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Biases in Cosmic Microwave Background Secondary Anisotropies

Measurements

Hongbo Cai, PhD

University of Pittsburgh, 2023

The development of Cosmic Microwave Background (CMB) experiments is leading to

spectacular insights into understanding the universe through the measurements of CMB

secondary anisotropies. In this thesis, we demonstrate topics in CMB secondary anisotropies

and extracting science from them.

In the first part of the thesis, we investigated the bias to the measurement of cosmic

microwave background lensing (CMB lensing) power spectrum from the kinematic Sunyaev-

Zel’dovich (kSZ) effect. We investigate for the first time the bias to CMB lensing reconstruc-

tion from temperature anisotropies due to the reionization-induced kSZ signal and show that

it is negligible for both ongoing and upcoming experiments based on current numerical sim-

ulations of reionization. We also revisit the bias induced by the late-time kSZ field, using

more recent kSZ simulations.

In the second part of the thesis, we present a new publicly available code, class_rot,

which enables fast non-perturbative calculation of cosmic microwave background polariza-

tion power spectra due to both isotropic and anisotropic polarization rotation from cosmic

birefringence. We describe the implementation of class_rot in terms of both mathematical

formalism and coding architecture. We also provide usage examples and demonstrate the

accuracy of the code by comparing with simulations.

In the third part of the thesis, we study how the presence of anisotropic cosmic bire-

fringence impacts on lensing power spectrum measurements. We show that a scale-invariant

cosmic birefringence with an amplitude of ACB = 10−7 can induce a 1 − 2% bias to the

measured lensing power spectrum for both CMB-S3-like and CMB-S4-like experiments. Our

findings suggest that a birefringence signal well below our current limit can still bias the

lensing measurements by around 10% if unaccounted for. Cosmic birefringence, therefore, is

potentially an important source of error to mitigate for the precision CMB lensing measure-
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ments in the future.
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1.0 Introduction

This chapter is meant to depict a big picture of the universe and introduce the basic

knowledge of modern theoretical and observational cosmology. The knowledge introduced in

this chapter is not original but is the foundation of my research introduced in the following

chapters. There are two sections in this chapter:

• The Standard Model of Cosmology: Section. 1 introduces the standard model of

cosmology which is the framework of modern cosmology. Subsection. 1.1 and Subsec-

tion. 1.2 introduce the two aspects of the standard model of cosmology respectively: the

homogeneous universe and the inhomogeneous universe.

• The Cosmic Microwave Background (CMB) In Section. 2, I will introduce how

we observe the universe using a powerful tool called the Cosmic Microwave Background

(CMB) which is the most ancient light in the universe generated in the process of re-

combination and emitted only 380,000 years after the big bang. In Subsection. 2.1, I

introduce the mechanism of primary CMB including CMB temperature and polarization

anisotropies. In Subsection. 2.2, I introduce briefly four secondary CMB contributions

which are related directly to my work in this thesis: CMB lensing, cosmic birefringence,

reionization and the Kinetic Sunyaev-Zel’dovich (kSZ) effect.

I use the natural units, in which the speed of light and Planck’s constant are set equal

to one c = ~ ≡ 1.

1 Standard model of cosmology

We live in an expanding universe. The universe is even expanding faster and faster

according to the evidence like the observation of distant supernovae [9, 10]. It must have

been expanding for a very long time.

How should we explain the current stage of the universe and describe the history of the
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universe? How should we understand what we observe from the universe? The concordance

model of cosmology or say the Standard Model of cosmology is the ΛCDM model: a Euclidean

universe dominated today by non-baryonic cold dark matter (CDM) and a cosmological

parameter (Λ). None of the two ingredients are part of the Standard Model particles. Except

the cold dark matter, there are other components existing in the universe like radiation and

baryon particles which are less dominated than cold dark matter and cosmological parameter

today, but played more important roles in the earlier times.

There are two levels of ΛCDM model: the homogeneous universe and inhomogeneous

universe. The previous one refers that we consider a smooth universe as a background

approximately. I will introduce it in Subsection. 1.1. The latter one adds perturbations

around the smooth universe, which I will explain briefly in Subsection. 1.2. Especially

according to the most plausible mechanism, these perturbations are generated in the epoch

of inflation initially when the universe grew exponentially with time.

Equipped with the ΛCDM model along with the observations of CMB (Microwave Cosmic

Background) and LSS (Large-scale structures), we are able to construct a timeline of the

universe. The epoch in the universe can usually be characterized by different parameters like:

the time since the big bang t, the scale factor a, the redshift z or the temperature of the cosmic

background radiation T . For example, today, the age of universe t ≈ 13.7 billion years, the

scale factor a = 1, the redshift z = 0, and the temperature T = 2.73K = 2.35×10−4eV ; The

epoch of recombination when CMB photons decoupled from matter happened at t ≈ 380, 000

years, a ≈ 1/1100, z ≈ 1100 and T ≈ 3000K ≈ 1/4eV .

1.1 The homogeneous universe

We firstly assume that the universe is homogeneous and isotropic approximately, i.e.,

there is no preferred position or preferred direction. This assumption works well on very

large scales (above 200Mpc) and can derive some classical results in cosmology like the age

of the universe. In mathematics, the approximation of homogeneity and isotropy simplifies

equations significantly, because the variables dependence of position is dropped. In this

subsection in the context of a smooth universe, I will introduce briefly the geometry, the

2



kinematics, the dynamics along with the main constituents which make of our universe.

Generally speaking, the governed rule is the general relativity, and cosmology is like the

study of fluid mechanics under the influence of gravity.

1.1.1 Geometry

In general relativity, we use a generic metric gµν(t,x) to describe the universe in geometry,

which returns the physical distance between two infinitesimally close points around (t,x) in

spacetime in a given coordinate. In the homogeneous universe approximation, the metric

naturally does not depend on position. The Friedmann-Lemîatre-Robertson-Walker (FLRW)

metric is used to describe the homogeneous expanding universe. It is convenient to express

the Friedmann-Lemîatre-Robertson-Walker (FLRW) metric in spherical polar coordinate

ds2 = gµνdx
µdxν = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (1)

where t is the cosmic time, and the spatial coordinates are called the comoving coordinates,

dΩ2 ≡ dθ2 + sin2 θdφ2, a(t) is called the scale factor, and K is the curvature parameter. It

is useful to define the conformal time η by:

adη = dt, (2)

and the comoving distance traveled by a photon between ηi and η equals to

η − ηi =

∫ i

tI

dt′

a(t′)
. (3)

The advantage of using the conformal time in the comoving coordinate, as far as my under-

standing, is that the speed of light is still equal to 1 as it is in the physical coordinate using

cosmic time. Using conformal time, then we can rewrite the FLRW metrix as

ds2 = a(η)2

(
−dη2 +

dr2

1−Kr2
+ r2dΩ2

)
. (4)

There is no evidence that the spatial curvature of the universe K is non-zero, but I will keep

it for the sake of completeness.

3



1.1.2 Kinematics

How do particles move in the universe described FLRW metric? Given the spacetime,

the paths of free particles can be described by the geodesic equation

dP µ

dλ
+ Γνρ(x)µP νP ρ = 0, (5)

where Γµνρ is the Christoffel symbol which can be obtained from the metric gµν(x) by

Γµαβ ≡
1

2
gµλ (∂αgβλ + ∂βgαλ − ∂λgαβ) (6)

, and λ is an affine parameter which works both for massless particles and massive particles.

An important conclusion we can derive from the geodesic equation in the FLRW metric is

that the energy of a massless particle is inversely proportional to the scale factor a, and

hence its wavelength gets larger and larger as the universe is expanding.

1.1.3 Dynamics

How do we obtain the spacetime evolution of the universe? The evolution of the universe

is governed by the General Relativity expressed by

Gµν + Λgµν = 8πGTµν , (7)

where Λ is the cosmological constant, Gµν is the Einstein tensor, and Tµν is the energy-

momentum or energy-stress tensor.

Gµν can be computed from the metric gµν given by

Gµν = Rµν −
1

2
R, (8)

where Rµν is the Ricci tensor, and R is the Ricci scalar as the contraction of the Ricci tensor

(R)

The isotropic and homogeneous approximation of the universe requires that the matter

content of the universe should be a perfect fluid. The energy-momentum tensor of a perfect

fluid is given by

Tµν = (ρ+ P )UµUν − Pgµν , (9)

4



and its covariant form is

T µν = gµλTλν = (ρ+ P )UµUν − Pgµν , (10)

where ρ and P are the energy density and the pressure of the fluid the rest-frame of the

fluid, and Uµ ≡ dXµ

ds
is the relative four-velocity between the fluid and the observer. For an

comoving observer in the homogeneous and isotropic universe scenario, Uµ = (1, 0, 0, 0), and

we have

T µν =


ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 . (11)

Then, we obtain the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (12)

and the Friedmann equations (
ȧ

a

)2

=
8πG

3
ρ− K

a2
, (13)

ä

a
= −4πG

3
(ρ+ 3P ) , (14)

where the dot denotes derivation with respect to cosmic time. The Hubble parameter is

defined as H = ȧ
a
, and we can rewrite Eq. (11) as

H2 =
8πG

3
ρ− K

a2
. (15)

In the Friedmann equations, ρ and P should be the total energy density and pressure con-

tributed by all constituents in the universe

ρ =
∑
i

ρi, P =
∑
i

Pi. (16)

where i can be r for radiation (γ for photons and ν for neutrinos), m for matter (c for

cold dark matter, b for baryons) and λ for vacuum energy (cosmological constant). These

cosmological constituents are categorized based on their different constants equation of state:

5



w = P/ρ. As a result, the corresponding energy density relations with the scale factor are

different. It is easy to get the solution by plugging w into Eq. (12)

ρ ∝ a−3(1+w), (17)

and hence

ρ ∝


a−3 matter

a−4 radiation

a0 vacuum

. (18)

Using Eq. (15), here we can define the critical density today ρcrit,0 which is the total energy

density in a flat universe (a = 1,K = 0)

ρcrit,0 =
3H2

0

8πG
, (19)

where H0 is the Hubble parameter today. We can use the critical density to define dimen-

sionless density parameters for all the constituents in the universe today:

Ωi,0 ≡
ρi,0

ρcrit,0

. (20)

From now on, I will drop the 0 in the subscripts of ρcrit,0 and Ωi,0 for convenience, and

we can have
H2

H2
0

= Ωra
−4 + Ωma

−3 + ΩΛ. (21)

From Eq. (21), we can see that given the density parameters of the constituents and the

Hubble parameter today, we are able to know the Hubble parameter in the history at a

certain scale factor a.
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1.2 The inhomogeneous universe

The assumption of homogeneous and isotropic universe is only useful on very large scales

(> 200Mpc). Obviously, we are not really living in a homogeneous universe. To investigate

things like the formation and evolution of structures (galaxies and their clusters), we need

to consider the deviation from the homogeneous and isotropic universe, i.e., the perturba-

tions in the FLRW metric and stress-energy tensor. The evidences from cosmic microwave

background (CMB) show that CMB temperature has anisotropies at the level of a few parts

in 105, which suggests that the perturbations are relatively small, and it is safe to apply

linear perturbation theory mostly, i.e., to solve the linearized perturbed Einstein equations

and Boltzmann equations.

The perturbed metric can be written as

gµν = ḡµν + δgµν , (22)

where ḡµν is the homogeneous FLRW metric introduced in the previous section as the back-

ground spacetime, and δgµν is the small perturbation. Similarly, we can write the perturbed

stress-energy tensor with mixed indices as2

T µν = T̄ µν + δT µν . (23)

We usually write the linear-order perturbed Einstein equations with mixed indices as

δGµ
ν = 8πGδT µν . (24)

The metric perturbation δgµν has 10 degrees of freedom. The scalar-vector-tensor (SVT)

decomposition can be performed on the metric, and the 10 degree of freedom can be catego-

rized as 4 scalar-type perturbations (1 degree of freedom for each), 2 divergenceless vector-

type perturbations (2 degrees of freedom for each) and 1 divergenceless traceless rank-2

tensor-type perturbation (2 degrees of freedom). The reason why we use SVT decompo-

sition is that the scalar, vector and tensor perturbations evolve independently in Einstein

equations at linear-order, so they can be treated separately.
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There are two points about the perturbed metric we need to notice. The first one is that

the metric defined in Eq. (22) is not uniquely defined. We can choose different coordinates

in which the corresponding metric is defined as long as the spacetime interval is invariant

ds2 = gµν(X)dXµdXν = g̃αβ(X̃)dX̃αdX̃β. (25)

X̃µ represents a new coordinate given by X̃µ ≡ Xµ+ ξµ(X̃), where ξµ(X̃) is a infinitesimally

small vector field as the gauge generator. This implies that there are 4 redundant degrees of

freedom. The second point is that perturbation values may change when coordinates change,

which are not physical. Thus, we have to choose a proper scheme, in which the redundant

degrees of freedom are get rid of, and the perturbations are invariant under changes of coor-

dinates. A choice of coordinates is referred as gauge in the context of perturbation theory in

relativity. In cosmology, we usually use the Newtonian Gauge. Under this gauge, 2 degrees of

freedom from scalar-type perturbations as the gravitational potentials, 2 degrees of freedom

from vector-type perturbations, and 2 degrees of freedom from tensor-type perturbation as

the two polarizations for gravitational waves are contained. All of the perturbations are

gauge-invariant.

The perturbed Einstein equation itself is not enough to depict the full picture of the

inhomogeneous universe. We also need equations to describe the statistical behavior of the

thermodynamics system which is not in a state of equilibrium, i.e., how the constituents in

the universe evolve in the given spacetime of the universe. The evolution equations of matter

and radiation are given by the perturbed Boltzmann equation which describes the spatial

and direction dependence of the distribution function f(x,p, t) with collision terms.

Armed with the background equations introduced in the previous chapter and the per-

turbed equations in the chapter, we are able to give the evolution of perturbations on different

scales and calculate their power spectra in a certain epoch. For example, one of the most

important topics is to depict matter fluctuations. Fig. 1 [1] shows the linear-theory matter

power spectrum at z = 0 inferred from different probes (the dotted line shows the impact of

non-linear clustering at z = 0). The black line is given by ΛCDM model which shows great

agreement with data.
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Figure 1: The (linear theory) matter power spectrum (at z = 0) inferred from different

cosmological probes.The black line is given by ΛCDM model which shows great agreement

with data. The dotted line shows the impact of non-linear clustering at z = 0. This figure

is taken from [1]
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We can use a set of cosmological parameters to describe the evolution of the universe

by Lambda Cold Dark Matter (ΛCDM) model. The basic ΛCDM can be characterized by

six independent cosmological parameters. Here we choose a specific combination of the six

parameters,

• Baryon density Ωbh
2

• Cold dark matter (CDM) density Ωch
2

• Cosmological constant (Dark energy density) ΩΛ

• Amplitude of primordial scalar perturbations power spectrum As

• Spectra index of primordial scalar perturbations power spectrum ns

• Optical depth due to reionization τrei.

The best-fit fiducial values are given in [2], in which we can find that Ωm,0 = 0.3089±0.0062,

Ωc,0 = 0.2589 ± 0.0057, ΩΛ = 0.6911 ± 0.0062 with the 68% CL intervals. This shows that

we only know well about the 5% energy content in the universe today.

There are several points I would like to mention. (1). The parameters above are con-

strained by the power spectrum of CMB temperature and polarization power spectra which

I will introduce in the Section. sec:CMB. Partial degeneracies exist as the price this mul-

tidimensional space. (2). Some other parameters can be derived from the six parameters

like the Hubble parameter H0, the sound horizon at recombination rs(η∗) and the redshift of

reionization epoch zrei. Thus, the combination of the six parameters listed above is not the

only option (3). In addition to the six basic, some other parameters are not directly con-

strained by CMB power spectra but can be better constrained by other tools. For example,

CMB lensing can be used to constrain the sum of neutrino masses a and the curvature of

the universe.

aMassive neutrino energy density are too small at early times but can suppress the matter overdensity
power spectrum.
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2 Cosmic microwave background

In the previous sections, I have introduced the homogeneous universe as the background

and the inhomogeneous universe with perturbations. One would like to ask that if there is

way to study the early universe and observe the inhomogeneities in that period? Fortunately,

the Cosmic Microwave Background (CMB) as the oldest light of the universe provides a

powerful way for us to study the early universe and probes its inhomogeneities.

Before the epoch of recombination, the photons were tightly couple to the electrons and

protons as a baryon-photon fluid. In the epoch of recombination(about 380, 000 years after

the big bang) when the temperature dropped below 1eV which is not high enough to main-

tain the equilibrium, photons decoupled with electrons. As a result, free electrons fraction

dropped dramatically and photons free-screamed from the last scattering surface as the CMB

photons we observe today. The observed CMB temperature is pretty uniform corresponding

to a blackbody spectrum of about 2.725K. But there are still little anisotropies fluctuating

at the level of 1/105. These anisotropies of CMB reflect directly the inhomogeneities in the

epoch of recombination and the physics in the early universe, and its power spectra allows

us to determine things like the cosmological parameters.

Because my work presented in this thesis is centered around how to extract information

from CMB, it is necessary to introduce CMB carefully and include some calculation de-

tails. I will firstly introduce the primary CMB in Subsection. 2.1, and four CMB secondary

contributions in the post-recombination era which are related to my work in Subsection. 2.2.

2.1 Primary CMB

2.1.1 CMB temperature anisotropies

We usually use Θ(n̂) = δT (n̂)/T to denote the CMB temperature anisotropies. We can

use spherical harmonics to decompose Θ(n̂) as

Θ(n̂) =
∞∑
l=0

l∑
m=−l

aT,`mY`m(n̂), (26)
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where the T in the subscript of aT,`m denotes temperature field. Taking advantage of the

orthonormality of spherical harmonics∫
d2n̂Y`m(n̂)Y ∗`′m′(n̂) = δ``′δmm′ , (27)

Eq. (26) can be inverted as

aT,`m =

∫
dΩ Θ(n̂)Y ∗`m(n̂). (28)

For pure Gaussian perturbations, the expectation and variance of aT,`m are given by

〈aT,`m〉 = 0, 〈aT,`ma
∗
T,`′m′〉 = δ``′δmm′CTT,`, (29)

where CTT,` is the CMB temperature power spectrum.

Next we take a look at how we figure Θ(n̂) in Eq. (28) mathmatically. Firstly, we need to

realize that Θ(n̂) represents the temperature anisotropies at this moment where we observe

them (i.e. the Earth). Hence, it is more intuitive to express it as

Θ(n̂)→ Θ(η0,x0, p̂), (30)

where η0 is the conformal time for now, x0 is our location, and n̂ = −p̂ represents our

line-of-sight which is opposite to the direction of incoming photons. We firstly fix the spatial

variables using Fourier transformation by

Θ(η0,x0, p̂) =

∫
d3k

(2π)3
Θ(η0,k, p̂)eik·x. (31)

As introduced in the Subsection. 1.2, the scalar, vector and tensor perturbations evolve

independently at linear-order. Vector perturbations decayed very fast in the expanding

spacetime, and scalar perturbations contribute much more than tensor perturbations. I will

firstly introduce scalar-perturbation contribution Θ(S)(η0,k, p̂) and then tensor-perturbation

contribution Θ(T)(η0,k, p̂).

For scalar perturbations, we usually renormalize Θ(S)(η0,k, p̂) using the primordial Gaus-

sian scalar perturbation mode R(η,k) by Θ(η0,k, p̂) = R(k)Θ(S)(η0, k, p̂), where Θ(η0, k, p̂)

does not depend on the direction of k. Then we fix the variables of direction. For scalar
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Figure 2: CMB temperature power spectrum taken from Planck 2018 results [2]. In the

upper panel, the blue line represents the best-fit ΛCDM Planck 2018 model, based on the

combination of TT, TE and EE. In the lower panel, the blue line represents the residuals

with respect to this model. The error bars show ±1σ diagonal uncertainties, including cosmic

variance (approximated as Gaussian) and not including uncertainties in the foreground model

at ` ≥ 30.
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perturbations, Θ(S)(η0, k, p̂) is axially symmetric, and we can have k̂ · p̂ = µ = −k̂ · n̂ and

use partial wave expansion as

Θ(S)(η0, k, µ) =
∑
`

(−i)`(2`+ 1)P`(µ)Θ
(S)
` (η0, k), (32)

where P`(µ) is the Legendre polynomial, and the superscript S denotes the contribution by

scalar perturbations.

So far, we have only considered the CMB temperature anisotropies purely geometrically.

We then connect Θ
(S)
` (η0, k) to the physics in the early universe and the inhomogeneities at

the period of recombination. We apply the line-of-sight integration technique, in which we

assume the photons traveled approximately alone the line-of-sight for simplicity. We will also

use the same technique for tensor perturbation contribution and CMB polarization later. We

have

Θ
(S)
` (η0, k) =

∫ η0

0

dηS
(S)
T (η, k)j` [k (η0 − η)] , (33)

where S(S)
T (η, k) is the source term for CMB temperature, which encapsulates the historical

information of the universe for scalar perturbations from the end of inflation ηi = 0 to

now, and j` [k (η0 − η)] is spherical Bessel function as a weight function. S(S)
T (η, k) can be

expressed as

S
(S)
T (η, k) ≡ (Ψ′ − Φ′) e−τ + g

(
Θ0 +

Π

4
+ Ψ

)
+

1

k
(gVb)′ +

3

4k2
(gΠ)′′, (34)

where Π = Θ2 + ΘP2 + ΘP0 demonstrating the inhomogeneities and anisotropies of the

universe, and g(η) is the visibility function given by

g(η) ≡ −τ ′e−τ (35)

representing the Possionian probability that a photon is last scattered at η.

The visibility function g(η) as a function of redshift z is shown in Fig. 3. The very

top peak at round z = 1000 represents recombination when CMB photons decoupled with

electrons. Obviously, recombination contributes most of the last-scattered CMB photons,

and we can assume approximately photons are in the phase of free-streaming after recombi-

nation though there are several secondary foreground effects which may scattered photons
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Figure 3: Visibility function g as a function of the redshift z. The result is calculated by

CLASS [3] numerically with ΛCDM model. The very top peak at round z = 1000 represents

recombination, and the peak at about z = 10 represents the epoch of reionization.
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like reionization, which corresponds to the other peak at about z = 10 in Fig. 3. And I

will discuss those secondary CMB contributions which are related to my work in this thesis

briefly in next subsection.

The CMB temperature power spectrum contributed by scalar perturbations can be given

by

C
(S)
TT,` =

2

π

∫
dkk2 |Θ` (η0, k)|2 PR(k) = 4π

∫
dk

k

∣∣∣Θ(S)
` (η0, k)

∣∣∣2 ∆2
R(k) (36)

where ∆2
R(k) is the power spectrum of primordial curvature perturbation as initial condition

determined by inflation. In the experiments, we measure CMB power spectra as observables.

Take the temperature power spectrum for example, its unbiased estimator is given by

ĈTT,` =
1

2`+ 1

∑̀
m=−`

|aT,`m|2, (37)

where sum indicates that each ` mode in CTT,` is estimated by 2` + 1 measurements, and

the variance of ĈTT,` is given by

σ2(C`) =
2

(2`+ 1)fsky

C`, (38)

where fsky is fraction of the sky covered by the experiment. In Fig. 2, the CMB temperature

power spectrum measured by Planck [2] is shown. In the upper panel, the blue line represents

the best-fit ΛCDM Planck 2018 model, based on the combination of TT, TE and EE. In the

lower panel, the blue line represents the residuals with respect to this model. The error bars

show ±1σ diagonal uncertainties, including cosmic variance (approximated as Gaussian) and

not including uncertainties in the foreground model at ` ≥ 30. The cosmic variance shown

in Fig. 2 is consistent with the theoretical expression given in Eq. (38). There are several

features of CMB temperature power spectrum I would like to introduce below

• The most significant features are the peaks and troughs. These fluctuations of power

spectrum are caused by the baryon acoustic oscillations (BAO), in which photons were

coupled tightly with the electron-proton as the baryon-photon fluid through Compton

scattering. The fluid propagated with the sound-speed as the sound-wave. The essence

of CMB is to project the spatial fluctuations of photon and gravitational potentials

distributions at recombination (contributed mostly by (Θ0 + Ψ) (η∗, k)) to the angular
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fluctuations of photon distribution now (CMB today). Hence, the peaks of CMB power

spectrum reflect directly the overdensity and the corresponding quantities in the epoch

of recombination. For example, the first and the highest peak is at ` ≈ 220 or ≈ 0.5◦ in

angle, corresponding to the sound horizon which is the furthest distance the sound-wave

traveled before recombination determined by the baryon-to-photon energy ratio R ≡ 3ρb
4ργ

.

The peaks height can be determined by things like the cold matter energy density, the

baryon energy density and optical depth of reionization.

• At very large scales (` < 30), the CMB power spectrum is approximate flat. These scales

are larger than the horizon at recombination, and hence did not involve the baryon

acoustic oscillations. They can reflect directly the amplitude and index of primordial

scalar perturbations. The significant variance at these scales are due to cosmic variance.

• At small scales (` > 1500), the CMB power spectrum decays exponentially, which is

caused by the Silk damping. At these scales, the corresponding Fourier mode wavelengths

become smaller than the mean free path length of the photon-electron scattering, and

hence the scattering does not reflect density perturbations any more or say it washes out

the density perturbations.

Then we focus on the tensor perturbations. As Fig. 4 shows, the contribution to CMB

TT power spectrum from tensor perturbations is much smaller than scalar perturbations.

The tensor contribution (Fourie mode) is Θ(T)(η0,k, n̂) and can be renormalized by the

primordial tensor mode as Θ(T)(η0,k, n̂) = Θ(T)(η0, k, µ, φ)β(k, λ), where

〈β(k, λ)β∗ (k′, λ′)〉 = (2π)3Ph(k)δλλ′δ
(3) (k− k′) . (39)

Different from the scalar perturbations in Eq. (32), tensor perturbation modes are not

axially symmetric. So we need to separate them as

Θ(T)(η0, k, µ, φ) = Θ
(T)
+ (η0, k, µ)

(
1− µ2

)
cos 2φ+ Θ

(T)
× (η0, k, µ)

(
1− µ2

)
sin 2φ

= 4

√
π

15

∑
λ=±2

Θ(T)(η0, k, µ)Y2λ(µ, φ)

=
∑
λ=±2

fλ(η0, k, µ, φ),

(40)

17



101 102 103

10 2

100

102

104

D
TT

 [
K2 ]

Total

Tensor

Figure 4: The total (solid line) and tensor (dotted line) CMB TT power spectra calculated

by CLASS [3] numerically. The power spectra are multiplied by a factor of `(`+ 1)/2π
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where

fλ(η0, k, µ, φ) = 4

√
π

15
Θ(T)(η0, k, µ)Y2λ(µ, φ), (41)

and the spherical harmonics Y2λ(µ, φ) (corresponding to the two helicities of gravitational

waves) absorb the dependence of φ angle, so we can focus on the evolution of Θ(T)(η0, k, µ)

which only depends on µ. The label λ represents the two possible states of helicity which are

determined by tensor perturbations, and can be absorbed by the initial tensor mode β(k, λ).

Similar to Eq. (33), we can use the line-of-sight integral to give

Θ(T) (η0, k, µ) =

∫ η0

0

dηeikµ(η−η0)−τS(T)
T (η, k), (42)

and the TT power spectrum contributed by tensor mode can be expressed as

C
(T)
TT,` =

(`+ 2)!

4π(`− 2)!

∫ ∞
0

dk

k
∆2

h(k)

∣∣∣∣∫ η0

0

dηST(η, k)
j`(kr)

(kr)2

∣∣∣∣2 (43)

2.1.2 CMB polarizations anisotropies

In the previous subsection, we focus on the CMB temperature anisotropies . Can we

exploit more information from CMB photons? Fortunately, linear polarization anisotropies

can be produced by Thomson scattering in the process of recombination which does not take

place instantaneously.

The linear polarization can be described by two Stokes parameters Q and U , which are

measured by a set of orthogonal polarizers as basis. We usually use the combinations Q±U
because they have helicity 2

(Q± iU)→ e±2iθ(Q± iU), (44)

where θ is rotation angle of polarization plane.

As we can see from Eq. (44), Q and U are defined by the local polarizers, which change

as the basis rotates, which implies that they are not physical, and we have to consider the

CMB polarization globally and defined more physical quantities which are scalars or at least

pseudoscalars. So we will discuss CMB polarizations in the spherical coordinate system

which is compatible with CMB observation, and we can imagine the polarizations on the
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sphere. The polarizer basis on the sphere are defined as (êθ, êφ). It is naturally to use spin

2-weighted spherical harmonics [11] to expand them as [12, 13]

(Q+ iU)(n̂) =
∞∑
`=2

∑̀
m=−`

aP,`m 2Y`m(n̂)

(Q− iU)(n̂) =
∞∑
`=2

∑̀
m=−`

a∗P,`m 2Y
∗
`m(n̂),

(45)

, and the E and B-mode multipoles are given by

aE,`m = −
(
aP,`m + a∗P,`−m

)
/2, aB,`m = i

(
aP,`m − a∗P,`−m

)
/2. (46)

The E and B-mode maps in the real space on the sphere can be expressed as

E(n̂) =
∞∑
l=0

l∑
m=−l

aE,`mY`m(n̂)

B(n̂) =
∞∑
l=0

l∑
m=−l

aB,`mY`m(n̂)

(47)

It is easy to check that E(n̂) is a scalar, and B(n̂) is a pseudoscalar which gains a (−1) under

spatial reflection transformation. We can give CMB polarization and cross power spectra as

〈aE,`ma
∗
E,`′m′〉 = δ``′δmm′CEE,`, 〈aB,`ma

∗
B,`′m′〉 = δ``′δmm′CBB,`,

〈aT,`ma
∗
E,`′m′〉 = δ``′δmm′CTE,`,

〈aT,`ma
∗
B,`′m′〉 = δ``′δmm′CTB,`, 〈aE,`ma

∗
B,`′m′〉 = δ``′δmm′CEB,`,

(48)

It is more straightforward to demonstrate the difference between E-mode and B-mode

by plotting the polarization patterns generated by a pure E-mode and B-mode signal from

a single multipole as shown in Fig. 5, in which you can see that B-mode signal is not left-

right symmetric, featuring a different parity with E-mode. Intuitively, we may realize that

the B-mode pattern might be caused by something mechanism different from what induces

E-mode pattern. This is right because in the process of recombination B-mode can only be

generated when there exist tensor perturbations or say primordial gravitational waves [14].

Like the previous subsection, I will discuss the contributions from scalar perturbations and

tensor perturbations to CMB polarization respectively, and conclude what makes B-mode
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Figure 5: An illustration of polarization E- and B-modes which shows the different parities

of E- and B-modes. Image is taken from [4].

so unique. I still use the line-of-sight technique for the polarization calculation like the

temperature anisotropies calculation in the previous subsection.

Physically, CMB polarizations are produced by Thomson scattering (the low-energy limit

of Compton scattering) in the process of recombination. Like usual, we use Fourier expansion

to separate the spatial component like

ΘP(η0,x0, n̂) =

∫
d3k

(2π)3
ΘP(η0,k, n̂)eik·x, (49)

where ΘP(η0,x0, n̂) can represent both Q and U maps.

Firstly we take a look at the scalar perturbation contributions by a single Fourier mode

Θ
(S)
P (η0,k, n̂). We have chosen a reference frame in which k̂ = n̂. With only scalar pertur-

bations, the polarizations produced by Thomson scattering is axially-symmetric, so it is safe

to use partial wave expansion as

Θ
(S)
P (η0, k, µ) =

∑
`

(−i)`(2`+ 1)P`(µ)Θ
(S)
P` (η0, k). (50)
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Figure 6: The CMB TT, TE, EE, BB power spectra are shown above. All the spectra are

calculated by CLASS [3] numerically and have been multiplied by a factor of `(`+ 1)/2π.
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We have Θ
(S)
P (η0,k, n̂) = QP(η0,k, n̂) in this frame according to the symmetry. Similar to

Eq. (33), we can express Θ
(S)
P` (η0, k) as

Θ
(S)
P` (η0, k) =

∫ η0

0

dηSP(η, k)j` [k (η0 − η)] , (51)

where S(S)
P (η, k) is the source term for polarization with scalar perturbations, which plays

a similar role as S(S)
T (η, k) plays in Eq. (33). The power spectra contributed by scalar

perturbations are given by

C
(S)
EE,` =

9

64π

(`+ 2)!

(`− 2)!

∫
dk

k
∆2

R

∣∣∣∣∫ η0

0

dηS
(S)
P (η, k)

j`(kr)

(kr)2

∣∣∣∣2 (52)

C
(S)
BB,` = 0 (53)

C
(S)
TE,` = −3

4

√
(`+ 2)!

(`− 2)!

∫
dk

k
∆2

RΘ`(k)

∫ η0

0

dηS
(S)
P (η, k)

j`(kr)

(kr)2
(54)

Then we discuss the contribution from tensor perturbation to CMB polarization. Like

Eq. (42), there is no axial symmetry, so we have

Θ
(T)
P (η0, k, µ, φ) = Θ

(T)
P+(η0, k, µ)

(
1 + µ2

)
cos 2φ+ Θ

(T)
P×(η0, k, µ)

(
1 + µ2

)
sin 2φ

= 4

√
π

15

√
3

2

∑
λ=±2

Θ
(T)
P (η0, k, µ)Eλ(µ, φ),

(55)

where

Θ
(T)
P (η0, k, µ) =

∫ η0

0

dηeikµ(η−η0)S
(T)
P (η, k). (56)

The power spectra contributed by tensor perturbations are given by

C
(T)
EE,` =

∫
dk

4πk
∆2

h(k)

∣∣∣∣∫ η0

0

dηS
(T)
P (η, k)

[
2

kr
j′` − 2j` +

2 + `(`+ 1)

(kr)2
j`

]∣∣∣∣2 , (57)

C
(T)
BB,` =

∫
dk

4πk
∆2
h

∣∣∣∣∫ η0

0

dηSTP (η, k)

(
2j′` +

4

kr
j`

)∣∣∣∣2 , (58)
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and

C
(T)
TE,` = −

√
(`+ 2)!

(`− 2)!

∫
dk

8πk
∆2

h(k)

∫ η0

0

dηS(T)(η, k)
j`

(kr)2∫ η0

0

dη′S(T)
P (η′, k)

[
2

kr
j′` − 2j` +

2 + `(`+ 1)

(kr)2
j`

]
.

(59)

The parity-odd power spectra CTB,` and CEB,` are zero according to the parities of E- and

B-modes. They can be non-zero when there exists parity-violation physics like the axion-like

particles which we have not well constrained [15].

Note that CBB,` can only be generated by tensor perturbations. Intrinsically, this is

consistent with the fact that for a certain Fourier mode, the photon distribution does not

maintain axial symmetry. Tensor perturbations represent primordial gravitational waves

which can be generated in inflation. Hence, the detection for primordial B-mode can be a

very significant evidence of inflation [14] and is one of the most important scientific goals for

the ongoing and upcoming experiments.

2.2 Some secondary contributions to CMB

As what I have shown, the CMB anisotropies are contributed mostly by the photons

decoupled at recombination. However, there are also secondary effects contributing to the

total CMB in the post recombination-era. I will include four secondary effects below which

are related to my work in this thesis.

2.2.1 CMB lensing

In the Subsection. 2.1, we calcualte the CMB temperature and polarization based on

the line-of-sight approximation, which is not perfectly accurate because the path of CMB

photons can be deflected by gravitational potentials according to general relativity. Here I

introduce briefly the CMB lensing effect, which refers to the path deflection of CMB photons

from the last scattering surface to us. An illustration of CMB lensing is shown in Fig. 9.

Most of my work centered around CMB lensing and the systematic bias to CMB lensing

reconstruction, here I give a brief introduction of CMB lensing and I will include much more

details in the following chapters.
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Figure 7: The total CMB BB power spectra and its contributions of CMB lensing and

primordial gravitational waves. The power spectra are calculated by CLASS [3] numerically.
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peak of the power spectrum is around ` ≈ 60. The CMB lensing power spectrum is mostly

contributed by the matter fluctuations at z ∼ 2 and mainly on scales in the linear regime

k ∼ 0.05h/Mpc.
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We can use a deflection field to denote the displacement of the primary CMB maps.

Under Born’s approximation b and the assumption that all CMB photons come from the

last scattering surface and that non-linear effect is negligible, the deflection field can be

expressed as pure gradiant of the CMB lensing potential [16] which can be written as an

integral over the gravitational potentials power spectrum. The power spectrum of CMB

lensing potential for a concordance ΛCDM is shown in Fig. 8. The peak is around ` ≈ 60.

CMB lensing encodes the information of matter density perturbations especially at late-time

(peaking at z ∼ 2 and mainly on scales in the linear regime k ∼ 0.05h/Mpc ). We can use

the CMB lensing power spectrum as a powerful tool of constraining cosmological parameters

(see [17, 18] for example) like the linear-theory matter fluctuation amplitude σ8, the matter

density Ωm, the spatial curvature of the universe Ωk, the sum of neutrino masses
∑
mν and

the dark energy equation of state w. CMB lensing is also an significant source of generating

B-mode signal, which should be removed using the tool of de-lensing.

CMB lensing distorts CMB power spectra by smoothing out the main baryon acoustic

peaks. This can be checked by the expression of the lensed CMB power spectra which has

the form of a convolution of unlensed CMB power spectra and CMB lensing potential [16].

The lensing signal is hard to distinguished because it has the same frequency spectrum as the

unlensed CMB. However, lensing effect imprints signals by bringing off-diagonal correlations

to CMB multipoles, and hence can be reconstructed by quadratic estimators [19, 20]. The

current detection of CMB lensing through CMB lensing reconstruction is 40σ [21]. The

parameter combination that CMB lensing measures best is σ8Ω0.25
m [22]. Combining with the

data of baryon acoustic oscillation, we can constrain the individual parameters of σ8, H0 and

Ωm. And the neutrino masses
∑
mν and the effective number of neutrino species Neff can be

constrained by combining CMB lensing power spectrum (4-point function) and CMB power

spectrum (2-point function).

However, there can be some other secondary effects bringing biases to the reconstructed

CMB lensing power spectrum which may affect cosmological constraints and the search of

primordial B-mode signals. Among these biases to CMB lensing reconstruction, I focus

bThe Born’s approximation corresponds that we calcualte the the deflection angle approximately along
the unperturbed path of CMB photon.
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on the bias from the kinetic Sunyaev-Zel’dovich (kSZ) effect introduced in Chapter. 2 and

anisotropic cosmic birefringence introduced in Chapter. 4.

2.2.2 Cosmic birefringence

Cosmic birefringence refers to the linear polarization rotations that CMB photons may

undergo as they travel through the universe from the last scattering surface to us. Cosmic

birefringence can be caused by parity-violating physics in the early universe, such as axion-

like particles coupling to photons through Chern-Simons interaction [23, 24, 25], more general

Lorentz-violating physics beyond the Standard Model [26], and primordial magnetic fields

through Faraday rotation which is frequency-dependent [27, 28].

We can use a rotation field to describe the linear rotation of CMB polarization maps

induced by cosmic birefringence. A generic rotation field can be separated into an isotropic

and anisotropic part. For example, some quintessence models predict both isotropic and

anisotropic cosmic birefringence [29]. The isotropic cosmic birefringence violates parity sym-

metry and induces odd-parity CMB TB and EB power spectra c. The anisotropic cosmic

birefringence also contributes to CMB polarization power spectra. In Chapter. 3, I will show

a method which can calculate rotated CMB power spectra accurately.

Similar to CMB lensing, anisotropic birefringence can induce off-diagnal correlations to

CMB multipoles. Thus, like CMB lensing reconstruction algorithm, the anisotropic rotation

field can be reconstructed by quadratic estimators [30, 31]. The current best constraint

of the scale-invariant anisotropic rotation power spectrum is given by ACTPol [15] and

SPTPol [32] corresponding to the 2σ upper bound on the amplituded ACB ≤ 10−5. The

expected constraints of ACB are at the level of 10−7 for the next-generation ground-based

CMB experiments [33, 34]. In Chapter. 4, I will show a bias from the anisotropic cosmic

birefringence to CMB lensing reconstruction.

cHowever, the global polarization angle calibration can produce isotropic rotation and induce such odd-
parity CMB power spectra.

dNote that ACB defined in this paper is 10−4 times of that in [15] and [32].

28



Figure 9: An illustration of the Gravitational lensing of Cosmic Microwave Background

(CMB lensing). It demonstrates the CMB photons are deflected by gravitational potentials.

The figure is taken from ESA and the Planck Collaboration.
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2.2.3 Reionization

We know that most of the gas we observe in the late universe is ionized. However, it

was neutral after recombination. Thus, hydrogen must have be reionized at some point of in

the history of the universe. This process is called reionization, corresponding to the peak at

about z = 10 of the visibility function shown in Fig. 3. In the epoch of reionization, hydrogen

gets ionized again by the ultraviolet radiation of the first structures, and the free-electron

fraction increased again.

We usually use a single cosmological parameter τ(ηrei) to parametrize reionization, which

is the optical depth of reionization. The probability for a photon not to be scattered from

reionization until today is given by

e−τ(ηrei), (60)

and according to the definition of the optical depth it can be expressed by an integral along

the path as

τ(η) ≡
∫ η0

η

dχneσTa, (61)

where ne is the free-electron number density in the CMB rest frame. And naturally, its time

derivative is the photon-electron interaction rate as

τ ′ = −neσTa. (62)

The visibility function which has been introduced in Subsection. 2.1, can be determined by

the optical depth at η by

g(η) ≡ −τ ′e−τ . (63)

Here I show a simplified calculation of the fraction of photons scattered from reionization

to now. We assume a instantaneous reionization in matter-domination at ηrei, i.e. the free-

electron fraction Xe = 1 for z < zrei, so we have

τ (ηrei) =

∫ η0

ηrei

dηneσTa = σT

∫ zrei

0

dz

(1 + z)2H
ne. (64)

Of course, the calculation above is far from the reality. On the one hand, the free-electron

fraction did not go up in a sudden. The best current measurements using CMB show that

zrei < 10 [2], and the observations of the most distant quasars indicate that reionization
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happened at zrei > 6 [35]. On the other hand, reionization is inhomogeneous (patchy). The

details of reionization as the last phase transition is still uncertain.

Then we take a look at how reionization affects CMB. After CMB photons are scattered

by reionization area, the temperature map can be given by

T (1 + Θ)e−τrei + T
(
1− e−τrei

)
= T

(
1 + Θe−τrei

)
, (65)

where T is the background temperature, and Θ is the perturbation. This distortion only

affects multipoles at small scales within the horizon at the time of reionization (` > η0/ηrei).

Reionization suppresses CMB temperature power spectra overall on scale ` > 150, largely

degenerating with the change in As and ns. Reionization also produces polarization, which

is only significant on very large angular scales. The degeneracy between the optical depth

due to reionization and the amplitude of scalar perturbations can be broken by the E-mode

polarizations at the lowest multipoles. In addition, it is shown by current models that the

B-mode generated by reionization is significantly lower than that from gravitational lensing.

2.2.4 The Kinetic Sunyaev-Zel’dovich (kSZ) effect

The kSZ effect is due to the scattering of CMB photons by the bulk motion of free

electrons. To understand the kSZ effect, I first show the full SZ effect, i.e. the fluctuations

of CMB on small angular scales caused by the Compton scattering of CMB photons by free

electrons in the intergalactic medium. The distribution function of scattered CMB photons

can be given by

δf =

∫
dχg(χ)S

=

∫
dχneσTae

−τS,
(66)

where I have applied the visibility function expressed by Eq. (63) and Eq. (62), and S is

the source function. It is demonstrated in [36] that one of the leading-order terms of S

is proportional to ve · n̂, where ve is the bulk velocity of ionized electrons, and n̂ is the

direction of line-of-sight. The contribution of this term corresponds to the kSZ effect e . The

eBy contrast, the tSZ effect is an order of magnitude larger than kSZ.
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kSZ contribution to CMB temperature fluctuations should be given by

ΘkSZ =

∫
dχneσTae

−τve · n̂, (67)

where we can see kSZ depends on the peculiar bulk velocity of ionized photons. kSZ is very

difficult to detect firstly because it contributes CMB power anisotropies at very small scales

and much smaller than the signal of the thermal Sunyaev-Zel’dovich effect (tSZ effect). It

remains black-body spectrum and hence cannot be separated by multi-frequency technique

like tSZ. In addition, it cancels out mostly because the bulk velocity of free electrons along

the line-of-sight can have either positive or negative sign, which requires very careful kSZ

estimators. The SPT collaboration has given an upper limit on kSZ power spectrum at

l = 3000 of D`=3000,kSZ < 2.8µK [37].

Then we take a look at the contributions to kSZ from two stages: reionizaiton period and

late-time period. The contribution from reionization is above zov, where zov is the redshift

of the end of reionization. The ionization was patchy and incomplete in the epoch of reion-

ization, so this contribution also depends on the time and spatial variations of reionization,

which are not yet well constrained. The late-time contribution is below zov, when reioniza-

tion is complete and the universe is fully ionized. Compared with reionizaiton contribution,

the late-time kSZ contribution contains more information of the information of the late-time

universe like the large-scale structure formation and late-time matter perturbations. Hence,

it correlates with CMB lensing significantly because the latter is contributed by the matter

perturbations around z ≈ 2 the most. As a contrast, because reionization takes place at a

relatively hight redshift and when the free electron field is mostly due fluctuations in the

ionization fraction, we assume reionization kSZ only weekly correlates with CMB lensing.

In Chapter. 2, we will see that the late-time kSZ biases CMB lensing reconstruction due to

its correlation with CMB lensing, and the bias from the reionization kSZ is much smaller

than that from the late-time kSZ. kSZ signal does not affect CMB polarization significantly

to the lowest order.
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2.0 The Bias to Cosmic Microwave Background Lensing Reconstruction from

the Kinematic Sunyaev-Zel’dovich Effect at Reionization

The content of this chapter is based on the manuscript which has been published on

Physical Review D journal [38]. The power spectrum of reconstructed cosmic microwave

background (CMB) lensing maps is a powerful tool for constraints on cosmological parame-

ters like the sum of the neutrino masses and the dark energy equation of state. One possible

complication is the kinematic Sunyaev-Zel’dovich (kSZ) effect, due to the scattering of CMB

photons by moving electrons, which can bias the reconstruction of the CMB lensing power

spectrum through both kSZ-lensing correlations and the non-Gaussianity of the kSZ temper-

ature anisotropies. We investigate for the first time the bias to CMB lensing reconstruction

from temperature anisotropies due to the reionization-induced kSZ signal and show that it

is negligible for both ongoing and upcoming experiments based on current numerical sim-

ulations of reionization. We also revisit the bias induced by the late-time kSZ field, using

more recent kSZ simulations. We find that it is potentially twice as large as found in ear-

lier studies, reaching values as large as several percent of the CMB lensing power spectrum

signal, indicating that this bias will have to be mitigated in upcoming data analyses.

1 Introduction

Cosmic microwave background (CMB) photons are deflected by gravitational potentials

while they travel from the last scattering surface to us. This effect, known as CMB lensing

[39, 40], remaps the CMB intensity and polarization fields. Compared with galaxy lensing

[41], CMB lensing can probe matter inhomogeneities at relatively higher redshifts. In addi-

tion, CMB lensing also helps constrain fundamental cosmological parameters [42], including

the sum of the neutrino masses [43, 44, 42] and the dark energy equation of state [43].

CMB lensing can be described by the lensing potential, which is a line-of-light projec-

tion of the three-dimensional gravitational potential weighted by a geometric lensing kernel.
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The lensing potential can be reconstructed using a minimum-variance quadratic estimator

[45, 46] using both CMB temperature and polarization maps. Ongoing and upcoming exper-

iments, including Advanced ACT [47], SPT-3G [48], and Simons Observatory (SO) [49], have

sensitivities for which temperature maps provide most of the statistical weight for lensing

reconstruction; proposed future experiments such as CMB-S4 [50] and CMB-HD [51] will

have high enough sensitivity so that polarization becomes the dominant channel for lensing

reconstruction.

Besides lensing, CMB temperature maps also contain signals from several secondary

anisotropies including the thermal and kinematic Sunyaev-Zel’dovich effects (tSZ and kSZ),

the integrated Sachs-Wolfe effect, and the Rees-Sciama effect, and foregrounds from ther-

mal dust, radio synchrotron emission, and the cosmic infrared background (CIB). Most of

these contaminants can be removed or suppressed by multifrequency component separation

methods [52, 53, 54, 55]. Since the kSZ effect preserves the blackbody spectrum of the CMB
a , it cannot be removed by multifrequency component separation methods (internal linear

combination, or ILC) (e.g., as possible for the tSZ or CIB fields [58])b . Any significant

bias to CMB lensing reconstruction from the kSZ effect must be mitigated using geometric

techniques such as shear-only reconstruction [61] or bias-hardened estimators [62, 63, 64].

The kSZ signal has two physically distinct pieces: the late-time contribution (below the

redshift at which the universe has become fully reionized) and the reionization contribution

(from the epoch before reionization is complete). The bias to CMB lensing power spectrum

measurements from temperature anisotropies due to the late-time kSZ signal was investi-

gated in [7], showing that the large-scale (L < 500) fractional bias can reach 0.5%, 2% and

3% for Planck, Stage-III experiments (similar to SO) and CMB-S4, respectively, when using

`max = 4000, and about half of that for `max = 3000, where `max is the maximum tempera-

ture multipole used in the lensing reconstruction and L is the multipole of the reconstructed

lensing map. In this work, we investigate the bias due to the reionization kSZ signal for the

first time, and also revisit the late-time kSZ bias. Since the kSZ effect produces negligible

aThere are higher-order relativistic SZ terms which have the same velocity dependence as the kSZ effect
[56, 57, 36], and they do not preserve blackbody spectrum.

bThe standard ILC can induce significant bias, which can be mitigated by geometric methods such
as profile hardening, and by partial joint deprojection method [59]. The best-performed combination of
multifrequency and geometric methods is introduced in [60].
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polarization fluctuations, we consider only temperature anisotropies. The redshift of reion-

ization and its detailed kSZ signature are not constrained to high precision by current data;

our conclusions are based on current numerical simulations of reionization from the WebSkyc

extragalactic CMB simulations [5]. Our conclusions will have some quantitative dependence

on the exact reionization model assumed, although they are unlikely to differ qualitatively.

In addition, a related but different analysis is performed in [65], which computes the bias

to CMB lensing reconstruction arising from the fact that foreground fields (including the

reionization kSZ signal) are lensed by the some of the same structures as the CMB. The

bias arising from the intrinsic non-Gaussianity of the kSZ field is not considered in [65], and

forms the focus of our investigation.

In this paper, we assume a ΛCDM fiducial cosmology with the Planck 2015 parameters

given in the third column of Table 4 of [66].

This paper is organized as follows. We revisit the CMB lensing reconstruction using

CMB temperature anisotropies in Section 2. In Section 3, we introduce the kSZ effect and

explain how to estimate the bias induced by the kSZ effect on the reconstructed CMB lensing

power spectrum. Analytical details of the CMB temperature trispectrum and the kSZ effect

can be found in Section 4. We describe the details of our simulations and the numerical

results in Section 5, and conclude in Section 6.

2 CMB lensing reconstruction from temperature anisotropies

A gravitationally lensed CMB temperature map T̃ (n̂) can be expressed as

T̃ (n̂) = T (n̂ + d(n̂)), (68)

where n̂ is the direction on the full sky, T (n̂) is the unlensed CMB temperature map, and

d(n̂) is the lensing deflection field. At lowest order in the deflection field, d(n̂) is a pure

gradient [39] given by

d(n̂) = ∇φ(n̂), (69)
chttps://lambda.gsfc.nasa.gov/simulation/tb_mocks_data.cfm
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where ∇ represents the angular derivative on the sphere defined by n̂, and φ(n̂) is the lensing

potential. The CMB lensing convergence is defined as

κ(n̂) = −1

2
∇2φ(n̂), (70)

which can be reconstructed by a minimum variance quadratic estimator. Under the flat-sky

approximation in Fourier space, the temperature quadratic estimator is given by [67]

κ̂(L) =
1

2
L2A(L)

∫
`

g(`,L)T tot(`)T tot(L− `), (71)

where

g(`,L) =
CTT
` ` · L + CTT

|L−`|L · (L− `)

2Ctot
` Ctot

|L−`|
, (72)

κ̂(L) represents the estimator for κ(L), and T tot is the observed total temperature anisotropy

field containing the lensed primordial fluctuations T̃ , the blackbody secondary fluctuations,

and detector noise (which we assume is uncorrelated with the other components). The nor-

malization A(L) and weight g(`,L) both depend on the fiducial lensed CMB power spectrum

and the experiment’s beam and noise properties. The Ctot
` in the denominator is the total

observed CMB temperature power spectrum. Note here we denote∫
`

≡
∫

d2`

(2π)2
. (73)

The expectation value of the power spectrum of κ̂ is

〈C κ̂κ̂
L 〉 = 〈κ̂(L)κ̂∗(L)〉 = 〈κ̂(L)κ̂(−L)〉, (74)

where 〈 〉 represents 〈〈 〉CMB〉LSS which denotes an ensemble average over different primordial

CMB Gaussian realizations and large-scale structure realizations [68]. Thus, all the maps

inside the brackets are random variables. In the real simulation introduced in Section 5, the

C κ̂κ̂
L are bandpowers binned on the two-dimensional reconstructed κ Fourier map.

To get an unbiased estimator of Cκκ
L , several reconstruction biases are subtracted from

C κ̂κ̂
L as

Ĉκκ
L =〈C κ̂κ̂

L 〉 − (∆Cκκ
L )Gauss − (∆Cκκ

L )N1

−(∆Cκκ
L )MC − (∆Cκκ

L )FG,
(75)
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where Ĉκκ
L is the estimator of Cκκ

L , (∆Cκκ
L )Gauss is the Gaussian bias induced by the Gaussian

disconnected component of the trispectrum in Eq. (83),d (∆Cκκ
L )N1 arises from the connected

terms of the CMB trispectrum containing an integral over Cκκ
L [68], (∆Cκκ

L )MC is a “Monte

Carlo” (MC) bias that encapsulates biases which have not been accounted for otherwise, such

as higher-order correctionse , and (∆Cκκ
L )FG is the foreground bias. In this paper, (∆Cκκ

L )FG

is limited to the bias from the kSZ effect (∆Cκκ
L )kSZ.

3 CMB lensing power spectrum bias from the kSZ effect

The kSZ effect is induced by the bulk motion of the ionized gas when CMB photons

travel through the universe [73]. The temperature fluctuations induced by the kSZ effect in

a direction n̂ are given by (in units with c = 1)

∆T kSZ(n̂)

TCMB

= −σT
∫

dη

1 + z
e−τne(n̂, η)ve · n̂, (76)

where σT is the Thomson scattering cross section, ne is the local number density of free

electrons, and ve · n̂ is the peculiar velocity of the electrons projected along the line of sight,

defined such that positive (negative) velocities point away from (toward) our vantage point.

The distribution of the kSZ temperature fluctuations is non-Gaussian due to gravitational

and baryonic-feedback-induced non-linearities in the gas distribution.

The kSZ effect is dominated by epochs with large electron density fluctuations. The

kSZ signal has two main contributions [74]: the reionization contribution and the late-time

contribution. The reionization kSZ arises from the local patchy and incomplete ionization

during the epoch of reionization [75, 76, 77]. The late-time kSZ, also known as the post-

reionization kSZ [78], arises after the epoch of reionization, when the universe is fully ionized.

The temperature fluctuations induced by the kSZ effect in a direction n̂ are given by (in

units with c = 1)
∆T kSZ(n̂)

TCMB

= −
∫
dηg(η)pe · n̂ , (77)

d In real experiments, we calculate the realization-dependent Gaussian bias (∆CκκL )RDN0 which depends
on the CMB realizations [62, 69].

eIn this paper, the lensing potential we consider is Gaussian, so no (∆CκκL )N3/2 appears [70, 71, 72].
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Figure 10: The CMB power spectrum from lensed CMB, reionization kSZ, and late-time

kSZ. The kSZ spectra are from the WebSky simulation [5] and the Sehgal et al. simulation

[6].
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where η(z) is the comoving distance to redshift z, g(η) is the visibility function, and pe is

the peculiar electron momentum.

The visibility function g(η) represents the Poissonian probability that a photon is last

scattered at a time η which can be given by g(η) = (dτ/dη)e−τ = σTne,0ae
−τ . ne,0 is mean

physical number density of free electrons, a is the scale factor and τ is the optical depth. We

define pe = (1 + δe)ve, where δe is the free electron density contrast, and ve is the electron

velocity. The free electron density contrast can be expressed as δe = (1 + δ)(1 + δx), where

δ is the gas density contrast and δx is the ionization contrast. So we have

∆T kSZ(n̂)

TCMB

= −σT
∫

dη

1 + z
e−τ (1 + δ + δx + δδx)ve · n̂, (78)

where the first contribution (∝ ve) is referred to as the “Doppler” term, the second contri-

bution (∝ δve) is the “Ostriker-Vishniac” term, and the third contribution (∝ δxve) is the

“patchy” term.

The ionization is inhomogeneous during the epoch of reionization, i.e., δx 6= 0. The

modeling of reionization kSZ used in this work is described in [79, 80].

Fig. 10 shows that on the smallest scales ` & 4000, the kSZ effect starts to dominate the

CMB temperature power spectrum. The reionization and late-time kSZ power spectrum con-

tributions are comparable in magnitude. The reionization kSZ is expected to be only weakly

correlated with CMB lensing, but the correlation of the late-time kSZ and CMB lensing is

much larger, for most of the lensing fluctuations are generated at relatively low redshift.

However, the reionization kSZ signal is of potential concern for lensing reconstruction bias

because of its intrinsically non-Gaussian pattern on the sky.

We assume secondary anisotropies have been removed by multifrequency component

separation methods (or with geometric methods), and except the kSZ and lensing signals.

The integrated Sachs-Wolfe effect is also blackbody, but is negligible except on the largest

angular scales. Then the total CMB temperature map under the flat-sky approximation can

be written as

T tot(x) = T̃ (x) + T kSZ(x), (79)

where T̃ (x) is the lensed CMB field and T kSZ(x) is the kSZ signal.
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The total temperature map T tot(x) contains T kSZ(x) which is non-Gaussian and may

correlate with lensing. When we perform CMB lensing reconstruction with temperature

anisotropies using Eq. (71), we include the Fourier modes T kSZ(`) in the estimator. The non-

Gaussianity of kSZ and any kSZ-lensing correlation bias the estimation of Cκκ
L since extra

connected terms are brought to the CMB temperature trispectrum as shown in Section. 4.

Estimating this bias is straightforward. We use one set of simulated kSZ realizations,

described in the next section, to represent T kSZ(x) in Eq. (79), and generate another set of

Gaussian kSZ realizations T kSZ,g(x) with the same average power spectrum. We also have a

set of lensed CMB realizations T̃ (x). We define

T tot,g(x) = T̃ (x) + T kSZ,g(x) (80)

which is similar to Eq. (79) except for the Gaussian kSZ term. We apply the quadratic

estimator in Eq. (71) to T tot(`) and T tot,g(`) to obtain two sets of reconstructed lensing

convergence maps with power spectra of C κ̂κ̂
L,tot and C κ̂κ̂

L,tot,g. Since T tot and T tot,g have the

same power spectrum and share the same lensed CMB realizations, they have the same

reconstruction biases shown in Eq.(75) on average. Because T tot,g(x) is Gaussian and not

correlated with T̃ (x), it does not induce the (∆Cκκ
L )FG in Eq. (75). Thus, the bias to CMB

lensing reconstruction from temperature maps due to the kSZ effect can be estimated by

(∆Cκκ
L )kSZ = 〈C κ̂κ̂

L,tot〉 − 〈C κ̂κ̂
L,tot,g〉, (81)

where the brackets are the average over the two sets of reconstructed lensing convergence

maps.

This method to estimate (∆Cκκ
L )kSZ in Eq. (81) can be applied to both the reionization

kSZ and the late-time kSZ signals [7]. A similar approach has also been applied in [71] to

estimate the non-Gaussian lensing bias in CMB lensing reconstruction.

Since the reionization kSZ signal is only weakly correlated with the CMB lensing fieldf ,

the kSZ trispectrum induced by its non-Gaussianity is expected to be the dominant con-

tribution to the CMB lensing reconstuction bias. Thus, we can apply the CMB lensing
f The reionization kSZ simulations used in this paper are actually uncorrelated with the CMB lensing

field.
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reconstruction algorithm to the reionization kSZ map directly without adding the lensed

CMB map and compute the bias by

(∆Cκκ
L )kSZ = 〈C κ̂κ̂

L,kSZ〉 − 〈C κ̂κ̂
L,kSZ,g〉. (82)

This bias estimate neglects terms arising from the correlation between the kSZ and CMB

lensing fields. For the full kSZ signal including correlation of lensing with late-time kSZ, we

need to apply the CMB lensing reconstruction algorithm to the sum of the lensed CMB map

and the late-time kSZ map, and estimate the bias using Eq. (81).

4 kSZ bias to CMB temparature trispectrum

The power spectrum of κ̂ can be written as

〈κ̂(L)κ̂(L′)〉 =
1

4
L2L′2A(L)A(L′)∫

`1,`2,`3,`4

g(`1, `1 + `2)g(`3, `3 + `4)

〈T tot(`1)T tot(`2)T tot(`3)T tot(`4)〉

δ(L− `1 − `2)δ(L− `3 − `4)

(83)

To understand the bias to reconstructed CMB lensing power spectrum from the late-time

kSZ and the reionization kSZ, we check the trispectrum

〈T tot(`1)T tot(`2)T tot(`3)T tot(`4)〉, (84)

where we decompose the T tot(`) as

T tot(`) = T̃ (`) + T kSZ(`). (85)

Again, note that we do not include T det, since it is Gaussian with zero expectation and

uncorrelated with any other components.

The lensed CMB temperature Fourier modes can be expressed as

T̃ (`) = T (`) + δT (`) + δ2T (`) +O(φ3(`)) (86)
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Figure 11: The fractional bias to the reconstructed CMB lensing convergence power spectrum

induced by the reionization kSZ trispectrum, the late-time kSZ trispectrum, and the full late-

time kSZ bias, computed using the WebSky simulation. The curves showing the reionization

kSZ trispectrum bias, the late-time kSZ trispectrum bias and the corresponding error bars

are multiplied by a factor of 20. 42



with O(φ) correction

δT (`) = −
∫
`′
`′ · (`− `′)T (`′)φ(`− `′), (87)

and O(φ2) correction

δ2T (`) =
1

2

∫
`′

∫
`′′

[`′ · `′′] [`′ · (`− `′ − `′′)]T (`′)

φ (`′′)φ (`− `′ − `′′) ,

(88)

where φ is the CMB lensing potential.

In our calculation, we only include δT (`). We assume that the unlensed CMB is a

Gaussian field. φ and T kSZ are both not Gaussian. We ignore the ISW effect and the Rees-

Sciama effect, so we do not consider the correlation of unlensed CMB with lensing CTφ.

We plug Eq. (80), Eq. (87) and Eq. (88) into Eq. (84), and check all the possible con-

tractions. Any terms including odd powers of T kSZ vanish on average according to its sym-

metry [7]. The fields labeled with primes correspond to the second reconstruction field κ̂(L′)

in Eq. (83), and the fields without primes correspond to the first one.

There are several types of contraction up to the order of φ2 with even power of T kSZ:

type a:

〈T kSZ
`1

T kSZ
`2

T ′`3φ
′
`3
T ′`4〉

=〈T kSZ
`1

T kSZ
`2

T ′`3φ
′
`3
T ′`4〉

=〈T ′`3T ′`4〉〈T kSZ
`1

T kSZ
`2

φ′`3〉 → (a1)

(89)

type b:

〈T kSZ
`1

T kSZ
`2

T ′`3φ
′
`3
T ′`4φ

′
`4
〉

=〈T kSZ
`1

T kSZ
`2

T ′`3φ
′
`3
T ′`4φ

′
`4
〉

=〈T kSZ
`1

T kSZ
`2

T ′`3φ
′
`3
T ′`4φ

′
`4
〉 → (b1)

+〈T kSZ
`1

T kSZ
`2

T ′`3φ
′
`3
T ′`4φ

′
`4
〉 → (b2)

+〈T kSZ
`1

T kSZ
`2

T ′`3φ
′
`3
T ′`4φ

′
`4
〉 → (b3)

+〈T ′`3T ′`4〉〈T kSZ
`1

T kSZ
`2

φ′`3φ
′
`4
〉
c
→ (b4)

(90)
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type c:

〈T kSZ
`1

T`2φ`2T
′kSZ
`3

T ′`4φ
′
`4
〉

=〈T kSZ
`1

T`2φ`2T
′kSZ
`3

T ′`4φ
′
`4
〉

=〈T kSZ
`1

T`2φ`2T
′kSZ
`3

T ′`4φ
′
`4
〉 → (c1)

+〈T kSZ
`1

T`2φ`2T
′kSZ
`3

T ′`4φ
′
`4
〉 → (c2)

+〈T kSZ
`1

T`2φ`2T
′kSZ
`3

T ′`4φ
′
`4
〉 → (c3)

+〈T`2T ′`4〉〈T kSZ
`1

φ`2T
′kSZ
`3

φ′`4〉c → (c4)

(91)

type d:

〈T kSZ
`1

T kSZ
`2

T ′kSZ
`3

T ′kSZ
`4
〉

= 〈T kSZ
`1

T kSZ
`2

T ′kSZ
`3

T ′kSZ
`4
〉 → (d1)

+ 〈T kSZ
`1

T kSZ
`2

T ′kSZ
`3

T ′kSZ
`4
〉 → (d2)

+ 〈T kSZ
`1

T kSZ
`2

T ′kSZ
`3

T ′kSZ
`4
〉 → (d3)

+ 〈T kSZ
`1

T kSZ
`2

T ′kSZ
`3

T ′kSZ
`4
〉
c
→ (d4)

. (92)

(b1), (c1), (d1), (d2), (d3) are disconnected terms of Eq. (84), which should be accounted

for in the reconstruction Gaussian bias in Eq. (75). Since T kSZ,g produces the same terms,

these terms cancel in Eq. (81).

(a1) is a connected term of Eq. (84), which includes a < T kSZT kSZφ > bispectrum. (b2),

(b3), (c2), (c3) are connected terms of Eq. (84), which include kSZ-lensing two-point coupling

introduced in [81, 82]. All these connected terms arise from the kSZ-lensing correlation, and

are only non-negligible for the case of late-time kSZ [7]. They do not cancel in Eq. (81) by

T kSZ,g, and contribute to the bias.

(b4) and (c4) are connected terms of Eq. (84). They include the connected part of the

4-point function involving two kSZ and two lensing fields (denoted by the subscript c), which

do not cancel in Eq. (81). These terms may arise from both the intrinsic non-Gaussianity of

φ and T kSZ.

(d4) is a connected term of Eq. (84), which includes the connected part of kSZ trispectrum

due to its non-Gaussianity. It does not cancel in Eq. (81), and exists for both late-time kSZ
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and reionization kSZ. To estimate the contribution of this term, we can run CMB lensing

reconstruction algorithm on T kSZ as Eq. (82) shows.

5 Simulations and results

As explained in Section 3, we apply the CMB lensing reconstruction algorithm to a set

of independent reionization kSZ realizations. These realizations are cut from a full-sky kSZ

map provided by the WebSkyg extragalactic CMB simulations [5].

The reionization kSZ temperature map is provided in blackbody thermodynamic tem-

perature units, and is constructed from the free electron and velocity fields at z > 5.5.

It is uncorrelated with the lensing map and the primary unlensed CMB map. The reion-

ization kSZ simulation [80] uses 40963 elements in a periodic box of side length 8 Gpc/h.

Three astrophysical reionization parameters define the simulation: Mmin, the minimum halo

mass capable of hosting ionizing sources; λabs, the comoving absorption system (Lyman-limit

absorption systems) mean free path; and ζion, the number of ionizing photons per atom es-

caping each halo [80]. These parameters are chosen as Mmin = 109M�, λabs = 50 Mpc/h

and ζion = 50, and yield a total Thomson scattering optical depth of τ = 0.059 and a mean

redshift of reionization of zre = 7.93 h , consistent with current constraints from Planck [2].

We perform the following analysis on this simulation:

1. We get one full-sky reionization kSZ map T kSZ(n̂), where the direction vector n̂ indicates

a full-sky map.

2. We generate 30 full-sky Gaussian reionization kSZ maps T kSZ,g(n̂) with the same aver-

age power spectrum as that of T kSZ(n̂) using healpy.i We use multiple Gaussian kSZ

realizations to average down the statistical error.

3. We select regions spanning ±45◦ in declination and 360◦ in RA from T kSZ(n̂) and

T kSZ,g(n̂) using pixellj . In the pixel space, the regions correspond to 21600 pixels in

ghttps://lambda.gsfc.nasa.gov/simulation/tb_mocks_data.cfm
hhttps://www.cita.utoronto.ca/~malvarez/research/ksz-data/run_params.txt
ihttps://github.com/healpy/healpy
jhttps://github.com/simonsobs/pixell
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width and 5400 pixels in height in our simulation. We cut 36 non-overlapping patches

with 1800 pixels both in width and in height from each of the regions. So we obtain a

set of 36 reionization kSZ cutouts T kSZ(x) and a set of 1080 Gaussian reionization kSZ

cutouts T kSZ,g(x), where the position vector x indicates we treat these cutouts under the

flat-sky approximation. Because the cutouts are approximately independent regions, we

consider them as independent realizations.

4. We run the symlensk flat-sky CMB lensing reconstruction algorithm on the sets of

T kSZ(x) cutouts and T kSZ,g(x) cutouts, and get two sets of reconstructed convergence

maps: κ̂kSZ(x) and κ̂kSZ,g(x). Their power spectra C κ̂κ̂
L,kSZ and C κ̂κ̂

L,kSZ,g are bandpowers

binned in the two-dimensional reconstructed Fourier κ maps. We use a multipole bin

width ∆L = 150 for the analyses with `max = 3000 and ∆L = 200 for `max = 4000, where

`max is the maximum temperature multipole for CMB lensing reconstruction.

5. Following [7], note that we do not include the contribution of detector noise T det(x),

making the results less noisy without being biased. The detector noise Fourier modes

T det(`) are only included in the denominator of the weight g(`,L) in Eq. (72).

6. The reionization kSZ-induced bias (∆Cκκ
L )kSZ is estimated by Eq. (82). Note that in Eq.

(82), the angle brackets in the first term indicate the average bandpower of the set of 36

C κ̂κ̂
L,kSZ and the second pair is the average bandpower of the set of 1080 C κ̂κ̂

L,kSZ,g in our

simulations.

7. The fractional bias is defined as (∆CκκL )kSZ
CκκL

, where Cκκ
L is the power spectrum of the

true CMB lensing convergence field. The error bar on (∆Cκκ
L )kSZ is estimated from the

Gaussian kSZ realizations.

8. As a comparison, we apply Step 1 to Step 5 above to the late-time kSZ simulations

from WebSky to estimate the bias to CMB lensing reconstruction from the late-time kSZ

trispectrum using Eq. (82). The late-time kSZ full-sky map from WebSky is constructed

from the free electron and velocity fields at z < 4.5.

9. We also estimate the full bias to CMB lensing reconstruction from the late-time kSZ

field, i.e., including terms from the kSZ trispectrum and the kSZ-lensing correlation, by

substituting T ksz(n̂) and T ksz,g(n̂) with T tot(n̂) and T tot,g(n̂) in Step 1, where T tot(n̂) =

khttps://github.com/simonsobs/symlens
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T̃ (n̂) + T kSZ(n̂) and T tot,g(n̂) = T̃ (n̂) + T kSZ,g(n̂). T̃ (n̂) is a full-sky lensed CMB

temperature map and T kSZ(n̂) refers to the late-time kSZ full-sky map from WebSky.

The full bias from the late-time kSZ field is estimated using Eq. (81).

In Fig. 11, we show the fractional bias to the CMB lensing power spectrum induced by

the reionization kSZ trispectrum, the late-time kSZ trispectrum, and the full late-time kSZ

for Planck, CMB-S3-like, and CMB-S4-like experiments with `max = 3000 or `max = 4000,

where `max is the maximum temperature multipole used in the CMB lensing reconstruction.

The experimental configurations are defined in Table 1; in order to facilitate comparison, we

adopt the same settings as used in [7]. The curves showing the bias from the reionization kSZ

trispectrum and the late-time kSZ trispectrum in Fig. 11 have been multiplied by a factor

of 20 for visibility. We can see the fractional bias from the reionization kSZ trispectrum is

positive and smaller than 0.25% at most scales, except for the largest scales when considering

`max = 4000. The late-time kSZ trispectrum produces a comparable bias to that from the

reionization kSZ trispectrum. The full bias from the late-time kSZ signal is at least one order

of magnitude larger than the other two. For all three cases, the bias with `max = 4000 is

larger than that with `max = 3000, as expected since more foreground-contaminated modes

are used in the former case. Since the reionization kSZ field is only weakly correlated with

the CMB lensing field, it is safe to use the bias from the reionization kSZ trispectrum to

approximate the full bias from the reionization kSZ field. Thus the full reionization kSZ bias

is much less significant than the full late-time kSZ bias to the reconstructed CMB lensing

power spectrum.

In Fig. 12, we show the absolute bias from the reionization kSZ trispectrum to the

reconstructed CMB lensing convergence power spectrum for different experiments along with

the true power spectrum of CMB lensing convergence. Within this L range, the reionization

kSZ-induced bias is at least two orders of magnitude lower than the lensing convergence

power spectrum for CMB-S3-like and CMB-S4-like experiments using `max = 4000, three

orders of magnitude lower for CMB-S3 and CMB-S4 with `max = 3000, and four orders of

magnitude lower for Planck SMICA.

In Fig. 13, we show the full kSZ-induced fractional bias to the CMB lensing power

spectrum computed using the WebSky simulation and using the Sehgal et al. simulation[6].
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CMB Experi-

ment

Noise Level

∆T [µK arcmin]

Beam FWHM

θFWHM [arcmin]

Planck SMICA 45 5

CMB-S3-like 7 1.4

CMB-S4-like 1 3

Table 1: Experimental configurations. Note that the actual beam FWHM for the CMB-S4

reference design is 1.4 arcmin [50]. We use 3 arcmin in this work to facilitate comparison

with [7].

The latter result is taken directly from [7]. The CMB multipole ranges and experimental

configurations are the same as those in Fig. 12. For both sets of results, the full late-time

kSZ-induced bias is smaller than the statistical error bars for Planck. For CMB-S3 and

CMB-S4, the bias is negative and about several percent for `max = 4000, and about half that

for `max = 3000. For CMB-S3 and CMB-S4 with `max = 4000, the bias from the WebSky

simulation is about 1.5 to 2 times of that computed using the Sehgal et al. simulation. This

is consistent with the result in Fig. 14, which shows that the bispectrum of < T kSZT kSZκ >

is larger in the WebSky simulation than in the Sehgal et al. simulation, where T kSZ refers

to the late-time kSZ signal and κ is the CMB lensing convergence. This bispectrum appears

in Eq. (89) in Section. 4, which is the largest overall connected term of CMB trispectrum

contributing to the late-time kSZ-induced bias. The difference in these predicted biases

also reflects the current uncertainty in our understanding of the late-time kSZ field, and

indicates that data-driven methods should be used to mitigate the kSZ bias, rather than

methods assuming particular theoretical models.
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Figure 12: The bias to the reconstructed CMB lensing convergence power spectrum from

reionization kSZ trispectrum using `max = 3000 (dashed lines) and `max = 4000 (solid lines)

for Planck SMICA, CMB-S3-like, and CMB-S4-like experiments. The true power spectrum

of the CMB lensing convergence is also shown (black solid line).

6 Discussion and conclusion

The kSZ effect is the largest blackbody contaminant to the CMB primary temperature

anisotropies, and it cannot be removed by multifrequency component separation techniques.

The kSZ signal has two contributions, the late-time contribution and the reionization con-
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Figure 13: The full late-time-kSZ-induced fractional bias to the reconstructed CMB lensing

convergence power spectrum computed using the WebSky simulation [5] (blue curves) and

using the Sehgal et al. simulation [6] (orange curves, taken from [7]). The experimental

settings and temperature multipole ranges used in the lensing reconstruction are identical

to those in Fig. 11. 50
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Figure 14: A projection of the
〈
T kSZT kSZκ

〉
bispectrum estimated from the cross-correlation

of T 2
kSZ and κ, shown for each of the WebSky late-time kSZ (blue) and the Sehgal et al. late-

time kSZ (orange) simulations. The curves have been binned with ∆` = 50. Despite lower

two-point power in the kSZ anisotropies for the WebSky simulation, the cross-bispectrum

with CMB lensing is larger, which agrees with our observation that the bias to CMB lensing

is larger in the WebSky simulation.

tribution. In this paper, we focus on the bias to the reconstructed CMB lensing convergence

power spectrum induced by the reionization kSZ signal. Since the reionization kSZ field

is only weakly correlated with the CMB lensing field, its trispectrum should be the dom-

inant contribution to the bias to CMB lensing reconstruction. We estimate this bias by

applying the flat-sky CMB lensing reconstruction algorithm to reionization kSZ simulations

51



and corresponding Gaussian realizations with the same power spectrum. We also apply the

same method to estimate the bias to CMB lensing reconstruction from the late-time kSZ

trispectrum alone, and the full late-time kSZ-induced bias.

Using the WebSky simulation, we find that the fractional bias from the reionization

kSZ signal is positive and smaller than 0.25% at L < 3000 when using `max = 4000 for

CMB-S3-like and CMB-S4-like experiments, and can be even smaller when using `max =

3000. The fractional bias computed using the WebSky late-time kSZ field is more than 10

times larger than that from the reionization kSZ field, which implies that the latter one

is negligible for ongoing and upcoming experiments. These conclusions are based on the

current numerical simulations of reionization from WebSky, and results may differ somewhat

for other reionization models; however, the reionization-induced bias is very unlikely to be

comparable to that from the late-time kSZ field for any reasonable reionization model.

As a comparison, we show that the bias induced by the late-time kSZ trispectrum is

comparable to that induced by the reionization kSZ field, which are both much smaller

than the full late-time kSZ bias. Thus, for the late-time kSZ, the kSZ-lensing correlation

contributes much more than the kSZ trispectrum, as also found earlier in [7] (see their Fig. 6).

In addition, we compare the bias from the late-time kSZ field computed using the WebSky

simulation to that computed using the Sehgal et al. simulation in [7]. For CMB-S3 and

CMB-S4 with `max = 4000, we find that the absolute value of the former is about 1.5 to 2

times larger than the latter. Considering the statistical precision of CMB-S3 and CMB-S4,

we confirm that the bias to CMB lensing reconstruction from the late-time kSZ effect is

non-negligible and requires mitigation techniques, such as foreground-hardened estimators

[62, 63, 64] or shear-only reconstruction [61]. The former technique effectively deprojects

a point-source-like trispectrum from the lensing power spectrum measurement, which is

expected to work well for the late-time kSZ signal. For the latter technique, since the lensing

shear (local quadrupolar distortion) is less degenerate with the extragalactic foregrounds, the

shear-only reconstruction is less sensitive to foregrounds. Applying the shear-only technique

to mitigate the kSZ-induced bias was done for the Sehgal et al. kSZ bias in [61]; we leave

similar analysis for the WebSky simulations to future work.
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3.0 Computing Microwave Background Polarization Power Spectra from

Cosmic Birefringence

The content of this chapter is based on the manuscript published in Physical Review D

[8]. We present a new publicly available code, class_rot, which modifies class to enable

fast non-perturbative calculation of cosmic microwave background polarization power spectra

due to both isotropic and anisotropic polarization rotation from cosmic birefringence. Cosmic

birefringence can arise from new parity-violating physics such as axion dark matter with a

Chern-Simons coupling to photons or Faraday rotation due to a primordial magnetic field.

Constraints on these effects can be obtained by comparing measurements to precise numerical

calculations of the polarization power spectra. We describe the implementation of class_rot

in terms of both mathematical formalism and coding architecture. We also provide usage

examples and demonstrate the accuracy of the code by comparing with simulations.

1 Introduction

Parity-violating physics in the early universe may cause an effect known as cosmic bire-

fringence, in which photons with different polarizations travel differently along their propa-

gation paths, resulting in a net rotation on the polarization directions of cosmic microwave

background (CMB) photons [83, 84, 85, 86]. Such an effect can arise from many types of

beyond-the-Standard-Model physics, such as from the coupling between axion-like particles

and photons through a Chern-Simons interaction (see, e.g., [87]), from pseudoscalar fields

introduced in early dark energy models to resolve the Hubble tension [88], from quintessence

as a candidate for dark energy [89], or from primordial magnetic fields through Faraday

rotation (see, e.g., [90]).

Cosmic birefringence can cause both isotropic and anisotropic rotation of the microwave

background polarization. Since the polarization field is dominated by an E-mode signal from

primordial density perturbations, small rotations of polarization effectively turn E-mode into
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B-mode polarization, leaving observable imprints in the polarization power spectra. Isotropic

birefringence, in particular, leads to non-zero parity-odd power spectra in the CMB including

TB and EB (see, e.g., [87, 91]). Various experiments have placed constraints on isotropic

rotation angle, such as Planck [92], WMAP [93], and ACT [94]. The observational challenge

in constraining isotropic birefringence is that its effect is highly degenerate to that of a

calibration error in the orientation of polarized detectors (see, e.g., [95, 96]).

Anisotropic birefringence, on the other hand, leads only to parity-even spectra and con-

tributes non-negligibly to the B-mode power spectrum. Anisotropic rotation also induces

off-diagonal correlations in the microwave background multipoles, which allows reconstruc-

tion of the anisotropic rotation field using a quadratic estimator approach similar to lensing

reconstruction of the deflection field (see, e.g., [97, 98, 99]). Such an effect has been used to

derive observational constraints on anisotropic rotation; for examples, Planck [100], BICEP2

/ Keck [101], ACT [15], and SPT [102] have all derived upper bounds on anisotropic rotation

field with a scale-invariant power spectrum.

Despite the physical importance of a possible rotation field, to our knowledge no publicly

available codes exist that compute CMB power spectra from cosmic birefringence. Here

we present a modified version of class [103]a , named class_rotb , which implements this

calculation and allows for fast computation of the rotated EB, TB, EE, and BB power spectra

due to both isotropic and anisotropic rotation from cosmic birefringence. In particular, we

implement a non-perturbative calculation based on the angular correlation function of the

rotation field [104]. Our code has an accuracy better than 1% at all multipoles from l = 2

to l = 4000, which we verify through comparison with power spectra of simulated sky maps

including random rotation fields.

This paper is structured as follows. In Sec. 2, we describe the basics of cosmic birefrin-

gence. In Sec. 3 we show the non-perturbative calculation method that is implemented in

class_rot, focusing on the effect of cosmic birefringence on the CMB power spectra. In

Sec. 4, we present comparisons between the results from class_rot and numerical simula-

tions. Sec. 6 provides a brief concluding discussion about the uses of this code in the context

ahttps://github.com/lesgourg/class_public
bhttps://github.com/catketchup/class_rot
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of current and upcoming experiments. In addition, we discuss the code implementation and

give usage examples in Sec. 5.

2 Cosmic rotation field

The rotation effect from cosmic birefringence can be effectively expressed as a rotation

field α(n̂), which can have both an isotropic part and an anisotropic part [91], given by

α(n̂) = ᾱ + δα(n̂), (93)

with ᾱ the isotropic part, and δα(n̂) the anisotropic part with a zero mean,

〈δα(n̂)〉 = 0. (94)

As a result of rotation, Stokes parameter Q and U transform as

(Q̃± iŨ)(n̂) = exp(±i2α(n̂))(Q± iU)(n̂), (95)

where we have used tildes to denote rotated quantities.

To illustrate how such a rotation field can arise from parity-violating physics in the early

universe, consider for example a Chern-Simons-type interaction of photons and axions with

a Lagrangian given by

Lcs =
βφ

2M
F µνF̃µν , (96)

where β is a dimensionless coupling constant, φ is the axion field,M is its mass scale, and F µν

is the electromagnetic tensor with F̃µν being its dual. This term modifies the Euler-Lagrange

equations for electromagnetic field and induces a rotation in the polarization direction of a

photon if φ varies along its propagation path [105, 106, 107], with the rotation angle given

by

α =
β

M
∆φ, (97)

where ∆φ is the change of φ along the photon path. In the case that the axion field φ

is spatially homogeneous, Eq. (125) introduces an isotropic rotation field to the CMB; an

inhomogeneous axion field gives an anisotropic rotation field in the CMB.
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A convenient way to express an anisotropic rotation field, α(n̂), is to expand it in the

basis of spherical harmonics as

δα(n̂) =
∑
LM

αLMYLM(n̂). (98)

We assume that α(n̂) follows Gaussian random statistics, in which case the statistical infor-

mation of the rotation field α(n̂) can be completely specified by its power spectrum Cαα
L ,

given by

〈aLMaL′M ′〉 = δLL′δMM ′C
αα
L . (99)

In this paper we only consider a scale-invariant power spectrum of the anisotropic rotation

field, which is physically well-motivated [108], though the formalism presented here is broadly

applicable to an arbitrary rotation field power spectrum. Following the convention in [50],

we parametrize a scale-invariant power spectrum as

L(L+ 1)

2π
Cαα
L = ACB, (100)

with ACB the amplitude of the cosmic birefringence power spectrumc.

3 Impacts on microwave background polarization power spectra

In this section, we briefly review the rotated CMB power spectra calculation imple-

mented in class_rot. We consider a rotation field with both an isotropic contribution

and an Gaussian random anisotropic contribution as described in Eq. (93). We adopt the

non-perturbative method introduced in [104], which is similar to the calculation method of

lensed CMB power spectra in [109]. Here we briefly review the non-perturbative calculations

relevant to the implementation of class_rot; we refer interested readers to [104] for more

calculation details.
cNote that ACB defined in this paper is 10−4 times of that in [15] and 10−5 of that in [99].
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In this method, the starting point is to connect the real-space correlation functions of

rotated quantities, such as T̃ (n̂), Q̃(n̂), and Ũ(n̂), to the rotated power spectra, e.g., C̃EE
`′ ,

C̃BB
`′ , with

ξ̃+(β) ≡
〈

(Q̃+ iŨ)∗(n̂)(Q̃+ iŨ) (n̂′)
〉

=
∑
`′

2`′ + 1

4π

(
C̃EE
`′ + C̃BB

`′

)
d`
′

22(β),

ξ̃−(β) ≡
〈

(Q̃+ iŨ)(n̂)(Q̃+ iŨ) (n̂′)
〉

=
∑
`′

2`′ + 1

4π

(
C̃EE
`′ − C̃BB

`′ + 2iC̃EB
`′

)
d`
′

−22(β),

ξ̃X(β) ≡
〈
T (n̂)(Q̃+ iŨ) (n̂′)

〉
= −

∑
`′

2`′ + 1

4π

(
C̃TE
`′ + iC̃TB

`′

)
d`
′

02(β),

(101)

where n̂ and n̂′ are two directions in the spherical coordinate system, cos β = n̂ · n̂′, and
d`mm′ is the Wigner d-function. Taking advantages of the orthogonality relations of Wigner

d-functions, ∫ 1

−1

d cos β d`mk(β)d`
′

m′k′(β) =
2

2`+ 1
δmm′δkk′δ``′ , (102)

one can invert Eq. (101) to express rotated power spectra in terms of correlation functions,

such as

C̃EE
` + C̃BB

` = 2π

∫ 1

−1

d cos β ξ̃+(β)d`22(β). (103)

Applying Eq. (123), ξ̃+(β) can be expressed by un-rotated quantities as

ξ̃+(β) = e−4Cα(0)+4Cα(β)
∑
`′

(2`′ + 1)(CEE
`′ + CBB

`′ )d`
′

22(β). (104)

Here Cα(β) is the correlation function of rotation angles in the two directions separated by

β and can be expressed as

Cα(β) = 〈δα (n̂1) δα (n̂2)〉 =
∑
L

2L+ 1

4π
Cαα
L PL(cos β)

=
∑
L

2L+ 1

4π
Cαα
L dL00(β),

(105)

where Cαα
L is a generic rotation field power spectrum introduced in Eq. (99), PL(cos β) is

the Legendre Polynomial, and we have applied PL(cos β) = dL00(β). When β = 0, Cα(0) =
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〈δα(n̂)δα(n̂)〉 is the variance of the rotation angles. For example, with ACB = 10−5 as we

will choose throughout this paper, Cα(0) ≈ 7.92 × 10−5 ≈ 0.26 deg2; this corresponds to a

rotation field with a standard deviation around 0.5◦.

Equipped with Eq. (104), Eq. (103) can be written as

C̃EE
` + C̃BB

` =
1

2
e−4Cα(0)

∫
d cos β e4Cα(β)d`22(β)[∑

`′

(2`′ + 1)(CEE
`′ + CBB

`′ )d`
′

22(β)

]
.

(106)

Similarly, one can also obtain

C̃TE
` = CTE

` cos(2ᾱ)e−2Cα(0),

C̃TB
` = CTE

` sin(2ᾱ)e−2Cα(0),

C̃EE
` − C̃BB

` =
1

2
e−4Cα(0) cos 4ᾱ

∫
d cos β e−4Cα(β)d`−22(β)[∑

`′

(2`′ + 1)(CEE
`′ − CBB

`′ )d`
′

−22(β)

]
,

C̃EB
` =

1

2
e−4Cα(0) sin 4ᾱ

∫
d cos β e−4Cα(β)d`−22(β)[∑

`′

(2`′ + 1)(CEE
`′ − CBB

`′ )d`
′

−22(β)

]
.

(107)

Note that the rotated CMB EE, BB and EB power spectra in Eq. (106) and Eq. (107)

are given by real-space integrals, which avoids convolution in the `m space which is compu-

tationally expensive. A similar strategy that uses real-space integral instead of convolution

in `m space can be found in delensing calculation [110] which significantly reduces compu-

tational cost. Also note that we have ignored the correlations between the rotation field and

both CMB temperature and (unrotated) E-polarization fields, which may arise in certain

axion-like models, such as models with nonzero potential under adiabatic initial conditions

[108]. A similar calculation that takes account of these correlations can be found in [91].

We can see from Eq. (106) and Eq. (107) that both isotropic and anisotropic rotations

contribute to BB power spectrum. In the upper panel of Fig. 15, we show the BB power

spectrum contributed by an isotropic rotation field with ᾱ = 0.1◦ and a scale-invariant
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Figure 15: Microwave background polarization BB power spectrum contributions from a

scale-invariant tensor mode (r = 0.004), gravitational lensing, isotropic rotation (ᾱ = 0.1◦)

and scale-invariant anisotropic rotation (ACB = 10−5) are given in the upper panel. The

absolute TB and EB power spectra from isotropic rotation (ACB = 10−5) are shown in the

lower panel.
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anisotropic rotation field with ACB = 10−5, respectively. As a comparison, we also show

the contributions from primordial tensor mode with r = 0.004 where r is the tensor-to-

scalar ratio, and the contribution from CMB lensing. One can see that the B-mode signal

from rotation fields can be larger than that from the primordial tensor mode at ` & 150,

which suggests that, apart from searching for parity-violating physics, rotation field is also an

important systematic when searching for primordial tensor mode. We also note that rotation

field generally contributes less than CMB lensing to B-mode polarization; this suggests that

the ability to “de-lens" the CMB will help tighten the constraints on cosmic birefringence.

From Eq. (107) we can also see that both C̃TB
` and C̃EB

` become non-zero when ᾱ is non-

zero; this is consistent with the fact that an isotropic rotation field violates parity symmetry

and induces odd-parity CMB power spectra (see the lower panel of Fig. 15 for example).

In addition, when there is no anisotropic rotation (i.e., Cαα
L = 0), Eq. (107) reduces to the

isotropic rotation formula as shown in, e.g., [84, 86].

4 Comparison with simulations:

To demonstrate the accuracy of class_rot, we compare the rotated CMB power spectra

from class_rot with those from full-sky simulations. In particular, we first generate 100

realizations of un-rotated CMB maps in T, Q, and U based on a fiducial model given by the

best-fit cosmology from Planck 2018 [111] with lmax = 6000. Additionally we set a non-zero

tensor-to-scalar ratio r = 0.004. Next we generate 100 realizations of a full-sky rotation map

with ᾱ = 0.1◦ and ACB = 10−5, which are then used to rotate each realization of unrotated

CMB maps. These full-sky simulations are generated using pixell [112] in rectangular

pixelization and CAR projection with a resolution of 1 arcminute. We apply each rotation

field to rotate one realization of simulated CMB maps in pixel space using Eq. (123) and then

calculate its power spectra after the rotations. We repeat this procedure for each realization

to get 100 sets of rotated CMB power spectra. In Fig. 16, we show the average of the 100

realizations of rotated power spectra in comparison to the corresponding theory spectrum

obtained from class_rot. One can clearly see that the output of class_rot is in an
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Figure 16: Comparisons of rotated CMB BB, TB, and EB power spectra between simulation

and theory. The theory curves are calculated by class_rot and shown as cyan dashed lines;

the power spectra from simulations are shown as black solid lines. The parameters are chosen

as: r = 0.004, ᾱ = 0.1◦, and ACB = 10−5. We also show the theory curve with only isotropic

rotation in red dashed line. It only shows up in the upper panel (BB) because anisotropic

rotation has no effect on TB and EB spectra.
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excellent agreement with simulations. For CBB
` we estimate an error of . 1% at ` . 4000;

the accuracy noticeably degrades at larger ` likely due to a combination of pixel effect,

numerical precision, and the smallness of the signal of interests. Both CTE
` and CEB

` from

class_rot agree with the simulations within the expected cosmic variance of the averaged

power spectra up to ` = 6000, which is the highest multipole we have tested. Note that

in the upper panel of Fig. 16, we also show the rotated CMB BB power spectrum with no

anisotropic birefringence, which suggests that, with our chosen parameters, the contribution

from anisotropic birefringence dominates the rotated BB power spectrum.

5 The software package

Here we describe briefly the implementation of class_rot, and give usage examples of

its Python interface.

Code implementation: In class_rot, the calculations described in Sec. 3 are im-

plemented as a new module to class, contained in rotation.c Internally, this rotation

module takes the power spectra calculated from the harmonic module as inputs, by doing so

we have implicitly neglected the effect of CMB lensing when calculating the rotated power

spectrum. This assumption significantly simplifies our code implementation and will only

lead to sub-percent to percent level error due to the smallness of CBB
` relative to CEE

` ; to

incorporate the effect of CMB lensing in the rotation module will be the subject of future

work.

The rotation module can be turned on by specifying rotation = yes in the parameter

file, and it can take two additional parameters that specify the rotation field, alpha and

A_cb, which correspond to ᾱ, in unit of degrees, and ACB, in radians as defined in Eq. (100),

respectively. The rest of the parameters are identical to those in class. Note that by using

ACB we implicitly assume that the rotation field follows a scale-invariant power spectrum – a

choice of preference rather than necessity; other rotation power spectrum can be implemented

by changing the rotation_cl_aa_at_l function defined in rotation.c . We leave the

support for taking in a generic rotational power spectrum as input to a future work.
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Figure 17: Rotated-lensed (red dashed lines), lensed (cyan solid lines) and raw (black dashed

lines) CMB TT, EE and TE power spectra are shown. The parameters are chosen as: r = 0,

ᾱ = 0.1◦, and ACB = 10−5.
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Figure 18: Rotated-lensed (red dashed lines), lensed (cyan solid lines) and raw (black dashed

lines) CMB BB, TE and EB power spectra are shown. The parameters are chosen as: r = 0,

ᾱ = 0.1◦, and ACB = 10−5. In the first panel, the raw BB power spectrum is zero because

there is no primordial B-mode. From the middle and bottom panels, we can see that the the

parity-odd TB and EB power spectra are induced only by isotropic rotation.
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The parameters can be specified in a parameter file and passed to the compiled class

binary executable, in the same way as the original class. An example parameter file,

explanatory_ROT.ini is also provided as part of class_rot to illustrate the use of pa-

rameters. Note that this parameter file is only needed when calling class_rot from the

command-line interface using its compiled binary executable. We have also provided Python

bindings to the functions in the rotation module allowing them to be called in the Python

interface, and we show some usage example below.

Usage example: Here we give an example of how to calculate the rotated CMB power

spectra using the Python interface of class_rot:

from c l a s s y import Class

params = {

"output" : " tCl , pCl , rCl " ,

" l_max_scalars " : 4000 ,

" r o t a t i on " : " yes " ,

" alpha " : 0 . 1 ,

"A_cb" : 1E−5,
}

cosmo = Class ( )

cosmo . set ( params )

cosmo . compute ( l e v e l =[" r o t a t i on " ] )

cosmo . rotated_cl ( )

One can see that class_rot is meant to be used as a drop-in replacement to the original

class as it is imported the same way and follows the same usage pattern. The parameters

are specified in a Python dictionary, param, and passed to the cosmo object. Note that it is

important to include rCl in the output option as it is required for computing the rotated

power spectra. The option rotation turns on the rotation module when its value is yes;

alpha and A_cb specify the rotation parameters as can be used in a parameter file. Also
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note that when computing cosmological model with the function cosmo.compute(), one

needs to include level=["rotation"] so that the rotation module and its dependencies

are initialized properly. After running cosmo.compute(), the rotated power spectra can

be obtained by the function call cosmo.rotated_cl(), in the form of a Python dictionary

following the convention from class. This illustrates a basic usage of class_rot; we refer

interested readers to the examples provided in the bundled Jupyter notebook in class_rot

to find more detailed examples and explanations

Rotated-Lensed Power Spectra: Note that the power spectra in Fig. 16 do not

include any lensing effect. class can also calculate the lensed-rotated CMB power spectra.

Fig. 17 shows the rotated-lensed (red dashed lines), lensed (cyan solid lines) and raw (black

dashed lines) CMB TT, EE and TE power spectra. Fig. 18 shows the rotated-lensed (red

dashed lines), lensed (cyan solid lines) and raw (black dashed lines) CMB BB, TE and EB

power spectra. The parameters are chosen as: r = 0, ᾱ = 0.1◦, and ACB = 10−5. In the first

panel, the raw BB power spectrum is zero because there is no primordial B-mode. From the

middle and bottom panels, we can see that the the parity-odd TB and EB power spectra

are induced only by isotropic rotation.

6 Discussion and conclusion

In this paper we present class_rot, a new publicly available modified class code, which

calculates rotated CMB power spectra from cosmic birefringence using a non-perturbative

method. class_rot supports both isotropic and anisotropic rotations, as can be specified by

the isotropic rotation angle, ᾱ, and the amplitude of scale-invariant rotation power spectrum,

ACB, respectively. Hence, class_rot can be effectively used to search for cosmic birefrin-

gence signal that features a scale-invariant rotation power spectrum or an isotropic rotation

in CMB polarization rotation, such as that from the coupling between axion-like particles

and photons via Chern-Simons interaction. We leave the implementation of a more generic

(i.e., not scale-invariant) rotation power spectrum in class_rot to a future work which will

allow us to search for a broader range of rotation signal such as that caused by Faraday ro-
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tation from primordial magnetic field, which, depending on its generation mechanism, may

induce a rotation field that is not scale-invariant (see [113] for a review).

In this paper we have also briefly reviewed the non-perturbative calculation implemented

in class_rot, which makes use of the angular correlation function of the rotation field and

does not require the rotation to be perturbatively small. Hence the calculation in class_rot

offers a broader range of applicability. We leave the implementation of a perturbative cal-

culation as well as a detailed comparison between the non-perturbative and perturbative

methods, in terms of both speed and accuracy, to a future work.

To demonstrate the accuracy of the code, we have compared the rotated CMB power

spectra such as BB, TB, and EB obtained from class_rot to full-sky simulations and

shown that they are in good agreements with . 1% error. The upcoming experiments are

expected to constrain cosmic birefringence with much higher precision. For example, while

the current best limits lie around O(10′) for isotropic rotation [92, 94] and around O(10−6)

for ACB [15, 102], it has been forecasted that Simons Observatory [114] can improve the

current limits by nearly an order of magnitude, achieving an uncertainty level of around 0.7′

for isotropic rotation and around 10−7 for ACB [33]. These limits will be further improved

by the CMB-S4 experiment [115], reaching an uncertainty level of around 0.2′ for isotropic

rotation [50] and around 10−8 for ACB [33]; this will allow for percent-level determinations

of ᾱ and ACB should there be a cosmic birefringence signal at our current observational

limit. In light of these future prospects, it is important to have a robust code that computes

the effect of cosmic birefringence in power spectra with better than percent-level accuracy.

Hence, class_rot can be a powerful tool for searches of cosmic birefringence signal in the

future.
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4.0 Impact of Anisotropic Birefringence on Measuring Cosmic Microwave

Background Lensing

The content of this chapter is based on the manuscript published in Physical Review D

[116]. The power spectrum of cosmic microwave background lensing is a powerful tool for

constraining fundamental physics such as the sum of neutrino masses and the dark energy

equation of state. Current lensing measurements primarily come from distortions to the

microwave background temperature field, but the polarization lensing signal will dominate

upcoming experiments with greater sensitivity. Cosmic birefringence refers to the rotation of

the linear polarization direction of microwave photons propagating from the last scattering

surface to us, which can be induced by parity-violating physics such as axion-like dark matter

or primordial magnetic fields. We find that, for an upcoming CMB-S4-like experiment, if

there exists the scale-invariant anisotropic birefringence with an amplitude corresponding

to the current 95% upper bound, the measured lensing power spectrum could be biased

by up to a factor of few at small scales, L & 1000. We show that the bias scales linearly

with the amplitude of the scale-invariant birefringence spectrum. The signal-to-noise of

the contribution from anisotropic birefringence is larger than unity even if the birefringence

amplitude decreases to ∼ 5% of the current upper bound. Our results indicate that a

measurement and characterization of the anisotropic birefringence is important for lensing

analysis in future low-noise polarization experiments.

1 Introduction

CMB lensing refers to the effect that CMB photons get deflected by the matter distri-

bution along their path from the last scattering surface to the observer. Such effect causes

distortions in both temperature and polarization map of CMB acting as a displacement field.

This displacement leads to the correlations across CMB temperature and polarization fluc-

tuations on different angular scales. We therefore can use these correlations to reconstruct

68



the displacement field caused by lensing [19, 20]. Being able to measure the CMB lensing

effect precisely allows one to understand the matter distribution of the universe, probe the

evolution and geometry of the universe, and place constraints on cosmological parameters

such as the amplitude of matter density fluctuations, σ8, and the energy density of matter,

ωm, which CMB lensing is particularly sensitive to.

With improved sensitivity in measurements of the CMB temperature and polarization

anisotropies, CMB lensing has been measured with increasing significance by various exper-

iments including Planck [117, 118], ACT [119], BICEP [120], Polarbear [121, 122], and SPT

[18, 123]. Although temperature-based reconstruction dominates the signal-to-noise in the

current CMB lensing measurements, CMB polarization field is expected to provide higher

signal-to-noise in upcoming surveys such as CMB-S4 [124].

Lensing reconstruction with CMB polarization is much less affected by various con-

taminants such as the thermal and kinematic Sunyaev–Zeldovich (tSZ, kSZ) effects, which

may significantly bias the temperature-based lensing reconstruction [7, 38] at the arcminute

scale. However, polarization-based lensing reconstruction can be biased by effects such as

instrumental systematics [125, 126]. One effect paid less attention is a cosmic birefringence,

which refers to a rotation of CMB linear polarization plane caused by some parity-violating

physics such as the primordial magnetic fields or axion-like particles; in the latter case cos-

mic birefringence can be both isotropic and anisotropic. Several recent analyses of Planck

polarization data find a tantalizing hint of the isotropic cosmic birefringence [127, 128, 129].

Cosmic birefringence therefore have gained growing interest in the context of cosmology

(for review see e.g. [130]). Anticipating such a discovery, multiple works have explored

the potential of future CMB experiments to, e.g., constrain the mass of axion-like parti-

cles [131, 132, 133, 134] and models which produce both isotropic and anisotropic cosmic

birefringence [88, 135, 136, 137].

It has been previously noted that, up to the leading order, an anisotropic rotation field

induced by cosmic birefringence does not bias the reconstructed lensing field, thanks to

the orthogonality between the lensing and rotation response in the polarization field [138].

However, based on theoretical models of cosmic birefringence, we argue that the anisotropic

rotation field which contributes to higher order statistics may potentially bias the recon-

69



structed lensing power spectrum, a pathway which has not been examined in details previ-

ously. Therefore, in this paper we aim to investigate whether such a bias may occur with a

scale-invariant rotation field.

The paper is structured as follows. In Sec. 2 we review the basis of CMB lensing and

cosmic birefringence. In Sec. 3 we review CMB lensing reconstruction on full-sky using EB

estimator and explain the motivation of investigating the bias to reconstructed CMB lensing

power spectrum. We show the simulation procedures and the results in Sec. 4. We discuss

the results in Sec. 5 and conclude in Sec. 6.

2 Lensed and rotated CMB power spectra

Both CMB lensing and anisotropic cosmic birefringence affect CMB polarization field in a

similar way. In this section we first give an overview of their effects on the CMB polarization

field in 2.1, followed by brief reviews of CMB lensing and cosmic birefringence in 2.2 and

2.3, respectively. We then make some summary notes on in 2.4.

2.1 Overview

Linear polarization of CMB can be described by the Stokes parameters Q(n̂) and U(n̂),

measured by a set of local orthogonal polarizers, with n̂ an angular coordinate on the sky.

Q and U can be further decomposed using spin-weighted spherical harmonics [11] to obtain

rotation-invariant quantities, E and B, as [12, 13]

E`m ± iB`m = −
∫
d2n̂ ±2Y

∗
`m(Q± iU)(n̂), (108)

with E`m and B`m the multipole moments of E-mode and B-mode polarization, respectively.

Their power spectra are defined as

〈E`mE∗`′m′〉 = δ``′δmm′C
EE
`

〈B`mB
∗
`′m′〉 = δ``′δmm′C

BB
`

〈E`mB∗`′m′〉 = δ``′δmm′C
EB
` ,

(109)

70



where the 〈...〉 is taken over different CMB realizations. One sees that the primary CMB

polarization fields has no off-diagonal covariance.

The effects of both CMB lensing and cosmic birefringence can be interpreted as small

perturbations added to the primary CMB field, effected by the lensing potential, φ(n̂),

for CMB lensing, and a rotation field, α(n̂), for cosmic birefringence, respectively. In the

presence of both CMB lensing and cosmic birefringence, the CMB polarization fields can be

described as

Ẽ ′`m = E`m + δẼ`m + δE ′`m +O(φn1αn2), (110)

B̃′`m = δB̃`m + δB′`m +O(φn1αn2), (111)

where δẼ`m, δB̃`m denote the first order perturbation from CMB lensing, δE ′`m, δB′`m denote

that from the rotation fielda , and O(φn1αn2), with n1 + n2 > 1, represents the high-order

terms which mix the lensing and rotation effects. In the subsequent subsections we will

discuss each of the terms in details.

2.2 CMB lensing

CMB lensing distortion occurs when photons travel across gravitational potentials and

measures the integrated mass distribution along the trajectories of photons (for review see

e.g. [16]). Lensing distortion results in an effective displacement field, d(n̂), acting on the

primary CMB fields,

T̃ (n̂) = T (n̂ + d(n̂)),

(Q̃± iŨ)(n̂) = (Q± iU)(n̂ + d(n̂)).
(112)

Under Born’s approximation and the assumption that all CMB photons come from the last

scattering surface and that non-linear effect is negligible, the displacement field, d(n̂), can

be expressed as a pure gradient

d(n̂) = ∇φ(n̂), (113)

aNote that we will follow this notational convention, denoting rotation induced quantities with prime and
lensing-induced quantities with a tilde, throughout this paper.
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with φ(n̂) the lensing potential field, given by

φ(n̂) = −2

∫ χ∗

0

dχ
χ∗ − χ
χ∗χ

Ψ(χn̂, η0 − χ) (114)

in a flat universe under the same assumptions, with χ∗ the conformal distance to the last

scattering surface, η0 the conformal time today, and Ψ the (Weyl) gravitational potential.

One can similarly decompose the lensing potential field with spherical harmonics as

φ(n̂) =
∑
LM

φLMYLM(n̂), (115)

with the multipole moments φLM related to its power spectrum as

〈φLMφ∗L′M ′〉 = δLL′δMM ′C
φφ
L . (116)

Using Limber approximations, the power spectrum, Cφφ
L , can be expressed analytically as

Cφφ
L ≈

8π2

L3

∫ χ∗

0

χdχ

(
χ∗ − χ
χ∗χ

)2

PΨ

(
L

χ
; η0 − χ

)
, (117)

with PΨ(k; η) the power spectrum of the gravitational potential, which is intimately con-

nected to the matter power spectrum, Pm(k; η), as

PΨ(k; η) =
9Ω2

m(η)H4(η)

8π2

Pm(k; η)

k
, (118)

with Ωm(η) the fractional matter energy density, and H(η) the Hubble parameters at confor-

mal time η. Hence, CMB lensing encodes rich information of matter distribution, especially

at late-time (as the integrand in Eq. (117) peaks at z ∼ 2), and measurements of CMB

lensing is therefore a powerful tool to constrain cosmological parameters such as the matter

fluctuation amplitude σ8, the matter density Ωm, the spatial curvature of the universe Ωk,

the sum of neutrino masses
∑
mν , and the dark energy equation of state w, as previously

demonstrated in, e.g., [17, 18].
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A promising way to measure CMB lensing is through its effect on CMB polarization field

[19, 20]. Following from Eq. (112), CMB lensing leads to perturbations in CMB E-mode and

B-mode polarization fields, given by

δẼ`m =
∑
LM

∑
`′m′

(−1)mφLM

 ` L `′

−m M m′


× 2F

φ
`L`′ε`L`′E`′m′

, (119)

and

δB̃`m =
∑
LM

∑
`′m′

(−1)mφLM

 ` L `′

−m M m′


× 2F

φ
`L`′β`L`′E`′m′ ,

(120)

in the leading order in φ, where ε`L`′ and β`L`′ are parity terms defined as

ε`L`′ ≡
1 + (−1)`+L+`′

2
,

β`L`′ ≡
1− (−1)`+L+`′

2i
,

(121)

and the function 2F
φ
`L`′ defined as

2F
φ
`L`′ ≡ [−` (`+ 1) + L(L+ 1) + `′ (`′ + 1)]

×
√

(2`+ 1) (2L+ 1) (2`′ + 1)

16π

 ` L `′

2 0 −2

 .
(122)

These perturbations to the CMB polarization fields introduces off-diagonal covariance in and

between E-mode and B-mode polarization fields and therefore allows one to measure the

lensing potential by optimally weighting quadratic combinations of the CMB polarization

fields [20]. In the next part we will see that rotations to the CMB polarization field has

similar effects.
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2.3 Cosmic birefringence

In addition to lensing distortion, CMB polarization field may also undergo rotations as

they propagate from the last scattering surface to us. This phenomenon is called cosmic

birefringence. Cosmic birefringence can be caused by parity-violating physics in the early

universe, such as axion-like particles coupling to photons through Chern-Simons interaction

[23, 24, 25], more general Lorentz-violating physics beyond the Standard Model [26], and

primordial magnetic fields through Faraday rotation which is frequency-dependent [27, 28,

139, 140, 141, 142].

Cosmic birefringence leads to a rotation of the linear polarization field of CMB, which

can be expressed as

(Q′ ± iU ′)(n̂) = e±2iα(n̂)(Q± iU)(n̂), (123)

with α(n̂) a rotation field caused by cosmic birefringence. We use prime to represent the

rotated quantities.

As a specific example, we can consider a scenario in which cosmic birefringence is induced

by a Chern-Simons-type interaction of photons and axion-like particles in the early universe

with a Lagrangian given by

Lcs =
gaγa

4
F µνF̃µν , (124)

where gaγ is a dimensionless coupling constant, a is the axion field, M is its mass scale,

and F µν is the electromagnetic tensor with F̃µν being its dual. This term modifies the

Euler-Lagrange equations for electromagnetic field and induces a rotation in the polarization

direction of a photon if a varies along its propagation path [105, 106, 107], with the rotation

angle given by

α(n̂) =
gaγ
2

∆a, (125)

where ∆a is the change of a along the photon path from the last scattering surface to us.

A generic rotation field can be separated into an isotropic and an anisotropic part as

α(n̂) = ᾱ + δα(n̂), (126)

where ᾱ is the isotropic part, and the δα(n̂) is the anisotropic part with a zero mean

〈δα(n̂)〉 = 0. (127)
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For example, some quintessence models predict both isotropic and anisotropic cosmic bire-

fringence [29], while some massless scalar fields do not necessarily induce isotropic cosmic

birefringence [97].

The isotropic cosmic birefringence violates parity symmetry and induces odd-parity CMB

TB and EB power spectra, but the isotropic birefringence itself does not produce the corre-

lations between CMB polarization fields at different angular scales.

In this paper we choose to focus the anisotropic cosmic birefringence, i.e., ᾱ = 0, as it

features more similarity to CMB lensing as both are anisotropic. In what follows we will

always assume that the rotation field, α, shown is purely anisotropic. Similar to Eq. (115),

we can decompose the rotation field into multipole moments using spherical harmonics as

α(n̂) =
∑
LM

αLMYLM(n̂), (128)

and the rotation field power spectrum is given by

〈αLMα∗L′M ′〉 = δLL′δMM ′C
αα
L . (129)

Anisotropies in the rotation field can be a result of inhomogeneities in the axion field. If

axion field is seeded during inflation, it leads to a Gaussian random rotation field with a

nearly scale-invariant spectrum at large scales (L . 100), with an amplitude connected to

the inflationary Hubble parameter HI,

L(L+ 1)Cαα
L

2π
=

(
HIgaγ

4π

)2

≡ ACB, (130)

where we defined a dimensionless parameter ACB to denote the amplitude of the scale-

invariant rotation power spectrum. The current constraint of the scale-invariant rotation

power spectrum is given by ACTPol [15] and SPTPol [32] corresponding to the 2σ upper

bound on the amplitudeb ACB ≤ 10−5. The expected constraints of ACB are at the level of

10−7 for the next-generation ground-based CMB experiments [143, 144, 34]. In this paper

we focus only on scale-invariant rotation field for conceptual simplicity, but the methodology

is generally applicable to rotation field with any power spectrum; we expect the conclusion
bNote that ACB defined in this paper is 10−4 times of that in [15] and [32].
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from other rotational power spectrum to be similar, but we leave a detailed analysis on such

cases to a future work.

Similar to CMB lensing in Eq. (119), rotation field leads to perturbations in the CMB

E-mode and B-mode polarization field, given by [138, 31]

δE ′`m = −2
∑
LM

∑
`′m′

(−1)mαLM

 ` L `′

−m M m′


× 2F

α
`L`′β`L`′E`′m′ ,

(131)

δB′`m = 2
∑
LM

∑
`′m′

(−1)mαLM

 ` L `′

−m M m′


× 2F

α
`L`′ε`L`′E`′m′ ,

(132)

to the leading order of α in a power series expansion of Eq. (123)c, where β`L`′ and ε`L`′ are

defined in Eq. (121), and 2F
α
`L`′ is defined as

2F
α
`L`′ =

√
(2`+ 1) (2L+ 1) (2`′ + 1)

4π

 ` L `′

2 0 −2

 . (133)

Note that the parity indicators in Eq. (131) and Eq. (132) are the opposite to the ones in

Eq. (119) and Eq. (120), i.e., δẼ and δB′`m are only non-zero when ` + L + `′ is even and

δB̃ and δE ′`m are only non-zero when `+L+ `′. In this sense, we say that CMB lensing and

anisotropic cosmic birefringence are orthogonal at linear order [138].

cA non-perturbative treatment also exists; see [145] for an introduction.
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Figure 19: B-mode power spectrum contributions from a scale-invariant tensor mode

(r = 0.004), gravitational lensing, and 1st-order scale-invariant anisotropic birefringence

with different amplitudes (ACB = 10−5, ACB = 10−6, ACB = 10−7 and ACB = 10−8) are

shown, where we define DBB
` ≡ `(` + 1)CBB

` /2π. All the power spectra shown above are

generated by class_rot [8].
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2.4 Summary remarks

As we have seen, both CMB lensing and anisotropic cosmic birefringence lead to per-

turbations in the CMB E-mode and B-mode polarization field. To understand their relative

contributions, one can measure the resulting B-mode power spectrum. In Fig. 19, we com-

pare the B-mode power spectra from a scale-invariant primordial tensor mode with r = 0.004,

gravitational lensing, and scale-invariant anisotropic rotation fields with different amplitudes

(ACB = 10−5, ACB = 10−6, ACB = 10−7, and ACB = 10−8). One can see, similar to CMB

lensing, anisotropic rotation contributes dominantly to small scale anisotropies in B-mode

polarization, with a power spectrum generally orders of magnitude below the CMB lensing

signal.

In addition to contributing to CMB polarization power spectra, both CMB lensing and

rotation lead to off-diagonal covariance between E-mode and B-mode polarization fields [31],

〈E`mδB̃`′m′〉CMB =
∑
LM

 ` `′ L

m m′ M

 fφ`L`′φ
∗
LM ,

〈E`mδB′`′m′〉CMB =
∑
LM

 ` `′ L

m m′ M

 fα`L`′α
∗
LM ,

(134)

for ` 6= `′ and m 6= −m′. fφ`L`′ and fα`L`′ are weight functions for φ and α, given by

fφ`L`′ = −β`L`′ 2F
φ
`L`′C

EE
` ,

fα`L`′ = −2ε`L`′ 2F
α
`L`′C

EE
` .

(135)

We have defined 〈...〉CMB to be an ensemble average over different realisations of primary

CMB, with a fixed realization of both φ and α. It then follows that

〈Ẽ ′`mB̃′`′m′〉CMB =
∑
LM

 ` `′ L

m m′ M

 fφ`L`′φ
∗
LM

+
∑
LM

 ` `′ L

m m′ M

 fα`L`′α
∗
LM ,

(136)
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for ` 6= `′ and m 6= −m′. Eq. (136) shows that the off-diagonal covariance between E-mode

and B-mode polarization is contributed by a summation of lensing and rotation contributions,

to the leading orderd .

3 CMB lensing reconstruction bias due to rotation field

In this section, we introduce the CMB lensing reconstruction pipeline considered in this

work. In particular, we focus on the EB estimator, as it is expected to be a dominant mode

for lensing reconstruction in the upcoming experiments [20]. We then discuss the motivation

and our methodology to estimate the bias to reconstructed lensing power spectrum through

simulations.

3.1 Lensing reconstruction

Based on the off-diagonal covariance generated by CMB lensing in Eq. (136), the lensing

potential can be reconstructed using a quadratic estimator approach, with the estimator for

lensed E and B maps given by [20]

φ̂LM = AL
∑
`m

∑
`′m′

(−1)M

 ` `′ L

m m′ −M


× (fφ`L`′)

∗ Ẽ`m

ĈEE
`

B̃`′m′

ĈBB
`′

,

(137)

where AL is a normalization factor ensuring φ̂LM is unbiased, given by

AL =

(
1

2L+ 1

∑
``′

|fφ`L`′|2
ĈEE
` ĈBB

`′

)−1

, (138)

and ĈEE
` and ĈBB

` are the total observed EE and BB power spectra with noise power spectrum

included. The quadratic estimator φ̂LM collects all the off-diagonal correlations of a CMB

map realization and average them by a weight function fφ`L`′ .
dNote that Eq. (136) does not contradict with the fact that lensing and anisotropic rotation do not induce

parity-odd power spectra, because the average is taken with fixed φ and α realizations; if, however, we also
average over φ and α in Eq. (136), the resulting EB power spectrum will be zero.
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Based on the reconstructed lensing potential, one can estimate its power spectrum which

is directly relevant for cosmological parameter constraints. It can be estimated as [17]

Ĉφφ
L = C φ̂φ̂

L − (RD)N
(0)
L −N

(1)
L −N

(MC)
L −N (FG)

L , (139)

with C φ̂φ̂
L given by

C φ̂φ̂
L =

1

2L+ 1

L∑
M=−L

∣∣∣φ̂LM ∣∣∣2 . (140)

The remaining terms in Eq. (140) are noise biases that need to be subtracted: (RD)N
(0)
L is

the realization-dependent Gaussian noise (RDN0) [62] (the motivation to use this instead

of the standard Gaussian noise, N0, will be made clear later), N (1)
L represents the bias from

those connected terms in CMB four-point function which contain the first-order lensing

potential Cφφ
L . N (MC)

L is the “Monte-Carlo”(MC) noise encapsulating biases not accounted

for otherwise, such as higher-order reconstruction noise, estimated from MC simulations,

and N (FG)
L is the modeled foreground bias from extragalactic and galactic foregrounds like

galactic dust, galaxy clusters and cosmic infrared background.

3.2 Bias to Cφφ
L from rotation

Now consider a scenario in which we perform the aforementioned lensing reconstruction

on a set of polarization maps which have been unknowingly rotated, how will this affect our

estimated Cφφ
L ? To understand this, we can define an effective estimator,

φ̂′LM = AL
∑
`m

∑
`′m′

(−1)M

 ` `′ L

m m′ −M


× (fφ`L`′)

∗ Ẽ
′
`m

ĈEE
`

B̃′`′m′

ĈBB
`′

,

(141)

which represents that we are incorrectly using the rotated-lensed quantities, Ẽ ′`m, B̃′`m, in

place of the lensed-only ones.

We first note that this effective estimator, φ̂′LM , does not bias the reconstructed lensing

potential, up to the leading order of φ and α (also see Appendix. B of [31] for a similar
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discussion). This can be demonstrated by taking the ensemble average of φ̂′ over different

CMB realizations,

〈φ̂′LM〉CMB =AL
∑
`m

∑
`′m′

∑
L′M ′

(−1)M

×

 ` `′ L

m m′ −M

 ` `′ L′

m m′ M ′


×
(

(fφ`L`′)
∗fφ`L′`′φ

∗
L′M ′ + (fφ`L`′)

∗fα`L′`′α
∗
L′M ′

)
.

(142)

Applying the orthogonality relation of wigner 3j symbols,

∑
mm′

 ` `′ L

m m′ −M

 ` `′ L′

m m′ M ′

 =
1

2L+ 1
δLL′δM,−M ′ , (143)

and the orthogonality of the parity indicators

ε`L`′β`L`′ = 0, (144)

we can see that the leading-order rotation contribution disappears due to parity, and we get

〈φ̂′LM〉CMB = AL
∑
``′

1

2L+ 1

|fφ`L`′|2
ĈEE
` ĈBB

`′

φLM

= φLM ,

(145)

which shows that our estimator for lensing potential, φ, remains unbiased.

However, we should emphasize that an unbiased φ does not necessarily imply an unbiased

Cφφ
L . Similar to the fact that 〈x〉 = 0 does not imply 〈x2〉 = 0, the estimator, C φ̂φ̂

L , contains

quadratic terms in φ̂ and thus is not guaranteed to be unbiased. In addition, higher-order

terms in Eq. (131) and Eq. (132) may also break the orthogonality between CMB lensing

and anisotropic rotation and induce bias to Ĉφφ
L .

Based on Eq. (139), we define the bias from rotation to reconstructed CMB lensing power

spectrum in average as

∆(Ĉφφ
L )rot ≡ 〈Ĉ ′

φφ

L 〉 − 〈Ĉφφ
L 〉 (146)
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where the subscript ’rot’ denotes the bias is induced by rotation, 〈...〉 represents the average

over the reconstructed lensing power spectra, and Ĉ ′
φφ

L refers to applying the power spec-

trum estimator given in Eq. (139) to rotated-lensed CMB maps. Among the noise biases in

Eq. (139), we assume that anisotropic rotation does not affect N (1)
L , N (MC)

L and N
(FG)
L on

full-sky. RDN0, on the other hand, is calculated based on the observed CMB power spectrum

and therefore will be affected by rotation as it changes the CMB polarization power spectra

(as shown in Fig. 19). RDN0 is calculated based on both “data” and MC simulation, encap-

sulating all the disconnected terms in the CMB four-point correlation [62, 69]; consequently,

when compared with a standard MC N
(0)
L , RDN0 automatically mitigates the biases from

small changes to the CMB covariancee , such as that arising from rotation in the context of

this paper.

We can then write Eq. (146) as

∆(Ĉφφ
L )rot =〈C φ̂′φ̂′

L 〉 − 〈C φ̂φ̂
L 〉

−(〈(RD)N
′(0)
L 〉 − 〈(RD)N

(0)
L 〉),

(147)

where 〈Ĉ ′φφL 〉 and 〈Ĉφφ
L 〉 represent the average over the two sets of reconstructed lensing

potential power spectrum using rotated lensed and unrotated lensed CMB maps respectively,

and 〈(RD)N
′(0)
L 〉 and 〈(RD)N

(0)
L 〉 represent the corresponding average RDN0. We will show the

simulation of RDN0 in Sec. 4.

4 Simulation and results

In this section, we show our simulation steps and present our results. As discussed in

Sec. 3, to estimate the bias ∆(Ĉφφ
L )rot in Eq. (147), we need two sets of simulated CMB

polarization maps: one set with both CMB lensing and rotation, and another set with CMB

lensing only. The first set of simulations (including both lensing and rotation) is generated

by rotating the lensed simulations in pixel space with a random realization of rotation field.

eThe difference between (RD)N
(0)
L and N

(0)
L has been introduced in [125].
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Figure 20: Comparing biases from different ACB in a CMB-S4-like experiment. For visual-

ization we have scaled both data and error bar by a factor of 10 and 0.1 for ACB = 10−8 and

10−6, respectively. Similarly the horizontal displacements between the three data series are

for visualization purpose only.
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All simulations in this work are generated in CAR pixelization on the full sky using pixellf

[112]. We then use cmblensplusg to perform the CMB lensing reconstruction on the full sky

which avoids unnecessary complications due to partial sky coverageh . Below we summarize

the details of our simulation steps:

1. We generate 10 realizations of lensed CMB polarization maps, {X̃(n̂)} (X ∈ {E,B}),
based on fiducial power spectrum, CXX

l |fid, given by the best-fit cosmology from Planck

2018 [111] where no polarization rotation is present.

2. We generate 10 Gaussian realizations of anisotropic rotation field, {α(n̂)}, assuming a

scale-invariant power spectrum with ACB = 10−7 as defined in Eq. (130).

3. We perform a pixel-wise polarization rotation on each X̃(n̂) with the rotation field, α(n̂),

and get a set of 10 rotated-lensed CMB polarization maps, denoted as {X̃ ′(n̂)}.

4. We perform full-sky CMB lensing reconstruction using cmblensplus [146] on both sets

of simulations, {X̃(n̂)} and {X̃ ′(n̂)}, and obtain an average lensing power spectrum for

each set of simulations, denoted as 〈C φ̂φ̂
L 〉 and 〈C φ̂′φ̂′

L 〉. In particular, we have restricted

to multipoles between `min = 30 to `max = 3000 for lensing reconstruction, and for the

total power spectra, ĈXX
` , we have also used the Knox formula [147]

ĈXX
` = CXX

` |fid +N`, (148)

with the homogeneous detector noise power spectrum for polarization given by

N` = ∆2
Pe

`(`+1)θ2FWHM/(8ln2), (149)

where ∆P is the polarization noise level of the experiment and θ2
FWHM/(8 ln 2) is the

full-width at half maximum (FWHM) of the beam in radians. Note that although ex-

perimental noises are modeled in the power spectrum level in ĈXX
l , Gaussian noises in

the map do not affect the estimation of lensing bias but introduce additional scatter in

the result, so we choose to not include it in our simulated maps.

f https://github.com/simonsobs/pixell
ghttps://github.com/toshiyan/cmblensplus
hThere can be extra mean-field bias for cut-sky CMB lensing reconstruction [62].
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5. Following [62, 69], we calculate RDN0 for each map in {X̃} and {X̃ ′} by making two

additional set of lensed CMB simulations, {X̃S1} and {X̃S2
i }, each containing 50 simula-

tions. For a given map, X̃(n̂), we calculate its RDN0 as

(RD)N
(0)
L =〈C φ̂φ̂

L [ẼB̃S1 , ẼB̃S1 ] + C φ̂φ̂
L [ẼS1B̃, ẼB̃S1 ]

+ C φ̂φ̂
L [ẼS1B̃, ẼS1B̃] + C φ̂φ̂

L [ẼB̃S1 , ẼS1B̃]

− C φ̂φ̂
L [ẼS1B̃S2 , ẼS1B̃S2 ]

− C φ̂φ̂
L [ẼS1B̃S2 , ẼS2B̃S1 ]〉S1,S2 ,

(150)

and similarly we calculate RDN0 for a given rotated-lensed map X̃ ′ as

(RD)N
′(0)
L =〈C φ̂φ̂

L [Ẽ ′B̃S1 , Ẽ ′B̃S1 ] + C φ̂φ̂
L [ẼS1B̃′, Ẽ ′B̃S1 ]

+ C φ̂φ̂
L [ẼS1B̃′, ẼS1B̃′] + C φ̂φ̂

L [Ẽ ′B̃S1 , ẼS1B̃′]

− C φ̂φ̂
L [ẼS1B̃S2 , ẼS1B̃S2 ]

− C φ̂φ̂
L [ẼS1B̃S2 , ẼS2B̃S1 ]〉S1,S2 ,

(151)

where the combinations in [...] represent the input maps for lensing reconstruction, and

〈...〉S1,S2 refers to an average over the two sets of MC simulations (S1, S2) i . Using

Eq. (150) and (151), we calculate RDN0 for each simulation in {X̃(n̂)} and {X̃ ′(n̂)} and
calculate the average within each set of simulations, respectively, denoted as 〈(RD)N

(0)
L 〉

and 〈(RD)N
′(0)
L 〉.

6. We then estimate the lensing bias, ∆(Ĉφφ
L )rot using Eq. (147), and calculate fractional bias

defined as ∆(Ĉφφ
L )rot/C

φφ
L , with Cφφ

L the power spectrum of the CMB lensing potential

from the fiducial model.

7. We repeat the above procedures for two sets of experimental configurations: CMB-S3-like

and CMB-S4-like. The experimental configurations including the noise level and beam

size are list in Table 2.
i In practice, due to memory constraint, we split the set, S1, further into two subsets, S11 and S12, evenly;

Similarly S2 is split into S21 and S22. The average over S1 and S2 is calculated by averaging over the
combinations of {S11, S21}, {S11, S22}, {S12, S21}, and {S12, S22}.
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Expt ∆T [µK′] θFWHM[′]

CMB-S3-like 7 1.4

CMB-S4-like 1 1.4

Table 2: Experiments configurations considered in this study.

In Fig. 20, we show the fractional bias, ∆(Ĉφφ
L )rot/C

φφ
L , obtained from the pipeline de-

scribed above for both CMB-S3-like and CMB-S4-like experiments, respectively. We find

that a rotation field with ACB = 10−7, which is well-below the current experimental con-

straint, is capable of introducing a percent-level bias to the reconstructed lensing power

spectrum. The bias is most evident at small scales (L & 1000), reaching up to 1.5% for

CMB-S3-like experiments and slightly lower for CMB-S4-like experiments.

5 Discussion

To understand the observed bias, we compare the four-point correlation function con-

tained in C φ̂′φ̂′

L ,

〈Ẽ ′`1m1
B̃′`2m2

Ẽ ′`3m3
B̃′`4m4

〉, (152)

to the four-point correlation function in C φ̂φ̂
L ,

〈Ẽ`1m1B̃`2m2Ẽ`3m3B̃`4m4〉. (153)

To the leading order, one of the dominant contributions to their difference is given by

〈E`1m1δB
′
`2m2

E`3m3δB
′
`4m4
〉

∝ 〈E`1m1(E`′2m′2αLM)E`3m3(E`′4m′4αL′M ′)〉,
(154)

where we have applied Eq. (132) and used parentheses to indicate groupings of terms which

will be useful later on. As we have assumed α to be a Gaussian random field, Eq. (154) can
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be simplified using Wick theorem into products of two-point correlation functions that can

be broadly classified into two classes: disconnected terms and connected terms.

An example of disconnected term can be expressed as

〈E`1m1(E`′2m′2αLM)E`3m3(E`′4m′4αL′M ′)〉, (155)

where we have used Wick contraction notation to denote products of two-point correlation

functions. This term is classified as a disconnected term of CMB four-point correlation

function, because fields within the same “group”, e.g., E`′2m′2 and αLM (as indicated by the

parentheses), follow the same contraction behaviour, i.e., contracting with a common group,

E`′4m′4 and αL′M ′ . If, on the other hand, contraction behavior of fields in the same group is

different, we classify the term as connected. For example, this term,

〈E`1m1(E`′2m′2αLM)E`3m3(E`′4m′4αL′M ′)〉, (156)

is a connected term, and so is the term,

〈E`1m1(E`′2m′2αLM)E`3m3(E`′4m′4αL′M ′)〉. (157)

In both cases E`′2m′2 and αLM do not contract with a common group. The distinction of

disconnected and connected terms is important because the RDN0 technique that we apply

mitigates the leading-order biases in the disconnected terms of the four-point correlation,

such as that in Eq. (155), but cannot mitigate biases in the connected terms. Hence we expect

that a dominant contribution to the observed bias in Sec. 4 comes from the accumulated

effect of all connected terms, such as Eq. (156) and (157).

Note that in the discussion above we have neglected the effect of higher-order terms,

which mix lensing and rotation. Higher-order terms, on one hand, break the orthogonality

between lensing and rotation, leading to bias in φ̂; they also contribute additional connected

terms to Ĉφφ
l . In Fig. 21 we show the contributions from leading- and higher-order terms

in power spectrum level, calculated using class_rotj . We find that higher-order terms

(with ACB = 10−7) generally contribute at a few percents level of that from the leading
jHigher-order contribution is estimated by subtracting leading-order lensing and rotation contributions

from a non-perturbative calculation with both lensing and rotation, implemented in class_rot.
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Figure 21: B-mode power spectrum contributions from the leading-order (LO) contribution

and higher-order (HO) contribution of scale-invariant anisotropic cosmic birefringence with

an amplitude of ACB = 10−7. The former is about two order of magnitude larger than the

latter. The power spectra shown here are generated by class_rot [8].
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Figure 22: Compare biases from different ACB in context of a CMB-S4-like experiment. For

visualization we have scaled both data and error bar by a factor of 10 and 0.1 for ACB = 10−8

and 10−6, respectively. Similarly the horizontal displacements between the three data series

are for visualization purpose only.
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order. Therefore we expect higher-order terms to contribute at about 10% level of that from

leading order in the map space and thus is a subdominant contribution to the observed bias.

If the contributions from connected terms, such as Eq. (156) and (157), are dominant

and the higher-order terms are subdominant, we expect the size of the observed bias to

scale linearly with Cαα
L and thus linearly with ACB. To verify this, we repeat the steps in

Sec. 4 for ACB = 10−6 and 10−8, respectively, and compare the resulting biases in Fig. 22.

From the result it is evident that the observed bias scales linearly with ACB, as expected.

This also suggests that, if a rotation field with ACB = 10−6, which is well below the current

observational constraint, were present but not accounted for in CMB lensing reconstruction,

our estimated Cφφ
L may be biased low by & 10% at the small scales, and as shown in Fig. 20,

the bias gets marginally worse at higher noise levels.

We also find that the bias, ∆(Ĉφφ
L )rot/C

φφ
L , has a shape that roughly follows that of the

term, −N (0)
L /Cφφ

L , as shown in Fig. 23. Terms in Eq. (156) and (157) are quadratic in α

which are similar to the N (1)
L bias in CMB lensing, and the N (1)

L bias (quadratic in φ) is in

general not linear to N (0)
L in the context of CMB lensing (see, e.g., [148, 149]). The apparent

linearity between the observed bias and N (0)
L seen in Fig. 23 is therefore surprising and may

be a consequence of the scale-invariance of the rotation field in consideration or coincidental.

We leave a detailed investigation of the shape of the bias to a future work.

Bias to the CMB lensing power spectrum may lead to bias in the cosmological parameters

extracted from it. For example, the sum of neutrino masses can be constrained using CMB

lensing power spectrum as massive neutrino can suppress CMB lensing power spectrum

by several percents due to its suppression effect on the matter power spectrum below the

neutrino free-streaming scale [150, 151]; it has also been shown in [152] that bias in the

high-L may lead to bias in σ8Ω0.25
m at 1σ level. Therefore, the bias from rotation field needs

to be carefully accounted for when constraining cosmological parameters using CMB lensing

power spectrum.

Note that we have only considered the EB estimator for lensing reconstruction, but we

expect a similar effect to be present with other polarization-based quadratic estimators, such

as the EE estimators. As we expect polarization-based estimators to contribute substantial

statistical power in CMB lensing reconstruction in a CMB-S3-like experiment and dominates
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Figure 23: Over-plotting the observed bias (solid lines) with−N (0)
L /Cφφ

L (dashed lines), where

N
(0)
L is obtained by averaging the (RD)N (0) from the lensed simulations (without rotation).

The minus sign in front of N (0)
L is added to aid visual comparison.
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the statistical power in a CMB-S4-like experiment [115], rotation-induced bias is thus an

important factor to account for. On the other hand, lensing reconstruction with TT estimator

should remain unaffected by rotation because it only affects CMB polarization fields; this

suggests that an easy diagnostic of the rotation-induced bias is to compare the reconstructed

lensing power spectrum obtained from TT and EB estimators and look for a reduction of

power in the latter.

Multiple methods for mitigating biases in a CMB lensing measurement have been pro-

posed. For example, the bias-hardening approach [62, 153, 63, 64] has been used to mitigate

the mean-field bias in the reconstructed lensing map. In our case, however, this approach

does not apply since the leading-order rotation fields do not produce mean-field bias in the

reconstructed lensing map (see Eq. (145)). A simple approach to mitigate the rotation-

induced bias arising from the connected four-point correlation is to first reconstruct the

rotation fields using the quadratic estimator similar to the lensing reconstruction [31, 30]

and then to de-rotate polarization maps using the reconstructed rotation fields as originally

proposed by [138]. We leave a detailed analysis on the effectiveness of this approach to a

future work.

6 Conclusion

CMB lensing encodes a wealth of information of late-time matter fluctuations over a

broad range of redshifts, and the measurement of CMB lensing is becoming one of the most

powerful cosmological probes for ongoing and upcoming experiments. The CMB lensing

power spectrum probes the projected mass distribution, and hence is sensitive to both the

growth of structure and the geometry of the universe. It can be used to constrain the

cosmological parameters like the sum of neutrino masses, the linear-theory matter fluctuation

amplitude, the curvature of the universe and the dark energy equation of state.

However, the reconstructed CMB lensing power spectrum can be biased by many sec-

ondary effects. In this paper we investigated the bias from anisotropic polarization rotation

to the reconstructed CMB lensing power spectrum using EB estimator. This bias has often
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been investigated in the context of instrumental systematics [125, 126], without reference

to theoretical models. In this work we focused instead on a particular class of physically

motivated models that produce anisotropic cosmic birefringence, such as axion-like particles

coupling to photons through Chern-Simons interaction or primordial magnetic field, both of

which have not been well-constrained by the current experiments. In addition, we aimed to

identify the dominant terms responsible for the rotation-induced bias to CMB lensing which

have not been clarified in previous works.

Our results have shown that anisotropic cosmic birefringence with ACB = 10−7 can induce

a percent-level bias to reconstructed CMB lensing power spectrum at small scales (L > 1000)

for both CMB-S3-like and CMB-S4-like experiments, and the bias scales linearly with ACB.

This suggests that if a rotation field with ACB = 10−6 is present which is well-below our

current observational constraint, the reconstructed lensing power spectrum can be biased

low by & 10%. We also found that the observed bias likely arises from the the connected

terms in the CMB four-point correlation function induced by the leading-order perturbation

from rotation; this explains the linear scaling of the bias with ACB.

Polarization-based lensing reconstruction is expected to dominate or contribute substan-

tially to the statistical power in CMB lensing reconstruction in the next generation CMB

experiments. Rotation-induced bias to the CMB lensing power spectrum, therefore, may

lead to non-negligible bias in the constraints of cosmological parameters such as the sum

of neutrino masses and σ8 and poses a significant challenge to achieving the science goals

in future CMB lensing analysis. Thus, rotation field is an important factor to account for

and mitigate during lensing reconstruction. We argued that the bias-hardened estimator ap-

proach to mitigate bias does not work for rotation-induced bias, because of the orthogonality

between rotation and CMB lensing. A promising mitigation method is to first reconstruct

the anisotropic rotation field and then de-rotate the CMB polarization field with the recon-

structed rotation field before proceeding to lensing reconstruction, but its effectiveness in

the presence of galactic foreground and partial sky coverage remains to be seen.

As we have demonstrated in this paper, the reconstructed lensing power spectrum is

highly sensitive to the level of anisotropic cosmic birefringence. Besides posing a challenge

to CMB lensing science, it may also provide a promising way to tightly constrain cosmic bire-
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fringence, which is physically interesting in itself. This can be done by, e.g., comparing the

reconstructed lensing power spectrum from TT and EB estimators. We leave an application

of this effect to constrain cosmic birefringence to a follow-up work.
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5.0 Conclusion

The first focus of this thesis is CMB lensing, which is a powerful tool of mapping the

mass distribution and probing physics between the last scattering surface to us. CMB

lensing imprints statistical signatures on CMB maps, and it can be measured statistically by

quadratic estimators. However, the CMB lensing measurement can be biased by secondary

effects. With the increasing sensitivity of CMB measurements, it is necessary to study

carefully these bias sources at smaller scales. In this thesis, I introduced the bias to CMB

lensing reconstruction from kinematic Sunyaev–Zel’dovich (SZ) kSZ effect and the potential

bias from cosmic birefringence respectively, and showed how much we need to worry about

them for the ongoing and upcoming CMB experiments. It is shown that understanding

and mitigating these biases will be crucial for accurate measurement of CMB lensing and

for extracting meaningful cosmological information from the data like the sum of neutrino

masses.

The other focus of this thesis is cosmic birefringence which is an important scientific

goal of modern cosmology and has important implications for our understanding of the early

universe, as well as for the study of cosmic microwave background radiation and large-scale

structure formation. On one hand, I introduced my work on class_rot which is a new

publicly available code for calculating rotated CMB power spectra due to cosmic birefrin-

gence numerically. On the other hand, I introduced the potential bias to CMB lensing power

spectrum measurement from cosmic birefringence. The effect of cosmic birefringence on the

CMB polarization pattern is similar to that of CMB lensing, which both cause small distor-

tions in the polarization pattern. The study of both CMB lensing and cosmic birefringence is

an active area of research in cosmology and astrophysics. Together, they provide important

insights into the structure and evolution of the universe, as well as into the fundamental

physics that governs its behavior.
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6.0 Appendix

Here we review the realization-dependent Gaussian noise (RDN0) applied in Eq. (150)

and (151). RND0 is introduced in [62, 154] as a robust way to evaluate the reconstruction

noise to CMB lensing power spectrum sourced by the disconnected terms of CMB four-

point function (Gaussian noise). It has been applied in the CMB lensing power spectrum

measurements of different experiments including [118, 119, 120]). In this section, we revisit

the derivation of RDN0. We will adopt the flat-sky approximation in [62], but the result

applies to both flat-sky and full-sky analyses.

We start by defining the Gaussian probability distribution function (PDF) of the unlensed

CMB multipoles as

Pg =
1√

(2π)N detC
exp

(
−1

2

∑
ab

∑
``′

a`
(
C−1

)a`,b`′ b`′) , (158)

where C is the covariance matrix between CMB multipoles, a`, b`′ represent the CMB mul-

tipoles, and a, b ∈ {T,E,B}.
When CMB fields are distorted by weak lensing, CMB multipoles become weakly non-

Gaussian. The PDF of the lensed CMB multipoles can then be approximated using the

Edgeworth expansion as [155, 156]

P ≈

1 +
∑
abcd

∑
{`i}
〈a`1b`2c`3d`4〉c

∂

∂a`1

∂

∂b`2

∂

∂c`3

∂

∂d`4

Pg, (159)

where 〈a`1b`2c`3d`4〉c represents the connected terms (also known as cumulants or trispec-

trum) contributed by CMB lensing, given by [154]

〈a`1b`2c`3d`4〉c ≈ fab`12,`1f
cd
−`12,`3C

φφ
|`12|δ`12,−`34

+ fac`13,`1f
bd
−`13,`2C

φφ
|`13|δ`13,−`24

+ fad`14,`1f
bc
−`14,`2C

φφ
|`14|δ`14,−`23 ,

(160)

to the leading order of Cφφ
L , where `ij ≡ `i + `j, and fab`,`′ represents the weight functions for

lensing potential as in [154].
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We can then obtain an optimal estimator, Ĉφφ
L , by maximizing the log-likelihood, L ≡

lnP , with
∂L
∂Cφφ

L

(
Ĉφφ
L

)
= 0, (161)

and get [154]

Ĉφφ
L ∝

∑
abcd

∑
|L|=L

P−1
g

(
f̂abL f̂

cd
−L + f̂acL f̂

bd
−L + f̂adL f̂ bc−L

)
Pg, (162)

where we have defined

f̂abL ≡
∑
`′

fabL,`′
∂

∂aL

∂

∂bL−`′
, (163)

and have omitted the normalization. One can further show that

f̂abL Pg =
(
x̄abL −

〈
x̄abL
〉)
Pg, (164)

where

x̄abL ≡
∑
`

fabL,`ā`b̄L−`, (165)

in which ā` =
∑

a′,`′ C
−1
a`a
′
`′
a′`′ represents the inverse-variance filtered CMB multipoles. Note

that x̄abL resembles the unnormalized quadratic estimator for CMB lensing, and
〈
x̄abL
〉
the

mean-field biasa .

One can further show that

P−1
g f̂abL f̂

cd
−LPg ∝

[(
x̄abL −

〈
x̄abL
〉) (

x̄cd−L −
〈
x̄cd−L

〉)
− nab,cdL

]
, (166)

with
nab,cdL ≡

∑
`1,`2

fabL,`1f
cd
−L,`2

×

(b̄L−`1 d̄−L−`1C
−1
a`1 ,c`2

+ b̄L−`1 c̄−L−`1C
−1
a`1 ,d`2

+āL−`1 d̄−L−`1C
−1
b`1 ,c`2

+ āL−`1 c̄−L−`1C
−1
b`1 ,d`2

)

−1

2

∑
`1,`2

fabL,`1f
cd
−L,`2

×

(C−1
a`1 ,c`2

C−1
bL−`1

,d−L−`2
+ C−1

a`1 ,d`2
C−1
bL−`1

,c−L−`2

+C−1
b`1 ,c`2

C−1
aL−`1

,d−L−`2
+ C−1

b`1 ,d`2
C−1
aL−`1

,c−L−`2
),

(167)

a In the real experiments, the mean-field bias is estimated by averaging the reconstructed maps using
simulated CMB realizations based on the fiducial model. The mean-field bias does not affect the result in
this paper.
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where we have used

C−1
a`a
′
`′

= 〈ā`ā′`′〉. (168)

With Eq. (166), the optimal estimator for CMB lensing potential in Eq. (162) becomes

Ĉφφ
L ∝

∑
abcd

∑
|L|=L

([(
x̄abL −

〈
x̄abL
〉) (

x̄cd−L −
〈
x̄cd−L

〉)
− nab,cdL

]
+ [b↔ c] + [b↔ d]

)
.

(169)

Note that ā, b̄, c̄, d̄ in Eq. (167) correspond to filtered CMB multipoles from data, whereas

the covariance matrices, e.g., Ca`1 ,c`2 , are to be estimated from simulations. In particular,

we apply two sets of Monte-Carlo CMB realizations based on the same fiducial cosmological

model to estimate the covariance matrix, denoted as S1 and S2. Specifically, S1 is used

to estimate the covariance matrices in the first parentheses of Eq. (167); each product of

covariance matrices in the second parenthesis of Eq. (167) is estimated using S1 and S2

respectively (i.e., C−1
S1C

−1
S2 ). This way of estimating the covariance matrix is less sensitive

to errors in the covariance matrix from statistical uncertainties as well as mis-modeling.

To see that, we can express the estimated covariance matrix as Ĉ = C̄ + ∆C, with C̄ the

true covariance matrix and ∆C the error. It is then easy to check that, when averaging

over different CMB realizations, the error in covariance matrix, ∆C, does not contribute

to 〈nab,cdL 〉 in the leading order. Since S1 and S2 are assumed to be independent, statistical

uncertainties in Ĉ will also be eliminated up to O((∆C)2).

Incorporating the estimation of covariance matrices using S1 and S2, Eq. (167) can be

expressed more succinctly as

nab,cdL =
〈(
x̄a

S1b
L + x̄ab

S1

L

)(
x̄c

S1d
−L + x̄cd

S1

−L

)〉
S1

−
1

2

〈(
x̄a

S1bS2
L + x̄a

S2bS1
L

)(
x̄c

S1dS2
−L + x̄c

S2dS1
−L

)〉
S1,S2

,
(170)

where the superscripts Si denote the CMB simulation provided by the set of Si, and 〈...〉Si
represents the average over the realizations of Si. Adding back the omitted normalization
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in Eq. (170), and the omitted normalization, we obtain the realization-dependent Gaussian

noise (RDN0) with a given set of {ab, cd} as

(RD)N
(0)ab,cd
L ∝

∑
|L|=L

nab,cdL

= 〈C φ̂φ̂
L [abS1 , cdS1 ] + C φ̂φ̂

L [aS1b, abS1 ]

+ C φ̂φ̂
L [aS1b, cS1d] + C φ̂φ̂

L [abS1 , cS1d]

− C φ̂φ̂
L [aS1bS2 , cS1dS2 ]

− C φ̂φ̂
L [aS1bS2 , cS2dS1 ]〉S1,S2 .

(171)

In the context of this paper, we set a = c = E, b = d = B. S1 and S2 are two sets of

independent lensed CMB realizations based on the fiducial cosmological model which does

not include the cosmic birefringence effect. As a result, for the lensed-only data maps,

the RDN0 is given by Eq. (150); for the rotated-lensed data maps, the RDN0 is given by

Eq. (151).

Note that by averaging (RD)N
(0)
L over many CMB realisations, we reproduce the naive

Gaussian reconstruction noise N
(0)
L . However, one can see that (RD)N

(0)
L is more optimal

because it preserves the critical realisation-dependent information which is lost in N
(0)
L after

averaging. In addition, as previously discussed, RDN0 is also less sensitive to the errors in

the covariance matrix such as the statistical uncertainties from the limited set of simulations

used to calculate the covariance matrix and errors in the underlying fiducial model used to

generate the simulations. It has been demonstrated in [69] that such an error in covariance

matrix may lead to a catastrophic error (see Fig. 2 of [69]) in the estimated lensing power

spectrum if the naive N (0)
L is used, and it is significantly reduced with RDN0.
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