
Unifying Data-Driven Modeling with Machine Learning to Improve

Personalized Treatment of Critical Care Patients

by

Brian McLaverty

Bachelor of Science in Bioengineering, Temple University, 2017

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023



UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Brian McLaverty

It was defended on

January 19th 2023

and approved by

Robert S. Parker, PhD, Professor, Department of Chemical and Petroleum Engineering

Gilles Clermont, MD, Professor, Department of Critical Care Medicine, School of Medicine

Hyo Kyung Lee, PhD, Adjunct Assistant Professor, Department of Industrial Engineering

Jason Shoemaker, PhD, Associate Professor, Department of Chemical and Petroleum

Engineering

Dissertation Director: Robert S. Parker, PhD, Professor, Department of Chemical and

Petroleum Engineering

ii
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Personalized Treatment of Critical Care Patients

Brian McLaverty, PhD

University of Pittsburgh, 2023

Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response

to infection. Early identification and appropriate management of sepsis has been identified as

a global health priority. The development and validation of patient-specific models of acute

inflammation offer the opportunity to expand current knowledge of underlying interpatient

differences in the fight against infection. Early prediction into identified sepsis subtypes

exhibiting differing health outcomes could be used as a guide for clinicians to develop a

personalized therapeutic regimen.

A dynamical model of inflammation response in sepsis was derived, leveraging cytokine

mediators that play a key role in sepsis pathology. The model was validated against a selected

cohort of sepsis patients from the Protocolized Care for Early Septic Shock (ProCESS)

trial to create patient-specific models of inflammation. Using the fitted model parameters

and unsupervised machine learning, four subtypes of septic patients emerged with distinct

inflammation responses and clinical outcomes. A clinical tool was proposed that accurately

predicts patient membership into subtypes exhibiting high or low mortality risk using cytokine

levels measured within six hours of hospital admission.

Dialysis patients frequently experience intradialytic hypotension (IDH), which is an

independent predictor of mortality. Development of a personalized treatment support system

for hemodialysis that reduces risk of IDH could potentially improve dialysis patient outcomes.

A predictive model of future risk of IDH was developed by training and testing a random

forest model using electronic health record data from hemodialysis treatments performed

at UPMC acute care facilities. The model forecasted future IDH several hours ahead of

occurrence and produced dynamic risk evolution toward instability. An early-warning tool

was developed that accurately classifies a patient as high or low risk for IDH using model-

derived risk scores available within minutes of dialysis initiation. A risk-based reinforcement
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learning algorithm was then developed that recommends preemptive, personalized treatment.

The agent-suggested treatment strategy resulted in decreased incidence of hypotension and

increased accomplishment of individualized fluid goals in silico, at the cost of increased

intervention. Clinicians could use the tools presented in this work to provide timely, individualized

treatment to patients and potentially improve sepsis and hemodialysis patient outcomes.
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1.0 Introduction

1.0.1 Background and Significance

Sepsis is defined as life-threatening organ dysfunction resulting from a dysregulated host

response to infection [104]. A patient is clinically diagnosed with sepsis when they present at

least two of the following: respiratory rate >= 22 breaths per minute, systolic blood pressure

<= 100 mmHg, and altered mental status. Current global estimates of mortality resulting

from sepsis range from 20-30% [31, 93]. In the United States alone, sepsis is the leading

cause of hospital death and most expensive condition treated, resulting in approximately

$24 billion in hospital costs each year [67, 111]. In 2017, the World Health Organization

declared sepsis as a global health priority and has encouraged advanced efforts to improve

prevention, diagnosis and management of sepsis in response to the syndrome’s economic cost

and impact on human health.

The acute inflammatory response is the body’s non-specific and immediate response to

infection and/or tissue damage [38, 1]. Toll-like receptors (TLRs) on resident cells (e.g.

macrophages, dendritic cells, mast cells) recognize pathogen-associated molecular factors

(PAMPs) and danger associated molecular patterns (DAMPs) presented by microorganisms

and damaged cells, respectively, and subsequently release pro-inflammatory mediators (e.g.

chemokines, cytokines, vasoactive amines) [1]. Vasoactive mediators encourage vasodilation

and increased blood flow to the affected site. Circulating leukocytes (e.g. neutrophils,

monocytes) attach to vascular endothelium via weak selectin and ligand interactions and roll

along the endothelium wall [1, 19]. Chemokines on vascular endothelium promote leukocyte

integrin binding to endothelium cell adhesion molecules, resulting in leukocyte adhesion to

endothelium wall. Expression of these chemokines and cell-adhesion molecules is induced

by pro-inflammatory mediators (e.g. IL-6) [19]. Leukocytes then migrate through the

endothelium, into the tissue and to the site of the infection via chemotaxis. TLRs and opsonic

receptors on neutrophil membranes attach themselves to proteins on the pathogen membrane,

and the cells subsequently engulf and kill the pathogen using reactive oxygen species (ROS)
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[56]. Other recruited leukocytes (e.g. monocytes) differentiate into proinflammatory (M1)

macrophages that remove the pathogen via phagocytosis and further encourage production

of pro-inflammatory mediators that recruit additional leukocytes [1]. Aged and expended

neutrophils are directed to undergo apoptosis and are subsequently removed by M1 macrophages

via a phagocytic process called efferocytosis [56]. During the efferocytosis process, M1

macrophages transition into a M2 anti-inflammatory phenotype. M2 macrophages further

perform efferocytosis and produce anti-inflammatory cytokines (e.g. IL-10), which function

to suppress production of pro-inflammatory mediators (e.g. IL-6) and decrease tissue influx

of neutrophils [17, 1]. IL-6, a pleiotropic cytokine, transitions from a neutrophil recruiter

to a monocyte recruiter [17, 44]. M2 macrophages transition into (Mres) phenotype that

repair damaged tissue via production of anti-fibrotics and anti-oxidants [17]. A successful

acute inflammatory response removes the pathogen and repairs damaged tissue, returning

the body to equilibrium.

Any dysregulation in the acute inflammatory response, however, can lead to sepsis and

result in organ dysfunction and death. For example, during the pro-inflammatory phase

of acute inflammation, pro-inflammatory cytokines are upregulated and lead to an influx

of neutrophils to kill the pathogen. Nevertheless, toxic ROS and enzymes released by

neutrophils can cause excessive damage to local healthy tissue if this phase of inflammation is

not properly controlled [44]. Similarly, an imbalanced anti-inflammatory phase could result

in persistent inflammation or unsuccessful elimination of the pathogen [112].

The substantial amount of patients affected by sepsis and the financial incentive for

improving poor clinical outcomes in the population has led to extensive research efforts

in development of treatments and tools for early detection of sepsis. Despite hundreds

of clinical trials conducted over the past 30 years that sought to modulate inflammation

in sepsis and improve clinical outcomes, none have resulted in FDA-approved treatment

that are currently available. In 2001, recombinant human activated protein-C was FDA-

approved for its anticoagulant and anti-inflammatory properties that led to an observed

reduction in mortality in patients with severe sepsis [8, 43]. However, the observed reduction

in mortality was unable to be replicated in a later trial, leading to its withdrawal from the

market in 2011 [87, 82]. No other sepsis treatment has successfully completed a phase 3
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trial. Other therapeutic strategies to modulate the inflammatory response in sepsis have

included: administration of corticosteroids for broad anti-inflammatory effects, inhibition of

pro-inflammatory mediators, proteins, enzymes, anti-endotoxins, NO-inhibitory agents, and

immunostimulatory agents [97, 72].

Several plausible reasons exist that explain why therapies have been unsuccessful in

improving outcomes in humans with sepsis. Challenges exist to replicate the inflammatory

response and therapeutic effects observed in preclinical animal models of sepsis in humans.

In animals, therapy is administered around an experiment-defined infection time, however,

in humans, treatment is given at an unknown time following infection [72]. Inflammation and

response to treatment in animals varies depending on the infection procedure and type of

infectious agent used [65, 72]. Activated pathways and inflammatory responses to infection

are different in animals and humans [98, 118]. Heterogeneity of the septic response in humans

also contributes to the difficulty in development of effective therapy. Individual differences

in genetics, comorbidities, age, sex, and other attributes influence the human response to

infection.

Identification of sepsis endotypes, or subtypes of disease with distinct underlying pathophysiological

mechanisms, is a strategy to stratify patients for treatment [70]. Endotype identification

differs from phenotyping, or identification of subgroups by observable clinical characteristics,

as the latter neglects patient differences in underlying disease process. These distinct

underlying mechanistic differences may be important in deciding who should or shouldn’t

receive a therapy with a specific action. Endotyping has been used to describe subgroups

in other disease areas such as asthma and coronavirus [70, 61, 86]. Given the patient

heterogeneity observed in sepsis, endotyping is a potential strategy to deliver more targeted

therapy and improve clinical outcomes.

Systems engineering tools and mathematical modeling can be leveraged to address some

of the challenges in identifying distinct groups of patients that differ in their underlying

inflammation response during sepsis. Published mathematical models exist that describe the

evolution of inflammation in sepsis after infection onset, yet only a few have been calibrated

against human data [60, 88, 91, 23, 125]. A goal of this dissertation is to build patient specific

models of inflammation, and then identify sepsis endotypes using inflammation heterogeneity
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at the individual level described by the parameterized model. Development of an endotype

identification tool that provides quick, accurate patient assignment with readily available

clinical measurements is an additional focus.

Hemodialysis, a type of renal replacement therapy (RRT), is a required procedure for

patients with renal failure and serves as a replacement for normal nonendocrine kidney

function. [78]. In the United States alone, approximately 786,000 people have renal failure,

71% of which undergo regular dialysis treatments [109]. Despite the procedure’s efficacy in

preventing uremia, patients treated with dialysis have a high risk of mortality [79]. The

dialysis population is projected to expand in the future as contributing risk factors to kidney

disease, such as diabetes and hypertension, continue to rise [68, 41]. Therefore, there is

a critical need for treatment advances that reduce dialysis mortality and improve patient

outcomes.

The hemodialysis procedure replaces two main functions of the kidneys: removal of

toxins and fluid from the body. The dialysis patient is connected to a dialysis machine

through a surgically created vascular access (arteriovenous fistula, graft, or catheter) located

in the arm, neck, chest, or leg [94]. Blood is pumped from the patient into a dialyzer (i.e.

filter) located within the machine. The dialyzer contains hollow fibers with a semipermeable

lining (membrane) that separates the blood from dialysate fluid. The dialysate contains

a standardized proportion of water, electrolytes and other solutes found in plasma. Some

solutes (i.e. urea, creatinine, magnesium, potassium) are transferred from the blood to the

dialysate, while other solutes (e.g. bicarbonate) are transferred from dialysate to the blood

[94, 40]. Fluid is removed from the blood through a process called ultrafiltration; dialysate

side pressure is reduced, creating a hydrostatic pressure gradient that promotes transfer of

fluid from the blood to the dialysate. Some solutes (e.g. sodium) are also transferred into the

dialysate via convection. Purified blood is pumped back into the patient and used dialysate

fluid is wasted.

Intermittent hemodialysis is typically performed three times per week for three to five

hours each treatment to achieve prescribed personalized fluid removal and clearance goals.

Fluid goals are calculated by a nephrologist by first estimating a patients dry-weight, or

the patient’s lowest achievable post-dialysis weight without symptoms or overt signs of
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hypotension or fluid overload [45, 69]. The clinician calculates the fluid target for the

treatment using the difference between the patient’s pre-dialysis weight and the dry weight of

the patient, as well as the addition of any fluids scheduled during treatment. Ultrafiltration

rate, dialyzer type, blood flow rate, dialysate rate, and type of dialyzer can be tuned by the

clinician to accomplish predetermined dialysis targets.

Intradialytic hypotension (IDH) is a complication that occurs in 4-30% of dialysis treatments

[16, 59]. The reduction in blood pressure during treatment and its associated symptoms

(e.g. cramping, nausea, vomiting, dizziness or fainting) can lead to early discontinuation

of therapy, negatively impacting achievement of prescribed fluid removal, clearance goals

and renal recovery [4, 122]. Incidence of IDH results in ischemia and cardiac stunning, and

increases long-term risk of organ failure and mortality [122, 4, 99, 16, 101]. Several identified

patient and treatment-related factors are associated with increased risk of IDH during dialysis

treatment. Patient-related risk factors of IDH include older age, diabetes, cardiovascular

disease, anemia and poor nutritional status [81]. Normal physiological compensatory mechanisms

in response to reductions in blood pressure (e.g. increased heart rate and contractility,

increasing in cardiac preload via fluid redistribution) may be compromised in the critically

ill [26]. Ultrafiltration rate that exceeds vascular refilling can decrease cardiac preload and

thus lead to hypotension. Rapid plasma solute clearance can result in a fluid shift from

blood to tissue via osmosis.

Several approaches have been investigated to reduce the incidence of IDH and improve

clinical outcomes. Continuous renal replacement therapy (CRRT) removes fluid and toxins

24 hours a day using lower ultrafiltration, blood and dialysate flow rates than intermittent

hemodialysis. Thus, CRRT is a preferred modality for ICU patients with history of hemodynamic

instability. Nonetheless, evidence of reduced blood pressure instability for patients undergoing

CRRT versus intermittent hemodialysis has been mixed [33, 95]. Furthermore, CRRT is more

expensive and requires additional hospital resources [40, 7]. Administration of hypertonic

solutions (e.g. mannitol, albumin) or high sodium dialysate concentration has been utilized in

an attempt to increase oncotic pressure and prevent large osmotic shifts during dialysis that

could lead to IDH [74, 71, 55]. Large amounts of fluid administration or significant decreases

in ultrafiltration prescription to correct IDH, however, increase risk of fluid overload which
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is associated with mortality [103]. Interdialytic weight gain is also observed in patients

receiving high sodium dialysate [77]. The limited, conflicting evidence presented in studies

indicate a more personalized treatment approach may be necessary to reduce incidence of

IDH and optimize dialysis outcomes.

Reinforcement-learning is a subfield of artificial intelligence in which an agent learns,

by trial and error, an optimal policy that maximizes expected reward received over time

[107]. It has been successfully applied to a variety of domains including autonomous driving,

robotic control, gaming and chemical process control [54, 102, 57, 100]. In the healthcare

domain, reinforcement learning has been used to optimize treatment for sepsis, cancer, and

sedation [58, 83, 84]. Medical decision-making can be described as an iterative process in

which a clinician observes a patient’s health state and decides whether or not to intervene

using their best clinical judgement to maximize the probability of the patient’s recovery.

The patient response is partly in control of the clinician and partially dictated by patient’s

underlying biology. A reinforcement learning agent learns the optimal way to act on a

patient solely using a large historical dataset of clinician-patient interactions, many of which

are suboptimal.

To address clinical challenges observed in the dialysis population, a key goal of this

dissertation is to use reinforcement learning to train and test an artificial agent that provides

preemptive, personalized treatment recommendations for dialysis patients, leveraging patient

risk of future hypotension. This differs from clinical status quo in which a clinician reacts

only when overt signs of deterioration in hemodynamic stability and clinical presentation

are apparent.

1.0.2 Dissertation Overview

The dissertation is organized as follows. In chapter 2 , patient-specific dynamic models

of inflammation in sepsis are developed using key mediators involved in coordinating the

response to infection. The model structure describes interpatient variability in infection time,

speed, and magnitude of inflammation. The fitted parameters of the model are clustered

and reveal endotypes with distinct inflammatory trajectories and clinical outcomes. Baseline
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biomarker levels and supervised machine learning were used to quickly classify individual

patients belonging to endotypes with high or low observed mortality rates.

In chapter 3, a predictive model of future risk of intradialytic hypotension was developed

by training and testing a random forest classifier using electronic health record data available

from a large set of patients receiving intermittent hemodialysis. Model-produced risk trajectories

demonstrated distinct separation in average risk of future intradialytic hypotension even

hours ahead of blood pressure instability. The work was extended into an early warning

system which quickly classified a patient as high or low risk of intradialytic hypotension,

solely using model-produced risk scores available around dialysis initiation.

In chapter 4, a data-driven algorithm was developed that recommends optimal dialysis

treatment to reduce occurrence of intradialytic hypotension and improve dialysis outcomes.

A finite Markov decision process (MDP) for dialysis over 15-minute time steps was defined

using a small set of states and interventions taken by a clinician. A reinforcement learning

agent was used to solve for the optimal policy of the MDP, using predicted future intradialytic

hypotension risk and achievement of individualized fluid goals as feedback for its actions.

A policy modification was proposed to better align agent-recommended interventions with

clinical intuition. Simulated dialysis trajectories were produced using the agent-derived

policy to evaluate its treatment efficacy relative to the clinician.

In chapter 5, an overview of the contributions of the work in the areas of dialysis and

sepsis are presented. Future directions are included to enhance the current work, with the

goal to provide clinicians tools necessary to administer personalized treatment to sepsis and

dialysis patients and potentially improve clinical outcomes.
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2.0 Identification and Prediction of Sepsis Endotypes

2.1 Background

Sepsis is defined as organ dysfunction resulting from a dysregulated acute inflammatory

response to infection [104]. The syndrome is the leading cause of hospital death in the

United States and carries an annual economic burden upwards of 24 billion dollars [67, 111].

Hundreds of clinical trials have focused on the development of pharmacological interventions

that suppress, neutralize, or stimulate the inflammation process, however, none have resulted

in the emergence of a new treatment for sepsis [72]. Heterogeneity in sepsis arising from

patient differences in infection site, timing of infection, infection source, comorbidities, and

genetic predispositions make treatment of sepsis difficult. Identification of sepsis endotypes,

or subtypes of patients defined by distinct underlying pathological mechanisms, could lead

to the development of more targeted therapies. For example, several approved treatments

for asthma, such as anti-IgE and anti-IL5, have been developed through the identification

of asthma endotypes [14, 10, 90, 108]. Research attempts to identify sepsis endotypes have

largely focused on identifying patient subgroups from high dimensional gene expression,

metabolite, and plasma protein data collected at hospital admission, however, this approach

cannot elucidate distinct differences in the dynamic behavior of inflammation between patients

[64].

The acute inflammatory response is the body’s initial response to pathogen invasion and

is regulated by cytokines, chemokines and other inflammatory mediators [96]. Inflammatory

cytokines are critical in both the pro- and anti- inflammatory response to infection and their

dysregulated production can lead to sepsis [96, 15, 17]. IL-6 is a pro-inflammatory cytokine

secreted by M1 macrophages upon infection and plays a role in neutrophil and monocyte

recruitment to the site of infection [17, 3, 123, 49]. In healthy volunteers injected with

endotoxin, plasma IL-6 concentrations have demonstrated to peak around 3 hours and reach

baseline around 8 hours [89]. However, ICU-based studies indicate humans diagnosed with

sepsis have recorded plasma IL-6 concentrations that are maximal around hospital admission
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and continue to decline 72 hours after clinical presentation. Excessive IL-6 secretion and

subsequent neutrophil recruitment can lead to unintended damage to local healthy tissue and

organ dysfunction, whereas insufficient cytokine response may result in ineffective removal

of the pathogen [113]. Cytokine IL-10 is an anti-inflammatory mediator released by M2

macrophages that suppresses the production of pro-inflammatory mediators such as IL-

6 [17, 3, 21]. Serum IL-10 concentrations in humans with sepsis also have demonstrated

to have maximum recorded cytokine levels at clinical presentation and which continue to

decrease 72 hours after hospital admission [89]. Inappropriate levels and timing of IL-10

secretion has been associated with uncontrollable pathogen growth and excess inflammation

[21]. The imbalance of pro-inflammatory and anti-inflammatory cytokines contribute to the

underlying pathogenesis of sepsis, and therefore sepsis subtypes may emerge from specific

cytokine trajectories.

Sepsis endotype identification may be possible using mechanistic ordinary differential

models that describe the human pro- and anti- inflammatory response. Mathematical

models have previously been developed to characterize the underlying mechanisms in sepsis,

however, few have been validated against human data [60, 88]. This task is challenging due

to reasons such as infrequent and missing clinical measurements, and the lack of clinical

data describing the dynamics of inflammation prior to clinical presentation. Each patient is

infected by the pathogen at an unknown time prior to hospital entrance, making it difficult

to determine initial conditions for the inflammation response. In this paper, we introduce

a simple mathematical model of the pro- and anti- inflammatory response that initiates at

time zero of infection and is evaluated against a cohort of patients from the Protocol-Based

Care for Early Septic Shock (ProCESS) trial [124]. This trial investigated the use of early

goal-directed therapy to reduce mortality in patients with severe sepsis and septic shock,

however, the study resulted in no significant improvement in mortality across treatment

arms. The mathematical model is fit to each patient’s IL-6 and IL-10 data, representing the

pro- and anti- inflammatory response, and the model parameters are clustered. The aim is

to identify sepsis endotypes using the clustered parameters, each of which describe groups of

patients with distinct inflammatory trajectories that emerge from the mathematical model.

The investigation resulted in the discovery of four distinct subtypes of patients that exhibited
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different mortality and organ failure rates.

2.2 Methods

2.2.1 Clinical Cohort

A cohort of 316 patients was selected from the 1341 enrolled patients in the ProCESS

trial based on the availability of cytokines IL-6 and IL-10 at 0-, 6-, and 24-hour study time,

where 0 hours study time was the time of trial enrollment. 46 of these patients also had IL-6

and IL-10 cytokine availability at 72 hours study time. Differing methods of assay validation

used at each study site resulted in various limits of quantitation (LLQ), and therefore the

smallest, most frequent cytokine measurement across the trial was considered LLQ (IL-6:

28.8 pg/mL, IL-10: 12.64 pg/mL). Each of these subjects had at least one IL-6 and IL-10

measurement ≥ LLQ. No significant differences were found in the primary study outcome

(60-day in hospital mortality) or secondary outcomes (90-day, 1 year survival, need for organ

support) between treatment arms, and thus effects of different methods of intervention were

not considered in cohort selection.

2.2.2 Dynamical Model of Inflammation and Model Fitting

IL-6 and IL-10 cytokines were chosen to represent the pro- and anti- inflammatory

phases of infection, respectively, due to their crucial role in coordinating the removal of

pathogens and resolving inflammation. An initial model of inflammation was developed

that described the pro-inflammatory response (IL-6) and anti-inflammatory response (IL-

10) as second-order dynamical systems subjected to an infectious input of infinite magnitude

and infinitesimal duration (Equation 2.1), where τ1,cytokine and τ2,cytokine are time constants

describing the rise and fall speeds of the pro- and anti- inflammatory response, Kcytokine is the

gain describing the magnitude of infectious response, u(t) is the infectious input, x1,cytokine

and x2,cytokine are internal system states and ycytokine is the system output or pro- and anti-

inflammatory response to infectious input.
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dx1,cytokine(t)

dt
= − 1

τ1,cytokine
x1,cytokine(t) +

Kcytokine

τ1,cytokine
u(t)

dx2,cytokine(t)

dt
= − 1

τ2,cytokine
x2,cytokine(t) +

1

τ2,cytokine
x1,cytokine(t)

ycytokine = x2,cytokine(t), u(t) = δ(t)

(2.1)

The initial model describing inflammation suffered from several fundamental issues. The

smaller time constants, τ1,cytokine, represent the rise speeds of the responses following an

infectious insult. These time constants exhibited identifiability issues as over a third of the

patients (n=104) lacked IL-6 and IL-10 data to describe the initial rise of infection. A second

issue is the system input is non-physiologic and fails to accurately describe the duration and

magnitude of pathogen insult. To address these issues, a reduced model of inflammation was

developed which describes the pro- and anti- inflammatory response using two first ordinary

differential equations instead of two second-order systems (Equation 2.2).

The pro- and anti- inflammatory response to infection, represented by cytokines IL-6 and

IL-10, were modeled as first order system responses to a triangular pulse of infection.

dxIL6

dt
= − 1

τIL6
+

KIL6

τIL6
u(t)

yIL6 = xIL6(t)

dxIL10

dt
= − 1

τIL10
+

KIL10

τIL10
u(t)

yIL10 = xIL10(t)

(2.2)

yIL6 and yIL10 are the output variables which represent the internal states xIL6 and xIL10 of

the inflammation process. Time constants τIL6 and τIL10 represent the speeds of the pro- and

anti- inflammatory responses, u(t) represents the triangular pulse infectious input driving

the acute inflammatory response, and gains KIL6 and KIL10 represent the magnitudes of the

pro- and anti- inflammatory responses to infection u(t). The triangular system input, u(t),

was chosen to have a peak of 6 hours, duration of 48 hours, and area of unity. This guarantees

that the model-simulated cytokines peak in ≥ 6 hours, exposure of bloodstream to infection
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is physiologically reasonable, and that the magnitude of the simulated inflammatory response

is captured by gains KIL6 and KIL10.

Cytokine measurements were logged to prevent IL-6 and IL-10 from exhibiting large

ranges. Temporal cytokine data is left-censored (clinical data is unavailable prior to trial

enrollment), and time of infection is both unknown and variable amongst patients in the

cohort. Therefore, measured IL-6 and IL-10 concentrations were uniformly shifted forward

in hourly increments [0,30] prior to fitting the model parameters (τIL6, τIL10, KIL6,KIL10) to

the patient cytokine data in order to account for variation in infection time prior to study

time initiation. The parameter estimation objective is to minimize the weighted sum of

squared error between the clinically measured cytokine concentrations and model-simulated

cytokine concentrations (Equation 2.3).

minimize F =
n∑
i

((yIL6(i)− ŷIL6(i))
2 + w(yIL10(i)− ŷIL10(i))

2 +Mz1 +Mz2

subject to KIL10 <= 4.0τIL10 + 95.2,

KIL10 <= 447.3,

KIL6 <= 5.8τIL6 + 138.7,

KIL6 <= 593.2,

z1 = 0 when y(i) ≥ LLQ and ŷ(i) >= LLQ,

z1 = 0 when y(i) < LLQ and ŷ(i) <= LLQ,

z1 = 1 when y(i) < LLQ and ŷ(i) > LLQ,

z2 = 0 when ŷ(168) <= LLQ,

z2 = 1 when ŷ(168) > LLQ

(2.3)

In Equation 2.3, ŷIL6 and ŷIL10 are the model-simulated concentrations, yIL6 and yIL10

are the measured cytokine concentrations, n is the number of datapoints and the weight, w =

max(yIL6)
max(yIL10)

, is included to scale cytokines to similar magnitudes. The Mz1 term is included to

drive the model-simulated cytokine concentration below the lower limit of quantitation (LLQ)

if the measured cytokine concentration is also below the LLQ, and the Mz2 term is included

to drive the model-simulation below the LLQ by 168 hours. The inequality constraints
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were included to keep the model-simulated cytokine concentrations below the maximum

measured concentrations found within the dataset. The optimal patient fit resulted in the

lowest weighted sum of squared error across pre-study times. Model parameter estimates for

each patient were found using fmincon nonlinear programming solver in MATLAB.

2.2.3 Consensus Clustering for Endotype Identification

The next step was to identify subpopulations of patients within the larger cohort population

that share similar inflammatory responses, using model fits for each of the patients following

the routine described in subsection 2.2.2. K-means clustering, an unsupervised machine

learning algorithm, provides the ability to identify k similar clusters of patients in parameter

space [115]. Specifically, k-means allocates k centroids in parameter space and allocates each

observation, or patient, to the nearest centroid defined by the squared Euclidean distance.

The number of clusters must be chosen a priori, and centroids are initialized randomly,

resulting in inconsistent clustering assignment across algorithm runs. Consensus clustering

addresses the shortcomings of this algorithm by obtaining subsamples of the original dataset

via sampling without replacement and then applying a clustering algorithm to many datasets

constructed from resampling [76]. If the subsamples represent random samples of patients

taken from the subpopulations, then cluster membership and number of clusters should not

drastically change when the algorithm is applied across the resampled datasets.

A dataset that included optimal model parameters (τIL6, τIL10, KIL6,KIL10) and the

timeshift (Tshift) used for fitting each of the n=316 patients was constructed and used as

input for consensus clustering. First, principal component analysis was used to transform

the original, correlated parameter space to 4 principal components that describe >90% of

data variance. Consensus clustering was then performed by first creating H = 500 resampled

datasets via sampling without replacement and applying k-means to each of the resampled

datasets, where k is chosen a priori. A connectivity matrix, M(h), of size NxN was created

for each of the h=1,2. . .H resampled principal component score datasets to indicate whether

pairs of patients (i,j) were clustered together (Equation 2.4).
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M (h)(i, j) =

1, if patient i and j belong to the same cluster

0, otherwise

(2.4)

Sampling without replacement creates resampled datasets in which i and j may not both be

present. A matrix I, of size NxN was created for each of the h=1,2. . .H resampled principal

component score datasets to indicate if both patients (i, j) were present in the resampled

dataset (Equation 2.5).

I(h)(i, j) =

1, if patient i and j are present in resampled dataset h

0, otherwise

(2.5)

A consensus matrix, C, of size NxN was defined to quantify the number of times patients

(i, j) are clustered together across each of the resampled datasets and is normalized by the

number of times they were both present in the resampled datasets. The consensus matrix,

C, consisted of NxN values that ranging from 0-1, where 0 indicated that the patient

pair (i, j) was never clustered together and 1 indicated that the patient pair was always

clustered together. A larger proportion of 0’s and 1’s in the consensus matrix indicates

cluster membership stability across runs. This analysis was repeated across a set of cluster

counts k=1, 2,. . .K, resulting in the generation of a consensus matrix for each of the k

cluster counts (Equation 2.6).

C(k)(i, j) =

∑H
h=1M

(h)(i, j)∑H
h=1 I

(h)(i, j)
(2.6)

Empirical cumulative distributions, CDF ∈ [0, 1], were created for each of the k=1,2,. . .K,

consensus matrices. CDF returns the proportion of patient pair values (i, j) within the

consensus matrix for cluster count k less than or equal to a specified value, c (Equation 2.7).

CDF (k)(c) =

∑
i<j 1{C(k)(i, j) <= c}

N(N − 1)/2
(2.7)

An empirical cumulative distribution for each cluster count k was plotted and assessed to

determine the cluster count that resulted in the most stable clusters. Stability was further

supported by rearranging patient pairs (i, j) in C that were clustered together to be adjacent
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to one another and subsequently creating a heatmap display of the rearranged matrix. K-

means algorithm was applied to the dataset of principal component scores available for each

patient, using the most stable cluster count (k). Then, the parameters of each of the k

clusters (endotypes) were averaged to create a representative pro- and anti- inflammation

trajectory for each of the k endotypes. Clinical outcomes of each of the endotypes were

defined by 14-day mortality.

Lastly, a clinical tool was developed that predicts a patient into high or low mortality

endotype using cytokine IL-6 and IL-10 biomarker levels within 6 hours of study time.

Specifically, a logistic regression model was chosen to describe the log odds of an high-

mortality outcome as a weighted linear combination of input variables, where the weights

are βj and xj are the input variables (0 and 6 hour cytokine values) (Equation 2.8). The

inverse of the logit function returns the probability high mortality endotype membership

using a weighted linear combination of cytokine values as the input (Equation 2.9).

logit(P (x)) = log
P (x)

(1− P (x))
=

k∑
j=0

βjxj (2.8)

P (x) =
1

1 + exp(−
∑k

j=0 βjxj)
(2.9)

The parameters (β) of the (binary) logistic regression model were estimated by minimizing

the negative log likelihood equation (Equation 2.10), where n is the number of data samples,

ŷi = Pr(yi = 1) is the predicted probability of the positive class (high mortality) for example

i, and yi is the true positive class probability. Model parameter estimates for each patient

were found using L-BFGS solver in Python scikit-learn library.

L =
n∑

j=0

yilog(ŷi) + (1− yi)log(1− ŷi) (2.10)

Repeated k-fold cross-validation was used to provide unbiased evaluation of model performance.

Specifically, the data was randomly partitioned into k=3 folds. The model is trained using

k-1 folds and its prediction performance is evaluated on the remaining fold of data by

calculating the area under receiver operator curve (AUC-ROC) and area under precision-

recall curve (AUC-PR). ROC curve provided tradeoffs between true positive rate (TPR) and
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false positive rate (FPR) at different classification thresholds, while the PR curve provided

tradeoffs between precision and recall. This process is repeated until each fold is used once for

testing. K-fold cross validation process was repeated 10 times, using different randomization

for dataset splitting each repetition. Average model AUC-ROC and AUC-PR across the test

folds was reported, along with respective 95% confidence intervals.

2.3 Results

2.4 Identification of Sepsis Endotypes

Optimal parameters resulting from the model fitting routine were used to discover distinct

subpopulations of patients within the cohort that share similar inflammatory dynamics.

Each n=316 patient’s inflammatory dynamics were described by 5 parameters (τIL6, τIL10,

KIL6,KIL10,Tshift) . Consensus clustering was performed on the matrix of patient principal

component scores for a range of cluster counts (2−10). The empirical cumulative distributions

for each of the consensus matrices are depicted in Figure 2.1. Consensus matrices composed

of all 0’s and 1’s would indicate stability; patients were always clustered together or never

clustered together across resamples. Consensus matrices with many fractional entries indicated

cluster instability or inconsistent patient clustering. Consensus matrices of cluster counts

2 and 3 were composed of many fractional values, indicated by their increasing cumulative

probability across the domain of possible values. The cumulative distribution shape for k=4

clusters steps up at 0, is relatively flat between 0-1, and then takes a second step up around

1. The cumulative distribution functions indicated high cluster stability using k=4 clusters.
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Figure 2.1: Empirical cumulative distribution functions for consensus matrices generated

from clusters k=2-10

The consensus matrix that resulted from k=4 clusters is visualized as a colorized heatmap

(Figure 2.2), in which a well-defined 4 block structure emerges along the diagonal. Heatmaps

for consensus matrices for cluster counts prior to and succeeding k=4 were visualized and

demonstrated instability (Figure 2.3, Figure 2.4).
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Figure 2.2: Heatmap visualization of consensus matrix stability for optimal k=4 clusters.

Heatmap created by arranging consensus matrix values so that items clustered together are

adjacent to each other. Consensus matrix values range from 0 (never clustered together) to

1 (always clustered together), where white represents 0, and dark blue represents 1. Relative

proportion of patients in each cluster depicted by dendrogram.

18



Figure 2.3: Heatmap visualization of consensus matrix stability for k=3 clusters. Heatmap

created by arranging consensus matrix values so that items clustered together are adjacent

to each other. Consensus matrix values range from 0 (never clustered together) to 1 (always

clustered together), where white represents 0, and dark blue represents 1.Relative proportion

of patients in each cluster depicted by dendrogram.
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Figure 2.4: Heatmap visualization of consensus matrix stability for k=5 clusters. Heatmap

created by arranging consensus matrix values so that items clustered together are adjacent

to each other. Consensus matrix values range from 0 (never clustered together) to 1 (always

clustered together), where white represents 0, and dark blue represents 1. Relative proportion

of patients in each cluster depicted by dendrogram.

Geometric visualization of clustered principal component scores depicts four distinct patient
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subpopulations of patients defined by their model parameters (Figure 2.5). Correlation

between the principal components and dynamic model parameters can be described by the

principle component coefficients (Table 2.1). Principal component 1 was positively correlated

with all model parameters, principal component 2 was positively correlated with τIL10 and

KIL10 and negatively correlated with τIL6 and KIL6, and principal component 3 was strongly

correlated with the time shift or pre-study time.

Figure 2.5: Visualization of k=4 clusters in PCA space

Table 2.1: Correlation between Principal Components and Model Parameters

Principal Component 1 Principal Component 2 Principal Component 3

τIL6 .47 -.32 -.19

KIL6 .45 -.54 -.36

τIL10 .44 .65 -.01

KIL10 .47 .39 -.22

Tshift .41 -.18 .89

Inflammatory trajectories for each patient subpopulation were represented by clusters’
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mean model parameters (Figure 2.6). An average patient from cluster 1 had a quick

inflammatory response that was initially significantly elevated after infection but quickly

peaked and returned to below quantifiable levels. This quick inflammatory trajectory is

reflective of their smaller time constants and gains compared to other patient subtypes. An

average patient in cluster 2 had an inflammatory response that peaked nearly 15 hours after

subjects in cluster 1 and reached LLQ much later. Inflammatory responses of patients in

cluster 3 also peaked much later than subjects in cluster 1 and had a long-protracted decline

in both IL-6 and IL-10. Subjects in cluster 2 and 3 had increasingly larger time constants

and gains compared to cluster 1. Patients in cluster 4 had a similar IL-6 dynamic profile to

patients in cluster 2, although lower in amplitude. These subjects also experienced a long,

protracted decline in IL-10 at lower magnitudes.

Figure 2.6: Cytokine trajectories generated from mean model parameters of each cluster and

model parameter distributions

Overall, 42 (13%) of the patients in the cohort died within 14 days of hospitalization.

Clinical outcomes of endotypes were significantly different (p<.05, chi-squared test), with

the highest 14- day mortality rate and respiratory failure rate after 1 week of hospitalization

experienced by patients belonging to cluster 3 (Table 2.2). Subjects in cluster 1 and cluster

4 experienced lower 14-day mortality and respiratory failure rates than patients belonging
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to cluster 2 and cluster 3.

Table 2.2: Mortality and Respiratory Failure Rates for Sepsis Subtypes

Patients (count) 14 Day Mortality (%) Respiratory Failure (1 Week) (%)

Cluster 1 79 6.3 30.4

Cluster 2 120 16.7 43.3

Cluster 3 35 28.6 51.4

Cluster 4 82 8.5 25.6

2.5 Early Warning Tool for Prediction Into High/Low Mortality Inflammation

Subtypes

A clinical tool was developed that predicts whether a patient belongs to a high or low

mortality endotype, solely using cytokine IL-6 and IL-10 biomarker levels within 6 hours of

study time. Patients in clusters 2 and 3 were considered the positive class (high mortality),

whereas patients in clusters 1 and 4 were considered the negative class (low mortality rate)

(p<.05). Logistic regression produced the probability of high-mortality class membership,

and binary classification performance was evaluated at different probability thresholds using

a ROC curve and a PR curve (Figure 2.7). As the probability threshold is decreased, more

patients are classified as positive, increasing TPR but concurrently increasing FPR and

decreasing precision. The prediction model demonstrates skill; AUC-ROC (.72 vs. .50) and

AUC-PR (.71 vs. .49) are greater than a no-skill baseline classifier.
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Figure 2.7: ROC curve (left) and PR Curve (right) for early detection tool

2.6 Discussion

A mathematical model developed describing inflammation using only 5 parameters was

evaluated against human IL-6 and IL-10 data, both of which are critical inflammatory

mediators in the pro- and anti- inflammatory response to infection. The parameters from

patient specific model fits were clustered using k-means, and a consensus across multiple

runs of the algorithm was used to identify four distinct endotypes of patients that differ

in their underlying mechanisms that lead to sepsis. Patients from cluster 1 had a robust
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inflammation response that quickly and aggressively responded to infection and then returned

to their baseline state, reflected by the subtype’s low 14-day mortality and respiratory

failure rate. Although larger cytokine magnitudes have been associated with negative clinical

outcomes, this endotype’s inflammatory dynamics and clinical outcome further support that

the duration of serum exposure to cytokines plays a critical role in the body’s ability to

properly respond to infection [9, 13, 42, 85]. Subjects from cluster 4 have a less aggressive

inflammatory response, indicated by their low magnitude cytokine trajectories, and their

immune system requires a lower amount of energy to remove the source of infection and

return to immunological equilibrium. Subjects from cluster 2 and 3 exhibit an aggressive

inflammatory response to infection over a prolonged period and have higher 14-day mortality

and respiratory failure rates than patients in clusters 1 and 4. One explanation is that the

patients prolonged exposure to excessive hyperinflammation cannot be successfully balanced

by anti-inflammatory response, leading to consequences such as persistent damage to local

healthy tissue, organ failure, and high risk of mortality [96, 15, 113].

These results open the possibility of using targeted therapy in the acute care setting.

To illustrate, if a subject was identified to have a subtype 2 or 3 inflammatory response, a

clinician may decide to prescribe an immunomodulatory agent that suppresses the patient’s

inflammation. Discovery of sepsis endotypes could also enhance clinical trial design by

identifying which patients would successfully respond to a given therapeutic. IL-6 and IL-10

play a critical role in the dysregulated immune response in sepsis; however, the dynamics of

these biomarkers describe a small portion of the underlying pathophysiology of the syndrome.

The patient cohort analyzed in this study represents only a sample of the 1341 subjects in the

ProCESS trial and therefore other sepsis endotypes may exist. Future research will focus on

using an alternative modeling approach to identify additional sepsis subtypes present within

the clinical trial.
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3.0 Dynamic Risk Modeling of Intradialytic Hypotension

3.1 Background

Intradialytic hypotension (IDH) occurs in up to 30% of hemodialysis sessions [59]. The

Kidney Disease Outcomes Quality Initiative (KDOQI) defines IDH as a decrease in systolic

blood pressure (SBP)≥ 20 mmHg or a decrease in mean arterial pressure (MAP)≥ 10 mmHg

accompanied by clinical symptoms, however, significant variation in the definition of IDH

exists [122, 2]. There are a variety of patient-related and treatment-related contributors

to IDH pathology. Identified patient-related factors that increase risk of IDH include,

but are not limited to, autonomic and cardiac dysfunction, cardiovascular disease, age

>65, diabetes, lower body weight, female sex, and Hispanic origin [106, 81]. Hemodialysis

reduces plasma volume via ultrafiltration [26]. Solute clearance reduces plasma osmolality,

resulting in osmotic shifts in fluid from the intravascular space to the interstitial space.

Inadequate physiological compensatory response (e.g. increased heart rate, recruitment of

unstressed blood volume) to reduced blood volume induced by hemodialysis can lead to

IDH. Hypoperfusion and consequent organ damage induced by recurrent IDH mitigates

kidney recovery. In human studies, occurrence of IDH has demonstrated to slow kidney

recovery, measured by early discontinuation of hemodialysis prior to hospital discharge

[4]. In animals models of acute kidney injury (AKI), hypotension significantly reduced

autoregulation of renal blood flow and kidney clearance [50]. Furthermore, IDH has been

found to be independently associated with mortality, even when statistically adjusting for

other prognostic factors [99, 101]. Early prediction of IDH would allow clinicians to take

preventative measures that could potentially reduce incidence of IDH and improve clinical

outcomes.

Machine-learning algorithms exist that use featurized electronic health record (EHR)

data to predict hypotension. Hatib et al. developed a machine learning algorithm that

predicted hypotension with an AUC-ROC of 0.94 fifteen minutes ahead of instability, leveraging

millions of features derived from high-resolution arterial waveform data [39]. The practical
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use of this hypotension prediction algorithm was expanded in a separate study on patients

that underwent elective, noncardiac surgery [121]. A clinician-derived interpretation of the

underlying physiological cause of instability was produced when the algorithm-predicted risk

of hypotension exceeded a devised threshold. The algorithm predicted hypotension with an

AUC-ROC of 0.81 at 15 minutes ahead of instability, and alarms produced by the system

incited clinical action that reduced incidence of hypotension in the surgical population.

Yoon et. al developed a hypotension prediction model using featurized, multigranular

intensive care unit (ICU) data. The model had an AUC-ROC of 0.93 fifteen minutes prior

to hypotension [127]. The model-produced risk scores were utilized within a continuous

alert system that was designed to minimize alarm fatigue in the ICU setting. Other machine

learning algorithms have been devised to accurately predict adverse events such as tachycardia

and generalized instability in critical care settings using featurized, multigranular EHR data

[128, 18]. Machine learning could potentially be used to forecast IDH risk real time, and

model-produced risk prediction could be used to devise an early warning system for IDH. In

this study, a prediction model of future IDH risk is developed, specifically by training and

testing a random forest classifier using EHR data from a population of patients receiving

hemodialysis at UPMC. Model-produced risk scores available within a small time frame

around dialysis initiation were utilized to derive an early warning system for IDH. The

system is conceptualized to provide an alert of impending IDH to a clinician, who could

then administer treatment preemptively to prevent occurrence of IDH.

3.2 Methods

3.2.1 Source Data and Data Processing

The study used EHR information collected from patients receiving hemodialysis at

University of Pittsburgh Medical Center (UPMC) acute care facilities from June 2016-

June 2020. The multigranular EHR data, which included vital signs, labs, intake and

output, administered medications, and clinical notes, was used to develop features for a
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predictive model of future risk of IDH. A cohort of 276 patients that underwent a total of

1685 hemodialysis sessions were selected that had adequate availability of EHR information

for risk model featurization. A clinical definition of IDH, defined as SBP<90mmHg and

MAP<65mm Hg, was used to flag a total of 95 (34.4%) patients and 253 (15.0 %) treatments

that experienced IDH. Table 3.1 and Table 3.2 describe the study demographics and treatment

specific information, respectively. Overall, the patients were mostly white males and had

non-Hispanic or Latino ethnicity. Patients that experienced IDH were older in age (67 vs.

62, p=.0072), had longer hospital stays (17.5 days vs. 12 days, p=.0015) and exhibited

higher in-hospital mortality (30.5% vs. 15.5%, p=.0033). Ethnicity was also found to be

significantly different between the two groups, however, over 15% of the patients declined or

failed to specify their ethnicity. The median time of treatment and IDH occurrence was 210

minutes and 54 minutes after dialysis initiation, respectively.

Table 3.1: Patient Demographics

Characteristics All Patients IDH (n=95) No IDH (n=181) P-values

Age, years [median (IQR)] 64 [53-71] 67 [59,73] 62 [49,70] .0072

Male [count (%)] 159 (57.6) 51 (53.7) 108 (59.7) .34

Admission Weight, kg [median (IQR)] 80.3 (68-105) 79.0 [66.0,104.0] 82 [70.0-105.0] .71

Race [count (%)] .13

White 183 (66.3) 70 (73.7) 113 (62.4)

African American 61 (22.1) 18 (18.9) 43 (23.8)

Other 32 (11.6) 7 (7.4) 25 (13.8)

Ethnicity [count (%)] .0096

Hispanic or Latino 3 (1.1) 0 (0.0) 3 (1.7)

Not Hispanic or Latino 230 (83.3) 89 (93.7) 141 (77.9)

Declined 16 (5.8) 2 (2.1) 14 (7.7)

Not Specified 27 (9.8) 4 (4.2) 23 (12.7)

Hospital length of stay, days [median (IQR)] 14.0 (7.0-27.5) 17.5 (11-34) 12 (5-21) .0015

In Hospital Mortality [count (%)] 57 (20.7) 29 (30.5) 28 (15.5) .0033
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Table 3.2: Treatment Information

Characteristic Value

Treatments with Incidence of IDH [count (%)] 253 (15.0)

Time of IDH After Treatment Start, minutes [median(IQR)] 54.2 [28.0,113.5]

Treatments Originating from ICU [count (%)] 558 (33.1)

Length of Treatment, minutes [median(IQR)] 210.0 [ 176.0, 235.0]

Total Ultrafiltrate Removed, mL [median (IQR)] 1997.0 [1135.5,2549.0]

Estimated Dialysis Fluid Removal Goal , mL [median (IQR)] 1825.8 [1111.0,2430.0]

Treatments with Fluid Removal Goal Achieved, mL [count (%)] 1082 (64.2)

Initial Ultrafiltration Rate, mL/min [median (IQR)] 8.2 [2.7,12.4]

Increase Ultrafiltrate, mL/min [median (IQR)] 4.5 [2.6, 8.1]

Decrease Ultrafiltrate, mL/min [median (IQR)] 4.5 [2.7,7.2]

Treatments with Vasopressors Administered [count(%)] 76 (4.5)

Treatments with Mannitol Administered [count (%)] 153 (9.1)

Initial Vasopressors Dosage, mcg/kg/min [median (IQR)] .05 [.02,.08]

Increase Vasopressors, mcg/kg/min [median (IQR)] .05 [.02,.16]

Mannitol Dosage, gm/mL .25

Waveform data from heart monitors (telemetry data) and arterial lines was available for a

subset of dialysis treatments but was not used in the study. Laboratory measurements used

for analysis were chosen based on frequency and availability. These measurements result

from basic metabolic panel (BMP) and comprehensive metabolic panel (CMP) blood tests.

Vital signs, recorded by clinicians throughout treatment, included MAP, SBP, diastolic blood

pressure (DBP), oxygen saturation, and heart rate. Physiologically implausible vital sign

values were removed that met the following definitions: SBP, MAP, and DBP <10 mmHg

and >300mmHg, heart rate<10 beats/min or >300 beats/min; these removed measurements

were subsequently replaced using the average of the two nearest measurements. Additional

vital sign features, such as minimum, maximum, slope, and linear weighted moving average
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(LWMA), were derived using the past 30 minutes of vitals time series data. Clinical notes

included past medical history, reason for admission, current patient state and an ongoing

care plan; these notes were used to derive features describing underlying disease of patient.

A total of n=89 static and dynamic patient features were obtained or computed each minute;

when data availability was limited, the last observation carried forward (LOCF) approach

was used to impute missing feature values. A complete list of features computed and used

for risk prediction are available in Table A.1.

3.2.2 Random Forest Algorithm

A random forest classifier uses collection of decision trees to make a class prediction

for a sample in a dataset [12]. A single decision tree recursively partitions a dataset into

subsets of data using entropy, E, to maximally separate samples belonging to k possible

classes [53]. The entropy of the data at the parent tree node, S, is calculated (Equation 3.1).

Information gain, IG, resulting from splitting the set of data at a parent tree node, S, into

subsets (children) S1 and S2 using feature F is evaluated using each feature and all possible

split points for the features (Equation 3.3) [30, 11]. P (Ci, S) is the proportion of samples

in S belonging to class Ci, and E(F, T ;S) is net entropy resulting from splitting S using

threshold T and feature F (Equation 3.2). The optimal decision threshold at a parent tree

node is chosen based as the one that maximizes IG.

E(S) =−
k∑

i=1

P (Ci, S)logP (Ci, S) (3.1)

E(F, T ;S) =
|S1|
|S|

E(S1) +
|S2|
|S|

E(S2) (3.2)

IG =E(S)− E(F, T ;S) (3.3)

To prevent overfitting, decision tree partitioning is halted based on a predefined criterion

(e.g. maximum depth of tree) . Alternatively, the decision tree is post-pruned after partitioning.

A sample is classified to one of the k classes by first traversing the trained tree from the

root node (origin) to a terminal node (leaf) using the optimized decision thresholds at each
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node. Then, the class majority of the samples in the leaf is used to assign the class of the

sample. Alternatively, predicted class probability can be deduced using the proportion of

samples in the leaf belonging to the class. In a random forest, a set of decision trees grown

are grown using bootstrapped datasets derived from the original dataset, and only a random

subset of features are considered for splitting each tree node. These modifications reduce

high variance exhibited by a single decision tree and create an uncorrelated set of trees for

prediction. The predicted class probability by a random forest is the average predicted class

probability returned by the trees in the forest.

3.2.3 IDH Prediction Model

A predictive model of future risk of IDH was developed by training and testing a random

forest classification model using n=253 hypotensive hemodialysis sessions (HS) and n=1432

nonhypotensive hemodialysis sessions (NHS). Scikit-learn package 0.24.1 in Python 3.8.5

was used to train and test random forest models for hypotension prediction. Featurized data

samples, available at each minute of hemodialysis, were randomly selected from NHS and

prior to IDH onset in HS to train and test the model (Figure 3.1).

Figure 3.1: Risk model training design and production of risk scores

Selected HS (n=253) and NHS samples (n=1432) were split into a train (67%) and

test set (33%) in stratified fashioned. Model parameters were tuned via stratified k-fold
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cross validation (k=3) using the train dataset, and the average area under the receiving

operating curve (AUC-ROC) and precision recall curve (AUC-PR) was computed across

the validation folds. Briefly, stratified k-fold cross-validation splits the train dataset into k

subsets, retaining the class distribution of the original dataset (stratified) during partitioning.

The model is trained using k-1 folds, and the model performance is evaluated using the

remaining (validation) fold. This process is repeated k times so each of the folds are used for

validation once. Model parameters of the random forest were tuned by repeating stratified

k-fold cross-validation (k=3) on the train dataset using a set of possible parameter values.

Tuned random-forest model parameters included maximum depth of tree, number of features

considered to split each tree node, and number of trees in the forest. Entropy was chosen

to evaluate the split quality at each tree node. The performance of the tuned model that

exhibited maximum average AUC-ROC on validation folds was further evaluated on the held

out test set. To evaluate the effect of lead time on model prediction performance, training

and testing was repeated using HS samples with lead times of 0, 5, 15, and 30 minutes to

IDH onset. The importance of candidate features in IDH prediction was derived with the

information gain that results from using the feature for tree partitioning, averaged across all

of the decision trees in the forest.

The trained risk model produced an absolute risk score (AR) between 0 and 1 and

represents the predicted probability of future IDH utilizing the prior 30 minutes of featurized

clinical data. The probability of IDH of a featurized sample produced by a single tree in

the forest was calculated as the proportion of the samples belonging to the hypotensive class

in the assigned leaf over the total number of samples in the tree leaf. The probability of

future IDH produced by the random forest model was calculated as the average probability

produced by the trees in the forest. The model’s ability to produce clinically relevant dynamic

risk patterns was determined by producing minute-to-minute risk trajectories in the two-

hour timespan leading up to IDH for HS (n=84) and NHS (n=473) from the test dataset.

Specifically, the trained random forest model was applied to minute-to-minute featurized raw

data for hemodialysis sessions in the test dataset (n=557), providing dynamic absolute risk

(AR) of IDH. Time course AR were transformed to relative risk scores (RRS) that reflect

IDH risk relative to the average AR of a NHS (Equation 3.4). By this definition, the average
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RRS of a NHS is equal to 1.

RRS =
AR

AverageAR inNHS
(3.4)

The hypothetical IDH onset time for NHS was chosen such that the distribution of IDH

onset times, relative to the start of hemodialysis, matched the distribution of real IDH onset

times from HS. Additional risk trajectories were produced for HS and NHS to evaluate the

evolution of risk beginning 30 minutes before the start of hemodialysis until the time of IDH.

The model’s capacity to produce evolving risk in response to clinical features was assessed

on an individual treatment-by-treatment basis.

3.2.4 Derivation of Early Warning System for IDH

An early warning system was developed using the projected risk of IDH produced by the

random forest model. A baseline early warning system was derived using RRS calculated at

time of initiation of IDH. A ROC curve was produced to evaluate the tradeoffs between the

true positive rate (TPR) and false positive rate (FPR) using different decision thresholds for

classification. An optimal threshold was selected using the maximum Youden’s J Statistic,

where c is the threshold that maximizes the statistic (Equation 3.5) [129]. The statistic

is maximal when sensitivity (TPR) and specificity or true negative rate (TNR) are 1 and

assumes the two measures are equally weighted.

J =maxc(TPRc − FPRc) (3.5)

The optimal threshold c was then used to classify a patient into high or low IDH risk

class at hemodialysis initiation. Specifically, if the RRS < c, the patient was classified

as low IDH risk and if RRS ≥ c, the patient was classified as high IDH risk. TPR and

FPR were calculated to evaluate the performance of the baseline classifier at the optimized

threshold. A second early warning system was developed to evaluate whether additional

risk score features, derived from risk trends within 15 minutes of dialysis initiation, could

improve classification performance. Treatments with risk score availability up to 15 minutes

after treatment initiation were included for analysis. Risk score features derived included
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minimum, maximum, mean, and standard deviation of RRS available within 15 minutes

of dialysis initiation. A small decision tree was applied to derived risk score features and

utilized to classify patients as high or low IDH risk, where the threshold that maximizes

Youden’s statistic was used to make a classification decision.

3.3 Results

3.3.1 IDH Prediction Model

The prediction performance and importance of features in IDH prediction were evaluated

for each of the candidate models with differing lead-times to IDH. Table 3.3 describes the

top features of derived risk models as a function of the lead time parameter. Most important

features across each of the models were derived from blood pressure measurements. Labs

such as white blood cell count (WBC), prothrombin time (PT), red cell distribution width

(RDW), and prior incidence of hypotension became increasingly important with longer lead

time to hypotension.
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Table 3.3: Top Features of Random Forest Model as Function of Lead Time

Lead Time (minutes) 0 5 15 30

Features

MAP SBP min 30 SBP minimum 30 SBP LWMA 30

SBP SBP LWMA 30 SBP LWMA 30 SBP minimum 30

SBP minimum 30 MAP minimum 30 SBP max 30 SBP

MAP LWMA 30 SBP SBP MAP minimum 30

SBP LWMA 30 SBP max 30 MAP minimum 30 SBP maximum 30

MAP minimum 30 MAP LWMA 30 MAP LWMA 30 MAP LWMA 30

DBP MAP MAP MAP

SBP wslope 30 MAP max 30 MAP maximum 30 MAP maximum 30

MAP wslope 30 DBP minimum 30 DBP minimum 30 DBP minimum 30

SBP uwslope 30 DBP LWMA 30 DBP LWMA 30 DBP LWMA 30

DBP wslope 30 Prior ID Hypotension Prior ID Hypotension DBP

DBP minimum 30 DBP maximum 30 WBC DBP maximum 30

DBP LWMA 30 DBP PT Prior ID Hypotension

SBP cv 30 WBC DBP WBC

MAP uwslope 30 RDW DBP maximum 30 RDW

*abbreviations: 30: of past thirty minutes of measurements, LWMA: linearly weighted

moving average, wslope: slope from weighted linear regression, uwslope: slope from

unweighted linear regression, Prior ID hypotension: prior incidence of intradialytic

hypotension

The performance of each candidate model was evaluated on the test set using AUC-ROC

and AUC-PR metrics. The model with a lead time of 0 minutes (lead-0) performed best

out of all the tested models, with AUC-ROC=1.0 and AUC-PR=1.0. The performance of

trained models with longer lead-times to IDH varied. To describe, trained lead-5 and lead-30

model had AUC-ROC of 0.90 and 0.89 and AUC-PR of 0.68 and 0.64. The lead-0 model

was chosen for further evaluation. The trained lead-0 model was applied to featurized data

available every minute leading to IDH onset, and model’s ability to discriminate between

future IDH and non-IDH over time was evaluated. The AUC-ROC evolved from 0.74 two
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hours prior to IDH to 1.0 at IDH onset; the model could discriminate between impending

IDH and non-IDH far ahead of blood pressure instability, and discrimination increased as

the model was applied closer to IDH onset (Figure 3.2). The final, tuned random forest

model (lead-0) parameters were max tree depth=2, number of features considered to split

each tree node=17, number of trees in random forest=100.

Figure 3.2: AUC-ROC evolution over time for IDH prediction model

Minute-to-minute risk trajectories were generated by applying the trained random forest

model on the hemodialysis sessions in the test dataset (n=557). Figure 3.3 depicts the

evolution of RRS for HS and NHS beginning two hours ahead of IDH onset. There is
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distinct separation in average RRS (p<.05, two-sample t-test) between the HS and NHS

even 2 hours ahead of event, where the average RRS of HS is 4 times higher than NHS.

The risk separation between the two groups increases leading up to the time of IDH. On

average, the RRS of HS elevates beginning around 90 minutes prior to IDH and escalates

again around 30 minutes prior to IDH. The RRS of NHS remains low for the 2-hour period

leading up to hypothetical IDH onset.

Figure 3.3: Mean relative risk trajectory before event shown for n=84 hypotensive dialysis

sessions (dashed line) and n=473 nonhypotensive dialysis sessions (solid line). Shaded gray

areas represent 95% confidence interval
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Risk trajectories were generated beginning 30 minutes prior to hemodialysis initiation

for HS and NHS in Figure 3.4 . There is distinct separation in average RRS (p<.05, two-

sample t-test) between the HS and NHS throughout the observed period. HS and NHS

experience distinct risk evolution from hemodialysis baseline. For HS, average RRS evolves

from baseline and elevates over the observed period as continuous fluid removal induces

hemodynamic instability on the average HS. Interestingly, on average, NHS experience a

slight elevation in RRS at the start of hemodialysis; however, RRS remains relatively

stable afterward. This may reflect the physiological stress induced on all patients upon

ultrafiltration initiation. The risk trajectories in Figure 3.3 and Figure 3.4 are clinically

relevant descriptions of the evolving risk of the average hemodialysis patient with and

without impending IDH. Hence, there is a distinct difference between the model generated

risk trajectories for HS and NHS.
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Figure 3.4: Mean relative risk evolution beginning 30 minutes prior to start of dialysis shown

for n=84 hypotensive dialysis sessions (dashed line) and n=473 nonhypotensive dialysis

sessions (solid line). Gray areas represent 95% confidence intervals.

Figure 3.3 and Figure 3.4 depict average RRS evolution of NHS and HS towards IDH

and within an observed timeframe around dialysis initiation. The evolution of RRS with

respect to clinical variables trends was evaluated on an individual treatment basis. The

patient receiving dialysis in Figure 3.5 has relatively low RRS at baseline and experienced

IDH over 3 hours after initiation. This model-produced RRS evolution is low and relatively

stable until about two hours into dialysis, after which RRS begins to escalate toward the

39



IDH event in response to declining blood pressure trends.

Figure 3.5: Example risk evolution during dialysis session with IDH Event
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Figure 3.6: Example risk evolution during dialysis session without IDH Event

The patient receiving dialysis in Figure 3.6 is high risk at baseline yet does not experience

an IDH event. The patient’s RRS remains elevated throughout treatment. Nevertheless,

the patient’s blood pressure rapidly changed at times, and the model-produced risk trends

reflect these dynamic changes in blood pressure.

3.3.2 Early Warning System

Features derived from risk trajectory information available within 15 minutes of dialysis

initiation were used to develop an early warning classification system for impending IDH
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during treatment. The baseline early warning system, using RRS available immediately

prior to dialysis initiation, produced an AUC-ROC of 0.71 and AUC-PR of 0.41. The

optimized threshold derived from maximizing Youden’s J Statistic was used as a decision

point to classify patients as high or low IDH risk; classification predictions producing a TPR

of 0.58 and FPR of 0.21. The second early warning system used decision points derived

from risk trajectory information available within 15 minutes of dialysis initiation Figure 3.7.

This early warning system produced an AUC-ROC of 0.81 and AUC-PR of 0.54, indicating

additional risk score dynamics improved the ability to distinguish between patients with and

without impending IDH. Using the optimized threshold as a decision point, the classifier

produced a TPR of 0.80 and a FPR of 0.29.

Figure 3.7: Early warning classifier using risk scores available within 15 minutes of dialysis

initiation

3.4 Discussion

A data-driven prediction model of future risk of IDH was developed using machine

learning, and a risk-score triggered early warning system was proposed that could be acted

upon by clinicians at the bedside. The machine learning model produced risk of future

IDH using the prior 30 minutes of featurized EHR data, and risk trajectories were produced

by applying the model to collected minute-by-minute featurized data from HS and NHS

available up to IDH onset. A warning threshold was derived using risk scores available

42



around hemodialysis initiation, and the threshold subsequently was used to classify patients

as high or low risk of future IDH during the current treatment.

Risk trajectory analysis provided an interpretable description of the model’s ability to

generate IDH risk over time. While static variables, such as current laboratory measurements

and vital signs, can solely be used to derive a risk score and predict future patient instability,

these variables fail to capture dynamic physiological changes that precede hemodynamic

instability; this could potentially result in inaccurate prediction and an inappropriate proceeding

clinical response to the calculated score. For example, severity illness scoring systems

have demonstrated to potentially misclassify patient illness severity as the calculated scores

fail to utilize clinical variable evolution [24]. In this study, the risk prediction model

leveraged variables describing vital sign dynamics over an interval of time (30 minutes)

preceding prediction, and these variables revealed to be important IDH predictors. Produced

risk trajectories illustrate significant separation in average IDH risk between NHS and HS

throughout the observed two-hour interval preceding IDH, as well as the observed window

around hemodialysis initiation. Separation in average IDH risk between the two groups

became wider approaching IDH onset. The distinct separation in average risk scores between

the two groups, even 2 hours ahead of event, further motivated the development of an early

warning system for IDH that leveraged the model-generated risk scores. The early warning

system was able to capture > 80% of future IDH within minutes of dialysis initiation. In

response to a high IDH risk indication by the early warning system, a clinician could take

preventative measures such as decreasing dialysate temperature, which acts to elevate blood

pressure by increasing vascular resistance [27, 26]. Administration of hypertonic fluids such

as mannitol [74] can prevent net fluid shifts from intravascular to intercellular space. Other

preemptive measures such as sodium variation modeling and ultrafiltration profiling could

also be used to reduce incidence of IDH [26].

Nevertheless, this study has several limitations. First, absent validation of the risk

model using an external cohort of dialysis patients in a major limitation. Internal validation

of the risk model was performed using a randomly separated test dataset. Features most

important in predicting IDH were derived from blood pressure. While blood pressure is

heavily utilized clinically for hemodynamic support decisions, other features derived from
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high frequency, filtered waveform data may provide better risk prediction at the cost of

reduced translation to patient settings where waveform data is infrequently acquired, i.e.

outpatient dialysis facilities. It was assumed there was insignificant delay between recorded

time of vital signs and the real measurement time. Clinical data is irregularly recorded;

therefore, it is possible vital signs and laboratory dynamics leading to IDH or real IDH

events could have been missed. In this study, a conventional definition of IDH used at

UPMC was utilized to establish predicted binary classes of the model. Significant variation

exists in IDH definition, using alternative blood pressure thresholds as well as existence of

accompanied symptoms or use of nursing interventions [2]. Using an alternative definition

of IDH could alter its associated significance with downstream consequences of IDH [32].

Furthermore, in the context of this study, a change in hypotension definition would adjust

the predicted class labels and effect both IDH risk prediction and the clinical utility of the

early warning system.

It is worth mentioning several neural network models have been recently developed that

also provide accurate real-time IDH risk prediction [63, 5]. However, these studies provide

insufficient guidance in regard to the implementation of the predictions to reduce incidence

of IDH. The risk trajectories produced by the model in this study demonstrated the ability

to forecast IDH far ahead of instability. The utility of the model-produced risk was extended

by developing an early warning system for IDH that is simple and interpretable. The early

warning system developed leveraged risk score trends available within 15 minutes of dialysis

initiation and demonstrated improvement in prediction performance over the baseline early

warning system. Nonetheless, 10% of the original hypotensive events were removed as these

treatments exhibited IDH immediately proceeding dialysis initiation. In addition, we selected

an operating threshold for classification that considered specificity and sensitivity of equal

importance. This decision threshold can be tuned according to clinical interests or facility

demands.

Variation in IDH risk dynamics at treatment-by-treatment level exists that is outside

the common band of its respective NHS and HS subgroup. It is possible a larger set

of IDH risk trajectory subtypes exist, and identification of these subgroups could create

an enhanced and more personalized IDH detection system. Although the early warning
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system supports the use of preventative treatments, study data evaluating the effect of these

interventions on reducing IDH is limited and has mixed results [36, 73]. A higher degree of

treatment personalization may be required to reduce incidence of IDH and its downstream

consequences. In chapter 4, a reinforcement learning-based algorithm is developed that

recommends preemptive, personalized treatment for hemodialysis patients based on the

patient’s risk trajectory.
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4.0 Risk-Based Reinforcement Learning Algorithm for Hemodialysis

4.1 Background

Hypotension occurs in up to 30% of hemodialysis treatments and has been associated with

increased mortality in various studies, including the one conducted in chapter 3 [59]. Several

machine learning models have been developed to provide accurate real-time risk of future

hypotension with clinical utility [128, 121, 63, 5]. Yoon et. al developed a machine-learning

derived hypotension prediction model using multigranular ICU monitor data and designed

a warning system that was conceptualized to provide clinicians real-time hypotension alerts

while mitigating alarm fatigue. The Hypotension Prediction (HYPE) trial investigated the

use of a hypotension recommendation system in a surgical setting; this consisted of a machine

learning algorithm that utilizes arterial waveform data to predict hypotension and a clinician-

derived interpretation of the underlying physiological cause of blood pressure instability

[121]. The use of the early-warning system incited clinician action that resulted in decreased

incidence of hypotension compared to standard care. In chapter 3, a machine learning model

was developed that forecasted future risk of IDH real time, and an early warning system for

IDH was developed using model-produced risk available around dialysis initiation. Still, no

tool exists that prescribes dialysis treatment real-time based on patient risk of future IDH.

The development of an autonomous control system that predicts future IDH and suggests

optimal, personalized therapy could improve outcomes in the dialysis setting.

Reinforcement learning (RL) is an attractive methodology to learn an optimal policy, or

way to act on a patient, to maximize the possibility of achieving desired patient outcomes.

RL has been applied to several healthcare contexts, including treatment and management

of sepsis, anesthesia, and cancer [58, 83, 84]. The RL agent (controller) receives feedback

for its interactions with the environment (plant) in the form of rewards, with the goal to

learn how to act to maximize expected reward over time [130]. It is both difficult and time

consuming to accurately represent complex, diverse physiological responses to treatment

with a mathematical model. Using RL, an optimal treatment policy is learned by the agent

46



without a model of the environment. An RL agent can learn an optimal policy using a

dataset of sequential interventions and their respective responses that originated from a vast

number of patients and treatments.

In this section, an RL-based algorithm is introduced in which the agent learns an optimal

treatment policy for dialysis patients, utilizing the evolving patient risk of IDH and long-

term achievement of individualized ultrafiltration goals as feedback for its actions. A model

of future IDH risk was trained and evaluated specifically on a cohort of patients receiving

intermittent dialysis in chapter 3. The model output was utilized to reward the agent based

on alterations in patient IDH risk in response to dialysis interventions, and a set of states

with a projected risk were derived to describe environment of the Markov Decision Process

(MDP). Q-learning, a reinforcement learning algorithm, was used to solve for the optimal

policy of the MDP, and microsimulations of dialysis trajectories were produced to evaluate

the efficacy of the agent-derived treatment policy relative to the clinician policy.

4.2 Methods

4.2.1 Theoretical Framework

4.2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical formalism of a discrete time,

stochastic decision-making process. Specifically, a finite Markov decision process defined by

a set of states, S, a set of actions A(sk) available for the states in S, a reward function

R, and a probability transition function P (sk+1|sk, ak), which represents the environment

dynamics or probability of transitioning from state sk ∈ S at timestep k to state sk+1 at

timestep k+1 when action ak ∈ A is taken [107]. The dynamics of the MDP, P (sk+1|sk, ak),

satisfy the Markov Property: the future depends current state and action and is conditionally

independent of the previous states and actions. The current state is assumed to contain all

relevant information needed to define the future.

Reinforcement learning-based algorithms solve a MDP, where an agent is tasked to learn
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the optimal way to interact with the stochastic MDP environment in order to achieve a goal.

The agent-environment interaction described by a MDP is demonstrated by Figure 4.1.

Figure 4.1: Reinforcement learning schematic

At each time step k, the agent interacts with the environment taking an action ak ∈ A based

on the state sk ∈ S of the environment. The environment transitions to a new state sk+1 and

emits a reward rk+1 that is used to provide feedback to the agent for the quality of ak in sk.

The agent is tasked to maximize cumulative (discounted) reward over time (Equation 4.1).

Gk = rk+1 + γrk+2 + γ2rk+3 + ... =
∞∑
k=0

γkrk+1 (4.1)

The discount factor, γ ∈ [0, 1], describes present value of future reward or the horizon of

the agent; a reward received k timesteps in the future is worth γk times less than if it were

received immediately.

There is a theoretical relationship between reward discounting and the way an agent

acts in an environment [105]. Future reward value is weighted by the probability of agent

”surviving” at time t without experiencing a hazard (Equation 4.2).
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v(rt) = S(t)r(t) (4.2)

Formally, the probability of hazard time T occurring at time t is described by the density

function f(t) (Equation 4.3), and probability of the hazard time T occurring at some time

prior or at time t is F (t) (Equation 4.4).

f(t) = lim∆t→0
P (t <= T < t+∆t)

∆t
(4.3)

F (t) = P (T <= t) =

∫ t

0

f(u)du (4.4)

The survival function, S(t), describes the probability that T exceeds time t and is the

complement of F (t) (Equation 4.5).

S(t) = P (T > t) = 1− F (t) (4.5)

The hazard function, h(t), is described as the instantaneous probability of the hazard

occurring at time t given that the hazard has not occurred (Equation 4.6).

h(t) =
f(t)

S(t)
=

1

S(t)

dF (t)

dt

=
1

S(t)

d(1− S(t))

dt

=
−d log(S(t))

dt
=
−ds(t)

dt

1

s(t)

(4.6)

Under the assumption that the hazard rate (λ) is constant, the survival function can be

expressed in terms of the hazard rate, effective horizon time (τ) and discount factor (γ)

(Equation 4.7). Equation 4.7 demonstrates that as hazard rate λ → ∞, γ → 0, and as

effective horizon time τ → 0, γ → 0.

v(rt) = S(t)r(t) = e−λt = e−
t
τ = γt (4.7)
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The value of a reward decays exponentially over time (Figure 4.2). As γ → 0, the agent

desires to maximize immediate reward, whereas the agent increasingly weighs future reward

received as γ → 1.

Figure 4.2: Value of Reward Over Time as Function of Discount Factor

4.2.1.2 Learning an Optimal Policy Using a Reinforcement Learning Agent

The relationship between cumulative (discounted) returns at successive timesteps can be

written recursively (Equation 4.8).

Gk = rk+1 + γrk+2 + γ2rk+3 + ...

= rk+1 + γ(rk+2 + γrk+3 + ...)

= rk+1 + γGk+1

(4.8)

A policy, (π(a|s)), is a mapping of states to actions or the probability that ak = a when

sk = s. The relationship between the value of a state and its successor states under a policy
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is described by (Equation 4.9), also known as the Bellman Equation. The value of a state is

the summation of the expected discounted value of the next state and the reward received

along the way.

vπ(s) = Eπ[Gk|sk = s]

= Eπ[rk+1 + γGk+1|sk = s]

=
∑

a
π(a|s)

∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)]

(4.9)

Similarly, state-action value function calculates the expected reward taking action a in state

s and following the policy (π) afterwards (Equation 4.10). The value of a state-action pair is

the summation of the expected discounted value of the next state-action pair and the reward

received along the way.

Qπ(s, a) = Eπ[Gk|sk = s, ak = a]

= Eπ[rk+1 + γGk+1|sk = s, ak = a]

=
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)]

(4.10)

An optimal policy, π∗, is one in which the expected return is greater than any other

policy for all s ∈ S. The value function and state-action value function for an optimal policy

is called an optimal value function, v∗(s), and optimal state-action value function, Q∗(s, a),

respectively. The value of a state under the optimal policy, π∗(s), is equal to the expected

return for the best action from that state (Equation 4.11).

v∗(s) = max
a

qπ∗(s, a)

= max
a

E[rk+1 + γv∗(sk+1)|sk = s, ak = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)]

(4.11)

Therefore, the bellman optimality equation for the state-action value function can be written

as (Equation 4.12).
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Q∗(s, a) = E[rk+1 + γmax
ak+1

Q∗(sk+1, ak+1)|sk = s, ak = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

Q∗(s′, a′)]
(4.12)

Q∗ is the cumulative discounted reward taking action ak in state sk and following the optimal

policy afterward. If accurate description of the environment dynamics (p(s′, r|s, a)) exists,

dynamic programming techniques such as value iteration or policy iteration can be used to

solve for Q∗.

Q-learning, an off-policy reinforcement learning algorithm, can be used used to solve

for the optimal policy of the MDP [120, 83, 62, 29]. The algorithm solves the bellman

equation of optimality (Equation 4.12) without a model of the environment. As depicted

in Figure 4.12, the reinforcement learning agent is external to the environment. The agent

iteratively improves its policy by acting on the environment and observing the subsequent

response of the environment to its actions in the form of rewards. In the case that agent

learning cannot occur by interacting with the environment online, learning can occur offline

using experience stored in a previously collected dataset. Specifically, Q is first initialized to

zero. Then, tuples of experience are sampled from a static dataset D = {(sk, ak, sk+1, rk+1)}

and the algorithm is updated using a running (weighted) average of current (Qc) and new

(Qn) state action value information (Equation 4.13)

Qc = Qk−1(sk, ak)

Qn = rk+1 + γmax
ak+1

Qk−1(sk+1, ak+1)

Qk(sk, ak)← Qc + α(Qn −Qc)

(4.13)

The step size or learning rate, α ∈ [0, 1], weighs how much new information overrides old

information during the algorithm update. As α→ 1, the agent places larger weight on new

experience during its policy update. Theoretically, Q converges to the optimal state value

function Q∗ if the state-action values are visited infinitely often (Equation 4.14) and the

learning rate α is decreased appropriately (Equation 4.15).
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∞∑
k=0

αk(sk, ak) =∞,∀(s, a) (4.14)

∞∑
k=0

α2
k(sk, ak) <∞,∀(s, a) (4.15)

Upon convergence, the optimal policy can be extracted by Q∗ by taking the action that

results in the maximum expected cumulative reward from the current state (Equation 4.16)

π∗(sk) = argmax
ak

Q∗(sk, ak) (4.16)

4.2.1.3 Q-learning Based Closed-Loop Risk Control of Intermittent Hemodialysis

Q-learning was used to develop an algorithm that recommends preemptive, personalized

treatment for hemodialysis patients using the patient’s IDH risk trajectory. The agent-

derived policy identifies the optimal way to act on a patient to maximize the probability of

achieving individualized fluid removal goals without incidence of IDH. In this section, the

dialysis MDP and RL-based methods used to solve for the optimal policy are described.

4.2.2 MDP States

The states of the MDP were derived using a data-driven approach, using the patients’

physiological features and their projected absolute risk (AR) calculated by the random

forest model. As described in Source Data and Data Processing, the relative importance of

candidate features in IDH prediction was derived with the information gain that results from

using the feature for tree partitioning, averaged across all of the decision trees in the forest.

Feature importances were sorted in descending order to evaluate the relative contribution

of variables in IDH prediction (Figure 4.3). The features (n=8) with highest importance in

IDH prediction were chosen to derive the state space, as feature importance decreased slowly

after n=8 with the use of additional features. The variables with highest feature importance

included: current-time SBP, MAP, and diastolic blood pressure (DBP), minimum and past
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30 minute linear-weighted moving average of systolic blood pressure (SBP) and mean arterial

pressure (MAP) measurements, and the slope of SBP over the past 30 minutes.

Figure 4.3: Feature Importance vs. Feature Rank

Relative risk (RR) and personalized risk (PR) were derived from the absolute risk (AR)

projected from the model and used as additional variables to define the state space. RR

represents the IDH risk relative to average IDH risk in NHS (Equation 3.4), while PR

describes deviation inRR from patients ownRR at hemodialysis initiation (RR0) (Equation 4.17).

PR = RR−RR0 (4.17)

These 10 features were extracted from each treatment every 15 minutes from dialysis initiation

and up to, but not including, the time of IDH onset.

Principal Component Analysis (PCA) was used to reduce the set of n=10 features to

a new set of uncorrelated variables (principal components) that capture the majority of
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the variance described by the original dataset [48]. Figure 4.4 demonstrates additional

cumulative variance described by principal components diminishes after the use of four

principal components. Four principal components were chosen to describe the data, as

the components captured 90% of the original dataset variance.

Figure 4.4: Eigenvalues and cumulative variance explained by the principal components.

A discrete set of states are required for a finite MDP, however, the selected variables

are continuous. A decision tree was applied to the reduced-dimensionality dataset to derive

boundaries between sampled variables with and without IDH experienced in one timestep

(15 minutes)(Figure 4.5).
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Figure 4.5: Projection of sampled features on first two principal components. Red and gray

samples are samples with and without experienced IDH in one timestep, respectively

Specifically, a decision tree was grown with a max depth, or maximum path length from

root node to leaves of 3. Then, the decision tree was simplified by pruning the tree from the

bottom up, removing split points that resulted in lowest information gain (Equation 3.3).

The boundaries created six regions with distinct clinical features and projected risk of

hypotension (Figure 4.6).
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Figure 4.6: Projection of sampled features on first two principal components. Red and gray

samples are samples with and without experienced IDH in one timestep, respectively

A hemodialysis patient was ascribed to a risk state (n=6) each timestep of dialysis using a

PCA projection of their clinical variables and associated risk of future IDH. (Figure 4.7) .
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Figure 4.7: Decision Tree Description of Risk State Assignment. Patient is assigned a risk

state in real time by traversing the root node (origin) to a terminal node (leaf) using decision

thresholds at each node.

The state space was expanded (n=12) to include a discrete indicator of personalized

fluid removal status. Fluid removal goals were estimated on a treatment-by-treatment basis

using the initial ultrafiltration rate set by the clinician and calculating the cumulative fluid

pulled if the rate was held constant for three hours (Figure 4.8). Fluid removal rate was

integrated over time to determine the total volume removed from the patient up to the

current treatment time. At each timestep during dialysis, a patient was ascribed a discrete

volume status of [0-50%) or [50-100%) as a function of their personalized fluid removal goal.

Fluid goals were satisfied if the volume removed exceeded the estimated fluid removal goal.

Two terminal states were added to the state space that indicated if IDH occurred or fluid

goals were achieved.
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Figure 4.8: a. Fluid removal vs. time since dialysis initiation for individual patient. Blue

and red depict actual recorded fluid volume and fluid removal rate over time, respectively.

b Cumulative fluid removal vs. time. Dashed line added to depict estimated fluid removal

goal during treatment for patient.

4.2.3 MDP Rewards

The objective is for the agent to learn preemptive, personalized dialysis treatment that

migates IDH risk and maximizes possibility of achieving individualized fluid removal goals.

The random forest model developed in chapter 3 provided projected risk of IDH real-time

using clinical measurements and prior medical history. Personalized risk of IDH (Equation 4.17)

provided change in risk relative to the patient’s own baseline. An effective reward function

should reward the agent for decreases in personalized risk of IDH and penalize the agent

otherwise. Specifically, the agent is rewarded at timestep k if a patient’s personalized risk

of IDH decreased after taking action ak on a patient in state sk (Equation 4.18).

rk+1 = −RR0 ∗ [|PRk+1| − |PRk|] (4.18)

At terminal timesteps of a patient’s dialysis trajectory, the agent was rewarded if dialysis
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fluid goals were achieved without incidence of IDH and penalized otherwise. The terminal

reward magnitude was selected to be greater than intermediate rewards received at any given

timestep.

4.2.4 MDP Actions

The set of actions taken by the agent included no intervention, increase ultrafiltration

rate, decrease ultrafiltration rate, increase vasopressor dose, and administer mannitol or

albumin. These clinical interventions were collected from EHR data available for each dialysis

treatment (n=1685) in 15-minute intervals from dialysis initiation. Vasopressors used by

clinicians included epinephrine, norepinephrine, dopamine, phenylephrine, and vasopressin:

these were converted to their equivalent norepinephrine dosage (mcg/kg/min) [51]. 25%

mannitol and 25% albumin were assumed to be bolused over 5 minutes from the time of

recording. Albumin and mannitol administration was merged as a single action as both

increase plasma osmolality and encourage vascular refill via osmosis. Interventions by pump

and clinician were recorded as volumes in EHR; rate was assumed to be constant between two

recordings and determined using time between previous and current recording. An increase

or decrease was indicated by ≥ 25% change in flow rate.

4.2.5 Offline Q-Learning to Learn Optimal Treatment

Q-learning was used to solve for the optimal policy of the MDP. Q was initially set

to zero. Transitions from real dialysis trajectories were stored in a static dataset D =

{(sk, ak, sk+1, rk+1)}, and tuples of (sk, ak, sk+1, rk+1) were sampled to update theQ (Equation 4.13).

The learning rate was decayed throughout the learning process using a linear learning rate

schedule [29]. Discount factor is related to the horizon of the agent; as τ → 0, γ → 0, less

distant reward is used to calculate the optimal action in a state. Thus, discount factor( γ)

was set to 0.1 to reflect a short agent horizon and urgency of the agent (clinician) to decrease

patient risk of hypotension. Theoretically, Q-learning converges under the assumptions of

Equation 4.14 and Equation 4.15. In practice, the algorithm was updated until the rewards

in Q stabilized ( ∆Q < 10−7) . Upon convergence, the optimal policy, π∗(sk), was extracted
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from Q∗ using (Equation 4.16).

4.2.6 Microsimulations

Microsimulations of the MDP using the RL-generated optimal policy were produced to

evaluate its efficacy in reducing incidence of IDH while simultaneously achieving individualized

fluid removal goals. Specifically, a dialysis patient was initialized one of 6 possible initial risk

states according to the distribution of initial risk states found within the dataset. Simulation

parameters were defined using real dialysis parameters set by clinicians during treatments

in the dataset. The initial ultrafiltration rate of each simulated treatment was set as the

median rate in the dataset (median=6.4 mL/kg/hr (IQR: 3.5 mL/kg/hr-9.6 mL/kg/min)).

Patient weight was assumed as the median patient weight in the dataset (median=80.3

kg(IQR=68.0 kg-105.0 kg), and an increase or decrease in rate was set to 50% change in

flow rate (median=43.2% (IQR: 32.8%-62.1%)). The maximum ultrafiltration rate allowable

during simulation was set to the maximum rate observed in the dataset (44.09 mL/kg/hr).

A total of 25,000 simulated dialysis treatments were produced by applying the optimal policy

in Equation 4.16 and producing subsequent state transitions according to P (sk+1|sk, ak) until

a terminal state was reached or a maximum of five hours of simulated treatment time was

observed.

The optimal policy in Equation 4.16 is deterministic, and the optimal intervention in

a state is the one with maximum expected reward. In cases in which vasopressors or

mannitol was recommended as the optimal intervention, the optimal action and an alternate,

less rewarding treatment intervention were chosen probabilistically according to a softmax

distribution (Equation 4.19).

ps(a2)

ps(a1)
= e(Q(s,a2)+b−Q(s,a1)) = e∆Qmod (4.19)

Q∗(s, a2) < Q∗(s, a1), and a1 is the optimal action chosen in a state according to Equation 4.16.

Ps(a2) and Ps(a1) are the probabilities of choosing a1 or a2 in state s. The bias term, b,

was added so the alternative, less rewarding action in the state was chosen more frequently

than the optimal action if vasopressor or mannitol was initially the recommended optimal
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action. The parameter was tuned by sweeping b and creating n=25000 dialysis trajectories

with each b value. Dosing behavior was evaluated as a function of increased bias toward

use of alternative interventions. Simulated dosing patterns and dialysis outcomes of the

optimal agent-suggested policy (Equation 4.16) and modified agent policy (Equation 4.19)

used in silico were compared to the real clinical dosing patterns and dialysis outcomes of

the clinician.

The analysis was repeated to evaluate the effect of agent-derived therapy on specific

subpopulations (ICU and non-ICU based treatments). Specifically, probability transition

functions (P (sk+1|sk, ak)) were reconstructed from dataset transitions for both subgroups,

and the simulation and analysis procedure defined above for the general population of

patients was repeated for each subgroup. This analysis was performed to evaluate how

the RL policy trained using all patient data performs on specific subpopulations.

4.2.7 Statistical Analysis

Normality of continuous data distributions was calculated via Shapiro-Wilk test. Two-

sample t-test was performed for statistical comparisons of distributions that were both

continuous and normal, while the two-sample Kolmogorov-Smirnov test was used to compare

continuous, non-normal distributions. Normal, continuous distributions were reported with

mean and interquartile range (IQR), while non-normal continuous distributions were reported

with median and interquartile range. For categorical variables, chi-squared test was used for

statistical comparison when <20% of cells had expected frequencies <5, otherwise, Fisher’s

exact test was implemented. Categorical variables were reported with counts and frequencies.

P< .05 chosen as the threshold for significance. In text, significant comparisons with p<

.0001 were indicated as such, but exact values can be found in Appendix .
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4.3 Results

4.3.1 Optimal Agent-Suggested Treatment Policy vs. Clinician

Figure 4.9 depicts several example simulated trajectories following the optimal policy.

The agent acts to maximize the probability of a dialysis patient reaching his or her fluid

removal goal without incidence of IDH.

Figure 4.9: Example Simulated Dialysis Trajectories. Top Graph: Risk state of patient

each simulated timestep. Middle Graph: % of personalized fluid goal. Q1:[0-50%), Q2:[50-

100%), Q3: 100%. Bottom Graph: Actions recommended by agent each timestep. 0: no

intervention, U: increase ultrafiltrate, u: decrease ultrafiltrate, action M: administer albumin

or mannitol, P: increase vasopressors
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The clinician and optimal interventions were collected each timestep of real and simulated

dialysis sessions, respectively (Figure 4.10). As depicted in Figure 4.10, the clinician most

frequently made no change in ultrafiltration rate, followed by increasing and decreasing

ultrafiltration rate. Administration of albumin or mannitol and increase of vasopressor dose

were infrequent interventions taken by clinicians during hemodialysis. The frequency of

applied interventions was increased significantly during dialysis sessions in-silico relative

to the clinician. To illustrate, the clinician and agent intervened 18.4% and 48.7 % of

treatment timesteps, respectively. The agent altered ultrafiltration rate more routinely than

the clinician; ultrafiltration was changed 32% of timesteps by the RL and 17.78% of timesteps

by the clinician. Rare and more aggressive interventions (i.e administration of albumin or

mannitol bolus or increasing vasopressor dose) were recommended more often by the RL

agent relative to the clinician. Specifically, albumin/mannitol administration and escalation

of vasopressor dosage were taken 28 times and 25 times more frequently in-silico than the

clinician, respectively.
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Figure 4.10: Clinician vs. Agent Recommended Interventions (optimal policy) . Actions

selected by clinician every 15 minutes across all treatments (left). Actions recommended by

agent every timestep during simulated dialysis treatments (right). Action 0: no intervention,

action U: increase ultrafiltrate, action u: decrease ultrafiltrate, action M: administer albumin

or mannitol, P: increase vasopressors

The dosing behavior of the agent (per treatment) following the optimal policy is depicted

in Figure 4.11. Increase in vasopressor dose and administration of mannitol or albumin

were actions taken a maximum of 12 and 11 times per treatment, respectively in silico

(Figure 4.11). In comparison, increase of vasopressor dose and administration of mannitol

or albumin were interventions taken a maximum of 6 and 4 times by the clinician per

treatment of the dialysis sessions available in the dataset, respectively. Despite apparent

overuse of aggressive treatments by the agent, the proportion of treatments with experienced
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hypotension was reduced by 63.3% (p< .0001), and the proportion of treatments with

achievement of fluid removal goals was increased by 47.4% in silico (p< .0001). While not a

primary study outcome, the deployed agent-recommended policy resulted in accomplishment

of fluid removal goals without incidence of hemodynamic instability faster than the clinician

treatment policy (Table 4.1).

Figure 4.11: RL Agent intervention frequency per dialysis treatment (optimal policy). Action

0: no intervention, action U: increase ultrafiltrate, action u: decrease ultrafiltrate, action M:

administer albumin or mannitol, P: increase vasopressors

Table 4.1: Outcomes of optimal treatment policy vs. clinician Policy

IDH [count (%)] Fluid Goals Achieved [count (%)] Time to Goal State (minutes) [median (IQR)]

RL Treatment Policy 1364 (5.5) 23664 (94.6) 135 [105,140]

Clinician Treatment Policy 253 (15.0) 1082 (64.2) 176 [164,182]
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4.3.2 Modified Agent-Suggested Treatment Policy vs. Clinician

The agent-derived (optimal) policy could potentially lead to improved patient outcomes

at the expense of increased use of aggressive treatments. However, these rare and aggressive

interventions are unlikely to be applied as frequently if recommended to a clinician. To

illustrate, vasopressor support is only used for dialysis patients that originate from the

intensive care unit (ICU) and have a history of blood pressure instability. Furthermore,

there is evidence excessive vasopressor usage can cause ischemia and necrosis in limbs and

digits [80, 46]. The agent should select interventions with high expected value that lead to

improved dialysis outcomes, however, these actions must also meet clinical and operational

expectation. Dosing behavior and dialysis goal achievement of the modified agent-policy was

evaluated via simulation. Figure 4.12 demonstrates that as bias increases, the proportion

of treatments with recommendation of vasopressor escalation or mannitol administration

decreases. The bias closest to observed clinical dosing ( ∆Qmod → 2.25) was chosen to

reduce overdosing and better align RL dosing with clinical intuition.
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Figure 4.12: Effect of Bias on Dosing

The dosing behavior of the modified agent policy was evaluated by collecting the interventions

taken at each timestep during simulated treatments (Figure 4.13). In comparison to dosing

using the optimal agent policy (Figure 4.10), use of aggressive treatments are reduced at

the expense of increased alteration of ultrafiltration. Specifically, ultrafiltration was changed

32% and 41% of the time following the optimal agent policy and the modified agent policy

in silico, respectively. Ultrafiltration is decreased >3x more often following the modified

agent policy than the optimal agent policy in silico. As depicted in Figure 4.13, the clinician
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and agent most frequently made no change in ultrafiltration rate, followed by increasing and

decreasing ultrafiltration rate.

Figure 4.13: Clinician vs. Agent Recommended Interventions (modified policy). Action 0:

no intervention, action U: increase ultrafiltrate, action u: decrease ultrafiltrate, action M:

administer albumin or mannitol, P: increase vasopressors

The dosing behavior of the agent (per treatment) following the modified agent policy is

depicted in Figure 4.14. Aggressive treatments measures, i.e. increasing vasopressor support

and administration of mannitol or albumin, were applied a maximum of 3 times in silico

and below the maximum dosing observed in the dataset. Figure 4.14 and Table 4.2 elucidate

that the RL recommends changes in ultrafiltration during treatment more frequently than

the clinician.
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Figure 4.14: RL Agent intervention frequency per dialysis treatment (modified policy).

Action 0: no intervention, action U: increase ultrafiltrate, action u: decrease ultrafiltrate,

action M: administer albumin or mannitol, P: increase vasopressors

Table 4.2: Per Treatment Intervention Information for agent policy vs. clinician policy

0 u U P M

Treatments Action Taken (RL) [counts (%)] 22392 (89.6) 11264 (45.1) 22087 (88.3) 145 (.6) 1181 (4.7)

Treatments Action Taken Multiple Times (RL) [counts (%)] 20326 (81.3) 5072 (20.3) 19556 (78.2) 29 (.12) 122 (.49)

Treatments Action Taken (Clinician) [counts (%)] 1661 (98.6) 675 (40.1) 1653 (98.1) 19 (1.1) 83 (4.9)

Treatments Action Taken Multiple Times (Clinician) [counts (%)] 1607 (94.8) 229 (13.5) 782 (46.4) 8 (.5) 32 (1.9)

A comparison of primary outcomes resulting from agent and clinician-prescribed treatment

are summarized in Table 4.3. The proportion of treatments with experienced hypotension

was reduced by 51.3% (p<.0001), and the proportion of treatments with achievement of fluid
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removal goals was increased by 45.0% (p < .0001) when the agent-recommended treatment

policy was deployed in silico. There is a cost to using the modified agent policy over the

optimal policy; IDH occurred in 7.3% and 5.5% of treatments following the modified and

optimal agent policy, respectively.

Table 4.3: Outcomes of modified treatment policy vs. clinician policy

IDH [count (%)] Fluid Goals Achieved [count (%)] Time to Goal State (minutes) [median (IQR)]

RL Treatment Policy 1817 (7.3) 23265 (93.1) 135 [90,140]

Clinician Treatment Policy 253 (15.0) 1082 (64.2) 176 [164,182]

4.3.3 Effect of Agent-Suggested Treatment Policy on Patient Subpopulations

4.3.3.1 Agent-Suggested Policy on ICU vs. Non-ICU

It was hypothesized that the general agent-suggested policy derived in subsection 4.3.2

may experience contrasting performance on different subpopulations of patients. 558 (33.1%)

of the dialysis treatments were ICU-based, and 261 (94.6%) of patients received ICU-

based treatment at least once during their hospital stay. Table 4.4 describe differences in

clinical characteristics between the two subpopulations. ICU-based treatments had a higher

frequency of IDH (18.1 % vs. 13.5 %, p=.0013) and satisfaction of systemic inflammatory

response syndrome (SIRS) at dialysis initiation (75.1 % vs. 37.2 %, p<.0001). Absolute

neutrophil count, anion gap, and phosphate were abnormally elevated and significantly higher

at baseline for ICU-based treatments. Calcium levels were abnormally low and significantly

lower than non-ICU based treatments at dialysis initiation. Prothrombin time and blood urea

nitrogen levels were abnormally high in both subgroups, yet both laboratory measurements

were significantly higher at baseline for ICU-based treatment in comparison to non-ICU

based treatment. At dialysis initiation, red blood cell count was abnormally low for both

subgroups and significantly lower for ICU-based treatment in comparison to non-ICU based

treatment.
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Table 4.4: Clinical characteristics of ICU and non-ICU based treatment

Characteristic ICU non-ICU P-values Reference Range

IDH [count(%)] 101 (18.1) 152 (13.5) 1.30E-02

SIRS [count (%)] 419 (75.1) 572 (37.2) 1.30E-21

Calcium, mg/dL 8.3 (7.7-8.9) 8.6 (8.1-9.1) 5.9E-11 8.4-10.2

Anion gap, mEq/L 17.0 (14.0-20.0) 15.0 (13.0-18.0) 1.80E-08 7.0-15.0

Absolute neutrophil count, count*10ˆ9/L 7.8 (5.0-12.4) 6.4 (4.0-9.7) 2.20E-07 2.2-7.7

Phosphate, mg/dL 4.7 (3.6-6.2) 4.1 (3.3-5.4) 1.50E-05 2.5-4.6

Prothrombin time, seconds 15.8 (14.6-17.4) 15.2 (13.9-16.5) 1.90E-11 11.2-14.7

Blood urea nitrogen, mg/dL 47.0 (31.0-72.5) 42.0 (29.0-60.0) 5.80E-05 8.0-26.0

Red blood cell count, count*10ˆ12/L 2.8 (2.5-3.3) 2.9 (2.8-3.2) 2.00E-02 3.7-4.9

The dosing behavior of the modified agent policy on ICU and non-ICU treatments was

assessed by collecting the interventions taken at each timestep during simulated dialysis

sessions. As depicted in Figure 4.15, both the clinician and agent most frequently made no

change in ultrafiltration rate, followed by increasing and decreasing filtration rate during

non-ICU treatment. Mannitol was infrequently administered relative to the remaining set of

actions taken by the clinician and agent. Vasopressor support is only available for dialysis

patients that originate from the intensive care unit (ICU), therefore, increasing vasopressor

support is not part of the set of interventions taken by the clinician or agent. Despite

these similarities, the agent altered ultrafiltration rate more routinely than the clinician;

ultrafiltration was altered 41.8% of the time by the RL agent and 17.1% of the time by the

clinician.

72



Figure 4.15: Clinician vs. Agent Recommended Interventions (nonICU) . Action 0: no

intervention, action U: increase ultrafiltrate, action u: decrease ultrafiltrate, action M:

administer albumin or mannitol, P: increase vasopressors

Similarly, both the clinician and agent most frequently made no change in ultrafiltration rate,

followed by increasing and decreasing filtration rate during ICU treatments (Figure 4.16).

Aggressive treatments (i.e. administration of albumin or mannitol bolus or increasing

vasopressor dose) were infrequently taken relative to the remaining set of actions taken

by the RL agent and clinician.
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Figure 4.16: Clinician vs. Agent Recommended Interventions (ICU). Action 0: no

intervention, action U: increase ultrafiltrate, action u: decrease ultrafiltrate, action M:

administer albumin or mannitol, P: increase vasopressors

Table 4.5 compares dialysis outcomes of agent and clinician-prescribed treatment on ICU

and nonICU subgroups. As previously mentioned, IDH incidence was higher in ICU-based

treatment relative to non-ICU based treatment (18.1% vs. 13.5%,p=.013) performed at

UPMC. Similarly, incidence of IDH was higher in ICU-based treatment vs. non-ICU based

treatment in silico using the agent-derived treatment (9.9% vs. 5.7%). Nevertheless, use

of the agent-derived treatment policy in silico resulted in a significant reduction (p<.0001)

in incidence of IDH and increased achievement of fluid removal goals (p<.0001) in both

subgroups. Specifically, IDH occurrence was reduced by 45.3 % (p<.0001) and 58.4%

(p<.0001) in ICU and non-ICU groups, respectively. Accomplishment of fluid goals was
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increased by 56.9% (p<.0001) and 40.5% (p<.0001) in ICU and non-ICU groups, respectively.

Table 4.5: Outcomes of clinician and agent treatment policy for ICU and non-ICU

subpopulations

IDH [count (%)] Fluid Goals Achieved [count (%)]

RL Treatment Policy (ICU) 2472 (9.9) 22819 (91.3)

Clinician Treatment Policy (ICU) 101 (18.1) 323 (57.9)

RL Treatment Policy (non-ICU) 1420 (5.7) 23580 (94.3)

Clinician Treatment Policy (non-ICU) 152 (13.5) 758 (67.3)

4.4 Discussion

This study demonstrates the utility of using reinforcement learning to derive an optimal

treatment policy, solely from a vast number of sequential intervention decisions stored in

an offline dataset. A model of future IDH risk was trained and validated using a cohort of

patients that received hemodialysis at UPMC acute care facilities in chapter 3. In this study,

the RL agent learned the value of taking actions in each health state derived from predictive

clinical variables, and a projected future risk of IDH from the model developed in chapter 3.

Reward structure is a critical element in the learning design as dialysis treatment decisions

need to consider alterations in patient IDH risk while accounting for longer-term goals of

dialysis. In the healthcare setting, RL agents have been predominantly rewarded using a

single reward at the end of treatment or using a mixture of short-term and terminal rewards

with a universal goal for all patients [58, 83]. The risk-reward structure used by the agent in

this study directly addresses this issue as the reward signal is derived from a mathematical

mapping of patient-specific health characteristics to the probability of an undesired health

outcome. Without dialysis, occurrence of uremia and death is inevitable in patients with

end-stage renal disease (ESRD). Nevertheless, hypoperfusion and consequent organ damage

induced by occurrence of IDH contributes to poor clinical outcomes observed in the dialysis
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population, including decreased kidney recovery and death [106, 26]. The agent in this study

is rewarded as a function of forecasted blood pressure instability and thus learns how to act

preemptively in order to reduce incidence of IDH in silico.

Simulated trajectories of the MDP following the optimal policy revealed a 63.3% decrease

(p<.0001) in incidence of IDH and 47.4% increase (p<.0001) in fluid goal achievement in

silico relative to the clinician. Nevertheless, the optimal policy recommended rare and

aggressive interventions, e.g. increase vasopressor support and administration of mannitol,

at a significantly greater extent than would be utilized clinically. The optimal policy returns

the single best action with maximum expected reward. A tunable function was utilized to

provide flexibility in selecting alternative, less-aggressive interventions that were sufficiently

rewarding, and its implementation produced dosing behavior that met clinical expectation.

The modified agent-suggested policy resulted in 51.3% (p<.0001) decrease in incidence

of IDH and 43.0% increase (p<.0001) in fluid goal achievement in silico relative to the

clinician, at the expense of increased actuation of ultrafiltration rate. ICU-based treatments

experienced higher incidence of IDH (18.1 vs. 13.5,p=.013) and achievement of fluid removal

goals (67.3 vs. 57.9 , p=1.6e-04) compared to non-ICU based treatments performed at

UPMC. At baseline, patients receiving ICU-based treatment presented evidence of being

sicker, which could lead to greater incidence of blood pressure instability. The agent-derived

policy led to a decreased incidence of IDH and increased achievement of fluid removal goals

in both subpopulations in silico. Nevertheless, incidence of IDH was higher in ICU-based

treatment in comparison non-ICU based treatment in silico. This algorithm framework is

envisioned to be integrated into a closed-loop control system used in the dialysis setting.

Alternatively, the system could be utilized semi-closed loop as a recommendation system

during the dialysis procedure.

The study in this section has several limitations. First, absent validation of the risk

model and RL policy performance using an external cohort of dialysis patients is a major

limitation. The trained IDH risk model performance was evaluated on a randomly selected

internal validation dataset, and performance of the RL agent was evaluated using dialysis

treatments performed internally at UPMC acute care facilities. Future research will focus on

collecting a large set of EHR information from dialysis treatments performed externally and
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using the collected data to further evaluate RL treatment efficacy. Currently, over 60,000

hours of data was collected from 1685 hemodialysis treatments performed at UPMC; this

dataset is continously expanding with additional non-ICU and ICU-based treatments. The

agent will be retrained using the expanded dataset, generating increased confidence in the

agent-suggested interventions, especially in regard to rare actions (e.g. administration of

mannitol, increase in vasopressor administration rate).

Q-learning is an off-policy algorithm and therefore the (optimal) policy learned is different

than the behavior (clinician) policy, nevertheless, the learned policy must still meet clinical

expectation. Extending state description to include mechanism, clinical history, or intervention

history could better align optimal agent-recommended interventions with clinical reasoning.

Embedding additional state information and constraints (e.g. mechanism, dosing), however,

can greatly increase state-space dimensionality and the necessary data to accurately calculate

state-action pair values. Alternatively, to address the issue of overabuse of mannitol and

vasopressor support following the optimal policy in silico, a modified policy was developed

to allow for probabilistic selection of an less aggressive treatment in a state. Undoubtedly,

this action selection method diverges from the optimal policy returned from Q-learning that

is a single (greedy) action that maximizes value in a given state. Alternative methods, such

as penalizing the use of aggressive treatments (e.g. mannitol and vasopressors), could reduce

overdosing without divergence from mathematical optimality, however, these may be difficult

to appropriately tune to better meet clinical intuition while improving clinical outcomes in

silico.

Dialysis settings outside UPMC may use alternative interventions in response to blood

pressure instability, such as decreasing dialysate temperature. These can be incorporated

into the action space, or alternative, rewarding interventions could be recommended if the

current recommended action is not deployed at the site. As mentioned in chapter 3, features

derived from high-frequency, filtered waveform data may improve risk prediction at the cost

of reduced translation to patient settings where waveform data is infrequently acquired, such

as outpatient facilities. High-frequency data opens the possibility of using a smaller agent

(controller) sample time if implemented as a closed-loop control system.

Clinical data-related issues amplify the challenge of using an offline dataset to derive a
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optimal treatment policy for dialysis. The RL-derived policy is predicated on the fact that all

sequential treatment-response information necessary for learning is available. Interventions

and vital signs are manually recorded by clinicians with varying frequency. Laboratory

measurements are gathered routinely but on a longer timeframe. Missing clinical measurements

were imputed via last observation carried forward approach to create a complete set of inputs

for risk score generation on a 15 minute timestep basis. These imputed clinical measurements

were utilized to develop the states of the hemodialysis reinforcement learning problem. Any

missing administration rate information from intake/output data was imputed with the last

available rate recorded; these rates were then leveraged to create a discrete set of actions for

the Q-learning algorithm. Thus, the real patient response and clinical intervention may not

always be accurately reflected by the data. In practice, a clinician may intervene not only

using instrument measurements, but the clinical presentation of the patient, which is neither

recorded by the clinician or available to the agent during the learning process. Adequate

clearance of toxins, the second primary goal of dialysis, was not included in the reward

scheme for the agent as personalized clearance goals depend on a complex combination of

factors such as blood flow rate, time on dialysis, and dialyzer type and were not easily

derived from available data. The utilization of estimated dialysis goals, i.e. fluid targets,

instead of the use of real prescribed dialysis parameters is another study limitation, and this

choice was based on limited data availability. Despite the promising results demonstrated

in this section in regard to the use of reinforcement learning to improve clinical outcomes in

hemodialysis setting, any trained reinforcement learning policy would need to be deployed

on hemodialysis patients in a clinical trial to truly support (or reject) its clinical utility.
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5.0 Summary and Outlook

Sepsis is a dysregulated host response to infection; if the syndrome is not properly

managed it can lead to organ failure and death. Despite many clinical trials that aimed to

modulate inflammation and improve clinical outcomes in sepsis patients, none have resulted

in the emergence of a FDA-approved therapy that is currently available. The poor outcomes

observed in clinical trials could be partially attributed to patient heterogeneity in the fight

against infection. A mathematical model was developed that captured interpatient variability

in infection time, magnitude, and speed of the pro- and anti-inflammatory response. Sepsis

endotypes, subtypes of patients that differ in their underlying mechanisms to fight infection,

were identified using a robust clustering method (consensus clustering). These endotypes

differed in their pro- and anti- inflammatory dynamics in response to infection and their

respective organ failure and mortality rates. Machine learning was used to predict patient

membership into high or low mortality endotypes using IL-6 and IL-10 cytokine levels at

study enrollment.

Hemodialysis is a treatment that removes excess fluid and toxic wastes in patients with

kidney failure. IDH commonly occurs during hemodialysis treatment and is associated with

early discontinuation of treatment, cardiovascular events and mortality. Early prediction of

IDH could allow for preemptive administration of treatment and subsequently reduce the

incidence and poor outcomes associated with IDH. A machine learning model that predicted

future IDH risk was trained and tested using featurized EHR data collected from n=276

patients and n=1685 dialysis treatments conducted in acute care facilities at UPMC. The

model provided continuous future IDH risk prediction. An early warning classification system

was developed to assign a patient as high or low IDH risk at dialysis initiation, utilizing the

IDH risk projection from the model.

Reinforcement learning was leveraged to bridge future IDH risk prediction with an

optimized, therapeutic strategy. A finite Markov decision process (MDP) for dialysis over

15-minute time steps was constructed from sequences of patient states, actions, and projected

IDH risk during dialysis treatments. The RL agent solved for the optimal policy of the MDP,
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using projected risk of IDH as feedback for its interventions. The optimal policy provides a

recommended series of interventions to take based on the evolving state of the patient. The

optimal policy was tuned to enhance its clinical utility.

5.0.1 Utility of Developed Clinical Tools

5.0.1.1 Sepsis Endotype Identification and Early Classification Tool

In chapter 2, a model was developed that describes inflammation dynamics using five

parameters. The model was validated against time course IL-6 and IL-10 data available

for n=316 sepsis patients to acquire patient-specific models of inflammation. The sepsis

endotype identification approach developed in chapter 2 accounted for patient variation

in pre-hospital time and inflammation dynamics by clustering fitted model parameters.

This differs from common endotyping approaches that cluster genomic, transcriptomic,

metabolite and plasma protein data collected at a single, variable timepoint during the

patient’s inflammation trajectory. Consensus clustering identified four stable clusters (endotypes)

of patients, and distinct inflammation trajectories were produced using average model parameters

of each cluster. Patients from cluster 1 demonstrated a quick aggressive response to infection,

while patients from cluster 4 required less energy to remove the pathogen and return to a

basal state. The patients of these endotypes experienced lower mortality and organ failure

rate (p<.05) relative to patients in clusters 2 and 3, who demonstrated high and persistent

inflammation. This demonstrates the value of leveraging knowledge of inflammation dynamics

in addition to absolute levels of mediators for patient prognosis. Endotype identification

could be used to identify patients who would or wouldn’t be responsive to a therapy with

specific action. Prediction from the classification tool developed in chapter 2 could be used

by a clinician to develop a treatment regimen that tailors patient outcome. For example, a

clinician may prescribe immunomodulatory agents to a patient predicted with membership

to clusters 2 or 3 that exhibit high, persistent inflammation and worse clinical outcomes.
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5.0.1.2 IDH Risk Prediction Model and Early Warning System for IDH

In chapter 3, a predictive model of future IDH risk was developed by training and testing

a random forest classifier on EHR data collected during hemodialysis treatments performed

at UPMC. When a held out historical stream of EHR data was fed to the model, distinct

separation and evolution of risk between HS and NHS leading up to the IDH event was readily

apparent. The AUC-ROC of the model evolved from .74 two hours from IDH occurrence to

1.0 at the time of IDH. Most existing IDH prediction algorithms lack utility as the end user

(clinician) needs to know when, who and how to act based on the risk continuously generated

by the model. A early warning system was proposed that classified a patient as high or low

risk for future IDH during treatment using risk scores around dialysis initiation and an

optimized risk threshold. Classifier predictions resulted in a TPR=0.80 and a FPR=0.29

using the chosen risk threshold. The classification system could be leveraged by a clinician

to modify dialysis prescription (e.g. modification of dialysate solution, decreasing dialysate

temperature, infusion of hypertonic solutions) in a way that could potentially improve a

patient’s blood pressure stability during hemodialysis.

5.0.1.3 Risk-Based Reinforcement Learning Algorithm for Hemodialysis

The risk model in chapter 3 produced accurate prediction of future IDH risk, however,

the tool alone cannot provide patient-specific dialysis prescription recommendations. In

chapter 4, a reinforcement learning agent was tasked to learn an optimal treatment policy to

decrease incidence of IDH in patients receiving hemodialysis, using projected risk of future

IDH as feedback for its actions. Dialysis trajectories were simulated using the optimal

policy and demonstrated a significant decrease in IDH (5.5% vs. 15.0%) and increase in

achievement of fluid goals (94.6% vs. 64.2 %). Despite this, use of a strictly optimal policy

led to over abuse of aggressive treatments (i.e. vasopressors), limiting its clinical utility.

A policy modification was implemented that decreased aggressive interventions at the cost

of increased actuation of ultrafiltration and a slight increase in incidence of hypotension

(+1.8%) . Nevertheless, the modified policy resulted in a significant reduction in IDH

occurrence (7.3% vs. 15.0%) and increase in fluid goal achievement (93.1% vs. 64.2%) in
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silico. The treatment policy recommends preemptive, personalized dialysis interventions

based on the evolving state of the patient; this tool could be leveraged by a clinician

for treatment decision-making during the dialysis procedure and could potentially improve

clinical outcomes.

5.0.2 Scientific Dissemination

The work throughout this dissertation was presented orally to wide audiences consisting

of clinicians, scientists, and engineers. Dynamic modeling and sepsis subtype identification

work in chapter 2 was presented orally at the Annual American Institute of Chemical

Engineers (AIChE) Meeting in 2019. Risk modeling development and evaluation work

in chapter 3 was orally presented at International Conference on Complex Acute Illness

(ICCAI) 2021: AI in Critical Illness: Emergence and Emergent Issues and is to be published

in Journal of Critical Care as an extended abstract. The risk-based reinforcement learning

algorithm development and evaluation work discussed in chapter 4 was presented orally

at International Conference on Complex Acute Illness (ICCAI) 2022: Impactful AI in

Critical Care and Foundations of Computer Aided Process Operations(FOCAPO)/Chemical

Process Control (CPC) Conference 2023. The work presented at International Conference

on Complex Acute Illness (ICCAI) 2022: Impactful AI in Critical Care is to be published in

Journal of Critical Care as an extended abstract, and the conference paper from Foundations

of Computer Aided Process Operations(FOCAPO)/Chemical Process Control (CPC) Conference

2023 will be published in Computers & Chemical Engineering.

5.0.3 Future Directions

5.0.3.1 Sepsis Endotype Identification and Early Classification Tool

The clinical tool developed in chapter 2 demonstrated skill in predicting patient membership

into high/low mortality endotypes (AUC-ROC=.72, AUC-PR=.71). Additional features

could be derived from the ProCESS dataset to improve class prediction. In chapter 2, four

endotypes were identified by clustering fitted model parameters for n=316 subjects. The
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cohort represents 24% of the total patients enrolled in the ProCESS trial and therefore

other sepsis endotypes may exist. These subjects were leveraged based on full availability

of IL-6 and IL-10 data at 0-, 6-, and 24-hour study time. Modeling of other biomarker

trajectories (e.g. lactate) could be used to identify interpatient differences in inflammation

during sepsis. Altered microcirculation in sepsis leads to decreased tissue perfusion; cells

leverage anaerobic respiration for energy production in the face of inadequate oxygen supply,

resulting in increased production of lactate [116]. Normal clearance of lactate by the liver

may also be impacted in sepsis patients [116, 6]. Hyperlactatemia is associated with mortality

[117, 34]. A mathematical model that accurately captures lactate dynamics in response to

infectious input, validated against patient data available in ProCESS dataset, could be used

to identify additional sepsis subtypes with differing outcomes. Based on limitations in data

availability, using two compartment model subject to an infectious input could be a starting

point to capture the biexponential trajectory of lactate observed in humans following a

controlled acute LPS challenge [75].

5.0.3.2 IDH Risk Prediction Model and Early Warning System for IDH

The Kidney Disease Outcomes Quality Initiative (KDOQI) defines IDH as a decrease in

systolic blood pressure (SBP) ≥ 20 mmHg or a decrease in mean arterial pressure (MAP)

≥ 10 mmHg accompanied by clinical symptoms [122], however, significant variation in IDH

definition exists [2]. For the IDH risk prediction model in chapter 3, drops in blood pressure

were not included in the definition. Furthermore, IDH risk prediction models recently

developed provide higher real-time IDH risk prediction accuracy than the one developed

in chapter 3 [63]. Notable predictive features from these models not leveraged in the current

IDH risk prediction model include statistical features derived from time-varying dialysate

composition, ultrafiltration and blood flow rate [63]. The size of the UPMC cohort is

continuously expanding, and filtered, high-frequency (waveform) data could be leveraged to

develop additional features that may improve prediction accuracy [126]. The risk prediction

framework also should be trained and tested using multiple IDH definitions to evaluate its

utility for different clinical settings.
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IDH is only one form of instability experienced by hemodialysis patients. Another

potential extension of this work is to create a general dialysis instability prediction model

that also encompasses prediction of tachycardia (heart rate ≥ 130 beats/min) and cardiac

arrythmias (e.g. atrial fibrillation). Arrythmias and tachycardia are associated with increased

risk of stroke, heart failure, and death [92, 52, 119]. Results from a recent six-month study

conducted on n=66 outpatient maintenance hemodialysis patients demonstrated clinically

significant arrythmias (CSA) occurred in two-thirds of the population, with an average of

4.5 CSA events per patient per month [92]. Incidence of CSA events significantly increased

risk of cardiovascular hospitalization in this population. The use of sodium variate modeling,

high dialysate calcium, or higher dialysis temperatures significantly increased risk of CSA

event during treatment.

Early united prediction and detection of tachycardia, cardiac arrythmias, and IDH could

allow for preemptive treatment to be administered and subsequently decrease incidence of

poor clinical outcomes associated with these events. A separate machine learning model

could be trained and tested to produce the evolution of future risk of tachycardia, cardiac

arrythmias, and IDH. A risk score triggered early warning system, similar to the one developed

in chapter 3, could be developed to classify a patient as high or low risk for each of events at

dialysis initiation. The clinician could use the risk classification returned by the system to

provide more targeted treatment to the patient. To describe how a total instability prediction

could influence decision making, beta-blockers and antiarrhythmics are classifications of

medications that reduce heart rate and arrythmias, however, there is evidence the latter may

lead to lower risk of blood pressure instability [114, 37, 25, 20]. If a patient was classified

as high-risk for IDH and tachycardia/arrythmias with this system, this may challenge the

administration of beta-blockers.

5.0.3.3 Risk-Based Reinforcement Learning Algorithm for Hemodialysis

A primary extension of the work in chapter 4 is to test the RL agent on an external cohort

of ICU dialysis patients. In chapter 4, EHR information was collected from n=276 patients

and n=1685 treatments performed at University of Pittsburgh Medical Center (UPMC) acute
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care facilities from June 2016-June 2020. Of these treatments, n=558 (33.1%) were ICU-

based treatments. A MDP representation of the dialysis process was derived from patient

data, using predicted IDH risk and achievement of individualized fluid goals as feedback

for its actions. The agent-suggested policy was deployed in silico to evaluate its treatment

efficacy, which resulted in significant reduction in IDH and an increase in accomplishment of

fluid removal goals. As a preliminary investigation, an agent was trained separately on ICU-

based (n=558) and non-ICU based treatments (n=1127) available in the internal UPMC

dataset, producing two distinct agent-derived treatment policies. The policies were deployed

in silico to evaluate treatment efficacy and clinical plausibility.

The dosing behavior of the agent and clinician during ICU and non-ICU based treatments

was assessed by collecting interventions taken at each timestep during treatment. As depicted

in Figure 5.1, both the clinician and agent most frequently made no change in ultrafiltration

rate, followed by increasing and decreasing ultrafiltration rate during non-ICU treatments.

Mannitol was infrequently administered relative to the remaining set of actions taken by the

clinician and agent. Despite these similarities, the agent altered ultrafiltration rate more

routinely than the clinician; ultrafiltration was altered 44.6% and 17.1% of timesteps by the

RL and clinician, respectively.
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Figure 5.1: Clinician vs. Agent Recommended Interventions (NonICU). Action 0: no

intervention, action U: increase ultrafiltrate, action u: decrease ultrafiltrate, action M:

administer albumin or mannitol, P: increase vasopressors

Similarly, both the clinician and agent most frequently made no change in ultrafiltration

rate, followed by increasing and decreasing ultrafiltration rate during ICU treatments (Figure 5.2).

Aggressive treatments (i.e. administration of albumin or mannitol or increasing vasopressor

dose) were infrequently taken relative to the remaining set of actions taken by the RL

agent and clinician. Interestingly, the RL recommended increasing ultrafiltration less for

ICU patients than non-ICU patients (39.05% of timesteps vs. 23.58 % of timesteps) , and

frequency of decreases in ultrafiltration rate were similar (5.98 % of timesteps vs. 5.51% of

timesteps).
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Figure 5.2: Clinician vs. Agent Recommended Interventions (ICU) . Action 0: no

intervention, action U: increase ultrafiltrate, action u: decrease ultrafiltrate, action M:

administer albumin or mannitol, P: increase vasopressors

Dialysis outcomes of the clinician policy and RL policy were compared (Table 5.1). The

agent-derived treatment policy in silico resulted in a significant reduction (p<.0001) in

incidence of IDH and increased achievement of fluid removal goals (p<.0001) in both subgroups.

IDH occurrence was reduced by 34.8% (p<.0001) and 69.6% (p<.0001) in ICU and non-ICU

groups, respectively. Accomplishment of fluid goals was increased by 53.7% (p<.0001) and

42.9% (p<.0001) in ICU and non-ICU groups, respectively.
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Table 5.1: Outcomes of clinician and agent treatment policies for ICU and non-ICU

subpopulations

Treatments (count) IDH (%) Fluid Goals Achieved (%)

RL Treatment Policy (ICU) 25000 11.8 89

Clinician Treatment Policy (ICU) 558 18.1 57.9

RL Treatment Policy (non-ICU) 25000 4.1 95.9

Clinician Treatment Policy (non-ICU) 1127 13.5 67.3

The simulation results demonstrate the RL framework described in chapter 4 improves

both fluid goal achievement and decreases incidence of IDH in silico when an RL agent is

separately trained and tested on ICU and non-ICU based treatments. Although preliminary

results are promising, inter-site differences in dialysis may exist; clinicians may use different

dialysis interventions, and patients may experience different responses to treatment and

exhibit different dialysis outcomes. In future work, the RL framework will be tested using

EHR data from the publicly available Medical Information Mart for Intensive Care (MIMIC)-

IV database. Specifically, a subset of the database contains EHR data for n=1044 patients

and n=2140 ICU-based dialysis treatments conduced at Beth Israel Deaconess Medical

Center (BIDMC) in Boston, MA between 2008-2019 [47]. The database contains elements

necessary to reconstruct a testbed for the RL agent developed chapter 4, including vital signs,

medications, intake and output, laboratory measurements, and clinical notes. A comparison

of demographic and treatment information between the UPMC dialysis cohort and selected

dialysis treatment cohort from Beth Israel Deaconess Medical Center is shown in Table 5.2.
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Table 5.2: Demographics/Treatment Information for Pitt ICU vs. BIDMC ICU Dialysis

Cohorts

Demographics

UPMC ICU (n=261) BIDMC (n=1044)

Age, years [median (IQR)] 63 (52-71) 63 (52-72)

Male [count (%)] 149 (57.1) 627 (60.1)

Admission weight, kg [median (IQR)] 80.3 (68.0-105.0) 79.8 (66.5-94.28)

Race [count (%)]

White 174 (66.7) 575 (55.1)

African-American 57 (21.8) 213 (20.4)

Other 30 (11.5) 256 (24.5)

Hospital length of stay, days [median (IQR)] 15.0 (8.0-29.0) 15.4 (7.9-29.2)

In Hospital Mortality [count(%)] 56 (21.5) 100 (9.7)

Treatment Information

UPMC ICU (n=558) BIDMC (n=2140)

Incidence of IDH [count (%)] 101 (18.1) 730 (34.1)

Mannitol/Albumin Administration [count (%)] 50 (9.0) 38 (1.8)

Vasopressor Support [count (%)] 76 (13.6) 299 (14.0)

BIDMC and UPMC dialysis cohorts are mostly white, male and are similar in age. In

hospital-mortality is higher in the UPMC ICU dialysis patients (21.5% vs. 9.6%), while

IDH incidence is higher in BIDMC ICU-based dialysis treatments (34.1% vs. 18.1%). The

proportion of treatments with administration of mannitol is higher in the UPMC cohort

(9.0% vs. 1.8%), while vasopressor use is similar in both cohorts (13.6% vs. 14.0%)

Two sets of analysis could be engaged with the acquired external dialysis dataset. The

RL policy devised for UPMC ICU patients can be tested on BIDMC patients in silico by first

projecting patient EHR data onto the state space constructed in chapter 4. Initial collected

treatment information from the BIDMC cohort (Table 5.2) indicates that the interventions

used on the BIDMC cohort and UPMC cohort overlap, thus the action set is likely the same.

Dialysis trajectories can be produced by applying the RL treatment policy and producing
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state transitions via a probability transition function constructed from BIDMC patient data.

Achievement of fluid goals and incidence of IDH using the RL policy in silico can be evaluated

against the BIDMC clinician. The RL framework in chapter 4 can also be used to train and

test a new RL policy specific to the BIDMC cohort population.

Adequate clearance of toxins, the second primary goal of dialysis, was not included in the

reward scheme for the agent as personalized clearance goals were not easily derived from the

available data. In practice, Kt/V is used to measure dialysis dose adequacy, where K is the

dialyzer clearance (mL/minute), t is time on dialysis (minutes) and V is the urea distribution

volume (mL). Kt/V is a dimensionless number representing volume of urea cleared during

treatment relative to the urea distribution volume [35]. Single-pool urea kinetic models are

primarily used in dialysis units to estimate Kt/V (also known as SpKt/V ). Current Kidney

Disease Outcomes Quality Initiative (KDOQI) guidelines recommend a target SpKt/V >1.2

for patients with low residual kidney clearance receiving intermittent hemodialysis three

times per week [22]. The single-pool kinetic model can overestimate Kt/V as it assumes

urea is confined to one compartment (pool) of the body and fails to account for the increase in

urea concentration immediately following treatment, known as the urea rebound effect [110].

Two compartment models have been developed to address limitations of the single-pool

kinetic model. In the two-pool kinetic model, the human body is split into an intracellular

compartment and extracellular fluid compartment. The mass and volume balance for this

process is shown in Equation 5.1.

d

dt
(α1V C1) = G+X(C2 − C1)−KC1

d

dt
(α2V C2) = X(C1 − C2)

dV

dt
= Fin(t)− Fout(t)

(5.1)

The total of volume of fluid in the body is V , and α1V and α2V are the fluid volumes

of the extracellular and intracellular compartments of the body distinguished by constants

α1 and α2, respectively. Urea is generated in the extracellular compartment with rate G

and exchanged between the two compartments at a rate proportional to the concentration

difference between two compartments (X(C2 − C1)). Urea is cleared from the extracellular
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compartment at rate K governed by dialyzer clearance with rate Kd and residual renal

clearance Kr (K=Kd+Kr). Change in urea distribution volume (V ) over time is governed

by the rate of fluid administration (Fin) and fluid removal rate (Fout). Some of these model

variables and parameters can be defined based on known physiological values (V , α1, α2,

Fin, Fout, X). Remaining parameters vary on a per treatment basis (e.g. G, Kr,Kd) and

can be determined by fitting the model parameters to time course BUN data via constrained

nonlinear least squares. Significant modifications of this second-order compartment model to

better ground estimation of renal clearance Kr on a individual basis is ongoing work of our

research team [66]. The fully defined two compartment model produces BUN trajectories

over time, and patient-specific dialysis dose adequacy (eKt/V ) can be estimated using the

model [28]. Thus, an additional requirement to receive a reward at terminal timesteps of

dialysis could be if treatment eKt/V > 1.0, where the threshold for eKt/V is set according

to current clinical guidelines [28]. More specific conditional terminal rewards can be designed

and weighted according to clinical importance of clearance, fluid removal goals, and IDH.
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Appendix

Table A.1: Predictive Variables Used in IDH Prediction Model

Category Items Units

Vital Signs

mean arterial pressure (MAP) mmHg

systolic blood pressure (SBP) mmHg

heart rate beats/minute

diastolic blood pressure mmHg

respiratory rate breaths/minute

oxygen saturation %

Featurized Vital Signs

LWMA

Minimum (min)

maximum (max)

wslope

uwslope

coefficient of variation (cv)

Labs

hematocrit %

carbon dioxide mmol/L

basophils %

glucose mg/dL

absolute monocytes count/L

RDW %

chloride mmol/L

absolute eosinophils count/L

absolute basophils count/L

calcium mg/dL
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Table A.1 (continued)

Category Items Units

anion cap mEq/L

mean corpuscular volume fL

absolute lymphocytes count/L

sodium mmol/L

potassium mmol/L

phosphate mg/dL

monocytes %

lymphocytes %

mean platelet volume fL

eosinophils %

mean corpuscular hemoglobin pg

red blood cells count/L

platelets count/L

blood urea nitrogen mg/dL

absolute neutrophils count/L

white blood cells count/L

neutrophils %

MCHC gm/dL

creatinine mg/dL

hemoglobin gm/dL

aspartate aminotransferase IU/L

bilirubin mg/dL

total protein gm/dL

albumin gm/dL

alkaline phosphatase IU/L

alanine transaminase IU/L

international normalized ratio

prothrombin time (PT) sec
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Table A.1 (continued)

Category Items Units

partial thromboplastin time sec

lactate (whole blood) mmol/L

magnesium mg/dL

Medical History

liver disease or dysfunction

heart disease or dysfunction

diabetes

prior incidence of IDH

prior incidence of hypotension
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Continuous renal replacement therapy (crrt) or intermittent hemodialysis (ihd)—what
is the procedure of choice in critically ill patients? Renal failure, 25(5):855–862, 2003.

[34] Amina Godinjak, Selma Jusufovic, Admir Rama, Amer Iglica, Faris Zvizdic, Adis
Kukuljac, Ira Tancica, and Sejla Rozajac. Hyperlactatemia and the importance of
repeated lactate measurements in critically ill patients. Medical Archives, 71(6):404,
2017.

[35] Frank A Gotch and John A Sargent. A mechanistic analysis of the national cooperative
dialysis study (ncds). Kidney international, 28(3):526–534, 1985.

[36] Kathryn S Gray, Dena E Cohen, and Steven M Brunelli. Dialysate temperature of 36
c: Association with clinical outcomes. Journal of Nephrology, 31(1):129–136, 2018.

[37] Jari Halonen, Pertti Loponen, Otso Järvinen, Jari Karjalainen, Ilkka Parviainen, Pirjo
Halonen, Jarkko Magga, Anu Turpeinen, Mikko Hippeläinen, and Juha Hartikainen.
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The value of blood lactate kinetics in critically ill patients: a systematic review.
Critical care, 20(1):1–14, 2016.

[118] H Shaw Warren, Catherine Fitting, Eva Hoff, Minou Adib-Conquy, Laura Beasley-
Topliffe, Brenda Tesini, Xueya Liang, Catherine Valentine, Judith Hellman, and
Douglas Hayden. Resilience to bacterial infection: difference between species could be
due to proteins in serum. The Journal of infectious diseases, 201(2):223–232, 2010.

[119] Hiroshi Watanabe and Tohru Minamino. Atrial fibrillation in patients with end-stage
kidney disease on dialysis. Internal Medicine, pages 0735–17, 2018.

[120] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, 1992.

[121] Marije Wijnberge, Bart F Geerts, Liselotte Hol, Nikki Lemmers, Marijn P Mulder,
Patrick Berge, Jimmy Schenk, Lotte E Terwindt, Markus W Hollmann, and
Alexander P Vlaar. Effect of a machine learning–derived early warning system for
intraoperative hypotension vs standard care on depth and duration of intraoperative
hypotension during elective noncardiac surgery: the hype randomized clinical trial.
Jama, 323(11):1052–1060, 2020.

[122] K DOQI Workgroup. K/doqi clinical practice guidelines for cardiovascular disease in
dialysis patients. Am J Kidney Dis, 45:S1–S153, 2005.

[123] Helen L Wright, Robert J Moots, Roger C Bucknall, and Steven W Edwards.
Neutrophil function in inflammation and inflammatory diseases. Rheumatology,
49(9):1618–1631, 2010.

[124] D. M. Yealy, J. A. Kellum, D. T. Huang, A. E. Barnato, L. A. Weissfeld, F. Pike,
T. Terndrup, H. E. Wang, P. C. Hou, F. LoVecchio, M. R. Filbin, N. I. Shapiro, D. C.
Angus, and Cess Investigators Pro. A randomized trial of protocol-based care for
early septic shock. New England Journal of Medicine, 370(18):1683–1693, 2014.

[125] Hao Hong Yiu, Andrea L Graham, and Robert F Stengel. Dynamics of a cytokine
storm. 2012.

107



[126] JH Yoon, S Malakouti, M Hauskrecht, MR Pinsky, and G Clermont. Machine
Learning Driven Prediction of Hypotension Using Real World Multigranular Data,
pages A5615–A5615. American Thoracic Society, 2022.

[127] Joo Heung Yoon, Vincent Jeanselme, Artur Dubrawski, Marilyn Hravnak, Michael R
Pinsky, and Gilles Clermont. Prediction of hypotension events with physiologic vital
sign signatures in the intensive care unit. Critical Care, 24(1):1–9, 2020.

[128] Joo Heung Yoon, Lidan Mu, Lujie Chen, Artur Dubrawski, Marilyn Hravnak,
Michael R Pinsky, and Gilles Clermont. Predicting tachycardia as a surrogate for
instability in the intensive care unit. Journal of Clinical Monitoring and Computing,
33(6):973–985, 2019.

[129] William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950.

[130] Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement learning in healthcare: A
survey. arXiv preprint arXiv:1908.08796, 2019.

108


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	2.1 Correlation between Principal Components and Model Parameters
	2.2 Mortality and Respiratory Failure Rates for Sepsis Subtypes
	3.1 Patient Demographics
	3.2 Treatment Information
	3.3 Top Features of Random Forest Model as Function of Lead Time
	4.1 Outcomes of optimal treatment policy vs. clinician Policy 
	4.2 Per Treatment Intervention Information for agent policy vs. clinician policy 
	4.3 Outcomes of modified treatment policy vs. clinician policy 
	4.4 Clinical characteristics of ICU and non-ICU based treatment
	4.5 Outcomes of clinician and agent treatment policy for ICU and non-ICU subpopulations
	5.1 Outcomes of clinician and agent treatment policies for ICU and non-ICU subpopulations
	5.2 Demographics/Treatment Information for Pitt ICU vs. BIDMC ICU Dialysis Cohorts
	A.1 Predictive Variables Used in IDH Prediction Model

	List of Figures
	2.1 Empirical cumulative distribution functions for consensus matrices generated from k=2:10 clusters
	2.2 Heatmap visualization of consensus matrix stability for k=4 clusters
	2.3 Heatmap visualization of consensus matrix stability for k=3 clusters
	2.4 Heatmap visualization of consensus matrix stability for k=5 clusters
	2.5 Visualization of k=4 clusters in PCA space
	2.6 Cytokine trajectories generated from mean model parameters of each cluster and model parameter distributions
	2.7 ROC curve (left) and PR Curve (right) for early detection tool
	3.1 Risk model training design and production of risk scores
	3.2 AUC-ROC evolution over time for IDH prediction model
	3.3 Mean relative risk trajectory before event shown for n=84 hypotensive dialysis sessions (dashed line) and n=473 nonhypotensive dialysis sessions (solid line). Shaded gray areas represent 95% confidence interval
	3.4 Mean relative risk evolution beginning 30 minutes prior to start of dialysis shown for n=84 hypotensive dialysis sessions (dashed line) and n=473 nonhypotensive dialysis sessions (solid line). Gray areas represent 95% confidence intervals.
	3.5 Example risk evolution during dialysis session with IDH Event
	3.6 Example risk evolution during dialysis session without IDH Event
	3.7 Early Warning System for IDH
	4.1 Reinforcement learning schematic
	4.2 Value of Reward Over Time as Function of Discount Factor
	4.3 Ranked Feature Importance Curve
	4.4 Eigenvalues and cumulative variance explained by the principal components.
	4.5 Projection of sampled variables on first two principal components
	4.6 Visualization of Risk State in PCA Space
	4.7 Decision tree description of risk state assignment
	4.8 Fluid Removal Over Time and Projected Fluid Goal for Individual Patient
	4.9 Example Simulated Dialysis Trajectories 
	4.10 Clinician vs. Agent Recommended Interventions (optimal policy) 
	4.11 RL Agent intervention frequency per dialysis treatment (optimal policy) 
	4.12 Effect of Bias on Dosing
	4.13 Clinician vs. Agent Recommended Interventions (modified policy) 
	4.14 RL Agent intervention frequency per dialysis treatment (modified policy) 
	4.15 Clinician vs. Agent Recommended Interventions (nonICU)
	4.16 Clinician vs. Agent Recommended Interventions(ICU)
	5.1 Clinician vs. Agent Recommended Interventions (NonICU Trained)
	5.2 Clinician vs. Agent Recommended Interventions (ICU Trained)

	Preface
	1.0 Introduction
	1.0.1 Background and Significance
	1.0.2 Dissertation Overview


	2.0 Identification and Prediction of Sepsis Endotypes
	2.1 Background
	2.2 Methods
	2.2.1 Clinical Cohort
	2.2.2 Dynamical Model of Inflammation and Model Fitting
	2.2.3 Consensus Clustering for Endotype Identification

	2.3 Results
	2.4 Identification of Sepsis Endotypes
	2.5 Early Warning Tool for Prediction Into High/Low Mortality Inflammation Subtypes
	2.6 Discussion

	3.0 Dynamic Risk Modeling of Intradialytic Hypotension
	3.1 Background
	3.2 Methods
	3.2.1 Source Data and Data Processing
	3.2.2 Random Forest Algorithm
	3.2.3 IDH Prediction Model 
	3.2.4 Derivation of Early Warning System for IDH

	3.3 Results
	3.3.1 IDH Prediction Model
	3.3.2 Early Warning System

	3.4 Discussion

	4.0 Risk-Based Reinforcement Learning Algorithm for Hemodialysis
	4.1 Background
	4.2 Methods
	4.2.1 Theoretical Framework
	4.2.1.1 Markov Decision Process
	4.2.1.2 Learning an Optimal Policy Using a Reinforcement Learning Agent
	4.2.1.3 Q-learning Based Closed-Loop Risk Control of Intermittent Hemodialysis 

	4.2.2 MDP States
	4.2.3 MDP Rewards
	4.2.4 MDP Actions
	4.2.5 Offline Q-Learning to Learn Optimal Treatment
	4.2.6 Microsimulations
	4.2.7 Statistical Analysis

	4.3 Results
	4.3.1 Optimal Agent-Suggested Treatment Policy vs. Clinician
	4.3.2 Modified Agent-Suggested Treatment Policy vs. Clinician
	4.3.3 Effect of Agent-Suggested Treatment Policy on Patient Subpopulations
	4.3.3.1 Agent-Suggested Policy on ICU vs. Non-ICU


	4.4 Discussion

	5.0 Summary and Outlook
	5.0.1 Utility of Developed Clinical Tools
	5.0.1.1 Sepsis Endotype Identification and Early Classification Tool
	5.0.1.2 IDH Risk Prediction Model and Early Warning System for IDH
	5.0.1.3 Risk-Based Reinforcement Learning Algorithm for Hemodialysis

	5.0.2 Scientific Dissemination
	5.0.3 Future Directions
	5.0.3.1 Sepsis Endotype Identification and Early Classification Tool
	5.0.3.2 IDH Risk Prediction Model and Early Warning System for IDH
	5.0.3.3 Risk-Based Reinforcement Learning Algorithm for Hemodialysis



	Appendix. 
	Bibliography

