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Mechanistic Insights into Iron-Catalyzed Allenic C—H Functionalization
Philip Nicholas Palermo, MS

University of Pittsburgh, 2023

The mechanism for the iron-catalyzed C—H functionalization of simple monosubstituted
allenes is investigated. In this report, we determined that the mechanism of this transformation
involves a deprotonation causing the organoiron species to transform from a datively bound n?-
allene complex to a neutral n*-propargyliron complex. This iron species acts as a nucleophile for
in-situ generated electrophiles, performing a Se2’ type reaction resulting in a disubstituted allene.
Herein, we additionally discuss the subtle differences in ligand design and the ramifications on

various reaction yields through analysis of electronic properties and x-ray structure.
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1.0 Introduction

Cyclopentadienyl iron species have been a cornerstone of organometallic chemistry since
the discovery of ferrocene.! As Earth’s most abundant transition metal, iron represents a highly
attractive foundation for catalytic transformations. Monocyclopentadienyl iron complexes,
referred to as piano stool or half-sandwich complexes, were conceived of shortly afterwards and
applied towards various stoichiometric transformations®’ and catalytic applications due to its
stability, relative non-toxicity, and its ease of characterization.8! These traits are in part due to
the n°-cyclopentadiene ligand (Cp) and its unique and attractive properties. Cp strongly binds to
the iron center and, as it infrequently slips into n® and 0! configurations, it renders these sites
unavailable for coordination which leads to greater reaction selectivity. The Cp ligand lends itself
to various derivatives through inexpensive starting materials which, when complexated, can
occupy larger portions of the coordination sphere as a spectator ligand while allowing for
modulation of the core by steric and electronic effects.*?%°

It has been observed that modified cyclopentadienyl, organometallic species express
different stereoelectronic properties affected by their respective substituents®*°. These properties
have been taken advantage of in order to improve catalytic viability, affect enantio- and
diastereoselectivity, tune electromagnetic responses, and otherwise stabilize the new
organometallic compound. With five membered rings, the possibilities for symmetric and
asymmetric decoration are vast. Thus, understanding how slight differences in substitution affect
the chemical properties of the Cp ligand can be crucial in predicting which variant may be of use
in a future application. This communication seeks to explore the mechanism of a previously
reported transformation employing a pentamethylated cyclopentadienyl (Cp*) iron complex and
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proposes a hypothesis as to why an alteration to the ligand design Significantly improved reaction

efficiency and yield.

1.1 Previous Work

Previously, our group reported propargylic, allylic?®, and allenic?! 22 C—H functionalization
by employing a cationic pentasubstituted, cyclopentadienyl iron dicarbonyl complex
(CpRFe(CO)?) (Figure 1A). Of particular interest is the catalytic, allenic functionalization as it
represents the synthesis of new sp? C—C bonds from an unreactive C—H bond resulting exclusively
in 1,1-disubstituted allene products. Previous attempts to functionalize monosubstituted allenes
have been reported though the scope was limited to electron deficient species.?® 2* Electronically
neutral allene functionalization via transition metal catalyst have been reported however the scope
is either limited to di- or tri- substituted allenes or, without a directing group, resulted in the 1,3

substituted product with high regioselectivity.?®

n nPr _| +
,,Pr@jnpr BF,

Pr ]

O%c’ o Me., -PG
Me\N/PG Q 20 mol% Ar/HTR
04 + °
RN Ar” “OMe BF3¢Et,0 (2.0 eq) I
(2.0 eq) (1.0 eq) 4-Br-2,6-lutidine (3.0 eq) 30+ examples
toluene, 80°C Yields up to 80%
.
==l
oCc /=%
<7
20 mol%
= N
M‘ + CC’ N COzMe
R N\COZMe Ph;C*BF, (2.2 eq) R
4-Cl-2,6-lutidine (3.0 =*
(1.0 eq) (2.0 q) utidine (3.0 eq) 1
PhCF3, 70°C examples

Yields up to 83%

Figure 1: Synthesis of 1,1-disubstituted allenes using iron half-sandwich catalysts
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Figure 2: Proposed catalytic cycle for allenic C—H functionalization
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The catalytic system we have developed provides mild conditions for the selective
synthesis of 1,1-disubstituted allenes from monosubstituted derivatives. Such products can be
achieved through the proposed catalytic cycle (Figure 1B). The precatalyst undergoes dissociation
of a placeholder tetrahydrofuran (THF) ligand to allow uptake of monosubstituted allene and
formation of an n-iron complex (1) with the n-bonds of the substrate. The proposed complexation
would enhance the acidity of the a-C—H bonds such that proton abstraction could occur in the
presence of weak pyridine bases. The resultant neutral, n-iron complexes (2) could then react with
in-situ generated iminium electrophiles in an Sg2” fashion, generating a n?-iron-1,1disubstituted
allene complex (3). Regeneration of the catalytic iron core occurs through dissociation of the 1,1-

disubstituted allene, followed by uptake of fresh substrate.



2.0 Results

Previous investigations began with synthesis of the proposed n2-iron complex with the
monosubstituted allene. These species were prepared in moderate yield using our groups
precedented procedures with slight modifications from readily prepared iron iodide complexes
discussed in Appendix A. The results afforded yellow to red-orange iron allene complexes which
displayed atmospheric tolerance for up to 24 hours. *H-NMR spectroscopy analysis revealed the
allenyl signals assuming an upfield shift of over 2.40 ppm. Such a dramatic difference alongside

crystallographic data confirmed site exclusive binding by the metal center.

"Pr ® O
”Pr\/@ J’l:l BF4
"Pr” gy "Pr

octco

Figure 3: Crystal structures of compounds 1c ([C23H2s03BrFe]*[BFa4]", top) and 2c¢ ([CssH4s03BrFe]*[BF4],

bottom).
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The allene assumes a bent geometry with a highly distorted C—C—C bond angle between
152.6-149.6° as well as a slightly distorted C—C-H bond angle of 118.1-116.9°. The Cpcenter t0

metal bond length of 1.74 A is consistent with other low spin cyclopentadienyl iron species.?: %’

2.1 Preliminary Mechanistic Experiments

+

1/t (NDas0, __/°
'BF, - S 4-Br-Lutidine —
ArO PhCF5, 80°C ArO
1c then, Nal 3c
Ar = 4-Br-Ph 16% Deuteration

site exclusive

Figure 4: Deuterium exchange experiment

Earlier investigations included a deuterium exchange experiment to determine the site of
the proposed deprotonation step.?* The iron allene complex (1c) was exposed to 4-bromolutidine
in the presence of D™ ((ND4)2SOs4). Analysis of the decomplexated allene showed exclusive
deuterium exchange at the allenic position (16%) (Figure 3). Attempts to isolate the propargyl iron
(2) proved unsuccessful as direct exposure to base led to the formation of a complicated mixture
of iron containing species. Additionally, we attempted to discern the rate determining step of the
catalytic cycle. A primary Kinetic isotope effect was studied using allene f and its isotopologue,
selectively deuterated at the indicated allenic sp?-C position (Figure 4).2? Observations of the initial
rates of the parallel reactions yielded a kn/kp of 3.3. This KIE result supports the proposition of a

proton extraction at the indicated position when following the cycle from intermediates 1 to 3.
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CO;Me Knfky = 3.3
3f PhCFa, 70°C

Figure 5: Primary KIE experiment

2.2 Further Mechanistic Experiments

In order to further support the proposed mechanism and in lieu of isolating the propargylic
iron intermediate, a complimentary KIE experiment was performed using allene 3c and its
terminally D-H exchanged isotopologue 3c-d (Figure 5). These parallel reactions provided yields
which correspond to strong inverse secondary kinetic isotope effect with a kn/kp of 0.63. These
results support our claims as the transformation from the n? to the n' iron complex (1 to 2) would

necessitate a sp? to sp? shift for the terminal carbon atom of the allene.

PhsC*BF
Ho s M(CH,),0Ar [Cp*Fe(CO)thf]* BF,
4-Cl-lutidine N
H and CO,Me
3c
HID__s7 (CH,),0Ar
Des” (CH,),0Ar ©©“\ b
\( CO,Me H/D 4c¢
D 3cd PhCF3, 70°C kn/kg = 0.63

Figure 6: Secondary KIE experiment

The catalyst regeneration step had been previously explored using a monosubstituted allene
and its difunctionalized counterpart.?? This substrate exchange experiment provided preliminary
results which displayed complete allene exchange at 48°C after 3 hours. Due to the instability of
the aforementioned iron-disubstituted allene complex, and in order to observe the initial rate

kinetics of the catalyst regeneration, a model system was implemented using two commercially



available allenes: 3-methyl-1,2-butadiene and cyclohexylallene. The exchange was measured by
'H-NMR spectroscopy at 60°C in CDCIls as lower temperatures afforded drastically slower
exchange rates for the chosen substrates. The initial rate of exchange for both the Cp*Fe(CO). and
Cp"P'Fe(CO), complexes were recorded at various concentrations of allene and iron complex
(Figure 6). The Kkinetic data is consistent with a first order rate with respect to the concentration of

the iron complex.

+ +
(CO)ZI Cp*_l BF, (CO)ZI Cp*_l BF,
o0 + e/ o0
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y

1e 3d 1d
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Figure 7: Initial exchange rates for Cp*Fe(CO)2 1e complex (top) and for Cp"P"Fe(CO)2 2e complex (bottom).

Concentrations are represented as [M][Allene]. Rates calculated for [0.004][0.004]



3.0 Discussion of Ligand Differences

Of note is the markedly faster exchange rate of the Cp"""Fe(CO). (hereby denoted as
Fp***) allene complex (2e) compared to the Fp* iron allene complexes. Investigations into the
differences of these cousin ligands were encouraged by observations of minor to drastically
improved yields for multiple systems previously explored by the group.?" 2% 28 |R data of Fp***
and Fp* compounds with otherwise identical ligands revealed a shift in the carbonyl stretches
averaging around 5 cm™ more downfield for the pentapropylated complex. These differences
suggest less backbonding into the ©* orbital of the carbonyl ligand for Fp*** compoundsand is
consistent with other metal systems known to be more electron deficient.?® % Crystallographic
data provides some insight as well (Table 1). The Cpcente—Fe distance for Fp*** is marginally
shorter, consistent with low-spin, electron deficient systems. Additionally, the allene C—C—-C bond
angle deviates between the selected structures with the Fp*** having a less severely bent (152.6°)
conformation compared to the Fp* (149.6°) as well as the C—C—H bond angle distorting in a similar
way (Fp*** 116.9°) (Fp* 118.1°). The distance between the terminal carbon and the iron center
was found to elongate as well when comparing the Fp* (2.134A) to the Fp*** (2.149A). We
hypothesize that the orbital overlap of the n-propyl groups, according to the configuration they
maintain in the crystal structure, is less intense than that of methyl groups leading to less electron
density in the ring. This Fp*** system thus binds to the allene with adequate strength such that

monosubstituted allenes do not readily displace, but disubstituted allenes do.



® O "Pr ® O
ﬁ \/ BF, ”Prﬁ "Pr ! BF,
OC"j_e_‘.CQ nP(r)C"ji‘.chPr
. .
le o@—sr 2e o@—sr
Figure 8: Selected iron half-sandwich structures

Table 1: Selected bond angles (°) and distances (A) of the experimental structures of 1c and 2c

1c 2C
C—-C—Callene 149.6 152.6
C—-C—-Haiiene 118.1 116.9
Fe—Cpcenter 1.74 1.73
Fe-C 2.13 2.15



4.0 Conclusion

The mechanism for this iron-catalyzed, functionalization of allenic C(sp?)-H bonds has
been thoroughly analyzed. The transformation occurs through a proton abstraction exclusively at
the allenic position leading to the organoiron species shifting from a cationic, n-bound allene
configuration to a neutral, n*-propargylic complex. This can then act as a nucleophile for in-situ
generated electrophiles, performing a Sg2’ reaction followed by a dissociative catalyst
regeneration. We have also discussed how the subtle differences in ligand choice led to improved
conditions by way of slight alterations to the electronics of the system. This communication should

prove valuable to any future applications of this chemistry.
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5.0 Experimental

5.1 General Information

General reagent information: Anhydrous toluene, dichloromethane, hexanes,
tetrahydrofuran, and o,a,o-trifluorotoluene were purchased from Acros (AcroSeal packaging),
Sigma Aldrich (Sure/Seal packaging), and Frontier Scientific (J&KSeal packaging), respectively,
and were transferred into an argon-filled glovebox and used as received. Other dry solvents were
obtained by distillation and storage over 3A or 4A molecular sieves. Triphenylcarbenium
tetrafluoroborate (PhsC*BF) was purchased from Sigma Aldrich and stored in an argon-filled
glove box. All other reagents were purchased from Oakwood, Acros, Alfa Aesar, or Sigma Aldrich
and used as received. Compounds were purified by flash column chromatography using SiliCycle
SiliaFlash® F60 silica gel, unless otherwise indicated.

General analytical information: New compounds were characterized by *H NMR, *3C
NMR, HRMS and, where appropriate, other analytical techniques as indicated. Copies of the *H
NMR and 3C NMR spectra can be found at the end of the Supporting Information. *H, ?H, *3C,
and °F NMR spectra were recorded on Bruker400 MHz or 500 MHz instruments. All *H NMR
data are reported in d units, parts per million (ppm), and were measured relative to the residual
proton signal in the deuterated solvent at 7.26 ppm (CDCIs) or 5.32 ppm (CD2Cly). All **C NMR
spectra are *H decoupled and reported in ppm relative to the solvent signal at 77.16 ppm (CDCls)
or 53.84 ppm (CD2Cl). Thin-layer chromatography (TLC) was performed on Silicycle 250 pm
(analytical) or 1000 um (preparative) silica gel plates. Compounds were visualized by irradiation

with UV light, or by staining with potassium permanganate or cerium molybdate stain (Hanessian's
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stain). Yields refer to isolated compounds, unless otherwise indicated. High resolution mass
spectra were recorded on a Thermo Scientific Q-Exactive mass spectrometer. NMR yield was
determined by using 2,4-dinitrotolueneas internal standard for *H spectroscopy and using CD2Cl;
as the reference for 2H spectroscopy. IR spectra were recorded on a PerkinElmer Spectrum Two

FT-IR Spectrometer and are reported in terms of frequency of absorption (cm™).

5.2 Synthesis of organometallic compounds

Me 1) Fe(CO)s (1.0 equiv) Me
Me p-xylenes (0.2M), 140°C MeﬁMe
Me 2) 1, (0.5 equiv) "~ Me” Fe Me
Me DCM. 25°C Sleghielel
Me
1.5 equiv 1a

Figure 9: Synthesis of 1a

To a 100ml round bottom flask equipped with a Teflon coated magnetic stir bar, iron
pentacarbonyl (0) (2.69 ml, 20 mmol, 2.0 equiv) and 1,2,3,4,5 pentamethylcyclopentadiene (1.56
ml, 10 mmol, 1.0 equiv) were dissolved in p-xylenes (20 ml) and set to stir at 140°C for 24 hours.
The reaction was allowed to cool to room temperature and the solvent was removed in vacuo. The
reaction mixture was then dissolved in DCM and filtered over celite to remove insoluble material.
The filter cake was washed until the solvent ran clear and the resultant filtrate was concentrated
down until about 20 ml of it remained. lodine (1.27 g, 5 mmol, 0.5 equiv) was added to the solution
at room temperature and allowed to stir in the dark for 3 hours. The reaction mixture was quenched
with aqueous sodium sulfite solution and extracted twice with DCM. The extract was washed with
brine and dried over MgSOs. The product was recrystallized from a black oil to afford a shiny
black solid 1a (2.412 g, 65% yield).

12



IHNMR (400 MHz, CD2Cl) & 1.98
FTIR (cmt) 2001.99 (CO), 1948.50 (CO)

HRMS (ESI) calcd for C22HssFelO2 [M+H]": 373.94607, found 373.94477

Cp*Fe(CO),l (1.0 ®
p*Fe(CO),l equiv) _| BF4
:.:\_\ AgBF,4 (1.05 equiv)
o@—sr PhMe, 25°C oc? el
3c 4\_\
(1.3 equiv)

Figure 10: Synthesis of 1c

Under an argon atmosphere, 1-bromo-4-(penta-3,4-dien-1-yloxy)benzene 3c (179 mg, 0.75
mmol, 1.5 equiv) was added to a reaction tube (13 mm x 100 mm, Fisherbrand, part # 14-959-
35C) charged with Cp*Fe(CO).l (188 mg, 0.5mmol, 1.0 equiv), AgBF4 (97 mg, 0.51 mmol, 1.05
equiv) and a Teflon-coated magnetic stir bar. The mixture was then suspended in 0.1ml of dry
toluene and set to stir at room temperature, in the dark, for 6 hours. The reaction mixture was then
diluted with n-hexanes and filtered over Celite. The filter cake was generously washed with excess
n-hexanes. The filter cake was then rinsed with dry dichloromethane until the filtrate ran colorless.
The filtrate was then concentrated in vacuo resulting in an orange solid. (249 mg, 85% vyield)

IHNMR (400 MHz, CDCl3) & 7.40 (d, 2H), 6.78 (d, 2H), 6.04 (br, 1H), 4.18 (br, 2H), 2.95
(br, 2H), 2.60 (br, 2H), 1.91 (s, 15H)

FTIR (cm™) 2051.50 (CO), 2026.67 (CO)

Cp*Fe(CO),l (1.0 e ®

p*Fe(CO),l (1.0 equiv) N BF4
AgBF, (1.05 equiv)

:.:\

Cy PhMe, 25°C

(2.0 equiv) _°_\Cy
1d

Figure 11: Synthesis of 1d
13



Under an argon atmosphere, cyclohexylallene (156ul, 1.08mmol, 2.0 equiv) was added to
a reaction tube (13 mm x 100 mm, Fisherbrand, part # 14-959-35C) charged with Cp*Fe(CO)al
(200 mg, 0.54 mmol, 1.0 equiv), AgBF4 (110 mg, 0.57 mmol, 1.05 equiv) and a Teflon-coated
magnetic stir bar. The mixture was then suspended in 0.5ml of dry toluene and set to stir at room
temperature, in the dark, for 4 hours. The reaction mixture was then diluted with n-hexanes and
filtered over Celite. The filter cake was generously washed with excess n-hexanes. The filter cake
was then rinsed with dry dichloromethane until the filtrate ran colorless. The filtrate was then
concentrated in vacuo resulting in a tan-yellow solid 1d. (163 mg, 82% vyield)

IHNMR (400 MHz, CD2Clz) & 5.90 (s, 1H), 2.55 (s, 2H), 2.38 (br, 1H), 1.88 (s, 15H), 1.79
(m, 2H), 1.70 (m, 2H), 1.28 (m, 6H)

¥ENMR (376MHz, CD,Cly) & -152.6

BBCNMR (125MHz, CD2Cl,) § 210.98, 155.62, 124.85, 103.60, 43.51, 32.70, 25.96, 25.91,
22.51,9.20

FTIR (cm™) 2049.19 (CO), 2014.03 (CO)

HRMS (ESI) calcd for CarHaoFeO2 [M-BF4]*: 369.15115, found 369.15094

Cp*Fe(CO),l (1.0 equiv) ®
p*Fe(CO),! (1.0 eq N BF4
AgBF4 (1.05 equiv)
i PhMe, 25°C oce °CcO
(4.0 equiv) ==

1e

Figure 12: Synthesis of 1e

Under an argon atmosphere, 3-methyl-1,2 butadiene (210 pl, 2.16 mmol, 4.0 equiv) was
added to a reaction tube (13 mm x 100 mm, Fisherbrand, part # 14-959-35C) charged with

Cp*Fe(CO)2l (200 mg, 0.54 mmol, 1.0 equiv), AgBFs (110 mg, 0.57 mmol, 1.05 equiv) and a

14



Teflon-coated magnetic stir bar. The mixture was then suspended in 0.5ml of dry toluene and set
to stir at room temperature, in the dark, for 4 hours. The reaction mixture was then diluted with n-
hexanes and filtered over Celite. The filter cake was generously washed with excess n-hexanes.
The filter cake was then rinsed with dry dichloromethane until the filtrate ran colorless. The filtrate
was then concentrated in vacuo resulting in a red-orange solid 1e. (165 mg, 76% yield)
IHNMR (400 MHz, CD2Cly) & 2.36 (s, 2H), 2.24 (br, 3H), 2.12 (br, 3H), 1.91 (s, 15H)
ENMR (376MHz, CD,Cl,) § -150.93, -150.98
BBCNMR (125MHz, CD,Cly) § 210.67, 151.16, 122.56, 104.17, 97.74, 30.53, 23.36, 9.51
FTIR (cm™) 2058.33 (CO), 2016.90 (CO)

HRMS (ESI) calcd for Ci7HzsFeO2 [M-BF4]*: 315.10420, found: 315.10345

- P e T 1)Fe(CO)s (1.0 equiv) "Pr
r ) r p-xylenes (0.2M), 140°C Pr "Pr
Pr + — !
> - 2) 1, (0.5 equiv) "F’(")C,Fle\(:"(';r
r r °
npr nor DCM, 25°C |
combined (1.5 equiv) 2a

Figure 13: Synthesis of 2a

To a 100ml round bottom flask equipped with a Teflon coated magnetic stir bar, iron
pentacarbonyl (0) (0.55 ml, 4 mmol, 1.0 equiv) and 1,2,3,4,5 pentapropylcyclopentadiene (1.66 g,
6 mmol, 1.5 equiv) were dissolved in p-xylenes (20 ml) and set to stir at 140°C for 24 hours. The
reaction was allowed to cool to room temperature and the solvent was removed in vacuo. The
reaction mixture was then dissolved in DCM and filtered over celite to remove insoluble material.
The filter cake was washed until the solvent ran clear and the resultant filtrate was concentrated
down until about 20 ml of it remained. lodine (508 mg, 2 mmol, 0.5 equiv) was added to the
solution at room temperature and allowed to stir in the dark for 3 hours. The reaction mixture was

quenched with aqueous sodium sulfite solution and extracted twice with DCM. The extract was
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washed with brine and dried over MgSO4. Column chromatography (SiO2, hexanes/ethyl acetate,
40:1) afforded the shiny black solid 2a (861 mg, 42% vyield).

IHNMR (400 MHz, CD2Cly) & 2.26 (m, 10H), 1.49 (m, 10H), 1.01 (t, 15H).

FTIR (cm™) 2012.20 (CO), 1965.19 (CO)

HRMS (ESI) calcd for C22HssFelO2 [M+H]": 514.10257, found 514.10278

Cp***Fe(CO),l (1.0 equiv) |, "Pr ® o

, Pr "Pr BF,4
AgBF, (1.05 equiv)

npr F npr

jj : o,
o@—sr PhMe, 25°C oc’1"co
3c 2c 4\_\
(3.0 equiv) OOBr

Figure 14: Synthesis of 2c

Under an argon atmosphere, 1-bromo-4-(penta-3,4-dien-1-yloxy)benzene 3c (62 mg, 0.26
mmol, 1.3 equiv) was added to a reaction tube (13 mm x 100 mm, Fisherbrand, part # 14-959-
35C) charged with Cp***Fe(CO)2l (102mg, 0.2mmol, 1.0 equiv), AgBF4 (40 mg, 0.21 mmol, 1.05
equiv) and a Teflon-coated magnetic stir bar. The mixture was then suspended in 0.1ml of dry
toluene and set to stir at room temperature, in the dark, for 2 hours. The reaction mixture was then
diluted with n-hexanes and filtered over Celite. The filter cake was generously washed with excess
n-hexanes. The filter cake was then rinsed with dry dichloromethane until the filtrate ran colorless.
The filtrate was then concentrated in vacuo resulting in a tan-yellow solid. (78 mg, 54% yield)

'HNMR (400 MHz, CD,Cl») § 7.39 (2H), 6.83 (2H), 6.09 (1H), 4.19 (2H), 2.93 (2H), 2.71
(2H), 2.20 (10H), 1.51 (10H), 1.06 (15H)

YENMR (376MHz, CDCl,) 6 -150.19

BBCNMR (126 MHz, CD,Cl2) § 210.19, 157.89, 157.59, 132.52, 117.03, 116.36, 107.22,

102.07, 66.91, 35.57, 26.95, 24.23, 23.02, 14.73
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FTIR (cm!) 2064.33 (CO), 2010.03 (CO)

HRMS (ESI) calcd for CasHagFeBrOs [M-BF4]*: 625.19743, found 625.19726

*%kk . nPr @ @
Cp*Fe(CO),! (1.0 equiv) 5 ”I:l -
AgBF, (1.05 equiv)
I = "Pr” g "Pr
Cy PhMe, 25°C oc’ I co
(2.0 equiv) _'_\C
2d y

Figure 15: Synthesis of 2d

Under an argon atmosphere, cyclohexylallene (32 pl, 0.2 mmol, 2.0 equiv) was added to a
reaction tube (13 mm x 100 mm, Fisherbrand, part # 14-959-35C) charged with Cp***Fe(CO)2l
(51mg, 0.1mmol, 1.0 equiv), AgBFs (110 mg, 0.57 mmol, 1.05 equiv) and a Teflon-coated
magnetic stir bar. The mixture was then suspended in 0.1ml of dry toluene and set to stir at room
temperature, in the dark, for 4 hours. The reaction mixture was then diluted with n-hexanes and
filtered over Celite. The filter cake was generously washed with excess n-hexanes. The filter cake
was then rinsed with dry dichloromethane until the filtrate ran colorless. The filtrate was then
concentrated in vacuo resulting in a tan-yellow solid. (33 mg, 53% yield)

IHNMR (400 MHz, CD,Cly) & 5.89 (dt, 1H), 2.64 (dd, 2H), 2.16 (m, 10H), 1.87 (m, 2H),
1.77 (m, 2H), 1.68 (m, 1H), 1.51 (m, 10H), 1.33 (M, 2H), 1.22 (m, 4H), 1.08 (t, 15H)

¥ENMR (376MHz, CD,Cly) § -152.20

BBCNMR (101MHz, CD.Cly) & 210.44, 154.98, 124.94, 106.73, 106.73, 43.51, 32.50,
26.96, 25.88, 24.17, 23.20, 14.72.

FTIR (cm™) 2053.51 (CO), 2018.56 (CO)

HRMS (ESI) calcd for CaiHagFeO2 [M-BF4]*: 509.30765, found 509.30601

17



Cp™"Fe(CO)! (10 equiv) oo ,P" o0 [© 3

i npr BF4
i AgBF,4 (1.05 equiv)
e t

npr Fe "Pr
PhMe, 25°C OC’_;_‘CO
e
(4.0 equiv)
2e

Figure 16: Synthesis of 1le

Under an argon atmosphere, 3-methyl-1,2 butadiene (39ul, 0.4mmol, 4.0 equiv) was added
to a reaction tube (13 mm x 100 mm, Fisherbrand, part # 14-959-35C) charged with
Cp***Fe(CO)2l (51mg, 0.1mmol, 1.0 equiv), AgBF4 (23mg, 0.57mmol, 1.05 equiv) and a Teflon-
coated magnetic stir bar. The mixture was then suspended in 0.1ml of dry toluene and set to stir at
room temperature, in the dark, for 1 hour. The reaction mixture was then diluted with n-hexanes
and filtered over Celite. The filter cake was generously washed with excess n-hexanes. The filter
cake was then rinsed with dry dichloromethane until the filtrate ran colorless. The filtrate was then
concentrated in vacuo. The solid was then washed with a 5ml solution of 5%DCM in toluene to
remove leftover iron iodide. This resulted in a pale orange solid. (31 mg, 59% yield)

HNMR (400 MHz, CD2Cly) & 2.12 (s, 2H), 2.09 (m, 10H), 1.60 (s, 3H), 1.49 (m, 13H),
1.03 (t, 15H)

YENMR (376MHz, CD,Cly) & -148.73, -150.97

13CNMR: Compound proved to be too unstable to measure by *CNMR

FTIR (cm™) 2062.80 (CO), 2027.64 (CO)

HRMS (ESI) calcd for C27Ha3FeO2 [M-BF47]": 455.26070, found 455.25995
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5.3 Synthesis of organic compounds

DIAD (1.0 equiv)

/@/Br __Z _PPhs(10equy) /©/Bf
Ho * HO PhMe (0.5M), 70°C \Ao

(1.5 equiv)

Figure 17: Synthesis of precursor to 3c

To a 250 ml round bottom flask equipped with a Teflon-coated magnetic stir bar, 4-
bromophenol (3.460 g, 20 mmol, 1.0 equiv), triphenylphosphine (5.240 g, 20 mmol, 1.0 equiv),
and 3-butyn-1-ol (1.51 ml, 22 mmol, 1.1 equiv) were dissolved in toluene (20 ml) and cooled to
0°C. Diisopropyl azodicarboxylate (DIAD) (4.041 g, 20 mmol, 1.0 equiv) was added dropwise to
the stirring solution. The reaction was then heated to 70°C for 3.5 hours. The mixture was allowed
to cool to room temperature before being diluted with hexanes (40 ml) and filtered through a pad
of celite. This process was repeated two additional times. The solvent removed in vacuo and the
crude product was purified via flash chromatography (SiO., hexanes/ethyl acetate 40:1) to yield
the alkyne as a colorless oil (1.940 g, 43% yield).

'HNMR (400 MHz, CDCl3) § 7.36 (m, 2H), 6.78 (m, 2H), 5.21 (t, 1H), 4.00 (t, 2H), 2.48

(9, 2H)

HRMS (ESI) calcd for C10H9BrO [M+H]": 224.99095, found 224.99086

Br Cul (0.5 equiv) Br
\/\o . )O]\ iPr,NH (1.8 equiv) P

H~ >y 1/4-dioxane (0.5M), 101°C =

(2.5 equiv) 3c
Figure 18: Synthesis of 3c

To a 100 ml round bottom flask equipped with a Teflon-coated magnetic stir bar, copper

iodide (336 mg, 1.75 mmol, 0.5 equiv) and paraformaldehyde (265 mg, 8.75 mmol, 2.5 equiv)
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were added and placed under a N> atmosphere. The solids were submerged in 1,4-dioxane (17.5
ml) and alkyne (790 mg, 3.5 mmol, 1.0 equiv) was added via syringe and the mixture was stirred.
Diisopropylamine (0.88 ml, 6.3 mmol, 1.8 equiv) was added dropwise to the stirring solution. The
mixture was then heated to 110°C and stirred for 4 hours. The reaction was allowed to cool to room
temperature before being quenched with water (20 ml) and then filtered through celite. The
aqueous layer was extracted with ethyl acetate (2x20 ml) and the combined organic layers were
washed with brine and dried over MgSOs. Solvent was removed in vacuo and the crude product
was purified via flash chromatography (SiO2, hexanes/ethyl acetate 50:1) to yield 3c as a yellow
oil (394 mg, 47% yield).

IHNMR (400 MHz, CDCl3) § 7.36 (m, 2H), 6.78 (m, 2H), 5.20 (p, 1H), 4.73 (m, 2H), 4.00
(t, 2H), 2.48 (m, 2H)

HRMS (ESI) calcd for C1aH11BrO [M+H]*: 239.0066, found 239.0071

Br Cul (0.5 equiv) Br
\/\O . O iProNH (1.8 equiv) .N\o

D)J\D 1,4-dioxane (0.5M), 101°C D\’%

(2.0 equiv) D 3c-d
Figure 19: Synthesis of 3c-d
To a 100 ml round bottom flask equipped with a Teflon-coated magnetic stir bar, copper
iodide (275 mg, 1.5 mmol, 0.5 equiv) and paraformaldehyde-d> (187 mg, 5.8 mmol, 2.0 equiv)
were added and placed under a N2 atmosphere. The solids were submerged in 1,4-dioxane (15 ml)
and alkyne (655 mg, 2.9 mmol, 1.0 equiv) was added via syringe and the mixture was stirred.
Diisopropylamine (0.728 ml, 5.2 mmol, 1.8 equiv) was added dropwise to the stirring solution.
The mixture was then heated to 110°C and stirred for 4 hours. The reaction was allowed to cool to

room temperature before being quenched with water (20 ml) and then filtered through celite. The
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aqueous layer was extracted with ethyl acetate (2x20 ml) and the combined organic layers were
washed with brine and dried over MgSOs. Solvent was removed in vacuo and the crude product
was purified via flash chromatography (SiO2, hexanes/ethyl acetate 50:1) to yield 3c-d as a yellow
oil (394 mg, 40% yield).
HNMR (400 MHz, CDCl3) § 7.36 (d, 2H), 6.78 (d, 2H), 5.21 (t, 1H), 4.00 (t, 2H), 2.48 (q,
2H)
2HNMR (61.44 MHz, CH,Cly) § 4.71
BCNMR (100MHz, CD,Clz) & 209.13, 158.24, 132.28 (s, 2C), 116.49 (s, 2C), 112.70,
86.30, 74.64 (p, 1C), 67.55, 28.32
HRMS (ESI) calcd for C11H9D2BrO [M+H]*: 241.01916, found 241.01973
Br .
Cp***Fe(CO),thf (20mol%) Si(iPr)s
/@/ @ LiNtf, (1.5 equiv) © /@/Br
TIPSOtf (3.0 equiv) X (@]
4-Cl-Lutidine (5.0 equiv) =~
(1.0 equiv) (2.0 equiv) DCE (0.3ml) 5c

Figure 20: Synthesis of 5¢

In an argon filled glovebox, aldehyde (73.2 mg, 0.4 mmol, 2.0 equiv) was combined with
lithium bistriflimide (86.2 mg, 0.3 mmol, 1.5 equiv), iron catalyst (21.8 mg, 0.04 mmol, 0.2 equiv),
triisopropylsilyl trifluoromethanesulfonate (160 pl, 0.6 mmol, 3.0 equiv), allene, (47.8 mg, 0.2
mmol, 1.0 equiv), and 4-Cl-lutidine (130 pl, 1.0 mmol, 5.0 equiv) in a reaction tube (13 mm x 100
mm, Fisherbrand, part # 14-959-35C) and submerged in dichloroethane (0.3 ml). The tube was
capped and removed from the glovebox. The vessel was moved to an oil bath preheated to 80°C.
After 1 hour had eclipsed the reaction was taken off of heat and purified via flash chromatography

(Si02, hexanes/ethyl acetate, 20:1), resulting in a colorless oil 5¢ (90.2 mg, 78% yield).
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IHNMR (400 MHz, CDCl3) § 7.40 (m, 2H), 7.24 (m, 4H), 6.60 (m, 2H), 5.39 (s, 1H), 4.82
(m, 2H), 3.82 (dtd, 2H), 2.40 (dddd, 1H), 2.06 (dddd, 1H), 1.09 (m, 3H), 1.00 (d, 18H)

HRMS (ESI) calcd for Ca7H36Br2SiO, [M+H]*: 579.09241, found 579.09184

5.4 Kinetic exchange experiments

5.4.1 Complete Exchange

= 1 = 1

(CO)ZII:eCp BF, (CO)ZIIZeCp BF,
T—e + —e— T—e
< % CDCl, <
y
xe 3d xd

Figure 21: Model system for ligand exchange

In an argon-filled glovebox, le (8.0 mg, 20 umol, 1.0 equiv) was added to an NMR tube
and dissolved in CDCI3 (0.5 mL). Then allene 3d (2.89 pl, 20 pmol, 1.0 equiv) was added to the
above solution. The NMR tube was capped and sealed with parafilm. Then the NMR tube was
placed under dark, and the reaction was monitored by 1H NMR using 2,4-dinitrotoluene as internal

standard at 75°C. The exchange was complete after 1.5 hours.

In an argon-filled glovebox, 2e (11 mg, 20 umol, 1.0 equiv) was added to an NMR tube
and dissolved in CDCI3 (0.5 mL). Then allene 3d (2.86 ul, 20 umol, 1.0 equiv) was added to the
above solution. The NMR tube was capped and sealed with parafilm. Then the NMR tube was
placed under dark, and the reaction was monitored by 1H NMR using 2,4-dinitrotoluene as internal

standard at 75°C. The exchange was complete after 1 hour.
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Figure 22: Complete exchange of model system

5.4.2 Initial Kinetics

In an argon-filled glovebox, 1e (8 mg, 20 umol, 1.0 equiv) was added to an NMR tube and
dissolved in CDCI3 (0.5 mL). Then, allene 3d (2.86 pl, 20 umol, 1.0 equiv) was added to the above
solution. The NMR tube was capped and sealed with parafilm. Then the NMR tube was placed
under dark, and the reaction was monitored by 1H NMR using 2,4-dinitrotoluene as internal
standard at 60°C. Spectra were collected once every 20 seconds for one hour.

In an argon-filled glovebox, 2e (11 mg, 20 umol, 1.0 equiv) was added to an NMR tube
and dissolved in CDCI3 (0.5 mL). Then, allene 3d (2.86 ul, 20 umol, 1.0 equiv) was added to the
above solution. The NMR tube was capped and sealed with parafilm. Then the NMR tube was
placed under dark, and the reaction was monitored by 1H NMR using 2,4-dinitrotoluene as internal

standard at 60°C. Spectra were collected once every 20 seconds for one hour.
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5.5 Secondary inverse KIE experiment

Ph3;C*BF, (2.2 equiv)
[Cp*Fe(CO),thf]* BF, (20mol%)

/
x\(./\(CHZ)ZOAr ©© 4-Cl-lutidine (3.0 equiv) N\Cone
+
X N~co,Me PhCF, 70°C

1.0 equiv 2.0 equiv X

Figure 23: Synthesis of 4c

In an argon filled glovebox, tetrahydroisoquinoline (38.2 ml, 0.2 mmol, 2.0 equiv) was
combined with tritylium tetrafluoroborate (72.6 mg, 0.22 mmol, 2.2 equiv) in a reaction tube (13
mm x 100 mm, Fisherbrand, part # 14-959-35C) and submerged in trifluorotoluene (0.2 ml). The
tube was capped and set to stir under an argon atmosphere. After 3 hours of stirring, allene (3c)
(0.1 mmol, 1.0 equiv) was introduced followed by iron catalyst (8.1 mg, 0.02 mmol, 0.2 equiv)
and finally 4-Cl-lutidine (38.2 pl, 0.3 mmol, 3.0 equiv). The reaction vessel was capped and moved
to an oil bath preheated to 70°C. After 1 hour had eclipsed the reaction was taken off of heat and

purified via flash chromatography (SiO., hexanes/acetone, 9:1).

IHNMR (400 MHz, CDCl3) & 7.37 (m, 2H), 7.16 (m, 4H), 6.79 (m, 2H), 5.74 (br, 1H), 4.65
(m, 2H), 4.08 (t, 1H), 3.77 (d, 3H), 3.42 (br, 1H), 2.89 (br, 1H), 2.80 (dt, 1H), 2.53 (br, 1H)

HRMS (ESI) calcd for C22H22BrNO3s [M+H]*: 428.08558, found 428.08559
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IHNMR (400 MHz, CDCls)  7.36 (m, 2H), 7.13 (m, 4H), 6.77 (m, 2H), 5.72 (br, 1H), 4.05
(t, 2.5H), 3.37 (s, 3.5H), 3.40 (br, 1H), 2.91 (br, 1H), 2.79 (dt, 1H), 2.50 (br, 1H)
2HNMR (61.44 MHz, CH,Cl) 5 4.58

HRMS (ESI) calcd for C22H20D2BrNOs [M+H]*: 430.09868, found 430.09784
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Appendix A : NMR Spectra
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Appendix B : X-Ray Data

® O
BF,

OC';?%j
Te OOBr

Datablock: Palermo2a_a

Bond precision: C-C = 0.0044 A Wavelength=1.54178
Cell: a=8.2960(4) b=16.2677(8) c=8.8173(4)
alpha=90 beta=90.059(2) gamma=90
Temperature: 150 K
Calculated Reported
Volume 1189.95(10) 1189.95(10)
Space group P 21 P 21
Hall group P 2yb P 2yb
Moiety formula C23 H26 Br Fe 03, B F4 ?
Sum formula C23 H26 B Br F4 Fe 03 C23 HZ6 B Br F4 Fe 03
Mr 573.00 573.01
Dx,g cm-3 1.599 1.599
Z 2 2
Mu (mm-1) 7.535 7.535
F000 580.0 580.0
F000’ 578.11
h, k, lmax 9,19,10 9,19,10
Nref 4373[ 2269] 4107
Tmin, Tmax 0.731,0.942 0.500,0.750
Tmin’ 0.265

Correction method= # Reported T Limits: Tmin=0.500 Tmax=0.750
AbsCorr = MULTI-SCAN

Data completeness= 1.81/0.94 Theta (max)= 68.296
R(reflections)= 0.0205( 3973) wR2 (reflections)= 0.0571( 4107)
5 = 0.640 Npar= 315
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Pr
pPr

nPr F'e n

oc’ I co
= o

® o
rpr | BF,

Pr

Datablock: palermo25_0m_a

Bond precision:

Cell:

Temperature:

Volume
Space group
Hall group
Moiety formula
Sum formula
Mr

Dx,g cm-3

Z

Mu (mm-1)
F000

FO00"

h,k, lmax
Nref

Tmin, Tmax
Tmin’

Correction method= # Reported T Limits:

C-C = 0.0066 A
a=12.0793(3)
alpha=65.325(2)
100 K

Calculated

1725.71(8)

P -1

-P 1

C33 H46 Br Fe 03, B F4
C33 H46 B Br F4 Fe 03
713.26

1.373

2

5.301

740.0

738.44

14,14,16

6348

0.974,0.974

0.974

AbsCorr = MULTI-SCAN

Data completeness= 0.975

R(reflections)= 0.0531(

5 =1.038

4939)

Npar= 393

40

b=12.1237(3)
beta=81.066(2)

Wavelength=1.54178

c=14.0632(3)
gamma=67.243(2)

Reported

1725.71(8)

P -1

-P 1

C33 H46 Br Fe 03, B F4
C34 H49 B Br F4 Fe 03
728.30

1.402

2

5.31z2

758.0

14,14,16
6189
0.439,0.753

Tmin=0.439 Tmax=0.753

Theta(max)= 68.419

wRZ2 (reflections)=
0.1429( 6189)
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