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Abstract 

Applying Quantitative Systems Pharmacology Methods to Study Psychosis in Alzheimer’s 
Disease 

 
Peihao Fan, PhD 

 
University of Pittsburgh, 2023 

 
 
 
 

Psychosis is surprisingly common in Alzheimer disease (AD) and can emerge as a part of 

the neurodegenerative disease process in advance of dementia during the mild cognitive 

impairment stage or even earlier. Approximately 50% of Alzheimer’s disease patients will 

develop psychotic symptoms, e.g. hallucination and delusions, and these patients will experience 

more severe cognitive decline compared with those without psychosis. However, no medication 

has been approved by the Food and Drug Administration for treating psychosis in AD (AD+P) 

and second-generation antipsychotics are widely used in clinical practice with modest efficacy 

and elevated adverse events rate. It is critical to explore and propose more effective and safer 

treatment options to treat AD+P. Some important advances in recent years provided us 

opportunities in connecting and comparing the neuropsychiatric symptoms (NPS) in AD with 

other neurological disorders which will greatly help us understand its mechanisms and further 

develop appropriate treatments for AD+P. In this thesis, the journey of understanding AD+P 

starts at comparing it with the similar psychotic symptoms in schizophrenia. We found that the 

similar psychotic symptoms in AD+P and schizophrenia are supported by distinct genetic 

associations and pathways which also provided a possible explanation for the decreased efficacy 

and increased adverse events rate of antipsychotics in AD+P. Multiple approaches, classic and 

innovative, were applied to identify critical risk factors and possible protective roles in the 

advancement of AD+P. With the information we have acquired about AD+P from the previous 



 v 

studies, state-of-the-art quantitative systems pharmacology (QSP) approaches are applied to 

explore and propose alternative treatment options for AD+P. We found out that antidepressants 

showed a possible beneficial effect against AD+P and they exert their effect through different 

pathways with antipsychotics which allowed them to form a synergetic effect that may improve 

therapeutic efficacy or lower the risk of side effects. 
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1.0 Introduction 

1.1 Overview of Psychosis in AD 

Alzheimer’s Disease (AD) is the most common neurodegenerative disease affecting 

around 50 million people worldwide[1], and the presence of AD is responsible for a significant 

decrease in the quality of life[2]. It is estimated that the cost of AD is $604 billion worldwide per 

year and will triple by Year 2050[3].  

The accumulation of extracellular amyloid beta plaques and intraneuronal neurofibrillary 

tangles are hallmark features of the disease[4]. For several decades, AD patients have been 

classified according to several clinical measurement scales that primarily determine cognitive 

impairment status in patients. AD patients are staged into three main clinical categories that 

include pre-clinical AD, mild cognitive impairment (MCI), and overt AD[5]. However, the 

current classification system does not consider important disease prognostic factors, such as 

environmental factors and the presence of coexisting disease conditions. The presence of 

coexisting disease conditions may ultimately have a detrimental impact on AD patients' disease 

management. Understanding the biological mechanisms leading to comorbid diseases in AD may 

provide novel routes for therapeutic interventions.  

Psychosis, defined by the occurrence of delusions and/or hallucinations, is observed as a 

common complication of AD. Approximately 50% of patients are likely to suffer from psychotic 

symptoms after the onset of AD (AD with psychosis, or AD+P)[6] and this number can go as 

high as 97%[7]. AD+P patients have more severe cognitive impairments and a quicker cognitive 

decline than AD patients without psychosis (AD-P)[8]. AD+P is also associated with higher rates 
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of co-occurring agitation, aggression, depression, mortality, functional impairment, and 

increased caregiver burden compared with AD-P[8]. These non-cognitive symptoms are creating 

burdens not only for people with AD or other dementias but also for their caregivers, and are 

associated with poor outcomes in terms of function, quality of life, disease course, mortality, and 

economic cost in clinical circumstances[9; 10]. 

Psychotic symptoms may present in many neurodegenerative disorders (e.g., Lewy body 

dementia) as well as other psychiatric disorders (bipolar disorder  with psychosis). However, the 

prototypical psychotic disorder is schizophrenia, and the efficacy of the vast majority of 

antipsychotic medications for treating psychosis was established in treating this disorder. This is 

why we are currently using medications indicated for schizophrenia to treat AD+P [11; 12; 13].  

1.1.1 Alzheimer’s Disease, Cognitive Decline and Psychotic Symptoms 

1.1.1.1 Alzheimer’s Disease  

Alzheimer’s disease (AD) is a neurodegenerative disorder that impairs mental ability 

development and interrupts neurocognitive function. It is declared as a “global public health 

priority” by the WHO because there is no permanent remedy for AD[14]. So far, there are only 

well-stated concepts and hypotheses about the cause and drug targets of AD.  

AD is the primary cause of dementia in people over the age of 60. Around 50–75% of 

people with dementia have Alzheimer’s[15]. As per the statistical data collected worldwide, 

females are more prone to AD than males, and the risk increases even more with age[16]. People 

with certain fundamental conditions, like cardiovascular diseases, hypertension, and diabetes, are 

also at higher risk of developing AD later[17]. Other neurodegenerative disorders with AD like 

symptoms include frontotemporal dementia and lewy body dementia; inflammatory, metabolic, 
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and infectious conditions; vascular cognitive impairment; and a series of causes that include 

obstructive sleep apnea and transient epileptic amnesia[18].  

Around 0.1% of the cases of AD are due to genetic inheritance, and people affected by it 

normally show symptoms between the ages of 30 and 50 years[19]. The genes encoding 

Presenillins 1 and 2, and Amyloid Precursor protein (APP) played an important role in the 

development of AD because mutation in any of these genes leads to APP’s incorrect cleavage, 

forming Aβ42 (Amyloid β protein, 40 residues) instead of Aβ40[20]. The accumulation and 

aggregation of Aβ42 forms senile plaques, which is one of the major reasons behind AD. In 

addition, the presence of ε4 allele of Apo-lipoprotein E (APOE ε4) in heterozygotes and 

homozygotes increases the risk by 3% and 15%, respectively[19]. ABCA7, BIN1, CASS4, 

CD2AP, CELF1, CLU, CR1, EPHA1, FERMT2, HLA-DRB5, INPP5D, MEF2C, MS4A, 

NME8, PICALM, PTK2B, SlC24A4, SORL1, and ZCWPW1, are the 19 genes that apparently 

affect the risk, as reported by Genome Wide Association Studies (GWAS)[21].  

1.1.1.2 Psychosis and cognitive decline 

Psychosis, which is characterized by the presence of delusions and/or hallucinations, is a 

prevalent consequence of AD. Psychotic symptoms, which consist of hallucinations and 

delusions, are among the most clinically relevant NPS and are associated with hospitalization or 

institutionalization, cognitive and functional impairment, accelerated cognitive decline, and 

mortality, as well as caregiver distress[22; 23; 24; 25].  

Moreover, psychotic symptoms in AD patients are correlated with disease severity and 

progression. Delusions and hallucinations in Alzheimer's disease are associated with different 

patient characteristics: in a memory clinic sample of people with probable Alzheimer's disease, 

delusions were associated with older age, depression, and aggression, whereas hallucinations 
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were associated with more severe dementia and a longer duration of illness.[26]. A more recent 

study focusing on National Alzheimer’s Coordinating Center (NACC) data reported that 

delusions and hallucinations also showed differential associations with cognition and function, 

with hallucinations conferring greater cognitive and functional deficits than delusions[27].  

Depending on the underlying dementia diagnosis, the relative incidence of psychotic 

symptoms varies. Psychosis is most prevalent in dementia with Lewy bodies (DLB; 75% 

prevalence), followed by dementia due to Parkinson disease (PD; 50% prevalence), vascular 

dementia (15%), and frontotemporal dementia (10%)[28]. The presence of psychosis, paired with 

clinicians’ preexisting assumptions about psychosis and dementia, might impact a dementia 

diagnosis. In another study employing NACC datasets that covered 961 AD patients, the 

presence of psychosis in persons with AD was related to a fivefold greater chance of 

misinterpreting the illness as DLB[29], demonstrating that clinicians tend to favor a DLB 

diagnosis in the context of psychosis. 

Furthermore, psychosis can co-occur with other neurological conditions, including 

agitation[30] and affective symptoms[31]. In 2015, the International Psychogeriatric Association 

(IPA) guidelines revised agitation in cognitive disorders and established three fundamental 

dimensions of agitation: verbal aggressiveness, physical aggression, and excessive motor 

activity. The classification of the domains can be used to improve the accuracy of diagnosis and 

develop new treatment goals. Nonetheless, there is scant evidence linking these agitation 

categories to psychotic symptoms. As for affective symptoms, researches have determined that 

psychotic and affective symptoms in dementia and MCI patients are caused by two distinct sets 

of variables, indicating that these symptoms are caused by different processes[31; 32]. 
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A significant obstacle in the treatment of AD+P is the difficulty in diagnosing psychotic 

symptoms, especially in cognitively challenged individuals. Multiple sub-phenotypes of AD 

have been observed, including delusions of theft, delusions of infidelity or abandonment, beliefs 

that deceased individuals are alive, general suspiciousness unrelated to theft (such as being 

plotted against, sent to jail, or evicted), and elaborate systematized delusions[33]. It is difficult 

for clinicians to differentiate between delusions and amnesia or confabulation when the 

necessary diagnostic information is contained in patients' memories that are affected by cognitive 

impairment[34]. Compared to delusions, hallucinations might be more transitory or fragmented 

in patients[33]. Visual and aural hallucinations are the most often reported subtypes of 

hallucinations. To be precise, auditory hallucinations can vary from sounds to whole dialogues, 

while visual hallucinations typically contain people or animals but can also depict faces or 

deceased persons, colors, inanimate objects, or unformed images[35]. 

1.1.1.3 Diagnosis of AD+P 

The best-known diagnosis criteria for psychosis in AD were published in 2000 by Jeste 

and Finkel, who described delusions and hallucinations (auditory or visual) in the context of 

clinically diagnosed AD[36]. Multiple instruments were reported for the measurement of AD+P 

including BEHAVE-AD[37], NPI-NH[38], CERAD-BRSD[39] and CUSPAD[40]. While most 

of them take symptomatic rather than syndromic approaches, they yield generally concordant 

results in assessing psychotics symptoms in AD patients with few disagreements. However, the 

different instruments do show minor differences in detecting symptoms[41] and changes in 

response to treatment[42].  

Multiple studies suggest that psychosis can emerge during the prodromal or mild 

cognitive impairment (MCI) phase of the neurodegenerative disease continuum[43], and these 
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psychotic symptoms would not be included as part of the disease according to the original Jeste 

and Finkel criteria[36]. A revised version of the criteria, known as the new International 

Psychogeriatric Association (IPA) criteria, has been produced to address the issue. In this revised 

edition, the diagnosis of psychosis in major and moderate neurocognitive disorders now includes 

MCI as well as other dementia aetiologies, indicating that our knowledge of psychosis in 

dementia is shifting from a symptomatic to a syndromic perspective[44].  

1.1.2 Mechanism Insights of AD+P 

1.1.2.1 Genomics of AD+P 

Major breakthroughs have been made in recent years in exploring and identifying 

genomic associations for AD+P. Early familial studies estimated the heritability of AD psychosis 

at 61%[45] emphasized the importance of genomic studies in understanding the underlying 

mechanisms of the development and progression of AD+P. A major international genome-wide 

association study (GWAS) in >12,000 individuals with AD, which was published in 2021, was 

the first to use single nucleotide polymorphisms (SNPs) to calculate the heritability of psychosis 

in AD[46]. The study explained around 18% to 31% of the heritability based on the different 

methods used which is close to the level in major depressive disorder (MDD) and schizophrenia. 

The results of the GWAS also identified that ENPP6 and SUMF1 are significantly associated 

with AD+P. A marginal but statistically significant association between AD+P and the 

apolipoprotein E ε4 (APOE ε4) allele was reported in this study.  

Moreover, the first high-quality GWAS results for AD+P presented a unique opportunity 

to investigate the connections and common mechanisms across diagnostic borders. It enabled the 

identification of genetic links between AD+P and various neurological illnesses, including 
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depression, schizophrenia, bipolar disorder, and others. As anticipated, significant relationships 

were found between AD+P and "Years of Schooling" (and almost so with the associated trait, 

"Intelligence") and "Depressive Symptoms"[46]. The connections between AD + P and the two 

additional neurodegenerative conditions, amyotrophic lateral sclerosis (ALS) and Parkinson 

disease, were equally non-significant. Interestingly, AD+P had a substantial positive connection 

with "depressive symptoms", indicating that similar genetic traits were detected in the two 

illnesses, hence providing unique insights and directions for the development of treatments for 

AD+P. 

1.1.2.2 Neuroimaging of AD+P 

Latest neuroimaging studies have identified several brain regions that are associated with 

AD+P. Delusions have been associated with left frontal atrophy, and misidentification delusions 

have been associated with hippocampal atrophy[47]. Delusions have also been associated with 

default mode network disruption, including parietal and cerebellar atrophy, but no default mode 

network signal was associated with a composite psychosis score[48]. Hallucinations have been 

associated with supramarginal atrophy within the parietal lobe[49]. 

The analysis of the NACC cohort reported an accelerated atrophy within the frontal and 

temporal lobes in individuals with delusions[50] while other studies in independent cohorts have 

reported links with hippocampal and parahippocampal atrophy[51; 52]. An increased 

frontotemporal atrophy and neocortical hypometabolism in people with AD psychosis were 

reported by structural and functional imaging studies examining delusions[34; 53]. Another 

study of Alzheimer’s Disease Neuroimaging Initiative (ADNI) data found that cortical thinning 

in the supramarginal area of the parietal lobe was a risk factor for hallucinations. However, the 
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fact that only a small minority of people experience hallucinations without delusions might have 

been a confounding factor in this study[54]. 

In another longitudinal study conducted by Fischer et al. using ADNI data[55],  an 

increased rate of grey matter atrophy in the cerebellum and parietal lobe was reported prior to the 

onset of delusions. It is surprising that frontal areas showed little connection with these 

symptoms, but the authors did highlight the possible linkages between posterior cortical atrophy 

and frontal circuits and the default mode network (DMN). In recent years, the DMN has been the 

focus of several functional imaging studies for multiple literatures stated that it is impaired in 

AD and other disorders characterized by psychosis[28]. However, mixed opinions have been 

claimed regarding to the role of DMN in AD+P because the results have been inconsistent[56; 

57; 58]. 

The majority of research documenting regional perfusion and metabolic abnormalities in 

AD+P was undertaken between the 1990s and the beginning of the 2010s, and delusions are the 

primary focus of these cases[34; 53]. Right-sided frontal and temporal cortices exhibited 

hypometabolism and hypoperfusion, according to the findings of these researches. However, it is 

unclear whether the observed pattern is the result of an increase in perfusion and/or metabolism 

in the left hemisphere or a decrease in the right. To date, only one SPECT study[59] and two 18F-

FDG PET studies[60; 61] of AD+P specifically have been conducted since the early 2010s. Both 

PET investigations found right orbitofrontal hypometabolism, with one focusing on delusions 

and the other on hallucinations. As with the atrophy study mentioned above, a substantial 

proportion of participants in the 18F-FDG PET hallucination study would be expected to have 

concomitant delusions, so the similar findings could reflect the presence of delusions among 

individuals with hallucinations. Therefore, the findings of these studies do not necessarily reflect 
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the common mechanisms behind delusions and hallucinations. In the newer SPECT study, 

regional hypoperfusion was largely confined to the right hemisphere (inferior temporal gyrus, 

parahippocampal cortex, posterior insula and amygdala) but was observed bilaterally in the 

temporal poles[59].  

We are only aware of two nuclear imaging investigations that examined psychosis-related 

receptor alterations. One study involving just nine AD patients revealed no link between 5-

hydroxytryptamine 2A receptor (5-HT2A) binding and NPI psychosis scores[62]. Due to the tiny 

sample size, however, no meaningful inferences can be drawn. The other study, which evaluated 

dopamine receptors in 23 AD patients, found an increase in the number of striatal D2/3 receptors 

in psychotic individuals[63]. 

1.1.2.3 Neurobiology of AD+P 

Substantial evidence suggests that AD+P is associated with an increased burden of 

neurofibrillary tangle pathology and hyperphosphorylated tau and further reflects the dysfunction 

of the frontal area[34; 64; 65; 66; 67]. In addition, the tau hyperphosphorylation was observed 

only in female subjects rather in male subjects[68; 69] which is in accordance with the fact that a 

higher risk of AD+P are reported in women compared to men[8]. To conclude that tau pathology 

is related to AD+P, additional evidence is required; hence, no PET tracer investigation has been 

undertaken on AD+P patients. A 2019 longitudinal study employing the tau PET tracer 11C-

PBB3 in patients with traumatic brain injury (TBI) related higher levels of binding in white 

matter to more severe late-onset psychosis[70]. This is the closest evidence we could find. This 

discovery laid the groundwork for a putative connection between tau and AD+P. 

Neocortical synaptic disruption is another key factor that is closely related to cognitive 

decline and AD. The inhibition of long-term potentiation and consequent dendritic spine loss are 
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believed to be the underlying mechanisms along with the accumulation of amyloid-β (Aβ)[28; 

71]. The study reported that the ratio of Aβ42:Aβ40 is increased and the levels of the guanine 

nucleotide exchange factor kalirin were reduced[71], which can mediate long-term potentiation 

in prefrontal cortex tissue. Generally speaking, the increased levels of synaptic proteins involved 

in vesicular function have been shown to confer resilience to psychosis[67]. In addition, the loss 

of zinc transporter 3 can further impair the synaptic function and is also associated with 

psychosis, tau pathology, and cognitive impairment[72; 73]. 

PED imaging also demonstrated an increase in D3 receptor density in the nucleus 

accumbens and a decrease in dopaminergic neurotransmission in the amygdala in persons with 

AD psychosis[63; 74]. Based on these findings, the use of amisulpride, a D2/D3 receptor 

antagonist, was promoted in treating AD+P for its potential in optimizing the therapeutic effects 

while minimizing extrapyramidal side effects[75]. In the meanwhile, one of our prior 

investigations also reported a positive effect of vitamin D in AD+P and provided a possible 

explanation for this effect[76]. The impairment of serotonergic neurotransmission in psychotic 

symptoms in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) is a common 

finding in postmortem studies[34]. With reduced 5-HT levels in the ventral temporal cortex and 

prosubiculum, as well as decreased neuron counts in the dorsal raphe nucleus and area CA1 of 

the hippocampus. On the basis of these findings, Pimavanserin, a second-generation 

antipsychotic that is a highly selective 5-HT2A inverse agonist, is touted as a possible therapy 

option[77]. In addition to dopaminergic and serotonergic neurotransmissions, the cholinergic 

system could be a key therapeutic target for AD+P. In AD patients with hallucinations, 

acetylcholinesterase activity was observed to be diminished. These results show that cholinergic 

denervation is an additional mechanism contributing to psychosis in AD [78]. 
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Since DLB is reported to have a higher prevalence of psychotic symptoms than AD, the 

topic of whether Lewy body disease contributes to the risk of psychosis in AD was naturally 

raised. Although Lewy body pathology appears to increase the incidence of psychosis in 

Alzheimer's disease, it does not explain all cases. Some of the main studies described before 

controlled adequately for -synuclein pathology[71], and it has been established that AD+P can 

occur in the absence of concomitant Lewy body pathology[79]. Moreover, cardiovascular 

comorbidities are also linked to AD+P. Two studies, both utilizing NACC datasets, found that 

subcortical arteriosclerotic leukoencephalopathy and severe arteriosclerosis were psychosis risk 

factors[80; 81]. The reported connections between leukoencephalopathy and AD+P were 

reinforced by a 12-year longitudinal research that included small vessel disease and cerebral 

amyloid angiopathy[82]. Several observational studies also supported the association between 

vascular risk factors and AD+P[83; 84]. 

 

Figure 1.1 Schematic figure of mechanisms of AD+P 
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In conclusion, psychosis can manifest at any stage of cognitive impairment in elderly 

populations. Several elements, such as medical and environmental difficulties, concomitant 

agitation, or affective syndromes, must be addressed prior to the psychotic symptoms causing a 

diagnosis to be made. In AD+P, delusions and hallucinations frequently overlap despite having 

distinct features and natural histories. There are genetic markers connected with Alzheimer's 

disease, psychosis, and other neuropsychiatric illnesses. Default mode network (DMN) 

dysfunction, cortical atrophy, cholinergic processes, hyperphosphorylated tau, and white matter 

pathology are imaging and biomarker correlates. 

1.1.3 Current Treatment and Management for AD+P 

There are currently no medications approved by the Food and Drug Administration 

(FDA) for AD+P specifically. SGAs, such as Aripiprazole, Olanzapine, Quetiapine, and 

Risperidone, which were developed for the treatment of schizophrenia (SCZ), have been widely 

used and recommended by geriatric experts in the management of psychosis in AD[11; 12; 13]. 

Use of SGAs to treat AD+P is greatly limited by their increased rates of adverse events[85; 86], 

prompting the FDA to issue a "black-box" warning in 2005 to highlight the increased mortality 

for patients with dementia who are treated with SGAs[87]. Additionally, antipsychotics have 

demonstrated modest efficacy in treating psychosis, aggression, and agitation in individuals with 

dementia[88; 89; 90]. Therefore, safer and more efficacious medications for AD+P are needed 

for managing psychotic symptoms in AD. 
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1.1.3.1 Non-Pharmacological and Pharmacological Interventions 

1.1.3.1.1  Non-Pharmacological Approaches 

Due to the dearth of evidence for pharmaceutical therapies for psychotic symptoms in 

dementia patients, non-pharmacological techniques are chosen as an initial approach prior to 

medication or concurrently with medication, if not limited by immediate safety concerns[91]. 

The DICE technique (explain, investigate, develop, and evaluate) highlights the fundamentals of 

managing behavioral changes in dementia[92]. First, measurement-based care is used to describe 

the NPS or behavior concerns. To investigate the causes of NPS, it is necessary to conduct a 

medical and environmental evaluation to rule out medical issues (such as hearing loss, pain, or 

infection), drug side effects (such as anticholinergics or opiates), and environmental factors (such 

as noise, light, or disorientation) as potential contributors. Without these examinations, it is 

impossible to confidently diagnose syndromal psychosis as part of a neurodegenerative illness. 

Consequently, a plan is developed to avoid and address behavioral difficulties. The management 

plan is then assessed and changed as necessary[93]. Two studies, sequential drug treatment 

algorithm[94] and WHELD[95] (Improving Wellbeing and Health for People with Dementia), 

investigated combinations of non-pharmacological and pharmacological therapies for the 

management of neuropsychiatric symptoms (NPS) in dementia patients. 

To present, only one study has particularly evaluated non-pharmacological therapies for 

the treatment of psychosis in dementia patients[96]. In this study, a wide variety of non-

pharmacological interventions, including music therapy, orientation training, art–cognitive 

activities, and physical activities, were applied and was shown to reduce psychotic symptoms 

(NPI score −2.36, P = 0.046) in the 104 senior men with dementia living in two veterans’ homes. 

Non-pharmaceutical therapies were able to alleviate dementia patients' delusions, hallucinations, 
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and agitation, according to the study. In summary, these findings supported the promise of non-

pharmacological therapies to treat psychosis in Alzheimer's disease, while additional trials with 

larger and more diverse populations are required.  

In clinical settings, non-pharmacological techniques for the treatment of AD+P are a 

best-practice supplement to the use of pharmaceuticals when psychotic symptoms are regarded 

as the patient's primary nonpsychotic symptom[97]. In general, we urge that caregivers avoid 

questioning or arguing with a person about their delusions or attempting to "give them reality," 

as such interaction can frequently intensify a patient's sense of fear or paranoia and increase the 

burden of care[98]. In addition, before prescribing medications, it is important to ascertain 

whether a psychotic symptom is truly distressing[99]. For instance, some hallucinations are 

fleeting and innocuous (such as seeing a tiny child playing), and if there is no interruption to 

function, a risk–benefit analysis may conclude that treatment is unnecessary. 

1.1.3.1.2 Current Pharmacological Interventions: Antipsychotics 

Historically, antipsychotic medications have been the mainstay of therapies for AD+P 

and other NPS, as they have been used to treat psychosis and agitation in individuals with other 

psychiatric diseases. Heated discussions were made around their usage in AD+P for their modest 

efficacy[88; 89; 90; 100] and significant increased adverse effect[85; 86; 101]. The use of 

antipsychotics in AD patients was also associated with an increase in mortality risk[102]. Among 

the wide collection of Antipsychotics, Aripiprazole and Risperidone were the most supported 

antipsychotics with a better efficacy and safety profile according to conclusions drawn from 

meta-analytical studies[100; 103; 104]. A recent network meta-analysis concluded that 

aripiprazole is the most effective and safe atypical antipsychotic for treating behavioral and 

psychological symptoms of dementia. This conclusion bolstered these reports.  



 17 

Recent pharmacokinetic–pharmacodynamic (PKPD) investigations have shown that by 

modifying the dosing strategies of antipsychotics in AD patients, a balance between efficacy and 

safety can be optimized. This proposition is especially important given that no alternative 

medications for the treatment of AD+P have been approved. These results imply that dose 

adjustments based on age and Mini-Mental State Examination (MMSE) scores, which are 

hypothesized to be necessary due to the breakdown of the blood-brain barrier[105], could pave 

the road to a safer and more precise use of antipsychotics. As we discussed in the mechanism 

section above, the use of Amisulpride in late-life psychosis is also under scrutiny because it can 

reach higher than predicted occupancy of striatal D2/D3 receptors at a relatively low dose[75]. 

This strategy was effectively used in a clinical trial involving patients with very late-onset 

schizophrenia-like psychosis [106]. 

Based on the direct link between cardiovascular disease and the mechanisms of action of 

atypical antipsychotics, as revealed by transcriptome data[107], several researches have proposed 

that increased screening for cardiovascular history should guide prescribing methods. In the 

meantime, safety issues and the rise of adverse drug reactions (ADRs) need to be carefully 

considered in controlling NPS in AD+P. In the USA, no drugs are licensed for psychosis and 

agitation in dementia and in the European Union and Canada, only risperidone is indicated[28]. 

Severe dangers, including cerebrovascular accidents, extrapyramidal symptoms, falls, and 

fatality, were described. Though SGAs (also known as atypical antipsychotics) exhibit better 

safety profiles than typical antipsychotics[93; 102], a meta-analysis still found that atypical 

antipsychotics carried a 3.5% risk of mortality, representing a 54% relative increase in risk 

compared with the 2.3% risk for placebo[108]. 
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1.1.3.1.3 Novel Treatment Options 

In 2016, the Food and Drug Administration (FDA) approved Pimavanserin, the first-in-

class atypical antipsychotic medication, for the treatment of Parkinson disease psychosis 

(PDP)[109]. This prompted the investigation of its potential for treating NPS in AD patients. 

Pimavanserin is a highly selective 5-HT2A inverse agonist with no dopaminergic, histaminergic, 

or muscarinic binding, according to its mechanism of action[110]. Some efforts have been made 

to systematically evaluate the safety, tolerability, and efficacy of Pimavanserin versus placebo in 

Alzheimer's disease patients, and it has been found to have moderate efficacy (effect size of 

0.32) in reducing psychosis scores on the nursing home version of the NPI[77]. Despite the fact 

that favorable effects were demonstrated at 6 weeks, no substantial advantage was identified at 

12 weeks when comparing Pimavanserin to placebo. Another randomized, double-blind, 

placebo-controlled experiment indicated a much larger therapeutic impact of Pimavanserin, with 

an effect size of 0.73 and a reduction in psychosis score of 30% in 88.9% of the Pimavanserin-

treated group compared to 43.3% of the placebo group[111]. In another study focusing on the 

relapse of psychosis, 62% of open-label-treated subjects responded to the Pimavanserin 

treatment, and the psychosis relapse rate was 2.8-fold lower in the drug-treated group than in the 

placebo group (P = 0.0023)[112].  

Pimavanserin had no adverse effect on parkinsonism, psychosis, or stroke risk, but is 

linked with moderate QTc prolongation (~9 ms), as well as disorientation, edema, falls, and an 

unsteady gait. Similar to other antipsychotic medications, Pimavanserin got a black box warning 

for mortality risk when it was authorized by the FDA for PD psychosis, with a necessity for post-

marketing surveillance. No substantial excess deaths were found in the arms treated with 

Pimavanserin (five deaths versus four deaths in the placebo arms across the two trials)[77]. The 
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FDA has assessed that there are no new safety concerns in light of the fact that mortality rates for 

PD patients are consistent with expectations [113]and that there are no new safety issues. 

Nevertheless, a long-term, open-label safety investigation in persons with PD indicates that 

concomitant use of an atypical antipsychotic could have safety implications[114]. There was a 

fourfold increase in mortality and a threefold rise in major treatment-emergent adverse events 

among 66 people who received additional antipsychotics, suggesting that polypharmacy should 

be approached with extreme caution. 

Other medications have proven efficacy for the treatment of psychosis in Alzheimer's 

disease that are compatible with the processes discussed above. In the CitAD research, 

citalopram was effective in reducing agitation, and a secondary analysis suggested a reduction in 

the frequency or severity of hallucinations and delusions[115]. However, QTc prolongation, 

primarily caused by the R-citalopram enantiomer, was also a concern with this drug, and the 

ongoing S-CitAD study[116] is implementing escitalopram — the safer S-enatiomer of the 

racemic mixture that comprises citalopram — for the treatment of AD agitation, with psychosis 

as a secondary outcome measure. Intriguingly, findings published in 2020 indicated a drop in 

CSF fluid Aβ42 levels in cognitively healthy older persons treated with escitalopram as 

compared to placebo[117], paving the path for the use of this medication in dementia trials. 

In the 12-week Lit-AD[118] randomized trial, low-dose lithium was assessed for efficacy 

in treating agitation in AD. Although the experiment failed to reach its primary objective of a 

decrease in agitation and aggression scores on the NPI, the secondary objective of an 

improvement in clinical global impression was achieved. Importantly, there was no association 

between lithium medication and cognitive impairment. In exploratory studies, lithium was linked 

with a substantial reduction in delusions relative to placebo (P = 0.04, Cohen's d = 0.76), but not 
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hallucinations (P = 0.56, Cohen's d = –0.21). Despite limits in sample size and study power, the 

distinction between delusions and hallucinations is intriguing, particularly in light of the vastly 

different effect sizes. These results show that hallucinations and delusions have distinct 

etiologies and may need to be viewed as distinct entities. There is currently no unanimity on how 

lithium exerts its neuroprotective and therapeutic effects. Nevertheless, glycogen synthase kinase 

3B (which modulates apoptosis and neuroplasticity), neurotrophic factors (such as brain-derived 

neurotrophic factor), neurotransmitter regulation (glutamate, dopamine, GABA, acetylcholine, 

and glycine), and antioxidant effects have all been implicated. These processes, particularly the 

neurotransmitter effects, are compatible with what is known about psychosis in AD. Lithium 

merits additional research in a trial using AD psychotic symptoms as the key outcome measure 

in light of the substantial findings to date, particularly with respect to delusions. Such an 

investigation could potentially generate hypotheses for the subsequent investigation of novel 

systems as therapy targets. 

Cholinesterase inhibitors are well-established for the treatment of cognitive symptoms in 

Alzheimer's disease (AD), but the therapeutic effect — if any — of these drugs in persons with 

AD psychosis is unknown, and no randomized controlled trials have been done. Nonetheless, 

according to an investigation of the Swedish Dementia Registry, the use of cholinesterase 

inhibitors was associated with a decreased probability of initiating antipsychotic therapy in the 

AD subgroup[119]. Although this result does not indicate a treatment effect, these findings are 

consistent with the cholinergic pathways identified in AD psychosis and may represent an 

alternative to costly psychiatric medicines for the treatment of NPS. Once more, prospective 

trials are necessary. 
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Researchers are beginning to use the correlation between vitamin D insufficiency and 

neurodegenerative illnesses to investigate the potential role of vitamin D deficiency in AD 

psychosis. Vitamin D use was shown to be more prevalent among patients with MCI or AD who 

did not have psychosis and was also related to a delay in the onset of psychosis[120]. As an 

inexpensive and risk-free therapeutic, vitamin D merits additional research in this population. 

1.1.4 Conclusion and Future Perspectives 

Over the past decade, several significant advances have been made in the clinical 

assessment and therapy of psychosis and other NPS in dementia. These achievements include the 

acknowledgment of the high risk involved with antipsychotic medications, resulting in a 

decrease in prescriptions[121]; a greater emphasis on non-pharmacological interventions (such as 

DICE or WHELD); exploration of strategies to optimize existing drugs, such as aripiprazole, 

risperidone, amisulpride, and escitalopram, for safer precision-based treatment; development of a 

clinical trial program for Pimavanserin; and publication of new consensus definitions and criteria 

that more accurately reflect the emergence of psychosis in advance of dementia at preclinical and 

prodromal stages (for example, IPA, ISTAART-AA psychosis and ISTAART-AA MBI criteria). 

However, the significance of these milestones was restricted by the absence of a licensed 

pharmaceutical therapy, the relatively sparse drug research pipeline, the ongoing use of 

antipsychotics despite the hazards, and the lack of a specialized non-pharmacological 

intervention for psychosis. 

In the absence of approved drugs, it is critical to develop precise risk and implementation 

profiles for existing antipsychotics. Aripiprazole is the antipsychotic medicine that best balances 

efficacy and safety, according to clinical research, statistical analysis, and computational 
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modeling. This research has also examined precision implementation strategies for risperidone 

and amisulpride for psychosis in AD, which could improve the safety profile of these drugs. 

These methods can be applied in a variety of settings to aid in the creation of evidence-based 

algorithms that incorporate both pharmacological and non-pharmacological therapies and are 

personalized to individual patient profiles. Non-drug treatments for psychosis need to be made 

and tested, and the COVID-19 epidemic shows that they should be able to be used both in person 

and over the internet. 

Concurrent investigation of the neuroscience of psychosis could inform the creation of 

new or repurposed drugs. The first genome-wide important locations and evidence of DNA 

methylation alterations have been discovered in research into the neurobiology underlying AD 

psychosis; however, replication and functional validation are still required. In the meantime, 

neuropathology and imaging investigations have established frontal dysfunction and tau 

pathology as important neurobiological correlates of psychosis. Synaptic dysfunction and the 

protein Kalirin are fresh potential therapeutic targets deserving of further investigation. Notably, 

the majority of medicines in development for AD psychosis have similar modes of action to 

antipsychotics originally developed for schizophrenia, presumably reflecting shared underlying 

disease mechanisms. Evidence implicating the DMN and genetic and epigenetic risk factors for 

schizophrenia and depression, as well as kalirin and vitamin D in Alzheimer's disease psychosis, 

suggests a molecular overlap with schizophrenia. Future research could include a more 

systematic evaluation of the psychotic symptoms in AD and their mechanistic similarities with 

schizophrenia. One could expect that the presence of a schizophrenia-like phenotype would 

confer a greater response to antipsychotics, and alternative treatment techniques could be sought 

for symptom profiles that are less consistent with schizophrenia. 
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Enhanced phenomenology and nosology must be used for AD psychosis case 

identification in order to enhance symptom profile-based therapies. This attempt should be aided 

by the advancement of the IPA psychosis criteria and the establishment of the ISTAART 

psychosis and MBI criteria. In reality, these objectives guided the development of the ISTAART 

psychosis criteria. These criteria place late-life emergent psychosis on a spectrum, using the 

natural history of symptoms, symptom modality, cognitive stages, and AD biomarkers to define 

psychotic symptoms. The ISTAART criteria were also meant to promote genetics research by 

providing classification methodologies that may be adapted to the analyses being conducted 

(such as separating delusions and hallucinations and assuring more non-psychosis "controls" by 

including prior history). This approach could be used in cross-sectional and longitudinal studies 

to improve our understanding of the clinical, cognitive, and neurobiological underpinnings of 

AD psychosis and to facilitate the development and implementation of non-pharmacological 

therapies. 

1.2 Quantitative Systems Pharmacology Approaches 

Quantitative systems pharmacology (QSP) is a computational model that investigates the 

interface between discrete experimental data (e.g., drug or compound research) and the "system". 

The "system" may be any disease-related biological process, such as the physiological effects of 

a disease, a specific disease pathway (e.g., signal transduction or up- or down-regulation of a 

route, increased heart rate), or any of the "omics" (i.e., genomics, proteomics, metabolomics). 

Utilizing "omics" creates significant opportunities to learn from huge data systems by 

searching for overlapping themes. While "omics" data on their own are unlikely to lead to 
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decisive directions during drug development, their combination with QSP can produce powerful 

insights that reduce ambiguity at key decision points during development. QSP can influence the 

design of a suitable study or advise on what additional trials may be required to make better-

informed decisions. Similarly, QSP can significantly reduce errors that could lengthen the drug 

development process or possibly lead to an avoidable failure. 

By merging regulatory and metabolic biological pathways with innovative drug molecule 

processes in order to expedite the rate of innovation through the detection of overlapping 

moieties, big data can be used in QSP to get powerful insights into drug development, for 

instance. These insights can aid in leveraging potentially additive or synergistic effects, planning 

around unexpected setbacks, and reorienting experimental direction at crucial periods in the early 

phases of drug development to prevent avoidable failures. 

As previously undiscovered and crossing disease pathways are uncovered, QSP can be 

utilized to identify new targets, verify existing targets, comprehend the potential detrimental 

consequences of novel pathways, and repurpose existing medications for new targets. QSP has 

built upon the insights acquired through constructing physiologically-based pharmacokinetic 

(PBPK) models (e.g., blood flow rates, organ sizes, transporter expression, etc.) and substantially 

advanced our ability to comprehend drug action. 

1.2.1 QSP and Its Growing Role in Drug Development 

Drug development is essential to modern medicine; nevertheless, bringing medications to 

market is frequently hindered for a variety of reasons, including a lack of understanding of drug 

behavior at the level of the entire system and undesirable side effects[122]. To comprehend the 

mechanism of disease networks, identify novel therapeutic targets, and create successful 
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therapies, it is necessary to examine individual components such as genes, RNA, and proteins as 

dynamic systems spanning several scales[123]. The development of high-throughput 

technologies and the accumulation of biomedical data have revolutionized our understanding of 

these biological processes; however, these data types require integrative and dynamics-driven 

approaches to comprehend dataset repositories and accelerate novel discoveries. Consider drug-

target and drug-drug interactions and their system-level repercussions as an additional source of 

complexity. 

Systems biology aims to address these complexities by understanding biological 

processes at the molecular and cellular system levels. QSP stems from system biology and 

integrates pharmacological aspects with systems modeling to identify and design safer and more 

effective drug therapies. QSP was defined in 2011 in a National Institutes of Health white paper 

based on workshops and discussions with experts from academia, government, and industry[124; 

125; 126]. One of the challenges associated with medication research is the rising cost of drug 

development and approval, which ranges from $1.2 to $4 billion and takes up to 10 years[127; 

128; 129]. QSP tackles a portion of these obstacles by providing integrative ways to establish the 

mechanisms of action of novel and existing medications, maximize therapeutic effect, limit 

toxicity, and apply a procedure to enhance the health of individual patients[130]. QSP employs 

mechanistic mathematical models to characterize the dynamic interactions between a drug and 

physiopathology at different levels of biological organization (molecular, cellular, and organ-

level networks). QSP enables innovative drug target predictions, extensive studies of 

mechanisms of action and safety, biomarker identification, optimization of dosages or regimens, 

compound selection, decision making, and responses taking into account a number of treatment 

variables[130; 131]. Even though QSP is relatively new, it complements other widely used 



 26 

modeling methodologies for preclinical and clinical studies, including the measurement of drug 

behavior in the body[132]. Pharmacokinetics (PK), pharmacodynamics (PD), 

pharmacokinetic/pharmacodynamic (PK/PD) modeling, physiologically-based pharmacokinetic 

(PBPK) modeling, physiologically-based pharmacokinetic/pharmacodynamic (PBPK/PD) 

modeling, network biology, real-world evidence (RWE), and machine/deep learning techniques 

all played a part in the scope of QSP to facilitate drug discovery. 

1.2.2 Network Analysis in Systems Biomedicine Research 

In biology, network techniques have proven beneficial for organizing high-dimensional 

biological datasets and extracting relevant information. A network is a method of describing 

datasets that emphasizes the connections between nodes. These nodes, which can represent 

genes, proteins, tiny molecules, or any other entity capable of interacting in the modeled system, 

are connected by edges, which describe the nature of the interaction, to form a graph. Different 

properties and annotations can be assigned to nodes and edges. Depending on the nature of the 

investigation, interactions may be experimentally determined physical and chemical interactions, 

genetic regulatory connections, higher order links such as co-expression, or any other shared 

feature connecting the nodes. When information is available, edges can contain directions, 

weights, and other characteristics that provide information about the hierarchy of effects. 

Numerous advanced techniques of computational analysis are applicable to network data 

structures and can reveal non-obvious aspects of nodes and their interactions. Networks enable 

the integration of multiple experimental data sources and biological knowledge into a framework 

that yields fresh insights into the system. These methods can combine genome-scale datasets 

with knowledge regarding particular genes and proteins. In recent years, studies of metabolic 
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networks, gene regulatory networks, protein–protein interaction networks, and other biological 

networks have shed light on the origins of overall cellular behaviors and evolutionary design 

principles, as well as on more specialized fields of research pertaining to specific cell biological 

processes or diseases. From these studies, experimentally testable hypotheses can be formulated, 

ranging from the prediction of novel roles for genes to genome-scale features of human cellular 

networks. Similarly, the study of networks for pharmacologic investigations has the potential to 

facilitate the identification of new drug targets for a variety of diseases, a better understanding of 

what makes a good drug target, and enhanced capacity to anticipate beneficial drug combinations 

and adverse drug events. These investigations contribute to the paradigm shift of drug action 

from a relatively straightforward cascade of signaling events downstream of a target to a 

coordinated response to various perturbations of the cellular network. Network studies in 

systems pharmacology can be divided into three main categories based on the type and scale of 

data being studied and the type of information sought: networks for global views of drug 

relationships, new drug target studies and studies of current drugs. Figure 1.2 is a demonstrative 

figure for the three broad categories of network investigations in systems pharmacology. (A) 

Global drug network studies that combine information about numerous types of medications and 

biological datasets such as protein–protein interaction data are capable of generating network 

features of drug targets. These characteristics provide information on historical drug 

development trends and can suggest the characteristics of a druggable target. (B) Condition-

specific network studies discover potential novel drug targets and therapeutic techniques using 

information about a specific disease. (C) Studies that incorporate information about specific 

diseases and pharmaceuticals can reveal novel indications for drugs, unidentified therapeutic 

targets, and other potentially intriguing drug features. 
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Figure 1.2 Categories of netowrk analysis in biomedical research 

 

Nodes are the entities in a network that represent many types of items, such as genes 

[133], proteins[134], medications[135], and diseases[136; 137]. A network's nodes can also be 

utilized to define the state of a system. Such specifications can be determined using Boolean 

dynamics[138; 139], in which each node has a chance to exist in two states (active or inactive, 
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respectively), or by employing concentrations of nodes with dynamical models based on 

ordinary differential equations[140]. In pharmacokinetic-pharmacodynamic models, the latter 

method is most frequently used.  

The edges of a network can be directed such that the source node has an effect on the 

target node, and the relationship is valid only in one way. The activation of a transcription factor 

by protein kinase and the transcription factor's control of a target gene are examples of directed 

edges[141]. The edges could also be undirected, allowing interactions in both directions. 

Interactions between a protein and its scaffold are instances of "undirected edges." It is also 

possible to provide weight to the edges based on the strength of their links. Numerous criteria, 

ranging from statistical correlations for distant linkages (such as gene-disease relationships) to 

kinetic rate constants for direct physical interactions, can be used to estimate these weights (such 

as hormone or drug binding to receptors). One can utilize a variety of networks based on 

different sorts of nodes and edges to analyze pharmacological activities. A directed edge 

connects a drug node to its target protein node in the simplest network[142]. The target protein 

node is then connected to other proteins that physically interact with the drug-target protein, and 

these proteins can be further connected using the same criteria[143]. All edges in this network 

have the same weight, indicating that they all share the same level of connectedness. This 

simplification assumption is not always valid, so we must be cautious when determining if the 

represented network accurately represents the system. These networks are referred to as 

"interaction networks." Interaction networks enable us to rapidly assess the potential downstream 

and upstream interactors of a node[144], which can be useful for finding paths for signal flow 

and regulatory motifs such as feed-forward and feedback loops that have the capacity to process 

information. 
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1.2.3 Machine/Deep Learning in QSP 

The astounding volume of data created by contemporary technologies necessitates 

integrated treatments for pharmaceutical issues. The "big data" area seeks to interpret 

information from datasets comprising large or complicated amounts of data[145]. Observational 

data such as Electronic Health Records (EHR), which include patients' unique medical features 

such as laboratory findings, comorbidities, medications, and observed effects, is an example of 

big data utilized for drug discovery[146]. In drug research, machine learning (ML) has been 

incorporated into automated pipelines to guide and speed up preclinical wet-lab investigations, 

drug discovery, and clinical trials. In fact, ML approaches can be applied in practically all phases 

of drug discovery and development[147]. ML can be used, for instance, to identify and validate 

novel targets[148; 149], predict treatment responses[150], discover biomarkers[151], predict 

disease progression[152], degeneration[153], and risk factors[154; 155], design and optimize 

small-molecule components[156], and enhance analyses of high-throughput imaging in 

computational pathology[147; 151]. By predicting ideal physicochemical properties, 

pharmacokinetics, safety, and efficacy, ML can also optimize the drug candidate discovery 

field[157; 158; 159; 160; 161; 162; 163]. 

1.2.3.1 The General Concept of Machine Learning 

ML approaches can be divided into two groups: supervised learning, which employs 

labeled data (the objective is to "predict"), and unsupervised learning, which uses unlabeled data 

(the objective is to "explore")[164].  

Supervised machine learning techniques require input data sets to be partitioned into 

"training" and "test" data sets. Model training involves fitting the model to the training data set 



 31 

and then validating the trained ML model using the test data set. The verified ML model may 

then be used to generate predictions or judgments based on the covariates of the new data 

set[165]. Several methods, including linear and logistic regression, ridge regression, decision 

trees, random forests, gradient boosting, neural networks, and evolutionary algorithms, have 

been developed in this field[166; 167; 168]. In supervised ML, datasets containing both 

covariates and outcomes are "labeled" and exploited.  

Various studies approach drug discovery using supervised learning techniques such as 

regression analysis methods (e.g., disease and target draggability from multidimensional 

data[149], targets for Huntington disease[169], potential cancer biomarkers[170; 171], drug 

sensitivity prediction[172], and image-based diagnosis[173]) and classifier methods (e.g., tissue-

specific biomarkers from gene expression signatures, target draggability based on PK properties 

and protein structure[173; 174]). 

Moreover, supervised learning methods permit the modeling of responses for estimating 

the outcomes of individual patients. One way to accomplish this is by fitting a single-output 

model with the treatment as an input feature, making the model less flexible and offering the 

same result model for patients who have received treatment and those who have not. An 

alternative method for assessing patient outcomes is to fit two separate supervised models for 

different treatments[174]. This method provides greater flexibility. Unsupervised machine 

learning incorporates covariates but not outcomes. This method identifies patterns and 

relationships between data points. K-means and hierarchical clustering are examples of widely-

used unsupervised ML techniques. In addition to de novo molecular design[175], unsupervised 

clustering algorithms have also been applied to deep feature selection for biomarkers[176], 

feature reduction in single-cell data to identify cell types[177], and biomarkers[178].  
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The estimation of the impact of a single, multiple, or time-dependent treatment on patient 

outcomes is made possible by causal inference strengthened by machine learning. Clinical data 

(e.g., age, sex, genetic information, laboratory measurement), type of treatment (e.g., binary 

treatment, single treatment, or multiple treatments), patient outcomes (e.g., survival probability, 

multiple outcomes), and treatment decisions (e.g., optimal single or combinatorial treatment, 

optimal dosage) can be used for training ML models to evaluate treatment effects. Consequently, 

causal inference approaches can aid clinicians in making therapy benefit, treatment choice, and 

dosage determinations[179]. 

1.2.3.2 Integration of QSP and ML 

Developing approaches to integrate clinical data such as EHR or biological data sets (e.g., 

human genetic information in large populations, omics profiling of healthy and unhealthy 

people) with QSP models allows for further advancement in the QSP field. Here we show some 

innovative projects that combined QSP models and ML techniques. 

Recent researches[179; 180] highlighted the benefits of merging ML techniques with 

mechanistic modeling in computationally expensive QSP model curation, optimization, 

parameter estimation, and simulations. Hartmann et al.[181] developed a predictive ML model to 

aid in optimizing antithrombotic treatment. During therapeutic antithrombotic medication 

monitoring, routine clinical data on 479 individuals was collected for this investigation. On the 

basis of a humoral coagulation model, a QSP model of the coagulation network was built[182] to 

investigate the influence of rivaroxaban, warfarin, and enoxaparin treatment on clotting factor 

levels. Using a nonlinear programming solver, the authors approximated the parameters (factor 

rate constants and production rates of coagulation factors). Model simulation uses a rigid ODE 

solver (a variable-step, variable-order solver based on the numerical differentiation formulas of 
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orders 1 to 5). The QSP model predicted the steady-state effects of rivaroxaban, warfarin, and 

enoxaparin on clotting factor concentrations. For instance, the model projected that rivaroxaban 

would have no effect on the levels of inactivated coagulation factors (such as prothrombin, 

protein C, and protein S). Due to the heterogeneity in how individuals respond to medications, it 

is essential to estimate interindividual variability[183]. Utilizing ML techniques, the significance 

of interindividual variability was evaluated. Sobol sensitivity analysis[184] was conducted to 

identify the parameters having the greatest influence on the activation of clot dissolution under 

various treatments. In comparison to enoxaparin and rivaroxaban, warfarin is predicted to inhibit 

protein C and protein S (components that govern blood clot formation) throughout treatment. 

Pei et al.[185] used QSP approaches to conduct a comprehensive investigation of the 

cellular pathways implicated in 50 drugs of abuse, illustrating the benefits of utilizing ML to 

assess information from databases and forecast pharmacological targets. For this investigation, a 

list of 50 illicit substances and their respective pharmacological effects was compiled. Using 

DrugBank[186] and STITCH[187] (drug-ligand-target interaction databases), 142 known drug 

targets were found. Subsequently, a probabilistic matrix factorization (PMF)[188] based machine 

learning technique was used to select 48 additional targets. According to this study, the PMF 

model can perform well on large, sparse, and asymmetric datasets because it scales linearly with 

the number of observations. 11,681 drug-target interactions and 8,579,843 chemical-target 

interactions were used to train PMF models. The study analyzed and assigned a confidence level 

to each projected drug-target interaction and then chose predictions with high confidence, 

resulting in the identification of 161 unique interactions between 27 of the 50 input medicines 

and 89 targets. The authors also identified and classified 173 human molecular pathways from 

the KEGG database that were connected to the pharmacological targets. Finally, the authors 
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investigated the role of these targets and pathways in drug addiction prediction. This study 

generated fresh target predictions and identified important signaling modules that detect the 

impacts of drug abuse using machine learning techniques. 

Another study[189] focused on the control of autophagy, an essential cellular process 

with roles such as cell death and survival. The scientists employed QSP models to analyze the 

mechanism of action of autophagy modulators by predicting novel drug-target interactions and 

examining the effects of the drug using pathway and network analysis methods. Two hundred 

twenty-five autophagy modulators, including medicines such as fostamatinib, olanzapine, 

melatonin, and artenimol, were collected. Using the DrugBank database for data collection, the 

selected modulators were manually categorized as inhibitors, activators, and dual-modulators. 

The PMF algorithm was then utilized to predict the drug-target interaction using ML[188]. The 

PMF model was trained using 14,983 interactions between 5,494 medicines and 2,807 targets in 

the DrugBank database. Each anticipated interaction was assigned a confidence value, and the 

interactions with the highest scores were chosen for each drug. This ML technique generated 368 

unique drug-target interactions. Using the anticipated targets, a functional analysis was 

undertaken to identify the enriched pathways involved in the regulation of autophagy. The study 

contributes to future investigations about the mechanism of action of autophagy modulators. 

Gaweda et al. published a QSP model for chronic kidney disease and mineral bone 

disorder (CKD-MBD)[157], in which ML techniques were used to estimate the model 

parameters of the differential equations representing the CKD-MBD compartments. A greater 

understanding of CKD-MBD and the diversity of CKD-MBD indications among individuals can 

aid the therapeutic goals of lowering mortality and morbidity[190]. Modifications were made to 

a previously published model to create the CKD-MBD model[191]. Modifications include 
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adding new components to the model and employing ML techniques to estimate the CKD-MBD 

model's characteristics (such as the parathyroid gland compartment, renal phosphate 

reabsorption, and smooth muscle cell compartment parameters of model). The CKD-MD model 

has distinct functions with estimation-required parameters. Using information from 5496 CKD 

patients, they estimated 23 factors related to model components. Nonlinear least-squares 

regression with the trust-region reflective technique was used to fit the model. A 10-fold cross-

validation was used to validate the generated model (each fold included 30,106 training vectors 

and 3345 testing vectors). 

Mathematical modeling can help you estimate risks in relation to possible benefits when 

you need to make a decision quickly. Several recommended medications for individuals with 

coronavirus illness 2019 (COVID19), for instance, were linked to cardiac adverse events[192]. 

This study revealed the association between cardiac risks and COVID-19 therapy by combining 

PK and QSP models[193]. For this purpose, the authors examined the potential effects of 

azithromycin, lopinavir, chloroquine, and ritonavir on cardiac electrophysiology. PK using the 

QSP model of ventricular myocytes has been employed in order to predict cardiac adverse 

events. O'Hara et al.'s model was used to predict the effects of the medicines on ventricular 

action potentials[194]. Then, using PK models to predict drug disposal, the drug concentrations 

of the QSP simulations were linked with the free plasma drug concentrations of the patients. This 

study expected that the combination therapy comprising these medicines would result in a higher 

action potential prolongation than the drugs given individually. To examine the relationship 

between sex and pre-existing heart failure, models for distinct patient groups were built, and 

virtual populations were generated to mimic the physiological variability of the individual. On 

the basis of population outcomes, a logistic regression analysis was conducted to determine why 
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specific cells were resistant or prone to arrhythmias. In the simulated population, modeled 

ventricular myocytes were labeled as 1 (arrhythmic dynamics) or 0 (no arrhythmic dynamics). 

Using the parameter values of each cell, the created logistic model predicted the likelihood of an 

arrhythmia. Simulations of patient groups reveal that women with a history of heart failure are 

especially sensitive to drug-induced arrhythmias. 
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2.0 Different mechanisms behind the neuropsychiatric symptoms of AD+P and 

schizophrenia 

2.1 Network Systems Pharmacology-Based Mechanism Study on the Beneficial Effects of 

Vitamin D against Psychosis in Alzheimer’s Disease  

2.1.1 Background and Significance 

In a previous study, we have compared the frequency of medication usage among AD+P 

and AD-P patients and conducted survival analysis on time to psychosis for AD patients to 

identify drugs with beneficial effects[195]. The results of our analysis revealed a significant 

association between Vitamin D use and delayed onset of psychotic symptoms. In addition, 

through the analysis of gene expression data, we found that AD- and/or psychosis-related genes 

were enriched in the list of genes most perturbed by Vitamin D. This observation provides us 

with a novel direction for the mechanism study of AD and psychosis, and may inspire the 

development of drugs to prevent or treat psychosis in AD. 

The role of Vitamin D in neurodegenerative diseases has been reported by many 

researchers. Six of the nine case-control studies found significant between-group differences 

illustrated by lower serum concentrations of 25-hydroxyvitamin D, a metabolite of Vitamin D3, 

in AD cases compared to control groups[196; 197; 198; 199; 200; 201; 202]. Thus, Vitamin D 

Insufficiency is considered as a risk factor for AD. However, Vitamin D’s beneficial effect 

against AD+P was freshly discovered and its mechanism may provide a unique viewpoint in 

preventing and treating AD+P. 
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Network approaches have been used in predicting and identifying the disease genes in 

multiple studies and some of the results have been verified[203; 204]. It is suggested that, in the 

viewpoint of network biology, drug targets tend to locate at the transition area from the essential 

hubs, e.g. proteins interacting with more partner proteins, to redundant peripheral nodes[205], 

e.g. proteins interacting with fewer partner proteins. The rationale behind this is a balance of 

toxicity and efficacy regarding the potential influence of the targets on cellular function. 

The aim of this study is to explore potential molecular mechanisms that underlie the 

beneficial effects of Vitamin D on reducing psychosis symptoms in AD patients and to identify 

potential drug targets for AD+P prevention or treatment by applying systems pharmacology 

approaches on analyzing their protein-protein interaction networks.  

2.1.2 Methods and Materials 

2.1.2.1 Gene Dataset Collection and Pathway Mapping 

A network that includes both AD- and psychosis-related proteins were constructed and 

analyzed in order to study the crosstalk between them. AD- and psychosis-related genes were 

collected from multiple literatures and databases, including MetaCore from Clarivate Analytics 

(https://portal.genego.com/), GWAS Catalog for Genome Wide Association Studies (GWAS) 

(https://www.ebi.ac.uk/GWAS/home)[206] and BaseSpace Correlation Engine 

(https://www.illumina.com/index-d.html)[207]. These gene names were then converted to 

protein names by batch search function in the UniProt database. Due to the variety of 

information sources, genes were carefully selected from different types of data including RNA 

and miRNA expression, SNPs identified through GWAS, copy number variations (CNVs), and 

mutation data. Gene information was included in our study if 1) reported in a primary GWAS 

https://portal.genego.com/
https://www.ebi.ac.uk/gwas/home
https://www.illumina.com/index-d.html
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analysis, defined as array-based genotyping and analysis of 100,000+ pre-QC SNPs selected to 

tag variation across the genome and without regard to gene content; 2) SNP-trait p-value <1.0 x 

10-5 in the overall population. The threshold of 1.0 x 10-5 was chosen rather than the stricter one 

for genome-wide association of 5.0 x 10-8 [208; 209] to include more targets potentially related 

to AD and psychosis to generate a more complete structure of networks[210; 211].  Vitamin D-

perturbed genes and antipsychotics-perturbed genes were collected from BaseSpace Correlation 

Engine (https://www.illumina.com/index-d.html)[207]. Both down- and up-regulated genes 

were included into our analysis. 

Signaling pathways for AD and psychosis were acquired from KEGG 

(http://www.genome.jp/kegg/) [212] and PANTHER Classification System 

(http://pantherdb.org/)[213].  

2.1.2.2 Triple-Focusing Network Approaches: Identification of Potential Novel Targets 

In the following network analysis studies, we incorporated protein-protein interaction 

(PPI) data from STRING (https://string-db.org/) [214] and the Online predicted human 

interaction database (OPHID) (http://ophid.utoronto.ca/ophidv2.204/index.jsp)[215]. The PPI 

network was constructed and analyzed with python package networkx 

(https://networkx.github.io/)[216]. The interaction network was shown in the molecular action 

view with the medium confidence level (> 0.4)[217]. The network containing AD-related 

proteins (AD network) and the network containing psychosis-related proteins (Psychosis 

network) were joined to form a combined network (AD-psychosis combined network) for 

further study. PPI networks containing Vitamin D-perturbed proteins (Vitamin D network) and 

antipsychotics-perturbed proteins (Antipsychotics network) are also generated respectively. 

https://www.illumina.com/index-d.html
http://www.genome.jp/kegg/
http://pantherdb.org/
https://string-db.org/
http://ophid.utoronto.ca/ophidv2.204/index.jsp
https://networkx.github.io/
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Networks were processed and plotted with python package networkx[216] and 

Gephi[218]. The centrality of nodes in the network was calculated based on the built-in 

algorithm of networkx[216]. In detail, the degree centrality values were normalized by dividing 

by the maximum possible degree in a simple graph n-1 where n is the number of nodes in a 

network. The Betweenness centrality algorithm is from Ulkrik Brandes[219; 220; 221; 222]. In 

order to minimize the bias caused by the number of studies associated with different proteins, we 

use Betweenness centrality as our primary indicator in this study to lean more on the nodes’ 

position in the network’s structure, rather than the degree centrality of the nodes in the network. 

To find sub-networks (communities) having different biological functions, community 

detection was further conducted in the combined network. The algorithm used for community 

detection was based on the Greedy Modularity Maximization method[223; 224]. It begins with 

each node in its own community and joins the pair of communities that most increases 

modularity until no such pair exists. 

Network analysis was further used to study a joint AD-psychosis-Vitamin D network in 

order to find potential drug targets for AD+P. The rationale of this approach was that the ideal 

potential targets should be in the overlapping part of PPI networks of AD, psychosis and Vitamin 

D because the function of the potential targets can modulate the crosstalk between AD and 

psychosis and can also be regulated by Vitamin D through the Vitamin D receptor which is a 

transcriptional factor modulating gene expression. Thus, after constructing the AD-psychosis 

combined network and Vitamin D network, we overlapped them to explore the connectivity of 

these three parts and the roles of the triple-overlapped proteins. This approach can help us reduce 

the artificial bias caused by the different number of studies of those proteins, and also limit the 
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potential side effects caused by those very well-studied proteins which are usually located at the 

essential hubs. 

Centrality measures of the nodes were introduced in network analysis to describe how the 

information will spread through the network. Two different kinds of centralities were included: 

Degree Centrality and Betweenness Centrality. Degree Centrality, as the most simple and direct, 

describes the number of connections of a particular node regardless of the direction and weight 

of the edges. Betweenness Centrality, as the centrality of control, represents the frequency at 

which a point occurs on the geodesic (shortest paths) that connect pairs of nodes. In another 

word, it quantifies how many times a particular node acts as a bridge linking two ends of the 

network. 

Network analysis methods with centrality measures will first be examined with 

psychosis-related genes and known antipsychotics-perturbed targets. In order to do that, a 

combined network of psychosis network and antipsychotic network is constructed, and the 

centrality measures are calculated as mentioned above. The connectivity parameters of known 

antipsychotic targets are examined to determine if they possess a significant higher value. 

2.1.3 Results 

2.1.3.1 Method verification with psychosis-related PPI network and antipsychotics-

perturbed genes 

Psychosis-related and antipsychotics-perturbed PPI networks are used to validate the 

network analysis methods we proposed. Characteristics of these two PPI networks and the 

combined network are shown below (Table 2.1). Five genes, DRD2, DRD3, HTR2A, OPRD1 

and HTR7, are found shared by psychosis network and antipsychotics network.  
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Table 2.1 Characteristics of Antipsychotics- and Psychosis-related PPI networks 

Network Name Node 
Number 

Edge 
Number 

Average Degree 
Centrality 

Average 
Betweenness 

Centrality 
Antipsychotics 89 419 0.106 0.0157 

Psychosis 486 1409 0.0119 0.00642 
Psychosis-antipsychotics 

Combined Network 570 1825 0.0112 0.00563 

 

The centrality measures of nodes in the psychosis and antipsychotics are calculated and 

the top ten nodes sorted by Betweenness values were shown in Table 2.2. As we expected, 

DRD2 and HTR2A, two major targets for current antipsychotics, were ranked as the first two 

proteins in our combined network when measured by Betweenness Centrality. If ranked by 

Degree centrality, ALB and FOS, two well-studied proteins, will have higher priority than 

HTR2A. The result revealed the great potential for proteins with a high Betweenness centrality 

being drug targets and provided a solid support for the method we proposed. Thus, the network 

analysis methods were applied to AD- and psychosis-related PPI networks. 

Table 2.2 Overview of net-influencers for top ten proteins (named by their genes) in combined network of 

psychosis and antipsychotics sorted by betweenness centrality 

Gene Name Degree Centrality Betweenness Centrality 
DRD2 0.0703 0.1433 

HTR2A 0.058 0.0731 
GRIA1 0.0615 0.0698 
ALB 0.0633 0.0677 

CACNA1C 0.0545 0.0513 
FOS 0.0615 0.05 

SYNE1 0.0246 0.0488 
GRIN2A 0.0545 0.0485 

FYN 0.0545 0.0432 
KIT 0.0422 0.0368 
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2.1.3.2 The AD-psychosis combined PPI network 

In order to acquire a better understanding of the connection between AD and psychosis, 

and to further explore the potential drug targets suggested by the previous analysis, a combined 

PPI network of AD and psychosis was generated. One thousand and sixty-one AD-related genes 

and 15,691 PPIs of their protein products together with 483 psychosis-related genes and 1,361 

psychosis-related PPIs were collected as the basis of our network. Among all the proteins 

collected, 90 proteins were shared by both AD and psychosis, including proteins encoded by 

SEMA3A, TUSC3, RPN2, AMBRA1, BECN1, CACNA1C, SGK1, ADAM10, GRIN2A, FYN, 

ANK3, TBXAS1, EFNA5, POLN, CHRNA3, NOTCH4, GRIA1, NTRK3, IQGAP2, RELN, 

NOS1, GPC6, TCF7L2, TCF4, MGLL, DRD3, CHRNA2, PAK2, CTNNA2, COL25A1, 

COL12A1, AGER, KIF26B, PPP2R2B, TEK, KALRN, PRKG1, KSR2, COLGALT2, MEIS1, 

SHISA9, ZKSCAN4, PTPRG, NKAPL, CTNNA3, PDE4B, HFE, MSR1, CSMD1, COMT, 

APBA1, IMMP2L, ELAVL4, LRRTM4, CDH13, ZNF804A, PBRM1, LRRN2, TEP1, 

STXBP5L, FHIT, SYNGAP1, ZSCAN31, TENM4, ABCB1, PLCL1, RBFOX1, FSTL5, 

SORCS3, NKAIN2, GLIS3, NXN, MAGI2, MEGF10, MPP6, TSPAN18, FRMD4B, 

MTHFD1L, TMTC1, LIN28B, UXS1, BICC1, ATXN7L1, EYS, GRAMD1B, TSPAN2, 

ENOX1, TMEM132D, CR1 and PCNX. The AD-psychosis combined network has 1,454 nodes 

and 16,948 PPIs. Characteristics of the combined network were most similar to those of AD 

network due to the disparity of the node numbers in AD- and psychosis-related PPI networks 

(Table 2.3).  

Top 10 net-influencers in the combined network are shown in Table 2.4 based on their 

Degree and Betweenness centralities respectively. It is not surprising that the 3 centralities 

overlapped with each other substantially, since they all measure the importance of the nodes in 
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the whole network from different angles, and it is apparent that the top 10 nodes do have very 

higher values when compared with the average value, 10-fold ratio at least. A better view is 

provided in Figure 2.1 showing that only a few nodes take position at the upper-right corner. 

This phenomenon suggests that though there are 1,454 of nodes in the network, a small group of 

nodes, such as the top 10 nodes shown in the table, are extremely connected and play a critical 

role in the signaling process and information flow within the network. 

Table 2.3 Characteristics of AD- and Psychosis-related PPI networks 

Network Name Node 
Number 

Edge 
Number 

Average Degree 
Centrality 

Average Betweenness 
Centrality 

AD 1061 15691 0.0279 0.00167 
Psychosis 486 1409 0.0119 0.00642 

AD-psychosis 
Combined Network 1456 16989 0.0160 0.00158 

 

 

Table 2.4 Overview of top net-influencers in the AD-psychosis combined PPI network 

Gene (Degree Centrality) Gene (Betweenness 
Centrality) 

INS(0.200) APP(0.0552) 
AKT1(0.199) AKT1(0.0528) 

GAPDH(0.191) INS(0.0497) 
APP(0.186) TP53(0.0451) 
ALB(0.184) FYN(0.0382) 
TP53(0.175) GRIA1(0.0348) 
IL6(0.162) GAPDH(0.0345) 

MAPK3(0.153) ALB(0.0247) 
TNF(0.149) CACNA1C(0.0245) 

VEGFA(0.142) RBFOX1(0.0209) 
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Figure 2.1 Distribution of Degree centrality and Betweenness centrality of nodes in the combined AD-

psychosis PPI network. Most of the nodes have very low Degree centrality and Betweenness centrality while a 

very small group of nodes, like the top 10 nodes, possess very high centrality compared to others. This 

phenomenon suggests that the information flow within the network is controlled and regulated by the small 

group of nodes to a great extent. 

After identifying the critical proteins in the network, the function of these proteins is our 

interest. We conducted pathway enrichment analysis to identify the underlying pathways 

participated by those proteins and therefore to establish a connection between proteins and their 

biological functions. Firstly, ten communities were detected as relatively separated components 

of the network (Figure 2.2). Among the 10 detected communities, 7 communities, excluding 7, 8 

and 9, contain enough nodes to be biologically meaningful. When sorting the network based on 

the community and the nodes’ Betweenness, every community has one or a few nodes that 

possess a much higher Betweenness value and those nodes serve as the portal connecting the 

community to the other parts of the network (Figure 2.3). Among the top 10 proteins we 
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mentioned above (Table 3.4), APP, FYN, and INS are distributed into different communities as 

the leading nodes, which further illustrates the importance of these nodes in the combined 

network. These detected communities represent different biological pathways participating in the 

development of psychosis in AD. Secondly, protein-pathway mapping was conducted by 

comparing the proteins in the same community against the proteins in the pathways from online 

databases like KEGG.  

 

Figure 2.2. Overview of community detection. Seven meaningful communities are detected, and targets 

distributions are shown in the figure. These communities are constructed with similar targets amounts and 

can be the representatives for different biological functions involved.  
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Figure 2.3 Overview of community interaction. Community interactions incorporated with the Betweenness 

centrality data of nodes and the functional annotations of the communities. The node size represents the 

Betweenness centrality of nodes. The high impact nodes, nodes with high Betweenness centrality, are evenly 
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distributed to communities and function as the main gateway for information exchange and interactions. The 

architecture of the combined network is a big system formed by several sub-networks (communities) that 

connect with each other through a small hub, and most of the proteins in the network work mostly with the 

proteins within their communities. 

 

The protein-pathway mapping returned a list of pathways associated with these 7 

communities evidenced with very low False Discovery Rate (FDR) adjusted p-values, meaning 

that the proteins in these communities are highly accordant with proteins in these pathways 

recorded in the database. Pathways closely related to AD and neurological disorders (Table 2.5) 

were enriched in the list, including the Huntington disease pathway, Alzheimer’s disease-

presenilin pathway, p53 pathway and Alzheimer’s disease-amyloid secretase pathway.  

Table 2.5 Results of protein-pathway mapping in the communities 

Community Pathways (Pathway ID) P-value 
Community 1 FAS signaling pathway (P00020) < 0.001 
Community 1 Ras Pathway (P04393) < 0.001 
Community 1 PDGF signaling pathway (P00047) < 0.001 

Community 1 Angiotensin II-stimulated signaling through G proteins and 
beta-arrestin (P05911) < 0.001 

Community 1 Interleukin signaling pathway (P00036) 0.00236 
Community 1 Wnt signaling pathway (P00057) 0.00121 
Community 1 Huntington disease (P00029) 0.00367 
Community 1 p53 pathway (P00059) 0.00459 
Community 1 Alzheimer disease-presenilin pathway (P00004) 0.00138 
Community 1 p38 MAPK pathway (P05918) 0.0132 
Community 1 Parkinson disease (P00049) 0.0135 
Community 1 Integrin signaling pathway (P00034) 0.0294 
Community 2 Ionotropic glutamate receptor pathway (P00037) < 0.001 

Community 2 Muscarinic acetylcholine receptor 1 and 3 signaling pathway 
(P00042) < 0.001 

Community 2 5HT1 type receptor-mediated signaling pathway (P04373) < 0.001 
Community 2 Enkephalin release (P05913) < 0.001 
Community 2 Synaptic vesicle trafficking (P05734) < 0.001 

Community 2 Heterotrimeric G-protein signaling pathway-Gq alpha and Go 
alpha mediated pathway (P00027) < 0.001 
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Community 2 Metabotropic glutamate receptor group II pathway (P00040) < 0.001 
Community 2 Endothelin signaling pathway (P00019) 0.00296 
Community 2 Opioid proopiomelanocortin pathway (P05917) 0.00136 
Community 3 Alzheimer disease-amyloid secretase pathway (P00003) < 0.001 
Community 4 Apoptosis signaling pathway (P00006) < 0.001 
Community 5 Plasminogen activating cascade (P00050) < 0.001 
Community 5 Cholesterol biosynthesis (P00014) 0.0223 
Community 6 Cadherin signaling pathway (P00012) 0.0494 
Community 10 Cell-cell junction organization (R-HSA-421270) 0.00992 
Community 10 Nectin/Necl trans heterodimerization (R-HSA-420597) 0.0177 
Community 10 Cell junction organization (R-HSA-446728) 0.0275 

 

 

Figure 2.4 Distribution of proteins in the communities and p-values for protein-pathway mapping results. 

The radius represents the log10 (1/p-value) of a mapping, and a higher bar has a smaller p-value. The angle 

of the bar represents the percentage of proteins contained in the mapped community. Shades in same color 

indicate multiple pathway-matchings of one community. P-value is calculated by Fisher’s exact test and all 
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terms are adjusted by Benjamini-Hochberg FDR. Figure generated with matplotlib (https://matplotlib.org/) 

version 3.1.3[225]. 

 

Figure 4 provided a more direct overview of the results of protein-pathway mapping. 

Community 1 and community 2 were mapped to multiple pathways with high credibility. It is 

fairly understandable because these two communities contain the largest amounts of targets and 

may result in mismatches. 

2.1.3.3 Overlapping proteins between AD network and Psychosis network 

Since the objective of this study is to study the development of psychosis in AD, we 

focused on the overlapping proteins between AD and psychosis. The net-influence parameters of 

the 90 overlapped proteins are shown in Table 2.6. Most proteins in the overlapping part possess 

Betweenness values above average which further supports their bridging role in the networks.  

Table 2.6 Overview of net-influencers for overlapping proteins (named by their genes) between AD network 

and Psychosis network 

Gene Name Degree Centrality Betweenness 
Centrality 

SEMA3A 0.0220 0.0046 
TUSC3 0.0048 0.0025 
RPN2 0.0048 0.0019 

AMBRA1 0.0055 0.0002 
BECN1 0.0509 0.020 

CACNA1C 0.0461 0.0245 
SGK1 0.033 0.008 

ADAM10 0.0571 0.0105 
GRIN2A 0.0647 0.0208 

FYN 0.0826 0.0382 
ANK3 0.0268 0.0115 

TBXAS1 0.0083 0.0021 
EFNA5 0.0255 0.0042 
POLN 0.0055 0.0026 

https://matplotlib.org/
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CHRNA3 0.0117 0.0012 
NOTCH4 0.020 0.0072 
GRIA1 0.0764 0.0348 
NTRK3 0.0248 0.007 
IQGAP2 0.0055 0.0038 
RELN 0.0392 0.0158 
NOS1 0.044 0.0119 
GPC6 0.0145 0.0071 

TCF7L2 0.0296 0.0117 
TCF4 0.020 0.0062 
MGLL 0.0172 0.0066 
DRD3 0.0482 0.0043 

CHRNA2 0.0145 0.0007 
PAK2 0.0241 0.0046 

CTNNA2 0.022 0.0116 
COL25A1 0.0124 0.0035 
COL12A1 0.011 0.0015 

AGER 0.0303 0.0042 
KIF26B 0.0055 0.0007 

PPP2R2B 0.0234 0.0137 
TEK 0.0262 0.0060 

KALRN 0.0289 0.0109 
PRKG1 0.0310 0.0070 
KSR2 0.0103 0.0022 

COLGALT2 0.0076 0.0009 
MEIS1 0.0117 0.0020 
SHISA9 0.0096 0.0006 

ZKSCAN4 0.0055 0.0069 
PTPRG 0.0151 0.0021 
NKAPL 0.0055 0.0043 

CTNNA3 0.0124 0.0024 
PDE4B 0.02 0.0037 

HFE 0.0186 0.0121 
MSR1 0.0248 0.0082 

CSMD1 0.0138 0.0058 
COMT 0.0454 0.0125 
APBA1 0.0248 0.0044 

IMMP2L 0.0124 0.0047 
ELAVL4 0.0165 0.0051 
LRRTM4 0.0062 0.0006 
CDH13 0.0110 0.0023 
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ZNF804A 0.0151 0.0048 
PBRM1 0.0096 0.0026 
LRRN2 0.0028 0.0009 
TEP1 0.0062 0.0050 

STXBP5L 0.0124 0.0074 
FHIT 0.0165 0.0044 

SYNGAP1 0.0193 0.0013 
ZSCAN31 0.0034 0.0003 
TENM4 0.0076 0.0017 
ABCB1 0.0310 0.009 
PLCL1 0.0028 0.0002 

RBFOX1 0.0351 0.0209 
FSTL5 0.0048 0.0019 

SORCS3 0.0055 0.0045 
NKAIN2 0.0041 0.0003 
GLIS3 0.0069 0.0031 
NXN 0.0083 0.0017 

MAGI2 0.0145 0.0044 
MEGF10 0.0034 0.0003 

MPP6 0.0055 0.0003 
TSPAN18 0.0028 0.0004 
FRMD4B 0.0021 0.0002 

MTHFD1L 0.0103 0.0006 
TMTC1 0.0034 0.0001 
LIN28B 0.0034 0.0012 
UXS1 0.0048 0.0064 
BICC1 0.0055 0.0083 

ATXN7L1 0.0048 0.0019 
EYS 0.0069 0.0024 

GRAMD1B 0.0028 0.0027 
TSPAN2 0.0048 0.0018 
ENOX1 0.0014 0 

TMEM132D 0.0048 0.0055 
CR1 0.0124 0.0004 

PCNX 0.0014 0.0001 
 

Figure 2.5 shows the distribution of connectivity parameters of overlapping proteins. 

Even in the overlapping part of the network, the average Betweenness centrality remains 

relatively low and only a few nodes, like FYN and GRIA1, possess a much higher connectivity 
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than other nodes. The distribution of Betweenness follows the same pattern as the whole network 

suggesting that even though 90 targets are found overlapped between psychosis and AD, only a 

few of them are the “bridges” for the transferring of information.  

 

Figure 2.5 Distribution of Degree centrality and Betweenness centrality of overlapping proteins between AD 

network and psychosis network. FYN and GRIA1, as members of the top 10 targets, possess a far larger 

Degree centrality and Betweenness centrality among the overlapping proteins. Figure generated with 

matplotlib (https://matplotlib.org/) version 3.1.3[225]. 

2.1.3.4 Exploration of Vitamin D’s beneficial effect through a triple-focusing approach 

In our previously published paper, Vitamin D was identified as a promising medication 

with a significant association with decreased occurrences and delayed onset of AD+P[195]. 

Therefore, we examined the relationship between the Vitamin D network and the AD-psychosis 

https://matplotlib.org/
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combined network. In total, 89 targets and 344 PPIs were collected in the Vitamin D network 

(Table 2.7). Among the 89 proteins, twenty-one are shared with the AD-psychosis combined 

network. Net influence parameters are calculated for these 21 targets and sorted by their 

Betweenness centrality values (Table 2.8). 

Table 2.7 Characteristics of Vitamin D network 

Network 
Name 

Node 
Number 

Edge 
Number 

Average Degree 
Centrality 

Average Betweenness 
Centrality 

Vitamin D 89 344 0.0869 0.018 
 

Table 2.8 Overview of top net-influencers ranked by betweenness values for overlapping proteins (named by 

their genes) between AD-psychosis combined network and Vitamin D network 

Gene Name Degree Centrality Betweenness Centrality 
CACNA1C 0.0461 0.0245 

COMT 0.0454 0.0125 
NOTCH4 0.02 0.0072 

DRD3 0.0482 0.0043 
CD36 0.022 0.0024 
EGR1 0.0619 0.0022 
CCL2 0.0867 0.0018 
DLX5 0.0062 0.0010 

CYP1A1 0.0227 0.0008 
A2M 0.0358 0.0006 
VDR 0.0282 0.0006 

TGFB2 0.0296 0.0006 
TIMP3 0.0268 0.0006 
CD14 0.0227 0.0006 

CYP19A1 0.0296 0.0004 
NME1 0.0227 0.0003 

HSD11B1 0.0131 0.0002 
MMP12 0.0227 0.0002 

AMBRA1 0.0055 0.0002 
ALOX15 0.0117 0.0001 
GIG25 0.0145 0.0001 
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After sorting by the Betweenness centrality, CACNA1C, COMT, NOTCH4 and DRD3 

are ranked as the top four proteins. Their positions in the overlapping part of the combined 

network allow them to function more as a bridge to link different components of the network, 

which also suggests a therapeutic potential for AD+P. Therefore, these four proteins gained our 

special interest. One interesting thing is, when we look back at Figure 2.1, these four targets fell 

into the middle distribution of values for Degree centrality  and Betweenness centrality, which 

matched the conclusion that drug targets tend to be positioned at the transition area in a 

biological network[205].  

 

Figure 2.6 Distribution of Degree centrality and Betweenness centrality of overlapping proteins between AD-

psychosis combined network and Vitamin D network. Overlapping proteins between AD-psychosis combined 

network and Vitamin D network follows the same pattern as the whole networks. Some nodes like 
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CACNA1C, COMT, NOTCH4 and DRD3 possess much higher Betweenness centrality values than the 

average value of the network. Figure generated with matplotlib (https://matplotlib.org/) version 3.1.3[225]. 

Figure 6 shows the distribution of connectivity parameters of overlapping proteins 

between AD-psychosis combined network and Vitamin D network. The 21 overlapped nodes 

followed the distribution of the whole combined network and revealed several proteins with 

outstanding Betweenness centrality values. These proteins will tend to act as the “bridges” in 

communicating AD-, psychosis-related network and Vitamin D perturbed network and thus the 

potential explanation of the beneficial effects of Vitamin D against AD+P. 

2.1.4 4. Conclusion and Discussion 

The network analysis based on the protein-protein interaction data have presented us four 

potential targets encoded by genes CACNA1C, NOTCH4, COMT and DRD3 that may account 

for the beneficial effects of Vitamin D against AD+P. These four potential targets all possess 

high enough connectivity to alter the crosstalk between AD and psychosis. In addition, variants 

in CACNA1C, NOTCH4 and COMT had been reported to be associated with schizophrenia in 

GWAS studies[226; 227; 228]. Among them, the function of CACNA1C, NOTCH4 and COMT 

were reported to be closely associated with calcium homeostasis [229; 230; 231; 232; 233; 234; 

235] which can be further associated with Vitamin D’s effect. Similarly, after the activation of 

DRD3 by dopamine, the Gβγ complex is released and can interact directly with voltage-gated 

calcium channels[236; 237]. Except for NOTCH4, all are targeted by marketed drugs for 

different indications. Interestingly, DRD3 is one of the primary targets for antipsychotics in 

treating psychotic symptoms in schizophrenia or other neurological disorders[238; 239]. 

Alternative splicing of DRD3 in the transcription process may result in encoding different 

https://matplotlib.org/
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isoforms that are functionally impaired[240]. Although limited, there is some support for 

targeting DRD3 in the treatment of AD+P[241; 242]. However, verification of DRD3 or the 

other of these four potential targets for AD+P will require additional studies. 

The beneficial effect of Vitamin D against AD have been widely reported. The protective 

effect of Vitamin D can be executed by reducing the oxidative and nitrosative damage caused by 

elevated levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in nerve 

cells[243]. There is also evidence suggesting an overlap between the disruptions of vitamin D 

pathways with amyloid pathology which can partially explain the protective role of Vitamin D in 

AD[244]. However, this study is the first study to explore the mechanism of Vitamin D’s 

beneficial effect against AD+P. In this study, the triple-focusing approach we use can help 

minimize the bias caused by the amount of studies and restrain our scope at Vitamin D related 

potential targets. 

There are limitations in this study. The PPI networks were constructed based on the 

protein-protein interaction data extracted from databases, thus they are limited by the amount and 

availability of data in the databases. Also, there is no direction information attached with most 

PPIs which means our PPI networks are undirected. Therefore, centrality measures can be biased 

by the direction information in actual situations.  

In this study, various approaches of network analysis are incorporated with systems 

pharmacology to provide a systematic overview on the crosstalk among AD, psychosis and 

Vitamin D at the molecular level. The triple-focusing network method helps us explore the 

designated mechanisms for Vitamin D’s effects on AD+P and a potential explanation is 

provided: Vitamin D regulates several genes encoding proteins that play critical roles in the 

overlapping part of the AD-psychosis combined network, which allow them maximally influence 
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the signaling and information transfer process. In other words, proteins with high net-influence 

that localize at the triple-overlapped part of the AD, psychosis and Vitamin D network, like 

CACNA1C, COMT, NOTCH4 and DRD3, possess the ability to play an important role in the 

crosstalk among AD and psychosis by delivering Vitamin D’s effect to the transiting hub 

connecting the AD network and psychosis network. Thus, the four identified potential targets can 

be crucial in explaining Vitamin D’s beneficial effect against AD+P. To conclude, the results 

from this study provided a possible explanation of the beneficial effect of Vitamin D against 

AD+P and presented a new direction for drug development with four potential novel targets. 

 

2.2 Efficacy Difference of Antipsychotics in Alzheimer's Disease and Schizophrenia: 

Explained with Network Efficiency Analysis 

2.2.1 Background and Significance 

Psychotics symptoms may present in in many neurodegenerative disorders (e.g., Lewy 

body dementia), as well as other psychiatric disorders (Bipolar with psychosis). However, the 

prototypic psychotic disorder is schizophrenia, and the efficacy of the vast majority of 

antipsychotic medications for treating psychosis was established in treating this disorder. This is 

why we are currently using medications indicated for schizophrenia to treat AD+P[11; 12; 13].  

However, recent studies using polygenic risk scores (PRS) — a score for an individual 

that is calculated by summing risk alleles carried weighted by their effect size — to evaluate 

shared genetic liability with schizophrenia (albeit with overlapping samples) produced variable 
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results, and it promoted that the associations for delusions and hallucinations might be different 

in schizophrenia and AD+P[245]. 

Therefore, a more systematic examination of the psychotic symptoms in AD and their 

mechanistic similarities with schizophrenia symptoms is required. One could expect that the 

presence of a schizophrenia-like phenotype would confer a greater response to antipsychotics, 

and alternative treatment techniques could be sought for symptom profiles that are less consistent 

with schizophrenia. 

In 2021, Dr. Robert Sweet and his group published the first GWAS results for AD+P[46]. 

The results were generated from a Discovery Cohort of 2876 AD subjects with (N=1761) or 

without psychosis (N=1115) and replicated in another cohort of 2194 AD subjects with (N=734) 

or without psychosis (N=1460). Curiously, this study showed that increasing schizophrenia 

polygenic risk score was associated with reduced risk of psychosis in AD (coefficient = -0.159, p 

value = 5.5e−18). 

Studies of familial aggregation of AD+P have established that the risk for AD+P is, in 

part, genetically mediated[246]. However, despite some symptomatic overlap, AD+P is not 

genetically correlated with schizophrenia risk[247]. Therefore, identifying the similarities and 

differences between their associated genetic mechanisms may provide a mechanism for 

understanding the reduced benefit for antipsychotics in AD+P. In this study, we applied network 

analytic approaches incorporating transcriptomic and genomic data from AD+P and 

schizophrenia subjects to accomplish this goal. 
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2.2.2 Material and Methods 

2.2.2.1 Dataset collection 

Differentially expressed genes (DEGs) and Genome Wide Association Studies (GWAS) 

data for AD+P were used to construct the protein-protein interaction (PPI) networks[247; 248]. 

GWAS data for schizophrenia was collected from GWAS Catalog 

(https://www.ebi.ac.uk/GWAS/home), and DEGs were collected from the CommondMind 

Consortium[249] and the psychENCODE cohorts[250]. Genes from GWAS and DEGs are 

pooled together to create an inclusive gene set that will represent the genetic characteristics of 

the disease as accurate as possible and these genes were used to construct the networks, 

respectively. These gene names were then converted to protein names by batch search function 

in the UniProt database[229].  

Information about antipsychotics and their targets was extracted from DrugBank 

(https://www.drugbank.ca/)[186]. The pharmacological action label of a drug provides 

information about whether binding to a target contributes to the pharmacological effects. For 

example, Olanzapine can bind to multiple neuronal receptors, including the dopamine receptors 

D1, D2, D3 and D4, the serotonin receptors 5HT2A, 5HT2C, 5HT3 and 5HT6, the alpha-1 

adrenergic receptor, the histamine receptor H1 and multiple muscarinic receptors. However, 

Olanzapine’s antagonistic effect towards the DRD2 receptor in the mesolimbic pathway and 

serotonin receptor 5HT2A in the frontal cortex are considered as keys in achieving its 

pharmacological effects[251]. Thus DRD2 receptor and 5HT2A are labeled with known 

pharmacological action while other receptors are labeled as unknown pharmacological action. 

Antipsychotics are evaluated as two sub-groups: first generation antipsychotics (FGAs) and 

https://www.ebi.ac.uk/gwas/home
https://www.drugbank.ca/
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second generation antipsychotics (SGAs). First generation antipsychotics are D2 antagonists and 

second generation antipsychotics are 5HT2A/D2 antagonists [252]. 

PPI data was collected from STRING (https://string-db.org/)[214]. The PPI networks 

were constructed and analyzed with python package networkx (https://networkx.github.io/)[216]. 

The interaction network was shown in the molecular action view with the medium confidence 

level (> 0.4) which is commonly used in other literatures[217]. AD+P-related proteins and 

schizophrenia-related proteins were joined with targets of antipsychotics to construct two 

disease-targets networks, i.e., AD+P-targets PPI network (AD+P network) and schizophrenia-

targets PPI network (SCZ network). We also included the proteins which served to bridge 

between disease module proteins and target module proteins in our disease-targets networks, 

even if these bridging proteins were not included in the disease or target protein sets originally. 

In addition, pathway enrichment analysis was conducted through the ingenuity pathway 

analysis (IPA, QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). 

2.2.2.2 Network Analysis 

Network analysis approaches are incorporated to explain the modest efficacy of 

antipsychotics in AD+P. We hypothesized that the structure differences between protein-protein 

interaction (PPI) networks of AD+P and schizophrenia might result in different signaling 

transduction initiated by the antipsychotics and thus affect the drug efficacy. Network 

approaches have been used in predicting and identifying the disease genes in multiple studies and 

some of the results have been verified[203; 204]. While the drug actions depend on the complex 

signaling transduction networks of cells or the complicated profile of drug potency and 

selectivity, the effect of a drug can be evaluated by the impact of the drug’s targets toward a PPI 

https://string-db.org/
https://networkx.github.io/
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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network representing as a disease[253]. Therefore, we built two PPI networks for AD+P and 

schizophrenia respectively with targets of antipsychotics added to evaluate the effects of 

antipsychotics in these two diseases in a quantitative manner. 

The efficiency of nodes in the network was calculated based on the built-in algorithm of 

networkx[216; 254]. Efficiency is a measurement of how efficiently a node can exchange 

information with other parts of the network[254], which has been widely used in neurology 

research. We calculated several graph-based metrics to characterize their topological 

organization at different levels, including global small-world network efficiency (global 

efficiency, local efficiency) and nodal efficiency. The definition and calculation methods are 

briefly introduced below in the context of an undirected network G with N nodes and K edges.  

2.2.2.3  Small-world Efficiency 

Efficiency is a biologically relevant metric to describe biological signaling networks from 

the perspective of parallel information propagation and exchange[255]. It can be calculated at 

both global and local levels. Mathematically, global efficiency is defined in equation 2-1: 

Equation 2-1 

 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐺𝐺) =
1

𝑁𝑁(𝑁𝑁 − 1)
�

1
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗∈𝐺𝐺

    

where N is the total node number of the connected network G, dij is the shortest distance 

between i and j in G which is the smallest sum of edge lengths throughout all possible paths from 

node i to node j in this study. Global efficiency mainly measures the ability of parallel 

information transmission over the network[256]. 

The local efficiency of G is defined in equation 2-2: 

Equation 2-2 
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 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺) =
1
𝑁𝑁
�𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐺𝐺𝑖𝑖)
𝑖𝑖∈𝐺𝐺

 

where N is the total node number of the connected network G, Eglob(Gi) is the global 

efficiency of Gi, the subgraph contained all the neighbors of node i (i.e., nodes linked directly to 

node i). The result of local efficiency measures the fault tolerance of the network, indicating the 

capability of information exchange for each subgraph when the index node is eliminated[256]. 

A small-world network is a type of mathematical graph in which most nodes are not 

neighbors of one another, but the neighbors of any given node are likely to be neighbors of each 

other and most nodes can be reached from every other node by a small number of hops or 

steps[257]. Small-world coefficient (sigma) is proposed to be used to accurately distinguish 

small-world network (sigma >1)[258; 259; 260]. The calculation of sigma is defined as 

follows[261]: 

Equation 2-3 

C =  1
𝑁𝑁
∑ 𝐶𝐶𝐶𝐶𝑖𝑖∈𝐺𝐺   

σ =
𝐶𝐶
𝐶𝐶𝐶𝐶

𝐿𝐿
𝐿𝐿𝐿𝐿

�   

where N is the total node number of the connected network G, C and L are respectively 

the average clustering coefficient and average shortest path length of G, Cr and Lr are 

respectively the average clustering coefficient and average shortest path length of an equivalent 

random graph. 

2.2.2.4  Nodal Efficiency 

To measure the efficiency of a certain node, two major factors should be taken into 

consideration: 1) the number of nodes that can be connected to this node through edges in the 
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network(N); 2) the distance between other connected nodes and the node of interest(dij). 

Therefore, nodal efficiency of a node (i) is calculated as follow: 

Equation 2-4 

 E(i) =
1

𝑁𝑁 − 1
�

1
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗∈𝐺𝐺

  

where N is the total node number of the connected network G, dij is the shortest distance 

between i and j in G. Nodal efficiency measures the ability of information propagation between a 

node and the remaining nodes in the network. A node with high nodal efficiency indicates high 

capability of information transmission with other nodes and can therefore be categorized as a 

hub. 

2.2.2.5 Method Validation 

Before we apply network analysis methods to antipsychotics in AD+P and SCZ 

networks, we want to validate its ability to detect the efficiency differences of drugs in diseases. 

To accomplish that, we use first generation antipsychotics (FGAs), second generation 

antipsychotics (SGAs) and benzodiazepines as example to test their efficacy differences in 

schizophrenia. Abundant studies have shown that in schizophrenia, SGAs have slightly higher 

efficacy than FGAs[262], and both FGAs and SGAs are significantly more efficacious than 

benzodiazepines[263]. Therefore, SGAs and FGAs will serve as positive examples and 

benzodiazepines will serve as negative example.  

We use these 3 categories of medications to evaluated 6 network metrics: Degree 

centrality[264], Closeness centrality[264], Betweenness centrality[264], Clustering 

coefficient[265] and Integrated Value of Influence (IVI)[266]. Networks were processed and 

analyzed with python package networkx[216].  
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2.2.2.6 Statistical Analysis 

Nodal efficiency values are calculated as described above for antipsychotics’ targets in 

AD+P network and SCZ network respectively. Therefore, the efficiency of targets in two 

networks can be compared in pairs to evaluate the difference of drug effects in two diseases. 

After testing, the distribution of efficiency values do not follow normal distribution, as such 

Wilcoxon signed-rank test[267] is used to determine whether two dependent samples were 

selected from populations having the same distribution. 

2.2.2.7 Binding Affinity-Based Weight Calculation 

Binding affinity values, including Ki, EC50, IC50 and AC50, for drugs against their 

targets were extracted from ChEMBL (https://www.ebi.ac.uk/chembl/)[268] with provided web 

service. Those values were used as the measurement for the strength of drug-target interactions. 

To align the effect of different binding affinity measurements, a relative strength (RS) for 

each target is calculated for different measurements as follow: 

Equation 2-5 

RS =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄  

where Bindingreference is the minimum binding values for achieved by any antipsychotics 

with a certain target and Bindingdrug-target is the binding value for a certain antipsychotics and 

target pair. 

https://www.ebi.ac.uk/chembl/
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2.2.2.8 Standard Protocol Approvals, Registrations, and Patient Consents 

The genetic data used in this study is contributed by Dr. Robert Sweet’s lab[247] and the 

collection of clinical data and genetic samples were approved by each source programs’ local 

Institutional Review Board or Medical Ethics Committee, as appropriate. 

2.2.3 Results 

2.2.3.1 Network Analysis Method Validation 

To validate the network analysis methods, a schizophrenia network with FGAs’ targets 

and a schizophrenia network with SGAs’ targets were constructed. In addition, to account for 

psychoactive effects not specifically targeting psychosis, a schizophrenia network with 

benzodiazepines’ targets was constructed. To present a baseline for the network metrics, we 

constructed a random network with same node number with the largest networks among the three 

networks (1462 nodes). Six network metrics for drug targets in these 3 networks were calculated 

by implemented methods in networkx[269]. The efficiency value of each medication was 

considered equal to the sum of all its targets’ efficiency values. Kruskal-Wallis H-test was 

performed to test if there are statistical differences among the 3 categories in 3 networks because 

the distributions of calculated metrics do not follow normal distribution[270]. As shown in Table 

2.9, all metrics showed significant among the 3 groups and the distributions are showed in the 

box plot (Figure 2.7).  
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Figure 2.7 Network metrics values distribution of 3 categories of medications in 3 networks with random 

network. The box plot showed that first and second generation antipsychotics showed comparable values in 

the schizophrenia network while benzodiazepines showed values close to 0. This result is in accordance with 

literature reports. 

 

Table 2.9 Statistical tests results for 6 network metrics 

Network Metrics H P value 

Degree centrality 51.5 1.36×10-09 

Closeness centrality 55.1 2.90×10-10 

Betweenness centrality 49.3 1.38×10-09 

Clustering coefficient 50.4 2.37×10-09 

IVI 45.6 3.64×10-08 

Efficiency 55.1 2.90×10-10 

H: Test statistic for Kruskal-Wallis H-test[270]. 

As shown in the box plot (Figure 2.9), FGAs and SGAs showed comparable values in 3 

networks while SGAs are slightly higher than FGAs. On the other hand, benzodiazepines’ 
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network metrics values are close to 0 indicating they may not possess any potential beneficial 

effect against schizophrenia, in accordance with the conclusion drawn by extensive evidence-

based research[263]. The random network showed close to 0 topological features compared to 

FGAs and SGAs while benzodiazepines showed similar metrics with random networks. 

Based on the results discussed above, the network analysis method is not only capable of 

distinguishing effective and non-effective treatments (antipsychotics and benzodiazepines), but is 

also able to differentiate the minor difference between sub-class of medications (FGAs and 

SGAs). 

2.2.3.2 Overview of Genetic Variations Associated with AD+P and Schizophrenia  

From the sources mentioned above, 975 genome wide associated variations and 1077 

differentially expressed genes were identified for AD+P relative to AD-P, and 1668 genome 

wide associated variations and 464 differentially expressed genes were identified for 

schizophrenia based on their significance. In total, 2013 and 2123 unique genes were identified 

associated with AD+P and schizophrenia, respectively. Meanwhile, 75 targets were collected 

form DrugBank for 21 antipsychotics that are commonly used in clinical settings, including 10 

first generation antipsychotics (FGAs) and 11 second generation antipsychotics (SGAs) (Full list 

of drugs in supplementary material ST1). 

Consistent with prior observations that AD+P and schizophrenia have limited shared 

genetic risk[247], only 148 genes overlapped between these disorders. Antipsychotics’ 

pharmacological targets are also jointly presented in Figure 2.8, 17 antipsychotics target genes 

overlap with AD+P and 9 overlap with schizophrenia.  
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Figure 2.8 The Venn diagram of AD+P and schizophrenia-related genes and antipsychotics’ targets genes. 

 

2.2.3.3 Parameter Descriptions of AD+P Network and SCZ Network  

Target-disease networks for AD+P and schizophrenia are constructed based on the 

previously identified genes and target proteins for antipsychotics. Only genes having interactions 

with other genes within the network are included. The basic information for the two networks 

can be found in Table 2.10. Both networks are confirmed as small-world networks, with small-

world coefficient (sigma) > 1 as we described in method section. The AD+P network showed 

higher global and local efficiency reflecting its larger network size.  

Table 2.10 General network parameters for AD+P and SCZ networks 

 Node 
Number 

Global 
Efficiency 

Local 
Efficiency 

Small-world 
Coefficient 

(sigma) 
AD+P network 1512 0.289 0.262 5.825 

SCZ network 1249 0.297 0.270 7.518 
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2.2.3.4 Decreased Drug Efficacy in AD+P Compared to Schizophrenia  

2.2.3.4.1 Decreased Efficacy for Major Antipsychotics’ Targets in AD+P Compared to 

Schizophrenia 

Nodal efficiency values were calculated for antipsychotics’ targets to evaluate for 

differences between AD+P and schizophrenia. Efficiency values for the major targets of 

antipsychotics are shown in Table 2.11. Antipsychotic targets in the AD+P network showed a 

significantly lower efficiency than those in SCZ network (P = 0.0039).  

Table 2.11 Efficiency of major antipsychotics’ targets in AD+P and schizophrenia 

Targets Efficiency in 
AD+P network 

Efficiency in 
SCZ network 

DRD2 0.363 0.381 
HTR2A 0.337 0.371 
DRD1 0.332 0.347 

ADRA1A 0.29 0.319 
DRD3 0.315 0.33 
HRH1 0.309 0.311 

HTR1A 0.304 0.355 
DRD4 0.307 0.337 

Paired Wilcoxon Test W = 36, P = 0.0039 
DRD2: Dopamine Receptor D2; DRD3: Dopamine Receptor D3; DRD4: Dopamine Receptor D4; HTR1A: 5-

Hydroxytryptamine Receptor 1A; HTR2A: 5-Hydroxytryptamine Receptor 2A; ADRA1A: Adrenoceptor 

Alpha 1A; HRH1: Histamine Receptor H1. 

The results in Table 2.11 indicate that these targets have less impact in AD+P compared 

with schizophrenia when perturbed with the same strength and can be interpreted as the 

antipsychotics targeting these proteins may therefore be less efficacious in AD+P than in 

schizophrenia. 
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2.2.3.4.2 Decreased Efficiency for Antipsychotics in AD+P Compared to Schizophrenia 

To acquire a more direct measure, efficiencies of antipsychotics were calculated in the 

networks. The efficiency value of each antipsychotic was considered equal to the sum of all its 

targets’ efficiency. FGAs and SGAs were calculated separately in two sets of networks. As 

Table 2.12 showed, all SGAs have lower efficiency values in AD+P network compared to 

schizophrenia network (P < 0.001). This might indicate that these SGAs would have lower 

activity in AD+P than in schizophrenia. 

Table 2.12 Network efficiency of second generation antipsychotics calculated from AD+P network and 

schizophrenia network 

Drugs Efficiency in AD+P 
network 

Efficiency in SCZ 
network 

Paliperidone 1.694 1.831 
Brexpiprazole 1.643 1.799 

Sertindole 1.337 1.45 
Aripiprazole 0.726 0.779 
Clozapine 0.726 0.779 

Iloperidone 0.726 0.779 
Olanzapine 0.726 0.779 
Quetiapine 0.726 0.779 
Risperidone 0.726 0.779 
Ziprasidone 0.726 0.779 
Lurasidone 0.352 0.386 

Pimavanserin 0.352 0.386 
Paired Wilcoxon Test W = 78, P < 0.001 

 

As for FGAs, their efficiency values were also calculated in AD+P network and SCZ 

network. Similar to SGAs, FGAs showed significantly lower values in AD+P than in 

schizophrenia (Table 2.13) (P < 0.001). In addition, some FGAs, like Chlorpromazine and 

Thioridazine, showed higher or comparable efficiency values with the top SGAs. These results 

can be interpreted in two ways: 1) the results are biased by the amount of study because more 

studies are done on FGAs so they have more known targets included in the database; 2) Since the 
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network analysis method can only evaluate drug efficiency, it is possible that Chlorpromazine 

may have comparable or better efficacy than some SGAs. As a matter of effect, Chlorpromazine 

is reliable for its efficacy and one of the most tested first-generation antipsychotic drugs. It has 

been used as a ‘gold standard’ to compare the efficacy of older and newer antipsychotic drugs.  

According to randomized controlled trials (RCTs) that compared chlorpromazine with any other 

atypical antipsychotic drugs for schizophrenia, it showed comparable efficiency with olanzapine, 

risperidone, and quetiapine[271]. Therefore, it is reasonable that Chlorpromazine showed 

comparable efficiency values with the SGAs. 

Table 2.13 Efficiency of FGAs in AD+P and schizophrenia 

Drugs Efficiency in AD+P 
network 

Efficiency in 
SCZ network 

Chlorpromazine 2.311 2.489 
Thioridazine 1.675 1.798 
Thiothixene 1.068 1.138 

Trifluoperazine 0.961 1.037 
Loxapine 0.726 0.779 

Mesoridazine 0.726 0.779 
Fluphenazine 0.716 0.752 
Perphenazine 0.716 0.752 
Haloperidol 0.699 0.755 
Molindone 0.374 0.393 

Paired Wilcoxon Test W = 55, P < 0.001 
 

2.2.3.4.3 Weighted Efficiency Based on Binding Affinity Values for Antipsychotics in 

AD+P and Schizophrenia 

In the above sections, the efficiency values for antipsychotics were calculated as a simple 

sum of efficiency values from all its targets. A simple sum method is accurate under the 

assumption that all antipsychotics can impact their targets at the same strength. In order to 
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acquire a more accurate result, binding affinity-weighted efficiency values were calculated for 12 

antipsychotics for which data was available and 21 drug-target pairs were included. All the 

targets included in this section have been validated for pharmacological effects. Weights and 

weighted efficiencies were calculated as: 

                                                                W𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 10 ×  𝑆𝑆                                                           (7) 

                                                     E𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡(i) = W𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ E(i)                                                   (8) 

where Wdrug-target is the weight for a drug-target pair, S is the relative strength of the 

binding affinity between drug and target. Therefore, weighted efficiency for an antipsychotic can 

be calculated by the sum of all Eweighted from its targets. As we can see in Table 2.14, the values 

of weighted efficiency for antipsychotics are significantly lower in AD+P network (P=0.0016) 

than in the SCZ network. 

Table 2.14 Weighted efficiency of selected antipsychotics in AD+P and schizophrenia 

Drugs Weighted efficiency in 
AD+P network 

Weighted efficiency in 
SCZ network 

Sertindole 8.535 9.357 
Fluphenazine 4.016 4.206 
Ziprasidone 3.619 3.964 
Risperidone 0.967 1.058 
Lurasidone 0.799 0.877 
Loxapine 0.681 0.746 
Clozapine 0.194 0.212 
Olanzapine 0.177 0.193 

Pimavanserin 0.092 0.101 
Aripiprazole 0.025 0.026 
Haloperidol 0.014 0.014 
Quetiapine 0.008 0.009 

Paired Wilcoxon Test W = 66, P = 0.0016 
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2.2.3.5 Different Pathways Involved in AD+P and Schizophrenia Networks 

To get a more detailed look at how AD+P network and SCZ network react toward 

antipsychotics, several of the most commonly used SGAs (Aripiprazole, Olanzapine, Quetiapine, 

and Risperidone) were selected as examples to explore the pathways that are affected when 

administrated. All SGAs share DRD2 and HTR2A as major targets. The signaling pathways 

represented by first and second neighbors of these two targets are of great value since 

information flow attenuates quickly in networks[272]. As illustrated in Figure 2.9, DRD2 and 

HTR2A share some common target genes but there is a significant portion of their down-stream 

genes that do not overlap with each other. Taken together the pathways represented by these 

different genes can be the keys to answer why SGAs are less efficient in AD+P than in 

schizophrenia.  
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Figure 2.9 Comparison of first and second neighbors of DRD2 and HTR2A in AD+P network and SCZ 

network. First-neighbor proteins in the AD+P network and the SCZ networks are shown in the inner circle 

and second-neighbor proteins in the outer circle. If a perturbation is applied to DRD2 and HTR2A, different 

reactions can be expected from the AD+P and SCZ network due to these connection differences, resulting in 

different signaling pathways that are affected. 

 

Furthermore, pathway enrichment analysis was conducted for the genes that are 

exclusively affected in the AD+P network by DRD2 and HTR2A (489 genes for DRD2, 233 for 

HTR2A). The ten most significant pathways are showed in Table 2.15. The pathways identified 

in Table 2.15 are exclusive for the AD+P network. From the pathways identified in Table 2.15, 
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we can see a strong association with inflammation reactions in human tissue and can also see an 

association with autophagy and apoptosis. In addition, RNA synthesis and cell cycle related 

pathways are highlighted in our results. Since HTR2A and DRD2 are the most targeted drug 

targets for antipsychotics and are involved in multiple biological processes that play important 

roles in human neurological activities, the difference of their downstream effect can tell us a lot 

in how they respond differently to the medications. Just like we showed in Table 2.15, the 

results of the pathway analysis suggest a tighter bound between AD+P and neuro inflammation. 

 

Table 2.15 Overrepresented unique pathways of AD+P 

Targets Pathways P value* 
Overlaps 

with 
dataset 

Genes overlapped with 
datasets 

DRD2 

Cell Cycle: G2/M DNA 
Damage Checkpoint 

Regulation 
5.62E-09 0.22 

ATR,BORA,BTRC,CDK
1,PPM1D,PRKDC,RPS6
KA1,WEE1,YWHAB,Y

WHAH,YWHAZ 

tRNA Charging 1.48E-05 0.179 
AARS2,DARS1,EPRS1,G
ARS1,LARS2,RARS2,SA

RS1 

Role of PKR in 
Interferon Induction and 

Antiviral Response 
3.16E-05 0.0882 

ATF3,CASP8,HSP90AB1
,IFIH1,IFNGR1,IRF1,JA
K1,MAPK3,MARCO,NL

RP3,STAT1,TRAF6 

Cyclins and Cell Cycle 
Regulation 6.76E-05 0.107 

ATR,BTRC,CDK1,HDA
C4,PPP2CA,RB1,RBL2,T

GFB3,WEE1 

Systemic Lupus 
Erythematosus In B Cell 

Signaling Pathway 
8.71E-05 0.0614 

BCL2L1,CALML5,CD40,
CTNNB1,IFIH1,IFNGR1,
JAK1,LYN,MAPK3,PIK3
CB,PIK3R5,PTPN11,RA
SGRP3,SHE,STAT1,TGF

B3,TRAF6 

IL-22 Signaling 1.23E-04 0.208 IL10RB,IL22RA2,JAK1,
MAPK3,STAT1 

Urate 
Biosynthesis/Inosine 5'-
phosphate Degradation 

1.62E-04 0.286 IMPDH1,IMPDH2,NT5C,
NT5C1A 
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EIF2 Signaling 2.88E-04 0.0628 

ACTA2,ATF3,IGF1R,M
APK3,PIK3CB,PIK3R5,P
PP1CB,RPL13A,RPL21,
RPL32,RPL6,RPS14,RPS

6,RPS8 
Phosphatidylcholine 

Biosynthesis I 3.02E-04 0.429 CHKA,PCYT1A,PCYT1
B 

Wnt/β-Catenin Signaling 3.09E-04 0.0694 

BMPR2,BTRC,CDH2,CS
NK1A1,CTNNB1,PIN1,P
PP2CA,SOX2,SOX9,TGF

B3,TLE1,WNT8B 

HTR2A 

IL-22 Signaling 3.55E-06 0.208 IL10RB,IL22RA2,JAK1,
MAPK3,STAT1 

Systemic Lupus 
Erythematosus In B Cell 

Signaling Pathway 
2.51E-05 0.0433 

CALML5,CD40,CTNNB
1,FGR,IFNGR1,JAK1,LY
N,MAPK3,PIK3CB,PIK3

R5,PTPN11,STAT1 
Phosphatidylcholine 

Biosynthesis I 3.39E-05 0.429 CHKA,PCYT1A,PCYT1
B 

Rac Signaling 7.76E-05 0.058 
IQGAP1,ITGAL,MAPK3,
PIK3CB,PIK3R5,PIP4K2

A,PIP4K2C,PTK2B 
Role of JAK family 
kinases in IL-6-type 
Cytokine Signaling 

1.05E-04 0.16 JAK1,MAPK3,PTPN11,S
TAT1 

JAK/Stat Signaling 1.78E-04 0.0732 JAK1,MAPK3,PIK3CB,P
IK3R5,PTPN11,STAT1 

RhoA Signaling 2.57E-04 0.0565 
ARHGEF1,GNA12,IGF1
R,PIP4K2A,PIP4K2C,PP

P1CB,PTK2B 

RhoGDI Signaling 3.31E-04 0.0419 

ARHGEF1,GNA11,GNA
12,GNB4,GRIP1,ITGAL,
PIP4K2A,PIP4K2C,RHO

U 

Interferon Signaling 4.47E-04 0.111 IFNGR1,IRF1,JAK1,STA
T1 

Trans, trans-farnesyl 
Diphosphate 
Biosynthesis 

9.77E-04 0.4 FDPS,IDI1 
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2.2.4 Discussion and Conclusion 

In this study, we elucidated the underlying sources of efficacy differences of 

antipsychotics in AD+P and schizophrenia by using network efficiency and pathway analysis on 

the combined disease-target network. The major targets of antipsychotics are found to have 

lower efficiency in the AD+P network than in the SCZ network, indicating that the 

antipsychotics interacting with these targets may modulate AD+P less efficiently. Finally, we 

identified pathways that are engaged by antipsychotics are involved in AD+P, but not in 

schizophrenia, and which may contribute to the limited efficacy or enhanced toxicity of these 

medications in AD+P. 

Multiple meta-analysis studies have reported the modest efficacy of antipsychotics in 

treating AD+P[11; 273]. In those studies, Aripiprazole, Olanzapine, Quetiapine, and Risperidone 

were most extensively studied. Though no broad and strong effect was reported across trials and 

measurements, individual agents showed some efficacy on specific outcome measures. In our 

results, Aripiprazole, Olanzapine, Quetiapine, and Risperidone are ranked 4st, 7th, 8th and 9th in 

Table 2.12 as the leading part in SGAs, but changed to 10th, 8th, 12th and 4th when weight is 

applied in Table 2.14. The ranks of these 4 SGAs accord well with other evidence of efficacy 

where Risperidone > Aripiprazole > Olanzapine > Quetiapine is suggested[274]. Risperidone, as 

the only antipsychotics licensed for the treatment of aggression (in Europe but not in the USA), 

has been reported by multiple studies including clinical trials as having beneficial effects against 

AD+P[274; 275].  

While not many antipsychotics have been tested against AD+P, the results of this study 

can also help nominate antipsychotics that may possess higher efficacy in treating AD+P that 

should be tested in the future. Three antipsychotics, Sertindole, Fluphenazine, and Ziprasidone, 
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showed a higher weighted efficacy than Risperidone which is the most effective and commonly 

used SGA in clinic. Fluphenazine is a first-generation antipsychotic, and is uncommonly used in 

AD+P due to  extrapyramidal side effects, and thus we can rule it out from the list[276]. 

Sertindole and Ziprasidone provide better efficacy and safety profiles in treating psychosis[277; 

278]. Previous studies also showed that Sertindole has better performance than other SGAs on 

cognitive functions such as processing speed and executive function while Ziprasidone has better 

performance on composite score, executive function and processing speed, working memory, 

and memory and verbal learning[279]. The benefits of Sertindole and Ziprasidone can be 

supported by their higher affinity for 5HT6, 5HT2C and 5HT3 receptors[280; 281]. Therefore, 

we believe that Sertindole and Ziprasidone are promising candidates for antipsychotics with 

improved efficacy in treating AD+P. 

The results of pathway enrichment analysis showed that when similar perturbation is 

applied to major antipsychotics’ targets, like DRD2 and HTR2A, AD+P patients will have 

different reactions compared to schizophrenia patients because the pathways influenced by the 

perturbation are different under the two disease conditions. The identified overrepresented 

pathways shown in Table 2.15 indicate a special role of neuroinflammation and RNA synthesis 

in AD+P compared with schizophrenia. Furthermore, many studies have reported the role of 

neuroinflammation in the pathogenesis of AD[282; 283] and schizophrenia[284]. The results of 

our study showed that though inflammation processes are involved in both conditions, different 

responses can be activated in AD+P and schizophrenia patients and can be used to explain the 

causal relationship between activated systemic inflammation and the development of 

neuropsychiatric symptoms in AD[282]. The accordance between the existing reports and results 

of our pathway enrichment analysis provided additional supports for the rationale of our results. 
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The different pathways affected in AD+P and schizophrenia may also have a peripheral effect 

that can increase the risks of adverse events for antipsychotics in AD+P patients. Infection, for 

example, is a common adverse event reported by multiple studies[285; 286] and can be 

associated with the interruption of immune systems caused by antipsychotics[287; 288].  

The size difference of the AD+P and SCZ networks may raise bias. To minimize the 

possible bias, multiple approaches were considered, including filtering nodes and edges with 

certain threshold to fix the size or density of networks. However, these approaches may 

introduce new bias to this study by enforcing noise in a smaller network and ignoring significant 

connections in a larger network. Furthermore, since these two networks are categorized as small-

world networks, their connectivity parameters are not sensitive to changes in network size by 

definition[257]. Additionally, a study conducted by BCM Van Wijk indicated that the average 

path length and cluster coefficient in a small-world network are not sensitive to change of node 

number or to average degree[289]. Since our efficiencies are calculated based on the path lengths 

in different networks, we believe it’s safe to say the bias caused by network size in our 

measurement is minimized and acceptable. 

Collectively, the results of this study not only provide a possible explanation for 

antipsychotics’ modest efficacy in AD+P but can also help nominate antipsychotics that may 

possess higher efficacy in treating AD+P which should be tested in further studies, Sertindole 

and Ziprasidone. In addition, the methodology we used in this study showed great accordance 

with other reported pieces of evidence by incorporating bioactivity data with network analysis 

approaches. This methodology can be applied to provide support and guidance in drug 

repurposing or treatment optimization studies. 
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3.0 Identification and Validation of Alternative Treatment Options for AD+P with 

Quantitative Systems Pharmacology Methods 

3.1 Drug Repurposing Screening for Alternative Treatment for AD+P 

3.1.1 Background and Significance 

Repurposing medications indicated for other behavioral and psychological symptoms to 

treat AD+P is believed as the next most possible solution. Since every failed clinical trial of a 

new molecular entity (NME) consumes substantial time and resources, repurposing drugs already 

approved by the Food and Drug Administration (FDA) for a different indication is less 

expensive, involves already defined possible toxicities, and can have a higher success rate (30%) 

as compared to the development of an NME[290]. There are some reports about repurposing 

antidepressants, like citalopram and perphenazine[291; 292], as treatments for AD+P. However, 

without a systematic understanding of the mechanism of antidepressants’ beneficial effects, it is 

hard to optimize the balance between efficacy and tolerability. A systemic and comprehensive 

review of the association between antidepressants and AD+P is needed to provide support and 

guidance for drug repurposing studies in AD+P. 

Based on our previous studies, antipsychotics do not engage the underlying biology of 

AD+P, and therefore their modest effectiveness is unsurprising[293]. In order to identify safe 

and effective treatments for AD+P, it is essential to have a comprehensive understanding of the 

underlying biology of AD+P. A recent study reported that the heritability of psychosis in AD is 

estimated to be 61%, thus suggesting a strong association between AD+P and genetic 
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variations[294]. Another study performed a large genome-wide meta-analysis on 12,317 AD 

subjects with or without psychosis[247]. The authors reported that AD + P was not significantly 

genetically correlated with schizophrenia, but it was negatively correlated with bipolar disorder 

and positively correlated with depression.  

Gene expression signature (GES) is a set of comprehensive gene expression profiles that 

can reveal the difference between stimulated and normal cell states[295]. This concept is initially 

created for distinguishing different type of diffuse large B-cell lymphoma[295] and current 

applications of GES analysis are still fruitful in cancer-related areas for disease genotype 

classification and outcome predictions[296; 297; 298; 299; 300; 301; 302; 303; 304; 305; 306; 

307; 308; 309; 310; 311; 312; 313; 314; 315]. For example, Ramaswamy, S. et al. had created a 

GES database for diagnosing and categorizing the tumour type with an accuracy rate of 

78%[296]. Wright, G. et al. developed a Bayesian rule-based algorithm to classify diffuse large 

B cell lymphoma into two subgroups which have a significant difference in 5-yr survival 

rate[297]. Chen, H.-Y. et al. selected a five-gene signature which serves as an independent 

predictor of relapse and survival rate in non-small-cell lung cancer[301]. On the other hand, 

theoretically, the GES method can reveal the association (or in another word, similarity) between 

cell stages under disease condition and drug intervention, so it can be utilized as a drug 

repositioning strategy. Indeed, in recent years some successful cases of application on drug 

development are also reported[316; 317; 318; 319; 320; 321; 322; 323].  
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3.1.2 Methods and Material 

3.1.2.1 Data collection 

For the systems pharmacology study, the postsynaptic density (PSD) proteome was used 

to build the AD+P network. This proteomic signature was generated by Dr. Sweet’s team[324]. 

To identify medications that may possess beneficial effect against AD+P, information about 

medications and their targets were extracted from DrugBank (https://www.drugbank.ca/)[186] 

including medication names, targets of medications and their corresponding actions. Drugs are 

classified with Drugs’ Anatomical Therapeutic Chemical (ATC) Classifications on level 3 were 

collected from the WHO official website (https://www.whocc.no/atc_ddd_index/). All 

medications in the “Neurology” category (N) were included. 

The desired drug-target action should be the opposite with the DEGs and protein 

expressions in our dataset. For example, if a gene was upregulated within our datasets, it means 

that it might be responsible for many of the alterations we observed in AD+P relative to AD-P. 

Therefore, drugs that antagonize or otherwise inhibit its activity would be predicted to induce a 

signal that can reverse the expression profile we observed in AD+P, which may lead to beneficial 

effects.  

We extracted the gene expression profile for each drug from Level 5 LINCS L1000 data 

[325], a collection of gene expression profiles for thousands of perturbagens at a variety of time 

points, doses, and cell lines (GEO database accession numbers: GSE70138 and GSE92742). The 

gene expression profiles were included only if they are from drug treatments on a cell line 

derived from the central nervous system and the drug dose was > 1µM. To identify genes that are 

significantly differentially expressed, the Z scores from multiple tests for a same gene were 

averaged. An average |Z|>1 was considered a significant effect [326].  

https://www.drugbank.ca/
https://www.whocc.no/atc_ddd_index/
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3.1.2.2 Gene Expression Signature Similarity Calculation 

The association between drug and PSD data was quantitatively evaluated with Signed 

Jaccard Index [327]. The index ranges from +1 to −1, where +1 and −1 indicate the same, or 

inverse, pattern of two gene sets. 

Signed Jaccard Index (SJI), which is based on the Jaccard similarity coefficient[328], was 

used to compute the similarity between Gene Expression Signature (GES) profiles from a drug 

and a disease. The Jaccard similarity coefficient is a statistic used to gauge the similarity between 

different sample sets. It is defined as the size of the intersection divided by the size of the union 

of two sample sets. The Jaccard similarity coefficient of two given gene sample sets is calculated 

as follow: 

Equation 3-1 

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺1,𝐺𝐺2) =
𝑆𝑆
𝐴𝐴

 

 G1 and G2 stand for two lists of differentially expressed gene sets. And “S” represents 

the number of same genes between two given gene sets. “A” stands for all the unique genes 

appeared in the two gene sets. SJI, which combines Jaccard similarity coefficient with gene 

regulation direction is calculated as follow: 

Equation 3-2 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐺𝐺1,𝐺𝐺2) =
𝐽𝐽�𝐺𝐺1

𝑢𝑢𝑢𝑢,𝐺𝐺2
𝑢𝑢𝑢𝑢� + 𝐽𝐽�𝐺𝐺1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐺𝐺2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� − 𝐽𝐽�𝐺𝐺1

𝑢𝑢𝑢𝑢,𝐺𝐺2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� − 𝐽𝐽�𝐺𝐺1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝐺𝐺2
𝑢𝑢𝑢𝑢�

2
 

 

Where J means Jaccard similarity coefficient, Gup and Gdown are up- or down-regulated 

genes in the given gene set G, respectively. The index is ranging from +1 to -1, where +1 and -1 

indicate a completely same pattern and inverse pattern of two gene sets, respectively. And 0 

indicates that these two sets have no associations, or the same part is cancelled out by the inverse 
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part. The reason to use an un-ranked score calculation method (SJI) is to keep in accordance with 

the same scoring method used in the source database (CREEDS).  

3.1.3 Results 

132 of 354 neurological medications were found from LINC1000 database. All sub-

categories except N04C, Other Anti-Parkinson drugs (only contain Istradefylline), were 

represented in the results. 

Figure 3.1 showed the SJI values of sub-categories of neurological medications. Though 

parasympathomimetic medications showed the lowest average scores, but this group only 

contains two drugs which is not sufficient to carry statistical power. Antipsychotics, the current 

recommended treatment for AD+P, ranked at the fifth place while antidepressants ranked at the 

third place. Given that the other 3 groups in the top 5 only contains 3 or 4 drugs, antipsychotics 

and antidepressants are the sub-categories that may possess the most potential against AD+P that 

have considerable amount of data.  

Besides the analysis above on the basis of drug categories, we are also interested in which 

medications may possess strongest beneficial effect against AD+P. Based on our previous study, 

the average SJI of indicated drug-disease pairs is −0.00386 with a standard deviation of 

0.01794[327]. Therefore, any drugs with SJI lower than -0.004 were considered with potential 

therapeutic effects.  

Table 3.1 Drugs with SJI values smaller than the average value of indicated drug-disease pairs 

Drug Signed Jaccard Index Drug ATC Code Drug Category 

Amoxapine -0.0105 N06A Antidepressants 
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Sertraline -0.0103 N06A Antidepressants 

Prochlorperazine -0.00677 N05A Antipsychotics 

Maprotiline -0.00676 N06A Antidepressants 

Nefazodone -0.00645 N06A Antidepressants 

Tianeptine -0.00609 N06A Antidepressants 

Modafinil -0.00589 N06B 
Psychostimulants, Agents 

Used for ADHD and 
Nootropics 

Aripiprazole -0.00581 N05A Antipsychotics 

Diazepam -0.00580 N05B Anxiolytics 

Duloxetine -0.00543 N06A Antidepressants 

Neostigmine -0.00489 N07A Parasympathomimetics 

Mirtazapine -0.00488 N06A Antidepressants 

Phenelzine -0.00480 N06A Antidepressants 

Methylphenidate -0.00456 N06B 
Psychostimulants, Agents 

Used for ADHD and 
Nootropics 

Bupropion -0.00455 N06A Antidepressants 

Nortriptyline -0.00435 N06A Antidepressants 

Zolmitriptan -0.00433 N02C Antimigraine Preparations 

Dosulepin -0.00427 N06A Antidepressants 

 

As shown in Table 3.1, 18 medications showed smaller SJI values than the average SJI 

of indicated drug-disease pairs which means that these medications can invoke an opposite gene 

expression change with AD+P. Among these 18 medications, 11 of them are antidepressants and 
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2 of them are antipsychotics. The results of this study can be used to further guide drug 

repurposing studies or future clinical trials. 

 

Figure 3.1 Signed Jaccard Index values of differents categories of neurological madications towards AD+P. In 

this figure, each red dot represent a SJI for a drug, the orange square is the mathmatical mean of this 

category and the orange line is the median value. 
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3.1.4 Conclusion and Discussion 

It’s well recognized that a similar gene expression pattern is supposed to reflect a similar 

function[329]. We conducted a systemic high throughput screening to explore neurological 

medications that may possess beneficial effects against AD+P. The results of this study showed 

high accordance with existing clinical reports and observations[330; 331; 332; 333] that 

antipsychotics and antidepressants are the two major categories of drugs that are under heated 

discussion for the treatment of AD+P. The results of this study can not only support clinical 

decision making on drug selections, but also lead future repurposing studies and potential clinical 

trials to investigate other therapy alternatives for AD+P. 

Several limitations are unavoidable in this investigation. Despite the fact that we limited 

the DEGs data to within the CNS cell research, only a few cell types (mostly GL1) were 

examined, which may not reflect the expression variations in different brain areas. In addition, 

the test dosage is much different from the actual drug exposure in clinical settings, so modeling 

the actual drug exposure must take into account a great deal more variables. Furthermore, there 

are various forms of "therapy effect." Some medications may truly cure the disease, while others 

may only provide symptomatic relief, as such drugs may also create a distinct pattern of GES in 

comparison to the disease. 
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3.2 Prediction of Synergetic Effect of Antidepressants and Antipsychotics as A Novel 

Treatment Option for Psychosis in Alzheimer’s Disease 

3.2.1 Background and Significance 

Based on our previous studies, antipsychotics do not engage the underlying biology of 

AD+P, and therefore their modest effectiveness is unsurprising[293]. In order to identify safe 

and effective treatments for AD+P, it is essential to have a comprehensive understanding of the 

underlying biology of AD+P. A recent study reported that the heritability of psychosis in AD is 

estimated to be 61%, thus suggesting a strong association between AD+P and genetic 

variations[294]. Another study performed a large genome-wide meta-analysis on 12,317 AD 

subjects with or without psychosis[247]. The authors reported that AD + P was not significantly 

genetically correlated with schizophrenia, but it was negatively correlated with bipolar disorder 

and positively correlated with depression. These associations provide a biologic rationale for 

repurposing antidepressant agents as novel treatment options for AD+P in our current study. 

To answer if antidepressants are effective in managing neuropsychiatric symptoms in AD 

patients, nine clinical trials involving 692 patients were conducted. Five of them compared 

antidepressants with placebo and 4 compared with antipsychotics[291; 334; 335; 336; 337; 338; 

339; 340; 341; 342; 343]. However, only two selective serotonin reuptake inhibitors (SSRIs) 

sertraline (Zoloft) and citalopram (Celexa) were studied and the antipsychotics in the study were 

typical antipsychotics (haloperidol, perphenazine) while only 1 trial studied an SGA, risperidone. 

Among the five studies comparing SSRIs with placebo, two of them reported a significant 

benefit for Citalopram against AD+P[334; 336]. Meanwhile, no significant difference was 

reported between the efficacy of SSRIs and risperidone. Therefore, testing more antidepressants, 
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especially other classes of antidepressants such as serotonin-noradrenaline reuptake inhibitors, 

tricyclic antidepressants, and monoamine oxidase inhibitors, may be worthwhile to provide a 

better understanding of the impact of antidepressants on AD+P. 

While antipsychotics and antidepressants both have shown beneficial effects against 

AD+P, they have different targets which in turn can modulate different biological pathways. 

Thus, the combination of these drugs can potentially provide multiple advantages like enhanced 

efficacy, decreased dosage with an equal or increased level of efficacy, and delayed development 

of drug resistance [344]. Due to the excessive time and cost it takes to clinically test the drug 

combination effects, exhaustive computational methods can be used to predict drug synergy. By 

integrating information from drugs and diseases we can obtain a comprehensive picture of the 

potential synergetic effects of these drug combinations.  

To predict potential drug combinations for AD+P, we adopted the methods from Chen, 

S., et al. [345] and modified them by incorporating differentially expressed genes (DEGs) after 

drug treatment to minimize the bias caused by module sizes. Based on previous studies, for a 

drug pair to have a therapeutic effect on a disease, both target modules (green and yellow circles 

in Figure 3.2) of the two drugs must overlap with the disease module (pink circle in Figure 

3.2)[345]. In addition, the two target modules need to be overlapped with the disease module 

independently to form a complementary exposure to have synergetic effects with each other as 

shown in Figure 3.2. To be specific, the targets of the two drugs both need to be overlapped with 

the disease module in the PPI network, but these two target modules can’t overlap[345]. 

Therefore, two network approaches are applied to predict the possible drug combinations for 

AD+P: (1) network-based separation between targets of two drugs[346]; (2) gene signature-
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based proximity between the disease (AD+P) module and the target modules of the two 

drugs[347]. 

 

Figure 3.2 Schematic diagram for the network-based complementary exposure relationship between two 

drug–target modules and one disease module on a drug–drug–disease combination (adopted from Guney, E.; 

Menche, J.; Vidal, M.; Barábasi, A.-L., Network-based in silico drug efficacy screening. Nature 

communications 2016, 7 (1), 1-13. [347]). Big red circle: AD+P modules composed of AD+P related 

proteins/genes (small red rounds). Green and yellow circle: Drug modules composed of drug targets. 

The goal of our study is to further identify key combinations of antipsychotics and 

antidepressants that possess potential synergetic effects against AD+P with the help of our state-

of-the-art quantitative systems pharmacology approaches. 

3.2.2 Methods and Material 

3.2.2.1 Data collection 

To systematically evaluate the potential synergetic effect between antipsychotics and 

antidepressants, the postsynaptic density (PSD) proteome was used to build the AD+P network. 

This proteomic signature was generated by Dr. Sweet’s team[324]. Information about 

antipsychotics, antidepressants and their targets were extracted from DrugBank 
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(https://www.drugbank.ca/)[186]. The pharmacological action label of a drug provides 

information about whether binding to a target contributes to the pharmacological effects. PPI 

data was collected from STRING (https://string-db.org/)[214]. The PPI networks were 

constructed and analyzed using the python package networkx 

(https://networkx.github.io/)[216]. The interaction network was shown in the molecular action 

view with medium confidence level (> 0.4)[217]. AD+P-related proteins were joined with targets 

of antipsychotics and antidepressants to construct the disease-target network. In addition, we also 

included the proteins bridging proteins from disease module and proteins from the target module 

in our disease-targets networks. Gene signature data were used to calculate the proximity score 

for drugs and AD+P. The post-treatment gene signature data were obtained from the LINCS 

L1000 database[348].  

3.2.2.2 Prediction of synergetic effect among antipsychotic-antidepressant pairs 

3.2.2.2.1 Separation evaluation 

The separation score (SAB) of drug modules A and B are calculated for all possible 

combinations between antipsychotics and antidepressants. The separation score (SAB) of drug 

modules A and B can be calculated as: 

Equation 3-3 

 𝑆𝑆𝐴𝐴𝐴𝐴 = < 𝑑𝑑𝐴𝐴𝐴𝐴 >  −  
< 𝑑𝑑𝐴𝐴𝐴𝐴 >  + < 𝑑𝑑𝐵𝐵𝐵𝐵 >

2
 

where <dAA>, <dBB> and <dAB>, are the mean shortest distance for genes within each 

module. It compares the mean shortest distance between the targets of each drug. For better 

understanding, if SAB < 0, it means that the targets in the two drug modules are in the same 

https://www.drugbank.ca/
https://string-db.org/
https://networkx.github.io/
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network neighborhood which is not separated; if SAB ≥ 0, it means that the two drug modules 

are topologically separated from each other. We filter the combinations based on their ability to 

achieve complementary exposure with the AD+P module. 

3.2.2.2.2 Proximity evaluation 

Level 5 LINCS L1000 data, a collection of gene expression profiles for thousands of 

perturbagens at a variety of time points, doses, and cell lines, were downloaded from the GEO 

database (accession numbers: GSE70138 and GSE92742). Gene expression profiles were 

included only if they are tested on a cell line of central nervous systems and their dose should be 

beyond 1 uM. To identify genes that are significantly differentially expressed in the data, their Z 

scores from multiple tests were averaged and if their |Z|>1, the genes are considered as 

significant for a drug[349].  

The association between the drug and AD+P was quantitatively evaluated with Signed 

Jaccard Index(SJI)[327]. The index ranges from +1 to −1, where +1 and −1 indicate a same 

pattern and an inverse pattern of two identical gene sets, respectively. Zero indicates that the two 

sets have no overlap, or the positive and negative correlations cancel out. The detailed 

calculation methods were described in section 3.1.2.2. 

3.2.3 Results 

In total, 21 antipsychotics and 17 antidepressants commonly used in the clinic are 

included in our study along with 75 targets for antipsychotics and 32 targets for antidepressants. 

The PPI network was built with 240 AD+P proteins, targets for antipsychotics and 

antipsychotics. A PPI network with 321 nodes and 1,363 edges was generated. A total of 357 
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pairs of antipsychotics and antidepressants are evaluated in the network and their separation 

scores are calculated as shown in supplementary figure (SF2). 

We found that some antidepressants showed great separation (Vortioxetine, Vilazodone, 

Mirtazapine, Maprotiline), and most drugs pairs showed a separation score above 0 (blue).  This 

suggests an existing difference in the mechanism which can be the key condition to the 

synergetic effect in the combinational therapy.  

To evaluate the proximity between AD+P and medications, 148 and 78 eligible 

expression profiles for antipsychotics and antidepressants were collected based on the inclusion 

criteria described earlier. Signed Jaccard scores were calculated between them and AD+P protein 

expressions. 

Post-treatment gene expression data for 16 antipsychotics and 13 antidepressants were 

exacted, and their Signed Jaccard scores were calculated accordingly and are shown in the tables 

below. 

Table 3.2 Signed Jaccard Index values of antipsychotics and antidepressants with AD+P 

Antipsychotics 
Drug 

perturbed 
genes 

Overlap Same Inverse SJI value 

Aripiprazole 3384 71 9 59 -0.01028 

Thioridazine 7670 135 47 78 -0.00573 

Clozapine 3801 57 13 38 -0.00334 

Iloperidone 4868 78 31 39 -0.00285 

Thiothixene 2109 39 23 16 -0.00247 

Trifluoperazine 6286 96 21 57 -0.0024 
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Haloperidol 1083 22 9 12 -0.00216 

Risperidone 1460 15 5 9 -0.00199 

Fluphenazine 1180 20 9 11 -0.0019 

Perphenazine 4758 87 23 64 -0.00176 

Lurasidone 1480 17 6 9 -0.00034 

Quetiapine 831 6 3 3 0.000232 

Loxapine 2488 34 18 14 0.000386 

Mesoridazine 2334 28 10 18 0.000986 

Ziprasidone 3995 65 28 33 0.001916 

Olanzapine 1013 15 11 4 0.002919 

Antidepressants Drug 
gene Overlap Same Inverse Proximity 

Score 

Duloxetine 4710 81 17 58 -0.00851 

Sertraline 5696 104 19 83 -0.00806 

Maprotiline 1271 25 8 17 -0.00676 

Nefazodone 1393 34 13 21 -0.00645 

Mirtazapine 3105 56 26 30 -0.00488 

Bupropion 600 14 5 9 -0.00455 

Trazodone 3002 49 31 18 -0.00335 

Paroxetine 5379 103 34 69 -0.00202 

Fluoxetine 2776 47 18 24 -0.0003 

Escitalopram 1977 30 14 16 0.000369 



 96 

Fluvoxamine 4572 79 31 38 0.000892 

Citalopram 2083 30 10 19 0.003719 

Venlafaxine 1023 11 10 1 0.005222 

 

To comprehensively evaluate the potential for these drug combinations, separation scores 

and proximity scores were normalized to a [-1, 1] interval and combined. A combined score was 

calculated for every drug pair by subtracting two proximity scores of the drugs from their 

separation score. The combined scores for drug pairs are shown in the heatmap below (Figure 

3.3). 
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Figure 3.3 Combined scores for antipsychotics and antidepressants combinations. Though most drug pairs 

showed a combined score around 0, some drugs do show promising scores across the board including 

Aripiprazole and Thioridazine. 

 

As shown in Figure 3.3, most drug pairs showed a combined score around 0 which 

indicate that the synergistic effect between antipsychotics and antidepressants may not be easily 

achieved within the two drug categories. However, some drugs showed promising results 

through the panel like Aripiprazole and Thioridazine. For drug combinations that may possess 

beneficial synergistic effect, they must meet the following criteria: 1) The separation score 
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between two drugs > 0; 2) The proximity scores of the two drugs <0. Table 3.3 summarized the 

drug combinations that met the criteria.   

Table 3.3 Antidepressants and antipsychotics combinations with highest combined scores 

Antipsychotics Antidepressants 
Antipsychotics 

Proximity 
Score 

Antidepressants 
Proximity Score 

Separation 
score 

Combined 
Score 

Aripiprazole Maprotiline -1 -0.745 0.382 2.13 

Aripiprazole Nefazodone -1 -0.7 0.345 2.05 

Aripiprazole Sertraline -1 -0.934 0.0545 1.99 

Aripiprazole Mirtazapine -1 -0.472 0.418 1.89 

Thioridazine Maprotiline -0.311 -0.745 0.564 1.62 

Aripiprazole Trazodone -1 -0.248 0.364 1.62 

Aripiprazole Paroxetine -1 -0.0542 0.364 1.42 

Thioridazine Nefazodone -0.311 -0.7 0.3277 1.34 

Thioridazine Sertraline -0.311 -0.934 0.0909 1.34 

Thioridazine Mirtazapine -0.311 -0.472 0.527 1.31 

Thioridazine Bupropion -0.311 -0.423 0.236 0.971 

Thioridazine Trazodone -0.311 -0.248 0.382 0.941 

Thioridazine Paroxetine -0.311 -0.0542 0.418 0.783 

 

Among the nominated drug combinations, Aripiprazole is the only SGAs and is also the 

most recommended treatment options for AD+P. As a matter of fact, the combination of 

Aripiprazole and Sertraline has already been tested in clinical trials and showed superior efficacy 
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in treating major depressive disorders (MDD) with no reports of safety concerns[350]. However, 

none of these drug pairs have been tested for AD+P in clinical trials. As a matter of fact, no 

combination drug therapy has ever been tested for AD+P at present.  

3.2.4 Discussion and Conclusion 

In this study, we applied a state-of-the-art systems pharmacology technique to explore the 

potential synergetic effect of combining antipsychotics and antidepressants in treating AD+P. 

This study incorporated different data types including protein expressions, post-treatment gene 

expressions and protein-protein interaction networks. Our results indicate that the combination of 

antipsychotics and antidepressants may be a more efficient treatment option for AD+P and 

provided informative insights for drug pairing choices for future therapies. 

In order to provide mechanistic support for our observations and identify the most potent 

drug combinations for treating AD+P, we took advantage of multiple categories of data including 

PPI network, post-treatment gene expression profiles to quantitatively evaluate the potential 

synergistic effect of antipsychotics and antidepressants. Our analysis yielded several pairs of 

drugs that may possess better synergistic effects in treating AD+P. As shown in Table 6, four 

antipsychotics: Aripiprazole, Thioridazine, were reported, and seven antidepressants: Sertraline, 

Maprotiline, Nefazodone, Mirtazapine, Trazodone, Paroxetine and Bupropion were mentioned. 

Between the 2 antipsychotics, Thioridazine is first-generation antipsychotic and it was 

withdrawn worldwide in 2005 due to its association with cardiac arrythmias[351]. For 

Aripiprazole, it has been reported with significant better efficacy in AD patients against 

psychological symptoms[352] which further consolidate our conclusions. For the 7 

antidepressants, Nefazodone is discontinued on 2004 because of its association with drug-
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induced hepatic injuries[353].  For the rest 6 antidepressants, they belong to 4 classes. Sertraline, 

Trazodone, Paroxetine are selective serotonin reuptake inhibitors (SSRI) which is the most used 

antidepressant class[354]. Maprotiline is a tetracyclic antidepressant with similar 

pharmacological properties to tricyclic antidepressants (TCAs), it can inhibit neuronal 

norepinephrine reuptake, possesses some anticholinergic activity, and does not affect monoamine 

oxidase activity[355]. Mirtazapine is a tetracyclic piperazino-azepine antidepressant with its 

effect can be observed as early as 1 week after beginning therapy[356], it has also been reported 

to be efficacious in the off-label management of various other conditions. It may improve the 

symptoms of neurological disorders, reverse weight loss caused by medical conditions, improve 

sleep, and prevent nausea and vomiting after surgery[357]. Bupropion is a 

norepinephrine/dopamine-reuptake inhibitor (NDRI) antidepressant, and it is a unique option for 

the treatment of MDD as it lacks any clinically relevant serotonergic effects, typical of other 

mood medications, or any effects on histamine or adrenaline receptors[358; 359]. As for 

combination therapy consisting of antipsychotics and antidepressants, though they were never 

tested specifically for AD or AD+P, multiple studies have tested their safety and efficacy profile 

against other   disorders. For example, a meta-analysis consisting of eight randomized, placebo-

controlled studies reported that antidepressant-antipsychotic cotreatment was superior to 

monotherapy with either drug class in the acute treatment of psychotic depression[360] and 

another study reported that adding SGAs to antidepressants yielded highly significant superiority 

in treating MDD, too[361]. In that study, Aripiprazole, Olanzapine, Risperidone, and 

Ziprasidone were found to be more effective than other SGAs[361] . 

The result of our study aims to provide a comprehensive and quantitative overview of the 

underlying relationship among antipsychotics, antidepressants, and AD+P. Our results supported 
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the efficacy of antipsychotics and suggested the most promising antidepressants such as 

Sertraline and Maprotiline, can be added as supplementary treatment. In addition, since they are 

all marketed drugs and some of their combinations are already tested by clinical trials for other 

indications, safety profile will not be a major concern when proposing their long-term usage as 

an alternative treatment option for AD patients. 
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4.0 Identification and Validation of Potential Alternative Treatments for AD+P with Real-

World Data 

4.1 Use of Antidepressants in AD Patients is Associated with Decreased Mortality 

4.1.1 Background and Significance 

In previous study (section 3.1), we found that antipsychotics and antidepressants are the 

two categories of medications that possess the highest potential in treating AD+P. In our further 

systematic pharmacology study (section 3.2), we found that the combination of antipsychotics 

and antidepressants may be able to induce a synergetic effect against AD+P. Though the 

beneficial effect of antidepressants in managing neuropsychiatric symptoms in AD patients have 

been reported in nine clinical trials involving 692 patients[291; 334; 335; 336; 337; 338; 339; 

340; 341; 342; 343], only two selective serotonin reuptake inhibitors (SSRIs) sertraline (Zoloft) 

and citalopram (Celexa) were studied and the antipsychotics in the study were typical 

antipsychotics (haloperidol, perphenazine) while only 1 trial studied an SGA, risperidone. 

Among the five studies comparing SSRIs with placebo, two of them reported a significant 

benefit for Citalopram against AD+P, also no significant difference was reported between the 

efficacy of SSRIs and risperidone. Therefore, testing more antidepressants, especially other 

classes of antidepressants such as serotonin-noradrenaline reuptake inhibitors, tricyclic 

antidepressants, and monoamine oxidase inhibitors, may be worthwhile to provide a better 

understanding of the impact of antidepressants on AD+P. 
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4.1.2 Methods and Material 

4.1.2.1 Data source 

To explore the beneficial effect of the combination therapy of antipsychotics and 

antidepressants, we examined the data from January 2004 to October 2019 from the Neptune 

system at the University of Pittsburgh Medical Center (UPMC), which manages the use of 

patient EMRs from the UPMC health system for research purposes (rio.pitt.edu/services)[362]. 

The database includes demographic information, diagnoses, encounters, medication 

prescriptions, prescription fill history, and laboratory tests. AD patients were identified using 

ICD9/10 codes (331.0, G30.0, G30.1, G30.9) and the onset of psychosis were defined by 

ICD9/10 codes (780.1, F06.0, R44.2, R44.1, R44.3, R44.0, 298.8, F22, F23, F28, F29, 293.82, 

298.9, 290.11, 293, 290.3) based on the suggestions from UPMC clinicians. 

4.1.2.2 Data preparation 

We included patients who met the following inclusion criteria: 1) Patient had an AD 

diagnosis; 2) Patients did not take antidepressants nor antipsychotics one year prior to the 

diagnosis of AD. Nine comorbidities, including MDD (major depressive disorder), stroke, COPD 

(chronic obstructive pulmonary disease), ASCVD (atherosclerotic cardiovascular disease), 

T2DM (type 2 diabetes), HTN (hypertension), CKD (chronic kidney disease), HF (heart failure) 

and cancer, were considered as confounders in our survival analysis (ICD codes listed in 

supplementary material) [363; 364]. The time origin for each patient in the survival analysis is 

the first AD diagnosis date and time to all-cause death is the outcome. Patients are marked with 

the above comorbidities if they were diagnosed before the AD diagnosis. Only medications that 

are prescribed to the same patients more than 2 times with more than 30 days apart were 
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considered to eliminate short-term usage during hospitalization. The records of patients up to 5 

years after the AD diagnosis were used in the analysis.  

Time to all-cause death was constructed as the time between the first date of AD 

diagnosis and death. Patients who were alive by the end of 5 years since AD diagnosis were 

censored. Survival analysis was performed to evaluate the association between medications and 

mortality. To accommodate the change of drug usage during the follow-up, we fitted a time-

dependent Cox’s proportional hazards model[365; 366] with antipsychotic drug effect (yes or no) 

and antidepressant drug effect (yes or no) as time dependent covariates. Specifically, the 5-year 

follow-up period was divided into 60 months, and we assumed the drug effect from one 

prescription will last 2 months which covers 2 intervals in our study. As shown in Figure 3.4, if 

a patient had an antipsychotics prescription in the first month, we consider the patient under drug 

effect for that month and the month after. If a patient was prescribed both antipsychotics and 

antidepressants (boxed in Figure 3.4), we consider the patient under combinational therapy. The 

drug effect on one patient may change over time between four statuses: no drug, antipsychotics 

only, antidepressants only, and the combination. Baseline demographics and comorbidities were 

also included in the model. Contrasts between different drug groups were performed with hazard 

ratios and p values reported. The data were analyzed using both R (version 4.1.0) and python 

(version 3.7.12) packages.  
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Figure 4.1 Schematic diagram for identifying drug usage status of subjects. In the upper two rows of Figure 

1, the sections with 1 indicate that there are antipsychotics/antidepressants prescriptions in that month while 

0 means there are no prescriptions for the two kinds of medications. In the lower rows, the sections under 1 

are extended for 1 month to reflect the drug effect thus these markers show the time that the subject was 

under drug effect. 

4.1.3 Results 

After applying all inclusion criteria to our dataset, 10,206 unique AD patients were 

included, and their baseline characteristics are shown in Table 3.4.  

Table 4.1 Baseline characteristics for included AD subjects 

Characteristic Label Value 
Total  10206 

Gender, n (%) 
Female 6547 (64.1) 
Male 3659 (35.9) 

Age, mean (SD)  83.0 (8.3) 

Race, n (%) 
Black 981 (9.6) 

Others 171 (1.7) 
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White 9054 (88.7) 

MDD, n (%) 
0 7294 (71.5) 
1 2912 (28.5) 

Stroke, n (%) 
0 8349 (81.8) 
1 1857 (18.2) 

COPD, n (%) 
0 7838 (76.8) 
1 2368 (23.2) 

ASCVD, n (%) 
0 7533 (73.8) 
1 2673 (26.2) 

T2DM, n (%) 
0 7012 (68.7) 
1 3194 (31.3) 

HTN, n (%) 
0 1853 (18.2) 
1 8353 (81.8) 

CKD, n (%) 
0 8046 (78.8) 
1 2160 (21.2) 

HF, n (%) 
0 7659 (75.0) 
1 2547 (25.0) 

Cancer, n (%) 
0 8125 (79.6) 
1 2081 (20.4) 

Psychosis, n (%) 
0 9154 (89.7) 
1 1052 (10.3) 

AD Medication, n 
(%) 

0 7153 (70.1) 
1 3053 (29.9) 

MDD: major depressive disorder, COPD: chronic obstructive pulmonary disease, ASCVD: 

atherosclerotic cardiovascular disease, T2DM: type 2 diabetes, HTN: hypertension, CKD: chronic 

kidney disease, HF: heart failure. 

4.1.3.1 Use of antipsychotics in AD patients is associated with increased mortality 

 cPrior literature has reported that the use of antipsychotics is associated with increased 

mortality in AD patients[285; 367; 368]; we therefore first sought to replicate this finding to 
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validate the integrity of our methodological approach. The time varying Cox model was 

conducted with our data to test the significance.  

Table 4.2 Multivariate Cox regression analyses of association between antipsychotics and all-cause mortality 

in AD patients 

Covariate Hazard 
ratio 

Hazard ratio lower 
95% 

Hazard ratio upper 
95% 

P 
value 

Antipsychotics vs 
No antipsychotics 2.47 1.978 3.084 <0.001 

Age 1.051 1.047 1.055 <0.001 
Gender (Female 

vs Male) 0.712 0.676 0.751 <0.001 

Race (Other vs 
White) 1.622 1.427 1.841 <0.001 

Race (Black vs 
White) 0.698 0.636 0.767 <0.001 

ASCVD 1.136 1.06 1.216 <0.001 

CKD 1.304 1.226 1.386 <0.001 

COPD 1.175 1.107 1.247 <0.001 

Cancer 1.088 1.023 1.157 0.007 

HF 1.411 1.33 1.498 <0.001 

HTN 1.004 0.934 1.079 0.906 

MDD 1.154 1.092 1.22 <0.001 

Psychosis 1.192 1.101 1.29 <0.001 

Stroke 0.938 0.869 1.011 0.095 

T2DM 1.131 1.07 1.195 <0.001 

AD Medication 0.907 0.858 0.959 0.001 
MDD: major depressive disorder, COPD: chronic obstructive pulmonary disease, ASCVD: 

atherosclerotic cardiovascular disease, T2DM: type 2 diabetes, HTN: hypertension, CKD: chronic 

kidney disease, HF: heart failure. 
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As indicated in Table 3.5, antipsychotic usage is significantly associated with increased 

mortality in AD patients (HR=2.47, p<0.001). The results showed in this table are in accordance 

with current literature which suggest that our data and methods are valid for further analysis. 

4.1.3.2 Survival analysis revealed significant beneficial effect combining antidepressants 

and antipsychotics in AD patients 

After knowing that antipsychotics may increase mortality in AD patients while 

antidepressants may decrease mortality[369], the effect of a combination therapy comes into 

play. We would like to examine the protective effects of adding antidepressants to the existing 

antipsychotics therapy. We performed another survival analysis to examine three mutually 

exclusive medication use groups: antipsychotics only, antidepressants only and combination.  

The results are shown in Table 3 and the combination group is the reference group in this 

model. Based on the results from Table 3, the combination group showed a significant beneficial 

effect relative to antipsychotics only group (HR=0.654, p=0.012), which means that combining 

antidepressants with antipsychotic treatment was associated with significantly protective effects 

in AD patients, reducing mortality. In addition, marginal significant difference was observed 

between no drug group and combination group (HR=1.294, p=0.056), which means that by using 

combination therapy, the increase in mortality due to using antipsychotics was mitigated to some 

extent in these patients.  

Table 4.3 Multivariate Cox regression analyses of association among treatments and all-cause mortality in 

AD patients 

Covariate Hazard ratio Hazard ratio 
lower 95% 

Hazard ratio 
upper 95% P value 

Antidepressants only 
vs drug combination 0.518 0.382 0.703 <0.001 

Antipsychotics only 1.528 1.099 2.123 0.012 
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vs drug combination 

No drug vs drug 
combination 1.294 0.993 1.684 0.056 

Age 1.051 1.047 1.055 <0.001 
Gender (Female vs 

Male) 0.712 0.676 0.751 <0.001 

Race (Other vs 
White) 1.622 1.427 1.841 <0.001 

Race (Black vs 
White) 0.698 0.635 0.766 <0.001 

ASCVD 1.135 1.059 1.215 <0.001 

CKD 1.304 1.226 1.386 <0.001 

COPD 1.175 1.107 1.247 <0.001 

Cancer 1.088 1.023 1.158 0.007 

HF 1.411 1.33 1.497 <0.001 

HTN 1.004 0.935 1.08 0.905 

MDD 1.156 1.094 1.222 <0.001 

Psychosis 1.193 1.102 1.292 <0.001 

Stroke 0.938 0.87 1.012 0.097 

T2DM 1.131 1.07 1.195 <0.001 

AD Medication 0.906 0.857 0.958 0.001 
MDD: major depressive disorder, COPD: chronic obstructive pulmonary disease, ASCVD: 

atherosclerotic cardiovascular disease, T2DM: type 2 diabetes, HTN: hypertension, CKD: chronic 

kidney disease, HF: heart failure. 

Based on our findings shown in Table 3.5 and Table 3.6, we can conclude that by 

combining antipsychotics and antidepressants, we can significantly mitigate the increase in 

mortality associated with antipsychotics. For more direct comparison between different treatment 

groups, a table with pair-wise comparison among groups is included in supplementary table 2 

(ST2).  
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In addition to these results, we were interested to see if the effect of the treatments will 

change over time. Therefore, we conducted 6 analyses with follow-up times ranging from 1 to 6 

years. As shown in Figure 3.6, we compared the effects of three different treatments 

(antipsychotics only, antidepressants only, no drug) to the drug combination group, their effects 

showed moderate fluctuation within the first 3 years and stabilized after 4 years. In comparison 

to co-administration of antidepressants and antipsychotics, the antidepressants only group 

showed a consistent lower mortality throughout the 6 years. While the antipsychotics only group 

had marginally increased mortality compared to the combination group at the first 3 years, 

subsequent worse outcomes were clearly evident in 4, 5 and 6 years of follow-up. Finally, the 

combination group showed comparable effects with the patients with no drug treatment 

throughout the 6 years period and demonstrated almost significant beneficial effects in 4, 5 and 6 

years of the follow-up. Our results are attached in supplementary materials (ST3). Table 3.7 

shows the hazard ratios for other covariates at 1-year follow-up. 
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Figure 4.2 Changes of hazard ratios of 3 treatment groups versus drug combination group over 6 years of 

follow up. The figure how different treatment groups showed different effect through 6 years of follow up. As 

shown in the figure, antidepressants showed strong protective effects through all 6 years while antipsychotics, 

on the opposite, showed hazardous effect all the time. 

Table 4.4 Multivariate Cox regression analyses of association among treatments and all-cause mortality in 

individuals with AD over 1 year follow-up 

Covariate Hazard ratio Hazard ratio 
lower 95% 

Hazard ratio 
upper 95% P value 

Antidepressants only 
vs drug combination 0.543 0.386 0.764 <0.001 

Antipsychotics only 
vs drug combination 1.088 0.742 1.593 0.667 

No drug vs drug 0.814 0.596 1.112 0.196 
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combination 

Age 1.051 1.048 1.055 <0.001 
Gender (Female vs 

Male) 0.714 0.677 0.753 <0.001 

Race (Other vs 
White) 1.525 1.37 1.702 <0.001 

Race (Black vs 
White) 0.704 0.641 0.773 <0.001 

ASCVD 1.13 1.055 1.21 <0.001 

CKD 1.309 1.231 1.392 <0.001 

COPD 1.168 1.101 1.24 <0.001 

Cancer 1.082 1.017 1.151 0.012 

HF 1.419 1.337 1.505 <0.001 

HTN 1.007 0.937 1.082 0.849 

MDD 1.147 1.086 1.213 <0.001 

Psychosis 1.186 1.096 1.285 <0.001 

Stroke 0.942 0.874 1.016 0.124 

T2DM 1.136 1.075 1.2 <0.001 

AD Medication 0.901 0.853 0.953 <0.001 
 

4.1.4 Discussion and Conclusion 

When dealing with real-world data, like EMRs, there is always a challenge that the 

compliance of patients presented in the EMR will not be as ideal as we get from a carefully 

performed clinical trial. In this study, by analyzing real-world EMR data through Cox model with 

time-dependent covariates, we were able to accommodate the complex usage patterns and 

allowed the maximum utilization of the data. The beneficial effect of antidepressants in AD 

patients were reported by multiple studies[330; 331; 332; 333], though its mechanisms remain 
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unclear. We also found a strong signal in our results (Table 3.6 and Figure 3.5) which further 

substantiated our claim that antidepressants may aid in reducing mortality in AD patients. Our 

finding provided the fundamental support necessary for our hypothesis that by combining 

antipsychotics and antidepressants, we can decrease the severe side effect that is constraining 

the use of antipsychotics in AD therapy.  

The results of our study aims to provide a comprehensive and quantitative overview of 

the underlying relationship among antipsychotics, antidepressants, and AD+P. Our results 

supported the efficacy of antipsychotics and suggested the most promising antidepressants such 

as Sertraline and Maprotiline, can be added as supplementary treatment. In addition, since they 

are all marketed drugs and some of their combinations are already tested by clinical trials for 

other indications, safety profile will not be a major concern when proposing their long-term 

usage as an alternative treatment option for AD patients. 

4.2 DeepBiomarker: Identifying Important Risk Factors from Electronic Medical Records 

for the Prediction of Psychotic Symptoms in AD Patients 

4.2.1 Background and Significance 

Use of pharmacotherapy-based treatment options for Alzheimer’s disease with psychotic 

symptoms (AD+P) tended to be limited[11; 12; 13]. These symptoms result in faster decreases in 

both functional abilities and may hasten placement in a nursing home[22; 23; 24; 25]. By 

examining the electronic medical records (EMR) of AD/MCI patients, the purpose of the 

proposed research is to discover drugs with the potential for preventing, delaying, or treating 
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AD/NPS. We anticipate that if AD/MCI drugs can reduce the risk of developing psychosis, such 

as aggression, psychosis, anxiety, apathy, depression, agitation, sleep problems, wandering, and 

so on, they will benefit the treatment of AD+P. We will develop additional deep learning 

algorithms and statistical analysis tools to examine EMR data from Alzheimer's and other 

dementia patients, and we will use systems pharmacology methodologies to interpret potential 

novel biological pathways. The combination of diuretics, calcium channel blockers, and renin-

angiotensin-aldosterone system blockers was associated with shorter cognitive deterioration than 

other antihypertensive medication groups[370; 371]. In our early investigation, we utilized or 

developed machine learning and deep learning-based methods, such as random forest and SVM 

(Support Vector Machine), to reliably predict the commencement of suicide-related events 

among PTSD patients[372; 373]. We discovered risk factors for SREs as well as drugs with 

notable side effects. Using clinical trial emulations, we discovered that lurasidone users have 

fewer SREs than other antipsychotic users in PTSD patients.  

Deep learning/data mining algorithms can translate data into information for hypothesis 

generation through deep hierarchical feature construction to capture long-range dependencies in 

EMR data. Recently, a variety of deep learning techniques and frameworks have been applied to 

information extraction, representation learning, outcome prediction, phenotyping, and de-

identification [374; 375; 376; 377; 378] and yielded better performance than traditional methods 

and required less time-consuming preprocessing and feature engineering. Specifically, deep 

learning techniques learn optimal features directly from the data itself, without any human 

guidance, allowing for the automatic discovery of latent data relationships that might otherwise 

be unknown or hidden [379].  
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To enhance the prediction accuracy, we built a deep-learning based model, 

DeepBiomarker through modification of an established deep-learning framework, Pytorch_EHR 

[380]. In the DeepBiomarker, we used diagnosis, medication use and lab tests as the input, 

implemented data augmentation technologies to improve the model performance and  also 

integrated a perturbation-based approach [381] for risk factor identification.  

4.2.2 Methods and Materials 

4.2.2.1 Data source 

To explore the beneficial effect of the combination therapy of antipsychotics and 

antidepressants, we examined the data from January 2004 to October 2019 from the Neptune 

system at the University of Pittsburgh Medical Center (UPMC), which manages the use of 

patient EMRs from the UPMC health system for research purposes (rio.pitt.edu/services)[362]. 

The database includes demographic information, diagnoses, encounters, medication 

prescriptions, prescription fill history, and laboratory tests. AD patients and psychosis patients 

were identified using a series of diagnosis terms in the EMR systems (Appendix D, 

Supplementary list 1 & 2). In addition, to avoid the possible misdiagnosis of psychosis by short-

term delirium symptoms, psychosis diagnosis that co-occur with a delirium diagnosis (Appendix 

D, Supplementary list 3) were excluded. 

4.2.2.2 Data preparation 

For each AD patient, we would like to predict whether the patient will have psychosis 

within next 12 months given the history of EMRs. To build the predictive model, we defined the 

cases and controls.  At any encounter, an AD patient who had a record of psychosis within the 
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following 12 months is defined as a case, while no records of psychosis within the following 12 

months is defined as a control. For a patient with multiple encounters satisfying the criteria of 

control, only the last encounter was included to mimic the latest status of these patients. We also 

require no records of psychosis during this period to the index date to make sure this is new onset 

of AD+P. And we used data augmentation to increase number of cases (see below). The date of 

this encounter will be the index date. We used the medication, diagnosis, lab tests 1 year 

preceding the index date as the input. For lab tests, we only included those abnormal ones in our 

modeling by searching those RESULT_FLAG labeled as “ABNORMAL”, “HIGH” or “LOW”. 

We also excluded those lab tests with low frequency and kept the 89 top frequently tested ones. 

The diagnosis was coded in ICD9 before year 2015 and ICD10 after year 2015. As such, we used 

a lookup table from https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-

GEMs to convert ICD9 to ICD10 codes. The first three characters of the ICD10 which designate 

the category of the diagnosis were extracted, yielding 1614 diagnosis groups. Medication names 

were converted to DrugBank IDs by name matching, and 1407 unique DrugBank IDs were 

mapped. Finally, for each encounter the associated medications, diagnosis and abnormal lab test 

results were packed into a sequence with the indices of DrugBank IDs, categories of the 

diagnosis, and lab test IDs, respectively.  

4.2.2.3 Data augmentation  

Data augmentation is a technology used to increase the data size and to reduce 

overfitting. At any encounter, the chance of having psychosis within the next three months are 

much lower than that of having no psychosis, even within these AD patients with high risk. We 

included all encounters nearby the psychosis, which satisfied the inclusion criteria for positive 

cases, while under-sampling the encounters which satisfied the inclusion criteria for controls. 
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The purpose of data augmentation is to enhance the influence of factors nearby the events while 

reducing the effects of factors far from the events.  

4.2.2.4 Dataset splitting 

The dataset was split with a ratio of 8:1:1, and 8 of 10 subsets were used as the training 

dataset, while 1 of 10 subset was used as the validation dataset to find the optimal parameters 

and the left 1 subset was used as the test set to evaluate the generalization of our model.  

4.2.2.5 DeepBiomarker 

We adopted the Pytorch_EHR framework established by ZhiGroup where Deep learning 

models with Vanilla RNN, GRU, LSTM, Bidirectional RNN, Bidirectional GRU, Bidirectional 

LSTM, REverse Time AttentIoN model (RETAIN), Dilated RNN, Dilated GRU, Dilated LSTM, 

QRNN, and T-LSTM were used to analyze and predict clinical outcomes [380]. We adopted the 

RETAIN, T-LSTM and Logistic regression models and further modified the framework as 

highlighted in Figure 4.3 by (a) data augmenting to improve the model performance; (b) 

including individual lab tests and medications along with the diagnosis groups as the input. So 

that we can assess the effects of each lab tests and medications; and (c) integrating contribution 

analysis [381] module for the importance estimation of key factors (see below for more details). 

The structure we used here is the LSTM model which stores previous illness history, infers 

current illness states, and predicts future medical outcomes [382]. The memory cell is gated to 

moderate the information flow to or from the cell. LSTMs have been adapted in many 

applications, such as machine translation, handwriting recognition, and speech recognition. In 

this study, the following parameters are used: embed dimension: 128, hidden size: 128, dropout 
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rate: 0.2, number of layers: 2, input size: 30000, patience: 3. The calculations were repeated ten 

times for each deep-learning algorithm to estimate the standard deviations of the accuracy.  

 

 

Figure 4.3 The overview of DeepBiomarker. (A) Data sampling from electronic medical records, (B) Data 

embedding, and (C) Prediction by neural network with LSTM as the basic prediction units. Perturbation-

based contribution analysis will be used to identify important features. 



 119 

4.2.2.6 Assessment of importance of the clinical factors for predicting suicide-related events 

To further investigate the importance of those factors on the prediction of psychosis, we 

calculated the relative contribution (RC) of each feature on the psychosis [381].  The RC of a 

feature was calculated as the average contribution of the feature to events divided by the average 

contributions of this feature to no-events. The contributions were estimated by a perturbation-

based approach. Such approach has been used in recent study on the important features for heart 

failure incidence prediction [383]. The equation is shown as follows where FC represent the 

feature contribution: 

Equation 4-1 

𝑅𝑅𝑅𝑅 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

FC value was the total value of the feature within the same patient if the feature appeared 

more than once in that patient. The natural logarithm form variance for RC was calculated as: 

Equation 4-2 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(ln (𝑅𝑅𝑅𝑅))

=  
� 𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

2

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+
� 𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

2

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

sd: standard deviation 

Thus, the 95% confidence interval (CI) of RC was given by: 

Equation 4-3 

95%𝐶𝐶𝐶𝐶 =  𝑒𝑒(ln(𝑅𝑅𝑅𝑅)±1.96�𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿𝐿𝐿(𝑅𝑅𝑅𝑅)) 
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And the p-value was under the assumption of z distribution[384]. Bonferroni 

correction[385] was used to reduce the type I error caused by multiple comparison. 

4.2.2.7 Assessment of model performance  

Model performance was evaluated by the area under the ROC curve (AUROC). 

4.2.3 Results 

4.2.3.1 The performance of DeepBiomarker in AD+P patients 

We have identified 38,807 AD patients from UPMC EMR data. And we further identified 

11695 cases and 11695 controls from patients with more than 1 year of EMRs before the 

diagnosis of AD. Those samples were split to 8:1:1 ratio for training, validation, and test sets. 

The performance of the DeepBiomarker can be found in Table 4.5. 

Table 4.5 Model performance of different models on valid and test datasets. 
 

Validation AUC Test AUC Validation AUC std Test AUC std 
T-LSTM 0.921 0.903 0.006 0.005 
RETAIN 0.935 0.907 0.004 0.002 

LR 0.837 0.822 0.009 0.012 
 

As shown in Table 4.5, the T-LSTM and RETAIN models both showed excellent 

performance on AD+P prediction, i.e., all yielded equal or more than 0.9 of AUROC. Deep 

learning models performance AUC above 0.9, better than LR (0.82). 

4.2.3.2 Risk factors identified by the DeepBiomarker model with significant contributions 

As we mentioned above, we used a perturbation-based estimation to calculate the relative 

contribution of each feature on the prediction of AD+P. Three types of features: drugs, diagnosis, 
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and lab tests, can be found in the results. In total, 65 features showed significant effects in our 

results, including 6 lab tests, 36 drugs and 23 diagnoses. We only showed the diagnose that 

appeared in more than 10% of the whole population to minimize the random effect and increase 

reliability of our test. The following 3 tables showed the details of the features that showed 

significant effects (Table 4.6, Table 4.7, and Table 4.8). 

Table 4.6 Top important medication use results identified by perturbation-based contribution analysis for 

AD+P prediction. 

Feature RC CI95up CI95down Q Value* 
Memantine 0.749 0.83 0.676 <0.001 

Aspirin 0.808 0.904 0.721 0.003 
Losartan 0.766 0.869 0.676 0.001 
Protonix 0.835 0.95 0.734 0.036 

Docusate Sodium 0.78 0.907 0.671 0.011 
Cephalexin 0.793 0.917 0.686 0.014 

Calcium Carbonate-Vitamin D3 0.781 0.902 0.676 0.008 
Tramadol 0.795 0.937 0.674 0.037 

Clopidogrel 0.777 0.918 0.658 0.022 
Quetiapine 0.726 0.875 0.603 0.008 

Nitroglycerin 0.679 0.84 0.549 0.005 
Magnesium Hydroxide  0.66 0.823 0.529 0.003 

Triamcinolone Acetonide 0.751 0.923 0.612 0.038 
Alprazolam 0.692 0.857 0.56 0.008 
Duloxetine 0.606 0.757 0.485 <0.001 
Famotidine 0.672 0.823 0.548 0.002 

Isosorbide Mononitrate 0.719 0.89 0.582 0.018 
Glipizide 0.732 0.923 0.581 0.046 
Lactulose 0.599 0.835 0.429 0.019 

Esomeprazole Magnesium 0.538 0.698 0.414 <0.001 
Budesonide-Formoterol 0.578 0.763 0.437 0.002 

Cyclobenzaprine 0.572 0.734 0.445 <0.001 
Irbesartan 0.509 0.769 0.338 0.012 

Dextromethorphan-Guaifenesin 0.439 0.757 0.255 0.022 
Sucralfate 0.472 0.716 0.311 0.005 
Midodrine 0.477 0.65 0.35 <0.001 
Fish Oil 0.456 0.73 0.285 0.01 

Ezetimibe 0.624 0.854 0.457 0.022 
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Glucosamine-Chondroitin 0.359 0.7 0.184 0.02 
Clobetasol 2.054 3.043 1.387 0.004 
Terazosin 1.842 2.633 1.288 0.009 
Warfarin 1.289 1.478 1.124 0.004 

Allopurinol 1.639 2.157 1.245 0.005 
Cholestyramine-Aspartame 1.642 2.233 1.207 0.013 

Fluconazole 1.58 2.175 1.147 0.032 
Metoclopramide 1.879 2.697 1.309 0.007 

 

* FDR-adjusted p-value by Bonferroni correction. 

Table 4.7 Top important diagnoses use results identified by perturbation-based contribution analysis for 

AD+P prediction. 

Feature RC CI95up CI95down Q value* 
Long Term (Current) Use of Insulin 1.582 1.722 1.454 <0.001 

Esophageal Reflux 1.112 1.174 1.054 0.002 
Depressive Disorder 1.117 1.195 1.045 0.01 
Atherosclerotic Heart 1.154 1.228 1.085 <0.001 

Osteoarthritis 0.877 0.944 0.814 0.006 
Type 2 Diabetes Mellitus  1.191 1.261 1.125 <0.001 

Disorientation 1.148 1.268 1.039 0.039 
Atrial Fibrillation 1.358 1.477 1.249 <0.001 
Hypothyroidism 1.136 1.234 1.045 0.02 

Abnormality of Gait 1.171 1.292 1.061 0.014 
Unspecified Diabetes Mellitus  1.234 1.328 1.147 <0.001 
Pain In Joint, Shoulder Region 0.764 0.898 0.651 0.01 

Obstructive Sleep Apnea 1.207 1.354 1.076 0.012 
Arthropathy 0.747 0.831 0.672 <0.001 

Acute Kidney Failure 0.86 0.945 0.783 0.014 
Activities Involving Walking, Marching and 

Hiking 0.782 0.876 0.699 0.001 

Central Pain Syndrome 1.221 1.397 1.067 0.025 
Hypocalcemia 1.417 1.689 1.189 0.002 

Hypoxemia 0.718 0.85 0.606 0.002 
Aortic Valve Disorders 1.274 1.506 1.077 0.03 

Dependence on Renal Dialysis 1.361 1.602 1.156 0.003 
Acute Venous Embolism and Thrombosis 

of Unspecified Deep Vessels of Lower 
Extremity 

1.687 2.325 1.223 0.012 

Primary Hypercoagulable State 1.582 1.722 1.454 <0.001 
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* FDR-adjusted p-value by Bonferroni correction. 

 

Table 4.8 Top important lab test results identified by perturbation-based contribution analysis for AD+P 

prediction 

Feature RC CI95up CI95down Q value* 
Chloride (Cl) 0.886 0.952 0.825 0.01 

Glucose 0.871 0.941 0.806 0.006 
Urea Nitrogen 0.84 0.909 0.776 0.001 

Anion Gap 0.863 0.944 0.789 0.012 
Alkaline Phosphatase (ALP) Test 0.826 0.924 0.739 0.009 

Aspartate Aminotransferase (AST) Test 0.704 0.864 0.574 0.008 
 

* FDR-adjusted p-value by Bonferroni correction. 

4.2.4 Discussion and Conclusion 

In this retrospective study, we further applied our deep learning model 

DeepBiomarker1.5 to predict the risk of developing AD+P based on the history of medication 

prescriptions, diagnosis, and routine lab tests from the previous year. The model's AUC score 

was greater than 0.907, making it superior to classic machine learning models such as logistic 

regression. The enhancement may result from the fact that DeepBiomarker can additionally 

account for the temporal effects of these characteristics. 

4.2.4.1 Lab tests as indicators of comorbidities and disease burdens for AD+P prediction 

Through further analysis on the DeepBiomarker model, we identified several important 

lab tests as the biomarkers. As you may expect, these lab tests have already been reported with 

tight connections with AD and psychosis (Table 4.9). These laboratory tests might be viewed as 

the patients' disease burden measurement and indicators of underlying comorbidities. As a matter 
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of fact, the abnormality of these lab tests showed beneficial effects (RC < 1) to the occurrence of 

AD+P can be explained that their corresponding treatment may play a role in preventing or 

interfering with the development of AD+P. For example, abnormal level of glucose whole blood 

is an indicator of reduced risk of developing AD+P while in the EMRs, most of them are high 

plasma glucose. Therefore, these patients are more likely to be taking glucose-lowering 

medications while clinical studies have found that the use of these medications contributes to a 

lower risk of developing AD and better cognitive performance[386]. 

The lab tests identified from our model can serve as biomarkers for underlying 

comorbidities. We noticed that a few therapeutical areas were highlighted by the presence of 

multiple related biomarkers: Metabolic syndrome (Glucose-Whole Blood, Blood Urea Nitrogen), 

Liver function (Aspartate Aminotransferase (AST) Test, Alkaline Phosphatase (ALP) Test). We 

suspect that the RC values we found here are a mixture of the symptoms and the corresponding 

interventions that the patients received because of the abnormal lab tests, and this might cause 

certain abnormal lab tests to exhibit beneficial effects. For example, Glucose-Whole Blood, 

showed a beneficial effect in the lab test results (RC = 0.871), while the diagnosis related to it, 

Type 2 diabetes showed hazardous effect in the comorbidities results (RC = 1.191).  

Table 4.9 Top biomarkers for prediction of AD+P in AD patients along with the effect on AD, psychosis, and 

realted indications 

Lab Test Effect with AD Effect with psychosis Disease/Conditions 

Glucose Whole 
Blood 

The impaired glucose 
metabolism in the brain 
of subject with AD is a 
widely recognized early 

feature of the 
disease[387] 

Pooled analyses 
found first-episode 

psychosis to be 
related to impaired 

glucose 
tolerance[388] 

Type 2 diabetes (T2D) 
Type 1 diabetes (T1D) 
Gestational diabetes 

Aspartate 
Aminotransferase 

(AST) Test/ 

chronic liver 
inflammation induced 

outside the brain is 
 

Test for liver damage, 
heart attack or muscle 

injury 
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Alkaline 
Phosphatase 
(ALP) Test 

sufficient to induce 
neurodegeneration[389] 

Urea Nitrogen 
Urea nitrogen were 

significantly higher in 
late onset AD[390] 

Elevated levels of 
blood urea nitrogen 
were associated with 
increased severity of 
illness and mortality 

in psychiatric 
patients[391] 

Dehydration 
Burns 

High protein diet 
 

 

4.2.4.2  Medications for potential AD+P prevention and treatment 

In addition to lab tests, medications that exhibited beneficial effect can also provide 

valuable information. It didn’t surprise use when Vitamin D, Quetiapine, Memantine showed up 

with a significant beneficial effect since they are already reported with beneficial effect against 

AD+P[28; 392; 393; 394]. Furthermore, several medications identified by our model with 

protective effect against AD+P have close association with AD or psychosis or the related 

pathways and mechanisms. These findings provided side-support for the reliability and accuracy 

of our predictive model and suggested that the important features of our model can provided 

mechanistic insight for future drug repurposing and novel therapeutic development. Our analysis 

confirmed the beneficial effects of medications used in AD patients such as Oxybutynin, 

Famotidine and Memantine because their RC values are less than 1. In our previous study, we 

reported that vitamin D can delay the onset of psychosis[395] and in our current analysis, 

vitamin D also has beneficial effects, e.g., with reduced the risk of psychosis in AD patients. 

However, we would point out that these associations might not be causal, because the use of 

those medications might also indicate the disease burdens of AD patients and the indications of 
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those medications may be the cause of disease progression, like Warfarin, Insulin and 

Allopurinol.  

Table 4.10 Top medications for prediction of AD+P in AD patients along with the effect on AD, psychosis, 

and related indications 

Drugs Effect with AD Effect with 
psychosis Indications 

Aspirin 

Users of high-
dose aspirin had 

significantly 
lower 

prevalence of 
Alzheimer’s 
dementia and 

better-
maintained 
cognitive 

function than 
non-users[396] 

 Nonsteroidal anti-inflammatory drugs 
(NSAIDs) 

Clopidogrel 

Clopidogrel 
combats 

neuroinflammat
ion and 

enhances 
learning 

behavior and 
memory in a rat 

model of 
Alzheimer’s 
disease[397] 

Psychotic patients 
received lower 

rate of 
prescriptions for 
clopidogrel[398] 

Reduce the risk of heart attack and 
stroke. 

Prevention of blood clots 

Quetiapine 

Quetiapine 
produced 
significant 

improvements 
in behavioral 
disturbances 

and were well 
tolerated[399] 

Quetiapine is 
indicated for 

psychotic 
symptoms 

Schizophrenia 
Bipolar Disorder 

Duloxetine 

Duloxetine can 
improve 
cognitive 

function and/or 
have a dual or 

multimodal 

 Depression 
Anxiety Disorders 
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mode of 
action[400] 

Losartan 

Losartan 
prevents and 

rescues 
cerebrovascular

, 
neuropathologic
al and cognitive 

deficits in an 
Alzheimer’s 

disease 
model[401] 

Losartan was 
associated with 

the onset of 
psychosis and 

depression in an 
elderly 

patient[402] 

Hypertension 

Gabapentin 

Gabapentin 
used as 

treatment of 
behavioral and 
psychological 
symptoms of 

dementia[403] 

Use of gabapentin 
may induce 

psychotic and 
depressive 

symptoms[404] 

Prevent and control partial seizures. 
Relieve nerve pain following shingles in 

adults. 
Treat moderate-too-severe primary 

restless legs syndrome. 

Budesonide-
Formoterol 

 

Asthma in 
midlife and in 

late life 
increased the 

risk of 
developing any 
dementia and 
Alzheimer’s 
disease[405] 

 

Chronic obstructive pulmonary disease 
(COPD) 

Bronchospasm 
Asthma 

Vitamin D 

Vitamin d 
deficiency is 

associated with 
a substantially 
increased risk 
of all-cause 

dementia and 
Alzheimer 

disease[406] 

Vitamin d use was 
significantly 

associated with 
delayed time to 

psychosis in 
Alzheimer’s 

disease 
patients[28] 

Hypoparathyroidism 
Refractory rickets (also known as 

Vitamin D resistant rickets) 
Familial Hypophosphatemia 

Memantine 
Cognition-
enhancing 
medication 

Memantine 
therapy in 

schizophrenic 
patients seems to 
improve mainly 

negative 
symptoms[407] 

Moderate to severe dementia of the 
Alzheimer’s type 
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Allopurinol 

Results are 
inconclusive, 
some studies 

show that it has 
no impact on 

dementia in ad 
while some 
show it is 

protective in 
gout by 

attacking the 
uric acid 

production[408] 

May help in 
alleviating 

psychosis in 
schizophrenic 
patients[409] 

Management of gout, preventing tumor 
lysis syndrome, and preventing recurrent 
calcium nephrolithiasis in patients with 

hyperuricosuria 

Glipizide 

Glipizide 
treatment of 
type 2 dm 
patients 

resulted in 
improvement 

primarily in the 
learning of 

verbal material 
without 

changes in 
attention and 

complex 
perceptual-

motor 
function[410] 

 Type 2 diabetes 

Insulin  

Excess insulin in 
plasma led to 

higher incidences 
of psychosis[411] 

Treatment of type-1 and type-2 diabetes 
mellitus 

Famotidine/ 
Esomeprazol
e Magnesium 

Gastric acid 
suppressants 

such as 
famotidine 
promoted 
cognitive 

decline[412] 

Famotidine is 
associated mental 

status changes, 
along with 
confusion, 

disorientation, and 
nightmares[413] 

Treatment of duodenal ulcer, gastric 
ulcer, gastroesophageal reflux disease, 

and Zollinger Ellison syndrome 

Magnesium 
Oxide 

Low 
magnesium 

status is a risk 
factor of 
ad[413] 

Patients with low 
magnesium levels 
experience severe 

psychosis[414] 

Treatment of eclampsia 
Dysrhythmias and myocardial ischemia 
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Alprazolam 

Benzodiazepine 
ever use was 

associated with 
an increased 

risk of 
Alzheimer’s 
disease[415] 

Psychosis 
associated with 

alprazolam 
therapy[416] 

Anxiety disorders 
Panic disorder with or without 

agoraphobia. 

Cholestyrami
ne-Aspartame 

High 
serum/plasma 

cholesterol 
levels have 

been suggested 
as a risk factor 

for Alzheimer’s 
disease[417] 

Lipid profile test 
may be considered 
in the assessment 
of suicide risk in 

psychosis and 
LDL-c an 
important 
biological 

marker[418] 

High low-density lipoprotein (LDL) 
cholesterol 

 

The presence of some medications in the results are to be expected, like Memantine, 

Quetiapine, Duloxetine and Alprazolam. These medications are either indicated for AD or 

psychosis themselves (Memantine and Quetiapine), or are popular candidates for the 

management of psychotic symptoms in AD (Duloxetine and Alprazolam)[419; 420]. These 

results provided side support for the reliability and credibility of our model and strengthened the 

power of the biomarkers and potential treatments that are proposed in the results. 

From the results shown above (Table 4.10), several physiology fields have been 

highlighted including neuroinflammatory process, cardiovascular biomarkers, and glucose 

metabolism. As a matter of fact, the association between these biomarkers/mechanisms and 

AD/psychosis have been establish by past studies[34; 421; 422; 423; 424]. Neuroinflammation 

and insulin resistance are regarded as important neuropathological events underpinning the start 

and progression of AD. Therefore, targeting this mechanism have become a novel approach in 

developing AD-related medications and can also provide insights for the management of AD+P. 

This shows that a combination of clinical support and treatment would further help alleviate 
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AD+P symptoms. Collectively, our study may also suggest the beneficial effects of medications 

like Memantine, Aspirin, Vitamin D, Clopidogrel, Magnesium, and Oxybutynin because of their 

potential effects in mediating the pathways/mechanisms relevant to the onset and development of 

AD+P. DeepBiomarker offers potentially valuable information that may augment existing tools 

for clinical assessment and contribute to a holistic approach to personalized medication. These 

results suggested the potential of our model in providing mechanism insights for the 

development of AD+P and propose novel research direction for potential AD+P prevention and 

treatment. 

Table 4.11 Mechanism actions, targets, and blood brain barrier (BBB) penetration ability for the medications 

identified associated with the development of AD+P. 

Drugs Mechanism of action Targets 
Ability to 

penetrate blood 
brain barrier 

Aspirin 
Irreversibly inhibit the 
cyclooxygenase (COX) 

enzyme 

COX-1 
enzyme 
COX-2 
enzyme 

Yes 

Clopidogrel 

Irreversibly inhibit the 
P2Y12 receptor, which is 
found on the surface of 
platelets. Reduces the 

activation and 
aggregation of platelets. 

P2Y12 
receptor Yes 

Quetiapine 

Antagonist of several 
neurotransmitter receptors 

in the brain, including 
dopamine, serotonin, and 

histamine receptors 

DRD2 
HTR1A 
HTR2A 
HRH1 

Yes 

Duloxetine 

Inhibition of the reuptake 
of two neurotransmitters 

in the brain: serotonin and 
norepinephrine. 

SLC6A2 
SLC6A4 Yes 

Gabapentin 

Binding to the α2δ 
subunit of voltage-gated 
calcium channels in the 

brain to reduce the release 
of several 

α2δ subunit of 
voltage-gated 

calcium 
channels 

Yes 
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neurotransmitters, 
including glutamate, 
norepinephrine, and 

substance p, which are 
involved in pain and 

anxiety. 

Losartan 

angiotensin II receptor 
antagonist, blocking the 
binding of angiotensin II 

to specific receptors in the 
body, which inhibits its 

vasoconstrictive and pro-
inflammatory effects 

angiotensin II 
receptor Yes 

Budesonide-
Formoterol 

Binding to glucocorticoid 
receptors in the lungs, 

leading to the suppression 
of inflammation and 
immune responses 

Glucocorticoid 
receptors 
Beta-2 

adrenergic 
receptors 

Yes 

Vitamin D 

Binding to vitamin d 
receptors (VDR) in cells, 

leading to changes in 
gene expression and 

protein synthesis 

vitamin D 
receptor 
(VDR) 

Yes 

Memantine 

Blocking of the activity of 
the NMDA (n-methyl-d-

aspartate) subtype of 
glutamate receptors in the 

brain. 

NMDA 
subtype of 
glutamate 
receptors 

Yes 

Allopurinol 

Inhibiting the xanthine 
oxidase enzyme, which is 

involved in the 
metabolism of purines 

xanthine 
oxidase 
enzyme 

Yes 

Glipizide 
Stimulating the release of 
insulin from the beta cells 

of the pancreas. 

ATP-sensitive 
potassium 
channels in 

pancreatic beta 
cells 

SUR1 

No 

Insulin 

Binding to insulin 
receptors on target cells, 
which triggers a series of 
signaling pathways that 
promote glucose uptake 
and utilization by cells 

insulin 
receptor 
(INSR) 

Yes 
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Famotidine 
Inhibiting the activity of 
histamine h2 receptors in 

the stomach 

histamine H2 
receptor Yes 

Esomeprazole 
Magnesium 

Inhibiting the proton 
pump (h+/k+ ATPase) in 

the stomach 

the proton 
pump (H+/K+ 

ATPase) 
Yes 

Magnesium 
Oxide 

Providing magnesium 
ions to the body, which 
are essential for many 
biological processes 

 Yes 

Alprazolam 
Enhancing the activity of 
gamma-aminobutyric acid 

(GABA) in the brain 

GABA-A 
receptor 

benzodiazepine 
receptor 

Yes 

Cholestyramine-
Aspartame 

Binding to bile acids in 
the intestine and 
preventing their 

reabsorption 

bile acids No 

There two possibilities for these medications to exhibit the beneficial effects toward 

AD+P that were observed in this study. One is that their beneficial effects are the results of the 

improved overall life quality by the treatment of the indications of these medications. For 

example, by managing their blood glucose level or relieve their anxiety symptoms, it will elevate 

their life quality and thus reduce the risk of developing AD+P. Another possibility is that these 

medications possessed direct central nervous system (CNS) effect that are involved in the 

development of AD+P and is not associated with their original indications. From the summary in 

Table 4.11, most drugs are able to penetrate the BBB to exert central nervous system effects. 

This allowed the possibility that these medications can be the novel treatment options for AD+P. 

4.2.4.3 Hypothesis on AD+P mechanisms and development 

Overviewing the important features identified by the DeepBiomarker1.5 model, 

inflammation-, glucose metabolism-, cardiovascular- and kidney-related biomarkers/mechanisms 

made strong appearances in both comorbidities and lab test results. Though the beneficial effect 
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of glucose-lowering medications[386; 425], cardiovascular medication[426; 427; 428] and anti-

inflammatory medication[429] in AD have already been reported by multiple studies, there is no 

clear evidence supporting their correlation with AD+P. It is possible that these medications exert 

their protective effects toward AD+P by treating AD, but it also provided some mechanism 

insight of the association between AD and AD+P. The strong beneficial effect of Memantine 

also supported that treating AD can be the first step of managing psychotics symptoms in AD. 

This theory may lead to a very different treatment plan compared to the current conventional 

treatments that are mainly composed of antipsychotics.  

The different direction of action of the drugs with similar therapeutical effect also 

provided us a novel angel in drug development for AD+P. For example, we know that diabetes is 

a risk factor for AD+P, but if the increased risk of AD+P is a result of elevated blood glucose 

level, insulin and Glimepiride should possess similar effect since they can all lower the glucose 

level in patients. Our results suggested that the beneficial effects of Glimepiride and Clopidogrel 

are not exerted through their effect for their original indications, but rather through other 

mechanisms that are directly involved in the development of AD+P. 

4.2.4.4 Limitation of our study 

Our research also has several limitations: First, there may be inconsistencies in patients' 

biochemical test results due to enrollment bias, and some laboratory tests may be 

underrepresented in our database. As a result, the analysis's ability to detect the effects may be 

limited. In addition to diagnosis and drug use, we also investigated the influence of biomarkers; 

nonetheless, comorbidities had a greater impact than biomarkers. This can be explained by the 

fact that the diagnosis considers the historical status of the patients, whereas biomarkers only 

accounted for the current status of these patients. 
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We would also like to point out that the population used in this study is partially 

overlapped with the population in one of our previous studies that reported the beneficial effect 

of Vitamin D against AD+P[395]. We were unable to match and exclude the overlapping 

patients because of the deidentification process conducted by the data management team at the 

UPMC. However, with a total of 502 subjects included in the previous study, the overlapping 

sample size are too small to cause significant impact. 
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5.0 Conclusions and Perspectives 

5.1 Key Research Findings 

5.1.1 Different Mechanisms Underlying the Similar Psychotics Symptoms in AD and 

Schizophrenia. 

In this thesis, we explored the underlying mechanisms for the psychotic symptoms in AD 

and schizophrenia by applying cutting-edge network analysis methods to the latest genomic data 

of AD+P and schizophrenia. The findings of this study not only proved that distinct mechanisms 

are causing the similar NPS symptoms in AD+P and schizophrenia, but also identified several 

promising drug targets that possess high impact in the disease conditions and provided future 

direction for novel drug development and drug repurposing studies. 

This research uses a number of different methods of network analysis in conjunction with 

systems pharmacology in order to provide a comprehensive examination of the molecular level 

interactions that take place between Alzheimer's disease, psychosis, and vitamin D. We were 

able to investigate the designated mechanisms for Vitamin D's effects on AD+P with the use of 

the triple-focusing network approach, and a possible explanation is offered as follows: Several 

genes that code for proteins that play essential roles in the overlapped section of the AD-

psychosis combined network are regulated by vitamin D. This allows these proteins to exert the 

maximum amount of influence possible on the process of signaling and information transfer. In 

other words, proteins with high net-influence that localize at the triple-overlapping part of the 

Alzheimer's disease network, the psychosis network, and the Vitamin D network, such as 
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CACNA1C, COMT, NOTCH4, and DRD3, have the potential to play an important role in the 

crosstalk between Alzheimer's disease and psychosis by delivering the effect of Vitamin D to the 

transiting hub connecting the Alzheimer's disease network and the psychosis network. This is 

accomplished by delivering Vitamin D. Therefore, the four putative targets that have been 

discovered could be extremely important in understanding the positive effect that Vitamin D has 

on AD+P. In conclusion, the findings of this study provided a possible explanation for the 

beneficial effect of Vitamin D against AD+P and presented a new direction for the development 

of drugs with four potential novel targets. In addition, the results of this study presented a novel 

approach to the treatment of AD+P. 

In addition, we introduced the risk factors identified from our deep learning-based model, 

DeepBiomarker, to explore the mechanisms that are critical in the development of AD+P. Within 

the context of this retrospective study, we developed a deep learning model called 

DeepBiomarker with the goal of predicting the onset of AD+P by looking back one year at a 

patient's history of medication prescriptions, diagnoses, and routine laboratory tests. This model 

was then applied to the data from the study. The AUC score for the model was more than 0.92, 

which places it in a position of superiority when compared to traditional machine learning 

models such as decision trees and random forests. It's possible that the improvement is due to the 

fact that DeepBiomarker is able to additionally take into consideration the temporal effects of 

these traits. Our methodology identifies laboratory tests that can act as indicators for underlying 

comorbidities. Several therapeutic areas were highlighted by the presence of multiple related 

biomarkers: inflammation (Anion Gap, Mononucleosis, Eosinophil), metabolic syndrome 

(Glucose-Whole Blood, Sodium-Whole Blood, Blood Urea Nitrogen), kidney function (Urea 

Nitrogen, PH – Urine, Leukocyte Esterase), and cardiovascular function (pO2 – Arterial, Sodium 
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- Whole Blood, B-Type Natriuretic Peptide). It is important to note that the direction of these 

tests' effects vary between beneficial and harmful, and it might be misleading when an abnormal 

pO2 – Arterial result provides protection against AD+P. We assume that the RC values we 

discovered here are a combination of the symptoms and the accompanying actions that the 

patients received as a result of abnormal lab tests, and that this may cause certain abnormal lab 

tests to have good consequences. Glucose-Whole Blood, for example, demonstrated a good 

influence in the lab test findings (RC = 0.641), whereas Type 2 diabetes demonstrated a 

dangerous effect in the comorbidities test results (RC = 1.365). 

5.1.2 Explained the Modest Efficacy of Antipsychotics in Treating AD+P 

In this thesis, through the utilization of network efficiency and pathway analysis on the 

combined disease-target network, we were able to shed light on the underlying causes of efficacy 

disparities between antipsychotics used to treat schizophrenia and AD+P. It has been discovered 

that the key targets of antipsychotics have a lesser efficiency in the AD+P network than they do 

in the SCZ network. This finding suggests that the antipsychotics that interact with these targets 

may modify AD+P in a less effective manner. Finally, we discovered pathways that are activated 

by antipsychotics and are involved in AD+P but not in schizophrenia. These pathways may 

contribute to the restricted efficacy or heightened toxicity of these drugs in AD+P because they 

are not involved in schizophrenia. 

The results of this study can also help nominate antipsychotics that may possess higher 

efficacy in treating AD+P as candidates for future testing. Although not many antipsychotics 

have been tested against AD+P, the results of this study can help nominate antipsychotics. 

Risperidone is the most effective and widely used second-generation antipsychotics (SGA) in 
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clinical settings; nevertheless, three antipsychotics, Sertindole, Fluphenazine, and Ziprasidone, 

exhibited a greater weighted efficacy than Risperidone did. The antipsychotic medications 

Sertindole and Ziprasidone have been shown to have superior effectiveness and safety profiles. 

Previous research also demonstrated that Sertindole performed better than other SGAs on 

cognitive functions such as processing speed and executive function, whereas ziprasidone 

performed better on the composite score, executive function, processing speed, working 

memory, memory, and verbal learning. Both Sertindole and Ziprasidone have a higher affinity 

for the 5HT6, 5HT2C, and 5HT3 receptors, which may be one of the reasons why they are 

beneficial. Because of this, we think that Sertindole and Ziprasidone are good choices for 

antipsychotics that work better for AD+P. When a similar perturbation is applied to major 

antipsychotics' targets, such as DRD2 and HTR2A, patients with AD+P will have different 

reactions compared to schizophrenia patients. This is due to the fact that the pathways that are 

influenced by the perturbation are different under the two disease conditions. The results of the 

pathway enrichment analysis showed this to be the case. When compared with schizophrenia, the 

overrepresented pathways point to a unique function for neuroinflammation and RNA production 

in Alzheimer's disease and Parkinson's disease. In addition, a number of studies have pointed to 

the role that neuroinflammation plays in the development of Alzheimer's disease and 

schizophrenia. The findings of our research showed that, although inflammatory processes are 

involved in both conditions, different responses can be activated in AD/PD patients and 

schizophrenia patients. These findings can be used to explain the causal relationship between 

activated systemic inflammation and the development of neuropsychiatric symptoms in 

Alzheimer's disease. The consistency between the previously published reports and the findings 

of our pathway enrichment study offered further support for the justification of our findings. The 
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various pathways affected by AD+P and schizophrenia may also have an unintended 

consequence of increasing the likelihood of antipsychotics’ adverse events in AD+P patients. For 

instance, infection is a common side event that has been observed in several studies and has been 

linked to the antipsychotic-induced suppression of the immune system. 

The findings of this study, taken as a whole, not only offer a possible explanation for the 

modest efficacy of antipsychotics in AD+P, but they also have the potential to help nominate 

antipsychotics that may possess higher efficacy in treating AD+P and which should be tested in 

further studies. These antipsychotics are Sertindole and Ziprasidone. In addition, the 

methodology that we used in this investigation demonstrated a high level of congruence with 

many other pieces of evidence that were reported by merging bioactivity data with network 

analysis approaches. This methodology has the potential to be utilized in drug repurposing or 

treatment optimization research so as to provide assistance and direction. 

5.1.3 Identification of novel treatment options for AD+P 

After building a solid foundation in understanding the mechanisms, risk factors and 

current treatment options for AD+P, we took a further step to look for novel treatment options 

that can provide better efficacy and improved safety profile. Large-scale drug repurposing and 

systems pharmacology approaches were performed to identify medications with potential 

beneficial effects or a cocktail therapy by combining medications from different categories. 

In this thesis, cutting-edge systems pharmacology approaches were used to investigate 

the possible synergistic effect of combining antipsychotics and antidepressants in the treatment 

of AD+P. The results of this investigation showed that there was no significant synergistic effect 

between the two treatment modalities. This study looked at protein expressions, post-treatment 
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gene expressions, as well as networks of protein-protein interaction. Our findings indicate that 

the combination of antipsychotics and antidepressants may be a more effective treatment option 

for AD+P, and they provide significant information for making future decisions regarding the 

appropriate medication matching. For the treatment of AD+P, our research uncovered a number 

of different pharmaceutical combinations that have the potential to provide synergistic effects. 

Two antipsychotics, Aripiprazole and Thioridazine, and seven antidepressants, Sertraline, 

Maprotiline, Nefazodone, Mirtazapine, Trazodone, and Bupropion, were recorded as having 

been used. Despite the fact that antipsychotics and antidepressants have never been studied 

specifically for Alzheimer's disease or Alzheimer's disease plus Parkinson's disease, their safety 

and efficacy profile has been analyzed in a number of trials in comparison to other disorders. As 

a direct outcome of this analysis, the goal of our research is to provide a comprehensive and 

quantitative picture of the underlying link that exists between antipsychotics and antidepressants, 

as well as AD+P. Our research provided evidence in favor of the usefulness of antipsychotic 

medications, and we advised that the most promising antidepressants, such as sertraline and 

maprotiline, be considered for inclusion in the treatment plan. Because all of these medications 

are readily available over-the-counter and because several of their combinations have already 

been tested in clinical trials for other purposes, there is little cause for concern regarding their 

safety profiles when they are recommended for long-term use as an alternative treatment for 

Alzheimer's disease patients. 
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Appendix A Supplementary Material for Chapter 2.1 

Inclusion criteria for genes 

Due to the variety of information sources, genes were carefully selected from different 

types of data including RNA and miRNA expression, SNPs identified through GWAS, copy 

number variations (CNVs), and mutation data. 1) reported in a primary GWAS analysis, defined 

as array-based genotyping and analysis of 100,000+ pre-QC SNPs selected to tag variation 

across the genome and without regard to gene content; 2) SNP-trait p-value <1.0 x 10-5 in the 

overall population. The threshold of 1.0 x 10-5 was chosen rather than the stricter one for 

genome-wide association of 5.0 x 10-8 to include more targets potentially related to AD and 

psychosis to generate a more complete structure of networks. 

Alzheimer’s disease-related genes 

HLADRB1 EIF4EBP1 A2M LRP1 ABCA1 ABCA2 ABCA7 
ABCC2 ABCG1 ACAD8 ACE ACHE CHRM2 ACTA2 
ACTL8 ADAMTS1 ADAM10 ADAM12 ADAR AGBL4 AGTR1 
AGTR2 AKT1 ALDH2 ALOX12 ALOX15 ALOX5 AMBRA1 
RUNX1 ANKH ANKRD2 ANKRD6 ANO3 APEX1 APH1A 
APH1B APLP2 APOA1 APOC1 APOC1P1 APOC2 APOC4 
APOD APOE LRP8 APOF LPA APOM APP 
NAE1 APPBP2 PRNP ARHGAP30 ARPP19 SRRT ARSB 
ASAH1 ATAD2 ATF2 ATF4 ATP10B ATP13A5 ATP8A1 
ATXN7L1 ADCY2 ACAN ADAMTS4 AGRN SERPINA1 ACTR1A 
SNCA IAPP AR ANK3 ANXA13 TNFSF10 AQP1 
ARSA AXIN1 B4GALT3 B9D2 BACE1 BACE2 PBRM1 
SMARCD3 ADGRB3 BAP1 DDX39B BCAM BCAS3 BCR 
BCYRN1 BCHE BDNF BDNF-AS BICC1 BIN1 PRUNE2 
SLC25A14 BMP5 ASIC2 BRD3 BCL3 BCL2L2 BECN1 
ADRB1 CTNNB1 BLMH BRCA1 C10orf55 C14orf177 CLUHP3 



 143 

MTHFD1L STUM C1R MROH8 PP2D1 C5AR1 C6orf48 
CACNA1C CACNA2D

4 
CALB1 CAMK1D CARD8 NEDD9 CBLC 

CBS CCDC83 CACNG4 CCL2 CCR3 CCR5 CD14 
CR2 CD2AP CD33 CD40 CD40LG CD8A CD86 
CDK1 CDK5 CDK5R1 CDK5R2 CDON CEACAM1

6 
CEP164 

CETP CFTR CHD6 STUB1 CHAT CLCN6 CLEC16A 
CLIC5 CLPTM1 CNGB1 CNR2 CNTN5 COG1 VPS13B 
COL18A1 COMT COPA COX6C PTGS1 PTGS2 COX10 

CR1 CR1L CREB1 CRHR1 LINC02210
- 
CRHR1 

CRP CSF1 

CSTF2T CTGF CUX2 TET1 CYP17A1 CYP19A1 CYP1A1 
CYP27C1 CYP46A1 CAMK1 CAMK2A CAMK2G RCAN1 S100A9 
S100A12 CAPN1 CAST CSNK1D CSNK2A2 CASP2 CASP3 
CASP4 CASP8 CASP9 CNTNAP2 CTNNA3 CTSB CTSD 
CTSS ADAP1 CP CH25H CHGA CLU F5 
F8 F13A1 COL19A1 CRH CSMD1 CUBN CCNC 
CCND1 CST3 DAPK1 DAXX ASAP2 DEDD DEFB122 
GLUD1 DIO1 DIO2 DIP2C DIRAS2 DISC1 PARK7 
DKK1 DLD DLGAP1 POLB DNAJC12 DNMBP DONSON 
KCNIP3 TSC22D3 DVL1 DYNC1I1 DYRK1A CTNND2 DRD1 
DRD3 DRD4 DBN1 DNM2 E2F1 EBF3 ECE1 
EDEM2 EFCAB7 EGR1 ELOVL6 ENO1 ENO2 ENTPD7 
ERAP1 ERG KCNH6 MAPK3 MAPK1 ESR1 ESR2 
CELF2 EYA4 EYS POMK EPHA1 EPHA5 EFNA5 
EPOR ERBB4 FAAH FAF1 OTULIN CALHM1 MINDY1 
FAM89B UBD FDPS FGF1 FHIT ENOX1 INO80D 
BASP1-AS1 C5orf64 FMNL2 FMO2 FSTL5 FTO FNTA 
FASLG FAS FCER1G FCGR2B APBB1 APBB2 APBB3 
AHSG FLOT1 FYN GNAO1 GNB3 GAPDH GAPDHS 
GCNT1 GAB2 GALNT17 GBP2 GABBR1 GCFC2 PLEKHG5 
GFAP GGA1 SLC1A3 GBA GLUL GLS2 GOLM1 
RXFP3 ADGRG1 GRAMD1B GRK2 GSK3A GSK3B GSTA4 
GSTO1 GSTO2 GSTP1 GSTT1 GAL GALP SNCG 
GSN GHRL GRIA1 GRIA4 GP6 GPC1 FABP3 
HSD17B10 HECW1 HHEX HLA-A HFE HLX-AS1 HLX 
HMGCR HMGB1 HMGCS2 ARHGAP45 HOOK3 HSD11B1 HSPB8 
HSPA1B HSPA2 CWC15 HTR1A HTR2A HTR2C HTR6 
ZWINT HMOX1 ELAVL4 RNR2 HTT IGFBP2 IGFBP3 
IGFBP6 ICAM1 ICAM4 IDE IFNG IGF1 IGF1R 
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IGF2 IGF2R IL1A IL1B IL10 IL18 IL2 
IL33 IL6 IL1RN IL6R CXCR2 IMMP2L CXCL10 
ITPR1 IQCK IREB2 TCF4 ITGAM ITM2B IVD 
INS INSR IQCE JAK2 F11R MAPK8IP1 KLHDC9 
KCNAB2 KCNH7 KCNMA1- 

AS1 
KCNQ3 CKB WASHC4 KANSL1 

FAM214A FAM120B WWC1 KIF13B KIF26B KLC1 KIF11 
KLK10 KLK6 KLK7 SLC4A1AP KCNC4 L3MBTL4 LAMA1 
LAMC1 LDLR LHCGR LHFPL6 LINC00466 LINC00475 LINC00836 
LINC01122 LIPA STK11 LMOD3 LOC101929 

570 
LOC145845 RBM15-

AS1 
EMBP1 LPL LRAT LRP6 PPP1R37 LRRK2 LRRN2 
LRRTM3 LRRTM4 LRTM2 LUZP2 LMNA LCK MAGI1 
MAGI2 MAL2 MAOA MAOB MAPT-AS1 MAPT-IT1 MARCH10 
MARK1 MAT1A MBOAT1 SLC16A7 ABCB1 MEF2A MEIS1 
MAP2K1 MAP2K2 MEX3A MGAT5B MGST1 MIF CCL3 
CCL4 CCL4L1 MMP12 MMP8 MPP7 MPZL1 LRPAP1 
MRE11 MROH7- 

TTC4 
MS4A4A MSI1 MSR1 STK24 MTHFR 

ND1 MTR STXBP1 MYH13 MYH7B KCNMA1 MTNR1A 
MS4A6A MYOCD MYOF MYO10 NACA QPRT NALCN 
ART3 NAT1 NAT2 NAV2 NCAM1 SLC8A1 NME1 
NME1- 
NME2 

NME2 NDRG2 NDUFS2 NEFH NEFL NGFR 

TMEM147 NINJ2 NIPBL NKAIN2 NKAPL NOTCH1 NOTCH4 
NPAS2 NPC2 NPFFR2 NPY NQO1 GRIN1 GRIN2A 
GRIN2B SLC11A1 SLC11A2 NQO2 ITGB3BP NTF3 NUMB 
NECTIN2 NECTIN4 MME NRG1 NCAN NCSTN NIT1 
NKPD1 NXN DLST OGG1 OLIG2 OLR1 OPA1 
OSGEP OTUD7A POU2F1 SELP P2RY2 PADI2 SERPINE1 
PARP1 PAXIP1 PCDH11X PCGF5 PCMTD1 PCSK9 PDE4B 
PDE9A PDZD7 MPO PFDN2 PGBD1 PTGES2 PTGDS 
PICALM PITRM1 PRKACA PRKCA EIF2AK2 PLA1A PLA2G2A 
PLAC4 PLAT PLAU PLCE1 PLXDC2 PNMT POLN 
POMC POMT1 PON1 PON2 PON3 POTEA PPARD 
PPARG PCK1 PPID PPOX PPP1R11 PPP1R1C PPP1R3B 
PPP2R2B PRDX1 PRDX2 PRDX3 APBB1IP PRKAR2A PRKAR2B 
PRND PRIMA1 DLG4 PSMB9 PSMC4 PTEN HACD1 
PTPRA PURA GART PVR ALDH18A1 PAWR PCNX1 
PSENEN HSPG2 PIN1 PLG PSEN1 PSEN2 PCSK1N 
PDYN GRN PREP PRKG1 PTK2B RSPO2 RACK1 
RAD51B AGER GAPVD1 RASSF4 RDH13 RGS4 RPN2 
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ROR1 PLPPR1 RTN4R RAB6A RELB RTN4 S100B 
SAMSN1 SAR1A ZFYVE9 SBSN SCARA3 SCN2A SERPINA3 
SERPINF2 SLC6A4 SREK1IP1 SHISA9 ST6GAL1 SLC18A3 SLC1A2 
SLC1A7 SLC4A2 SLC5A12 SLC6A17 SMAD3 NCOR2 SNAP25 
SNCA-AS1 SNORD52 SNX10 SNX3 SOAT1 SOD1 SOD2 
SORCS2 SORL1 SOS2 SP1 SGPL1 SCARB1 SIGMAR1 
ZSCAN26 SSSCA1 SUPV3L1 SVIL SYP STH SEC24C 
CHGB SEMA3A SEPT1 SEPT3 SEPT7 SQSTM1 SIRT1 
SST GH1 SORCS1 SORCS3 STMN1 STXBP5L SYN1 
SYNPR SYT1 STX8 ZNF365 TRIOBP TARDBP TAS2R60 
TBP TCF7L2 TDRD10 TEAD1 TEP1 TFAM TFCP2 
TFEB TGFB1 TEK TIMP1 TIMP2 TIMP3 TLK1 
TLR4 TLR9 TM2D1 TMEM132

D 
TMEM147- 
AS1 

TMEM177 TMED10 

TNFRSF1A TNFRSF1B TNF LTA TNK1 TOMM40 TPH1 
TPPP THRA TREM2 TRIM15 TRPC4AP TSNAX- 

DISC1 
TSPAN18 

TSTD1 TTC27 TUSC3 TXNRD2 MAPT TSPAN2 THOP1 
TIAM1 KAT5 TMEM132C TMTC1 TCN1 TCN2 TF 
TTR NTRK1 NTRK2 NTRK3 TTC4 TSC2 U2AF1L4 
UBB UBE2D1 UBE2Q1 UBXN4 UCHL1 UFC1 UGCG 
UMAD1 UNC13C USF1 USP21 USP35 UXS1 UBQLN1 
UFSP1 MPP6 VDR VEGFA ZNF197 VSNL1 HPCAL1 
MAVS VLDLR WDFY4 WT1 WEE1 APBA1 APBA2 
XRCC1 XYLT1 TRAK2 ZBP1 ZFYVE19 ZNF155 ZNF224 
ZNF225 ZKSCAN4 ZNF320 ZSCAN31 ZDHHC7 ZNF720 ZNF804A 
ZC3H3 SLC30A1 SLC30A4 SLC30A6 ZYX ABL1 RAF1 
RAPGEF4 EEF2 EEF2K EIF2S1 EIF4E NOS3 MIR4713 
MIR4761 MIR6843 MIR6886 MIR7846 NOS2 MTOR TRNQ 
CHRNA2 CHRNA3 CHRNA4 CHRNA6 CHRFAM7

A 
CHRNA7 CHRNB2 

CHRNB4 NOS1 RELN CDKN1B TP53 RPS6KB1 TP73 
ABCC13 AD10 AD11 AD12 AD13 AD14 AD15 
AD16 AD5 AD6 AD7 AD8 AD9 ADORA2A 
AGBL4-IT1 ALB AMIGO2 APCS APLP1 APOC4- 

APOC2 
AQP4 

ARMCX5- 
GPRASP2 

ATP5F1A AZIN1-AS1 BACH1 BHLHB9 CASP1 CASP6 

CASP7 CCL11 CCL4L2 CCL5 CCL7 CD36 CFAP410 
CHAF1B CNR1 COL18A1- 

AS1 
CRYAB CXCR3 CYP2D7 CYP7B1 

DAGLA EPHA1-AS1 ERBB2 ERBB3 GCG GHRLOS GNAS 
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GPR55 GRIA2 GRIA3 HCRT HNRNPA2
B 
1 

HP IL12A 

IL12B KALRN KLK8 LINC00211 LINC00972 LINC01081 LINC01266 
LINC01492 LINC01501 LINC02254 LINC02516 LOC100130 

587 
LOC100287 
329 

LOC100379 
224 

LOC100996 
288 

LOC101927 
502 

LOC101928 
418 

LOC101928 
651 

LOC101928 
961 

LOC102724 
297 

LOC414300 

LOC541472 LOC643387 LOC646506 LRRC15 MELTF MEOX2 MGLL 
MMP2 MMP9 MS MS4A4E MUC22 NAPEPLD OAT 
P4HA3-AS1 PAK1 PDE8B PLUT PRDX6 PRKXP1 RABGAP1L 
RNF146 SERPINF1 SLC18A2 SLC6A3 SNCB SSSCA1-

AS1 
SYNPR-
AS1 

TNFAIP1 TRPV1 ANKRD22 LINC00624 RAD23BP2 
- 
SEMA3A 

MECOM MCPH1-
AS1 

AKR7A3 IRAK1BP1 SCAPER CEP63 SEC24B-
AS1 

TENM4 TMCO4 

NACAP6 - 
LINC02150 

DYSF - 
RPS20P10 

DLC1 TMEM94 PLCL1 GPR180 LINC00626 
- 
SUMO1P2 

BAALC-
AS1, 
BAALC 

CCZ1B - 
OR7E39P 

PCSK6 RF00438 - 
R3HDM2P2 

CFAP74 CCDC112 - 
CTNNA1P1 

CTNND2 - 
RNU6-679P 

FAM240B SLMAP AOX1 UNC93B4 CDH1 IQGAP2 RASSF8 
CEP295NL, 
TIMP2 

FAM19A5 KLHL36 - 
USP10 

PIFO IGSF23 SELENOO CDCA7L - 
RAPGEF5 

BNIP3P13 - 
ZNF90 

SYNGAP1 SESTD1 TAS2R5 CSNK2A1 - 
TCF15 

C9orf152 - 
TXN 

FAT3 

RDX ABCA8 STEAP3 - 
C2orf76 

NEK10 ERO1A - 
PSMC6 

RNU7-188P 
- SEM1 

SEC24B 

GTF2H3 PTPRS - 
ZNRF4 

RASSF5 COL25A1 HMCN1 NAALADL
2 

RN7SKP120 
- TUSC1 

RNA5SP16
9 
- 
LINC02273 

KSR2 MDGA2 - 
MIR548Y 

OSER1-DT 
- 
GDAP1L1 

JPH3 AQP4-AS1 DNAH6 

 
HDAC9 

 
SHANK2 

UGT1A10, 
UGT1A8 

 
TBXAS1 

KIFC3 - 
CNGB1 

LINC02103 
- RNU6-
909P 

TSNAX- 
DISC1, 
DISC1 

LINC01725 PAX2 PROX1-
AS1 

RN7SKP168 
- 
ZFYVE9P2 

ATP8A2P3, 
RNF6 

EDAR - 
RF00017 

EPC2 - 
RNU2-9P 

 APOC1 - MTCYBP27 SIGLEC22P BIN1 - MRPL58 - FBXL7 
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APOC1P1 - 
RNU6-976P 

- 
CD33 

NIFKP9 RNU6-362P 

CACNA2D
3 

ADAMTS9- 
AS2 

DCHS2 PUM3 HRK SLC28A1 MLN - 
LINC01016 

DYNLL1P4 
- 
RBM19 

PRRC2C FMN2 CTNNA2 LIMS2 MOBP STK32B 

AFF1 ANKRD55 PGAM5P1 CAMK4 DMXL1 MEGF10 LINC01184 
SAP30L PLEKHG1 BZW2 CYCS ELMO1 EXOC4 NCS1 
PLPP4 SPON1 ARHGAP20 SLC4A8 CRADD ANO4 GPC6 
 
MYO16 

 
CLMN 

 
GABRG3 

LIPC-AS1, 
ALDH1A2, 
LIPC 

TNRC6A, 
LINC01567 

 
VAT1L 

 
SP6 

CACNA1G PPIAP59 TGM6 PARVB RPS17P11 - 
MFSD4BP1 

RPL3P11 - 
ATP5PDP3 

CASC18 

 
NDUFA12 

FANCD2OS
, FANCD2 

RN7SL782P 
- 
RN7SKP122 

 
IL19 

NCKAP5 - 
RN7SKP93 

 
CCDC85C 

 
SDR9C7 

 
NARS2 

 
PKNOX2 

LMOD3 - 
FRMD4B 

SLC25A6P5 
- 
LINC01505 

LINC02098 
- ETS1 

 
OSBPL6 

RNU6-248P 
- RNU6- 
261P 

HNF4G - 
RNU2-54P 

LAMP1 RBFOX1 ARVCF UBXN11 HYI, SZT2 AHCYL1 

RF00012 - 
NMNAT1P
2 

TGFB2 RNU4-77P - 
KCNK1 

ITSN2 OTOF MSH2 LINC01185 

RAB1A - 
RF00090 

SPRED2 LINC01965 RN7SKP141 
- SMC4P1 

COL4A4 RANP7 - 
SALL4P5 

RPEP2 - 
HMGB3P12 

C3orf67 PTPRG RN7SL271P 
- 
UBE2Q2P9 

LINC02008 TFP1 RNU6-637P 
- TERC 

SNRPCP13 
- 
ENPP7P11 

RNU6-412P 
- RAC1P2 

BANK1 - 
SLC39A8 

SETD7 SH3RF1 LINC02268 RNU6-381P 
- FGF10 

F2R - 
F2RL1 

WDR41 MEF2C-
AS1 

RPS17P2 - 
LINC02214 

RF00019 - 
ZCCHC10 

LARS G3BP1 KDM1B 

CDKAL1 DST COL12A1 LINC02532 
- 
CD24 

SGK1 SNX9 TULP4 

PHF14 MTDHP1 - 
ZNF117 

PQLC1P1 - 
EEF1A1P28 

DLX5 LYPLA1P1 
- 
IQUB 

INSIG1 NKAIN3 

SGK3 PPP1R42 FZD6 - 
CTHRC1 

PDCD1LG2 LINC01243 
- 
MTATP6P3

ATP5MFP3 
- 
RFC5P1 

LINC00476 
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0 
FOXE1 - 
TRMO 

MTND3P4 - 
ARL2BPP7 

PNPLA7 WAC RPL34P19 - 
RN7SL825P 

C10orf71 RNU6-478P 
- 
MARK2P15 

MICAL2 TRIM51CP AHNAK CCDC89 AICDA OVCH1-
AS1 

RNU7-106P 
- OTOGL 

TPTE2P3 RABEPKP1 
- 
DACH1 

ARF4P4 - 
LINC00377 

FARP1 LINC00343 FAM181A LINC02304 
- 
LINC02325 

HERC2 TRPM1 THSD4 AGBL1 TMC5 SDR42E2 CDH13 
 
ALOX12-
AS1 

 
COX10-AS1 

MPP3 - 
CD300LG 

 
DCAF7 

 
TCAM1P 

CDH19 - 
RNU6- 
1037P 

 
ZNF813 

CST1 - 
CSTP2 

RPS2P1 - 
ASIP 

LINC01271 
- 
RN7SL636P 

SYNJ1 TEX33 - 
TST 

RAB20 PDS5B 

SPSB1 BDH1, 
BDH1 

ADARB2 TOP1 LIN28B C2orf83 TIAM2 

RPL7P19 - 
ETF1 

GOLIM4 RNF165 SLC25A48 COLGALT2 ABCB11 ARAP2 

IRF2 AKAP9 DSCAML1 IL34 LINC01838 
- 
ZNF30-AS1 

SLC25A5P3 
- 
VSTM2A 

TRIQK 

LINC01508 RSPO4 KAZN CCDC134 MS4A4E - 
MS4A4A 

PICALM - 
RNU6-560P 

CLU - 
SCARA3 

ZNF292 CDC42EP3 UTS2B PAK2 ADCY8 RNF219-
AS1 

RORA-AS1 

SLC44A5 NME9 CCRL2 MMP3 - 
MMP12 

NFU1P1 - 
MYRIP 

NRXN3 TLN2 

BMPER SLC8A1-
AS1 

SLC9A9 EFR3A LINC02343 SLC24A4 ZFP3 - 
ZNF232 

CEACAM2
2 
P 

RF00285 - 
BCL3 

MS4A4A - 
MS4A6E 

BCAM - 
NECTIN2 

TOMM40 - 
APOE 

APOC4 APOC2 

CLASRP GEMIN7- 
AS1 

PPP1R37 INPP5D CD2AP - 
ADGRF2 

ADGRF2 PILRA 

AGFG2 AP4M1 CASTOR3 PMS2P1 EPHX2 GULOP PSMC3 - 
RAPSN 

SPI1 FERMT2 BCKDK ZNF232 CNN2 CEACAM2
0 

APOC4 

CLPTM1 - 
RELB 

GEMIN7 MARK4, 
PPP1R37 

GEMIN7- 
AS1 

EXOC3L2, 
MARK4 

MARK4, 
EXOC3L2 

CSTF1 - 
CASS4 

HLA-DRB1 
- 

GPR141, 
EPDR1 

CELF1 CLU CR1; CR1 MTCO3P30 SLC2A9 
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HLA-DQA1 
RNU1-80P - 
TNRC6C 

RIMBP2 RNU6-276P 
- EXOC1L 

KRT18P16 - 
LINC01170 

SUCLG2 GMNC - 
OSTN 

GLIS3 

PFDN1 - 
HBEGF 

NFIC ZAP70 PUS1 MAP2K5 ANGPT4 ARIH1 

LINC01098 HIGD1AP3 
- 
MSX2 

FAM83E RNU4ATA
C8 
P - LRRIQ3 

KCNN3 HSPA8P9 - 
CLDN18 

RN7SL691P 

IL21-AS1 SERINC5 - 
KRT18P45 

CDC42SE2 SH2D4B FRMD4A IRF6 PMS2CL 

THSD7A - 
TMEM106
B 

LINC02210- 
CRHR1 

ARL17B WNT3 HID1-AS1 - 
CDR2L 

MACROD2 
- 
PPIAP17 

DAPL1 

PDE1A CADM2 FBXO40 OFCC1 PEX6 SORD LINC01684 
ABI3 PLCG2 RHBDF1 ATP5F1C BSG C11orf65, 

ATM 
TECTA 

TREM2 - 
TREML2 

NDUFAF6 AP2A2 IGHV2-70 - 
IGHV3-71 

TRIP4 ZCWPW1 CASS4 

 

Psychosis-related genes 

HTR2A DRD2 HTR7 GRB10 SLAMF1 
NFKB1 ACKR1 AS1 ZNF618 COMT 
GRM7 AGER SLITRK1 ADGRL2 GSAP 
TMEM26 AQP8 HS3ST3A1 SCN8A RGS6 
FAM43A NRG3 AC087071.1 CAMKMT SLC3A1 
STX8 ZNF473 NSG1 PLA2G4A DOCK1 
FAR2P1 ST5 HS3ST4 COMT MKNK1 
KIT TBX1 CNTN4 LIPC AC079950.1 
CCDC60 MSRA CEACAM21 AC108734.4 TCF4 
BCL9 TMEM245 COL25A1 SGCD LINC00499 
ADCK1 C3orf38 CCDC122 PHF20 ENOX1 
PTPN6 EFNA5 DMAC1 AC012254.2 NFS1 
PLCB1 COL26A1 IQGAP2 DLGAP2 MECR 
CTNNA2 STXBP5L TENM4 EYS AC009468.1 
BMPR1B NRG2 TCHP HS6ST1 CEP41 
SLC14A2 COLGALT2 RGL1 CSMD1 NAV2 
RICTOR OSMR AC009652.2 COL12A1 KHDRBS2 
MPP4 TEP1 LINC01435 NFATC2 MEGF10 
SPATA6L PCDH7 CNTNAP5 TNIK SPATA6L 
NBEA RTN1 RBFOX1 FANCA RBKS 
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ZNF385B GPM6A TENM3 MIR583HG ATXN7L1 
FAM120A MAD1L1 AC120114.1 CWC22 GRM3 
LINC01725 CACNA1C KLF12 AKAP6 APOPT1 
AC104574.2 MSI2 ZEB2 RMND5A FXR1 
SLC39A8 BANK1 GRIA1 SLC17A3 POM121L2 
ZSCAN31 CARMIL1 ABCB1 IMMP2L AL161716.1 
GLIS3 MRTFA AKT3 FHIT AC244033.2 
SH3GL3 ZSWIM6 SHC4 AL672167.1 NTRK3 
RALGAPA1 TMEM132D CIR1 HCN1 ADCY1 
NR3C2 SPATS2L LPP GABBR2 CNTN2 
ZFHX3 AC092650.1 DST ZDHHC2 KLF6 
RPSAP52 PLCL1 EFR3B ERCC8 XYLB 
GRID1 DLG2 DNAJC11 CALN1 NOL4 
MOSMO ZDHHC8 RAB8B PIK3C2A SMG6 
ZNF536 PRKD1 AL022476.1 EMX1 AL163541.1 
GGNBP1 MPHOSPH9 SHISA6 TENM2 TBC1D29P 
PCLO ARHGAP40 INHBA ZBTB7B ADGRV1 
NOS1 DOP1B DNAH1 CACNA1D LIMK2 
KIF1BP TBC1D5 TMEM182 CHRNA2 SFMBT1 
MIR137HG BCL11B LILRP2 AL591368.1 EEFSEC 
MAIP1 AC011306.1 OPCML FRMD5 FAM86B3P 
SCAPER KYAT1 PTPRF PSORS1C1 LIN28B 
NAB2 ZNF664 NLGN1 SPG7 AC114763.1 
AC008667.1 MIRLET7B

HG 
ROBO2 NTM AL583808.1 

NPAS3 LHFPL3 AC022784.1 DGKI CDC25C 
CYP26B1 QPCT CACNA1I SNAP91 SDCCAG8 
ETF1 RIT1 AC091862.1 BTN3A1 AL662884.2 
TSNARE1 STUM LINC02219 EPN2 MAN2A1 
LIMA1 DOP1A SRR LINC02267 DCC 
PLCH2 FURIN LEMD2 MAGI2 ASAP1 
PTPRD APBA1 ATP2A2 FAM214A RUSC2 
OSBPL10 TTC12 KALRN TRPM6 MTHFD1L 
OPRD1 NRGN TSPAN2 CNNM2 ARHGEF26 
ALMS1 AC021594.2 PRRG2 YPEL1 GNG7 
ZBED4 MMP16 PCNX3 TCF20 AL035685.1 
PPP1R16B STK4 CLIP1 LRRTM4 HIST1H2AP

S4 
PRKG1 SORCS3 CALB2 RHBDL3 ZNF804A 
FOXP1 LINC02438 CMAHP GUSBP2 TEK 
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SRPK2 DNAJA3 AP000688.2 STAG1 LINC00862 
SATB2 ZFAND2B PPP1R13B NEU1 TMTC1 
PCNX1 LINC00606 LINC01470 SLCO6A1 HFE 
MSR1 EBLN3P CACNB2 GLG1 LINC01539 
ZCCHC14 PHACTR3 PTGIS KIF21B SCN9A 
ZNF823 SP4 SOX5 GULOP CMAHP 
AL645941.2 CUX1 AC097634.4 IGSF9B AC046136.1 
MIR29B2C
HG 

NEGR1 TRAPPC3 CAPN2 LRRN2 

ZCCHC17 VRK2 AC096570.1 SPHKAP BCL11A 
EPC2 TMEM178B PPP2R3A FRMD4B KLHL29 
DPYD SLC9B2 SHISA9 AC008415.1 PTPRK 
GRAMD1B SNORC POU6F2 FMN2 TTYH3 
CHD2 AC090578.1 LINC01122 CPEB1 ANKRD23 
FER ALOX15P2 CACNB2 SKAP1 RTKN2 
AL445623.2 MINDY2 DGKZ TMCO5B AC067752.1 
CHRNA3 NFATC3 RPTOR SPECC1 GID4 
AP005203.1 PCBP3 THOC7 PSD3 THRB 
ZDHHC20 PCDH9 FOXO3 AIG1 SYNGAP1 
ADAMTSL3 HS6ST3 GPC6 ANKRD36 SNAPC3 
SUFU HECW2 AL391117.1 ATP2B2 PLCL2 
ELAC2 YWHAE GRIN2A U91319.1 HCP5 
ITPR3 JAM3 AP002851.1 AL138974.1 FOXO6 
CENPM PEPD BNIP3L PAK2 CLCN3 
AC117377.1 POC1B TACC2 LINC02551 LRP4 
C12orf76 AC016866.1 NT5C2 LINC01360 AC009226.1 
RN7SL100P PCDH15 BICC1 AC024901.1 AC005906.2 
AC002070.1 GPM6A AL162726.3 KIAA0391 AL121694.1 
AL358790.1 AP003174.1 MARK2 LETM2 AGO4 
CRB1 NEURL1 CFAP58 MTUS2 ACTG1P22 
CUL3 MGLL GALNT10 LINC00301 GRIN2B 
IQANK1 RALGPS1 GALNT2 DMTF1 EBNA1BP2 
PDE4B LINC01776 ELAVL4 AL138927.1 SLC45A1 
LINC02549 CCDC192 AP003049.2 LINC01583 AC087564.1 
CIB4 SLC1A1 AL390957.1 LINC01310 DNAJB5 
SPOCK1 PIGO LINC00303 AC116337.3 ZP1 
AC093766.1 CNTNAP4 ZNF665 DKK3 RELN 
AGBL1 ACSM1 TRAF3 PIK3C2G HHAT 
ZFYVE28 LINC01255 RORA KIF26B NLRC5 
ARNTL CDH13 FARSB SGK1 RENBP 
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TBXAS1 SGCZ AGAP1 FEZ1 ANK3 
PLAA ACSM3 NOTCH4 BRD1 FBXO11 
ARHGAP31 NKAIN2 PRRC2A SNX29 AC027458.1 
ANO4 AC026167.1 VIPAS39 B9D1 ZFAND6 
PDE5A SLC47A2 RASGRF2 EVL PRMT8 
PTPN13 TCERG1L CACNA1S AC060809.1 LINC01505 
SAMD4A PLD1 SIGLEC15 CHCHD6 PHACTR2 
CR1 AC005871.2 RNF135 POMT2 CTNNA3 
PIM3 EGFEM1P USP24 SLC5A10 AL117329.1 
POLN AF127577.4 AC104041.1 AC092957.1 AC091078.1 
ZBBX ADGRE3 OXR1 EIF3F CWH43 
AC007179.2 NRP1 MIR100HG TUSC3 XKR6 
CACNA1B AL512506.3 OSCP1 PRKN NSMCE2 
AFF3 AC091114.1 PTPRT DPP10 FAP 
AC018767.3 AC011369.1 CR1L LINC02223 HIBCH 
FSTL5 VPS45 MIR4432HG ZNF362 TDRP 
PECR AMBP ARHGEF28 CALD1 AC008892.1 
CA12 NXN GVQW3 PRLR SLC17A6 
TOX ZNF611 SERPINA1 AC114689.3 C1orf167 
ARL3 AC040169.4 AC069234.1 GTF2IP7 EEPD1 
SIPA1L2 SPAG16 COL21A1 RASGEF1B Z82202.2 
AC078923.1 LINC01320 PPP3R1 RASSF1 LINC02232 
FYN YWHAG KIAA1217 CLSTN3 HIP1R 
AF123462.1 RYR3 AC006305.1 RERE TRANK1 
PBRM1 TNXB UBE2Q2P1 AC022031.2 ITIH3 
HYKK CARMIL1 HIST1H1PS

1 
NT5C2 MDK 

AMBRA1 IMMP2L MEF2C FAM86B3P SFXN5 
STK19 KDM4C ZNF365 OR5V1 ZKSCAN4 
TRIM27 AL662860.1 TRIM26 COX11P1 ZBED9 
SFTA2 AL121936.2 HCP5 FLOT1 AL138726.1 
SLC17A4 NSUN6 SLC7A6 AC092167.1 ADAM10 
SLC9B1 PPP2R2B FAM184A PRDM14 ZFPM2 
FES TAOK2 AC012322.1 MAU2 ARHGEF10

L 
CABLES1 IPO8 LMO7 LTN1 PCDH12 
PLCB4 RPN2 STX2 ZNF740 C11orf21 
CCDC102B GIGYF1 TMPRSS5 KSR2 UXS1 
ACTL7A ATP6V1E2 PHF2P2 LSM1 EDIL3 
LRP1B AC008474.1 NKAPL TSPAN18 MPC2 
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LSM1 ITIH1 SPTLC1 MSRA COMMD10 
LINC00243 AC069228.1 AL138889.2 LINC01478 GABBR1 
AC091096.1 TCF7L2 AGBL4 PSORS1C1 AL139300.2 
DOCK4 TTLL6 ST3GAL1 ADAMTS16 ZZEF1 
LINC01592 AC000403.1 RFESD SNED1 ZNF93 
FTCDNL1 GIGYF2 LINC00637 TMEM219 R3HDM2 
SCAF1 AC104162.2 NLGN4X NDRG4 NSD3 
GSDME RAI1 PLA2G15 SLC4A10 FAM178B 
FAM177A1 LINC00461 AC007570.1 ZKSCAN3 OR5V1 
DDR1 NGEF AL662884.1 HIST1H2B

N 
ZSCAN9 

MAD1L1 MUCL3 MIR137HG CNOT1 F2 
BTN2A2 FGFR1 CYP2D7 TWF2 RFT1 
MTCO3P1 PBX2 LINC00240 CHRNA5 BTN3A2 
OR11A1 KDM3B BTN2A1 TRIM10 MUC22 
C2 PBX2 HCG20 EHMT2 ATAT1 
SFTA2 AL645929.2 STT3A PLCB2 PTPRG 
ITIH4 LINC02033 C12orf65 THOC7 AL807742.1 
PRPF3 KIF5C AL392086.1 AC007221.2 CLEC17A 
PALB2 MPP6 GLT8D1 AC010538.1 ANKS1B 
SLC35F2 SYNE1 HDAC4 ZNRD1 ZNF615 
AC090993.1 SEMA3A MRM2 GRIK1 ZMIZ1 
AP001267.5 AC104009.1 NOTCH4 DRD3 CACNA1C 

 

Vitamin D-perturbed genes 

VDR CYP27B1 CYP27A1 CYP2R1 CYP24A1 
CD14 ATF3 THBD SPP1 SERPINA3 
FOS GEM EFTUD1 IL8 G0S2 
TREM1 FN1 CLMN THBS1 MAPK13 
LCN2 EDNRA CXCL1 FBP1 EGR1 
CYP26B1 SHE IFIT1 STAC3 VCAN 
DPP4 CYP51A1 A2M CAMP HBEGF 
EDN1 S100A8 OSR2 SULT1C2 SLC22A3 
GCLC C15orf48 HOPX TGFB2 CYP19A1 
GPNMB DDX27 INMT TIMP3 CD36 
KCNK3 NREP PDK4 IBSP FGF9 
MYC CCL2 DLX5 SEMA6B SEMA3C 
HAVCR1 ALOX15 S100A4 GZMB TGM2 
HSD11B1 BTG2 CTSH CYP1A1 CILP 
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BHLHE40 CCND2 AFP IGFBP1 PPP2CA 
CRISPLD2 TNC ZFP36 NME1 CCL22 
FABP4 CYP3A4 SCD ORM1 VNN1 
CA2 RGN COL3A1 DUSP5 MED1 
TNFRSF11  C20orf197 HMGCS1 PVALB NR0B2 
PHLDA1 BCAT1 MMP12 C3 ROCK2 

 

Antipsychotics-perturbed genes 

DRD2 ACE CACNA1G HRH1 ADRA1A 
ADRA1B HTR2A HTR2B DRD4 HTR1A 
ADRA1D SLC6A2 HTR3A DRD1 HTR2C 
OPRD1 SLC6A4 SLC18A2 CHRM2 CHRM3 
CHRM5 DRD3 HTR7 ADRB1 CHRM4 
CHRM1 HTR1D HRH4 CALY EGR1 
FOS ATF3 CYP1A1 CYP51A1 CDK1 
HMGCS1 CTGF SULT1A1 MEIS2 CCNA2 
ALB ONECUT1 HERPUD1 GDF15 CA3 
RRM2 STAC3 DDX27 EGR2 PHLDA1 
CYP2E1 CCNB2 DBP PPP2CA HAMP 
MKI67 RGN BHLHE40 NREP PLAU 
SCD FAM111A HMOX1 SLC22A8 JUN 
GJB1 CDKN1A ALDH1A1 GZMB DDIT4 
CSDC2 TAGLN CXCL1 IFIT1 RSAD2 
CHAC1 SOX11 ZNF354A FGF9 IGFBP5 
CTH FABP1 INSIG1 HSPA1B LTN1 
EDNRA CCL2 LOC1720 CYP1B1 ENPP2 
KLF4 NR4A3 LOX SPP1 NR1D2 
PPP3CA CEP104 LDLR HOMER1 IDI1 
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Appendix B Supplementary Material for Chapter 2.2 

ST1 Network metrics of the networks built with all drug targets 

 Node 
Number 

Global 
Efficiency 

Local 
Efficiency 

Small-world Coefficient 
(sigma) 

AD+P 
network 1839 0.221 0.214 5.257 

SCZ network 1578 0.234 0.220 6.978 
 

 

ST2 Antipsychotics and their targets 

DRUG NAME TARGET Target 
Gene Class 

Acepromazine 5-hydroxytryptamine receptor 1A HTR1A Non_SG
A 

Acepromazine 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Acepromazine Dopamine D1 receptor DRD1 Non_SG
A 

Acepromazine Dopamine D2 receptor DRD2 Non_SG
A 

Acepromazine Serum albumin ALB Non_SG
A 

Aceprometazine Histamine H1 receptor HRH1 Non_SG
A 

Acetophenazine Androgen receptor AR Non_SG
A 

Acetophenazine Dopamine D1 receptor DRD1 Non_SG
A 

Alimemazine Histamine H1 receptor HRH1 Non_SG
A 

Amoxapine Sodium-dependent serotonin transporter SLC6A4 Non_SG
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A 

Amperozide 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Chlorpromazine 5-hydroxytryptamine receptor 1A HTR1A Non_SG
A 

Chlorpromazine 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Chlorpromazine Alpha-1A adrenergic receptor ADRA1A Non_SG
A 

Chlorpromazine Alpha-1B adrenergic receptor ADRA1B Non_SG
A 

Chlorpromazine Dopamine D1 receptor DRD1 Non_SG
A 

Chlorpromazine Dopamine D2 receptor DRD2 Non_SG
A 

Chlorpromazine Histamine H1 receptor HRH1 Non_SG
A 

Chlorprothixene 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Chlorprothixene 5-hydroxytryptamine receptor 2B HTR2B Non_SG
A 

Chlorprothixene 5-hydroxytryptamine receptor 2C HTR2C Non_SG
A 

Chlorprothixene Dopamine D1 receptor DRD1 Non_SG
A 

Chlorprothixene Dopamine D2 receptor DRD2 Non_SG
A 

Chlorprothixene Dopamine D3 receptor DRD3 Non_SG
A 

Dapiprazole Alpha-1A adrenergic receptor ADRA1A Non_SG
A 

Dapiprazole Alpha-1B adrenergic receptor ADRA1B Non_SG
A 

Dapiprazole Alpha-1D adrenergic receptor ADRA1D Non_SG
A 

Droperidol Alpha-1A adrenergic receptor ADRA1A Non_SG
A 

Droperidol Dopamine D2 receptor DRD2 Non_SG
A 

Flupentixol 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Flupentixol Alpha-1A adrenergic receptor ADRA1A Non_SG
A 

Flupentixol Dopamine D1 receptor DRD1 Non_SG
A 
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Flupentixol Dopamine D2 receptor DRD2 Non_SG
A 

Fluphenazine Dopamine D1 receptor DRD1 Non_SG
A 

Fluphenazine Dopamine D2 receptor DRD2 Non_SG
A 

Fluspirilene Dopamine D2 receptor DRD2 Non_SG
A 

Haloperidol 5-hydroxytryptamine receptor 2C HTR2C Non_SG
A 

Haloperidol Dopamine D2 receptor DRD2 Non_SG
A 

Loxapine 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Loxapine Dopamine D2 receptor DRD2 Non_SG
A 

Mesoridazine 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Mesoridazine Dopamine D2 receptor DRD2 Non_SG
A 

Methotrimeprazin
e Dopamine D2 receptor DRD2 Non_SG

A 

Methylene blue Guanylate cyclase soluble subunit alpha-2 GUCY1A
2 

Non_SG
A 

Methylene blue Nitric oxide synthase, brain NOS1 Non_SG
A 

Molindone Dopamine D2 receptor DRD2 Non_SG
A 

Moricizine Sodium channel protein type 5 subunit alpha SCN5A Non_SG
A 

Periciazine Alpha-2A adrenergic receptor ADRA2A Non_SG
A 

Periciazine Dopamine D1 receptor DRD1 Non_SG
A 

Perphenazine Dopamine D1 receptor DRD1 Non_SG
A 

Perphenazine Dopamine D2 receptor DRD2 Non_SG
A 

Pimozide Dopamine D2 receptor DRD2 Non_SG
A 

Pimozide Dopamine D3 receptor DRD3 Non_SG
A 

Pimozide Potassium voltage-gated channel subfamily H 
member 2 KCNH2 Non_SG

A 

Pipotiazine 5-hydroxytryptamine receptor 1A HTR1A Non_SG
A 
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Pipotiazine 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Pipotiazine Dopamine D1 receptor DRD1 Non_SG
A 

Pipotiazine Dopamine D2 receptor DRD2 Non_SG
A 

Prochlorperazine Dopamine D2 receptor DRD2 Non_SG
A 

Promazine Dopamine D2 receptor DRD2 Non_SG
A 

Promethazine Histamine H1 receptor HRH1 Non_SG
A 

Remoxipride Dopamine D2 receptor DRD2 Non_SG
A 

Reserpine Synaptic vesicular amine transporter SLC18A2 Non_SG
A 

Sulpiride Dopamine D2 receptor DRD2 Non_SG
A 

Thioproperazine 5-hydroxytryptamine receptor 1A HTR1A Non_SG
A 

Thioproperazine 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Thioproperazine Alpha-1A adrenergic receptor ADRA1A Non_SG
A 

Thioproperazine Alpha-1B adrenergic receptor ADRA1B Non_SG
A 

Thioproperazine Dopamine D2 receptor DRD2 Non_SG
A 

Thioridazine 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Thioridazine Alpha-1A adrenergic receptor ADRA1A Non_SG
A 

Thioridazine Alpha-1B adrenergic receptor ADRA1B Non_SG
A 

Thioridazine Dopamine D1 receptor DRD1 Non_SG
A 

Thioridazine Dopamine D2 receptor DRD2 Non_SG
A 

Thiothixene 5-hydroxytryptamine receptor 2A HTR2A Non_SG
A 

Thiothixene Dopamine D1 receptor DRD1 Non_SG
A 

Thiothixene Dopamine D2 receptor DRD2 Non_SG
A 

Tiapride Dopamine D2 receptor DRD2 Non_SG
A 
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Tiapride Dopamine D3 receptor DRD3 Non_SG
A 

Trifluoperazine Alpha-1A adrenergic receptor ADRA1A Non_SG
A 

Trifluoperazine Dopamine D2 receptor DRD2 Non_SG
A 

Trifluoperazine Neuron-specific vesicular protein calcyon CALY Non_SG
A 

Triflupromazine 5-hydroxytryptamine receptor 2B HTR2B Non_SG
A 

Triflupromazine Dopamine D1 receptor DRD1 Non_SG
A 

Triflupromazine Dopamine D2 receptor DRD2 Non_SG
A 

Triflupromazine Muscarinic acetylcholine receptor M1 CHRM1 Non_SG
A 

Triflupromazine Muscarinic acetylcholine receptor M2 CHRM2 Non_SG
A 

Zuclopenthixol Dopamine D1 receptor DRD1 Non_SG
A 

Zuclopenthixol Dopamine D2 receptor DRD2 Non_SG
A 

Zuclopenthixol Dopamine D5 receptor DRD5 Non_SG
A 

Amisulpride 5-hydroxytryptamine receptor 7 HTR7 SGA 
Amisulpride Dopamine D2 receptor DRD2 SGA 
Aripiprazole 5-hydroxytryptamine receptor 2A HTR2A SGA 
Aripiprazole Dopamine D2 receptor DRD2 SGA 
Aripiprazole 

lauroxil 5-hydroxytryptamine receptor 1A HTR1A SGA 

Aripiprazole 
lauroxil 5-hydroxytryptamine receptor 2A HTR2A SGA 

Aripiprazole 
lauroxil Dopamine D2 receptor DRD2 SGA 

Asenapine 5-hydroxytryptamine receptor 2A HTR2A SGA 
Asenapine Dopamine D2 receptor DRD2 SGA 

Blonanserin 5-hydroxytryptamine receptor 2A HTR2A SGA 
Blonanserin Dopamine D2 receptor DRD2 SGA 
Blonanserin Dopamine D3 receptor DRD3 SGA 

Brexpiprazole 5-hydroxytryptamine receptor 1A HTR1A SGA 
Brexpiprazole 5-hydroxytryptamine receptor 2A HTR2A SGA 
Brexpiprazole Alpha-1B adrenergic receptor ADRA1B SGA 
Brexpiprazole Alpha-2C adrenergic receptor ADRA2C SGA 
Brexpiprazole Dopamine D2 receptor DRD2 SGA 
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Cariprazine 5-hydroxytryptamine receptor 1A HTR1A SGA 
Cariprazine 5-hydroxytryptamine receptor 2A HTR2A SGA 
Cariprazine 5-hydroxytryptamine receptor 2B HTR2B SGA 
Cariprazine Dopamine D2 receptor DRD2 SGA 
Cariprazine Dopamine D3 receptor DRD3 SGA 
Cariprazine Histamine H1 receptor HRH1 SGA 
Clozapine 5-hydroxytryptamine receptor 2A HTR2A SGA 
Clozapine Dopamine D2 receptor DRD2 SGA 

Iloperidone 5-hydroxytryptamine receptor 2A HTR2A SGA 
Iloperidone Dopamine D2 receptor DRD2 SGA 

Lumateperone Dopamine D2 receptor DRD2 SGA 
Lurasidone 5-hydroxytryptamine receptor 2A HTR2A SGA 
Melperone Dopamine D2 receptor DRD2 SGA 
Olanzapine 5-hydroxytryptamine receptor 2A HTR2A SGA 
Olanzapine Dopamine D2 receptor DRD2 SGA 
Paliperidone 5-hydroxytryptamine receptor 2A HTR2A SGA 
Paliperidone 5-hydroxytryptamine receptor 2C HTR2C SGA 
Paliperidone Dopamine D2 receptor DRD2 SGA 
Paliperidone Dopamine D3 receptor DRD3 SGA 
Paliperidone Dopamine D4 receptor DRD4 SGA 
Perospirone 5-hydroxytryptamine receptor 1A HTR1A SGA 
Perospirone 5-hydroxytryptamine receptor 2A HTR2A SGA 
Perospirone Dopamine D2 receptor DRD2 SGA 

Pimavanserin 5-hydroxytryptamine receptor 2A HTR2A SGA 
Quetiapine 5-hydroxytryptamine receptor 2A HTR2A SGA 
Quetiapine Dopamine D2 receptor DRD2 SGA 
Risperidone 5-hydroxytryptamine receptor 2A HTR2A SGA 
Risperidone Dopamine D2 receptor DRD2 SGA 
Sertindole 5-hydroxytryptamine receptor 2A HTR2A SGA 
Sertindole 5-hydroxytryptamine receptor 2C HTR2C SGA 
Sertindole 5-hydroxytryptamine receptor 6 HTR6 SGA 
Sertindole Dopamine D2 receptor DRD2 SGA 

Ziprasidone 5-hydroxytryptamine receptor 2A HTR2A SGA 
Ziprasidone Dopamine D2 receptor DRD2 SGA 

Zotepine 5-hydroxytryptamine receptor 2A HTR2A SGA 
Zotepine 5-hydroxytryptamine receptor 7 HTR7 SGA 
Zotepine D(1) dopamine receptor DRD1 SGA 
Zotepine Dopamine D2 receptor DRD2 SGA 
Zotepine Sodium-dependent noradrenaline transporter SLC6A2 SGA 
Zotepine Sodium-dependent serotonin transporter SLC6A4 SGA 

ST3 Summary of binding data between antipsychotics and their targets 
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Drugs target_pref_name Ki EC50 IC50 AC50 
Amisulpride Dopamine D2 receptor 12.59  3.04  
Amisulpride Dopamine D3 receptor 3.981    
Amisulpride Serotonin 2a (5-HT2a) receptor 630.96    

Amisulpride Serotonin 2b (5-HT2b) receptor 316.23    
Amisulpride Serotonin 7 (5-HT7) receptor 25.12    
Amoxapine Alpha-1d adrenergic receptor 150  306  

Amoxapine Alpha-2a adrenergic receptor 493  1314  
Amoxapine Alpha-2b adrenergic receptor 255  558  
Amoxapine Alpha-2c adrenergic receptor 461  3174  

Amoxapine Dopamine D1 receptor 196  392  
Amoxapine Dopamine D2 receptor 67  200  
Amoxapine Dopamine D3 receptor 46  134  

Amoxapine Dopamine D4 receptor 34    
Amoxapine Histamine H1 receptor 11  99  
Amoxapine Muscarinic acetylcholine receptor M1 287  1192  
Amoxapine Muscarinic acetylcholine receptor M2 933  2623  
Amoxapine Muscarinic acetylcholine receptor M3 378  1781  
Amoxapine Muscarinic acetylcholine receptor M4 242  1737  
Amoxapine Muscarinic acetylcholine receptor M5 615  856  
Amoxapine Norepinephrine transporter 13  13  
Amoxapine Serotonin 1a (5-HT1a) receptor 221    
Amoxapine Serotonin 2a (5-HT2a) receptor 1.107  1.552  
Amoxapine Serotonin 2b (5-HT2b) receptor 6.569  10  
Amoxapine Serotonin 2c (5-HT2c) receptor 1.984  3.787  
Amoxapine Serotonin 6 (5-HT6) receptor 35  76  
Amoxapine Serotonin 7 (5-HT7) receptor 500    
Amoxapine Serotonin transporter 18  34  
Aripiprazole Alpha-1a adrenergic receptor 63  170  
Aripiprazole Alpha-1b adrenergic receptor 100    
Aripiprazole Alpha-2a adrenergic receptor 100    
Aripiprazole Alpha-2b adrenergic receptor 1000    
Aripiprazole Alpha-2c adrenergic receptor 100    
Aripiprazole Dopamine D1 receptor 522.5    

Aripiprazole Dopamine D2 receptor 1.7325
86207 

956.56
54167 15.804  

Aripiprazole Dopamine D3 receptor 5.7278
66667 19.75   

Aripiprazole Dopamine D4 receptor 192.16
4 

   

Aripiprazole Dopamine D5 receptor 1312.7
5 
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Aripiprazole HERG 879.33
33333 

 2337.7
4 

 

Aripiprazole Histamine H1 receptor 62.55  420  
Aripiprazole Histone H1.0 28    
Aripiprazole Muscarinic acetylcholine receptor M1 1000    
Aripiprazole Muscarinic acetylcholine receptor M2 1000    

Aripiprazole Muscarinic acetylcholine receptor M3 1000  10000
0 

 

Aripiprazole Muscarinic acetylcholine receptor M4 1000    
Aripiprazole Muscarinic acetylcholine receptor M5 1000    

Aripiprazole Serotonin 1a (5-HT1a) receptor 9.7584
54545 253   

Aripiprazole Serotonin 1b (5-HT1b) receptor 1000    
Aripiprazole Serotonin 1d (5-HT1d) receptor 100    
Aripiprazole Serotonin 1e (5-HT1e) receptor 1000    

Aripiprazole Serotonin 2a (5-HT2a) receptor 12.313
88889 

 1945  

Aripiprazole Serotonin 2b (5-HT2b) receptor 1.0063
33333 

   

Aripiprazole Serotonin 2c (5-HT2c) receptor 245.68
66667 

 1380  

Aripiprazole Serotonin 3 (5-HT3) receptor 501.19    
Aripiprazole Serotonin 3a (5-HT3a) receptor 1000    

Aripiprazole Serotonin 5a (5-HT5a) receptor 1000    

Aripiprazole Serotonin 6 (5-HT6) receptor 390.50
6 

   

Aripiprazole Serotonin 7 (5-HT7) receptor 42.9    

Aripiprazole Serotonin transporter 362.40
5 

   

Asenapine 
maleate Histamine H2 receptor 5.727    

Bifeprunox Dopamine D2 receptor 1.3901
42857 

 2.9  

Bifeprunox Serotonin 1a (5-HT1a) receptor 9.3 323.59   
Blonanserin Dopamine D2 receptor 0.14    
Blonanserin Serotonin 2a (5-HT2a) receptor 0.81    
Brexpiprazol

e Dopamine D2 receptor 0.3 6.3   

Brexpiprazol
e Serotonin 1a (5-HT1a) receptor 0.12    

Brexpiprazol
e Serotonin 2a (5-HT2a) receptor 0.47    

Brexpiprazol
e Serotonin 2b (5-HT2b) receptor 0.3981    
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Brexpiprazol
e Serotonin 7 (5-HT7) receptor 3.7    

Cariprazine Dopamine D1 receptor 2100    

Cariprazine Dopamine D2 receptor 2.5011
11111 

32.534
95714 1.68  

Cariprazine Dopamine D3 receptor 0.1802
5 5.777   

Cariprazine Dopamine D4 receptor 110    
Cariprazine Dopamine D5 receptor 7900    
Cariprazine Serotonin 1a (5-HT1a) receptor 2.85    
Cariprazine Serotonin 2a (5-HT2a) receptor 21.45    
Cariprazine Serotonin 7 (5-HT7) receptor 111    

Chlorpromazi
ne Aldehyde oxidase 1460  570  

Chlorpromazi
ne Alpha-1d adrenergic receptor 1.962  3.991  

Chlorpromazi
ne Alpha-2a adrenergic receptor 132  352  

Chlorpromazi
ne Alpha-2b adrenergic receptor 12  26  

Chlorpromazi
ne Alpha-2c adrenergic receptor 54  374  

Chlorpromazi
ne Calmodulin 19280  8520  

Chlorpromazi
ne Cytochrome P450 2D6 7000  1490 278.3 

Chlorpromazi
ne Delta opioid receptor 7365  20894  

Chlorpromazi
ne Dopamine D1 receptor 104  225  

Chlorpromazi
ne Dopamine D2 receptor 6.37  14.2  

Chlorpromazi
ne Dopamine D3 receptor 5.9491  12  

Chlorpromazi
ne Dopamine D4 receptor 141.43

5 
 1365  

Chlorpromazi
ne Dopamine D5 receptor 172    

Chlorpromazi
ne Dopamine transporter 2100  2643  

Chlorpromazi
ne HERG 4774.3  1960.2

4 
 

Chlorpromazi
ne Histamine H1 receptor 3.1035  14.5  

Chlorpromazi Histamine H2 receptor 2582  2626  
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ne 
Chlorpromazi

ne Histamine H3 receptor 1000    

Chlorpromazi
ne Kappa opioid receptor 4433  11082  

Chlorpromazi
ne Melanocortin receptor 3 21244  24343  

Chlorpromazi
ne Melanocortin receptor 4 14619  15204  

Chlorpromazi
ne Melanocortin receptor 5 7145  7617  

Chlorpromazi
ne Mu opioid receptor 5844  14397  

Chlorpromazi
ne Muscarinic acetylcholine receptor M1 72.945  83  

Chlorpromazi
ne Muscarinic acetylcholine receptor M2 232  652  

Chlorpromazi
ne Muscarinic acetylcholine receptor M3 44  206  

Chlorpromazi
ne Muscarinic acetylcholine receptor M4 89.745  149  

Chlorpromazi
ne Muscarinic acetylcholine receptor M5 18  25  

Chlorpromazi
ne Neurokinin 2 receptor 9065  27195  

Chlorpromazi
ne Norepinephrine transporter 19  19  

Chlorpromazi
ne P-glycoprotein 1 6400    

Chlorpromazi
ne Serotonin 1a (5-HT1a) receptor 673    

Chlorpromazi
ne Serotonin 2a (5-HT2a) receptor 4.7995  3.6255  

Chlorpromazi
ne Serotonin 2b (5-HT2b) receptor 57.27  126  

Chlorpromazi
ne Serotonin 2c (5-HT2c) receptor 25.950

4 
 5.235  

Chlorpromazi
ne Serotonin 6 (5-HT6) receptor 41.73  57  

Chlorpromazi
ne Serotonin 7 (5-HT7) receptor 53.261

66667 
   

Chlorpromazi
ne Serotonin transporter 42.05  79.5  

Chlorpromazi
ne Sigma opioid receptor 189  451  
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Chlorprothix
ene Dopamine D1 receptor 18    

Chlorprothix
ene Dopamine D2 receptor 2.96    

Chlorprothix
ene Dopamine D3 receptor 4.56    

Chlorprothix
ene Dopamine D5 receptor 9    

Chlorprothix
ene Histamine H1 receptor 3.75  435.98  

Chlorprothix
ene Histamine H3 receptor 1000    

Chlorprothix
ene Serotonin 6 (5-HT6) receptor 3    

Clozapine Adrenergic receptor alpha-1 21.39    

Clozapine Adrenergic receptor alpha-2 105.5    
Clozapine Aldehyde oxidase 5100  43300  
Clozapine Alpha-1a adrenergic receptor 16    
Clozapine Alpha-1b adrenergic receptor 10    
Clozapine Alpha-1d adrenergic receptor 17  35  
Clozapine Alpha-2a adrenergic receptor 310.75  90  
Clozapine Alpha-2b adrenergic receptor 55.5  23  

Clozapine Alpha-2c adrenergic receptor 34.681
33333 

 7.875  

Clozapine Dopamine D1 receptor 209.11
53846 

 107  

Clozapine Dopamine D2 receptor 139.95
9589 

 193.64
625 

 

Clozapine Dopamine D2 receptor and serotonin 2a 
receptor 

64565
422.9 

   

Clozapine Dopamine D3 receptor 501.97
75 

 354  

Clozapine Dopamine D4 receptor 192.16
65455 

 79.583
33333 

 

Clozapine Dopamine D5 receptor 553.25    

Clozapine HERG 9960.1
2 

 1987.4
825 

 

Clozapine Histamine H1 receptor 4.1945
55556 0.4 4.912  

Clozapine Histamine H2 receptor 3550  3610  
Clozapine Histamine H3 receptor 815.5    
Clozapine Histamine H4 receptor 292.85    
Clozapine Histone H1.0 1    
Clozapine Muscarinic acetylcholine receptor 34    
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Clozapine Muscarinic acetylcholine receptor M1 18.894  9.6  

Clozapine Muscarinic acetylcholine receptor M2 134.5  476  
Clozapine Muscarinic acetylcholine receptor M3 58.5  78  
Clozapine Muscarinic acetylcholine receptor M4 39.631  45  

Clozapine Muscarinic acetylcholine receptor M5 54.766  13  
Clozapine Norepinephrine transporter 1458  1470  

Clozapine Serotonin 1a (5-HT1a) receptor 267.17
30769 

 150  

Clozapine Serotonin 1b (5-HT1b) receptor 1000    
Clozapine Serotonin 1d (5-HT1d) receptor 1000    
Clozapine Serotonin 1e (5-HT1e) receptor 1000    
Clozapine Serotonin 2 (5-HT2) receptor 8.506    

Clozapine Serotonin 2a (5-HT2a) receptor 9.8644
57143 

 8.0975  

Clozapine Serotonin 2b (5-HT2b) receptor 5.171 20 11  

Clozapine Serotonin 2c (5-HT2c) receptor 19.551
5 250 8.0195  

Clozapine Serotonin 3 (5-HT3) receptor 398.11    

Clozapine Serotonin 3a (5-HT3a) receptor 457.47
33333 

   

Clozapine Serotonin 5a (5-HT5a) receptor 1000    

Clozapine Serotonin 6 (5-HT6) receptor 15.245
77778 

 16  

Clozapine Serotonin 7 (5-HT7) receptor 398.17
77037 

   

Clozapine Serotonin transporter 1730  5273  

Clozapine Sigma opioid receptor 8500    
Dapiprazole Alpha-1d adrenergic receptor 4.086  8.312  
Dapiprazole Alpha-2b adrenergic receptor 526  1153  

Dapiprazole Serotonin 2a (5-HT2a) receptor 173  606  
Dapiprazole Serotonin 2b (5-HT2b) receptor 672  1056  
Dapiprazole Serotonin 2c (5-HT2c) receptor 327  625  
Droperidol Alpha-1d adrenergic receptor 41  83  
Droperidol Alpha-2a adrenergic receptor 1112  2965  
Droperidol Alpha-2b adrenergic receptor 101  220  
Droperidol Alpha-2c adrenergic receptor 256  1763  
Droperidol Dopamine D1 receptor 546  1092  
Droperidol Dopamine D2 receptor 0.802  2.407  
Droperidol Dopamine D3 receptor 0.939  2.765  

Droperidol HERG 759.6  131.76
88889 

 

Droperidol Histamine H1 receptor 525  4519  
Droperidol Muscarinic acetylcholine receptor M4 537  3849  
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Droperidol Muscarinic acetylcholine receptor M5 1651  2298  

Droperidol Serotonin 2a (5-HT2a) receptor 0.738  2.584  
Droperidol Serotonin 2b (5-HT2b) receptor 854  1342  
Droperidol Serotonin 2c (5-HT2c) receptor 238  454  

Fluphenazine Adenosine A3 receptor 6746  11935  
Fluphenazine Alpha-1d adrenergic receptor 16  33  
Fluphenazine Alpha-2a adrenergic receptor 80  215  

Fluphenazine Alpha-2b adrenergic receptor 13  29  
Fluphenazine Alpha-2c adrenergic receptor 22  154  
Fluphenazine Beta-3 adrenergic receptor 22116  29488  

Fluphenazine Delta opioid receptor 8473  24036  
Fluphenazine Dopamine D1 receptor 95  23  
Fluphenazine Dopamine D2 receptor 0.9895  1.616  

Fluphenazine Dopamine D3 receptor 1.706  0.594  
Fluphenazine Dopamine D4 receptor 2061  5877  
Fluphenazine Dopamine D5 receptor 21    
Fluphenazine Dopamine transporter 1631  2053  
Fluphenazine HERG 4674.6  5705.8  
Fluphenazine Histamine H1 receptor 22.331  40  
Fluphenazine Histamine H2 receptor 1205  1226  
Fluphenazine Histamine H3 receptor 1000    
Fluphenazine Kappa opioid receptor 9891  24727  
Fluphenazine Melanocortin receptor 5 8929  9518  
Fluphenazine Mu opioid receptor 8421  20745  
Fluphenazine Muscarinic acetylcholine receptor M1 646  2683  
Fluphenazine Muscarinic acetylcholine receptor M2 2660  7481  
Fluphenazine Muscarinic acetylcholine receptor M3 1002  4728  
Fluphenazine Muscarinic acetylcholine receptor M4 484  3468  
Fluphenazine Neurokinin 2 receptor 7495  22484  
Fluphenazine Norepinephrine transporter 1946  1962  
Fluphenazine Serotonin 2a (5-HT2a) receptor 1.458  5.104  
Fluphenazine Serotonin 2b (5-HT2b) receptor 25  39  
Fluphenazine Serotonin 2c (5-HT2c) receptor 35  67  
Fluphenazine Serotonin 6 (5-HT6) receptor 37  52  
Fluphenazine Serotonin transporter 793  1492  
Fluphenazine Sigma opioid receptor 8.575  20  
Fluspirilene Nociceptin receptor 500    
Fluspirilene Serotonin 2b (5-HT2b) receptor 151.4    
Fluspirilene Serotonin 6 (5-HT6) receptor 1188    

Haloperidol 3-beta-hydroxysteroid-delta(8),delta(7)-
isomerase 190    
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Haloperidol Adrenergic receptor alpha-1 12.35    

Haloperidol Adrenergic receptor alpha-2 5000    
Haloperidol Alpha-1a adrenergic receptor 11    
Haloperidol Alpha-1d adrenergic receptor 41  84  

Haloperidol Alpha-2a adrenergic receptor 1865  4973  
Haloperidol Alpha-2b adrenergic receptor 618  1354  
Haloperidol Alpha-2c adrenergic receptor 268  1845  

Haloperidol Dopamine D1 receptor 92.685
11111 

 110  

Haloperidol Dopamine D2 receptor 74.325
58587 

 98.131
99 

 

Haloperidol Dopamine D2 receptor and serotonin 2a 
receptor 

11748
9755.5 

   

Haloperidol Dopamine D3 receptor 9.5626
73913 

 7.5775  

Haloperidol Dopamine D4 receptor 12.655
39024 5008.5 116.36  

Haloperidol Dopamine D5 receptor 101    

Haloperidol HERG 316  263.41
125 

 

Haloperidol Histamine H1 receptor 474.6  2781  
Haloperidol Histamine H2 receptor 1147  1166  
Haloperidol Histone H1.0 780    

Haloperidol Mu opioid receptor 5496 10000 2443  
Haloperidol Muscarinic acetylcholine receptor 4670    
Haloperidol Muscarinic acetylcholine receptor M1 1600  5500  

Haloperidol Muscarinic acetylcholine receptor M5 2795  3890  
Haloperidol Norepinephrine transporter 3660  1836  
Haloperidol P-glycoprotein 1 200  5300  

Haloperidol Serotonin 1a (5-HT1a) receptor 2925.7
5 

 1500  

Haloperidol Serotonin 2 (5-HT2) receptor 23.316
66667 

   

Haloperidol Serotonin 2a (5-HT2a) receptor 140.23
5 

 181.5  

Haloperidol Serotonin 2b (5-HT2b) receptor 1305  2050  

Haloperidol Serotonin 2c (5-HT2c) receptor 5093.9
17273 

 6673.5  

Haloperidol Serotonin 6 (5-HT6) receptor 4027.6
66667 

   

Haloperidol Serotonin 7 (5-HT7) receptor 736.56
25 

   

Haloperidol Serotonin transporter 1599.7
5 

 3386  
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Haloperidol Sigma intracellular receptor 2 16.533
33333 

   

Haloperidol Sigma opioid receptor 5.3647
23404 

 43.886
66667 

 

Haloperidol UDP-glucuronosyltransferase 1-9 34400
0 

   

Haloperidol UDP-glucuronosyltransferase 2B7 59000
0 

   

Loxapine Dopamine D2 receptor 21  54  

Loxapine Dopamine D4 receptor 6.2666
66667 

 14  

Loxapine Histamine H4 receptor 4570.8
8 218.78   

Loxapine Serotonin 2a (5-HT2a) receptor 2.42    

Loxapine Serotonin 6 (5-HT6) receptor 32.5    
Lumateperon

e tosylate Alpha-1a adrenergic receptor 73    

Lumateperon
e tosylate Alpha-1b adrenergic receptor 31    

Lumateperon
e tosylate Dopamine D1 receptor 52    

Lumateperon
e tosylate Dopamine D4 receptor 108    

Lumateperon
e tosylate Histamine H1 receptor 1000    

Lumateperon
e tosylate Serotonin 1a (5-HT1a) receptor 1480    

Lumateperon
e tosylate Serotonin 2a (5-HT2a) receptor 0.54  7  

Lumateperon
e tosylate Serotonin 2c (5-HT2c) receptor 173    

Lumateperon
e tosylate Serotonin transporter 66.5    

Lurasidone Dopamine D2 receptor 1.7    
Lurasidone Serotonin 1a (5-HT1a) receptor 6.7    
Lurasidone Serotonin 2a (5-HT2a) receptor 2    
Lurasidone Serotonin 7 (5-HT7) receptor 0.5    

Molindone Dopamine D2 receptor and serotonin 2a 
receptor 

16595
8690.7 

   

Molindone Serotonin 7 (5-HT7) receptor 265    

Olanzapine Adrenergic receptor alpha-1 24.075    
Olanzapine Adrenergic receptor alpha-2 211    
Olanzapine Adrenergic receptor beta 10000    

Olanzapine Alpha-1a adrenergic receptor 373.33    
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33333 
Olanzapine Alpha-1b adrenergic receptor 1000    
Olanzapine Alpha-1d adrenergic receptor 45  92  
Olanzapine Alpha-2a adrenergic receptor 465  541  

Olanzapine Alpha-2b adrenergic receptor 146  421  

Olanzapine Alpha-2c adrenergic receptor 86.333
33333 

 531  

Olanzapine Dopamine D1 receptor 86.125  72  

Olanzapine Dopamine D2 receptor 35.412
30769 

 64  

Olanzapine Dopamine D3 receptor 46.829
16667 

 78  

Olanzapine Dopamine D4 receptor 37.743
75 

 173  

Olanzapine Dopamine D5 receptor 95    
Olanzapine GABA-A receptor; anion channel 10000    

Olanzapine HERG 36000  11291.
41889 

 

Olanzapine Histamine H1 receptor 4.1966
25 

 13  

Olanzapine Histone H1.0 2    
Olanzapine Muscarinic acetylcholine receptor 47    
Olanzapine Muscarinic acetylcholine receptor M1 29.2    

Olanzapine Muscarinic acetylcholine receptor M2 100    
Olanzapine Muscarinic acetylcholine receptor M3 91.5  392  

Olanzapine Muscarinic acetylcholine receptor M4 344.86
33333 

 155  

Olanzapine Muscarinic acetylcholine receptor M5 19.5  40  

Olanzapine Serotonin 1a (5-HT1a) receptor 2814.2
5 

   

Olanzapine Serotonin 1b (5-HT1b) receptor 1000    
Olanzapine Serotonin 1d (5-HT1d) receptor 1000    
Olanzapine Serotonin 1e (5-HT1e) receptor 1000    
Olanzapine Serotonin 2 (5-HT2) receptor 10    

Olanzapine Serotonin 2a (5-HT2a) receptor 8.1427
72727 

 30.254  

Olanzapine Serotonin 2b (5-HT2b) receptor 21.155  57  
Olanzapine Serotonin 2c (5-HT2c) receptor 8.601  46  
Olanzapine Serotonin 3 (5-HT3) receptor 199.53    
Olanzapine Serotonin 3a (5-HT3a) receptor 1000    
Olanzapine Serotonin 5a (5-HT5a) receptor 1000    

Olanzapine Serotonin 6 (5-HT6) receptor 10.242
77778 

 13  
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Olanzapine Serotonin 7 (5-HT7) receptor 367.08
6 

   

Olanzapine Serotonin transporter 8516.3
33333 

 1033  

Osanetant Neurokinin 1 receptor 624.55
16667 

   

Osanetant Neurokinin 2 receptor 60.057
5 

   

Osanetant Neurokinin 3 receptor 2.1487
08333 

 0.505  

Penfluridol Alpha-1d adrenergic receptor 602    
Penfluridol Alpha-2b adrenergic receptor 401    
Penfluridol Alpha-2c adrenergic receptor 445    
Penfluridol Beta-3 adrenergic receptor 515    
Penfluridol Delta opioid receptor 1714    
Penfluridol Dopamine D1 receptor 147    

Penfluridol Dopamine D2 receptor 159    
Penfluridol Dopamine D3 receptor 136    
Penfluridol Dopamine D4 receptor 1000    

Penfluridol Dopamine D5 receptor 125    
Penfluridol Dopamine transporter 1714    
Penfluridol Histamine H1 receptor 1000    

Penfluridol Histamine H2 receptor 1000    
Penfluridol Kappa opioid receptor 1000    
Penfluridol Mu opioid receptor 867    

Penfluridol Norepinephrine transporter 588    
Penfluridol Serotonin 1a (5-HT1a) receptor 356    
Penfluridol Serotonin 1d (5-HT1d) receptor 3560    

Penfluridol Serotonin 2a (5-HT2a) receptor 361    
Penfluridol Serotonin 2b (5-HT2b) receptor 184    
Penfluridol Serotonin 2c (5-HT2c) receptor 881    

Penfluridol Serotonin 5a (5-HT5a) receptor 1000    
Penfluridol Serotonin 6 (5-HT6) receptor 1000    
Penfluridol Serotonin 7 (5-HT7) receptor 280    
Penfluridol Serotonin transporter 1000    

Perphenazine HERG 3454.1  4216  
Perphenazine Serotonin 7 (5-HT7) receptor 23    

Pimozide Dopamine D2 receptor 11.85    

Pimozide HERG 42  151.99
5 

 

Pimozide Histamine H4 receptor 2000    
Pimozide Serotonin 6 (5-HT6) receptor 71    
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Prochlorpera
zine Alpha-1d adrenergic receptor 16  34  

Prochlorpera
zine Alpha-2a adrenergic receptor 63  169  

Prochlorpera
zine Alpha-2b adrenergic receptor 4.741  10  

Prochlorpera
zine Alpha-2c adrenergic receptor 12  82  

Prochlorpera
zine Dopamine D1 receptor 78  155  

Prochlorpera
zine Dopamine D2 receptor 3.608  11  

Prochlorpera
zine Dopamine D3 receptor 4.454  13  

Prochlorpera
zine Dopamine D4 receptor 810  2311  

Prochlorpera
zine Dopamine transporter 1379  1735  

Prochlorpera
zine HERG 1514.1  1848.1  

Prochlorpera
zine Histamine H1 receptor 2.794  24  

Prochlorpera
zine Muscarinic acetylcholine receptor M1 244  1013  

Prochlorpera
zine Muscarinic acetylcholine receptor M2 1107  3112  

Prochlorpera
zine Muscarinic acetylcholine receptor M3 321  1514  

Prochlorpera
zine Muscarinic acetylcholine receptor M4 190  1363  

Prochlorpera
zine Muscarinic acetylcholine receptor M5 158  220  

Prochlorpera
zine Norepinephrine transporter 396  400  

Prochlorpera
zine Serotonin 2a (5-HT2a) receptor 2.018  7.062  

Prochlorpera
zine Serotonin 2b (5-HT2b) receptor 65  102  

Prochlorpera
zine Serotonin 2c (5-HT2c) receptor 41  78  

Prochlorpera
zine Serotonin 6 (5-HT6) receptor 124  267  

Prochlorpera
zine Serotonin transporter 621  1169  

Prochlorpera
zine Sigma opioid receptor 23  54  
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Promazine Alpha-1d adrenergic receptor 6.18  13  

Promazine Alpha-2a adrenergic receptor 126  337  
Promazine Alpha-2b adrenergic receptor 8.418  18  
Promazine Alpha-2c adrenergic receptor 37  253  

Promazine Dopamine D1 receptor 1232  2464  
Promazine Dopamine D2 receptor 168  505  
Promazine Dopamine D3 receptor 69  205  

Promazine Histamine H1 receptor 0.399  1229.0
725 

 

Promazine Histamine H2 receptor 2810  2858  
Promazine Muscarinic acetylcholine receptor M1 117  487  
Promazine Muscarinic acetylcholine receptor M2 387  1089  
Promazine Muscarinic acetylcholine receptor M3 88  416  
Promazine Muscarinic acetylcholine receptor M4 42  299  
Promazine Muscarinic acetylcholine receptor M5 46  64  
Promazine Norepinephrine transporter 13  13  
Promazine Serotonin 2a (5-HT2a) receptor 6.695  23  

Promazine Serotonin 2b (5-HT2b) receptor 221  347  
Promazine Serotonin 2c (5-HT2c) receptor 52  99  
Promazine Serotonin 6 (5-HT6) receptor 127  274  

Promazine Serotonin transporter 46  86  
Promazine Sigma opioid receptor 114  271  

Promethazine Alpha-1d adrenergic receptor 90  183  

Promethazine Alpha-2a adrenergic receptor 256  681  
Promethazine Alpha-2b adrenergic receptor 24  53  
Promethazine Alpha-2c adrenergic receptor 353  2431  

Promethazine Dopamine D1 receptor 1372  2744  
Promethazine Dopamine D2 receptor 260  439.5  
Promethazine Dopamine D3 receptor 190  559  

Promethazine Histamine H1 receptor 0.334  4.1355  
Promethazine Histamine H2 receptor 1146  1165  
Promethazine Muscarinic acetylcholine receptor M1 3.321  14  
Promethazine Muscarinic acetylcholine receptor M2 12  35  
Promethazine Muscarinic acetylcholine receptor M3 4.149  20  
Promethazine Muscarinic acetylcholine receptor M4 1.057  7.576  
Promethazine Muscarinic acetylcholine receptor M5 3.307  4.603  
Promethazine Norepinephrine transporter 4203  4238  
Promethazine Serotonin 2a (5-HT2a) receptor 19  45  
Promethazine Serotonin 2b (5-HT2b) receptor 43  68  
Promethazine Serotonin 2c (5-HT2c) receptor 6.477  12  
Promethazine Serotonin 6 (5-HT6) receptor 1128  2429  
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Promethazine Serotonin transporter 2130  5800  

Promethazine Sigma opioid receptor 120  287  
Quetiapine Adrenergic receptor alpha-1 31.25    
Quetiapine Adrenergic receptor alpha-2 593.5    

Quetiapine Alpha-1a adrenergic receptor 60    
Quetiapine Alpha-1b adrenergic receptor 100    
Quetiapine Alpha-1d adrenergic receptor 47.5  96.6  

Quetiapine Alpha-2a adrenergic receptor 967.15  2491.4  
Quetiapine Alpha-2b adrenergic receptor 522.9  100.3  
Quetiapine Alpha-2c adrenergic receptor 80.55  420.8  

Quetiapine Dopamine D1 receptor 1428.9
2 

 429.3  

Quetiapine Dopamine D2 receptor 352.2  1329.9  

Quetiapine Dopamine D3 receptor 492.71
5 

 1163.2  

Quetiapine Dopamine D4 receptor 1480    
Quetiapine Dopamine D5 receptor 1000    

Quetiapine Histamine H1 receptor 12.659
8 

 39.6  

Quetiapine Histone H1.0 10    
Quetiapine Muscarinic acetylcholine receptor 1020    

Quetiapine Muscarinic acetylcholine receptor M1 436.78
2 

 2615  

Quetiapine Muscarinic acetylcholine receptor M2 1094.6  3344.7  
Quetiapine Muscarinic acetylcholine receptor M3 1000    

Quetiapine Muscarinic acetylcholine receptor M4 448.69
66667 

 1578.7  

Quetiapine Muscarinic acetylcholine receptor M5 1577.9
5 

 3000.7  

Quetiapine Serotonin 1a (5-HT1a) receptor 427.40
5 

   

Quetiapine Serotonin 1b (5-HT1b) receptor 1000    
Quetiapine Serotonin 1d (5-HT1d) receptor 1000    
Quetiapine Serotonin 1e (5-HT1e) receptor 1000    
Quetiapine Serotonin 2 (5-HT2) receptor 220    

Quetiapine Serotonin 2a (5-HT2a) receptor 205.85
55556 

 117.8  

Quetiapine Serotonin 2b (5-HT2b) receptor 193.54
5 

 213.5  

Quetiapine Serotonin 2c (5-HT2c) receptor 1908.1
66667 

 3300.8  

Quetiapine Serotonin 3a (5-HT3a) receptor 1000    
Quetiapine Serotonin 5a (5-HT5a) receptor 1000    
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Quetiapine Serotonin 6 (5-HT6) receptor 1200    

Quetiapine Serotonin 7 (5-HT7) receptor 531.55    
Quetiapine Serotonin transporter 9500    
Quetiapine Sigma opioid receptor 963.9  2293.5  

Raclopride Dopamine D2 receptor 14.922  51.962
5 

 

Raclopride Dopamine D3 receptor 11.375    
Raclopride Dopamine D4 receptor 3100    
Raclopride Dopamine receptor 6.9    

Remoxipride Dopamine D2 receptor 217  440.60
1 

 

Remoxipride Dopamine D4 receptor 3872  3872  
Remoxipride Sigma opioid receptor 55    

Reserpine Canalicular multispecific organic anion 
transporter 1 

29500
0 

 68400  

Reserpine Mu opioid receptor 1686  4152  

Reserpine P-glycoprotein 1 5416  68961
62690 

 

Reserpine Serotonin 2a (5-HT2a) receptor 1000    
Reserpine Synaptic vesicular amine transporter 348.42  13.2  

Risperidone Adrenergic receptor alpha-1 1.33    
Risperidone Adrenergic receptor alpha-2 4.65    

Risperidone Alpha-1a adrenergic receptor 5.0333
33333 

 10.54  

Risperidone Alpha-1b adrenergic receptor 10    

Risperidone Alpha-1d adrenergic receptor 4.913  9.995  

Risperidone Alpha-2a adrenergic receptor 337.87
6 

 9.674  

Risperidone Alpha-2b adrenergic receptor 506  26  

Risperidone Alpha-2c adrenergic receptor 4.863  9.557  

Risperidone Dopamine D1 receptor 434.81
83333 

 479  

Risperidone Dopamine D2 receptor 4.4495
625 

 13.545  

Risperidone Dopamine D3 receptor 21.023
27273 

 24  

Risperidone Dopamine D4 receptor 23.385
71429 

   

Risperidone Dopamine D5 receptor 1000    

Risperidone HERG 2176.4  690.01
05556 

 

Risperidone Histamine H1 receptor 40.911
66667 

 451.5  

Risperidone Histamine H2 receptor 1458  1483  
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Risperidone Histone H1.0 14    

Risperidone Muscarinic acetylcholine receptor 5650    

Risperidone Muscarinic acetylcholine receptor M1 2933.3
33333 

   

Risperidone Muscarinic acetylcholine receptor M2 1000    
Risperidone Muscarinic acetylcholine receptor M3 1000  55000  
Risperidone Muscarinic acetylcholine receptor M4 1000    
Risperidone Muscarinic acetylcholine receptor M5 1000    

Risperidone Serotonin 1a (5-HT1a) receptor 442.02
71429 10000   

Risperidone Serotonin 1b (5-HT1b) receptor 10    
Risperidone Serotonin 1d (5-HT1d) receptor 1000    
Risperidone Serotonin 1e (5-HT1e) receptor 1000    

Risperidone Serotonin 2a (5-HT2a) receptor 0.5161
76471 

 1.6109
75 

 

Risperidone Serotonin 2b (5-HT2b) receptor 17.475  23  

Risperidone Serotonin 2c (5-HT2c) receptor 33.528  5.7383
33333 

 

Risperidone Serotonin 3a (5-HT3a) receptor 1000    
Risperidone Serotonin 5a (5-HT5a) receptor 1000    

Risperidone Serotonin 6 (5-HT6) receptor 1141.8
33333 

   

Risperidone Serotonin 7 (5-HT7) receptor 3.925    
Risperidone Serotonin transporter 1200    
Risperidone Sigma opioid receptor 4300    

Ritanserin Serotonin 2a (5-HT2a) receptor 0.45    
Ritanserin Serotonin 2c (5-HT2c) receptor 1.5525    
Ritanserin Serotonin 7 (5-HT7) receptor 30.425    

Sertindole Adrenergic receptor alpha-1 1.8    
Sertindole Adrenergic receptor alpha-2 1680    
Sertindole Dopamine D1 receptor 210    

Sertindole Dopamine D2 receptor 2.7666
66667 

   

Sertindole Dopamine D3 receptor 5.4    
Sertindole Dopamine D4 receptor 16    

Sertindole Histamine H1 receptor 285.25
5 

   

Sertindole Muscarinic acetylcholine receptor 5000    
Sertindole Serotonin 1a (5-HT1a) receptor 33    
Sertindole Serotonin 1b (5-HT1b) receptor 56    
Sertindole Serotonin 2a (5-HT2a) receptor 0.725    

Sertindole Serotonin 2c (5-HT2c) receptor 0.8333
33333 
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Sertindole Serotonin 6 (5-HT6) receptor 5    

Sulpiride Alpha-2a adrenergic receptor 757  2019  
Sulpiride Carbonic anhydrase I 4237.5  1200  
Sulpiride Carbonic anhydrase II 40  40  

Sulpiride Carbonic anhydrase III 10600    
Sulpiride Carbonic anhydrase IX 43    
Sulpiride Carbonic anhydrase VA 174    

Sulpiride Carbonic anhydrase VB 18    
Sulpiride Carbonic anhydrase VI 0.8    
Sulpiride Carbonic anhydrase VII 2421.2    

Sulpiride Carbonic anhydrase XII 3.9    
Sulpiride Dopamine D2 receptor 65.2  85.76  

Sulpiride Dopamine D3 receptor 61.666
66667 

 265.07
33333 

 

Sulpiride Dopamine D4 receptor 2100    
Tetrahydropa

lmatine Dopamine D1 receptor 192  1630  

Tetrahydropa
lmatine Dopamine D2 receptor 3062.5  450  

Tetrahydropa
lmatine Dopamine D3 receptor 1371    

Tetrahydropa
lmatine Dopamine D4 receptor 1000    

Tetrahydropa
lmatine Dopamine D5 receptor 305    

Tetrahydropa
lmatine Serotonin 1a (5-HT1a) receptor 5000    

Thioridazine Alpha-1d adrenergic receptor 2.895  5.891  
Thioridazine Alpha-2a adrenergic receptor 50  133  
Thioridazine Alpha-2b adrenergic receptor 174  380  

Thioridazine Alpha-2c adrenergic receptor 25  171  
Thioridazine Dopamine D1 receptor 97  194  
Thioridazine Dopamine D2 receptor 19.5  35  
Thioridazine Dopamine D3 receptor 3.36  9.892  
Thioridazine Dopamine D4 receptor 515  1468  
Thioridazine Dopamine transporter 1888  2376  

Thioridazine HERG 1085  249.77
25 

 

Thioridazine Histamine H1 receptor 8.412  72  
Thioridazine Histamine H2 receptor 934  950  
Thioridazine Kappa opioid receptor 996  2490  
Thioridazine Muscarinic acetylcholine receptor M1 1.69  7.019  
Thioridazine Muscarinic acetylcholine receptor M2 38  106  
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Thioridazine Muscarinic acetylcholine receptor M3 19  90  

Thioridazine Muscarinic acetylcholine receptor M4 11  80  
Thioridazine Muscarinic acetylcholine receptor M5 6.643  9.246  
Thioridazine Norepinephrine transporter 1538  1551  

Thioridazine Serotonin 2a (5-HT2a) receptor 1.247  4.366  
Thioridazine Serotonin 2b (5-HT2b) receptor 82  129  
Thioridazine Serotonin 2c (5-HT2c) receptor 23  44  

Thioridazine Serotonin 6 (5-HT6) receptor 33  71  
Thioridazine Serotonin 7 (5-HT7) receptor 70    
Thioridazine Serotonin transporter 399  751  

Thioridazine Sigma opioid receptor 153  363  
Tiapride Alpha-2a adrenergic receptor 779  2078  
Tiapride Dopamine D2 receptor 411  1232  

Tiapride Dopamine D3 receptor 390  1149  
Trifluoperazi

ne 
3-beta-hydroxysteroid-delta(8),delta(7)-

isomerase 8    

Trifluoperazi
ne Emopamil-binding protein-like 3.9    

Trifluoperazi
ne HERG 5100.8  6226  

Trifluoperazi
ne P-glycoprotein 1 6500  8133.3

33333 
 

Trifluoperazi
ne Sigma opioid receptor 15    

Triflupromaz
ine P-glycoprotein 1 15700    

Ziprasidone Adrenergic receptor alpha-1 8.3  11  
Ziprasidone Adrenergic receptor alpha-2 390    
Ziprasidone Alpha-1a adrenergic receptor 6    

Ziprasidone Dopamine D1 receptor 156.5    

Ziprasidone Dopamine D2 receptor 4.2243
64286 

 5  

Ziprasidone Dopamine D3 receptor 7.642    
Ziprasidone Dopamine D4 receptor 40.03    

Ziprasidone Histamine H1 receptor 187.43
33333 

   

Ziprasidone Histone H1.0 15    
Ziprasidone Muscarinic acetylcholine receptor 5000    
Ziprasidone Muscarinic acetylcholine receptor M1 7550    
Ziprasidone Serotonin 1a (5-HT1a) receptor 9.417    

Ziprasidone Serotonin 2a (5-HT2a) receptor 0.5038
75 

 0.42  

Ziprasidone Serotonin 2b (5-HT2b) receptor 1.585    
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Ziprasidone Serotonin 2c (5-HT2c) receptor 5.6898
57143 

   

Ziprasidone Serotonin 3 (5-HT3) receptor 398.11    
Ziprasidone Serotonin 6 (5-HT6) receptor 56.22    

Ziprasidone Serotonin 7 (5-HT7) receptor 5.3373
33333 

   

Ziprasidone Serotonin transporter 311.10
75 

   

Zotepine Adrenergic receptor alpha-1 3.4    
Zotepine Adrenergic receptor alpha-2 570    
Zotepine Dopamine D1 receptor 56.5    
Zotepine Dopamine D2 receptor 12    
Zotepine Dopamine D3 receptor 11.2    
Zotepine Dopamine D4 receptor 39    
Zotepine Histamine H1 receptor 2.01    
Zotepine Muscarinic acetylcholine receptor M4 550    

Zotepine Serotonin 1a (5-HT1a) receptor 330    
Zotepine Serotonin 2a (5-HT2a) receptor 1.37    
Zotepine Serotonin 2c (5-HT2c) receptor 2.9    

Zuclopenthix
ol Serotonin 6 (5-HT6) receptor 169    

Methylproma
zine Bile salt export pump   73720  

Methylproma
zine HepG2   61659.

5 
 

Amisulpride Bile salt export pump   13300
0 

 

Amisulpride Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Amisulpride Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Amisulpride Multidrug resistance-associated protein 4   13300
0 

 

Amoxapine Bile salt export pump   18155
0 

 

Amoxapine Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Amoxapine Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Amoxapine Cytochrome P450 2D6   10000 3981.
07 

Amoxapine Multidrug resistance-associated protein 4   13300
0 

 

Amperozide Anandamide amidohydrolase   897.5  
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Amperozide HepG2   95000  

Aripiprazole Bile salt export pump   13300
0 

 

Aripiprazole Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Aripiprazole Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Aripiprazole Multidrug and toxin extrusion protein 1   13000
0 

 

Aripiprazole Multidrug and toxin extrusion protein 2   50000
0 

 

Aripiprazole Multidrug resistance-associated protein 4   13300
0 

 

Aripiprazole P-glycoprotein 1   780  

Aripiprazole Solute carrier family 22 member 2   23900
0 

 

Brexpiprazol
e HEK293   19.1  

Cariprazine HERG   20720  
Chlorpromazi

ne Bile salt export pump   95161.
66667 

 

Chlorpromazi
ne 

Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Chlorpromazi
ne 

Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Chlorpromazi
ne Cytochrome P450 1A2   4140 2490.

535 
Chlorpromazi

ne Cytochrome P450 2C19   34100  

Chlorpromazi
ne Cytochrome P450 2C9   50000  

Chlorpromazi
ne Cytochrome P450 2J2   24400  

Chlorpromazi
ne Cytochrome P450 3A4   23300 1000 

Chlorpromazi
ne Epidermal growth factor receptor erbB1   28868  

Chlorpromazi
ne Glutamate [NMDA] receptor   850  

Chlorpromazi
ne HaCaT   36100  

Chlorpromazi
ne Homo sapiens   15570

0 
 

Chlorpromazi
ne Multidrug resistance-associated protein 4   13300

0 
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Chlorpromazi
ne NADPH oxidase 1   17000  

Chlorpromazi
ne NHDF   25500  

Chlorpromazi
ne Potassium channel subfamily K member 2   2700  

Chlorpromazi
ne Receptor protein-tyrosine kinase erbB-2   19366  

Chlorpromazi
ne Sodium channel alpha subunit   4300  

Chlorpromazi
ne 

Sodium channel alpha subunits; brain 
(Types I, II, III) 

  4300  

Chlorpromazi
ne Solute carrier family 22 member 1   15650  

Chlorpromazi
ne Sphingomyelin phosphodiesterase   11000  

Chlorpromazi
ne Tyrosine-protein kinase FYN   8680  

Chlorpromazi
ne Voltage-gated L-type calcium channel   3400  

Chlorprothix
ene Bile salt export pump   27470  

Chlorprothix
ene 

Sodium channel alpha subunits; brain 
(Types I, II, III) 

  10000  

Chlorprothix
ene Solute carrier family 22 member 1   77800  

Clozapine Bile salt export pump   11731
0 

 

Clozapine Calmodulin   80000  

Clozapine Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Clozapine Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Clozapine Cytochrome P450 1A2   50000 14219
.09 

Clozapine Cytochrome P450 2C19   45300 25118
.86 

Clozapine Cytochrome P450 2C9   21200 39810
.72 

Clozapine Cytochrome P450 2D6   18000 11896
.105 

Clozapine Cytochrome P450 2J2   14100  

Clozapine Cytochrome P450 3A4   46300 31622
.78 

Clozapine HepG2   47863.  
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01 

Clozapine Multidrug resistance-associated protein 4   13300
0 

 

Clozapine Voltage-gated L-type calcium channel   3600  
Droperidol Bile salt export pump   10000  

Droperidol Sodium channel alpha subunits; brain 
(Types I, II, III) 

  740  

Droperidol Voltage-gated L-type calcium channel   7600  
Flupentixol Potassium channel subfamily K member 2   2000  
Flupentixol Sigma opioid receptor   2.239  
Flupentixol Solute carrier family 22 member 1   89500  

Flupentixol Ubiquitin carboxyl-terminal hydrolase 
1/WD repeat-containing protein 48 

  7000  

Fluphenazine Bile salt export pump   25820  
Fluphenazine Epidermal growth factor receptor erbB1   40107  

Fluphenazine HepG2   4382.5
8 

 

Fluphenazine NADPH oxidase 1   17000  

Fluphenazine P-glycoprotein 1   7533.3
33333 

 

Fluphenazine Potassium channel subfamily K member 2   4700  
Fluphenazine Receptor protein-tyrosine kinase erbB-2   19570  

Fluphenazine Sodium channel alpha subunits; brain 
(Types I, II, III) 

  3700  

Fluphenazine Solute carrier family 22 member 1   11000
0 

 

Fluphenazine Tyrosine-protein kinase FYN   7990  
Fluspirilene HERG   2300  
Fluspirilene X-box-binding protein 1   10000  
Haloperidol 5637   11150  

Haloperidol A-427   9866.6
66667 

 

Haloperidol Bile salt export pump   96920  

Haloperidol Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Haloperidol Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Haloperidol Cytochrome P450 1A2   40000 31622
.78 

Haloperidol Cytochrome P450 2C19   26435  
Haloperidol Cytochrome P450 2C8   30000  
Haloperidol Cytochrome P450 2C9   40000  

Haloperidol Cytochrome P450 2D6   16820 5660.
72 
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Haloperidol Cytochrome P450 2J2   4690  

Haloperidol Cytochrome P450 3A4   20650  
Haloperidol DAN-G   20000  
Haloperidol Dopamine receptor   5  

Haloperidol MCF7   21267.
5 

 

Haloperidol Multidrug resistance-associated protein 4   13300
0 

 

Haloperidol Potassium channel subfamily K member 2   5500  
Haloperidol RT-4   20000  
Haloperidol Sodium channel alpha subunit   7000  

Haloperidol Sodium channel alpha subunits; brain 
(Types I, II, III) 

  1200  

Haloperidol Solute carrier family 22 member 1   14190
0 

 

Haloperidol Voltage-gated L-type calcium channel   1500  
Iloperidone Bile salt export pump   23400  

Iloperidone Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Iloperidone Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Iloperidone Dopamine D2 receptor   110  

Iloperidone Multidrug resistance-associated protein 4   13300
0 

 

Iloperidone Sigma opioid receptor   64  

Lithium ion Glycogen synthase kinase-3   20000
00 

 

Lithium ion Glycogen synthase kinase-3 beta   20000
00 

 

Loxapine Dopamine D3 receptor   22  
Loxapine Muscarinic acetylcholine receptor M1   5500  
Loxapine Potassium channel subfamily K member 2   20000  

Melperone Bile salt export pump   13300
0 

 

Melperone Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Melperone Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Melperone Multidrug resistance-associated protein 4   13300
0 

 

Mesoridazine HERG   358.82
5 

 

Levomeprom
azine Bile salt export pump   12700

0 
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Methylthioni
nium 

chloride 
Apoptotic protease-activating factor 1   57750  

Methylthioni
nium 

chloride 
Beta amyloid A4 protein   500  

Methylthioni
nium 

chloride 
Fibrinogen beta chain   46265.

5 
 

Methylthioni
nium 

chloride 
Glutathione reductase   16200  

Methylthioni
nium 

chloride 
HT-29   9600  

Methylthioni
nium 

chloride 
Microtubule-associated protein tau  360 2233.3

33333 
 

Methylthioni
nium 

chloride 
Monoamine oxidase A   70  

Methylthioni
nium 

chloride 
Thioredoxin reductase 1   30000  

Olanzapine Bile salt export pump   93785  

Olanzapine Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Olanzapine Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Olanzapine Multidrug resistance-associated protein 4   13300
0 

 

Osanetant Cytochrome P450 1A2   10000
0 

 

Osanetant Cytochrome P450 2C19   7000  
Osanetant Cytochrome P450 2C9   11000  

Osanetant Cytochrome P450 2D6   55000  
Osanetant Cytochrome P450 3A4   1000  

Paliperidone Dopamine D2 receptor   8.28  

Paliperidone HERG   1234.3
51667 

 

Paliperidone Serotonin 2a (5-HT2a) receptor   5.2  

Paliperidone Sodium channel protein type V alpha 
subunit 

  91804.
09 

 

Paliperidone Voltage-gated L-type calcium channel   19390
0 
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Paliperidone Voltage-gated L-type calcium channel 
alpha-1C subunit 

  69905
3.585 

 

Paliperidone Voltage-gated potassium channel subunit 
Kv4.3 

  63095.
73 

 

Paliperidone Voltage-gated potassium channel, IKs; 
KCNQ1(Kv7.1)/KCNE1(MinK) 

  25118
8.64 

 

Penfluridol MDA-MB-231   5400  
Perphenazine AN3-CA   25400  
Perphenazine Aldehyde oxidase   33  

Perphenazine Bile salt export pump   10094
6.6667 

 

Perphenazine Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Perphenazine Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Perphenazine Cytochrome P450 1A2   4490 316.2
3 

Perphenazine Cytochrome P450 2C19   18500  
Perphenazine Cytochrome P450 2C9   21300  
Perphenazine Cytochrome P450 2D6   120 31.62 
Perphenazine Cytochrome P450 2J2   10600  
Perphenazine Cytochrome P450 3A4   13900  
Perphenazine Dopamine D2 receptor   0.3  
Perphenazine HEC-1-A   23300  
Perphenazine HEC-1B cell line   29800  

Perphenazine HepG2   16218.
1 

 

Perphenazine Ishikawa   19400  
Perphenazine KLE   30800  

Perphenazine Multidrug resistance-associated protein 4   13300
0 

 

Perphenazine NADPH oxidase 1   17000  
Perphenazine Ubiquitin-conjugating enzyme E2 N   14790  
Pimavanserin Serotonin 2a (5-HT2a) receptor   15.5  

Pimozide Bile salt export pump   10000  

Pimozide Cytochrome P450 1A2   30000 23735
.855 

Pimozide Cytochrome P450 2C19   30000 15848
.93 

Pimozide Cytochrome P450 2C8   30000  
Pimozide Cytochrome P450 2C9   30000  

Pimozide Cytochrome P450 2D6   30000 3162.
28 

Pimozide Cytochrome P450 2J2   30000  
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Pimozide Cytochrome P450 3A4   19850  

Pimozide Delta opioid receptor   3760  
Pimozide K562   5000 10000 
Pimozide Kappa opioid receptor   990  

Pimozide Mu opioid receptor   372  

Pimozide Multidrug and toxin extrusion protein 1   50000
0 

 

Pimozide Multidrug and toxin extrusion protein 2   50000
0 

 

Pimozide P-glycoprotein 1   2200  
Pimozide Potassium channel subfamily K member 2   1800  
Pimozide Sodium channel alpha subunit   54  
Pimozide Solute carrier family 22 member 2   34200  
Pimozide Ubiquitin carboxyl-terminal hydrolase 1   2000  

Pimozide Ubiquitin carboxyl-terminal hydrolase 
1/WD repeat-containing protein 48 

  2000  

Pimozide Voltage-gated L-type calcium channel   201  
Pimozide X-box-binding protein 1   10000  

Prochlorpera
zine Bile salt export pump   92666.

66667 
 

Prochlorpera
zine 

Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Prochlorpera
zine 

Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Prochlorpera
zine Cytochrome P450 1A2   2000 1755.

945 
Prochlorpera

zine Cytochrome P450 2D6   300 596.2
2 

Prochlorpera
zine 

Induced myeloid leukemia cell 
differentiation protein Mcl-1 

  3773.2
8 

 

Prochlorpera
zine Multidrug resistance-associated protein 4   13300

0 
 

Prochlorpera
zine Solute carrier family 22 member 1   49600  

Prochlorpera
zine Tyrosine-protein kinase FYN   5684  

Promazine Cytochrome P450 2D6   300 150.6
55 

Promazine Sodium channel alpha subunits; brain 
(Types I, II, III) 

  5400  

Promazine Solute carrier family 22 member 1   17200  

Promethazine Bile salt export pump   13400
0 

 

Promethazine Calmodulin   60000  



 187 

Promethazine Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Promethazine Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Promethazine Multidrug resistance-associated protein 4   13300
0 

 

Promethazine Sodium channel alpha subunits; brain 
(Types I, II, III) 

  6900  

Promethazine Solute carrier family 22 member 1   35100  
Quetiapine HERG   5777.2  

Quetiapine Sodium channel protein type V alpha 
subunit 

  16900  

Remoxipride Bile salt export pump   92666.
66667 

 

Remoxipride Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Remoxipride Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Remoxipride Multidrug resistance-associated protein 4   13300
0 

 

Reserpine ATP-binding cassette sub-family G 
member 2 

  19451.
34 

 

Reserpine Bile salt export pump   9237.5  

Reserpine Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Reserpine DNA topoisomerase I   16000
0 

 

Reserpine HL-60   67000  

Reserpine MCF7   0.1166
66667 

 

Reserpine Multidrug resistance-associated protein 4   13300
0 

 

Reserpine Sodium channel alpha subunits; brain 
(Types I, II, III) 

  1600  

Risperidone Bile salt export pump   92750  

Risperidone Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Risperidone Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Risperidone Cytochrome P450 2D6   5273.4 5552.
78 

Risperidone HEK293   600  
Risperidone Multidrug and toxin extrusion protein 1   1600  

Risperidone Multidrug and toxin extrusion protein 2   29100
0 
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Risperidone Multidrug resistance-associated protein 4   13300
0 

 

Risperidone Sodium channel protein type V alpha 
subunit 

  10200
0 

 

Risperidone Solute carrier family 22 member 2   11000  
Risperidone Voltage-gated L-type calcium channel   34200  

Risperidone Voltage-gated L-type calcium channel 
alpha-1C subunit 

  12500
0 

 

Ritanserin Diacylglycerol kinase alpha   12850  
Ritanserin U-251   5000  
Ritanserin Ubiquitin-conjugating enzyme E2 N   20000  
Ritanserin VMM39   10000  
Sertindole Bile salt export pump   82700  

Sertindole Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Sertindole Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Sertindole HERG   10.41  

Sertindole Multidrug resistance-associated protein 4   13300
0 

 

Sertindole P-glycoprotein 1   6500  
Sertindole Sodium channel alpha subunit   2300  
Sertindole Voltage-gated L-type calcium channel   7600  

Sertindole Voltage-gated potassium channel subunit 
Kv1.5 

  2000  

Sulpiride Bile salt export pump   63810
0 

 

Sulpiride Cytochrome P450 2J2   50000  
Sulpiride Sigma opioid receptor   10000  

Tetrahydropa
lmatine Coagulation factor III   22.78  

Thioridazine Bile salt export pump   24330  
Thioridazine Cytochrome P450 1A2   9332.3  
Thioridazine Cytochrome P450 2C19   6377.8  
Thioridazine Cytochrome P450 2D6   1772.6  
Thioridazine Epidermal growth factor receptor erbB1   2947  
Thioridazine KG-1a   6010  
Thioridazine MCF7   12950  
Thioridazine MDA-MB-231   14190  
Thioridazine MRC5   8.2  
Thioridazine PBMC   13780  
Thioridazine SK-BR-3   18230  
Thioridazine SUM-159-PT   14510  
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Thioridazine Serine/threonine-protein kinase PIM1   6890  

Thioridazine Sodium channel alpha subunits; brain 
(Types I, II, III) 

  6500  

Thioridazine Sodium channel protein type V alpha 
subunit 

  1830  

Thioridazine Tyrosine-protein kinase FYN   5050  
Thioridazine Voltage-gated L-type calcium channel   3500  

Thioridazine Voltage-gated L-type calcium channel 
alpha-1C subunit 

  1320  

Thiothixene Bile salt export pump   30400  
Thiothixene Ubiquitin-conjugating enzyme E2 N   20000  

Tiapride Bile salt export pump   13300
0 

 

Tiapride Canalicular multispecific organic anion 
transporter 1 

  13300
0 

 

Tiapride Canalicular multispecific organic anion 
transporter 2 

  13300
0 

 

Tiapride Multidrug resistance-associated protein 4   13300
0 

 

Trifluoperazi
ne Bile salt export pump   10000  

Trifluoperazi
ne DNA-dependent protein kinase   10000

0 
 

Trifluoperazi
ne Homo sapiens   20180

0 
 

Trifluoperazi
ne KG-1a   4580  

Trifluoperazi
ne MCF7   11330  

Trifluoperazi
ne MDA-MB-231   21580  

Trifluoperazi
ne NADPH oxidase 1   17000  

Trifluoperazi
ne SK-BR-3   15890  

Trifluoperazi
ne SUM-159-PT   17030  

Trifluoperazi
ne 

Sodium channel alpha subunits; brain 
(Types I, II, III) 

  5000  

Trifluoperazi
ne U-87 MG  13500 9900  

Trifluoperazi
ne 

Ubiquitin carboxyl-terminal hydrolase 
1/WD repeat-containing protein 48 

  8000  

Triflupromaz
ine Bile salt export pump   39010  
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Ziprasidone HERG   230.11
88889 

 

Amoxapine Cytochrome P450 1A2    3981.
07 

Amoxapine Cytochrome P450 3A4    15848
.93 

Amperozide Cytochrome P450 2D6    12589
.25 

Chlorpromazi
ne HepG2    7620 

Droperidol Cytochrome P450 2D6    3162.
28 

Droperidol Cytochrome P450 3A4    6309.
57 

Fluphenazine Cytochrome P450 1A2    1755.
945 

Fluphenazine Cytochrome P450 2D6    944.9
45 

Fluphenazine Cytochrome P450 3A4    18854
.055 

Fluspirilene Cytochrome P450 1A2    12589
.25 

Fluspirilene Cytochrome P450 2C19    11896
.105 

Fluspirilene Cytochrome P450 2C9    39810
.72 

Fluspirilene Cytochrome P450 2D6    5792.
445 

Fluspirilene Cytochrome P450 3A4    6309.
57 

Methylthioni
nium 

chloride 
Caspase-6    1600 

Methylthioni
nium 

chloride 
DNA repair protein RAD52 homolog    936 

Moricizine Cytochrome P450 2C9    10000
00000 

Moricizine Cytochrome P450 3A4    5011.
87 

Olanzapine FAD-linked sulfhydryl oxidase ALR    369 
Perphenazine DNA repair protein RAD52 homolog    13940 
Prochlorpera

zine Cytochrome P450 2C19    8922.
095 

Prochlorpera Cytochrome P450 3A4    10430
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zine .4 

Promazine Cytochrome P450 1A2    3784.
25 

Promazine Cytochrome P450 2C19    7943.
28 

Raclopride Cytochrome P450 1A2    31622
.78 

Raclopride Cytochrome P450 2C19    1258.
93 

Raclopride Cytochrome P450 2C9    7943.
28 

Raclopride Cytochrome P450 2D6    12589
.25 

Remoxipride Cytochrome P450 2C19    39810
.72 

Remoxipride Cytochrome P450 2D6    199.5
3 

Risperidone Cytochrome P450 2C19    1584.
89 

Tiapride Cytochrome P450 2D6    19783
.03 

Trifluoperazi
ne Cytochrome P450 1A2    815.4

8 
Trifluoperazi

ne Cytochrome P450 2C19    10266
.265 

Trifluoperazi
ne Cytochrome P450 2D6    1497.

63 
Trifluoperazi

ne Cytochrome P450 3A4    12924
.465 

Trifluoperazi
ne DNA repair protein RAD52 homolog    13000 

Triflupromaz
ine Cytochrome P450 1A2    1189.

61 
Triflupromaz

ine Cytochrome P450 2D6    596.2
2 

Zuclopenthix
ol Cytochrome P450 1A2    15848

.93 
Zuclopenthix

ol Cytochrome P450 2C19    2511.
89 

Zuclopenthix
ol Cytochrome P450 2D6    10000 

Zuclopenthix
ol Cytochrome P450 3A4    12589

.25 
Aripiprazole Mu opioid receptor  92469   
Chlorpromazi Prion protein  2000   
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ne 
Clozapine Homo sapiens  6.4   

Fluspirilene Glycine receptor subunit alpha-1  1200   
Fluspirilene H4  2400   

Haloperidol Prion protein  10000   
Methylthioni

nium 
chloride 

Peroxisome proliferator-activated receptor 
gamma/Nuclear receptor coactivator 1 

 958   

Methylthioni
nium 

chloride 

Peroxisome proliferator-activated receptor 
gamma/Nuclear receptor coactivator 2 

 742   

Methylthioni
nium 

chloride 

Peroxisome proliferator-activated receptor 
gamma/Nuclear receptor coactivator 3 

 3056   

Paliperidone Serotonin 1a (5-HT1a) receptor  10000   
Penfluridol H4  3200   
Pimozide Glycine receptor subunit alpha-1  1700   
Promazine Prion protein  5000   

Promethazine Prion protein  8000   
Risperidone Glycine receptor subunit alpha-1  320   
Triflupromaz

ine HCC1954  10000   

Triflupromaz
ine T47D  7000   

 

ST4 Binding reference for antipsychotics and their targets 

 Ki EC50 IC50 AC50 
TXNRD1   30000  
HTR2B 0.3981 20 10  
MAOA   70  
SCN1A   54  
RAD52    936 

UGT1A9 344000    
PRNP  2000   
AOX1 1460  33  

CYP2D6 7000  120 31.62 
CYP1A2   2000 316.23 
ADRA1D 1.962  3.991  
ADRA1A 1.33  10.54  
TACR1 624.5517    
KCNK2   1800  
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ADRA2B 4.741  10  

EBPL 3.9    
MC4R 14619  15204  
EGFR   2947  

Human  6.4 155700  
GSR   16200  
CA9 43    

HTR7 0.5    
CA5A 174    

GABRG1 10000    

HTR1A 0.12 253 34  
KCNE1   251188.6  
CYP3A4   1000 1000 

DRD3 0.18025 5.777 0.594  
SLC47A2   291000  
ABCG2   19451.34  
OPRM1 867 10000 372  
XBP1   10000  

DHCR24 8    
CACNA1C   201  

MCL1   3773.28  
UBE2N   14790  
SCN5A   1830  
HRH1 0.334 0.4 4.1355  
H1-0 1    

OPRD1 1714  3760  
CYP2C19   6377.8 1258.93 

FGB   46265.5  
Cell   4382.58 7620 

HTR6 3  13  
CA7 2421.2    

CYP2C9   11000 7943.28 
KCNH2 42  10.41  

SLC22A2   11000  
HTR2C 0.833333 250 3.787  

ADORA3 6746  11935  
CA6 0.8    

ADRA2A 4.65  9.674  
DRD 1379  1735  

ADRB3 515  29488  
ABCC4   133000  
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MC5R 7145  7617  

ERBB2   19366  
KCNA5   2000  

CAMKK2 19280  8520  

ABCC2 295000  68400  
HTR2A 0.45  0.42  
CHRM3 4.149  20  

SLC6A2 13  13  
HTR3A 199.53    
HTR1B 10    

SLC47A1   1600  
CASP6    1600 
GSK3A   2000000  

DRD1 18  23  
ADRA1B 10    

HRH3 815.5    
CA3 10600    

ADRA2C 4.863  7.875  
GLRA1  320   
MDR1 200  780  
HTR5A 1000    
ADRB1 10000    
NOX1   17000  

UCHL1   2000  
OPRK1 996  990  

CA1 4237.5  1200  
KCND3   63095.73  
MAPT  360 2233.333  
HTR1D 100    
HTR1E 1000    
HRH2 5.727  950  
GFER    369 

GRIN2B   850  
TOPBP1   160000  

CA5B 18    
OPRL1 500    

SLC22A1   15650  
PPARG  742   
APAF1   57750  
CA12 3.9    
MC3R 21244  24343  
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CHRM4 1.057  7.576  

FYN   5050  
CA2 40  40  

CYP2J2   4690  

UGT2B7 590000    
TACR3 2.148708  0.505  
HRH4 292.85 218.78   

CYP2C8   30000  
DRD5 9    

F3   22.78  

GSK3B   2000000  
ABCB11   9237.5  
CHRM2 12  35  

TACR2 60.0575  22484  
PIM1   6890  

CHRM5 3.307  4.603  
CHRM1 1.69  7.019  
OGFR 5.364723  2.239  

TMEM97 16.53333    
DRD4 6.266667 5008.5 14  
FAAH   897.5  

PRKDC   100000  
SCN3A   740  
DRD2 0.14 6.3 0.3  

 

 

ST5 Network Efficiency of second generation antipsychotics calculated from AD+P 

network and schizophrenia network built with GWAS data only. 

Drugs Efficiency in 
AD+P network 

Efficiency in SCZ 
network 

Paliperidone 1.378 1.432 
Brexpiprazole 1.184 1.297 

Sertindole 1.093 1.132 
Aripiprazole 0.554 0.63 
Clozapine 0. 554 0. 63 

Iloperidone 0. 554 0. 63 
Olanzapine 0. 554 0. 63 
Quetiapine 0. 554 0. 63 
Risperidone 0. 554 0. 63 
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Ziprasidone 0. 554 0. 63 
Lurasidone 0.146 0.242 

Pimavanserin 0.146 0.242 
Paired Wilcoxon Test W = 34, P = 0.003 

 

ST6 Network Efficiency of second generation antipsychotics calculated from AD+P 

network and schizophrenia network built with DEGs data only. 

Drugs Efficiency in 
AD+P network 

Efficiency in SCZ 
network 

Paliperidone 1.198 1.287 
Brexpiprazole 1.143 1.231 

Sertindole 1.056 1.074 
Aripiprazole 0.485 0.536 
Clozapine 0.485 0.536 

Iloperidone 0.485 0.536 
Olanzapine 0.485 0.536 
Quetiapine 0.485 0.536 
Risperidone 0.485 0.536 
Ziprasidone 0.485 0.536 
Lurasidone 0.113 0.156 

Pimavanserin 0.113 0.156 
Paired Wilcoxon Test W = 26, P = 0.02 
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Appendix C Supplementary Material for Chapter 4.1 

ST1 Drug combination count in EMR  

Antipsychotics Antidepressants count 
Quetiapine Sertraline 408 
Quetiapine Citalopram 372 
Haloperidol Sertraline 367 
Haloperidol Citalopram 355 
Risperidone Citalopram 346 
Risperidone Sertraline 342 
Haloperidol Mirtazapine 299 
Haloperidol Trazodone 280 
Quetiapine Trazodone 274 
Quetiapine Escitalopram 269 
Quetiapine Mirtazapine 242 
Risperidone Trazodone 224 
Haloperidol Escitalopram 221 
Risperidone Mirtazapine 210 
Risperidone Escitalopram 200 
Olanzapine Citalopram 169 
Olanzapine Sertraline 157 
Olanzapine Mirtazapine 146 
Olanzapine Trazodone 138 
Quetiapine Venlafaxine 109 

Aripiprazole Sertraline 38 
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Appendix D Supplementary Material for Chapter 4.2 

List 1. Diagnosis used for the identification of Alzheimer’s disease. 

1. Alzheimer's disease 

2. early-onset Alzheimer's disease 

3. late-onset Alzheimer's disease 

4. Alzheimer's disease, unspecified 

List 2. Diagnosis used for the identification of psychosis. 

1. Unspecified psychosis  

2. Senile dementia with delusional features  

3. Hallucinations  

4. Presenile dementia with delusional features  

5. Delusional disorder  

6. Depressive type psychosis  

7. Other and unspecified reactive psychosis  

8. Psychotic disorder with delusions in conditions classified elsewhere  

9. Psychotic disorder with hallucinations in conditions classified elsewhere  

10. Vascular dementia with delusions  

11. Delusional disorders  

12. Excitative type psychosis  

13. Unspecified psychosis not due to a substance or known physiological condition  
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14. Hallucinations unspecified  

15. Visual hallucinations  

16. Psychotic disorder with hallucinations due to known physiological condition  

17. Auditory hallucinations  

18. Other hallucinations  

19. Psychotic disorder with delusions due to known physiological condition  

20. Psychogenic paranoid psychosis 

List 3. Diagnosis used for the identification of delirium disorder. 

1. Delirium due to conditions classified elsewhere 

2. Vascular dementia with delirium  

3. Senile dementia with delirium  

4. Subacute delirium  

5. Delirium due to known physiological condition 
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