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Abstract 

A Comprehensive mHealth System for Chronic Low Back Pain Assessment: Development, 

Evaluation, and Exploration for Future Works 

 

Zakiy Firdaus Alfikri, PhD 

 

University of Pittsburgh, 2023 

 

 

 

 

Phenotyping chronic low back pain (CLBP) is essential for developing personalized and 

adaptive treatments for CLBP. To achieve this, a large amount of CLBP assessment data is 

needed. In this study, an mHealth system was developed for CLBP assessment. The system 

consists of an in-clinic app, at-home app, clinician portal, backend, and database, and focuses on 

collecting biomechanical and behavioral assessment data as part of extensive multifactorial data 

needed for CLBP phenotyping. The mHealth system was able to collect CLBP assessment data 

effectively and efficiently from both the structured in-clinic assessment and the assessment in the 

patients’ daily life settings. 

Usability evaluations were conducted to assess the usability of the in-clinic and at-home 

apps. Two usability evaluations were conducted for the in-clinic app, and several updates and 

revisions were made to address identified usability issues. In the last evaluation, the in-clinic app 

received a high usability score of 6.00 (SD=1.15). Meanwhile, for the at-home app, five usability 

evaluations, involving 337 CLBP patients, were conducted. Several updates and revisions were 

made to address the usability issues identified. In the last usability evaluation, the at-home app 

received a high usability score of 6.24 (SD=1.37). 

Furthermore, two exploratory works for future direction were conducted in this study. 

The first was an investigation of the correlation between the perceived activity level that patients 

reported in EMA and the activity level calculated from accelerometer data from the kinematics 
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sensors. The overall correlation was found to be weak, ranging from 0.095 to 0.260 

(mean=0.194, SD=0.054). Even though the overall correlation was weak, the correlation of 

activity level from sensor data and perceived activity level from 37.5% of CLBP patients was 

found to be strong. Using the five most accurate activity level representations, the average score 

for the correlation was 0.716 (SD=0.081), suggesting that some CLBP patients may have a better 

perception of their activity level. The other exploratory work done in this study was the 

development of a dataset builder component that was successfully be used to label motion data 

based on the videos recorded during the in-clinic assessment.  
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1.0 Introduction 

1.1 Problem Statement 

Chronic low back pain is one of the most prevalent health problems in all developed 

countries, including the US (Hoy et al., 2012; Koes, Van Tulder, & Thomas, 2006; Murphy et 

al., 2017; Waterman, Belmont, & Schoenfeld, 2012). According to the Centers for Disease 

Control and Prevention (CDC), in 2019, 39% of adults in the US reported back pain (Lucas, 

Connor, & Bose, 2021). Additionally, low back pain is one of the leading causes of years lived 

with disability globally (Hartvigsen et al., 2018; Vos et al., 2016; Wu et al., 2020). Despite its 

prevalence, chronic low back pain is still a challenging condition to effectively treat (Urits et al., 

2019) 

There are several treatments that can be used to treat low back pain (Delitto et al., 2012; 

Van Middelkoop et al., 2011). Selecting the right treatment or combination of treatments is 

essential for effectively and cost-efficiently treating low back pain (Delitto, Erhard, Bowling, 

DeRosa, & Greathouse, 1995; Murphy et al., 2017). However, deciding which low back pain 

treatment is best for a patient is still a challenging task (George, Goertz, Hastings, & Fritz, 

2020).  

Chronic low back pain is a complex condition that is affected by numerous factors 

(Allegri et al., 2016; Marras, 2012). Characterizing low back pain based on those factors into 

unique phenotypes is becoming important (Fairbank et al., 2011; Steinmetz, 2022). Establishing 

these unique phenotypes can help to formulate precise treatment plans that are associated with 

each phenotype. It can help health care professionals decide and select the right treatment for 
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patients with low back pain, which can potentially improve the treatment outcome and reduce 

cost. 

Biomechanical (Karayannis, Jull, & Hodges, 2012; Quirk et al., 2022) and behavioral 

factors (Carmody, 2001; Feuerstein & Beattie, 1995; Truchon, 2001) are some factors that can be 

used for low back pain phenotyping. For phenotyping purposes, large biomechanical and 

behavioral data need to be assessed and collected. The biomechanical and behavioral data can be 

assessed in structured assessment protocols in clinic (Reid, Williams, & Gill, 2005; Rodrigues et 

al., 2017) or collected from patient-reported assessment in their daily life settings (Lin, Burke, 

Schlenk, & Yeh, 2019; May, Junghaenel, Ono, Stone, & Schneider, 2018). To be able to get 

complete data for phenotyping, assessment data from both settings should be collected. 

Mobile health (mHealth) technology can be used to facilitate the assessment process 

(Lobelo et al., 2016; O’Reilly & Spruijt-Metz, 2013). An mHealth system can collect and record 

a wide range of data types, including, but not limited to, textual data, multimedia contents, and 

predefined survey responses. Integrating mHealth with wearable sensors can further enhance the 

capabilities of the mHealth in collecting and monitoring assessment data (Dobkin & Dorsch, 

2011; Kumar, Jeuris, Bardram, & Dragoni, 2020; Munos et al., 2016; Thilarajah, Clark, & 

Williams, 2016).  

The use of mHealth technology has been widespread. It has been used for 

accommodating assessments, delivering treatments, and helping to manage diverse health 

conditions (Bell et al., 2019; Dicianno et al., 2015; Parmanto et al., 2013; Pramana, Parmanto, 

Kendall, & Silk, 2014; Setiawan et al., 2019). However, usability remains an issue that affects 

the adoption of mHealth and its effectiveness (Holthe, Halvorsrud, Karterud, Hoel, & Lund, 

2018; Liew, Zhang, See, & Ong, 2019; Welhausen & Bivens, n.d.). Adopting a user-centered 
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approach when developing the mHealth system can help optimize its usability (Chowdhary et al., 

2022; Fairman et al., 2016; Wang, Zhou, Chen, Hill, & Parmanto, 2018). Usability evaluation 

plays an important part in the user-centered approach and in evaluating the overall usability of 

the mHealth system. In the user-centered approach, development is done iteratively, with 

usability evaluation and users' feedback incorporated in each iteration of the development 

process (Couture et al., 2018; Farao et al., 2020; Schnall et al., 2016).  

In the case of chronic low back pain phenotyping, an mHealth system can be used to 

collect assessment data, including extensive and diverse biomechanical and behavioral data 

(Dobkin & Dorsch, 2011). Another example of data that can be collected is activity level data, a 

unique aspect that is part of both the causal factors and outcome metrics of low back pain. 

Activity level can be measured either by calculating kinematics data, which is part of the 

biomechanical component, or by collecting patient-reported data, which is part of the behavioral 

component. Comparing activity levels from objective kinematics data and perceived activity 

level from subjective patient-reported data would be interesting to investigate, as it would reveal 

if they are comparable and if one could replace or complement the other to make the mHealth 

system more effective and efficient. 

One of the main purposes of mHealth is to deliver care or treatment to patients (Free et 

al., 2010a). In addition to accommodating the assessment for low back pain phenotyping, the 

same mHealth system can be further developed to deliver treatment. One of the ultimate goals of 

phenotyping low back pain is to effectively treat low back pain patients utilizing the phenotype 

information. Further design adjustments and development work need to be done to transform the 

mHealth system to accommodate treatment delivery as well. 
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1.2 Specific Aims 

 

The main goal of this work is to develop and evaluate a comprehensive mHealth system 

to be used for chronic low back pain assessment for phenotyping purposes. Another goal of this 

work is to conduct exploratory research that can be used to further improve and transform the 

mHealth system into a complete assessment and treatment delivery system for chronic low back 

pain. To achieve those goals, the following specific aims are formulated: 

 

1. Specific Aim 1: To design and develop an mHealth system for comprehensive chronic low 

back pain assessment. 

An mHealth system was designed and developed for chronic low back pain assessment that 

can collect extensive assessment data from both biomechanical and behavioral aspects and be 

used in both structured in-clinic assessment settings and in patients’ daily life settings.  

2. Specific Aim 2: To evaluate the usability of the mHealth system. 

The usability of the mHealth system was evaluated for two purposes: to inform iterative user-

centered development of the mHealth system itself and to assess the overall usability of the 

system. 

3. Specific Aim 3: To investigate and compare activity level from subjective patient-reported 

EMA and objective kinematics sensor data. 

The kinematics and EMA data were collected using the mHealth system. The activity level, 

which can be calculated from the kinematics data or collected from the EMA, was analyzed, 

and the correlation between the activity level from the two different sources of data was 

calculated and investigated. 
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4. Specific Aim 4: To design and develop dataset collection tools as preliminary work toward a 

personalized and adaptive intervention component in the mHealth system. 

As part of exploratory work to further improve the mHealth system for care delivery, a 

personalized and adaptive intervention component was designed to be integrated into the 

system. The numerous video recordings of the functional performance tests collected by the 

mHealth system contain visual information that can be used to help build a machine learning 

model for the personalized and adaptive intervention component. The aim is to design and 

develop tools for collecting datasets using the video recording data. 

1.3 Significance 

The significance of this study lies in the development of an mHealth system for the 

comprehensive assessment of chronic low back pain. Traditional assessment methods for chronic 

low back pain are often time-consuming, resource-intensive, and can be burdensome for both the 

physical therapist and the patients. This study develops and evaluates an mHealth system for 

comprehensive chronic low back pain assessment that can streamline the assessment process and 

reduce the burden on both physical therapists and patients. 

The mHealth system developed in this study can collect extensive and rich data from both 

biomechanical and behavioral aspects of chronic low back pain, making it a valuable tool for 

chronic low back pain phenotyping. Data collection and integration with the mHealth system 

require minimal effort compared to traditional assessment methods, allowing the whole research 

process to be more efficient. 
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Furthermore, the mHealth system can also accommodate Ecological Momentary 

Assessment (EMA), providing an opportunity for real-time data collection. This can lead to more 

accurate assessment data by reducing recall bias. 

The comprehensive and extensive data collected by the mHealth system have the 

potential to inform future works aimed at developing personalized and adaptive treatments for 

chronic low back pain. In fact, several exploratory works were conducted in this study toward 

developing a personalized and adaptive treatment for chronic low back pain. Furthermore, the 

exploratory works conducted in this study represent an important step toward improving the 

management of chronic low back pain. This study represents a significant contribution to the 

field of mHealth, providing a novel approach for the assessment and potential treatment of 

chronic low back pain. 

1.4 Innovation 

This study introduces several innovations in the field of mHealth and chronic low back 

pain assessment and treatment. First, a novel mHealth system was developed to enable 

comprehensive and integrated assessment of chronic low back pain. The system can collect 

extensive and multiform assessment data, including both biomechanical and behavioral aspects, 

and can be used for assessments in both structured in-clinic settings and in patients’ daily life 

settings. Additionally, the mHealth system was designed to be flexible and configurable, 

allowing it to be used for other assessments and to be further developed to deliver treatment for 

chronic low back pain in the future. 
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Second, the study includes exploratory work on comparing objective and 

subjective/perceived activity levels. This work provides valuable insights into the differences 

between these two types of measures, which can inform future assessment and treatment 

strategies for chronic low back pain. 

Finally, the study includes exploratory work on designing a personalized and adaptive 

treatment component that can be integrated with the mHealth system in the future. This work 

lays the foundation for developing tailored treatment approaches that can better address the 

unique needs of individual chronic low back pain patients. Overall, these innovations have the 

potential to help advance the field of chronic low back pain assessment and treatment, ultimately 

leading to better outcomes for patients. 

1.5 Dissertation Outline 

The remainder of this dissertation consists of: 

• Chapter 2.0 provides a background and literature review related to the works 

conducted in this dissertation. 

• Chapter 3.0 presents the design and development process of the mHealth system, 

addressing the first specific aim. 

• Chapter 4.0 presents the usability evaluation of the mHealth system, addressing 

the second specific aim. 

• Chapter 5.0 investigates the correlation between activity level from objective 

kinematics data and subjective patient-reported EMA, addressing the third 

specific aim. 
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• Chapter 6.0 focuses on the design and development of the dataset collection tools 

for a personalized and adaptive intervention component in the mHealth system, 

addressing the fourth specific aim. 

• Chapter 7.0 provides a summary and discussion of the overall works conducted in 

this dissertation, reviewing each specific aim. 
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2.0 Background 

2.1 mHealth System for Chronic Low Back Pain Assessment 

2.1.1 mHealth  

Mobile health (mHealth) refers to the use of mobile devices, such as smartphones and 

tablets, and other wireless technologies to support and improve health care services. Istepanian 

defines mHealth as mobile computing, medical sensor, and communications technologies for 

healthcare (R. Istepanian, Laxminarayan, & Pattichis, 2007; R. S. H. Istepanian, Jovanov, & 

Zhang, 2004). mHealth includes a wide range of applications, such as health monitoring, disease 

management, and health promotion. The primary goal of mHealth is to leverage mobile devices 

and mobile communication to deliver care to patients (Free et al., 2010b). mHealth has several 

objectives, including increasing access to care, engaging patients in treatment, improving care 

after treatment, and monitoring treatment progress. 

Mobile devices can be utilized as a platform that patients can use anywhere at any time. 

Nowadays, such devices are ubiquitous, almost always available, and nearby. This ubiquity of 

personal mobile device usage has created the potential for mHealth to be widely adopted. In 

addition, the current advancements in mobile technologies have increased the capabilities of 

mobile devices, such that they can record a wider range of data, including audio, video, location, 

time, and even device kinematics data. 

Utilizing the capabilities of mobile devices, mHealth can be developed as an assessment 

system for various health conditions. Assessment is an essential component of any management 
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of health conditions, and mHealth can provide an effective tool for comprehensive and integrated 

assessment. mHealth can be utilized in the assessment of chronic low back pain. Mobile apps 

and wearable devices can provide real-time data on physical activity, pain levels, and medication 

use, which can help health care providers assess the effectiveness of treatment and adjust it 

accordingly. 

2.1.2 Chronic Low Back Pain 

Chronic low back pain is one of the most prevalent health problems in all developed 

countries, including the US (Hoy et al., 2012; Koes et al., 2006; Murphy et al., 2017; Waterman 

et al., 2012). It is a complex condition that is affected by numerous factors (Allegri et al., 2016; 

Marras, 2012). Low back pain is defined as pain, muscle tension, or stiffness localized below the 

costal margin and above the inferior gluteal folds, with or without leg pain (Koes et al., 2006). 

Chronic low back pain is a persistent low back pain that lasts for at least three months. It is 

estimated that up to 80% of adults will experience low back pain at some point in their lives, and 

chronic low back pain affects around 20% of those individuals. 

The importance of chronic low back pain lies in its significant impact on quality of life, 

physical function, and psychological well-being. It can limit an individual's ability to perform 

daily activities, work, and participate in social and recreational activities. Chronic low back pain 

can also lead to depression, anxiety, and social isolation. 

Assessing chronic low back pain involves a comprehensive evaluation of the patient's 

medical history, physical examination, and diagnostic tests. The medical history should include 

information about the onset, duration, and nature of the pain, as well as any previous treatments 

or interventions. During the physical examination, the healthcare provider will assess the 
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patient's range of motion, strength, reflexes, and sensation in the affected area. Diagnostic tests 

may include imaging studies, such as X-rays, CT scans, or MRI scans, to evaluate the structure 

of the spine and detect any abnormalities. 

There are several treatments that can be used to treat low back pain (Delitto et al., 2012; 

Van Middelkoop et al., 2011), including exercise therapy (Hayden, Ellis, Ogilvie, Malmivaara, 

& van Tulder, 2021; Van Middelkoop et al., 2010), pain medication (Peck et al., 2021), back 

school (Heymans, van Tulder, Esmail, Bombardier, & Koes, 2004; Parreira et al., 2017), 

transcutaneous electrical nerve stimulation (Khadilkar et al., 2005), low level laser therapy 

(Baxter, Bell, Allen, & Ravey, 1991), massage (Furlan, Brosseau, Imamura, & Irvin, 2002), 

behavioral treatment (Henschke et al., 2010; Ostelo et al., 2005), heat/cold therapy (French, 

Cameron, Walker, Reggars, & Esterman, 2006), lumbar supports (Van Duijvenbode, Jellema, 

Van Poppel, & Van Tulder, 2008), and multidisciplinary biopsychosocial treatment (Guzmán et 

al., 2001). 

2.1.3 Integrated Assessment System 

With advancements in communication protocols, mobile devices can now communicate 

with other components. For example, there are numerous wearable sensors that can communicate 

with mobile devices via Bluetooth. mHealth systems can incorporate these other components, 

like wearable sensors, into their framework because of the availability of data communication 

between the components. 

Nowadays, wearable sensor technologies have advanced and are used for a variety of 

purposes. The development of early wearable sensors was driven by the need to objectively 

measure and quantify physiological functions and activities outside of laboratory settings for an 
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extended period of time (Ghika et al., 1993; Spieker, Jentgens, Boose, & Dichgans, 1995). The 

design principles of these early wearable sensors were that they be reliable, compact, portable, 

and simple to use. 

The main objectives of wearable sensors are to detect important objective physiological 

parameters and to be worn by an individual (Shokri, Ward, Anton, Siffredi, & Papetti, 2020), so 

that they can be used for long-term and continuous monitoring in home or community settings 

(Bonato, 2010). These objectives are in line with the objectives of mHealth, which include 

increasing access to care, delivering and engaging patients in treatment, enhancing care after 

treatment, and monitoring treatment progress. 

Integrating wearable sensors into an mHealth system can help improve and enhance the 

quality of the mHealth system in pursuing its objectives. Wearable sensors can be used to collect 

objective and real-time data from the patient. With the advancements in technology, wearable 

sensors can collect a wide range of data, from blood sugar and sleep to mood (Dinh-Le, Chuang, 

Chokshi, & Mann, 2019). Connecting and receiving data from wearable sensors can help 

mHealth systems obtain objective and real-time assessment information, monitor health 

conditions, and keep track of the wearer's compliance with intervention or treatment 

requirements and the effects of the intervention or treatment as well. 

The integration of mHealth and wearable sensors can help transform a hospital-centered 

system to an individual-centered system. This transformation can reduce the need for hospital 

visits and decrease health costs (Teng, Poon, Zhang, & Bonato, 2008). Wearable sensors can 

collect a large amount of data, but mHealth has the potential to enhance this capability by 

providing more computational power to process the data, enabling the use of the data collected 

by sensors for early disease detection and timely response to health threats, as well as the ability 
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to provide personalized and adaptive rehabilitation interventions. mHealth can also be used to 

present and communicate information from the data collected for personal digital health tracking, 

personalized feedback, and improved care for caregivers. 

The technologies used in wearable sensors have evolved from their origins in the 1990s 

with the evolution of electronics, sensing technologies, embedded systems, wireless 

communication technologies, nano technologies, and miniaturization technologies 

(Kyeremateng, Brousse, & Pech, 2017; Mukhopadhyay, 2015; Tricoli, Nasiri, & De, 2017). Not 

only their technical performance, but also their convenience of use has made great strides, which 

improve the adoption of use. Moreover, improvements in biocompatible materials and nano 

materials (Choi et al., 2018; Lim et al., 2020) have allowed advancements in implantable 

wearable biosensors (Song, Min, & Gao, 2019), further promoting the integration of wearable 

sensors with mHealth. 

mHealth and wearable sensors can be integrated to support assessment, monitoring, and 

intervention. Jovanov designed a simple framework to integrate wearable sensors with an 

mHealth system to be used for assessment and monitoring (Jovanov, 2005). In the framework, 

the sensors communicate with the mobile device, which acts as and is defined as a personal 

server, via a Wireless Body Area Network (WBAN). Bluetooth and Zigbee are some examples 

of WBAN technologies (Georgakakis, Nikolidakis, Vergados, & Douligeris, 2011). This 

personal server enables the patient to monitor the processed data collected by the sensors. The 

personal server also acts as a gateway to the internet, transmitting the data to a medical server 

that a clinician or health provider can use to assess and monitor a patient’s data. 

This framework consists of several useful components outside of the health information 

transmission component (Jovanov, Milenkovic, Otto, & De Groen, 2005). For example, 
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information about the weather forecast can be added to the framework. It can be connected 

directly through internet to the personal server or through a subsequent connected device. The 

personal server can use the information from this component to adjust or improve its monitoring 

presentation for the patient. Emergency and caregiver components can also be connected to the 

personal server via the internet. With the addition of these components, the personal server can 

inform emergency personnel or the caregiver with relevant information from the patient’s 

monitoring data as needed. 

This framework works for assessment and monitoring if there is seamless connectivity 

and communication between each component. The patient can assess processed objective health 

data collected by the sensors, and the continuous and in-time benefits of using integrated 

mHealth-wearable sensors framework can be used to improve monitoring of the patient’s health 

condition. 

Gay et al. implemented a similar framework to develop a heart monitoring mHealth-

wearable sensor system (Gay & Leijdekkers, 2007). Their framework sets a focus on emergency 

alarm/notification. Negative changes in a patient’s heart condition cause the application in the 

smartphone to send out a notification to call for an ambulance or emergency services. Bisio et al. 

used a similar framework, adjusting the role of the mobile device to that of communication hub; 

their framework includes additional sensors as well as a computational processor (Bisio, 

Lavagetto, Marchese, & Sciarrone, 2015). Banos et al. used a similar framework to develop a 

personal physiological monitoring system (Banos et al., 2014). 

Lobelo et al. proposed an mHealth-wearable sensors framework that further incorporates 

a counseling and intervention component (Lobelo et al., 2016). They implemented the 

framework to support physical activity assessment, counseling, and intervention for 
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cardiovascular disease risk reduction. In their framework, the wearable sensors and the app in the 

mobile device are responsible for collecting physical activity data. The data is transmitted by the 

app to a digital ecosystem software platform, where it is processed and standardized. The 

processed data is then transmitted to clinical research center entity for analysis using a clinical 

outcome prediction algorithm. The meaningful and summarized data is then integrated into an 

EMR system that is used by the healthcare team to develop a clinical decision. Finally, the 

clinical decision, in the form of a counseling and clinical intervention program, is sent back to 

the app used by the patient.  Using Lobelo’s framework, the patient can review the developed 

counseling and intervention in their app. The benefit of this framework is that it is useful not 

only for assessing and monitoring patient’s condition but also for developing and adjusting 

personalized rehabilitation interventions. 

2.2 System Design, Development, and Evaluation 

2.2.1 Design Process 

Attention to target users and purposes is crucial in guiding the design and development 

process of a mobile app. It helps the designers and developers to focus on creating a system that 

satisfies the specific needs of the target audience. By identifying the target users and their 

purposes, the design team can better understand what capabilities and features the system should 

include. 

The first step in designing and developing a mobile app is to identify the requirements of 

the system. The requirements will form the basis of the features that will later be developed to 
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build the entire system. It is important to identify what the target users need, and what their 

perceptions are in utilizing the system. By gathering this information, the app can be designed 

and developed to accommodate the needs of the target users. 

The design process should focus on creating a user-friendly interface that is easy to 

navigate and understand. The interface should be visually appealing and should reflect the 

purpose of the app. Additionally, the features of the app should be designed to be intuitive, 

efficient, and effective, and should align with the target users' goals and motivations for using the 

app. 

The development process should also focus on ensuring that the app is responsive and 

compatible with a range of mobile devices, including smartphones and tablets. The app should be 

tested thoroughly to ensure that it is functional, reliable, and secure. This testing should be done 

on a range of devices and operating systems to ensure that the app performs optimally across all 

platforms. 

 

2.2.2 User-centered Approach 

User-centered design is a broad term to describe design processes in which end-users 

influence how a design takes shape (Abras, Maloney-Krichmar, & Preece, 2004). Understanding 

the target users is needed in every phase throughout the design and development life-cycle 

(“User-Centered Design Basics | Usability.gov,” n.d.). This means that feedback from the target 

users at each design and development stage is important not only at initial development stages, 

but also in later stages to revise and improve the design of the app. User-centered design is a 

critical aspect of developing an effective mHealth system. 
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In a user-centered design approach, the target users of the mHealth system are involved 

and have influence on how the system will be designed and developed. The process of user-

centered design is iterative, meaning that it involves multiple cycles of feedback and revisions 

based on user input. This approach helps to ensure that the system is continuously refined and 

improved to better meet the needs of its users. 

Through this iterative development process, the feedback from target users is gathered 

and analyzed to determine what features and capabilities need to be added, modified, or 

removed. The design and development team then works to incorporate this feedback into the 

system, creating a new version that can be evaluated by the target users. This process is repeated 

until the system meets the needs and expectations of the users. 

The benefits of user-centered design are numerous. By involving the target users in the 

design and development process, the system is more likely to be intuitive and user-friendly, 

which can increase its adoption and use. Additionally, the system is more likely to be effective in 

achieving its intended purposes, as it has been tailored to the specific needs and preferences of its 

users. Ultimately, the goal of user-centered design is to create a system that is usable, efficient, 

effective, and satisfies the needs of its users. 

2.2.3 Usability Evaluation 

Jakob Nielsen defined usability as a quality attribute that assesses how easy user 

interfaces are to use (“Usability 101: Introduction to Usability,” n.d.). This metric can be used to 

evaluate the design solution in a user-centered design process. Designing and developing an app 

that has good usability is important. Users will not use the app if the app is not usable, meaning 
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that the app is hard to use, difficult to learn, not efficient in performing tasks, or even is not 

pleasant to use. 

To be able to assess the usability of an app, metrics and measurements of usability 

components need to be defined. Jakob Nielsen defined usability using five quality components 

(“Usability 101: Introduction to Usability,” n.d.):  

• learnability,  

• efficiency,  

• memorability,  

• errors, and  

• satisfaction.  

Learnability covers whether it is easy to use the app the first time and how easily users 

learn to use the app. Efficiency explains how quickly they can perform tasks in the app. 

Memorability involves whether users can easily use the app after a period of not using it. Errors 

include user perspectives related to errors made, the severity of errors made, and the user’s 

reaction to the error itself. Satisfaction covers whether the user is satisfied with the app. 

Representative users from a target user population are needed to test the usability of the 

app. To assess the usability of the app, the representative users would need to be asked to 

perform several tasks in the app. Their interaction with the app during the usability test should be 

observed. Letting them talk and explain their reactions and impressions during the test can 

enhance the effectiveness of observation as a way to evaluate usability. The five components of 

usability can be evaluated during the observations in a usability test. 

There are several usability questionnaires that can be used to measure the usability of a 

system, such as System Usability Scale (SUS) (Brooke, 1996) that can be used to evaluate 
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usability of a general system. Using the most relevant usability questionnaires is important to get 

the most accurate usability score. Several usability questionnaires are made for a specific system. 

For example, Telehealth Usability Questionnaire (TUQ) (Parmanto, Lewis, Jr., Graham, & 

Bertolet, 2016) was developed to evaluate usability of a telehealth system and mHealth App 

Usability Questionnaire (MAUQ) (Zhou, Bao, Setiawan, Saptono, & Parmanto, 2019) was 

developed to evaluate usability of an mHealth app. 

2.3 Assessment 

2.3.1 Kinematics Sensor 

Kinematics sensors, also known as inertial measurement units (IMUs), are devices that 

measure the acceleration and angular velocity of an object. They are typically composed of 

accelerometers, gyroscopes, and sometimes magnetometers. The data collected from these 

sensors can be used to determine the object's position, velocity, and orientation in space, as well 

as its motion patterns (Benson, Clermont, Bošnjak, & Ferber, 2018). 

Kinematics sensors have become increasingly important in various fields, including 

sports, medicine, and robotics. In sports, kinematics sensors can be used to measure the 

movements and performance of athletes, such as tracking the velocity and acceleration of a 

sprinter. In medicine, kinematics sensors can be used to monitor patients' movements and 

activity levels, which can be useful for rehabilitation or tracking the progression of a disease. In 

robotics, kinematics sensors are used to help robots maintain balance and orientation, such as in 

humanoid robots or drones. 
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2.3.2 Ecological Momentary Assessment 

Ecological momentary assessment (EMA) is a method that captures real-time data on 

individuals’ experiences, behaviors, and environmental context in their natural setting (Shiffman, 

Stone, & Hufford, 2008). EMA typically involves the use of mobile devices or wearable sensors 

to prompt participants to report their current experiences, behaviors, or symptoms, often multiple 

times per day over an extended period of time. 

EMA is important because it allows researchers to capture real-world data that can 

provide a more accurate representation of an individual’s experiences compared to traditional 

methods of data collection, such as retrospective paper-based self-report (Stone, Shiffman, 

Schwartz, Broderick, & Hufford, 2002). EMA also reduces recall bias and increases the 

ecological validity of the data collected (Solhan, Trull, Jahng, & Wood, 2009). EMA has been 

used in various fields such as psychology, medicine, and public health to investigate a wide 

range of topics, including mood, stress, substance use, physical activity, and medication 

adherence. 

For example, EMA has been used to study substance use and relapse (Shiffman, 2009). 

This study asked the participants to report their substance use information in time-based 

assessment. The study reported that the compliance was high when utilizing EMA. Another 

example is use in depression study (Armey, Schatten, Haradhvala, & Miller, 2015). The EMA 

was used to get insight of self-harm behavior and mood disorder in real-time. Similar study to 

observe alcoholics was also utilizing EMA (Litt, Cooney, & Morse, 1998). 
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2.3.3 Physical Activity Level 

Physical activity level is a measure of an individual's level of physical activity. Activity 

level can be used to assess their risk for chronic diseases and to monitor the effectiveness of 

interventions aimed at increasing physical activity levels. 

Accelerometer data from kinematics sensors can be used to calculate activity level using 

Actigraph algorithm (Neishabouri et al., 2022). The Actigraph algorithm is one of the most 

common methods to calculate activity level. The Actigraph algorithm for calculating activity 

levels involves several steps: 

• activity counts processing, 

• intensity level classification, and 

• time proportion calculation. 

 

First, accelerometer data is then processed into activity counts, which are accumulated 

over specific time intervals, such as 60 seconds. Next, the activity counts are categorized into 

intensity levels based on cutpoints. Cutpoints are predetermined activity count values that are 

associated with different levels of physical activity intensity. One of the most used cutpoints for 

activity level is Freedson’s cutpoint (Freedson, Melanson, & Sirard, 1998). 

Once the activity counts have been categorized into intensity levels, the total time spent 

at each level is calculated. This allows for the determination of the proportion of time spent in 

sedentary behavior, light physical activity, moderate physical activity, and vigorous physical 

activity. 
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2.4 Adaptive Intervention Framework 

Each individual may have different intervention needs for their health issue. What’s right 

for one individual might not be suitable for the another, even if the health issue is the same. 

Treatment dosage can also vary for one individual over time (Collins, Murphy, & Bierman, 

2004).  Adaptive intervention has been proposed to address this issue. In adaptive intervention, 

different individuals can get different dosages of treatment components (Collins et al., 2004). 

There are several components in adaptive intervention: treatment, tailoring variables, 

measurement of tailoring variables, decision rules, and implementation of decision rules (Collins 

et al., 2004). Those components are interdependent. Tailoring variables are variables that 

moderate or are expected to moderate the effect of the treatment. Treatment dosage will be 

determined based on the value of the tailoring variables using the rules in the decision rules 

component. In time-varying adaptive intervention, tailoring variables need to be assessed 

periodically over time to determine whether the treatment dosage needs to be adapted or 

adjusted. 

Just-in-time adaptive intervention (JITAI) is a specific form of adaptive intervention.  

Similar in concept with time-varying adaptive intervention, JITAI aims to provide the right 

support, at the right time, by adapting to the individual’s internal and/or contextual variables 

changes (Nahum-Shani, Hekler, & Spruijt-Metz, 2015; Nahum-Shani et al., 2018). JITAI 

frameworks have been used to support behavior change interventions (Goldstein et al., 2017; 

Nahum-Shani et al., 2015).  

Since being able to give the right support at the right time is one of the most important 

aims of JITAI, monitoring the individual’s internal and contextual state continuously and 

ecologically is important as part of the intervention. The continuous monitoring aspect of JITAI 
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can be enhanced using the mHealth-wearable sensors system, which is designed to be able to do 

continuous monitoring.  

There are four components of JITAI framework: intervention options, tailoring variables, 

decision points, and decision rules (Nahum-Shani et al., 2018). Intervention options are possible 

treatments or interventions that can be given at any decision point. Intervention options are also 

often called ecological momentary interventions (EMIs) since they are provided during everyday 

lives in natural settings (Heron & Smyth, 2010). Tailoring variables are types of information 

about the individual that can be used to decide when and what intervention to provide to the 

individual (Collins et al., 2004; Nahum-Shani et al., 2018). This information can be retrieved 

from active assessments (ecological momentary assessments or EMAs), passive assessments, or 

both. Decision points are the times at which an intervention decision is made. These can occur at 

a prespecified time interval, specific time of day, or following random prompts. Decision rules 

are a set of rules that specify which intervention or treatment to offer, for whom, and when. 

Other principal design components of JITAI are distal outcome and proximal outcomes. Distal 

outcome is the main objective of the intervention, while proximal outcomes are the short-term 

goals.  
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3.0 mHealth System for Chronic Low Back Pain Assessment: Design and Development 

3.1 Introduction 

Chronic low back pain is one of the most prevalent conditions in the US. It is a complex 

condition and can have many different causes. People also experience chronic low back pain 

differently. Some people may have a higher pain tolerance, while others may be more sensitive 

to pain. Because of the complex nature of chronic low back pain, it is still challenging to find 

effective and cost-efficient treatment for different individuals with chronic low back pain. There 

is a need to find a way to be able to develop precise and personalized treatment for chronic low 

back pain. 

Phenotyping chronic low back pain is essential toward developing precision treatment for 

chronic low back pain. Constructing unique chronic low back pain phenotypes can help to 

formulate precise treatment plans that are associated with each phenotype. It can help healthcare 

professionals decide and select the right treatment for patients with low back pain, which can 

potentially improve the treatment outcome and reduce cost. 

In this study, an mHealth system was developed for chronic low back pain assessment. 

This mHealth system focuses on collecting biomechanical and behavioral assessment data as part 

of extensive multifactorial data that will be used for phenotyping chronic low back pain. This 

chapter presents the design and development process of the mHealth system. 
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3.2 Requirement Analysis 

Requirement analysis is an important part of every system development. The results of 

requirement analysis will inform what needs to be developed for the system to meet its purposes. 

Even tough revision and refinement will almost always be needed, a comprehensive requirement 

analysis can significantly reduce the number of changes needed in the development process, 

which can make the entire development process more effective and efficient. 

Requirement analysis involves investigating: 

• problems that the system aims to solve, 

• stakeholders of the system, and 

• objectives of the system. 

 

Understanding these elements is the foundation and the first step toward the design and 

development of the system. To conduct the requirements analysis for development of the system 

discussed in this study, three use cases were used:  

• structured assessment in clinic setting (in-clinic assessment), 

• assessment in patients’ home and daily life setting (at-home assessment), and 

• data monitoring and access for the researchers. 

 

3.2.1 In-clinic Assessment 

In the in-clinic assessment use case, the physical therapists assess people with chronic 

low back pain through a specified set of clinical exams, functional performance tests, and 
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quantitative sensory testing (QST) in clinic. They need to record the results of the exam and test 

assessments. Kinematics data and video recording of the patients performing some of the tests 

also need to be recorded and collected. The problems that need to be solved from this use case 

were identified: 

• extensive and different types of data, such as exams and tests completion 

information, time needed to complete some tests, video and kinematics data of 

some tests, physical therapists’ notes and comments, assessment deviation 

information, and case report responses, needs to be collected, 

• collected data needs to be further inputted to an integrated database, 

• since not all participants are able to do all the exams and tests safely, safety 

screening, that can be extensive and complex, is needed,  

• various tools, such as pen, paper, laptop/computer, stopwatch, and camera, are 

needed to collect and integrate the data, and 

• physical therapists need to maintain and juggle between various resources, such as 

exam guide, safety screening rules, assessment checklist, and case report form, 

that can be burdensome and can make the assessment session takes longer than 

needed. 

 

For the stakeholders, three different individual roles were identified:  

• physical therapist, who is responsible to screen the patient for safety, direct the 

patient to perform the exams and tests in the assessment, and input the outcome of 

the assessment,  
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• patient, who is responsible to perform and complete the exams and tests in the 

assessment, and  

• study coordinator, who is responsible for organizing the patients’ information and 

assign study subject ID to the patient.  

 

Based on the identified problems and stakeholders’ roles, objectives of the system for this 

use case were explored. The main objective of the system for this use case was to help and 

accommodate the physical therapists to conduct the assessment process efficiently with minimal 

burden for both physical therapists and patients. Some detailed objectives were identified: 

• the system should be able to collect and record extensive and different type of 

data, 

• the system should automatically integrate all data into the study database without 

having the physical therapists to reinput the data into different system, 

• the system should provide safety screening tools and automatically generate list of 

exams and tests that are safe for a patient to perform,  

• the system should be able to reduce the tools needed, such as pen, paper, 

laptop/computer, stopwatch, and camera, and provide the physical therapists with 

the same capabilities,  

• the system should provide the physical therapists the needed resources, such as 

exam guide, safety screening rules, assessment checklist, and case report form, in 

one component to streamline the assessment process and to reduce the burden on 

the physical therapists, and 
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• the system should provide the physical therapists with a portable component that 

provide the capabilities as mentioned in preceding points and provide the study 

coordinator with a component to organize and assign patients’ information. 

 

3.2.2 At-home Assessment 

In at-home assessment use case, the patients report self-assessed pain, behavioral, and 

activity information three times a day during a 7-day assessment period in their own home or 

daily life settings. Kinematics data of the patients during the 7-day period also needs to be 

recorded and collected. The problems that need to be solved from this use case were identified: 

• the patients need a way to record their self-reported assessment during their daily 

life activities, 

• the patients might forget to report their assessment,  

• the patients and the study coordinators need a way to communicate to each other 

securely if the patients have any questions or concerns during the 7-day 

assessment period, and 

• all patients’ self-reported assessment data and the kinematics data need to be 

collected and inputted to the study main database. 

 

For the stakeholders, two different individual roles were identified: 

• patient, who is responsible to record their self-assessment reports during the 7-day 

assessment period, and  
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• study coordinator, who is responsible to prepare and brief the patient for the 7-day 

at-home assessment and to respond to or help the patients during the 7-day 

assessment period if needed.  

 

Based on the identified problems and stakeholders’ roles, objectives of the system for this 

use case were explored. The main objective of the system for this use case was to accommodate 

the patients to record their self-assessment reports during the 7-day self-assessment period in 

their home or daily life settings. Since the setting is in patients’ home and daily life places, the 

system should be able to be integrated seamlessly into patients’ life without adding any 

unnecessary burden to their life. Some detailed objectives were identified: 

• the system should be able to provide the patients with a simple and easy-to-fill 

assessment form that they can use to record their assessment, 

• the system should provide reminder and notification system to remind the patients 

to record their self-assessment reports, 

• the system should provide the patients and the study coordinator with a secured 

two-way communication component and provide the patients with informational 

materials regarding the at-home assessment, 

• the system should automatically integrate all data into the study database without 

having the study coordinator to reinput the collected data into different system, 

and 

• the system should provide the patients with a portable component that provide the 

capabilities as mentioned in preceding points and that can be used in their daily 

life settings. 
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3.2.3 Data Monitoring and Access 

In the data monitoring and access use case, researchers need to monitor and access the 

assessment data collected from both in-clinic and at-home assessment. The problems that need to 

be solved from this use case were identified: 

• extensive assessment data needs to be integrated and aggregated for review and 

monitoring purposes, 

• the researchers need a way to monitor and access all assessment data that have 

been collected from both in-clinic and at-home assessment anytime and 

anywhere, and 

• the data should only be accessed by authorized researchers. 

 

For the stakeholders, one individual role was identified: 

• researcher, who has access and can monitor the assessment data. 

 

Based on the identified problems and stakeholder’ role, objectives of the system for this 

use case were explored. The main objective of the system for this use case was to accommodate 

the researchers to access and monitor the assessment data. Some detailed objectives were 

identified: 

• the system should have component that can manage extensive assessment data, 

• the system should provide a component that can be used by the researcher to 

access and monitor the assessment data anytime and anywhere, and 
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• the access to the component should be secure and should require authentication 

protocol. 

 

The summary of requirement analysis for the three use cases is presented in Table 1. 

 

Table 1. Summary of Requirement Analysis 

 Problems Stakeholders Objectives 

In-Clinic 

Assessment 

• Extensive data. 

• Scattered data. 

• Screening 

process. 

• Multi-tools 

requirement. 

• Multiform 

assessment 

resources. 

• Physical 

therapist. 

• Patient. 

• Study 

coordinator. 

• Extensive data collection. 

• Data management and 

integration. 

• Screening automation. 

• Multi-tools capabilities. 

• Integrated assessment 

resources and streamlined 

workflow. 

• Assessment component for 

physical therapist and 

patient management 

component for study 

coordinator. 

At-Home 

Assessment 

• Assessment 

reporting. 

• Reporting 

• Patient. 

• Study 

coordinator. 

• Assessment reporting 

component. 

• Reminder system. 
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adherence. 

• Communication. 

• Scattered data. 

• Two-way secured 

communication. 

• Data management and 

integration. 

• Portable assessment 

component for patient. 

Data Monitoring 

and Access 

• Extensive and 

scattered data.  

• Data access. 

• Data security. 

• Researcher. • Data management and 

integration. 

• Component for data access 

and monitoring. 

• Access authentication and 

authorization. 

 

3.3 System Design 

Based on the requirement analysis, several components were identified for the mHealth 

system to incorporate. The identified components are listed in Table 2. 
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Table 2. Identified mHealth Components from Requirement Analysis 

 Identified Components Target User 

In-Clinic 

Assessment 

1. In-clinic assessment component. 

2. Patient management component. 

3. Data management component.1 

1. Physical therapist. 

2. Study coordinator. 

At-Home 

Assessment 

1. Portable at-home assessment reporting 

component. 

2. Secured communication component. 

3. Data management component.1 

1. Patient. 

2. Patient and study 

coordinator. 

Data Monitoring 

and Access 

1. Data access and monitoring component. 

2. Data management component.1 

1. Researcher. 

 

 

The components were further organized and grouped based on the functionalities and the 

target users. Four final main components were identified: in-clinic app, at-home app, clinician 

portal, and backend and database. The four components cover all identified components and 

objectives from requirement analysis. This grouping was made to streamline the mHealth system 

and to create a straightforward and efficient integration between all components.  

The detail of the four final components and the requirement analysis items they cover is 

presented in Table 3. 

 

 

1 Data management component automatically handles the management and integration of collected/reported 

assessment data. It does not have any target user who use this component directly. 
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Table 3. Final Components for the mHealth System 

Final 

Components 

Components from 

Requirement 

Analysis 

Target User Objectives 

In-clinic app • In-clinic 

assessment 

component. 

• Physical 

therapist 

• Extensive data collection. 

• Screening automation. 

• Multi-tools capabilities. 

• Integrated assessment 

resources and streamlined 

workflow. 

• Assessment component for 

physical therapist. 

At-home app • Portable at-home 

assessment 

reporting 

component. 

• Secured 

communication 

component. 

• Patient • Assessment reporting 

component. 

• Reminder system. 

• Two-way secured 

communication. 

• Data management and 

integration. 

• Portable assessment 

component for patient. 

Clinician 

portal 

• Patient 

management 

• Study 

coordinator 

• Patient management 

component for study 
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component.  

• Secured 

communication 

component. 

• Data access and 

monitoring 

component. 

• Researcher coordinator  

• Two-way secured 

communication. 

• Component for data access 

and monitoring. 

• Access authentication and 

authorization. 

Backend and 

database 

• Data 

management 

component.1 

-  • Data management and 

integration. 

 

 

3.3.1 In-Clinic App 

The in-clinic app was designed to be used by physical therapists to help them run the 

assessment and collect the extensive and multiform assessment data. To be able to collect 

kinematics data, the in-clinic app needs to incorporate kinematics sensors. Using Bluetooth 

technology, communication and data transfer between the app and the sensors can be established. 

The in-clinic app was also designed to make it easier for the physical therapist to screen 

patients for safety and to automatically generate list of exams and tests that are safe for the 

patient to perform. The app was also designed to reduce the tools needed for the physical 

therapist to run the assessment, such as pen, paper, laptop/computer, stopwatch, and camera. The 

app was designed to have the capabilities that can substitute the use of the mentioned tools. The 
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app was also designed to incorporate several resources that the physical therapist needs, such as 

exam guide, safety screening rules, assessment checklist, and case report form. Having these 

resources in one place can streamline the overall assessment process and reduce the burden on 

the physical therapists. 

3.3.2 At-home App 

The at-home app was designed to be used by the patients to accommodate them to report 

their assessment in their daily life settings. One of the assessment data collected in the at-home 

session is kinematics data. To be able to collect kinematics data, the at-home app needs to 

incorporate kinematics sensors. Using Bluetooth technology, communication and data transfer 

between the app and the sensors can be established. 

The at-home app was also designed to have a reminder system to improve the adherence 

of the patient in reporting the assessment. Other than that, the app was also designed to have 

secured communication to enable the patient to communicate with the study coordinator if they 

have questions or concerns about the assessment process.  

3.3.3 Clinician Portal 

The clinician portal was designed to be used by both the study coordinator and 

researcher. To enable multiple user roles, the clinician portal was designed to have authorization 

access capabilities. For the study coordinator, the clinician portal was designed to enable them to 

input and manage patient data and to provide them with communication module to communicate 
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with the patient during their at-home assessment period. For the researcher, the clinician portal 

was designed to be able to gather assessment data and to present them to the researcher. 

3.3.4 Backend and Database 

The database was designed to store the assessment data securely. The backend 

component was designed to manage all assessment data collected from in-clinic app and at-home 

app, to manage participant information input in clinician portal, and to integrate and store those 

data in the database. Ultimately, the backend was designed to be able to communicate with all 

other components in the mHealth system: in-clinic app, at-home app, clinician portal, and the 

database itself.  

The integration of all components and overall architecture design of the mHealth system 

is shown in Figure 1. 
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Figure 1. Architecture design of the mHealth system for chronic low back pain. 

 

3.4 System Development 

3.4.1 Technology Requirement 

Before developing the mHealth system, technology requirement analysis was done to 

make sure the development is feasible and to purposes of developing the system is achievable. 

Technology requirement analysis was performed for each component of the mHealth system: in-

clinic app, at-home app, clinician portal, and backend and database. 
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3.4.1.1 In-Clinic App 

The in-clinic mobile app was planned to be developed using a cross-platform app 

development approach to enable installation in different platforms. Using a cross-platform 

development approach will also make it easier to manage the code base with limited resources. 

The app project was coded using Ionic Framework (https://ionicframework.com/docs) and 

Angular Framework (https://angular.io/). The code was written in TypeScript, HTML, and CSS – 

technologies that are commonly used for web development. Packaging and building of the cross-

platform app were done using Capacitor (https://capacitor.ionicframework.com). The 

development environment was set as listed in Table 4. 

 

Table 4. Technology Components for In-Clinic App Development 

Technology Component Version 

Ionic 5.0.0 

Angular 8.2.14 

Capacitor 1.5.0 

NodeJS 13.3.0 

npm 6.13.1 

 

 

The in-clinic app was designed to incorporate the integration with kinematics sensors. 

For the sensors, kinematics wearable sensors from Lifeware (Lifeware Labs, LLC, Pittsburgh, 

PA; https://www.lifewarelabs.com/) was planned to be used. The Lifeware wearable sensors can 

record kinematics data such as accelerometer, magnetometer, gyroscope, and quaternion data. 

The sensors can communicate and transfer the data through Bluetooth connection. 

https://ionicframework.com/docs
https://angular.io/
https://capacitor.ionicframework.com/
https://www.lifewarelabs.com/
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To integrate the app with the kinematics sensors, both components need to establish 

communication protocol between the two of them. Unfortunately, at the time of the development, 

Lifeware could not provide APIs information that was needed for the app to be able to 

communicate with the sensors through Bluetooth. The in-clinic assessment ended up using 

different standalone app from Lifeware that collect and manage the kinematics data during the 

assessment process. 

3.4.1.2 At-Home App 

Similarly, like the in-clinic app, the at-home mobile app was also planned to be 

developed using a cross-platform app development approach to enable installation in different 

platforms. It is important for the app to be able to be used in a large range of mobile device 

platforms because the app was planned to be installed in the patient’s own mobile device. The 

app project was coded using Ionic Framework and Angular Framework. The code was written in 

TypeScript, HTML, and CSS. Packaging and building of the cross-platform app were done using 

Capacitor. The development environment was set as listed in Table 5. 

 

Table 5. Technology Components for At-Home App Development 

Technology Component Version 

Ionic 5.0.0 

Angular 8.2.14 

Capacitor 1.5.0 

NodeJS 13.3.0 

npm 6.13.1 
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The in-clinic app was designed to incorporate the integration with kinematics sensors. 

Similarly, like the in-clinic app, wearable sensors form Lifeware were planned to be used. The 

Lifeware wearable sensors that were planned to be used for at-home assessment have some 

differences from the ones for in-clinic assessment. For the at-home assessment, the sensors must 

be worn during a 7-day period in patient’s daily life settings. Because of that, the sensors must be 

able to collect data for a long period of time and must optimize its battery life. Bluetooth 

communication is sacrificed to make the battery last longer so the sensors would not need to 

have bigger battery that will inconvenience the wearer. Since there is no means to communicate 

with the sensors, the at-home app was not developed to collect kinematics data from the sensors. 

Kinematics data from the sensors for the at-home session was collected manually by connecting 

the sensors to a computer via direct universal serial bus (USB) connection. 

3.4.1.3 Clinician Portal 

The clinician portal was planned to be developed for use in common web browsers, such 

as Google Chrome, Microsoft Edge, Apple Safari, and Mozilla Firefox. The web portal was 

coded using Angular Framework. The code was written in TypeScript, HTML, and CSS. The 

development environment was set as listed in Table 6. 

 

Table 6. Technology Components for Clinician Portal Development 

Technology Component Version 

Angular 8.2.0 

NodeJS 13.3.0 
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npm 6.13.1 

 

3.4.1.4 Backend and Database 

The database was planned to be built on a MySQL database system. The backend system 

was built using Spring Framework (https://spring.io/). The data source connection to the database 

used MySQL JDBC driver. The code was written in Java and incorporated MySQL queries. The 

development environment was set as listed in Table 7. 

 

Table 7. Technology Components for Backend and Database Development 

Technology Component Version 

MySQL 5.7.32 

Java 1.8 

Spring 2.0.1 

 

3.4.2 In-Clinic App Development 

Using the information on the requirement analysis and the constructed design of the 

mHealth system, the initial version of the in-clinic app was developed with several core features 

and services: 

• login module and authentication service,  

• home/main menu page,  

• safety screening module and processing service,  

https://spring.io/
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• exam/test module,  

• recording module and service,  

• case report form/questionnaire module and processing service,  

• local data storage service, and 

• remote communication service. 

 

The login module and authentication service were developed to make sure that only 

approved physical therapist can access the in-clinic app. Home/main menu page was developed 

to list the patients that the study coordinator has registered in the clinician portal. The physical 

therapist can select the patient from the list to perform safety screening process and to run the 

assessment process. The safety screening module and processing service was developed to 

provide the physical therapist with safety screening questionnaires. The safety screening 

processing service was designed to automatically generate a list of exams/tests that are safe for 

the patient to perform. 

The exam/test module was developed to contain the exam/test information and guide. 

The physician therapist can use this module to direct the patient to perform the exam/test 

assessment. The recording module and service were designed to record the time and video of the 

patient’s exam/test performance. The case report form/questionnaire module and processing 

service were designed to provide the physical therapist with specific case report form for each 

exam/test. The case report form was designed to be easy to fill and to help validate the data type 

for each answer to the question item. The exam/test module, recording module, and case report 

form/questionnaire module were designed to be integrated with each other to create a seamless 

process for the physical therapy when they run the in-clinic assessment process. 
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Local data storage service was designed to securely store assessment data in local device 

temporarily before sending it to the remote main study database. Remote communication service 

was designed to communicate with the backend component to retrieve and send data from and to 

the remote main database. The physical therapist wouldn’t have to reinput the assessment data 

collected using the in-clinic assessment in a different system. Data integration was designed to 

be handled by the in-clinic app. All of these modules and services were designed to help the 

physical therapist run the whole assessment process effectively and efficiently. Using the in-

clinic app should minimize the burden and effort on the physical therapist in the in-clinic 

assessment process. 

The screenshots of the modules developed in the in-clinic app are shown in Figure 2. 
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Figure 2. Screenshots of the modules in the first version of the in-clinic app.  

Figure A shows the login module. Figure B shows the main/home page. Figure C shows the safety screening 

module. Figure D shows the exam/test module. Figure E shows the recording module. Figure E shows the case 

report form module. 

 

 



 46 

The integration of the modules was developed to follow the assessment process 

workflow. The whole modules were developed to connect with each other seamlessly. The app 

was developed to help the physical therapist from the start to the end of the in-clinic assessment 

process. At first, the physical therapist would need to login in to the in-clinic app using their own 

credential. After successful login, the app will show the main/home page that will provide the 

physical therapist with the list of patients. The physical therapist selects the patient from the list 

and performs safety screening process. After the list of exams/tests for the patient is generated, 

the physical therapist can start directing and recording the patient through several sets of 

exams/tests. The exams/tests were listed based on order from top to bottom on the main test list 

page to make it easier for the physical therapist to run those tests. After each exam/test, the 

physical therapist inputs the assessment data in the case report form that the app shows after the 

test is recorded. 

The flow and connection between each module are presented in the following figures. 

Figure 3 shows the flow when the physical therapist logs into the app. Figure 4 shows the flow 

when the physical therapist screens the patient for safety. Figure 5 shows the flow when the 

physical therapist directs the patient to perform an exam/test. Figure 6 shows the flow when the 

physical therapist records the time and video of the patient performing the test and fills out the 

case report form for the test performed by the patient. Finally, Figure 7 shows the overall in-

clinic app flow. 
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Figure 3. App flow on logging into the in-clinic app. 

 

 

Figure 4. App flow on screening the patient for safety. 
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Figure 5. App flow on running an exam/test. 

 

 

Figure 6. App flow on recording the test and reporting the assessment data. 
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Figure 7. Overall app flow of the in-clinic app. 

 

3.4.3 At-Home App Development 

Using the information on the requirement analysis and the constructed design of the 

mHealth system, the initial version of the at-home app was developed with several core features 

and services: 

• login module and authentication service,  

• home/main menu page,  

• Ecological Momentary Assessment (EMA) module,  

• reminder module and service,  

• messaging module, 

• notes, account, and settings modules,  
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• local data storage service, and 

• remote communication service. 

 

The login module and authentication service were developed to ensure that only the 

patient can access their own data in the app and to ensure the assessment data collected in the at-

home app is linked to the correct patient. Home/main menu page was developed as the main 

landing page in the at-home app. Here, the patient can access other modules through the menu 

provided on this page. Ecological Momentary Assessment (EMA) module was developed to 

provide the patient with the assessment form that the patient can fill out with their assessment 

data. EMA was used because the assessments in the at-home session need to be assessed and 

reported over time in their daily life settings.  

Reminder module and service were developed to help remind the patient to report their 

assessment data at specific times of the day. The patient can set their preferred time as long as 

the time is within the time range to report the assessment. Messaging module was developed to 

provide the patient with a means to communicate with the study coordinator if they have any 

questions or concerns regarding the at-home assessment. Notes, account, and settings modules 

were not part of the requirement analysis result, but, during the development process, the need to 

enable the patient to put in notes related to the assessment, to review their account information, 

and to be able to logout from the app was identified. 

Local data storage service was designed to securely store assessment data locally. 

Remote communication service was designed to communicate with the backend component to 

retrieve and send data from and to the remote main database. The patient nor the study 

coordinator wouldn’t have to reinput the assessment data collected using the at-home assessment 
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in a different system. Using the at-home app should enable the patient to report their assessment 

over time in their daily life settings. 

The screenshots of the modules developed in the at-home app are shown in Figure 8. 

 

 

Figure 8. Screenshots of the modules in at-home app. 

Figure A shows the login module. Figure B shows the main/home page. Figure C shows the EMA module. 

Figure D shows the reminder module. Figure E shows the messaging module. Figure E shows the account and 

setting modules. 
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Since the assessments in the at-home session were designed to be reported over time, the 

app was developed to provide the patient easy access to the EMA module when they open the 

app. Access to other modules were also made to be accessible by putting all access on the 

main/home page. From the home page, the patient can access the EMA module, reminder 

module, notes module, messaging module, account module, and settings module. The EMA 

module was highlighted to give more importance. The app flow on filling out EMA module is 

illustrated in Figure 9. The flow for accessing the other modules is quite straightforward. 

Overall, the app flow is illustrated in Figure 10. 

 

 

Figure 9. App flow on reporting morning EMA. 
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Figure 10. Overall app flow of the at-home app. 

 

3.4.4 Clinician Portal Development 

Using the information on the requirement analysis and the constructed design of the 

mHealth system, the clinician portal was developed with several core features and services: 

• login page and authentication service,  

• home/main menu page,  

• assessment data page, 

• patient account management module,  
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• messaging module, and 

• remote communication service. 

 

The login module and authentication service were developed to ensure only approved 

study coordinator and researcher can access the clinician portal. The home/main menu page was 

developed to provide a landing page once the user login to the portal and to provide menu to 

access other modules. Assessment data page was developed to present the assessment data 

collected from both in-clinic and at-home assessment. Patient account management module was 

developed to enable the study coordinator to register a new account or update account 

information of the patient. Registering an account for a patient is an important step because the 

in-clinic app gets the patient account information from here. Messaging module was designed to 

provide a means for study coordinator to communicate with the patient during their at-home 

assessment period. Remote communication service was designed to communicate with the 

backend component to retrieve and send data from and to the remote main database. 

The screenshots of the modules developed in the at-home app are shown in Figure 11. 
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Figure 11. Screenshots of the modules in the clinician portal. 

Figure A shows the login module. Figure B shows the home/main menu page. Figure C shows the assessment 

data module. Figure D shows the patient management module. Figure E shows the messaging module. 

 

 

3.4.5 Backend and Database Development 

Using the information on the requirement analysis and the constructed design of the 

mHealth system, the backend and database were developed. The main feature of the database is 

to provide secure storage for patients’ information and assessment data from both in-clinic and 

at-home assessment sessions. The backend was developed with several core features and 

services: 

• access to the database,  
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• data processing services,  

• APIs for in-clinic app, 

• APIs for at-home app, and 

• APIs for clinician portal. 

 

The backend component was developed to manage all assessment data collected from in-

clinic app and at-home app, to manage participant information input in clinician portal, and to 

integrate, process, and store those data in the database. The backend has direct access to the 

database and was developed to provide APIs for the in-clinic app, at-home app, and clinician 

portal to enable them to send and retrieve necessary data. 

The APIs developed in the backend were tailored to the needs of the other components. 

For example, APIs to send and retrieve safety screening result data, test result data, and videos 

were developed to be used by the in-clinic app. For the at-home app, several APIs such as APIs 

to send and retrieve patients’ EMA reports, notes, and messages were developed. Extensive data 

communication APIs were also developed to be used by the clinician portal. The backend plays 

an important role in providing communication for the other components in the system.  

3.5 Discussion 

This chapter presents the discussion of the development process of the mHealth system 

for chronic low back pain assessment. Four main components were identified and developed: in-

clinic app, at-home app, clinician portal, and backend and database. The in-clinic app that has 

been developed addresses the limitations of in-clinic paper-based assessments and 
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questionnaires. The system provides the necessary assessment resources in one place. 

Additionally, the use of the in-clinic app streamlines the assessment process and reduces the 

tools needed for the assessment, such as pens, papers, cameras, and stopwatches. 

The at-home app was developed to support ecological momentary assessment (EMA) by 

providing real-time reporting of pain information and physical activities. This feature enhances 

the accuracy and reliability of the data while reducing the potential for recall bias. The at-home 

app also supports compliance in reporting using the reminder system, which ensures that patients 

report their pain information and physical activities regularly and accurately. 

Overall, the mHealth system streamlines the assessment process and make the assessment 

more effective and efficient. The data collected during the assessment using the in-clinic app and 

the at-home app can be automatically integrated by the system without requiring additional 

manual data input. Using this mHealth system saves time and effort for the physical therapists 

and the chronic low back pain patients. 

The result of the development process in this chapter was the initial version of the 

mHealth system. This version was used to perform assessments for the first patients in this study. 

However, the development process of the mHealth system did not stop at the first version. The 

system underwent several iterations of revisions and improvements based on the usability 

evaluation and feedback from the stakeholders, such as physical therapists and chronic low back 

pain patients. These revisions and improvements were essential in ensuring that the system is 

user-friendly, effective, and aligned with the needs of the users of the system. 

The usability evaluation of the mHealth system was a critical aspect of its development. 

The evaluation aimed to identify the usability issues of the system and to obtain feedback from 

users. Because of that, the iterations of the development after the first version of the mHealth 
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system will be discussed in Chapter 4.0, along with its usability evaluation. In-clinic app and at-

home app will be the focus in Chapter 4.0 when discussing the further development and usability 

evaluation of the mHealth system. 
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4.0 mHealth System for Chronic Low Back Pain Assessment: Iterative Development and 

Usability Evaluation 

4.1 Introduction 

Chapter 3.0 discusses the development of the initial version of the mHealth system. The 

development process did not stop at that point and continued iteratively. Since the development 

adopted a user-centered approach, evaluation and feedback from the target users were needed to 

inform the further iteration of the system’s development. This chapter discusses the usability 

evaluation of the in-clinic app and at-home app of the mHealth system and the iterative 

development of those components. The development discussed in this chapter is the continuation 

of the development discussed in Chapter 3.0. 

Usability evaluation is important to inform if the system is usable and can deliver its 

intended purposes to the target users. The evaluation is also useful to identify changes and 

improvements needed in development purposes. Evaluating usability is in line with the user-

centered approach used in this development process.  

In a user-centered design approach, the target users of the mHealth system are involved 

and have influence on how the system will be designed and developed. The development process 

in user-centered approach is iterative. Feedback from the users is analyzed to determine how to 

proceed with the next cycle of the iterative development process. The need to do the iterative 

development of the system is determined based on the evaluation and feedback from the target 

users. This process can be repeated several times as needed. The final goal of this process is to 
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get a system that is usable and can function as intended to achieve all the defined purposes of the 

system effectively and efficiently. 

4.2 Methods 

4.2.1 Study Description 

This chapter aims to discuss the iterative development and usability evaluation of an 

mHealth system for chronic low back pain assessment. As described in Chapter 3.0, this mHealth 

system was designed to collect biomechanics and behavioral assessment data during structured 

assessment session in clinic and during participants’ daily life at their home settings. The study 

was conducted in Pittsburgh, PA. The in-clinic assessment sessions were done at the Physical 

Therapy – Clinical and Translational Research Center (PT-CTRC). 

Two mHealth apps were developed:  

1. In-clinic app: an mHealth app for physical therapists to help them conduct the 

structured assessment session in clinic. 

2. At-home app: an mHealth app for chronic low back pain patients to help them 

record assessment data using their own mobile phones in their daily life settings. 

Three physical therapists, who work at PT-CTRC, were tasked to do the in-clinic 

assessment. They used the in-clinic app to perform the assessment in the clinic and were 

involved in providing feedback and in usability assessment of the in-clinic app.  

In this study, 522 people with chronic low back pain who used the at-home app were 

asked to evaluate its usability. These 522 participants were part of the larger pool of participants 
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enrolled in the LB3P research project, which aims to recruit 1000 individuals with chronic low 

back pain. To be eligible to participate in the study, the participants were required to have 

chronic low back pain, were 18 years old or older, and can read and speak English. Here, chronic 

low back pain is defined as back pain that has persisted at least three months and has resulted in 

pain on at least half the days in the past 6 months. 

4.2.2 Development of the In-Clinic and At-Home Apps 

The main purpose of this mHealth system is to collect biomechanics and behavioral 

assessment data of people with chronic low back pain in both clinic and home settings. To 

facilitate this, an in-clinic app was designed and developed for use by physical therapists during 

clinical exams, functional performance tests, and quantitative sensory testing (QST) of patients. 

The app enables the therapist to record in-clinic assessment data efficiently. 

In addition to the in-clinic app, an at-home app was developed to allow patients to fill out 

and submit an ecological momentary assessment (EMA) over time, with specified frequency 

throughout a 7-day assessment period. The EMA included questions about the patient's pain 

information, activities, and some behavioral routines, which can help to capture the patient's pain 

experience and daily life activities in naturalistic settings. 

The overall mHealth system also consisted of a clinician portal, a backend, and a secure 

remote database. In this development, the clinician portal was designed for internal use, allowing 

researchers to access, review, and manage assessment data from both the in-clinic app and at-

home app. The backend and secure remote database support data storage and management, data 

processing, and data analysis for the entire system. 
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The design framework for the two apps used user-centered design principle. The first 

iteration of the app development, covered in Chapter 3.0, was done based on the requirement 

analysis of each app target users’ needs. The feedback of the users and usability assessment was 

used to make changes and improvements to the app during further iterations of development. The 

development process was iterative, meaning that changes and improvements were implemented 

as needed, without a set timeline. 

During development, feedback from users was assessed as early as possible to support 

rapid development and get more feedback in an agile development cycle. This approach allowed 

the development team to incorporate user feedback at various stages of the development process, 

leading to the creation of a system that is usable, effective, and well-suited to the needs of the 

target users. 

 

4.2.3 Usability and Feedback Evaluation 

The mHealth apps were designed using a user-centered approach and the usability was 

evaluated in iteration. The usability evaluation of the mHealth apps involved the use of the 7-

Likert-scale mHealth App Usability Questionnaire (MAUQ) as well as qualitative open-ended 

questionnaires. For the in-clinic app, the MAUQ for standalone mHealth app used by healthcare 

providers (Appendix A.1) was used, while the MAUQ for standalone mHealth app used by 

patients (Appendix B.1) was used for the at-home app. The average scores of the MAUQ 

components were calculated and examined to assess the overall usability of each app. 
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Additionally, answers to the open-ended questionnaires were also evaluated to identify 

any specific usability issues or general feedback that users provided. These open-ended questions 

were designed to gather feedback on aspects such as the ease of task performance, learnability, 

and overall user experience. The use of open-ended questionnaires (Appendix A.2 and Appendix 

B.2) aimed to gather more in-depth information about the user's experience with the app. The 

questionnaires consist of five questions that covered different aspects of usability: 

1. How easy do you think it is to perform tasks using this app? 

2. How quickly do you think you can perform tasks using this app after the training? 

3. How pleasant is it to use the app to perform the tasks? 

4. What do you think can be improved from the app? 

5. What is your overall impression in using the app? 

 

The first question asked users to rate how easy they found it to perform tasks using the 

app. This question aimed to gauge the app's ease of use and the level of difficulty users may have 

faced when navigating the app's features. The second question focused on the speed of task 

performance, asking users to rate how quickly they could perform tasks after receiving training 

on how to use the app. This question aimed to evaluate the app's learnability and the 

effectiveness of the training provided. The third question inquired about the user's subjective 

experience of using the app. This question aimed to assess the app's overall user experience and 

the user's satisfaction with the app's design and interface. The fourth question was an open-ended 

question that asked users to provide feedback on what they thought could be improved in the 

app. This question aimed to gather specific feedback on areas of the app that users found 

problematic or confusing, and to identify areas that needed improvement. Finally, the fifth 
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question asked users to provide an overall impression of the app. This question aimed to gather a 

general impression of the user's experience with the app and to identify areas where the app 

excelled or fell short. 

For the in-clinic app, feedback from physical therapists was also collected and examined 

to gain insights into their experiences using the app. Feedback was communicated directly or 

through study coordinators. Similarly, feedback from patients was collected and examined for 

the at-home app. This feedback was obtained directly through the messaging feature and/or the 

note-taking feature in the app or indirectly through study coordinators. The aim of this feedback 

was to determine any issues or challenges that patients may have faced while using the app, as 

well as to identify potential areas of improvement. 

Overall, the evaluation and feedback from users played an essential role in the iterative 

development process of the mHealth system. The insights gained from these evaluations helped 

to refine the design and functionality of the system, ensuring that it met the needs of both the 

physical therapists and patients while also remaining usable and efficient. In this development 

process, there is no specific time allocated to make the revision. Revisions can be made and 

published anytime, especially if the changes are needed immediately. 

4.3 Usability Evaluation and Development Iteration 

4.3.1 In-Clinic App 

An initial functional version of the in-clinic app was developed prior to the first usability 

assessment. This version included several core features and services, such as a login module and 
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authentication service, a home/main menu page, an exam/test module, a recording module and 

service, a case report form/questionnaire module and processing service, a local data storage 

service, a remote communication service, and a safety screening module and processing service. 

The development of the initial version of the in-clinic app is described and discussed in Chapter 

3.4.2. 

Several usability evaluations were performed, and changes and revisions were developed 

based on the results. For the in-clinic app usability evaluation, five questions from the MAUQ 

were removed for various reasons, which are listed in Table 8. 

 

Table 8. Excluded MAUQ Questions for In-clinic App Usability Assessment. 

Removed question Reason 

I feel comfortable using this app in social 

settings. 

The physical therapists don't use the app 

in social settings. 

The amount of time involved in using this 

app has been fitting for me. 

For each session, the physical therapists 

use the app for a specific pre-defined 

time range. 

The app helped me manage my patients’ 

health effectively. 

There isn't any feature to manage 

patient's health in the app. 

I could use the app even when the Internet 

connection was poor or not available. 

The physical therapists haven't had any 

trouble with internet connection so far. 

This mHealth app provides an acceptable 

way to deliver healthcare services, such as 

accessing educational materials, tracking 

The physical therapists don't use the app 

to deliver mentioned services. 
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my own activities, and performing self-

assessment. 

 

 

4.3.1.1 First Usability Evaluation and Development Updates 

The first usability evaluation of the in-clinic app was conducted after the initial functional 

version was developed. Prior to the evaluation, the physical therapists were briefed and presented 

with the app. During the evaluation, the physical therapists used the app for a mock in-clinic 

assessment session and were asked to fill out the MAUQ and a custom open-ended questionnaire 

afterwards.  

The first usability assessment of the in-clinic app yielded an average MAUQ usability 

score of 5.55 (SD = 1.14) as shown in Table 9. This indicates that the physical therapists found 

the app to be easy to use with a good overall usability score. However, the navigation 

consistency component received the lowest score. The average score for the question “The 

navigation was consistent when moving between screens” was 4.50 (SD = 2.12). Even though 

this doesn’t indicate a low usability score, it suggests that some physical therapists may have 

found it difficult to navigate between screens consistently while using the app. These results 

suggest that the initial version of the in-clinic app was well-received by physical therapists, but 

some improvements could be made to the navigation features to make it more user-friendly.  

 

Table 9. Usability Scores for the First Usability Evaluation of the In-Clinic App 

MAUQ Item 

(see Appendix A.1) 
Usability Score 
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1 5.67 (SD = 0.58) 

2 6.00 (SD = 1.41) 

3 4.50 (SD = 2.12) 

4 5.00 (SD = 0.00) 

5 5.00 (SD = 1.41) 

6 4.67 (SD = 1.53) 

7 6.00 (SD = 0.00) 

8 5.00 (SD = 0.00) 

11 7.00 (SD = 0.00) 

12 6.00 (SD = 0.00) 

13 6.00 (SD = 0.00) 

14 6.00 (SD = 0.00) 

16 5.00 (SD = 0.00) 

Overall 5.55 (SD = 1.14) 

 

The open-ended questionnaires revealed that the overall impression of the physical 

therapists was positive. They expressed confidence that they would be able to use the app easily 

if given more time to try it out, and they believed that the app would be helpful for them. 

However, some physical therapists mentioned issues with inconsistency in navigating within a 

test module and unresponsiveness in some processes. One physical therapist specifically 

suggested that "consistent back access to the previous screen" could be improved in the app. 

The feedback from one of the physical therapists also indicated an issue with the app's 

responsiveness. They reported experiencing a delay in button responsiveness, which could 

potentially cause frustration and hinder the overall usability of the app. They mentioned that they 

experienced “small delay in responsiveness of buttons today”. To investigate the issue, the 

troubleshooting was conducted, and it was discovered that the delay was caused by a process that 

can take more than one second to finish.  
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Based on the results of the usability assessment and the feedback from the physical 

therapists, several changes were implemented to improve the app's usability. These changes 

included: 

• Adding the ability to skip some tests and move to the following test. 

• Updating the back navigation to be consistent and similar to the upward flow. 

• Adding navigation to go back and forth between sub-tests in a test group, making 

it easier for users to navigate within a test group. 

• Adding a loading spinner to processes that take more than 1 second, indicating 

that the app is still processing information and is not frozen or unresponsive. 

• Adding confirmation dialogs to inform users that they are about to navigate or 

perform an action in the app, providing additional clarity and preventing 

accidental actions. 

 

Several modules and pages in the in-clinic app were updated and revised to address the 

identified usability issue. The main changes were made in the test module, which had been 

identified as a problem area for the navigation issue. The changes made were aimed at improving 

the navigation and flow inside the test module. Back button functionality was revised to provide 

consistent and intuitive back navigation. Back buttons that navigate to recording page and case 

report form page were removed to prevent overwriting the data that has been submitted. Skip 

button was also developed to enable the physical therapist to skip a test and navigate to the 

following test. Skip button was developed to be configurable to enable unskippable test. The 

changes to address the navigation issues are illustrated in Figure 12. 
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Figure 12. Navigation changes in the in-clinic app. 

 

 

Additionally, the app was updated to address the issue of unresponsiveness that had been 

reported by one of the physical therapists. To mitigate this issue, loading spinners were 

incorporated in pages that require data retrieval or processing and take more than one second to 

complete. The loading spinners were added to inform the user that the app is processing the 

requested information and is not frozen or unresponsive. This new feature was implemented in 

various sections of the app, including the home/main page. Loading spinners were added in the 

home page to indicate that the app is retrieving study participants’ information. The 

implementation of this loading spinners is shown in Figure 13. 
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Figure 13. Example of spinner implementation when the app is retrieving and processing data. 

 

Another new feature that was developed to address the usability issues identified from the 

first usability assessment was confirmation dialogs. Confirmation dialogs were developed to 

inform users that they are about to navigate or perform an action in the app, providing additional 

clarity and preventing accidental actions. Confirmation dialogs have been implemented in 

several modules and pages to address usability issues. For instance, in the test module, a 

confirmation dialog will appear when the exit button is clicked to ensure the user's intention and 

prevent data loss. In the safety screening module, a confirmation dialog will appear when the 

submit button is clicked to notify the user that the data has been saved. The examples of the 

implementation of this confirmation dialogue are shown in Figure 14. 
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Figure 14. Example of confirmation dialog that shows up after the user submit safety screening questionnaire 

responses. 

 

4.3.1.2 Second Usability Evaluation and Development Updates 

The second usability evaluation was conducted three weeks after the first assessment, 

giving the physical therapists ample time to explore and interact with the app independently. 

This approach enabled the therapists to develop a deeper understanding of the app's features and 

functionalities, thereby allowing them to evaluate the usability of the app more accurately. Only 

one physical therapist participated in the second usability evaluation. The average MAUQ 

usability score for the second evaluation was 6.00 (SD=1.15), which showed a marked 

improvement from the first assessment. These results suggest that the changes made to the app 
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based on the feedback from the physical therapists have resulted in a more user-friendly app. The 

usability scores can be seen in Table 10. 

 

Table 10. Usability Scores for the Second Usability Evaluation of the In-Clinic App 

MAUQ Item 

(see Appendix A.1) 
Usability Score 

1 5 

2 7 

3 6 

4 7 

5 6 

6 7 

7 4 

8 7 

11 7 

12 6 

13 7 

14 5 

16 4 

Overall 6.00 (SD = 1.15) 

 

 

Based on the open-ended questionnaires, the physical therapists had an overall positive 

impression of the app and appreciated the changes and improvements made to it. However, they 

did mention a couple of issues that they would like to see addressed:  

• They felt that sometimes the processes in the app were a bit slow.  
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• They suggested adjustments to be made in the case report form module. They 

found it exhausting and time-consuming to answer all the questions, especially 

when some of the questions were not relevant based on the test result. For 

example, if a participant decided not to attempt a test, the physical therapist still 

needed to go through all the questions and fill them out.  

• They mentioned that they needed a bigger interface in general because they often 

had to stand next to the participant while also monitoring the app from a distance. 

 

Some changes were made after evaluating the usability assessment and the feedback from 

the physical therapists. A general review of the app's performance was conducted, and several 

improvements were made to enhance its performance. The changes made included reducing the 

time needed to load participant data from the remote backend by only retrieving necessary data 

at a time. A change in the backend was also made to revise the APIs to send only necessary data 

per request made by the app.  

Additionally, the case report form module was improved by restructuring the questions to 

show up conditionally based on several parameters, such as time recorded and answers to other 

related questions. The questions were also organized in a way that would reduce the burden on 

the physical therapists when they fill out the case report form. Several UI changes and 

improvements were also made, with a focus on making the fonts bigger, especially on the 

recording page because the physical therapist needs to be standing near the participant, away 

from the app, when they perform the test that is being recorded for safety purposes. Figure 15 

shows examples of the changes in the app interface. 
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Figure 15. Updated interface and bigger font to accommodate viewing from distance. 

 

4.3.1.3 Additional Developments 

Since the usability scores from the first and second usability assessments showed good 

usability of the app, no further usability assessments were conducted. However, feedback from 

physical therapists was still collected and assessed, and changes and improvements were 

continuously made based on their feedback. Physical therapists provided their feedback either 

directly or through the study coordinator. Based on this feedback, several updates and 

improvements were implemented, including updates to the test structure, development of offline 

data collection capability, creation of test deviation report processing, and updating the protocol 

for handling not attempted tests. Additionally, several bug fixes and UI improvements were 
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made based on feedback from the physical therapists. Some screenshots of the latest version of 

the in-clinic app can be seen in Figure 16. 

 

 

Figure 16. Screenshots of the latest version of the in-clinic app. 

The screenshots on the first row, from left to right, are login page, home page, and screening module. The 

screenshots on the second row, from left to right, are test list page, test description/information page, and case 

report form page. 

 

In addition to the improvements made to address app usability issues, changes were also 

made to expand the app's capabilities for use in other similar studies. The modifications included 
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adding different types of participants with their own set of tests, which required adjustments to 

the login and authentication module to allow users to access different studies within the same 

app. 

Furthermore, for one of the studies, the app was developed to be able to communicate 

and process data from kinematics sensors using Bluetooth Low Energy connection. The in-clinic 

app was planned to have this capability, but the APIs needed to communicate with the sensors 

were not made available during the development of the initial app. The fact that the sensor 

integration framework design was feasible with the availability of communication protocols 

between the sensors and the app validated the approach taken in the development of the app. 

Overall, these changes enabled the app to be used for a wider range of studies (Figure 

17), demonstrating the flexibility and adaptability of the app's design. The incorporation of 

additional features such as sensor integration could potentially enhance the app's capabilities and 

broaden its scope for use in future studies. 
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Figure 17. Development of the in-clinic app for use in different studies. 

The app was developed to be used in Repeatability study (A) and BEST (Biomarkers for Evaluating Spine 

Treatment) study (B). Sensor communication was developed in the in-clinic app for BEST study. 

 

4.3.2 At-Home App 

An initial functional version of the at-home app was developed prior to the first usability 

assessment. The main core features and services developed in this version are login module and 

authentication service, home/main menu page, EMA module, reminder module, notes module, 

messaging module, account and settings modules, local data storage service, and remote 

communication service. A usability questionnaire module was also developed and incorporated 

inside the app, which enabled the patients to participate in the usability evaluation using the app. 
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The development of the initial version of the at-home app is described and discussed in Chapter 

3.4.3. 

The usability module was presented to the patients after they had completed the 7-day at-

home assessment session. By filling out the usability questionnaire at the end of their assessment 

session, the patients had sufficient time to fully experience using the app. Although filling out 

the usability questionnaire was optional, the patients were encouraged to do so by the app. A 

total of 337 out of 522 patients filled out the MAUQ questionnaire, while 305 out of 522 patients 

filled out the open-ended usability questionnaire. The open-ended questionnaire module was 

presented after the patients had completed the MAUQ module, and the patients could opt not to 

fill out any questionnaire. There was no additional compensation for the patients if they filled out 

the questionnaires. 

For the MAUQ questionnaire, there were two questions removed because they are not 

relevant to the app being assessed. The questions removed and the reason why they were 

removed were listed in Table 11. 

 

Table 11. Excluded MAUQ Questions for At-Home App Usability Assessment. 

Removed question Reason 

The app improved my access to healthcare 

services. 

The app doesn’t provide any access to 

healthcare services. 

The app helped me manage my health 

effectively. 

The app is not designed to be used to 

manage the patient’s health. 
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4.3.2.1 First Usability Evaluation and Development Updates 

When the first usability assessment was conducted, there were 68 patients who had 

submitted their questionnaire responses. The average MAUQ usability score of the first 

assessment was 6.40 (SD=1.12). This result suggests that the initial functional version of the at-

home app had good usability. The lowest scored component still had a relatively high average 

score of 5.74 (SD=1.52). The component with the lowest score in this usability assessment was 

"This mHealth app provides an acceptable way to receive healthcare services, such as accessing 

educational materials, tracking my own activities, and performing self-assessment." 

The answers to the open-ended questionnaire, except for the fourth question, were 

categorized as positive, negative, neutral, or unrelated. 86.29% of the answers were positive and 

2.82% were negative. Based on these results, the overall impression of the app by the patients 

was good. Some patients suggested improvements for the app, such as the ability to fill out the 

EMA retrospectively. For example, one participant mentioned, “...I missed a mid-day one, but 

once it reached time for the evening one, it would not let me fill out the mid-day one, even though 

I knew the information.” However, this feedback was not incorporated because the purpose of 

EMA is to assess the patients in real-time, rather than retrospectively. 

Several changes were made to the app based on feedback from the patients and study 

coordinators. The Account module was removed because the study account information was 

found to be not relevant for the patients, and its removal helped to avoid confusion. An FAQs 

module was added to provide patients with more information about the study. A screenshot of 

the FAQs module is provided in Figure 18. With the addition of the FAQs module and the 

removal of Account, the home page of the at-home app looked like the screenshot in Figure 19. 
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Figure 18. FAQs module in the at-home app. 

 

 

Figure 19. Home page of the at-home app after changes were implemented. 
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An assessment summary module was added to the app, which shows patients their 

compliance with filling out the EMA the day before. This module appears when patients open 

the app for the first time each day. Encouragement messages tailored to the patient's compliance 

were added to encourage them to follow the study protocols. The illustration of the assessment 

summary module was shown in Figure 20.  

 

 

Figure 20. Assessment review module in the at-home app. 

 

Additionally, a sensor deviation reporting module was added to the app, as the study 

coordinators wanted to know and to be able to monitor whether the patients were wearing their 

sensors. This module allows the patients to report when they are not wearing their sensors, so 

they can contact them and address any issues they may have. The module is shown in Figure 21. 
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Figure 21. Sensor deviation reporting module in the at-home app. 

 

4.3.2.2 Second Usability Evaluation and Development Updates 

After three months following the first at-home app usability evaluation, 62 patients filled 

out the usability questionnaire. The average score was 6.39 (SD=1.15), which did not change 

much from the first assessment. Of the open-ended questionnaires, 87.95% of answers were 

positive, and only 0.89% of answers were negative.  

Some changes were made to the app based on feedback from patients and study 

coordinators. Study coordinators wanted to ensure that the patients know that the notes they 

filled in inside the app were not monitored during the weekend. To further assist the study 

coordinators in interacting with the patients, a new flagging feature was implemented in the 
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notes and messaging module. Any notes or messages containing any words of interest for sensor 

and skin issues would be flagged so that the study coordinators could focus more on those notes 

or messages. The flagging words include burn, itch, skin, allergy, sensor, irritation, red, tape, and 

rash. If the patients send any flagged notes and messages, the system will also send email 

notifications to the study coordinators. 

These changes didn’t impact the interface of the at-home app. Even though some changes 

were made in the note and messaging modules in the app, no visual changes needed to be 

developed. The patients would have the same experience in using the app before and after these 

changes. On the other hand, the clinician portal was updated to enable the study coordinator to 

see the flags on the patients’ notes and messages as illustrated in Figure 22. 

 

 

Figure 22. Message flagging feature. 
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4.3.2.3 Further Usability Evaluation and Development Updates 

The third usability assessment was conducted three months after the second assessment. 

Fifty-four patients completed the usability questionnaires, and an average score of 6.23 

(SD=1.28) was calculated. Although slightly lower than the previous usability scores, this still 

indicates good usability. Of the open-ended questionnaire answers, 84.31% were positive and 

only 4.90% were negative. No changes were deemed necessary for this iteration. 

A fourth analysis of the usability assessment was conducted three months after the third 

one. Eighty patients completed the questionnaires, and the average score was 6.24 (SD=1.43). 

This score did not show a significant difference from the previous score. 89.18% of answers to 

the open-ended questionnaires were positive, and only 3.73% of the answers were negative. 

Based on the usability assessment results, it can be seen that the scores plateaued around these 

numbers. 

A fifth usability assessment analysis was conducted three months later, and the results 

were similar to previous assessments. Seventy-three patients completed the questionnaire, and 

the average score was 6.24 (SD=1.37), which is quite similar to the previous score. Of the open-

ended questionnaire answers, 88.04% were positive, and 2.90% were negative. No changes were 

made to the app after the fourth and fifth usability evaluations. The app was able to serve its 

purposes to patients, study coordinators, and researchers who collected the data submitted in the 

at-home app. Some screenshots of the latest version of the at-home app can be seen in Figure 23. 

Overall, the at-home app had a good usability score even for the first functional version of the 

app. 
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Figure 23. Screenshots of the modules in the at-home app. 

The screenshots on the first row, from left to right, are login page, home/main page, sensor deviation 

reporting module, stomp reporting module, and note module. The screenshots on the second row, from left to 

right, are morning assessment module, afternoon assessment module, reminder scheduling module, 

messaging module, and FAQs module. 
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4.4 Discussion 

4.4.1 Principal Results 

In this study, an mHealth system was designed and developed for a comprehensive low 

back pain assessment. The system consists of several components that are linked into one 

connected system. One component is an in-clinic app that was developed to be used by physical 

therapists to perform structured in-clinic assessments for patients. Another component is an at-

home app that was developed for patients to collect their EMA responses. Both apps were 

designed and developed with a focus on target users' needs. They were initially designed and 

developed based on the requirement analysis. Iterative revisions were made to both apps as 

usability was assessed and feedback from target users was investigated. 

The in-clinic app was successfully utilized by physical therapists to conduct the in-clinic 

assessments, and they had a positive impression of the app, finding it to be helpful. To date, the 

physical therapists have used the app to assess over 500 patients. With the app's general 

assessment functionality, other studies can use it for their own assessments, as the app can be 

tailored to meet their specific needs. In fact, one current study is using the app, which had been 

updated to incorporate kinematics sensors integration, for their assessment. This demonstrates 

the original framework with sensors integration can be implemented. 

This study also found that the usability of the in-clinic app was high, with the latest 

usability evaluation score of 6.00 (SD=1.15). The feedback provided by the physical therapists 

through the questionnaires or directly to the author was very helpful in iterative development of 

the app. Several changes were made through multiple iterations to make the app more usable and 

helpful for the physical therapists. 
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Similar to the in-clinic app, the at-home app was also able to fulfill its purpose. It helped 

patients fill out and submit their EMA and allowed study coordinators to monitor and 

communicate with the patients. The at-home app also got a high usability score of 6.24 

(SD=1.37) based on the latest usability evaluation and had an overall positive impression from 

patients. The app underwent multiple iterations of changes, with the last changes made after the 

second usability assessment. Although third, fourth, and fifth usability assessments were also 

conducted, no changes or adjustments were necessary to be developed for the app. 

4.4.2 Limitations 

One limitation of the development of the system is that there were no APIs provided to 

communicate with the sensors, which were acquired from a third-party provider. This lack of 

communication protocol between the app and the sensors prevented the integration between the 

two components. The planned framework was for the app to communicate and process 

kinematics data from the sensors, but the app was unable to do so due to the inability to 

communicate directly with the sensors. Although access and APIs for the sensors were provided 

at a later time, it was decided not to implement the integration with sensors for this study for 

consistency. However, this integration with the sensors was able to be implemented for a 

different study that also used this in-clinic app. 

Another limitation was related to the participant recruitment for the usability assessment 

of the in-clinic app. Physical therapists were recruited by the clinic, and convenience sampling 

was used to select participants. Only three physical therapists were involved in the study, which 

is a small number and could limit the generalizability of the results. Moreover, the working 

relationship between the author and the physical therapists could introduce bias. After the second 
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usability assessment for the in-clinic app, the author decided to focus more on getting direct 

feedback from the physical therapists to expedite improvement and overall development, rather 

than asking them to fill out usability questionnaires. 

For the usability assessment of the at-home app, not all patients filled out the usability 

questionnaires, and some even mentioned that they felt burdened by the many questions in the 

questionnaires. There was also a limitation related to the open-ended questionnaire, which was 

given to the patients to fill out. It would have been better to be able to interview the patients 

directly, as this would have resulted in a more extensive qualitative analysis. 

4.4.3 Conclusions 

This study highlights the successful development of an mHealth system for the 

comprehensive assessment of low back pain using a user-centered design approach. The mHealth 

system, especially the in-clinic and at-home apps, can deliver their purposes to their main target 

users: physical therapists and low back pain patients. One of the key findings of this study was 

the high usability scores of both the in-clinic and at-home apps. This was a crucial aspect of the 

development process, as it ensured that the apps were user-friendly and easy to use. Both the 

physical therapists and patients had positive impressions of the apps, and the usability 

assessments provided valuable feedback for the development team. The iterative design process 

enabled the development team to refine the apps and tailor them to the needs of their users. 

There are several opportunities for further development and expansion of the mHealth 

system. One potential area for improvement is the in-clinic app, which has already demonstrated 

its flexibility and configurability. As such, it could be utilized for assessment purposes in other 

studies, with additional modules added and tailored for different uses. 
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Another potential area for development is the at-home app. While it has already proven 

effective in helping patients report their assessment, there is potential to expand its functionality 

to include treatment plans. The assessment data collected in this study was extensive and rich. 

This can be utilized to develop a machine learning component that can be used to create a 

personalized and adaptive treatment for chronic low back pain. Using this machine learning 

component, the at-home app can be improved to also incorporate a personalized and adaptive 

treatment component. This can further improve the system to not only assess, but also provide 

and deliver effective treatments for chronic low back pain patients. 
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5.0 Exploration for Future Works: Comparison of Perceived Physical Activity Levels with 

Calculated Activity Levels from Kinematics Sensors 

5.1 Introduction 

Physical activity is an important component of chronic low back pain management and 

prevention. Accurate measurement of physical activity levels is crucial for developing effective 

treatment for individuals with chronic low back pain. For example, measurement of one’s 

physical activity level is important to formulate effective exercise interventions for that 

individual. For chronic low back pain phenotyping, physical activity is one of many 

characteristics that can be used to identify subgroups of chronic low back pain. 

The mHealth system that is discussed in Chapter 3.0 and Chapter 4.0 was used to collect 

chronic low back pain assessment data from both in-clinic and at-home assessment to be used for 

phenotyping purposes. Extensive and comprehensive data were collected. For the at-home 

assessment data, kinematics data from wearable kinematics sensors and behavioral data, such as 

pain and physical activity, from patient self-reported EMA were collected. Kinematics sensors 

have become a popular method of measuring physical activity levels objectively. However, it is 

not clear how well these data from the sensors correlate with the individuals' perceived physical 

activity levels. The data collected by the mHealth system in this study can be used to investigate 

the correlation between the two types of data: objective physical activity level from the 

kinematics sensors and the perceived physical activity level from the patients’ self-reported 

EMA. 
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5.2 Methods 

5.2.1 Study Description 

This chapter aims to discuss the correlation between objective physical activity level 

from the kinematics sensors and the perceived physical activity level from the patients’ self-

reported EMA. The data was collected using the mHealth system that is discussed in Chapter 3.0 

and Chapter 4.0 during the at-home assessment session. Data from 12 individuals with chronic 

low back pain was collected. These 12 individuals are part of the participants recruited for the 

Repeatability research. To be eligible to participate in the study and be selected in this data 

analysis, the participants were required to be between 18 to 70 years old, be without exercise or 

activity restriction, and have chronic low back pain. Here, chronic low back pain is defined as 

back pain that has persisted at least three months and has resulted in pain on at least half the days 

in the past 6 months.  

In this study, the participants were given the at-home app to be installed in their mobile 

phone. Both Android and iOS versions of the app are available to enable the participants to use 

their own phone, whether it’s an Android phone or an iPhone. The at-home app was available in 

both Google Play Store and Apple App Store to make it easier for the participants to download 

and install the app. In the Google Play Store, the app is listed as LB3P In-Home 

(https://play.google.com/store/apps/details?id=org.harilab.lb3pinhome). In the Apple App Store, 

the app is listed as LB3P In-Home (https://apps.apple.com/us/app/lb3p-in-home/id1537128941). 

Both versions of the app are publicly available, but the app requires authentication to ensure only 

the study participants can use the app. 

https://play.google.com/store/apps/details?id=org.harilab.lb3pinhome
https://apps.apple.com/us/app/lb3p-in-home/id1537128941
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During the at-home assessment period, the participants were asked to report their 

behavioral information three times per day: morning, afternoon, and evening.  The participants 

can use the EMA module in the app to fill out and submit their behavioral information. Each 

assessment has its own set of questions. Table 12 lists the assessment items and the 

corresponding response options in each EMA type (See Appendix C for the complete EMA 

forms).  

 

Table 12. Assessment Items in the At-Home EMA Module 

EMA Type Assessment item Response Options 

Morning EMA Current level of low back pain 0 (No pain) – 10 (Worst pain 

imaginable) 

Interfering pain level 0 (No pain) – 10 (Worst pain 

imaginable) 

Sleep time Time 

Wake up time Time 

Afternoon EMA Current level of low back pain 0 (No pain) – 10 (Worst pain 

imaginable) 

Interfering pain level 0 (No pain) – 10 (Worst pain 

imaginable) 

Morning activities • Sports/Exercise 

• Hobbies 

• Work, School, or Volunteer 

• Home activities 
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Morning activities level For every activity: 

• Very light 

• Light 

• Moderate 

• Moderate to vigorous 

• Vigorous 

Evening EMA Current level of low back pain 0 (No pain) – 10 (Worst pain 

imaginable) 

Interfering pain level 0 (No pain) – 10 (Worst pain 

imaginable) 

Afternoon activities • Sports/Exercise 

• Hobbies 

• Work, School, or Volunteer 

Home activities 

Afternoon activities level For every activity: 

• Very light 

• Light 

• Moderate 

• Moderate to vigorous 

• Vigorous 

Is typical day? • Yes 

• No 
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Participants’ responses on the morning and afternoon activities level assessment items 

were used as the physical activity level that was compared to the activity level derived from the 

kinematics data from the sensors. Participants reported their morning and afternoon activities 

level every day for the whole 7-day assessment period. 

During this assessment period, the participants were also asked to wear two wearable 

kinematics sensors (Lifeware Labs, LLC, Pittsburgh, PA) for 7-day period. The sensors were 

attached to the participants at T12/L1 interspinous space and L5/S1 interspinous space. The 

kinematics sensors record three-axis acceleration, angular velocity, and magnetic field raw data 

at a rate of 20 Hz. In the 7-day at-home assessment period, the participants were not instructed to 

do any specific physical exercises or activities. They can do their normal daily activities during 

this assessment period.  

After the 7-day at-home assessment period, the participants send back the sensors. Sensor 

data was downloaded to a local computer directly. The data was then uploaded and stored in the 

study remote cloud storage. The sensor data is in space delimited format. It has elapsed time 

information since the sensors were turned on, accelerometer data in gravity (1g = 9.80665m/s2), 

gyroscope data in degree/second, and magnetometer data in gauss (1 gauss = 10-4 tesla). For this 

exploration study, only accelerometer data from the L1 sensors was calculated for the analysis. 

Accelerometer data was used because physical activity level can be calculated from 

accelerometer data. It is common to use an accelerometer to measure the movement and physical 

activity level of an individual. Activity-related information, such as frequency, intensity, and 

duration of movement, can be derived from accelerometer data, which can be used to estimate 

the physical activity level of an individual. 
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5.2.2 Data Analysis 

The accelerometer data was processed to estimate the physical activity level of 

participants with chronic low back pain. The y-axis of the accelerometer data was used for 

analysis. In the case of individuals with chronic low back pain, the y-axis is commonly used for 

activity analysis due to the assumption that the vertical motion in this axis reflects changes in 

posture and the resultant mechanical stress on the lumbar spine. There are several algorithms and 

cutpoints that have been developed to translate accelerometer data into physical activity level 

estimates. One commonly used algorithm for calculating physical activity level from 

accelerometer data is the ActiGraph algorithm (Neishabouri et al., 2022). Overall, the following 

steps were taken to process the accelerometer data: 

1. Timestamp generation: A timestamp was generated for each row of the raw 

accelerometer data. The time at which the participant first used the app was used as 

the base, and the remaining timestamps were calculated using the elapsed time 

information in the raw data. 

2. Resampling: The accelerometer data was resampled to 60 Hz. Any resulting empty 

data rows were filled using the "forward fill" strategy, which assigns the value of the 

previous non-empty row to the empty row. 

3. Activity count calculation: The publicly available Actigraph Python module, agcounts 

(https://github.com/actigraph/agcounts) (Neishabouri et al., 2022), was used to 

calculate the activity counts per minute. Activity counts refer to the number of 

movements detected by an accelerometer over a specified period of time. 

https://github.com/actigraph/agcounts
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4. Activity level estimation: The activity counts were then categorized into several 

intensity categories based on Freedson's cutpoint (Freedson et al., 1998) (Table 13). 

The activity level was coded to a numerical value. The coding is also listed in Table 

13. 

5. Data aggregation: To be comparable to the morning/afternoon time type in the EMA, 

the data was aggregated to hourly intervals between 7 am to 5 pm for the 7-day 

assessment period, in which 7 am to 12 pm represents the morning timespan and 12 

pm to 5 pm represents the afternoon timespan. This involved transforming the activity 

count data into hourly data and calculating the number of counts for each 60s-epoch 

activity level in Freedson's cutpoint for each hour. 

 

Table 13. Freedson's Activity Level Cutpoint and Coding 

Activity Level  Activity Counts Cutpoint Coding 

Sedentary 0 - 99 1 

Light 100 - 1951 2 

Moderate 1952 – 5724 3 

Vigorous 5725 - 9498 4 

Very vigorous >9499  5 

 

 

This process takes raw sensor data (snippet of raw sensor data can be seen in Appendix 

D.1) from the participants and process it to an aggregated activity level data (snippet of the 

processed data can be seen in Appendix D.2) for all participants. Other than the activity level 

data, the process also retained the 60s-epoch activity counts data calculated in the activity count 
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calculation step. This sensor data processing was performed using Python 

(https://www.python.org/) and several data processing and analysis libraries: Pandas 

(https://pandas.pydata.org/), SciPy (https://scipy.org/), and NumPy (https://numpy.org/). The 

process is illustrated in Figure 24. 

 

 

Figure 24. Diagram of the sensor data processing. 

 

 

To extract the perceived activity level data, the following steps were taken: 

1. Data Retrieval: EMA data for all participants was queried and retrieved from the 

study remote database. 

2. Data filtering: The data was filtered to include only the responses on activity level in 

the morning and afternoon. Data from the first day of their at-home assessment period 

was excluded since the sensor data from the first day might not be complete. 

3. Activity level coding: The activity level data was coded into a numerical value. The 

coding is listed in Table 14. 

https://www.python.org/
https://pandas.pydata.org/
https://scipy.org/
https://numpy.org/
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4. Data aggregation: The coded activity level data for each morning and afternoon from 

day 2 to day 7 of all participants were combined into a single data file. The resulting 

file contained the morning and afternoon activity level data for all participants over 

the 7-day assessment period. 

 

Table 14. Coding for Activity Level from EMA 

Activity Level  Coding 

Very light 1 

Light 2 

Moderate 3 

Moderate to vigorous 4 

Vigorous 5 

 

 

Similar to the sensor data processing, the processing of activity level data from EMA was 

performed using Python and several data processing and analysis libraries: Pandas, SciPy, and 

NumPy. The process is illustrated in Figure 25. 
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Figure 25. Diagram of perceived activity level data processing from EMA. 

 

The processed activity level data from sensors and the processed perceived activity level 

data from EMA were further processed and aggregated into one data to be compared. Both data 

were put into an Excel (https://www.microsoft.com/en/microsoft-365/excel) file to be integrated 

in one sheet of data. For the perceived activity level data, one more step of data processing was 

done. Since the participants can report more than one activity level per report, if a row in the 

perceived activity level data had more than one response, the response with the higher activity 

level was selected. For example, if a participant reported 'very light' for home activities and 

'moderate' for sports/exercise, the 'moderate' (coded as 3) response was selected for that row. 

To be able to be compared with the perceived activity level data, which only covers broad 

timepoints of morning and afternoon, the activity level data from the sensors had to be further 

processed to align with the morning/afternoon granularity. This involved categorizing the 

timespan of each hourly activity level sensor data and processing the resultant values to align 

with the morning/afternoon timepoints. For categorization, activity level data from 7 am to 12 

https://www.microsoft.com/en/microsoft-365/excel
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pm was categorized as morning and activity level data from 12 pm to 5 pm was categorized as 

afternoon. To calculate the representation of morning/afternoon activity level, several strategies 

were used: 

1. Using the average of 60s-epoch activity level. 

2. Using the most frequent 60s-epoch activity level. 

3. Using the highest 60s-epoch activity level. 

4. Using the average value of hourly activity counts. 

5. Using the activity level calculated from the average value of hourly activity counts. 

6. Using the highest value of hourly activity counts. 

7. Using the activity level calculated from the highest value of hourly activity counts. 

8. Using the weighted sum of average hourly proportion of each activity level and its 

corresponding ranking multiplier value. 

9. Using the weighted sum of the highest hourly proportion of each activity level and its 

corresponding ranking multiplier value. 

10. Using the weighted sum of average hourly proportion of each activity level and its 

corresponding custom multiplier value. 

11. Using the weighted sum of the highest hourly proportion of each activity level and its 

corresponding custom multiplier value. 

 

The integration process is illustrated in Figure 26. The activity level represented by the 

values calculated using those strategies were then compared to the perceived physical activity 

level data obtained from EMA. Spearman's correlation was used to determine the correlation 

between the perceived physical activity level and all the calculated activity level values. The 
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correlation analysis was performed using Python and several data processing and analysis 

libraries: Pandas, SciPy, and NumPy. 

 

 

Figure 26. Diagram of the integration process of the activity level data. 

 

5.3 Results 

5.3.1 Data Collection  

Sensor data and EMA data were collected from a total of 8 participants. Out of the 12 

initial participants, 4 did not wear the kinematics sensors, and hence, the sensor data from these 

participants were not available for analysis. As a result, data from only 8 participants were used 

for the analysis of the sensor data.  
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It was expected that complete sensor data would be collected from the first full day of 

assessment until the last day of assessment, totaling six days. Since most participants started their 

seven-day assessment period in the late afternoon or evening, the first day of the assessment was 

excluded. The first full day of the assessment would be day 2. However, due to the sensors' 

battery performance, some sensors did not record complete six-day data. The average 

completeness2 of the collected sensor data was 76.04% (SD = 15.71%). 

For the EMA data, the participants were expected to report their perceived activity level 

twice each day: morning activity level in the afternoon EMA and afternoon activity level in the 

evening EMA. It was anticipated that 12 activity level reports would be collected from each 

participant during the six complete assessment days to align with the sensor data. The 

completeness of the reported EMA data appeared to be high, with an average completeness3 of 

92.71% (SD = 8.26%). The details of the completeness of the data collected can be seen in Table 

15. 

Table 15. Completeness of Collected Data 

 Average Amount Collected Average Completeness 

Sensor Data 4.56 days (SD = 0.94) 76.04% (SD = 15.71) 

EMA 11.13 reports (SD = 0.99) 92.71% (SD = 8.26) 

 

 

2 100% complete means six-day sensor data was collected. 

3 100% complete means 12 activity level reports were collected. 
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5.3.2 Data Processing 

Data processing was performed for both the sensor data and the EMA data to prepare 

them for further analysis. Prior to processing of the sensor data, the code used for data processing 

was validated by comparing it with ActiLife (https://actigraphcorp.com/actilife/), a popular 

physical activity analysis software from ActiGraph. Actigraph data collected from sensors placed 

on the waist and sensor data from Lifeware sensors used in the study were used to compare the 

processing results. The data appeared to be highly comparable, with minimal differences 

observed, except for sedentary level counts. The difference in sedentary level counts was 

attributed to the fact that ActiLife does not calculate activity when the sensors are in sleep mode, 

whereas this study data processing algorithm accounted for all time points, including those when 

the sensors were inactive. This data processing algorithm recognized the activity level in these 

time points as sedentary.  This led to a higher number of sedentary level counts in the algorithm's 

output. The result of the comparison can be seen in Table 16. 

 

Table 16. Results Comparison between the Data Processing Algorithm used in this Study with ActiLife 

 ActiLife 

(Actigraph data placed 

on waist) 

This Data Processing 

(Actigraph data placed on 

waist) 

This Data Processing 

(Lifeware sensors data 

placed on L1) 

Activity counts 1358825 1360349 1223628 

Sedentary level counts 4431 8685 8631 

Light level counts 1169 1161 1152 

Moderate level counts 263 263 215 

Vigorous level counts 0 0 0 

Very vigorous level counts 0 0 0 

https://actigraphcorp.com/actilife/
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In this data analysis, sensor data were processed using the steps shown in Figure 24, and 

EMA data was processed using the steps shown in Figure 25. The distributions of the activity 

level taken from the processed EMA and sensor data can be seen in Figure 27 and Figure 28. The 

objective activity level data from the sensors and the perceived activity level data from the EMA 

were further processed and aggregated using the steps shown in Figure 26. The objective activity 

level data was transformed into eleven different metrics using the strategies discussed in Chapter 

5.2.2. Data points that don’t have activity level values from EMA and/or sensor data were 

excluded. A total of 73 data points were collected. 

 

 

Figure 27. Distribution of perceived activity level taken from EMA reports. 
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Figure 28. Distribution of activity level derived from the sensor data. 

 

5.3.3 Correlation Analysis   

Correlation analyses were performed to examine the relationship between the perceived 

morning/afternoon activity level and each of the eleven derived activity level representation from 

the sensor data. Further analyses to explore the relationship more deeply were also conducted. 

Relationships between each pair of variables in each time type (morning/afternoon) and for each 

participant were calculated and observed. In this analysis, the following cutpoints for correlation 

strength were used:  

• Strong correlation: r ≥ 0.5 or r ≤ -0.5 

• Moderate correlation: 0.3 ≤ r < 0.5 or -0.5 < r ≤ -0.3 

• Weak correlation: -0.3 < r < -0.3 
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5.3.3.1 Perceived Activity Level vs Average of 60s-epoch Activity Level 

The correlation between the perceived activity level and the average of 60s-epoch activity 

level was investigated. The average of 60s-epoch activity level refers to the average activity level 

that is calculated from the sensor data in each minute. The Spearman's correlation coefficient 

between the two variables was found to be 0.177 (p = 0.134), indicating a weak positive 

correlation between the two variables. Two participants had a strong positive correlation between 

the two variables: 0.767 (p = 0.044) and 0.653 (p = 0.021). Among the remaining participants, 

two had a moderate positive correlation and four had a negative correlation. The correlation 

coefficient calculation results for all participants are presented in Table 17. 

 

Table 17. Correlation Coefficient for Analysis 1 

Perceived Activity Level vs Average of 60s-epoch Activity Level 

Participant r p-value 

All participants 0.177 0.134 

Participant A 0.767 0.044 

Participant B 0.378 0.402 

Participant C -0.587 0.126 

Participant D 0.653 0.021 

Participant E 0.429 0.188 

Participant F -0.028 0.940 

Participant G -0.577 0.134 

Participant H -0.502 0.140 
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Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.267 (p 

= 0.105), indicating a weak positive correlation between the two variables. Two participants had 

a strong positive correlation between the two variables: 0.949 (p = 0.051) and 0.765 (p = 0.076). 

Among the remaining participants, one had a weak positive correlation, four had negative 

correlation, and one cannot be calculated because of uniformity in their data.  

For afternoon data, the correlation coefficient between the two variables was found to be 

0.018 (p = 0.919), indicating a weak positive correlation between the two variables. Three 

participants had a strong positive correlation between the two variables: 0.500 (p = 0.667), 0.530 

(p = 0.280), and 0.632 (p = 0.252). Among the remaining participants, one had a weak positive 

correlation, three had negative correlation, and one cannot be calculated because of uniformity in 

their data. The correlation coefficient calculation results for morning/afternoon data are 

presented in Table 18. 

 

Table 18. Correlation Coefficient for Analysis 1 – Morning & Afternoon 

Perceived Activity Level vs Average of 60s-epoch Activity Level 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.267 0.105 0.018 0.919 

Participant A 0.949 0.051 0.500 0.667 

Participant B - - -0.316 0.684 

Participant C -0.316 0.684 -0.949 0.051 

Participant D 0.765 0.076 0.530 0.280 
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Participant E 0.131 0.805 0.632 0.252 

Participant F -0.438 0.385 0.258 0.742 

Participant G -0.775 0.225 - - 

Participant H -0.738 0.155 -0.447 0.450 

 

5.3.3.2 Perceived Activity Level vs Most Frequent 60s-epoch Activity Level 

The correlation between the perceived activity level and the most frequent 60s-epoch 

activity level was investigated. The most frequent 60s-epoch activity level refers to the minutely 

activity level that is most prevalent in the morning/afternoon timespan. The Spearman's 

correlation coefficient between the two variables was found to be 0.150 (p = 0.206), indicating a 

weak positive correlation between the two variables. No participants had a moderate or strong 

positive correlation between the two variables. The correlation coefficient calculation results for 

all participants are presented in Table 19. 

Table 19. Correlation Coefficient for Analysis 2 

Perceived Activity Level vs Most Frequent 60s-epoch Activity Level 

Participant r p-value 

All participants 0.150 0.206 

Participant A 0.214 0.645 

Participant B - - 

Participant C 0.000 1.000 

Participant D -0.099 0.759 

Participant E 0.291 0.385 
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Participant F - - 

Participant G - - 

Participant H - - 

 

Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.215 (p 

= 0.195), indicating a weak positive correlation between the two variables. No participants had a 

moderate or strong positive correlation between the two variables. For afternoon data, the 

correlation coefficient between the two variables was found to be 0.074 (p = 0.672), indicating a 

weak positive correlation between the two variables. No participants had a moderate or strong 

positive correlation between the two variables. The correlation coefficient calculation results for 

morning/afternoon data are presented in Table 20. 

There were a lot of correlation analyses that cannot be calculated because of data 

uniformity. Using most frequent 60s-epoch activity level to represent activity level in 

morning/afternoon time resulted in uniformity in activity level value (mean = 1.07, SD = 0.25). 

Most participants’ morning/afternoon activity levels were mostly represented as sedentary. 

 

Table 20. Correlation Coefficient for Analysis 2 – Morning & Afternoon 

Perceived Activity Level vs Most Frequent 60s-epoch Activity Level 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.215 0.195 0.074 0.672 

Participant A - - 0.000 1.000 



 110 

Participant B - - - - 

Participant C 0.000 1.000 - - 

Participant D -0.270 0.605 0.000 1.000 

Participant E - - 0.186 0.764 

Participant F - - - - 

Participant G - - - - 

Participant H - - - - 

 

5.3.3.3 Perceived Activity Level vs Highest 60s-epoch Activity Level 

The correlation between the perceived activity level and the highest 60s-epoch activity 

level was investigated. The highest 60s-epoch activity level refers to the highest minutely 

activity level in the morning/afternoon timespan. Since morning/afternoon timespan covers a 

wide range of hours, the patient might submit the most memorable perceived activity level in that 

timespan, not the average or overall activity level in the morning/afternoon timespan. This 

activity level representation was chosen to try to pick a metric that corresponds to that kind of 

perceived activity level. 

The Spearman's correlation coefficient between the two variables was found to be 0.140 

(p = 0.238), indicating a weak positive correlation between the two variables. Three participants 

had a strong positive correlation between the two variables: 0.642 (p = 0.120), 0.632 (0.127), and 

0.558 (p = 0.059). Among the remaining participants, two had a weak positive correlation and 

one had a negative correlation. The correlation coefficient calculation results for all participants 

are presented in Table 21. 



 111 

 

Table 21. Correlation Coefficient for Analysis 3 

Perceived Activity Level vs Highest 60s-epoch Activity Level 

Participant r p-value 

All participants 0.140 0.238 

Participant A 0.642 0.120 

Participant B 0.632 0.127 

Participant C -0.363 0.377 

Participant D 0.558 0.059 

Participant E 0.271 0.421 

Participant F 0.000 1.000 

Participant G -0.143 0.736 

Participant H -0.188 0.603 

 

Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.250 (p 

= 0.130), indicating a weak positive correlation between the two variables. Two participants had 

a strong positive correlation between the two variables: 0.816 (p = 0.184) and 0.636 (p = 0.175). 

Among the remaining participants, two had a weak positive correlation, four had negative 

correlation, and one cannot be calculated because of uniformity in their data.  

For afternoon data, the correlation coefficient between the two variables was found to be 

-0.032 (p = 0.855), indicating a weak negative correlation between the two variables. Two 

participants had a strong positive correlation between the two variables: 0.778 (p = 0.222) and 

0.559 (p = 0.327). Among the remaining participants, one had a moderate positive correlation 
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and two had negative correlation. The correlation coefficient calculation results for 

morning/afternoon data are presented in Table 22.  

There were some correlation analyses that cannot be calculated because of data 

uniformity. Some participants had consistent highest 60s-epoch activity level that resulted in 

uniformity in activity level value (mean = 3.03, SD = 0.83). Most participants’ 

morning/afternoon activity levels were mostly represented as moderate. 

 

Table 22. Correlation Coefficient for Analysis 3 – Morning & Afternoon 

Perceived Activity Level vs Highest 60s-epoch Activity Level 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.250 0.130 -0.032 0.855 

Participant A 0.816 0.184 - - 

Participant B - - 0.778 0.222 

Participant C 0.000 1.000 -0.707 0.293 

Participant D 0.636 0.175 0.366 0.476 

Participant E 0.139 0.793 0.559 0.327 

Participant F - - -0.333 0.667 

Participant G - - - - 

Participant H -0.354 0.559 0.000 1.000 

 



 113 

5.3.3.4 Perceived Activity Level vs Average Hourly Activity Counts 

The correlation between the perceived activity level and the average hourly activity 

counts level was investigated. The average hourly activity counts level refers to the average of 

activity counts that is calculated from the sensor data in each hour. The Spearman's correlation 

coefficient between the two variables was found to be 0.233 (p = 0.047), indicating a weak 

positive correlation between the two variables. Three participants had a strong positive 

correlation between the two variables: 0.692 (p = 0.085), 0.697 (p = 0.082) and 0.724 (p = 

0.008). Among the remaining participants, one had a moderate positive correlation, one had a 

weak positive correlation, and four had negative correlation. The correlation coefficient 

calculation results for all participants are presented in Table 23. 

 

Table 23. Correlation Coefficient for Analysis 4 

Perceived Activity Level vs Average Hourly Activity Counts 

Participant r p-value 

All participants 0.233 0.047 

Participant A 0.692 0.085 

Participant B 0.697 0.082 

Participant C -0.587 0.126 

Participant D 0.724 0.008 

Participant E 0.381 0.247 

Participant F -0.110 0.762 

Participant G -0.247 0.555 

Participant H -0.237 0.510 
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Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.302 (p 

= 0.065), indicating a moderate positive correlation between the two variables. Two participants 

had a strong positive correlation between the two variables: 0.632 (p = 0.368) and 0.765 (p = 

0.076). Among the remaining participants, one had a weak positive correlation, four had negative 

correlation, and one cannot be calculated because of uniformity in their data.  

For afternoon data, the correlation coefficient between the two variables was found to be 

0.095 (p = 0.588), indicating a weak positive correlation between the two variables. Three 

participants had a strong positive correlation between the two variables: 1.000 (p = 0.000), 0.738 

(p = 0.262) and 0.618 (p = 0.191). Among the remaining participants, one had a weak positive 

correlation, three had negative correlation, and one cannot be calculated because of uniformity in 

their data. The correlation coefficient calculation results for morning/afternoon data are 

presented in Table 24. 

 

Table 24. Correlation Coefficient for Analysis 4 – Morning & Afternoon 

Perceived Activity Level vs Average Hourly Activity Counts 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.302 0.065 0.095 0.588 

Participant A 0.632 0.368 1.000 0.000 

Participant B - - 0.738 0.262 

Participant C -0.316 0.684 -0.949 0.051 

Participant D 0.765 0.076 0.618 0.191 
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Participant E 0.131 0.805 0.264 0.668 

Participant F -0.278 0.594 -0.258 0.742 

Participant G -0.258 0.742 - - 

Participant H -0.316 0.604 -0.224 0.718 

 

5.3.3.5 Perceived Activity Level vs Activity Level from Average of Hourly Activity Counts 

The correlation between the perceived activity level and the activity level from the 

average of hourly activity counts was investigated. The activity level from the average of hourly 

activity counts refers to the activity level classification of the average of hourly activity counts 

using Freedson’s cutpoint. The Spearman's correlation coefficient between the two variables was 

found to be 0.095 (p = 0.423), indicating a weak positive correlation between the two variables. 

One participant had a strong positive correlation between the two variables: 0.528 (p = 0.077). 

Among the remaining participants, two had a moderate positive correlation, one had weak 

positive correlation, and two had negative correlation. The correlation coefficient calculation 

results for all participants are presented in Table 25. 

 

Table 25. Correlation Coefficient for Analysis 5 

Perceived Activity Level vs Activity Level from Average of Hourly Activity Counts 

Participant r p-value 

All participants 0.095 0.423 

Participant A - - 

Participant B 0.322 0.481 
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Participant C -0.531 0.176 

Participant D 0.528 0.077 

Participant E 0.451 0.163 

Participant F 0.264 0.462 

Participant G - - 

Participant H -0.504 0.137 

 

Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.200 (p 

= 0.228), indicating a weak positive correlation between the two variables. One participant had a 

strong positive correlation between the two variables: 0.746 (p = 0.088). Among the remaining 

participants, one had a moderate positive correlation and one negative correlation.  

For afternoon data, the correlation coefficient between the two variables was found to be 

-0.083 (p = 0.637), indicating a negative correlation between the two variables. One participant 

had a strong positive correlation between the two variables: 0.559 (p = 0.327). Among the 

remaining participants, one had a moderate positive correlation, one had weak positive 

correlation, and one had negative correlation. The correlation coefficient calculation results for 

morning/afternoon data are presented in Table 26. 

There were a lot of correlation analyses that cannot be calculated because of data 

uniformity. Using activity level from the average of hourly activity counts to represent activity 

level in morning/afternoon time resulted in uniformity in activity level value (mean = 1.79, SD = 

0.47). Most participants’ morning/afternoon activity levels were mostly represented as light. 
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Table 26. Correlation Coefficient for Analysis 5 – Morning & Afternoon 

Perceived Activity Level vs Activity Level from Average of Hourly Activity Counts 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.200 0.228 -0.083 0.637 

Participant A - - - - 

Participant B - - 0.272 0.728 

Participant C - - -0.816 0.184 

Participant D 0.746 0.088 - - 

Participant E 0.316 0.541 0.559 0.327 

Participant F - - 0.333 0.667 

Participant G - - - - 

Participant H -0.745 0.148 - - 

 

5.3.3.6 Perceived Activity Level vs Highest Hourly Activity Counts 

The correlation between the perceived activity level and highest hourly activity counts 

was investigated. The highest hourly activity counts refer to the highest activity counts in a one-

hour timespan. Since morning/afternoon timespan covers a wide range of hours, the patient 

might submit the most memorable perceived activity level in that timespan, not the average or 

overall activity level in the morning/afternoon timespan. Similar like Section 5.3.3.3, this activity 

level representation was chosen to try to pick a metric that correspond to that kind of perceived 

activity level. 
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The Spearman's correlation coefficient between the two variables was found to be 0.254 

(p = 0.030), indicating a weak positive correlation between the two variables. Three participants 

had a strong positive correlation between the two variables: 0.767 (p = 0.044), 0.697 (p = 0.082), 

and 0.738 (p = 0.006). Among the remaining participants, one had a moderate positive 

correlation and one had negative correlation. The correlation coefficient calculation results for all 

participants are presented in Table 27. 

 

Table 27. Correlation Coefficient for Analysis 6 

Perceived Activity Level vs Highest Hourly Activity Counts 

Participant r p-value 

All participants 0.254 0.030 

Participant A 0.767 0.044 

Participant B 0.697 0.082 

Participant C -0.651 0.080 

Participant D 0.738 0.006 

Participant E 0.429 0.188 

Participant F 0.028 0.940 

Participant G -0.412 0.310 

Participant H -0.086 0.814 

 

Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.330 (p 

= 0.043), indicating a moderate positive correlation between the two variables. Two participants 
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had a strong positive correlation between the two variables: 0.632 (p = 0.368) and 0.647 (p = 

0.165). Among the remaining participants, two had a weak positive correlation.  

For afternoon data, the correlation coefficient between the two variables was found to be 

0.112 (p = 0.522), indicating a weak positive correlation between the two variables.  

Three participants had a strong positive correlation between the two variables: 1.000 (p = 

0.000), 0.738 (p = 0.262) and 0.765 (p = 0.076). Among the remaining participants, two had a 

weak positive correlation. The correlation coefficient calculation results for morning/afternoon 

data are presented in Table 28. 

 

Table 28. Correlation Coefficient for Analysis 6 – Morning & Afternoon 

Perceived Activity Level vs Highest Hourly Activity Counts 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.330 0.043 0.112 0.522 

Participant A 0.632 0.368 1.000 0.000 

Participant B - - 0.738 0.262 

Participant C -0.316 0.684 -0.949 0.051 

Participant D 0.647 0.165 0.765 0.076 

Participant E 0.131 0.805 0.264 0.668 

Participant F 0.123 0.816 -0.258 0.742 

Participant G -0.258 0.742 - - 

Participant H -0.105 0.866 0.224 0.718 
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5.3.3.7 Perceived Activity Level vs Activity Level from Highest Hourly Activity Counts 

The correlation between the perceived activity level and the activity level from the 

highest hourly activity counts was investigated. The activity level from the highest hourly 

activity counts refers to the activity level classification of the highest hourly activity counts using 

Freedson’s cutpoint. The Spearman's correlation coefficient between the two variables was found 

to be 0.164 (p = 0.165), indicating a weak positive correlation between the two variables. Two 

participants had a strong positive correlation between the two variables: 0.833 (p = 0.020) and 

0.512 (p = 0.089). Among the remaining participants, one had a moderate positive correlation 

and one had negative correlation. The correlation coefficient calculation results for all 

participants are presented in Table 29. 

 

Table 29. Correlation Coefficient for Analysis 7 

Perceived Activity Level vs Activity Level from Highest Hourly Activity Counts 

Participant r p-value 

All participants 0.164 0.165 

Participant A - - 

Participant B 0.833 0.020 

Participant C -0.619 0.102 

Participant D 0.512 0.089 

Participant E 0.451 0.163 

Participant F -0.345 0.329 

Participant G - - 

Participant H 0.063 0.863 
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Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.261 (p 

= 0.113), indicating a weak positive correlation between the two variables. One participant had a 

strong positive correlation between the two variables: 0.652 (p = 0.161) and 0.765 (p = 0.076). 

Among the remaining participants, one had a moderate positive correlation and one had weak 

correlation.  

For afternoon data, the correlation coefficient between the two variables was found to be 

0.000 (p = 1.000), indicating a weak positive correlation between the two variables. Three 

participants had a strong positive correlation between the two variables: 0.943 (p = 0.057) and 

0.559 (p = 0.327). The correlation coefficient calculation results for morning/afternoon data are 

presented in Table 30. 

There were several correlation analyses that cannot be calculated because of data 

uniformity. Using activity level from the highest hourly activity counts to represent activity level 

in morning/afternoon time resulted in uniformity in activity level value (mean = 1.97, SD = 

0.58). Most participants’ morning/afternoon activity levels were represented as light. 

 

Table 30. Correlation Coefficient for Analysis 7 – Morning & Afternoon 

Perceived Activity Level vs Activity Level from Highest Hourly Activity Counts 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.261 0.113 0.000 1.000 

Participant A - - - - 

Participant B - - 0.943 0.057 
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Participant C - - -0.816 0.184 

Participant D 0.652 0.161 - - 

Participant E 0.316 0.541 0.559 0.327 

Participant F -0.283 0.587 -0.577 0.423 

Participant G - - - - 

Participant H 0.186 0.764 - - 

 

5.3.3.8 Perceived Activity Level vs Weighted Sum of Average Hourly Activity Level 

Proportion and Ranking Value 

The correlation between the perceived activity level and the weighted sum of average 

hourly activity level proportion and ranking value was investigated. The ranking value used to 

calculate the activity level representation is the same value used in the coding of the Freedson’s 

activity level shown in Table 13. This activity level representation was used to make the 

proportion of the higher activity level become more sensitive and influential to the activity level 

representation.  

The Spearman's correlation coefficient between the two variables was found to be 0.185 

(p = 0.117), indicating a weak positive correlation between the two variables. Two participants 

had a strong positive correlation between the two variables: 0.767 (p = 0.044) and 0.653 (p = 

0.021). Among the remaining participants, two had a moderate positive correlation. The 

correlation coefficient calculation results for all participants are presented in Table 31. 
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Table 31. Correlation Coefficient for Analysis 8 

Perceived Activity Level vs Weighted Sum of Average Hourly Activity Level Proportion and Ranking Value 

Participant r p-value 

All participants 0.185 0.117 

Participant A 0.767 0.044 

Participant B 0.378 0.402 

Participant C -0.587 0.126 

Participant D 0.653 0.021 

Participant E 0.429 0.188 

Participant F -0.028 0.940 

Participant G -0.577 0.134 

Participant H -0.502 0.140 

 

Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.282 (p 

= 0.086), indicating a weak positive correlation between the two variables. Two participants had 

a strong positive correlation between the two variables: 0.949 (p = 0.051) and 0.765 (p = 0.076). 

Among the remaining participants, one had a weak positive correlation.  

For afternoon data, the correlation coefficient between the two variables was found to be 

0.018 (p = 0.919), indicating a weak positive correlation between the two variables. Three 

participants had a strong positive correlation between the two variables: 0.500 (p = 0.667), 0.530 

(p = 0.280) and 0.632 (p = 0.252). Among the remaining participants, one had a weak positive 

correlation. The correlation coefficient calculation results for morning/afternoon data are 

presented in Table 32. 
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Table 32. Correlation Coefficient for Analysis 8 – Morning & Afternoon 

Perceived Activity Level vs Weighted Sum of Average Hourly Activity Level Proportion and Ranking Value 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.282 0.086 0.018 0.919 

Participant A 0.949 0.051 0.500 0.667 

Participant B - - -0.316 0.684 

Participant C -0.316 0.684 -0.949 0.051 

Participant D 0.765 0.076 0.530 0.280 

Participant E 0.131 0.805 0.632 0.252 

Participant F -0.438 0.385 0.258 0.742 

Participant G -0.775 0.225 - - 

Participant H -0.738 0.155 -0.447 0.450 

 

5.3.3.9 Perceived Activity Level vs Weighted Sum of Highest Hourly Activity Level 

Proportion and Ranking Value  

The correlation between the perceived activity level and the weighted sum of the highest 

hourly activity level proportion and ranking value was investigated. The ranking value used to 

calculate the activity level representation is the same value used in the coding of the Freedson’s 

activity level shown in Table 13. This activity level representation was used to make the 

proportion of the higher activity level become more sensitive and influential to the activity level 
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representation and to try to represent most memorable perceived activity level in 

morning/afternoon timespan.  

The Spearman's correlation coefficient between the two variables was found to be 0.260 

(p = 0.026), indicating a weak positive correlation between the two variables. Three participants 

had a strong positive correlation between the two variables: 0.840 (p = 0.018), 0.553 (p = 0.198), 

and 0.704 (p = 0.011). Among the remaining participants, one had a moderate positive 

correlation and one had negative correlation. The correlation coefficient calculation results for all 

participants are presented in Table 33. 

 

Table 33. Correlation Coefficient for Analysis 9 

Perceived Activity Level vs Weighted Sum of Highest Hourly Activity Level Proportion and Ranking Value 

Participant r p-value 

All participants 0.260 0.026 

Participant A 0.840 0.018 

Participant B 0.553 0.198 

Participant C -0.664 0.073 

Participant D 0.704 0.011 

Participant E 0.499 0.118 

Participant F -0.056 0.878 

Participant G 0.083 0.845 

Participant H -0.317 0.372 

 

Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.357 (p 
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= 0.028), indicating a moderate positive correlation between the two variables. Two participants 

had a strong positive correlation between the two variables: 0.833 (p = 0.167) and 0.647 (p = 

0.165). Among the remaining participants, two had a moderate positive correlation and one had 

weak positive correlation.  

For afternoon data, the correlation coefficient between the two variables was found to be 

0.076 (p = 0.665), indicating a weak positive correlation between the two variables. Three 

participants had a strong positive correlation between the two variables: 1.000 (p = 0.000), 0.738 

(p = 0.262) and 0.765 (p = 0.076). Among the remaining participants, one had a weak positive 

correlation. The correlation coefficient calculation results for morning/afternoon data are 

presented in Table 34. 

 

Table 34. Correlation Coefficient for Analysis 9 – Morning & Afternoon 

Perceived Activity Level vs Weighted Sum of Highest Hourly Activity Level Proportion and Ranking Value 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.357 0.028 0.076 0.665 

Participant A 0.833 0.167 1.000 0.000 

Participant B - - 0.738 0.262 

Participant C -0.316 0.684 -0.949 0.051 

Participant D 0.647 0.165 0.765 0.076 

Participant E 0.393 0.441 0.264 0.668 

Participant F -0.295 0.570 -0.258 0.742 

Participant G 0.258 0.742 - - 
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Participant H -0.316 0.604 -0.224 0.718 

 

5.3.3.10 Perceived Activity Level vs Weighted Sum of Average Hourly Activity Level 

Proportion and Custom Value  

The correlation between the perceived activity level the weighted sum of average hourly 

activity level proportion and custom value was investigated. Similar like the approach in Section 

5.3.3.8, this activity level representation was used to make the proportion of the higher activity 

level become even more sensitive and influential to the activity level representation. Since the 

proportion of activity level is not distributed evenly as shown in Table 35, a custom scoring was 

made to make higher activity level become more influential. The custom value here is calculated 

as the division of average proportion of activity level 1 with average proportion of each activity 

level. The custom score is shown in the last column in Table 35. 

 

Table 35. Average Proportion of each Activity Level 

Perceived Activity Level vs Weighted Sum of Average Hourly Activity Level Proportion and Custom Value 

Activity 

Level 

Average Proportion 

(%) 

SD Avg Proportion Level 1 / 

Avg Proportion 

1 0.68469101 0.25638427 1 

2 0.2630618 0.21406408 2.60277629 

3 0.04194757 0.09081831 16.3225446 

4 0.0090824 0.05939366 75.3865979 

5 0.00121723 0.01335975 562.5 
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The Spearman's correlation coefficient between the two variables was found to be 0.232 

(p = 0.048), indicating a weak positive correlation between the two variables. Three participants 

had a strong positive correlation between the two variables: 0.823 (p = 0.023), 0.697 (p = 0.082), 

and 0.770 (p = 0.003). Among the remaining participants, one had a moderate positive 

correlation. The correlation coefficient calculation results for all participants are presented in 

Table 36. 

 

Table 36. Correlation Coefficient for Analysis 10 

Perceived Activity Level vs Weighted Sum of Average Hourly Activity Level Proportion and Custom Value 

Participant r p-value 

All participants 0.232 0.048 

Participant A 0.823 0.023 

Participant B 0.697 0.082 

Participant C -0.511 0.196 

Participant D 0.770 0.003 

Participant E 0.313 0.349 

Participant F -0.055 0.880 

Participant G -0.577 0.134 

Participant H -0.184 0.610 

 

Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.281 (p 

= 0.087), indicating a weak positive correlation between the two variables. Two participants had 

a strong positive correlation between the two variables: 0.949 (p = 0.051) and 0.853 (p = 0.031). 
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Among the remaining participants, one had a moderate positive correlation and one had weak 

positive correlation.  

For afternoon data, the correlation coefficient between the two variables was found to be 

0.122 (p = 0.484), indicating a weak positive correlation between the two variables. Three 

participants had a strong positive correlation between the two variables: 1.000 (p = 0.000), 0.738 

(p = 0.262) and 0.765 (p = 0.076). Among the remaining participants, one had a weak positive 

correlation. The correlation coefficient calculation results for morning/afternoon data are 

presented in Table 37. 

 

Table 37. Correlation Coefficient for Analysis 10 – Morning & Afternoon 

Perceived Activity Level vs Weighted Sum of Average Hourly Activity Level Proportion and Custom Value 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.281 0.087 0.122 0.484 

Participant A 0.949 0.051 1.000 0.000 

Participant B - - 0.738 0.262 

Participant C 0.316 0.684 -0.949 0.051 

Participant D 0.853 0.031 0.765 0.076 

Participant E 0.131 0.805 0.264 0.668 

Participant F -0.438 0.385 -0.258 0.742 

Participant G -0.775 0.225 - - 

Participant H -0.105 0.866 -0.224 0.718 
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5.3.3.11 Perceived Activity Level vs Weighted Sum of Highest Hourly Activity Level 

Proportion and Custom Value 

The correlation between the perceived activity level the weighted sum of the highest 

hourly activity level proportion and custom value was investigated. This activity level 

representation is similar to the previous representation, but highest hourly proportion was used 

instead of the average in hope to get the most representative metric to correspond to the most 

memorable perceived activity level in morning/afternoon timespan. 

The Spearman's correlation coefficient between the two variables was found to be 0.245 

(p = 0.036), indicating a weak positive correlation between the two variables. Three participants 

had a strong positive correlation between the two variables: 0.708 (p = 0.075), 0.553 (p = 0.198), 

and 0.770 (p = 0.003). Among the remaining participants, one had a moderate positive 

correlation. The correlation coefficient calculation results for all participants are presented in 

Table 38. 

 

Table 38. Correlation Coefficient for Analysis 11 

Perceived Activity Level vs Weighted Sum of Highest Hourly Activity Level Proportion and Custom Value 

Participant r p-value 

All participants 0.245 0.036 

Participant A 0.708 0.075 

Participant B 0.553 0.198 

Participant C -0.651 0.080 

Participant D 0.770 0.003 

Participant E 0.430 0.187 
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Participant F -0.056 0.878 

Participant G -0.412 0.310 

Participant H -0.191 0.597 

 

Further analysis was performed by separating the data into morning/afternoon categories. 

For morning data, the correlation coefficient between the two variables was found to be 0.308 (p 

= 0.060), indicating a moderate positive correlation between the two variables. Two participants 

had a strong positive correlation between the two variables: 0.500 (p = 0.500) and 0.853 (p = 

0.031). Among the remaining participants, one had a weak positive correlation.  

For afternoon data, the correlation coefficient between the two variables was found to be 

0.143 (p = 0.414), indicating a weak positive correlation between the two variables. Three 

participants had a strong positive correlation between the two variables: 1.000 (p = 0.000), 0.738 

(p = 0.262) and 0.765 (p = 0.076). Among the remaining participants, two had a weak positive 

correlation. The correlation coefficient calculation results for morning/afternoon data are 

presented in Table 39. 

 

Table 39. Correlation Coefficient for Analysis 11 – Morning & Afternoon 

Perceived Activity Level vs Weighted Sum of Highest Hourly Activity Level Proportion and Custom Value 

Participant 

Morning Afternoon 

r p-value r p-value 

All participants 0.308 0.060 0.143 0.414 

Participant A 0.500 0.500 1.000 0.000 

Participant B - - 0.738 0.262 
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Participant C -0.316 0.684 -0.949 0.051 

Participant D 0.853 0.031 0.765 0.076 

Participant E 0.131 0.805 0.264 0.668 

Participant F -0.295 0.570 -0.258 0.742 

Participant G -0.258 0.742 - - 

Participant H -0.105 0.866 0.224 0.718 

 

5.4 Discussion 

5.4.1 Principal Results 

The overall correlation between activity level from sensor data and perceived activity 

level from EMA was found to be weak, ranging from the score of 0.095 to 0.260 (mean = 0.194, 

SD = 0.054). Assuming higher correlation with the perceived activity level means more accurate 

representation of activity level, correlation with each activity level representation was examined. 

The following representations have the highest correlation with the perceived activity level: 

• average hourly activity counts (r = 0.233, p = 0.047),  

• highest hourly activity counts (r = 0.254, p = 0.030), 

• weighted sum of the highest hourly activity level proportion and ranking value (r 

= 0.260, p = 0.026),  

• weighted sum of average hourly activity level proportion and custom value (r = 

0.232, p = 0.048), and  
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• weighted sum of the highest hourly activity level proportion and custom value (r 

= 0.245, p = 0.036).  

 

These results suggest that these activity level representations may be more useful for 

accurately assessing activity level perception using sensor data and EMA. Average hourly 

activity counts, one of the most straightforward approaches, performed better than most activity 

level representations. Highest hourly activity counts also performed better. The attempt to match 

the most memorable, which is usually the most exerting, perceived activity level by using the 

highest hourly activity seemed to work better compared to using the highest 60s-epoch activity 

level.  

Three representations that utilize weighted hourly activity proportion performed better 

compared to the other approaches. Using weighted sum of the highest hourly activity level 

proportion and ranking value seemed capable of appropriating the most memorable perceived 

activity level. Similarly, the approach of using weighted sum of the average hourly activity level 

proportion and ranking value didn’t perform as well. This approach might not be able to 

accurately represent the higher activity level. Meanwhile, using weighted sum of the average 

hourly activity level proportion and custom value performed better. Compared to weighting the 

average hourly activity value proportion with ranking value, weighting it with custom value can 

represent higher activity level better. This calculation gives more sensitivity to the higher activity 

level. Another representation, using weighted sum of the highest hourly activity level proportion 

and custom value performed better, similar to using weighted sum of the highest hourly activity 

level proportion and ranking value.  
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Meanwhile, the following activity level representations performed poorly: 

• most frequent 60s-epoch activity level (0.150, p = 0.206), 

• highest 60s-epoch activity level (0.140, p = 0.238), 

• activity level from the average of hourly activity counts (0.095, p = 0.423), and 

• activity level from the highest hourly activity counts (0.164, p = 0.165). 

 

All representations that performed poorly use activity level as the representative value. 

Using activity level that was supposed to be attached to 60s-epoch data might not be a good 

representative for wider timespan like morning/afternoon. These representations resulted in 

many uniformities in the calculated activity level representation, making correlation computation 

incalculable. This happened especially for most frequent 60s-epoch activity level, activity level 

from the average of hourly activity counts, and activity level from the highest hourly activity 

counts. These activity level representations were also not sensitive to the variability of activity 

levels, especially the higher activity level. 

Even though the overall correlation was weak, correlation of activity level from sensor 

data and perceived activity level for three participants (A, B, and D) was found to be strong. 

Using the five most accurate activity level representations, the average score for the correlation 

was 0.716 (SD = 0.081), suggesting that these participants may have a better perception of their 

activity level. These participants also had higher scores for both morning (mean = 0.731, SD = 

0.140) and afternoon (mean = 0.824, SD = 0.133) activity levels. 

After separating the data into morning and afternoon categories, and still using the five 

most accurate activity level representations, the morning category showed better correlation 

(mean = 0.316, p = 0.029) compared to the afternoon category (mean = 0.109, p = 0.026). This 
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moderate correlation of the morning timespan suggests that activity level perception may be 

more accurate for morning activity. 

5.4.2 Limitations 

There are several limitations in this study. The first one is that most of the correlations 

calculated in the result were not statistically significant. Small number of participants and data 

collected in the assessment affected the statistical significance negatively. Larger data is needed 

to perform better correlation analysis. 

There was also the limitation on the sensor battery. Some sensors were not able to stay on 

for the whole 7-day period of the at-home assessment. Sensor data completeness for the 

morning/afternoon in the 7-day period was 76.04%. As comparison, 92.71% EMA data was 

collected during the at-home assessment period. Addressing the battery issue can increase the 

data for analysis. 

In this analysis Freedson’s cutpoints that is meant for general adult population was used. 

These cutpoints were used because of its popularity for research’s use and also because no 

specific cutpoints for chronic low back pain population was found. It can be seen in Figure 27 

and Figure 28 that the distribution of perceived activity level and Freedson’s activity counts were 

different. 68% of the activity counts were in Freedson’s level 1, meanwhile 66.29% of perceived 

activity level were divided within the first two level: 43.82% in level 1 and 22.47% in level 2. 

Splitting the first level of Freedson’s cutpoint into two categories might make the activity level 

more representative of what the patients perceive. Other than that, physical activity level 

cutpoints from Smuck et. al. (Smuck, Tomkins-Lane, Ith, Jarosz, & Kao, 2017) that target 
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musculoskeletal pain and mobility-limited populations can also be considered as more 

representative cutpoints to be used for further analysis. 

There is also limitation of the perceived activity level representation in the EMA. In the 

EMA, the patients were asked their activity level in the morning and afternoon. The timespan 

might be too wide for the patients to generalize their activity level during those timespans. The 

definition of morning and afternoon might be different for each person as well. Some might 

define morning to start at 6 am while the other might define morning to start at 9 am. Several 

assumptions were made to develop suitable representations for the activity level derived from the 

sensor data, that was hoped to address the patients’ representation of morning/afternoon activity 

level.  

5.4.3 Conclusions 

The results of this exploratory study showed that, with limitation of small data, there 

were no clear correlation between the activity level from sensor data with the perceived activity 

level from EMA. Using these results, it is still recommended to use both data to complement 

each other. Even though activity level from sensor data offers objective monitoring of the 

patients’ activity level, reported perceived activity level from EMA can offer different 

perspectives. There might be behavioral or psychological information that can be examined from 

the difference in perceived activity level with the objective activity level. 

To address the limitations in this study, a comprehensive correlation analysis study can 

be planned with more participants and larger data to get more accurate correlation analysis 

results. It will be interesting to compare the results of the same analysis in a bigger study to the 

results observed from this exploratory study. 
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Deeper analysis can be conducted by accommodating personalized timespan for the 

morning and afternoon timespan for each patient. Uniform timespan was used in this analysis, 

which are 7 am to 12 pm for the morning and 12 pm to 5 pm for the afternoon. The 

representation of morning/afternoon used in this study might be different to representation of 

morning/afternoon for each person. If this is to be developed, the patient’s personalized 

morning/afternoon timespan can be integrated within the EMA. There is also a need to validate 

and standardize what it means by activity level and how to score it. Patients need to know how 

they can score their perception of their activity level.  

Finally, there will be a lot of participants recruited in the bigger study, and more data will 

be collected. It will be interesting to plan a study to use the data to define activity level cutpoints 

that are specialized for chronic low back pain population. Furthermore, activity types and scores 

that are specialized for chronic low back pain can also be explored and defined.  
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6.0 Exploration for Future Works: Preliminary Work on a Personalized and Adaptive 

Treatment Component as Part of the mHealth System 

6.1 Introduction 

One of the ultimate goals of chronic low back pain phenotyping is to develop effective 

and precise treatments for patients. A personalized and adaptive mHealth system can be used to 

accommodate precision treatment. This chapter presents preliminary work on the development of 

a personalized and adaptive mHealth system for chronic low back pain treatment and 

management. This chapter discusses a potential design for the personalized and adaptive 

mHealth system. Similar to Chapter 5.0, data collected from in-clinic and at-home assessments 

were utilized for the exploration study in this chapter. 

Given the extensive and rich data collected from the assessments, exploring the potential 

of applying a machine learning model to process the data becomes more relevant to support the 

development of the personalized and adaptive mHealth system. To build a machine learning 

model, a large dataset is needed. One of the most common machine learning approaches, 

supervised machine learning, learns from a labeled dataset. A labeled dataset is a dataset that has 

been annotated or tagged with one or more descriptive labels or categories. To develop the 

dataset, labeling process is needed. Labeling refers to the process of assigning one or more 

descriptive tags or categories to each data point in a dataset. This labeling process is an important 

step in building the dataset for a supervised machine learning model. 

This chapter discusses the development of a dataset builder component that was 

integrated in the mHealth system developed in this study. This dataset builder component was 
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developed as part of the clinician portal component (Chapter 3.4.1.3). This development was 

conducted to contribute toward further works in developing a personalized and adaptive mHealth 

system for chronic low back pain treatment and management. 

6.2 Personalized and Adaptive mHealth System for Chronic Low Back Pain 

6.2.1 Personalized and Adaptive Treatment System 

A personalized and adaptive system is a system that is designed to provide customized 

support and services to the patients. This type of framework is especially important in healthcare, 

where each patient has their own unique characteristics and has different experiences with their 

condition and treatment. In the context of chronic low back pain, a personalized and adaptive 

framework would aim to provide tailored treatment plans or interventions to patients based on 

several factors that are relevant to their chronic low back pain conditions. Chronic low back pain 

phenotyping can help explore and investigate those relevant factors for each subgroup of chronic 

low back pain. 

To be personalized, the system should provide customized treatment or intervention 

based on the patient’s unique needs, preferences, and low back pain characteristics. This data can 

be collected from various sources, such as in-clinic assessments, wearable sensors, and patient-

reported outcomes. The system then utilizes this data to create a personalized treatment plan that 

addresses the patient's individual needs and goals. 

The adaptive part of the system means the system is responsive to changes in the patient's 

condition, treatment effectiveness, and other factors that may impact their care. For example, if a 
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patient's pain levels increase or they experience side effects from their medication, the 

framework may automatically adjust their treatment plan or provide additional support to help 

manage their symptoms. The personalized and adaptive treatment is illustrated in Figure 29. 

Overall, a personalized and adaptive treatment system has the potential to improve patient 

outcomes and satisfaction by providing individualized and adaptive care that addresses the 

unique needs and preferences of each patient. 

 

 

Figure 29. Personalized and adaptive treatment component. 

 

6.2.2 Integrating Personalized and Adaptive Component to Assessment System 

In line with the goal of developing a personalized and adaptive treatment mHealth 

system, the mHealth system for chronic low back pain assessment developed in this study 
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(Chapter 3.0) can be further developed to incorporate the personalized and adaptive 

treatment/intervention component. There are some approaches that can be used to integrate the 

treatment component and the assessment system. Lobelo and colleagues (Lobelo et al., 2016) 

proposed a framework for a mHealth-wearable sensors system that incorporates an intervention 

component. The framework was designed to support physical activity assessment, counseling, 

and intervention for reducing the risk of cardiovascular disease. The wearable sensors and 

mobile app in the framework collect physical activity data, which is transmitted to a digital 

ecosystem software platform for processing and standardization. Next, the processed data is sent 

to a clinical research center entity for analysis using a clinical outcome prediction algorithm. The 

resulting meaningful and summarized data is integrated into an EMR system that the healthcare 

team uses to make clinical decisions. Finally, a counseling and clinical intervention program is 

sent back to the patient via the app. This framework not only allows for the assessment and 

monitoring of a patient's condition but also enables the development and adjustment of 

personalized rehabilitation interventions. Lobelo’s framework is illustrated in Figure 30. 

 

 

Figure 30. Labelo's framework for m-Health-wearables system with intervention. 

 

Another framework that can be used to incorporate personalized and adaptive treatment 

component into an mHealth system is Just-in-Time Adaptive Intervention (JITAI). JITAI is 

commonly used in mHealth interventions to provide personalized and timely support to 
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individuals in a convenient and accessible way. JITAI aims to provide the right support, at the 

right time, by adapting to the individual’s internal and/or contextual variables changes (Nahum-

Shani et al., 2015, 2018). The JITAI framework consists of four components: decision points, 

intervention options, tailoring variables, and decision rules (Nahum-Shani et al., 2018). 

Intervention options refer to the possible treatments or interventions that can be given at any 

decision point. Tailoring variables consist of individual-specific information used to determine 

when and what intervention to provide. Decision rules are a set of guidelines that specify which 

intervention or treatment to offer, to whom, and when. The decision rules component can be 

developed using machine learning techniques. Other design principal components of JITAI are 

distal outcome and proximal outcomes. Distal outcomes are the primary goals of the intervention 

and proximal outcomes are the short-term goals that can lead toward achieving the distal 

outcomes.  

Linking JITAI with Lobelo’s framework will create an adaptive intervention component 

that would be automatically implemented based on the decision rules without having to go 

through the healthcare team. Data process and decision rules analysis will be done inside the 

mHealth app. It can lead to faster and more seamless adjustment to the treatment program for the 

patients, which accommodates treatment delivery in real-time based on the individual's moment-

to-moment needs and context. As patients engage with the treatment recommendations provided 

by the framework, the system would continue to collect assessment data and adjust its 

recommendations based on each patient's responses. Over time, this feedback loop would allow 

the framework to become increasingly personalized and adaptive, providing even more effective 

support to patients. Design of personalized and adaptive treatment mHealth system using the 

integration of Lobelo’s framework and JITAI is illustrated in Figure 31. 
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Figure 31. Personalized and adaptive treatment mHealth system using Lobelo's and JITAI framework. 

 

6.2.3 Design of Machine Learning Component 

Decision rules component plays a crucial role in any personalized and adaptive treatment 

system. Machine learning models can be employed to develop this component. In the present 

study, the data collected during the assessments can be used to train machine learning algorithms 
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and create a model that can serve as the decision rules component. This model can process the 

tailoring variables and recommend the most appropriate intervention or treatment option for each 

patient.  

To contribute toward the development of a machine learning component that can serve as 

the decision rules component in the personalized and adaptive mHealth system for chronic low 

back pain treatment, this chapter explored two machine learning frameworks that can classify or 

predict motions as intermediate outcomes, which can be used in the bigger machine learning 

component. Using the data collected from the in-clinic and at-home assessments, a supervised 

and semi-supervised machine learning frameworks were designed. 

6.2.3.1 Supervised Machine Learning for Motion Classification 

One approach explored for the machine learning component in the personalized and 

adaptive mHealth system for chronic low back pain treatment was a supervised machine learning 

framework for motion classification. This approach involves training a machine learning model 

using videos and sensor data collected during in-clinic assessments to recognize specific motions 

performed by patients. 

The ability to accurately recognize and classify motions is crucial in developing effective 

treatment plans for chronic low back pain patients. Understanding how patients move and 

perform daily activities can help healthcare professionals identify and target specific movement 

patterns that may be contributing to pain and disability. By using supervised machine learning 

for motion classification, the mHealth system can provide personalized feedback and 

intervention based on the patient's unique movement patterns and limitations. 

This machine learning framework requires processing kinematics data into labeled data. 

The labeled data is used in a classifier training to create a machine learning model that can 
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predict a motion or movement pattern from kinematics data. To help with the labeling process, 

visual data from video is used as a guide for labeling a time segment in the kinematics data. 

Instead of labeling the kinematics data directly, the labelers can label time segments in the video 

that later can be synced with time segments in the kinematics data. The design of this framework 

is illustrated in Figure 32. 

 

 

Figure 32. Supervised machine learning framework for motion classification. 

 

6.2.3.2 Semi-Supervised Machine Learning for Motion Classification 

Similar to the first framework, this semi-supervised approach involves training a machine 

learning model using videos and sensor data collected during in-clinic assessments to recognize 
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specific motions performed by patients. The difference is that a semi-supervised approach is 

used. One strength of semi-supervised learning compared to supervised learning is that it can 

leverage unlabeled data in addition to labeled data for training. This can be particularly 

advantageous in situations where labeling data is expensive or time-consuming. 

In this study, kinematics data from the at-home assessment was collected. The difference 

between kinematics data from in-clinic assessment and at-home assessment is that there is no 

video available for the latter, which can be used to help visually label the data. In this approach, 

the at-home kinematics data can be leveraged to be used in the classifier training without 

requiring labelers to manually label it. 

This machine learning framework requires processing kinematics data, with the help of 

visual data, into labeled data. This labeled data is used in a classifier training to create an 

intermediate machine learning model. This model is used to classify the unlabeled data from the 

at-home kinematics data. The classification result is used to label the at-home kinematics data. 

The classifier training uses the now-labeled at-home kinematics data to train the final model. The 

design of this framework is illustrated in Figure 33.  
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Figure 33. Semi-supervised machine learning framework for motion classification. 

 

6.3 Development of the Dataset Builder Component 

6.3.1 Requirement Analysis  

In this study, a component to help the labeling process described in Section 6.2.3 was 

designed. This component is responsible for creating labeled dataset that will be used to train the 

machine learning model. To ensure that the dataset builder component meets the needs of the 

system, several requirements have been identified. 
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• Access: The dataset builder should be accessible to and only to the labelers that 

have approval to access the data. Ideally, it should be integrated into an existing 

component of the mHealth system, rather than requiring the development of a 

new component that would add complexity to the system. 

• Video Retrieval and Display: The dataset builder component should be able to 

retrieve and display video data from the mHealth system, making it easy for users 

to identify and label motion segments. 

• Time Segment Selection: The component should allow users to select time 

segments in the video, enabling them to label the specific motion segments of 

interest. 

• Label Creation and Assignment: The dataset builder component should enable 

users to create and manage labels for the identified motion segments. 

• User-Friendly Display: The component should display the data and labels 

assigned by the user in a clear and concise manner, making it easy for users to 

review and update their assigned labels. 

• Data Management and Storage: The dataset builder component should be able to 

manage and store the labeled dataset, ensuring that the data is safe and easily 

accessible. 
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6.3.2 Design of the Dataset Builder Component  

Based on the identified requirements, several services and features were planned as the 

building blocks of the dataset builder component. The dataset builder component was designed 

to have: 

• login and access module,  

• video and data retrieval service, 

• video selection page,  

• video player,  

• time segment selector,  

• label creation and selection module, 

• labeled data section,  

• data management service, and 

• remote communication service. 

 

Since the clinician portal already had some of the required features, such as a login 

module, data retrieval and management service, and remote communication service with the 

study database through the backend component, the dataset builder component was integrated as 

part of the clinician portal. This approach led to faster development and prevented unnecessary 

complexity in the overall mHealth system. The dataset builder was designed to utilize the 

clinician's portal login module, and authentication rules were updated to allow certified labelers 

to access the component. The video and data retrieval service was designed to make use of the 

existing data retrieval service in the clinician portal, aiming for efficient development and more 
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integrated connections between services. The video selection page was designed to enable 

labelers to choose which videos they wanted to label. The video player, time segment selector, 

label creation and selection module, and labeled data section were integrated into the video 

labeler module, which was designed as the main module for labeling videos. The data 

management service was designed to collect labeled data and send it to the remote database 

through the communication protocol provided by the backend. The design is illustrated in Figure 

34. 

 

 

Figure 34. Dataset builder component design. 
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6.3.3 Development of the Dataset Builder Component 

The dataset builder component, which creates labeled motion data for the machine 

learning component of the mHealth system, was developed within the clinician portal. A new 

access role was added in the clinician portal authorization rules to enable labelers to access the 

dataset builder component in the portal. This role allows certified labelers to access the 

component and start labeling the videos. Labelers can access the portal by using their account to 

login (Figure 35) to the clinician portal. 

 

 

Figure 35. Login page in the clinician portal. 

 

The video and data retrieval feature was also developed to allow the component to 

retrieve the videos and labels for the labeler. The existing data retrieval service in the clinician 

portal was adjusted to accommodate the video and data retrieval that is used by the dataset 

builder component. The video selection page was also developed to create an interface for 

selecting the videos to label. The test result page in the clinician portal was used as a template to 
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create the page, which allows labelers to easily navigate a familiar structure and choose the 

videos they want to label. The labelers need to select the patient/study participant before 

selecting the test video they want to label. The participant and video selection pages are shown in 

Figure 36. 

 

 

Figure 36. Video selection page for the dataset builder component. 
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The video labeler module was also developed as the main module of the dataset builder 

component that will be used for the labeling process. This module consists of the video player, 

time segment selector, label creation and assignment module, and labeled data viewer, which 

were integrated to create a seamless labeling process. The video player displays the video and 

allows the labeler to play and pause it as needed. The time segment selector enables the labeler to 

select a single timepoint to label a time segment in the video. To simplify the process and to 

ensure that all time segments in the video are labeled, time segment selector only requires the 

labeler to select one timepoint for one time segment. Once a timepoint is selected, a time 

segment between the previous timepoint, or start time if this is the first timepoint selected, and 

the timepoint selected would be used as the time segment to be labeled.  

In the label creation and assignment module, the labeler can select a label from a 

provided set of labels or create a new one if necessary. This module allows the labeler to assign a 

label to the time segment selected. Finally, the labeled data viewer section displays the labeled 

time segments, allowing the labeler to review and edit their assignments as needed. If a mistake 

is made or the label needs to be changed, the labeler can delete the labeled data from this section. 

The video labeler module is illustrated in Figure 37. 
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Figure 37. Video labeler module. 

 

Finally, the data management service was developed to collect, process, and transmit the 

labeled data to the remote database. A new table was created in the database and new APIs were 

developed in the backend component to facilitate communication between the dataset builder 

component and the backend. 
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Furthermore, the dataset builder component has already been used by a number of 

researchers/labelers, and one labeler was able to create a dataset of motion-labeled time segments 

from 24 participants, with six functional performance test videos each. The labels used in this 

process includes motions such as neutral stand, backward bend, forward bend, left bend, left 

rotation, right bend, right rotation, and so on. This demonstrates that the dataset builder was 

successfully developed and can be used to create a dataset of motion-labeled data. A snippet of 

the labeled data can be seen in Appendix E. 

Additionally, the dataset builder component was adapted to create a component for 

scoring a test or video session, not just the time segments in the session. This component was 

developed to score a functional performance test called the Postural Lifting Strategy test. Instead 

of allowing the user to select a time segment and assign a label, this component prompts the user 

to submit scores in several categories, such as spine neutral score, flexion dominance score, base 

of support score, aberrant movement score, and box proximity to body score. This test/video 

scoring component can also contribute to the development of a dataset for machine learning use. 

The screenshot of this component is shown in Figure 38. 
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Figure 38. Test/video scoring component that adapted the dataset builder component. 

 



 157 

6.4 Discussion 

6.4.1 Principal Results 

The principal results of this study include the design and implementation of several 

machine learning frameworks that are specifically tailored to the needs of the mHealth system 

developed in this study. A supervised and a semi-supervised machine learning frameworks were 

designed to be able to recognize motions from kinematics data. These machine learning 

frameworks require a set of labeled data. The machine learning frameworks were designed to 

make use of the availability of visual data. The frameworks use the visual data to help with the 

labeling, making the process easier for the labelers. 

Additionally, the dataset builder component was successfully developed to facilitate the 

labeling of time segments in videos, allowing for the creation of labeled motion data that can be 

used to train machine learning models. This dataset builder component can be used in either 

supervised or semi-supervised machine learning frameworks that have been designed. The 

development of the dataset builder component and its successful use in labeling multiple videos 

is an important step towards the development of personalized and adaptive treatments for chronic 

low back patients. 

The dataset builder component can also be adapted to other uses. By the time of the 

writing, a new component was developed using dataset builder component as the base. That 

component was created to enable scoring of functional performance tests by utilizing visual data 

from videos, similar to the dataset builder component.  
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6.4.2 Limitations 

While the current study has made significant progress towards developing a machine 

learning model for motion classification, there are still several limitations to be addressed. 

Firstly, the machine learning component itself still requires further development. There is a need 

to define the approach to be used for machine learning, such as selecting the appropriate 

algorithm, feature selection, and optimizing the model. Further development and testing are 

required to determine the most effective approach to be used in this context. 

Additionally, while the dataset builder component has been successfully developed, it is 

still under continuous development to implement integration with other data sources, such as 

sensor data. The dataset should contain segments of kinematics data with their assigned label. As 

of now, the dataset contains time segments with their assigned label. Synchronization between 

the time segment and the time in the kinematics data still needs to be done. A process to replace 

the time segments with the kinematics data segments with the help of the synchronized time 

information still needs to be developed.  

Another limitation of the current study is that usability evaluation has not been performed 

yet. Usability study needs to be conducted to examine the usability of the dataset builder 

component and also to find if there are any usability issues. A usability study can provide 

valuable feedback on how to improve the user interface and overall usability of the system. 
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6.4.3 Conclusions 

This study shows promises and potentials of utilizing machine learning toward the 

development of personalized and adaptive treatments for chronic low back pain patients. 

Preliminary steps were done in this study in the form of machine learning frameworks and a 

dataset builder component.  

Further work needs to be done to further develop the dataset builder. One of the most 

essential features to work on is processing the labeled time segment data into labeled kinematics 

segment data. This can be achieved by making use of the timestamp information in both data. 

Another work that can be done to continue this study is to conduct usability evaluation of this 

dataset builder component. The component should have high usability and any usability issues 

should be identified and addressed. Also, further design analysis should be done to design the 

overall machine learning component. Feasibility analysis should be conducted to ensure that the 

machine learning component can be developed, and that any necessary data is available. 

In conclusion, this study presented the development of a dataset builder component as 

part of the machine learning frameworks that was also designed in this study. Although, further 

works still need to be done, the development done in this study contributes to the potential 

development of the personalized and adaptive treatment system for chronic low back pain 

patients. 
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7.0 Summary and Discussion 

7.1 Results Summary 

To discuss the results of the studies in this dissertation, the specific aims of dissertation 

are revisited. 

7.1.1 Specific Aim 1: To design and develop an mHealth system for comprehensive chronic 

low back pain assessment. 

The development of an mHealth system for chronic low back pain assessment, which 

consists of an in-clinic app, at-home app, clinician portal, and backend and database, was 

conducted. The mHealth system was able to handle extensive and rich data from both the 

structured in-clinic assessment as well as the assessment in the patients’ daily life settings. 

The in-clinic app was able to help the physical therapist do the in-clinic assessment. The 

in-clinic app provides the physical therapists with the necessary assessment resources in one 

place. The use of the in-clinic app streamlines the assessment process and minimizes the effort 

and burden of the physical therapists. 

The at-home app was able to accommodate the patients to report their EMA. This feature 

enhances the accuracy and reliability of the data while reducing the potential for recall bias. The 

at-home app also provides services and modules that can help the patients with their at-home 

assessment. 



 161 

The clinician portal was also able to be utilized by study coordinators and researchers to 

perform data management tasks. The remote database was able to store the extensive and rich 

assessment data while the backend provided services and supports for data management and 

communication between the other components. 

Overall, the mHealth system streamlines the assessment process and make the assessment 

more effective and efficient. All components were well integrated and connected, enabling 

seamless and automatic data integration from both in-clinic and at-home assessments.  

7.1.2 Specific Aim 2: To evaluate the usability of the mHealth system. 

Physical therapists found the in-clinic app helpful for conducting assessments, and as of 

the time of writing, over 500 patients have been assessed using it. Two usability evaluations 

were conducted to assess the usability of the in-clinic app. After each evaluation, several updates 

and revisions were made to address identified usability issues and concerns. In the latest 

evaluation, the in-clinic app received a high usability score of 6.00 (SD=1.15). 

Five usability evaluations from a total of 337 chronic low back pain patients were 

conducted to assess the usability of the at-home app. After the first and second usability 

evaluations, several updates and revisions were made to address the identified usability issues. 

No significant usability issues were found after the third, fourth, and fifth usability evaluations. 

The usability scores plateaued after the second usability evaluation. In the last usability 

evaluation, the at-home app received a high usability score of 6.24 (SD=1.37).  

The results showed that both in-clinic and at-home app had high usability score. Both 

apps can be used by the target users for their intended purposes. 
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7.1.3 Specific Aim 3: To investigate and compare activity level from subjective patient-

reported EMA and objective kinematics sensor data. 

To investigate the correlation between activity level from sensor data and perceived 

activity level from EMA, several representations were developed to represent activity level from 

sensor data since the common 60s-epoch activity level data needs to be transformed to represent 

activity level in morning/afternoon timespan, the timespan that represents perceived activity 

level from EMA. Eleven activity level representations were developed in aim to best represent 

the activity level in morning/afternoon timespan. 

The overall correlation between activity level from sensor data and perceived activity 

level from EMA was found to be weak, ranging from the score of 0.095 to 0.260 (mean = 0.194, 

SD = 0.054). Five activity representations were selected as they scored highest correlation with 

the perceived activity level. Those activity representations are average hourly activity counts, 

highest hourly activity counts, weighted sum of the highest hourly activity level proportion and 

ranking value, weighted sum of average hourly activity level proportion and custom value, and 

weighted sum of the highest hourly activity level proportion and custom value (r = 0.245, p = 

0.036). The use of weighted activity level proportion gives more sensitivity to the higher activity 

level.  

Meanwhile, four activity level representations performed poorly, which are most frequent 

60s-epoch activity level, highest 60s-epoch activity level, activity level from the average of 

hourly activity counts, and activity level from the highest hourly activity counts. Using activity 

level that was supposed to be attached to 60s-epoch data might not be a good representative for 

wider timespan like morning/afternoon. These activity level representations were also not 

sensitive to the variability of activity levels, especially the higher activity level. 
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Even though the overall correlation was weak, correlation of activity level from sensor 

data and perceived activity level for three participants (A, B, and D) was found to be strong. 

Using the five most accurate activity level representations, the average score for the correlation 

was 0.716 (SD = 0.081), suggesting that these participants may have a better perception of their 

activity level.  

After separating the data into morning and afternoon categories, and still using the five 

most accurate activity level representations, the morning category showed better correlation 

(mean = 0.316, p = 0.029) compared to the afternoon category (r = 0.10, p = 0.026). This 

moderate correlation of the morning timespan suggests that activity level perception may be 

more accurate for morning activity. 

7.1.4 Specific Aim 4: To design and develop dataset collection tools as preliminary work 

toward a personalized and adaptive intervention component in the mHealth system. 

The results of this study include the design of machine learning frameworks tailored to 

the mHealth system's needs, including supervised and semi-supervised frameworks to recognize 

motions from kinematics data. These frameworks use visual data to facilitate labeling and make 

the process easier for labelers. The study also successfully developed the dataset builder 

component to label time segments in videos and create labeled motion data for training machine 

learning models. This component can be used in either supervised or semi-supervised 

frameworks and is an important step towards personalized and adaptive treatments for chronic 

low back pain patients. The dataset builder component can also be adapted for other uses, and a 

new component was developed using it to score functional performance tests with visual data 

from videos.  
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7.2 Limitations 

There are several limitations identified for this study. First, for the development of the 

mHealth app, access to use communication protocol of the kinematics sensors was not made 

available. The mHealth system was developed without direct integration with the kinematics 

sensors, which was different from the mHealth framework that was designed. 

For the usability evaluations, even though both in-clinic and at-home scored a high 

usability score, it would be beneficial to conduct direct interview with the chronic low back pain 

patients who use the at-home app. The usability evaluations embedded in the app were used 

instead to accommodate for rapid development of the app. Also, the usability of clinician portal 

needs to be evaluated. It was not evaluated in this study because it was designed for internal use 

at the time of development. 

For the comparison of objective and subjective activity level, several limitations are 

identified. The first one is that most of the correlations calculated in the result were not 

statistically significant. There was also the limitation on the sensor battery that prevented 

complete collection of the sensor data. And, to classify the activity level, Freedson’s cutpoints 

that is meant for general adult population were used, instead of cutpoints that made specifically 

for chronic low back pain population. There is also limitation of the perceived activity level 

representation in the EMA. Deeper analysis should be done to standardize the perception of 

activity level and the timespan it was asked. 
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7.3 Conclusions 

The mHealth system for chronic low back pain was developed and can be used to assess 

chronic low back pain patients in clinical settings or daily life settings. The usability scores of 

the in-clinic and at-home app were high. Any usability issues identified during the usability 

evaluation were addressed. Further development of the system can be done in multiple 

directions. As of now, the mHealth system is also being used in another study that requires 

physical and functional performance test assessments. The mHealth system can be adjusted to 

collect more relevant data, such as patient reported outcome. Another development direction is 

toward the development of the personalized and adaptive treatment mHealth system for chronic 

low back pain. 

Several preliminary works were done to contribute to the development in this direction. 

In this study, activity level from sensor data was compared to perceived activity level from 

EMA. Although the study found that the correlation was weak, this can open a new perspective 

in treating those two different data. For example, the results can be used to inform on which data 

is more suitable to be used in machine learning component to identify an outcome. For now, 

based on the results, the use of combination of the two data can give more information and 

context. Further analysis with more participants and larger data should be investigated to achieve 

clearer results. Some modifications can be made to the activity level component in the EMA to 

give the patients clearer understanding of what activity level means and how they should 

generalize their perception for a specific time period. It will also be interesting to plan a further 

study to use the data to define activity level cutpoints that are specialized for chronic low back 

pain population. 
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A dataset builder component was developed as part of the machine learning component 

that was also designed in this study. This development shows the promises and potentials of the 

machine learning component, including the dataset builder, in contributing to the development of 

a personalized and adaptive treatments for chronic low back pain patients. Although the dataset 

builder was able and was already used to generate labeled data, further development is still 

needed. One crucial area that requires attention is the conversion of labeled time segment data 

into labeled kinematics segment data, which can be achieved by utilizing timestamp information 

from both datasets. Additionally, a usability evaluation of the dataset builder component should 

be planned to identify and address any potential usability issues. 

Overall, the development of the mHealth system for chronic low back pain was 

developed successfully. The mHealth system developed in this study plays a significant role in 

the chronic low back pain phenotyping research. The mHealth system is also usable and useful, 

assessed from its high usability score and its current usage in assessing more than 500 

participants so far. Further works, as mentioned, are still needed to do to contribute toward the 

development of the personalized and adaptive treatment for chronic low back pain. 
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Appendix A Usability Questionnaires Used for the In-Clinic App Evaluation 

Appendix A.1 mHealth App Usability Questionnaire (MAUQ) for Standalone Mobile 

Health App for Health Care Providers 

The following MAUQ form (Zhou et al., 2019) was retrieved from 

https://ux.hari.pitt.edu/v2/portal/#/.  

 

mHealth App Usability Questionnaire (MAUQ) 

for Standalone Mobile Health App for Health Care Providers 

# Statements N/A                           1     2     3    4     5     6     7  

1. The app was easy to use. ☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

2. It was easy for me to learn to use the 

app. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

3. The navigation was consistent when 

moving between screens. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

4. The interface of the app allowed me to 

use all the functions (such as entering 

information, responding to reminders, 

viewing information) offered by the app. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

https://ux.hari.pitt.edu/v2/portal/#/
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5. Whenever I made a mistake using the 

app, I could recover easily and quickly. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

6. I like the interface of the app. ☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

7. The information in the app was well 

organized, so I could easily find the 

information I needed. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

8. The app adequately acknowledged and 

provided information to let me know the 

progress of my action. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

9. I feel comfortable using this app in 

social settings. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

10. The amount of time involved in using 

this app has been fitting for me. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

11. I would use this app again. ☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

12. Overall, I am satisfied with this app. ☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

13. The app would be useful for my 

healthcare practice. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

14. The app improved my access to 

delivering healthcare services. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

15. The app helped me manage my patients’ 

health effectively. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 
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16. This app has all the functions and 

capabilities I expected it to have. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

17. I could use the app even when the 

Internet connection was poor or not 

available. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

18. This mHealth app provides an acceptable 

way to deliver healthcare services, such 

as accessing educational materials, 

tracking my own activities, and 

performing self-assessment. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

 

In this questionnaire, 1 - strongly disagree, 2 – disagree, 3 – somewhat disagree, 4 – neither 

agree nor disagree, 5 – somewhat agree, 6 – agree, 7 – strongly agree 
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Appendix A.2 Custom Open-Ended Usability Evaluation Form 

 

Please answer the following questions based on how you feel after using the app today. 

 

How easy do you think it is to perform tasks using this app? 

 

How quickly do you think you can perform tasks using this app after the training? 
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How pleasant is it to use the app to perform the tasks? 

 

What do you think can be improved from the app? 

 

What is your overall impression in using the app? 
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Appendix B Usability Questionnaires Used for the At-Home App Evaluation 

Appendix B.1 mHealth App Usability Questionnaire (MAUQ) for Standalone Mobile 

Health App Used by Patients 

The following MAUQ form (Zhou et al., 2019) was retrieved from 

https://ux.hari.pitt.edu/v2/portal/#/.  

 

mHealth App Usability Questionnaire (MAUQ) 

for Standalone mHealth Apps Used by Patients 

# Statements N/A                           1     2     3    4     5     6     7  

1. The app was easy to use. ☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

2. It was easy for me to learn to use the 

app. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

3. The navigation was consistent when 

moving between screens. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

4. The interface of the app allowed me to 

use all the functions (such as entering 

information, responding to reminders, 

viewing information) offered by the app. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

https://ux.hari.pitt.edu/v2/portal/#/
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5. Whenever I made a mistake using the 

app, I could recover easily and quickly. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

6. I like the interface of the app. ☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

7. The information in the app was well 

organized, so I could easily find the 

information I needed. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

8. The app adequately acknowledged and 

provided information to let me know the 

progress of my action. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

9. I feel comfortable using this app in 

social settings. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

10. The amount of time involved in using 

this app has been fitting for me. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

11. I would use this app again. ☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

12. Overall, I am satisfied with this app. ☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

13. The app would be useful for my health 

and well-being. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

14. The app improved my access to 

healthcare services. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

15. The app helped me manage my health 

effectively. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 
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16. This app has all the functions and 

capabilities I expected it to have. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

17. I could use the app even when the 

Internet connection was poor or not 

available. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

18. This mHealth app provides an acceptable 

way to receive healthcare services, such 

as accessing educational materials, 

tracking my own activities, and 

performing self-assessment. 

☐ DISAGREE   ☐   ☐   ☐   ☐   ☐   ☐   ☐  

AGREE 

 

In this questionnaire, 1 - strongly disagree, 2 – disagree, 3 – somewhat disagree, 4 – neither 

agree nor disagree, 5 – somewhat agree, 6 – agree, 7 – strongly agree 
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Appendix B.2 Custom Open-Ended Usability Evaluation Form 

 

Please answer the following questions based on how you feel after using the app today. 

 

How easy do you think it is to perform tasks using this app? 

 

How quickly do you think you can perform tasks using this app after the training? 
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How pleasant is it to use the app to perform the tasks? 

 

What do you think can be improved from the app? 

 

What is your overall impression in using the app? 
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Appendix C EMA Forms in the At-Home App 

Morning Assessment (12 AM – 12 PM; By default, reminder is set at 8 AM) 

• Rate your level of low back pain right now 

o 0 (No pain) – 10 (Worst pain imaginable) 

• Rate how much your pain is interfering with what you are doing right now 

o 0 (Pain is not interfering) – 10 (Pain is completely interfering) 

• What time did you fall asleep? 

• What time did you wake up? 

 

 

Afternoon Assessment (12 PM – 6 PM; By default, reminder is set at 1 PM) 

• Rate your level of low back pain right now 

o 0 (No pain) – 10 (Worst pain imaginable) 

• Rate how much your pain is interfering with what you are doing right now 

o 0 (Pain is not interfering) – 10 (Pain is completely interfering) 

• What activities did you do this morning? (Checkbox, can select more than one) 

o Sports/Exercise 

o Hobbies 

o Work, School, or Volunteer 

o Home activities 
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• How much effort did your activities require? 

o Sports/Exercise: Very Light, Light, Moderate, Moderate to Vigorous, 

Vigorous 

o Hobbies: Very Light, Light, Moderate, Moderate to Vigorous, Vigorous  

o Work, School, or Volunteer: Very Light, Light, Moderate, Moderate to 

Vigorous, Vigorous  

o Home activities: Very Light, Light, Moderate, Moderate to Vigorous, 

Vigorous  

 

Evening Assessment (6PM – 12 AM; By default, reminder is set at 7 PM) 

• Rate your level of low back pain right now 

o 0 (No pain) – 10 (Worst pain imaginable) 

• Rate how much your pain is interfering with what you are doing right now 

o 0 (Pain is not interfering) – 10 (Pain is completely interfering) 

• What activities did you do this afternoon? (Checkbox, can select more than one) 

o Sports/Exercise 

o Hobbies 

o Work, School, or Volunteer 

o Home activities 

• How much effort did your activities require? 

o Sports/Exercise: Very Light, Light, Moderate, Moderate to Vigorous, 

Vigorous 

o Hobbies: Very Light, Light, Moderate, Moderate to Vigorous, Vigorous  
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o Work, School, or Volunteer: Very Light, Light, Moderate, Moderate to 

Vigorous, Vigorous  

o Home activities: Very Light, Light, Moderate, Moderate to Vigorous, 

Vigorous  

• Was this a typical day for you? 

o Yes/No 
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Appendix D Sensor Data 

Appendix D.1 At-Home Raw Sensor Data 

Below is a snippet of the raw sensor data in space delimited format that was retrieved 

from the at-home sensors. 

day hr min sec Ax(g) Ay(g) Az(g) Gx(deg/s) Gy(deg/s) Gz(deg/s) Mx(Gauss) My(Gauss) Mz(Gauss) 

. . . . -0.00341600 -0.00012200 1.00125396 -23.74749947 10.98999977 0.40250000 0.20874001 -1.02508008 -0.03640000 

. . . . 0.40894398 -0.04184600 1.33589995 463.19000244 -162.75000000 -46.27000046 0.20664001 -1.02955997 -

0.03822000 

. . . . -0.00341600 -0.00036600 0.97807395 -9.95750046 2.34500003 0.47250000 0.20314001 -1.02157998 -0.04116000 

. . . . -0.00073200 0.00000000 0.97038800 -10.06250000 2.36249995 0.29750001 0.20706001 -1.02242005 -0.04410000 

. . . . -0.00231800 0.00073200 0.97075397 -9.76500034 2.09999990 0.12250000 0.20650001 -1.02690005 -0.03738000 

. . . . -0.00024400 0.00024400 0.97087598 -9.73000050 2.25749993 0.38499999 0.20328000 -1.02382004 -0.03640000 

. . . . -0.00036600 -0.02989000 0.97075397 -9.81750011 2.15249991 0.36750001 0.20342000 -1.02564001 -0.04074000 

. . . . -0.00073200 0.00097600 0.97172999 -10.13249969 2.48499990 0.33250001 0.20454000 -1.02564001 -0.04718000 

. . . . -0.00268400 -0.00061000 0.97599995 -9.90499973 2.32750010 0.28000000 0.20734000 -1.02437997 -0.03444000 

. . . . 0.00024400 -0.00061000 0.97416997 -9.52000046 2.46749997 0.42000002 0.21084000 -1.02634001 -0.03584000 

. . . . 0.00268400 0.00195200 0.98051399 -9.69499969 1.92499995 0.17500000 0.20888001 -1.02802002 -0.03584000 

. . . . 0.00012200 0.00000000 0.98441797 -9.83500004 2.20499992 0.42000002 0.20300001 -1.02620006 -0.04046000 

. . . . -0.00622200 0.00341600 0.98210001 -9.99250031 2.94000006 0.34999999 0.20580001 -1.02410007 -0.03458000 

. . . . 0.03050000 -0.00024400 0.98832196 -9.62500000 3.71000004 0.47250000 0.20118001 -1.02578008 -0.03374000 

. . . . -0.26364198 0.17397200 1.15961003 -1.22500002 1.24249995 -0.14000000 0.20342000 -1.02354002 -0.03836000 

. . . . -0.00488000 0.00109800 0.99417800 -10.72749996 2.43250012 0.42000002 0.20398000 -1.02157998 -0.04088000 

. . . . -0.00988200 -0.00561200 0.97002196 -9.78250027 1.83749998 0.21000001 0.20944001 -1.01766002 -0.03556000 

0 0 0 1 0.00353800 -0.00012200 0.97575599 -10.01000023 1.94250000 0.31500000 0.20566000 -1.01682007 -0.04200000 
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. . . . -0.00463600 0.00207400 0.97551197 -10.14999962 2.25749993 0.24500000 0.20790000 -1.01528001 -0.03808000 

. . . . 0.00634400 0.00036600 0.97246200 -9.92249966 2.53749990 0.28000000 0.21028000 -1.01626003 -0.04004000 

. . . . 0.00244000 -0.00024400 0.97538996 -10.43000031 2.45000005 0.26249999 0.20412001 -1.01864004 -0.04578000 

. . . . 0.00695400 -0.00329400 0.96355599 -9.57250023 9.18750000 -0.29750001 0.20062001 -1.01654005 -0.04844000 

. . . . 0.00292800 -0.00402600 0.96928996 -10.04500008 2.25749993 0.50749999 0.20020001 -1.01598001 -0.04886000 

. . . . 0.15884399 -0.13578600 0.82972199 -29.64500046 -14.56000042 -23.37999916 0.19656001 -1.01472008 -0.04116000 

. . . . -0.07930000 0.07576200 0.98612601 -28.92749977 -0.52499998 24.41250038 0.19712001 -1.01639998 -0.04004000 

. . . . -0.09979600 0.06807600 1.22951603 -18.34000015 -2.29250002 -11.84749985 0.19936000 -1.00743997 -0.04060000 

. . . . -0.20520400 -0.15579399 1.68555200 55.89500046 46.37500000 44.39749908 0.19208001 -0.99218005 -0.04508000 

. . . . -0.24058400 -0.05002000 1.54061592 70.33249664 28.94499969 4.34000015 0.18746001 -0.95550001 -0.06720001 

. . . . -0.20898600 -0.09442800 1.28417194 63.34999847 8.36499977 3.46499991 0.18844001 -0.91882002 -0.06636000 

. . . . -0.17018999 -0.19812800 1.03016794 15.20750046 -28.26250076 -5.07499981 0.20174001 -0.88410002 -0.04536000 

. . . . -0.14396000 -0.28438199 0.94366997 -45.51750183 -87.77999878 -21.82250023 0.22988001 -0.85427999 -0.02730000 

. . . . -0.09345200 -0.50325000 0.88279200 -42.36750031 -108.13249969 -13.44000053 0.25760001 -0.84840000 -

0.00140000 

. . . . -0.21716000 -0.14847399 0.37734598 26.02250099 -8.48750019 35.47249985 0.28224000 -0.82754004 -0.01302000 

. . . . -0.24900199 -0.25034401 0.49068400 -52.88499832 -49.89250183 -32.06000137 0.29708001 -0.82222003 -0.01568000 

. . . . -0.11394800 -0.26901001 0.53265196 -16.45000076 -26.96750069 0.98000002 0.30954000 -0.82376003 -0.01694000 

. . . . -0.05892600 -0.06209800 0.40150198 -11.28750038 34.17750168 18.42749977 0.32494000 -0.82110000 -0.02478000 

. . . . -0.17153199 -0.04428600 0.63073999 -79.74749756 -6.68499994 -23.32749939 0.34622002 -0.82978004 -0.03542000 

. . . . -0.00890600 -0.00268400 0.73382998 -59.58750153 14.14000034 -6.24749994 0.36848000 -0.84490001 -0.05194000 

. . . . -0.06075600 -0.03416000 0.78946197 -49.96250153 42.96250153 9.06499958 0.39074001 -0.85427999 -0.06188000 

. . . . -0.06148800 0.23985200 0.72553396 -16.52000046 41.72000122 -23.22249985 0.41160002 -0.85218000 -0.08848000 

. . . . 0.07356600 0.05246000 0.88901401 -15.60999966 42.08750153 -17.93750000 0.40642002 -0.85190004 -0.11508001 

. . . . 0.01476200 0.19215000 0.92488199 -50.83750153 55.72000122 -15.29500008 0.39214000 -0.84854001 -0.13566001 

. . . . 0.15713599 0.08003200 1.04810202 -64.90750122 45.08000183 -54.72249985 0.36372000 -0.85806000 -0.12740001 

. . . . 0.02501000 0.21618399 1.04492998 -60.13000107 28.13999939 -34.09000015 0.33698002 -0.86674005 -0.11886001 

. . . . 0.15006000 0.11382600 1.15399802 -36.10250092 2.08249998 -49.10499954 0.31360000 -0.88004005 -0.08946000 

. . . . 0.11382600 0.11736400 1.12325394 19.00499916 33.72249985 13.40499973 0.29750001 -0.88480002 -0.07588000 

. . . . 0.11285000 0.10418800 1.01979792 -7.71750021 3.39499998 -2.08249998 0.28308001 -0.88550001 -0.05838000 

. . . . 0.13529800 0.01122400 1.06127799 -3.44749999 5.26749992 24.79750061 0.26670000 -0.87934005 -0.03878000 
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. . . . 0.01427400 0.15762399 0.94684196 -26.09250069 -28.29750061 -15.73250008 0.25676000 -0.87052000 -0.01946000 

 

Appendix D.2 Processed Data from The At-Home Sensor Data 

Below is a snippet of the processed sensor data in comma delimited or comma-separated 

value (csv) format. 

ParticipantID,date,day,hour,Lvl1,Lvl2,Lvl3,Lvl4,Lvl5,total 

R02,07/13/2021,1,7,59,1,0,0,0,60 

R02,07/13/2021,1,8,35,25,0,0,0,60 

R02,07/13/2021,1,9,32,27,1,0,0,60 

R02,07/13/2021,1,10,20,37,3,0,0,60 

R02,07/13/2021,1,11,20,38,2,0,0,60 

R02,07/13/2021,1,12,15,41,4,0,0,60 

R02,07/13/2021,1,13,16,44,0,0,0,60 

R02,07/13/2021,1,14,13,47,0,0,0,60 

R02,07/13/2021,1,15,16,44,0,0,0,60 

R02,07/13/2021,1,16,5,50,5,0,0,60 

R02,07/14/2021,2,7,59,1,0,0,0,60 

R02,07/14/2021,2,8,20,37,3,0,0,60 

R02,07/14/2021,2,9,28,30,2,0,0,60 

R02,07/14/2021,2,10,59,1,0,0,0,60 

R02,07/14/2021,2,11,33,23,4,0,0,60 

R02,07/14/2021,2,12,43,15,2,0,0,60 

R02,07/14/2021,2,13,33,20,7,0,0,60 

R02,07/14/2021,2,14,8,25,27,0,0,60 

R02,07/14/2021,2,15,25,32,3,0,0,60 

R02,07/14/2021,2,16,33,27,0,0,0,60 

  

R02,07/15/2021,3,11,22,34,4,0,0,60 

R02,07/15/2021,3,12,33,26,1,0,0,60 

R02,07/15/2021,3,13,30,30,0,0,0,60 

R02,07/15/2021,3,14,53,6,1,0,0,60 

R02,07/15/2021,3,15,60,0,0,0,0,60 

R02,07/15/2021,3,16,60,0,0,0,0,60 

R02,07/16/2021,4,7,57,3,0,0,0,60 

R02,07/16/2021,4,8,37,23,0,0,0,60 

R02,07/16/2021,4,9,32,28,0,0,0,60 

R02,07/16/2021,4,10,31,29,0,0,0,60 

R02,07/16/2021,4,11,1,5,0,0,0,6 

R02,07/16/2021,4,12,0,0,0,0,0,0 

R02,07/16/2021,4,13,0,0,0,0,0,0 

R02,07/16/2021,4,14,0,0,0,0,0,0 

R02,07/16/2021,4,15,0,0,0,0,0,0 

R02,07/16/2021,4,16,0,0,0,0,0,0 

R02,07/17/2021,5,7,0,0,0,0,0,0 

R02,07/17/2021,5,8,0,0,0,0,0,0 

R02,07/17/2021,5,9,0,0,0,0,0,0 

R02,07/17/2021,5,10,0,0,0,0,0,0 
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R02,07/15/2021,3,7,60,0,0,0,0,60 

R02,07/15/2021,3,8,41,19,0,0,0,60 

R02,07/15/2021,3,9,27,33,0,0,0,60 

R02,07/15/2021,3,10,21,37,2,0,0,60 

R02,07/17/2021,5,11,0,0,0,0,0,0 

R02,07/17/2021,5,12,0,0,0,0,0,0 

R02,07/17/2021,5,13,0,0,0,0,0,0 

R02,07/17/2021,5,14,0,0,0,0,0,0 
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Appendix E Labeled Data from Dataset Builder Component 

Below is a snippet of the labeled data created using the dataset builder component. 

"id","participant_id","test_name","starting_time_range_in_second","ending_time_range_in_second","starting_timestamp","ending_timestamp","l

abel","ending_percentage_of_video_duration","video_duration" 

674549,"R01","Dynamic Motion - Axial Rotation",0,0.4,"2021-07-09T09:59:00","2021-07-09T09:59:00","static stand",5,7.398 

674550,"R01","Dynamic Motion - Axial Rotation",0.4,1.02,"2021-07-09T09:59:00","2021-07-09T09:59:01","left rotation",13,7.398 

674551,"R01","Dynamic Motion - Axial Rotation",1.02,1.58,"2021-07-09T09:59:01","2021-07-09T09:59:01","right rotation",21,7.398 

674552,"R01","Dynamic Motion - Axial Rotation",1.58,2.13,"2021-07-09T09:59:01","2021-07-09T09:59:02","left rotation",28,7.398 

674553,"R01","Dynamic Motion - Axial Rotation",2.13,2.74,"2021-07-09T09:59:02","2021-07-09T09:59:02","right rotation",37,7.398 

674554,"R01","Dynamic Motion - Axial Rotation",2.74,3.23,"2021-07-09T09:59:02","2021-07-09T09:59:03","left rotation",43,7.398 

674555,"R01","Dynamic Motion - Axial Rotation",3.23,3.76,"2021-07-09T09:59:03","2021-07-09T09:59:03","right rotation",50,7.398 

674556,"R01","Dynamic Motion - Axial Rotation",3.76,4,"2021-07-09T09:59:03","2021-07-09T09:59:04","static stand",54,7.398 

674557,"R01","Dynamic Motion - Axial Rotation",4,4.5,"2021-07-09T09:59:04","2021-07-09T09:59:04","right rotation",60,7.398 

674558,"R01","Dynamic Motion - Axial Rotation",4.5,5.12,"2021-07-09T09:59:04","2021-07-09T09:59:05","left rotation",69,7.398 

674559,"R01","Dynamic Motion - Axial Rotation",5.12,5.62,"2021-07-09T09:59:05","2021-07-09T09:59:05","right rotation",75,7.398 

674560,"R01","Dynamic Motion - Axial Rotation",5.62,6.17,"2021-07-09T09:59:05","2021-07-09T09:59:06","left rotation",83,7.398 

674561,"R01","Dynamic Motion - Axial Rotation",6.17,6.68,"2021-07-09T09:59:06","2021-07-09T09:59:06","right rotation",90,7.398 

674562,"R01","Dynamic Motion - Axial Rotation",6.68,7.21,"2021-07-09T09:59:06","2021-07-09T09:59:07","left rotation",97,7.398 

674563,"R01","Dynamic Motion - Axial Rotation",7.21,7.4,"2021-07-09T09:59:07","2021-07-09T09:59:07","static stand",100,7.398 

674580,"R01","Dynamic Motion - Flexion",0,0.83,"2021-07-09T10:00:15","2021-07-09T10:00:15","forward bend",14,5.898 

674581,"R01","Dynamic Motion - Flexion",0.83,1.86,"2021-07-09T10:00:15","2021-07-09T10:00:16","backward bend",31,5.898 

674582,"R01","Dynamic Motion - Flexion",1.86,2.86,"2021-07-09T10:00:16","2021-07-09T10:00:17","forward bend",48,5.898 

674583,"R01","Dynamic Motion - Flexion",2.86,3.79,"2021-07-09T10:00:17","2021-07-09T10:00:18","backward bend",64,5.898 

674584,"R01","Dynamic Motion - Flexion",3.79,4.75,"2021-07-09T10:00:18","2021-07-09T10:00:19","forward bend",80,5.898 

674585,"R01","Dynamic Motion - Flexion",4.75,5.57,"2021-07-09T10:00:19","2021-07-09T10:00:20","backward bend",94,5.898 

674586,"R01","Dynamic Motion - Flexion",5.57,5.9,"2021-07-09T10:00:20","2021-07-09T10:00:20","static stand",100,5.898 

674566,"R01","Dynamic Motion - Lateral Bending",0,0.32,"2021-07-09T09:59:33","2021-07-09T09:59:33","static stand",4,7.331 

674567,"R01","Dynamic Motion - Lateral Bending",0.32,0.97,"2021-07-09T09:59:33","2021-07-09T09:59:33","left bend",13,7.331 
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674568,"R01","Dynamic Motion - Lateral Bending",0.97,1.51,"2021-07-09T09:59:33","2021-07-09T09:59:34","right bend",20,7.331 

674569,"R01","Dynamic Motion - Lateral Bending",1.51,2.05,"2021-07-09T09:59:34","2021-07-09T09:59:35","left bend",27,7.331 
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