, we performed a concordance 

analysis of the LAMPS and matched patient pairwise comparisons (Figures 3L, 16). A pathway 

was considered concordant if it was significantly (FDR p–value < .05) regulated in the same 

https://github.com/lefeverde/QSPpaper
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direction in both the LAMPS and matched patient pairwise comparisons (Figure 16). Conversely, 

discordance indicates that a differentially enriched pathway identified in both comparisons, is 

regulated in opposite directions.  

4.2.3 Comparing LAMPS NAFLD model transcriptomes to patients via multinomial 

logistic regression with elastic net penalization (MLENet) 

We used an MLENet model [138] to compare the LAMPS to patients since this is a 

classifier that performs feature (i.e., gene) selection (Figure 3L; For details see 

https://github.com/lefeverde/QSPpaper). The patient gene expression data (accessible following 

the instructions at https://github.com/lefeverde/QSPpaper) was prepared by first ranking the genes 

by variance and taking the top 7,500 (this is done to reduce overfitting by removing uninformative 

features). The same variance thresholding was applied to the LAMPS expression matrix (see 

https://github.com/lefeverde/QSPpaper). Next genes which were not in both the variance filtered 

LAMPS and patient expression matrixes were removed from both, yielding a set of 4057 genes. 

For the LAMPS gene expression matrix, we used surrogate variable analysis [80, 81] to predict 

and then remove unwanted sources of variation (timepoint, and possible cell ratio differences). 

Both the patient and LAMPS matrixes were standardized (gene-wise) to have zero mean and unit 

variance.   

We used a nested cross-validation approach to ensure that MLENet could successfully 

differentiate between the 4 patient histological classifications (Normal, Steatosis, Lobular 

inflammation, or Fibrosis). To do this, we used the Glmnet package [138] applying the appropriate 

distribution (multinomial) and setting (alpha=.95) that in initial trials enabled optimal performance 

for classifying the LAMPS samples. The nested cross-validation was performed by first generating 

https://github.com/lefeverde/QSPpaper
https://github.com/lefeverde/QSPpaper
https://github.com/lefeverde/QSPpaper
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100 sets of training and test data (Figure 14A). This was done by sampling 70% of the patient 

from each class to create a training subset and then using the remaining 30% for the testing subset 

(Figure 14A). For each of the 100 sets, we trained an MLENet model on the training subset using 

cv.glmnet [138] and then used the testing subset to evaluate the model’s performance by 

calculating the specificity and sensitivity of the 4 patient classes  (Figure 14A). 

After ensuring that that the MLENet approach could accurately classify patients with a 

mean (numbers in parenthesis are standard deviation) specificity of .93 (.03), .83 (.03), .98 (.02), 

.95 (.03) for Normal, Steatosis, Lobular inflammation, and Fibrosis respectively, we trained a final 

model using the 182 patients using the parameters described above (Figures 3L, 14B). The final 

MLENet model selected 71 genes, of which, the majority (80%) had prior association with 

NAFLD in independent studies (usually being differentially expressed in other studies, see Data 

file S10). We used this final MLENet model to classify the LAMPS samples as belonging to one 

of the 4 patient classes (Figure 14B; for details see https://github.com/lefeverde/QSPpaper). 

 

4.3 Results 

4.3.1 LAMPS Data QC and exploratory analyses  

PCA of the LAMPS transcriptome data suggested that no major artifacts are present, and 

that the experimental variables timepoint and media treatment are responsible for the majority of 

the variance (Figure 13). The later time points, (days 7 & 10) are mostly mixed together, 

suggesting that the overall transcriptome differences between these time points is minor compared 

https://github.com/lefeverde/QSPpaper


 76 

to the differences between the later timepoints (days 7 & 10) and the early timepoint (day 4) 

(Figure 13).  

 

 

Figure 13. PCA plot of the LAMPS NAFLD model transcriptomes suggests no technical artifacts are present 

in the data. 

Principal component analysis (PCA) of the log2(CPM) gene expression values show that the experimental variables, 

timepoint and media treatment drive the global transcriptomic variation. Notably, Day 4 is separated from the later 

timepoints (Days 7 & 10). The Day 4 NF and EMS are mixed however this would expected because they are just 

starting to be treated with EMS media.  

4.3.2 MLENet results  

To gain further evidence supporting the clinical relevance of the LAMPS NAFLD model, 

we implemented a machine learning approach based on transcriptomic analysis of the 182 patient 

cohort [61] described in (Figure 3L). We first trained a multinomial logistic regression with elastic 

net penalization model (MLENet) using nested cross-validation to successfully differentiate 

D10
D10

D10
D10

D10

D10
D10

D10

D10

D10

D10

D4

D4
D4

D4

D4

D4

D4

D4 D4D4
D4D4

D7

D7

D7 D7
D7

D7

D7

D7

D7D7

D7

D7

−40

−20

0

20

40

−50 0 50

PC1 (28.65%)

P
C

2
 (

1
4

.6
5

%
)

a a aNF EMS LMS



 77 

among 4 clinical classifications of NAFLD (Figure 14). The final model used 71 genes with 80% 

of these having prior association with NAFLD (Figure 15, Data file S10). Using this patient-based 

model, we then classified the transcriptome of individual LAMPS under three media conditions, 

normal fasting (NF), early metabolic syndrome (EMS), and late metabolic syndrome (LMS) as 

shown in Figures 3L, 14B and 4.2 Methods. At the transcriptome level, progression of NAFLD 

in LAMPS upon media treatment mimics disease progression observed in patients, independently 

corroborating the biomarker and imaging data (Figures 3L, 14B). 

The comparatively low true positive rate for the steatosis class can be attributed to the 

ambiguity of these patients with respect to the other classes, rather than poor performance of the 

of the machine learning model. This can be observed by noting that the “misclassifications” are 

not randomly distributed between the 3 other classes, but follow the expected similarity of patient 

classifications. The majority of the misclassified steatosis patients were classified as normal but 

few as fibrosis. Because the source of this error is biological, improving the accuracy with respect 

to the steatosis class will cause the machine learning model to overfit. Interestingly these results 

are consistent with the clustering analysis in Figure 2 showing the difficulty of distinguishing 

between normal and steatosis solely at the RNA level. 
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Figure 14. Unbiased machine learning model of patient transcriptomic data identifies and predicts congruent 

clinical phenotypes within LAMPS. 

(A) The bootstrapping procedure used to develop and validate the transcriptome-based machine learning model 

(MLENet) capable of differentiating and predicting 4 NAFLD patient classifications (see Methods) (red indicates the 
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clinically defined true positives). The average sensitivity (numbers in parenthesis are standard deviations) are: .66 

(.11), .64 (.12), .77 (.08), .93 (.07); average specificity .93 (.03), .83 (.03), .98 (.02), .95 (.03) for Normal, Steatosis, 

Lob, and Fibrosis respectively. B) The workflow and table of outcomes from implementing MLENet to identify and 

predict congruent NAFLD patient phenotypes from LAMPS transcriptomic analytes generated under normal fasting 

(NF); early metabolic syndrome (EMS); or late metabolic syndrome (LMS) conditions (see Methods). The phenotype 

matching of LAMPS to patients results from extensive parallel biochemical and imaging analyses [58] indicating that 

the three different media conditions drive distinct phenotypes congruent with clinical phenotypes of NAFLD 

progression and are independently consistent with the machine learning approach.  

 

 

Figure 15. Heatmap of the beta coefficients (i.e., weights) of the 71 features selected by MLENet to differentiate 

between the patient classes. 

The values can be interpreted as representing the association with each of the 4 patient classes. Approximately 80% 

of these genes have some prior association with NAFLD (Data file S10).  
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4.3.3 LAMPS Differentially expressed/enriched gene and pathways show statistically 

significant concordance with patients  

The concordance analyses of the genes (Figure 16) and pathways (Figure 17) further 

support the LAMPS “chain of transmissibility”. Some notable concordant pathways which are 

consistently upregulated in NAFLD patients include: Focal adhesion, ECM, and T Cell receptor 

interaction [139]. Oxidative phosphorylation is downregulated in LAMPS and patients[139]. 

There are also several pathways which are concordant between LAMPS and patients, but 

discordant with respect to patients and mouse models. Ribosome is upregulated in LAMPS and 

patients, but downregulated in many mouse models [136]. PPAR signaling [140], Valine, leucine 

and isoleucine degradation [141], Lysine degradation, Starch and sucrose metabolism, and 

Butanoate metabolism were down regulated in LAMPS and patients but notably upregulated in 

NAFLD mouse models.  
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Figure 16. Concordance analysis of the differentially expressed genes in the LAMPS (left circle) and 

phenotypically matched patient pairwise comparisons (right circle).  

A gene was considered concordant if it was significantly expressed (FDR p-value < .05) in the same direction 

(up/down) in the LAMPS and patient comparisons, discordance is when genes are differentially expressed but have 

opposite signs. *FDR p-value < .01 **p-value <= 1.3e-11 (Exact Binomial Test, % is estimated effect size) 

 

 

Figure 17. Concordance analysis of the differentially enriched pathways in the LAMPS (left circle) and 

phenotypically matched patient pairwise comparisons (right circle). 

The pathways were identified using GSEA as described in the Methods for the pairwise comparisons. A pathway was 

considered concordant if it was significantly regulated (FDR p-value < .05) in the same direction (up/down) in the 

LAMPS and patient comparisons, discordance is when pathways are differentially expressed but have opposite signs 
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4.4 Discussion 

With the translational goal in mind of identifying disease modifying therapies, it is 

important to know if these clinical phenotypes observed pre-clinically, arise through those 

mechanisms that occur in patients. To further establish the clinical relevance of LAMPS NAFLD 

model, we implemented a machine learning approach. We trained a transcriptome–based machine 

learning model from the 182 NAFLD cohort representing a full spectrum of disease progression 

subtypes to classify patients with high specificity. We then implemented this patient-based model 

consisting of 71 genes, with 57 of these having an independently determined association with 

NAFLD, to classify the transcriptomes of individual LAMPS models treated under media 

conditions mirroring different stages of disease progression. The congruence between the patient-

derived transcriptome-based classification of individual LAMPS and the diverse panel of NAFLD 

associated biomarker measurements supports the clinical relevance of the LAMPS as a NAFLD 

model. The results from this Aim have given us confidence that our model is clinically relevant, 

and so we will expand the experimental testing of the predicted compounds. 
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5.0 General discussion  

 

5.1 Conclusion  

This project demonstrates how a comprehensive and unbiased approach to drug discovery 

(as guided by QSP) and harnessing the power of biomimetic human MPS can be used to identify 

drugs for NAFLD and other complex diseases. In essence, the systems-based platform described 

here can inform therapeutic strategies that are inherently more pleiotropic than traditional 

approaches and thus has the potential to address the complexity of transcriptional dysregulation 

intrinsic to diseases such as NAFLD [142]. The finding that this can be achieved by repurposing 

approved drugs suggests that acceptable therapeutic indices could result by selectively modulating 

disease states. Additionally, the identification of pathways involved could also lead to identifying 

novel targets for drug discovery. In conjunction with the advances in patient-derived iPSC 

technology [143] and in situ methods for RNA, metabolomic, and proteomic analyses, we 

anticipate the QSP platform described in this study will become a mainstay for a personalized 

approach towards developing effective NAFLD therapeutic strategies. 
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5.2 Future directions 

Studies are currently being carried out by Mark T. Meidel to test more of the predicted 

drugs. He has generated preliminary results suggesting that SN-38 and Sulfanitran have some 

efficacy in ameliorating NAFLD. Both drugs appear effective in reducing steatosis while SN-38 

can also reduce fibrosis, which was predicted by the CMap analysis. Further work is being done 

to determine these drugs effect’s on inflammatory and stress readouts. This is further confirmation 

of the approach presented here. Future studies will test more of the predicted compounds and 

successful compounds will be used as mechanistic probes. Optimal drugs and combinations that 

show great promise will initiate a clinical trial. 

The approach outlined in this dissertation can be used as a basis for future work. First, it 

provides a way of rationally selecting drug combinations which normalize complementary disease 

features. This was demonstrated experimentally using the combination of pioglitazone and 

vorinostat, which normalized the full set of NAFLD biomarkers. Second, extending the integrative 

QSP approach used here can pave the way for creating patient “digital twins”. This will be done 

by combining deep phenotyping of patients with omics to allow for an unbiased, holistic picture 

of disease states. In parallel, microphysiology experimental models using patient-derived iPSC 

cells are being developed to experimentally account for heterogeneous genomic and disease 

backgrounds. While this can be directly used for personalized medicine purposes, it also allows 

for the potential of combining patient clinical twins combined with patient biomimetic twins (i.e., 

MPS of specific patient cells) to predict and test effect of drugs on specific patient cohorts. The 

QSP approach demonstrated in this project can be readily applied for other diseases in which the 

mechanisms are poorly recapitulated in animals (e.g., Asthma).  
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Appendix 

Data files and Supplementary materials  

The individual legends for the supplemental tables, data files, and figures (available for 

download at: http://d-scholarship.pitt.edu/44129/) are in the subsequent pages. The raw data for 

this project can be found at: http://d-scholarship.pitt.edu/id/eprint/44130 

 

  

http://d-scholarship.pitt.edu/44129/
http://d-scholarship.pitt.edu/id/eprint/44130
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Figure S1. NAFLD associated protein interactome (link to file). 

 

A subnetwork of the human liver protein interactome involving NAFLD associated 

protein-protein interactions. The indicated nodes represent those proteins encoded by the DEGs 

among the pairwise comparisons for the three clusters defined in Figure 5. The degrees of these 

nodes are shown in Data file S6 and the 20 hubs with the highest degrees are shown in Table 7.  

  

http://d-scholarship.pitt.edu/44129/11/Figure_S6_NAFLD_subnetwork.html
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Table S1. The differentially enriched pathways across 7 NAFLD categories for each 

pairwise cluster and clinical classification comparison (Link to excel file).  

Data file S1 was used to create these tables. The excel file consists of 6 sheets: PLI vs. 

PN&S, PF vs. PN&S, PF vs. PLI, Lob vs N&S, Fib vs N&S, and Fib vs Lob comparisons. The 

columns of the tables are as follows: 

• KEGG Pathway name and ID 

• KEGG pathway group 

• KEGG pathway subgroup 

• NAFLD categorization of KEGG pathway (see Methods) 

o C1: Insulin resistance and oxidative stress 

o C2: cell stress, apoptosis and lipotoxicity 

o C3: Inflammation 

o C4: Fibrosis 

o C5: Disease related pathways 

o C6: Other associated pathways 

o C7: No established relationship 

• log2 Fold change: estimate of the log2-fold-change of the comparison 

• FDR corrected p-value: False discovery rate  

• PMIDs: The PMIDs for the references which support the NAFLD categorization  

 

  

http://d-scholarship.pitt.edu/44129/12/Table_S3_NAFLD_pathway_category_details.xlsx
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Data file S1. Differentially enriched pathways for each pairwise cluster and clinical 

classification comparison (Link to csv file).  

These results were used to create Table S1, the gene signatures (Table 3; Data file S3). 

See Methods for details. The columns of this file are as follows: 

• comparison: The pairwise comparison 

• pathway_name:  

• id: KEGG pathway ID 

• KEGG pathway group 

• KEGG pathway subgroup 

• nafld_categories: Denotes the involvement of the pathway in NAFLD pathophysiology 

(see Methods).  

o C1: Insulin resistance and oxidative stress 

o C2: cell stress, apoptosis and lipotoxicity 

o C3: Inflammation 

o C4: Fibrosis 

o C5: Disease related pathways 

o C6: Other associated pathways 

o C7: No established relationship 

• logFC: estimate of the log2-fold-change of the comparison (see limma documentation) 

• CI.L: LogFC 95% confidence interval lower limit (see limma documentation) 

• CI.R: LogFC 95% confidence interval upper limit  (see limma documentation) 

• AveExpr: average log2-expression across all (see limma documentation) 

• t: moderated t-statistic (see limma documentation and Smyth [144])  

• P.Value: raw p-value (see limma documentation) 

• adj.P.Val: FDR corrected p-value (see limma documentation) 

• B: log-odds that the gene is differentially expressed (see limma documentation) 

• pmids: The PMIDs for the references which support the NAFLD categorization  

  

http://d-scholarship.pitt.edu/44129/2/Data_file_S1_Differentially_enriched_pathways.csv
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
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Data file S2. DEGs resulting for each pairwise cluster and clinical classification 

comparisons  (Link to csv file).  

 

These results were used in the creation of gene signatures (Table 3; Data file S3) and 

NAFLD subnetwork ( Figure 16, Table 7; Data file S6). The columns of this file are as follows: 

• comparison: The pairwise comparison 

• gene_symbol: Common gene name  

• Entrez gene ID 

• Ensembl gene ID 

• logFC: estimate of the log2-fold-change of the comparison (see limma documentation) 

• CI.L: LogFC 95% confidence interval lower limit (see limma documentation) 

• CI.R: LogFC 95% confidence interval upper limit  (see limma documentation) 

• AveExpr: average log2-expression across all samples (see limma documentation) 

• t: moderated t-statistic (see limma documentation and Smyth [144])  

• P.Value: raw p-value (see limma documentation) 

• adj.P.Val: FDR corrected p-value (see limma documentation) 

• B: log-odds that the gene is differentially expressed (see limma documentation) 

• kegg_pathway_names: The names of the KEGG pathways that the gene is a member of 

(if applicable, NA otherwise) 

• kegg_pathway_ids: The pathway ids the KEGG pathways that the gene is a member of (if 

applicable, NA otherwise) 

  

http://d-scholarship.pitt.edu/44129/3/Data_file_S2_DEG_details.csv
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
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Data file S3. Gene signatures used for CMap analysis (Link to csv file). 

 

The data from Data files S1-S2 were used to create this file (see Methods). It was used for 

CMap drug prediction (Tables 4 & 5; Data file S4-S5, see Methods for details on the 

methodology). The columns are as follows: 

• gene_sig_idx: The gene signature index (see Table 3 and Data file S3) 

• comparison: The pairwise comparison 

• nafld_pathway_category: The NAFLD category of differentially enriched pathways that 

was used to create the gene signature (see Methods), The values are defined as follows: 

o C1: Insulin resistance and oxidative stress 

o C2: cell stress, apoptosis and lipotoxicity 

o C3: Inflammation 

o C4: Fibrosis 

• up-regulated_gene_names: List of the upregulated genes (using common gene name) for 

the signature  

• up-regulated_entrez_ids: List of the upregulated genes (using entrez gene id) for the 

signature  

• down-regulated_gene_names: List of the down-regulated genes (using common gene 

name) for the signature  

• down-regulated_entrez_ids: List of the down-regulated genes (using entrez gene id) for 

the signature  

 

 

  

http://d-scholarship.pitt.edu/44129/4/Data_file_S3_Gene_signatures.csv
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Data file S4. CMAP scores  of small molecules with a DrugBank ID for the 24 queries 

described in the Methods (Link to csv file).  

These results were used to create Table 4 & 5 (see Methods for details ). columns are as 

follows: 

• gene_sig_idx: The gene signature index (see Table 3 and Data file S3) 

• comparison: The pairwise comparison 

• nafld_pathway_category: The NAFLD category of differentially enriched pathways that 

was used to create the gene signature (see Methods), The values are defined as follows: 

o C1: Insulin resistance and oxidative stress 

o C2: cell stress, apoptosis and lipotoxicity 

o C3: Inflammation 

o C4: Fibrosis 

• sig_id: The L100 perturbation instance signature id (see the GEO CMap LINCS user 

guide  for more information) 

• lincs_db: The database (2017, 2020, or both) from which the perturbation instance 

originates 

• pert_id: The Broad’s internal drug/small molecule ID (see the GEO CMap LINCS user 

guide  for more information) 

• pert_iname: The Broad’s drug/small molecule common name (see the GEO CMap 

LINCS user guide  for more information) 

• drugbank_id: DrugBrank’s drug/small molecule ID 

• targets: The drug/small molecule targets from DrugBank v5.1.4 

• cmap_score: The CMap score (see Methods and [64, 104]) 

• p_value: P-value calculated by permutation testing (see Chen et al[105]) 

• fdr_p-value: False discovery rate corrected p-value 

 

  

http://d-scholarship.pitt.edu/44129/13/Data_file_S4_All_drugs.csv
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
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Data file S5. List of top 20 CMap predictions from both the 2017 & 2020 LINCS 

databases and both  ranking methods (“Best score” and “Percentile score”) from 

the 24 signatures (link to file).  

 

These results were created from Data file S4 and were used to create Table 4 and Table 

5. The columns are as follows:  

• gene_sig_idx: The gene signature index (see Table 3 and Data file S3) 

• comparison: The pairwise comparison 

• nafld_pathway_category: The NAFLD category of differentially enriched pathways that 

was used to create the gene signature (see Methods), The values are defined as follows: 

o C1: Insulin resistance and oxidative stress 

o C2: cell stress, apoptosis and lipotoxicity 

o C3: Inflammation 

o C4: Fibrosis 

• lincs_db: The database (2017 either 2020) from which the perturbation instance 

originates 

• pert_id: The Broad’s internal drug/small molecule ID (see the GEO CMap LINCS user 

guide  for more information) 

• pert_iname: The Broad’s drug/small molecule common name (see the GEO CMap 

LINCS user guide  for more information) 

• drugbank_id: DrugBrank’s drug/small molecule ID 

• summary_stat: Which compound-centric statistic used to rank the compounds ( either 

best_score or prct_67th_score, see Methods) 

• drug_rank: Relative rank of the compound prediction within the gene signature 

• pert_sum_score: The summary score used to rank the compound (see Methods) 

 

  

http://d-scholarship.pitt.edu/44129/5/Data_file_S5_CMap_frequency_prioritized_compounds.csv
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.l6bq0r1aih50
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Data file S6. Degree of the nodes in the NAFLD subnetwork (Link to csv file).  

 

These results are discussed in the 3.3 Results of the main text and supports Table 7. The 

columns are as follows: 

• gene_symbol: The common gene name  

• gene_description  

• Entrez_gene_id 

• degree_liver: The number of connections this protein has to other nodes in the human 

liver interactome 

• degree_nafld_DEGs: The number of connections the encoded protein has with other 

DEG encoded nodes in the NAFLD associated network 

 

  

http://d-scholarship.pitt.edu/44129/6/Data_file_S6_Node_degree.csv
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Data file S7. Network proximity determined Z-scores for the highest ranking CMap-

predicted drugs with targets mapping to the NAFLD subnetwork (Link to csv file).  

 

These results were used for Table 8. The columns are as follows: 

• drug_name: Common name of the drug/small molecule  

• drugbank_id: DrugBank ID of the drug/small molecule  

• z: Z-score of the normalized distance of drug subnetwork to disease associated 

subnetwork (See Methods, [108]) 

• d: Shortest distance of drug subnetwork to disease associated subnetwork (See 3.2 

Methods, [108]) 

• mean: Average distance of a reference network to disease associated subnetwork (See  

3.2 Methods, [108]) 

• sd: Standard deviation of a reference network to disease associated subnetwork (See 3.2 

Methods, [108]) 

 

http://d-scholarship.pitt.edu/44129/7/Data_file_S7_network_proximity_results.csv
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Data file S8. DEGs resulting from the LAMPS pairwise comparisons (EMS vs NF, 

LMS vs NF, LMS vs EMS) (Link to csv file).  

 

These results were used to create Data file S9. The columns of this file are as follows: 

• comparison: The pairwise comparison 

• gene_symbol: Common gene name  

• Entrez gene ID 

• Ensembl gene ID 

• logFC: estimate of the log2-fold-change of the comparison (see limma documentation) 

• CI.L: LogFC 95% confidence interval lower limit (see limma documentation) 

• CI.R: LogFC 95% confidence interval upper limit  (see limma documentation) 

• AveExpr: average log2-expression across all samples (see limma documentation) 

• t: moderated t-statistic (see limma documentation and Smyth [144])  

• P.Value: raw p-value (see limma documentation) 

• adj.P.Val: FDR corrected p-value (see limma documentation) 

• B: log-odds that the gene is differentially expressed (see limma documentation) 

• kegg_pathway_names: The names of the KEGG pathways that the gene is a member of 

(if applicable, NA otherwise) 

• kegg_pathway_ids: The pathway ids the KEGG pathways that the gene is a member of (if 

applicable, NA otherwise) 

http://d-scholarship.pitt.edu/44129/8/Data_file_S8_LAMPS_DEGs.csv
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html


 110 

Data file S9. Differentially enriched pathways the LAMPS pairwise comparisons 

(EMS vs NF, LMS vs NF, LMS vs EMS) (Link to csv file).  

 

These results along with Data file S1 were used for Figure 16. See 4.2 Methods for details. 

The columns of this file are as follows: 

• comparison: The pairwise comparison 

• pathway_name:  

• id: KEGG pathway ID 

• KEGG pathway group 

• KEGG pathway subgroup 

• nafld_categories: Denotes the involvement of the pathway in NAFLD pathophysiology 

(see 4.2 Methods).  

o C1: Insulin resistance and oxidative stress 

o C2: cell stress, apoptosis and lipotoxicity 

o C3: Inflammation 

o C4: Fibrosis 

o C5: Disease related pathways 

o C6: Other associated pathways 

o C7: No established relationship 

• NES: normalized enrichment score (see clusterProfiler documentation) 

• pvalue: uncorrected p-value from permutation testing (see clusterProfiler documentation) 

• p.adjust: FDR corrected p-values (see clusterProfiler documentation) 

http://d-scholarship.pitt.edu/44129/9/Data_file_S9_LAMPS_pathways.csv
https://yulab-smu.top/biomedical-knowledge-mining-book/index.html
https://yulab-smu.top/biomedical-knowledge-mining-book/index.html
https://yulab-smu.top/biomedical-knowledge-mining-book/index.html
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Data file S10. The 71 features selected by the final MLENet model  (Link to csv file).  

 

These results were used to supplement Figure 14. See 4.2 Methods for details. The 

columns of this file are as follows: 

• class: the patient clinical classification (Normal, Steatosis, Lobular inflammation, or 

Fibrosis) 

• ensembl_gene_id 

• gene_name 

• Entrez gene ID 

• estimate: the feature coefficients (i.e., association with each class) estimated by MLENet 

(see glmnet documentation)  

• prior_nafld_association: The PMIDs for papers references associating the feature with 

NAFLD or comparative toxicogeneomics database disease association  

 

 

 

 

 

 

 

 

 

 

  

http://d-scholarship.pitt.edu/44129/10/Data_file_S10_MLENet_features_n71.csv
https://glmnet.stanford.edu/index.html
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Supplementary Methods  

 

Cell sources and culture  

A single lot of selected cryopreserved primary human hepatocytes (lot# HU1960) with 

>90% viability and re-plating efficiency post-thaw were purchased from ThermoFisher. Human 

liver sinusoidal endothelial cells (LSECs) were purchased from LifeNet Health. The human 

monoblast cell line, THP-1, used to generate Kupffer cells, was purchased from ATCC and LX-2 

human stellate cells were purchased from EMD Millipore. LSECs were cultured in endothelial cell 

basal medium-2 (EBM-2) supplemented with the endothelial growth medium-2 (EGM-2) 

supplement pack (Lonza). THP-1 cells were cultured in suspension in RPMI-1640 medium 

(ThermoFisher) supplemented with 10% fetal bovine serum (FBS; ThermoFisher), 100 μg/mL 

penicillin streptomycin (ThermoFisher), and 2 mM L-glutamine (ThermoFisher). THP-1 cells 

were differentiated into mature macrophages by treatment with 200 ηg/mL phorbol myristate 

acetate (Sigma Aldrich) for 48 h. LX-2 cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM; ThermoFisher) supplemented with 2% FBS and 100 μg/mL penicillin streptomycin. 

 

Normal fasting and Early Metabolic Syndrome (EMS) media.  
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We recently developed MPS culture media conditions to create disease progression from 

Normal Fasting (NF) to early metabolic syndrome (EMS) over a two-week period in the LAMPS 

platform [58] that recapitulates key features of the NAFLD disease process. We developed the 

media around Williams E media that did not have glucose, insulin, glucagon, oleic acid, palmitic 

acid and then adjusted these components to reflect the pathophysiological conditions.  

 

Normal Fasting (NF) Media:  NF media was prepared in a custom formulation of  

William’s E medium without glucose (ThermoFisher) supplemented with 5.5 mM glucose (Sigma 

Millipore), 1% FBS (Corning), 0.125 g/mL bovine serum albumin (Sigma), 0.625 mg/mL  human 

transferrin, 0.625 µg/mL selenous acid, 0.535 mg/mL linoleic acid (Sigma), 100 nM 

dexamethasone (ThermoFisher), 2 mM glutamax, 15 mM HEPES (ThermoFisher), 100 U/100 

µg/mL pen/ strep (Hyclone Labs), 10 pM insulin (ThermoFisher) and 100 pM glucagon (Sigma). 

 

EMS Media: Early metabolic syndrome (EMS) medium was derived from the NF media 

formulation with the following modifications: 11.5 mM glucose, 10 nM insulin, 30 pM glucagon, 

200 μM sodium oleate (Sigma) and 100 μM palmitate (Cayman Chemical Company).  

 

LAMPS model assembly and maintenance workflow.  

Day -3: 

(a) Mixed matrix coating of MPS devices: The interior of the devices was dried under vacuum 

prior to protein coating with 100 μg/mL bovine fibronectin (Sigma Millipore) and 150 μg/mL 

rat-tail collagen, type 1(Corning), in PBS for 1 h at room temperature. The 

collagen/fibronectin solution was then removed, and devices were filled with PBS and stored 

at 4°C until use. 
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(b) Differentiation of THP-1 cells: THP-1 cells were treated with 200 ηg/mL phorbol myristate 

acetate (PMA; Sigma Millipore) to facilitate their differentiation into mature macrophages 

for seeding into LAMPS models on Day -1 (48 h treatment). 

 

Day -2:  

(a) Hepatocyte seeding: Cryopreserved hepatocytes were thawed following the manufacturer’s 

recommendations. Hepatocytes were pelleted at 100 x g for 10 minutes using Cryopreserved 

Hepatocyte Recovery Medium (CHRM; ThermoFisher), and then resuspended at 2.75 x 106 

hepatocytes/mL in hepatocyte plating media (HPM). Hepatocyte cell solution was then 

injected into the interstitial compartment of the device for overnight incubation at 37°C to 

allow for cell adherence and spreading.  

 

Day -1:  

(a) LECM coating of MPS devices: HPM was removed from the device and a solution of 400 

μg/ml of porcine liver extracellular matrix prepared in NF media (LECM; a kind gift from 

Dr. Stephen Badylak’s laboratory at the McGowan Institute for Regenerative Medicine, 

University of Pittsburgh) was added and incubated for 3 h at 37°C to create a thin matrix 

layer on top of the hepatocytes to mimic the Space of Disse.  

 

(b) LSEC and THP-1 seeding: During the LECM incubation, LSEC and THP-1 cell suspensions 

are prepared in NF media for seeding into LAMPS. LSECs were thawed and a cell 

suspension was prepared at a concentration of 3.0 x 106 cells/mL. Differentiated THP-1 cells 

were prepared at a concentration of 1.6 x 106 cells/mL. The individual cell solutions were 

combined at a 1:1 ratio to yield final cell concentrations of 1.5 x 106 (LSEC) and 0.8 x 106 

(THP-1) cells/mL. LECM solution was removed by gentle aspiration using a 1 mL syringe 

with a blunt needle (Fisher Scientific) and the LSEC/THP-1 cell solution was injected into 

each device and incubated for 2 h at 37°C.  

 

(c) Collagen/LX-2 overlay: LX-2 cells were prepared at a concentration of 0.2 x 106 cells/mL 

and were suspended in 1 mL of a 2.5 mg/mL solution of pH 7.2 collagen I/10 mM 

HEPES/HBSS and injected into devices. The devices were then inverted for 1 h at 37°C 
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during collagen polymerization to ensure an initial spatial separation of hepatocytes and LX-

2 stellate cells. The devices were then re-inverted and incubated overnight at 37°C. The 

collagen overlay functions to maintain hepatocyte morphology and functionality over 

extended culture time.  

 

Day 0: 

(a) Establishment of flow: The next day, flow was initiated using pressure driven pumps (KD 

Scientific) to perfuse media in glass syringes (Hamilton) at a flow rate of 5 (3-6% O2) 

μL/hour to achieve a target oxygen concentration of 3-6% O2, corresponding to zone 3 

(hepatic venule) oxygen levels, as previously described [57]. Devices were then 

maintained for 10 days at this flow rate.  

(b) Drug testing in LAMPS. For drug studies, EMS media was prepared as described above 

and supplemented with the indicated concentration of drug (0.1% DMSO v/v final 

concentration). EMS media containing drug was added at Day 0 during the initiation of 

flow for the duration of the experimental time course.  The followingdrug treatments 

were used in these studies: 10 M obeticholic acid (Selleck Chemicals), 30 M 

pioglitazone (Selleck Chemicals), and 1.7 M or 5 M vorinostat (Selleck Chemicals). 

For drug combination studies, 30 M pioglitrazone was combined with either 1.7 M or 

5 M vorinostat for the duration of the experimental time course.  

 

Drug binding/recovery in PDMS-containing LAMPS device. To assess the drug binding 

capability of the polydimethylsiloxane (PDMS)-containing LAMPS device for compounds used 

in these studies, we used perfusion flow tests and mass spectrometry analysis of efflux collected 

from LAMPS devices at 72 h to determine the overall effective concentration of each compound 

compared to the starting concentration of drug as previously described [110, 111]. Briefly, Nortis 

devices were coated for 1h at RT with 150 µg/mL collagen I and 100 µg/mL fibronectin solution 

in PBS. Following this, the collagen/fibronection solution was removed and devices were washed 

2x with sterile PBS. A 2.5 mg/mL collagen I overlay solution was prepared in perfusion media 
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and injected into each device where they were incubated at 37°C o/n. The next day, drug solutions 

were prepared at the desired concentrations in EMS media for each compound and loaded into 10 

mL glass syringes. A flow rate of 15 µl/h was established, and efflux media was collected at 24, 

48, and 72 h of flow and the amount of compound at the 72 h time point was compared to the 

amount of drug present from the starting solution. Mass spectrometry was then performed by the 

University of Pittsburgh Small Molecule Biomarker Core where data was collected with a Waters 

Acquity UPLC (Milford, MA) C18, 1.7 µm, 2.1 X 100 mm reversed-phase column.   Separation 

was carried out in an acetonitrile: water (0.1% formic acid) gradient and detection and quantitation 

were achieved in the positive ion mode with a TSQ Quantum Ultra Mass Spectrometer interfaced 

via an electrospray ionization (ESI) probe.  Recovery was calculated as the ratio of Efflux Area 

Under Curve/Influx Area Under Curve.  

 

5 Day Cytotoxicity Assay. Primary human hepatocytes (Thermo Fisher lot Hu1981) were 

thawed and resuspended in Hepatocyte Recovery Media (Thermo Fisher CM4000).   Viable 

hepatocytes were collected by centrifugation (100g X 11 minutes).  The supernate was removed 

by aspiration and the hepatocyte pellet resuspended in Hepatocyte Plating Media, counted and then 

14,000 hepatocytes/well (560,000 hepatocytes/ml) were seeded at into a collagen 1 pre-coated 384 

well microtiter plate (Becton Dickinson).  The cells were allowed overnight attachment and 

spreading.  The plate was decanted before 25 µl of 1.5% gelling collagen 1/NF media solution 

added to each well.  The gel polymerized 1 hour (37o C, 5% CO2) before the addition of 25 µl 

microtiter plate with NF media ± 2X concentration of compound.  The plate was incubated 5 days 

with a single replenishment of 25 µl NF media ± 1X concentration of compound added to each 

well at 48 hr.  Cytotoxicity was assessed by propidium iodide uptake assay.  A 4X solution of 
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propidium iodide (PI) and Hoechst nuclear dye was prepared in NF media at 8 µg/ml Hoechst and 

20 µg/ml PI.  25 µl of the PI/Hoechst solution was added to each well for 1 hour.  Fluorescent 

images were collected for Hoechst (405/488 ex/em) and PI (488/530 ex/em) using a High Content 

Screening (HCS) instrument.  The compartment analysis algorithm software of the HCS was used 

to quantitate the intensity of PI co-localized within the nucleus and calculate the % of PI positive 

hepatocytes.   

 

Secretome measurements. Efflux media from LAMPS devices was collected on days 

2,4,6,8, and 10 to measure albumin, blood urea nitrogen, and lactate dehydrogenase. The enzyme 

linked immunosorbent assay (ELISA) for albumin was purchased from Bethyl Laboratories. The 

CytoTox 96 for lactate dehydrogenase (LDH) and the urea nitrogen test were purchased from 

Promega and Stanbio Laboratory, respectively. Collagen 1A1 (R&D Systems and TIMP-1 ELISA 

measurements were made from day 10 efflux only. All efflux measurements were obtained as 

described previously [57, 110, 111, 145]. 

 

Steatosis measurements. Steatosis measurements were performed after completion of the 

experimental time course (Day 10) in LAMPS models as previously described [57, 58]. Cells were 

fixed with 4% paraformaldehyde in PBS for 30 min then washed twice with PBS for 10 min. 

Following fixation, HCS LipidTOX Deep Red Neutral Lipid Stain (ThermoFisher) was diluted 

1:500 in PBS and perfused into devices and incubated overnight at 4°C. The following day, devices 

were washed twice with PBS and then incubated for 15 min with 5 µg/mL Hoechst (ThermoFisher) 

to label nuclei. Images were collected with a Nikon 20x (0.45 NA) objective using the IN Cell 

Analyzer 6000 (GE Healthcare) in confocal mode using the 405 nm (Hoechst) and 640 nm 
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(LipidTOX) lasers and associated filter sets with the aperture set to 1 airy unit and were acquired 

with a sCMOS 5.5 Mp camera (2560 x 2160 pixels). Images for each media treatment were 

acquired using the same exposure time (100 ms) and laser power (80%) settings to ensure that 

intensity values were ~50-75% of the total dynamic range of the InCell system (65,000 bits).  

Additionally, imaging parameters were set using the EMS media vehicle control because this 

condition served as the positive control, demonstrating the most LipidTOX staining. Z-stacks 

totaling 100 µm distance (5 µm spacing between slices) were obtained and then imported into FIJI 

(ImageJ) to generate maximum intensity projections. Lipid droplets were identified using FIJI by 

interactive selection of a threshold (default method) using uniform intensity minimum 

(background) and intensity maximum values across the image sets. Watershed segmentation and 

the analyze particles function was then used to measure the total lipid intensity in each device. 

Intensity values were then normalized on a per cell basis by counting the total number of Hoechst-

positive nuclei per field using the cell counting function in FIJI. A total of 10 images per device 

were collected from n =3 devices for each experimental condition. Statistical significance of 

LipidTOX labeling was assessed using a One-Way ANOVA with Tukey’s multiple comparisons 

test to make comparisons between each control and drug treatment group, where p-values less than 

0.05 were considered statistically significant. 

 

Stellate cell activation. Staining for LX-2 cell expression of α-smooth muscle actin (α-

SMA) was performed after completion of the experimental time course (Day 10) in LAMPS 

models as previously described [58]. Cells were fixed with 4% paraformaldehyde in PBS for 30 

min, washed twice with PBS for 10 min, then were permeabilized for 30 min. with 0.1% TX-100 

in PBS and blocked for an additional 1 h in PBS containing 1% BSA. Mouse monoclonal anti-α-
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SMA antibody (Sigma Millipore) was diluted 1:100 in PBS containing 0.5% BSA and was 

incubated overnight at 4°C. The primary antibody was rinsed 3 times for 15 min. with PBS before 

the cells were then incubated for 1 h with Alexa FluorÒ Goat anti-mouse 555 (ThermoFisher) 

secondary antibody diluted 1:250 in PBS. The secondary antibody solution was removed, and cells 

were incubated for 15 min with PBS containing 5 µg/mL Hoechst and then washed 2 more times 

for 10 minutes with PBS. Images were collected with a Nikon 20x (0.45 NA) objective using the 

IN Cell Analyzer 6000 (GE Healthcare) in confocal mode using the 405 nm (Hoechst) and 561 nm 

(α-SMA) lasers and associated filter sets with the aperture set to 1 airy unit. Images for each media 

treatment were acquired using the same exposure time and laser power settings. Z-stacks totaling 

100 µm distance (5 µm spacing between slices) were obtained and then imported into FIJI to 

generate maximum intensity projections. Image analysis of LX-2 α-SMA expression was 

quantified using an interactive selection of threshold (Default mode) to mask α-SMA-specific 

fluorescence. The analyze particles function was then used with a size exclusion setting of 100 

µm2 to exclude non-specific staining to measure the integrated intensity of α-SMA expression. A 

total of 10 images per device were collected from n = 3 devices for each experimental condition. 

Statistical significance of α-SMA intensity was assessed using a One-Way ANOVA with Tukey’s 

multiple comparisons test test to make comparisons between each control and drug treatment 

group, where p-values less than 0.05 were considered statistically significant.  

 

Multiplex immunoassays. Day 10 efflux media from LAMPS devices was collected for 

each drug treatment group and the levels of various human cytokines (IL-1b, IL-6, IL-8, TNF-a, 

and MCP-1) were assayed using a custom version (5-plex) of the Human XL Cytokine Discovery 

Panel (R&D systems). Assays were completed according to the manufacturer’s instructions at The 
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University of Pittsburgh Cancer Proteomics Facility Luminex® Core Laboratory. All multiplex 

panels were run at the same time to avoid run-to-run and operator error variability utilizing the 

xMAP platform licensed by Luminex®. All the cytokine target profiling experiments were 

performed from efflux obtained from n = 3 devices for each drug treatment condition. Statistical 

significance of cytokine secretion between treatment groups was assessed using a One-Way 

ANOVA with Dunnett’s test to make comparisons between each drug treatment group and the 

vehicle control, where p values less than 0.05 were considered statistically significant.  
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