PostNewtonian gravitational dynamics from effective field theory
Pardo, Brian
(2023)
PostNewtonian gravitational dynamics from effective field theory.
Doctoral Dissertation, University of Pittsburgh.
(Unpublished)
Abstract
Gravitational wave astronomy is rapidly maturing as a standard tool to study astrophysics, astronomy, and cosmology. However, to fully realize the promise of gravitational waves, accurate wave templates computed either numerically or using analytical approximations are essential, as exact solutions to the highly nonlinear Einstein field equations from which templates are derived are intractable for realistic systems. In this thesis, we present progress made in computing observables from an effective field theory framework of gravity applicable to the early stages of binary mergers. We first tackle nexttoleading order spin dependent contributions to the equations of motion in the postNewtonian expansion, and use these results to derive adiabatically conserved quantities and radiative fluxbalance equations, including for energy and angular momentum. We then compute the accumulated phase for quasicircular, spinaligned orbits, an important gravitational wave observable, including subleading spinorbit and spinspin effects. We also derive the linear momentum and centerofmass frame corrections, and compute the kick velocity for spinaligned systems. Using these results, we present a mapping to corresponding results computed with more traditional methods and confirm consistency for spinorbit and spinspin quantities through nexttoleading order in both approaches. Finally, we present for the first time the second postNewtonian corrections to the radiationreaction equations of motion from the effective field theory approach. Matching between the nearfield and farfield zones demonstrates the internal consistency of our results through 4.5 postNewtonian order for nonspinning objects. Combined with the spindependent corrections, these results constitute important progress towards producing theoretical templates for generic orbits entirely within the effective field theory program at a precision needed for current and future gravitational wave detectors.
Share
Citation/Export: 

Social Networking: 

Details
Item Type: 
University of Pittsburgh ETD

Status: 
Unpublished 
Creators/Authors: 

ETD Committee: 

Date: 
11 May 2023 
Date Type: 
Publication 
Defense Date: 
24 March 2023 
Approval Date: 
11 May 2023 
Submission Date: 
3 April 2023 
Access Restriction: 
No restriction; Release the ETD for access worldwide immediately. 
Number of Pages: 
144 
Institution: 
University of Pittsburgh 
Schools and Programs: 
Dietrich School of Arts and Sciences > Physics 
Degree: 
PhD  Doctor of Philosophy 
Thesis Type: 
Doctoral Dissertation 
Refereed: 
Yes 
Uncontrolled Keywords: 
Gravitational waves, effective field theory of gravity, nonrelativistic general relativity, compact object binaries. 
References: 
[1] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 no. 6, (2016) 061102, arXiv:1602.03837 [grqc].
[2] A. Buonanno and B. S. Sathyaprakash, “Sources of Gravitational Waves: Theory and Observations,” arXiv:1410.7832 [grqc].
[3] LIGO Scientific, Virgo Collaboration, R. Abbott et al., “Tests of general relativity with binary black holes from the second LIGOVirgo gravitationalwave transient catalog,” Phys. Rev. D 103 no. 12, (2021) 122002, arXiv:2010.14529 [grqc].
[4] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GW170817: Measurements of neutron star radii and equation of state,” Phys. Rev. Lett. 121 no. 16, (2018) 161101, arXiv:1805.11581 [grqc].
[5] LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GWE, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER Collaboration, B. P. Abbott et al., “A gravitationalwave standard siren measurement of the Hubble constant,” Nature 551 no. 7678, (2017) 8588, arXiv:1710.05835 [astroph.CO].
[6] P. Ajith et al., “A Template bank for gravitational waveforms from coalescing binary black holes. I. Nonspinning binaries,” Phys. Rev. D 77 (2008) 104017, arXiv:0710.2335 [grqc]. [Erratum: Phys.Rev.D 79, 129901 (2009)].
[7] L. Baiotti and L. Rezzolla, “Binary neutron star mergers: a review of Einstein's richest laboratory,” Rept. Prog. Phys. 80 no. 9, (2017) 096901, arXiv:1607.03540 [grqc].
[8] L. Blanchet, “Gravitational Radiation from PostNewtonian Sources and Inspiralling Compact Binaries,” Living Rev. Rel. 17 (2014) 2, arXiv:1310.1528 [grqc].
[9] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, “Higherorder spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Readytouse gravitational waveforms,” Phys. Rev. D 79 (2009) 104023, arXiv:0810.5336 [grqc]. [Erratum: Phys.Rev.D 84, 049901 (2011)].
[10] C. M. Will and A. G. Wiseman, “Gravitational radiation from compact binary systems: Gravitational wave forms and energy loss to second postNewtonian order,” Phys. Rev. D 54 (1996) 48134848, arXiv:grqc/9608012.
[11] Q. Henry, S. Marsat, and M. Khalil, “Spin contributions to the gravitationalwaveform modes for spinaligned binaries at the 3.5PN order,” Phys. Rev. D 106 no. 12, (2022) 124018, arXiv:2209.00374 [grqc].
[12] L. Blanchet, T. Damour, and G. EspositoFarese, “Dimensional regularization of the third postNewtonian dynamics of point particles in harmonic coordinates,” Phys. Rev. D 69 (2004) 124007, arXiv:grqc/0311052.
[13] T. Damour, P. Jaranowski, and G. Sch¨fer, “Nonlocalintime action for the fourth a postNewtonian conservative dynamics of twobody systems,” Phys. Rev. D 89 no. 6, (2014) 064058, arXiv:1401.4548 [grqc].
[14] P. Jaranowski and G. Sch¨fer, “Derivation of localintime fourth postNewtonian a ADM Hamiltonian for spinless compact binaries,” Phys. Rev. D 92 no. 12, (2015) 124043, arXiv:1508.01016 [grqc].
[15] L. Bernard, L. Blanchet, A. Boh´, G. Faye, and S. Marsat, “Fokker action of e nonspinning compact binaries at the fourth postNewtonian approximation,” Phys. Rev. D 93 no. 8, (2016) 084037, arXiv:1512.02876 [grqc].
[16] L. Bernard, L. Blanchet, A. Boh´, G. Faye, and S. Marsat, “Energy and periastron e advance of compact binaries on circular orbits at the fourth postNewtonian order,” Phys. Rev. D 95 no. 4, (2017) 044026, arXiv:1610.07934 [grqc].
[17] T. Marchand, L. Bernard, L. Blanchet, and G. Faye, “AmbiguityFree Completion of the Equations of Motion of Compact Binary Systems at the Fourth PostNewtonian Order,” Phys. Rev. D 97 no. 4, (2018) 044023, arXiv:1707.09289 [grqc].
[18] S. Foffa and R. Sturani, “Conservative dynamics of binary systems to fourth PostNewtonian order in the EFT approach I: Regularized Lagrangian,” Phys. Rev. D 100 no. 2, (2019) 024047, arXiv:1903.05113 [grqc].
[19] S. Foffa, R. A. Porto, I. Rothstein, and R. Sturani, “Conservative dynamics of binary systems to fourth PostNewtonian order in the EFT approach II: Renormalized Lagrangian,” Phys. Rev. D 100 no. 2, (2019) 024048, arXiv:1903.05118 [grqc].
[20] S. Foffa, P. Mastrolia, R. Sturani, C. Sturm, and W. J. Torres Bobadilla, “Static twobody potential at fifth postNewtonian order,” Phys. Rev. Lett. 122 no. 24, (2019) 241605, arXiv:1902.10571 [grqc].
[21] J. Bl¨mlein, A. Maier, and P. Marquard, “FiveLoop Static Contribution to the u Gravitational Interaction Potential of Two Point Masses,” Phys. Lett. B 800 (2020) 135100, arXiv:1902.11180 [grqc].
[22] J. Bl¨mlein, A. Maier, P. Marquard, and G. Sch¨fer, “The fifthorder u a postNewtonian Hamiltonian dynamics of twobody systems from an effective field theory approach: potential contributions,” Nucl. Phys. B 965 (2021) 115352, arXiv:2010.13672 [grqc].
[23] J. Bl¨mlein, A. Maier, P. Marquard, and G. Sch¨fer, “Testing binary dynamics in u a gravity at the sixth postNewtonian level,” Phys. Lett. B 807 (2020) 135496, arXiv:2003.07145 [grqc].
[24] J. Bl¨mlein, A. Maier, P. Marquard, and G. Sch¨fer, “The 6th postNewtonian u a potential terms at O(GN ),” Phys. Lett. B 816 (2021) 136260, arXiv:2101.08630 [grqc].
[25] D. Bini, T. Damour, and A. Geralico, “Sixth postNewtonian localintime dynamics of binary systems,” Phys. Rev. D 102 no. 2, (2020) 024061, arXiv:2004.05407 [grqc].
[26] D. Bini, T. Damour, and A. Geralico, “Sixth postNewtonian nonlocalintime dynamics of binary systems,” Phys. Rev. D 102 no. 8, (2020) 084047, arXiv:2007.11239 [grqc].
[27] L. Blanchet, S. Foffa, F. Larrouturou, and R. Sturani, “Logarithmic tail contributions to the energy function of circular compact binaries,” Phys. Rev. D 101 no. 8, (2020) 084045, arXiv:1912.12359 [grqc].
[28] L. Blanchet, T. Damour, G. EspositoFarese, and B. R. Iyer, “Gravitational radiation from inspiralling compact binaries completed at the third postNewtonian order,” Phys. Rev. Lett. 93 (2004) 091101, arXiv:grqc/0406012.
[29] T. Marchand, Q. Henry, F. Larrouturou, S. Marsat, G. Faye, and L. Blanchet, “The mass quadrupole moment of compact binary systems at the fourth postNewtonian order,” Class. Quant. Grav. 37 no. 21, (2020) 215006, arXiv:2003.13672 [grqc].
[30] G. Faye, L. Blanchet, and A. Buonanno, “Higherorder spin effects in the dynamics of compact binaries. I. Equations of motion,” Phys. Rev. D 74 (2006) 104033, arXiv:grqc/0605139.
[31] A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff, and J. Vines, “Gravitational spinorbit coupling through thirdsubleading postNewtonian order: from firstorder selfforce to arbitrary mass ratios,” Phys. Rev. Lett. 125 no. 1, (2020) 011103, arXiv:2003.11391 [grqc].
[32] A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff, and J. Vines, “Gravitational spinorbit and aligned spin1 spin2 couplings through thirdsubleading postNewtonian orders,” Phys. Rev. D 102 (2020) 124024, arXiv:2010.02018 [grqc].
[33] A. Bohe, S. Marsat, G. Faye, and L. Blanchet, “Nexttonexttoleading order spinorbit effects in the nearzone metric and precession equations of compact binaries,” Class. Quant. Grav. 30 (2013) 075017, arXiv:1212.5520 [grqc].
[34] S. Marsat, “Cubic order spin effects in the dynamics and gravitational wave energy flux of compact object binaries,” Class. Quant. Grav. 32 no. 8, (2015) 085008, arXiv:1411.4118 [grqc].
[35] S. Marsat, A. Bohe, G. Faye, and L. Blanchet, “Nexttonexttoleading order spinorbit effects in the equations of motion of compact binary systems,” Class. Quant. Grav. 30 (2013) 055007, arXiv:1210.4143 [grqc].
[36] L. Blanchet, A. Buonanno, and G. Faye, “Higherorder spin effects in the dynamics of compact binaries. II. Radiation field,” Phys. Rev. D 74 (2006) 104034, arXiv:grqc/0605140. [Erratum: Phys.Rev.D 75, 049903 (2007), Erratum: Phys.Rev.D 81, 089901 (2010)].
[37] A. Boh´, S. Marsat, and L. Blanchet, “Nexttonexttoleading order spinorbit e effects in the gravitational wave flux and orbital phasing of compact binaries,” Class. Quant. Grav. 30 (2013) 135009, arXiv:1303.7412 [grqc].
[38] R. A. Porto, A. Ross, and I. Z. Rothstein, “Spin induced multipole moments for the gravitational wave flux from binary inspirals to third PostNewtonian order,” JCAP 03 (2011) 009, arXiv:1007.1312 [grqc].
[39] A. Boh´, G. Faye, S. Marsat, and E. K. Porter, “Quadraticinspin effects in the e orbital dynamics and gravitationalwave energy flux of compact binaries at the 3PN order,” Class. Quant. Grav. 32 no. 19, (2015) 195010, arXiv:1501.01529 [grqc].
[40] W. D. Goldberger and I. Z. Rothstein, “An Effective field theory of gravity for extended objects,” Phys. Rev. D 73 (2006) 104029, arXiv:hepth/0409156.
[41] H. Elvang and Y.t. Huang, Scattering Amplitudes in Gauge Theory and Gravity. Cambridge University Press, 4, 2015.
[42] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban, “The Duality Between Color and Kinematics and its Applications,” arXiv:1909.01358 [hepth].
[43] G. K¨lin and R. A. Porto, “From boundary data to bound states. Part II. Scattering a angle to dynamical invariants (with twist),” JHEP 02 (2020) 120, arXiv:1911.09130 [hepth].
[44] G. K¨lin and R. A. Porto, “From Boundary Data to Bound States,” JHEP 01 a (2020) 072, arXiv:1910.03008 [hepth].
[45] G. K¨lin and R. A. Porto, “PostMinkowskian Effective Field Theory for a Conservative Binary Dynamics,” JHEP 11 (2020) 106, arXiv:2006.01184 [hepth].
[46] C. Cheung, I. Z. Rothstein, and M. P. Solon, “From Scattering Amplitudes to Classical Potentials in the PostMinkowskian Expansion,” Phys. Rev. Lett. 121 no. 25, (2018) 251101, arXiv:1808.02489 [hepth].
[47] D. A. Kosower, B. Maybee, and D. O'Connell, “Amplitudes, Observables, and Classical Scattering,” JHEP 02 (2019) 137, arXiv:1811.10950 [hepth].
[48] Z. Bern, C. Cheung, R. Roiban, C.H. Shen, M. P. Solon, and M. Zeng, “Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third PostMinkowskian Order,” Phys. Rev. Lett. 122 no. 20, (2019) 201603, arXiv:1901.04424 [hepth].
[49] Z. Bern, C. Cheung, R. Roiban, C.H. Shen, M. P. Solon, and M. Zeng, “Black Hole Binary Dynamics from the Double Copy and Effective Theory,” JHEP 10 (2019) 206, arXiv:1908.01493 [hepth].
[50] C. Cheung and M. P. Solon, “Classical gravitational scattering at O(G3 ) from Feynman diagrams,” JHEP 06 (2020) 144, arXiv:2003.08351 [hepth].
[51] C. Cheung and M. P. Solon, “Tidal Effects in the PostMinkowskian Expansion,” Phys. Rev. Lett. 125 no. 19, (2020) 191601, arXiv:2006.06665 [hepth].
[52] G. K¨lin, Z. Liu, and R. A. Porto, “Conservative Tidal Effects in Compact Binary a Systems to NexttoLeading PostMinkowskian Order,” Phys. Rev. D 102 (2020) 124025, arXiv:2008.06047 [hepth].
[53] Z. Bern, J. ParraMartinez, R. Roiban, E. Sawyer, and C.H. Shen, “Leading Nonlinear Tidal Effects and Scattering Amplitudes,” JHEP 05 (2021) 188, arXiv:2010.08559 [hepth].
[54] C. Cheung, N. Shah, and M. P. Solon, “Mining the Geodesic Equation for Scattering Data,” Phys. Rev. D 103 no. 2, (2021) 024030, arXiv:2010.08568 [hepth].
[55] Z. Bern, J. ParraMartinez, R. Roiban, M. S. Ruf, C.H. Shen, M. P. Solon, and M. Zeng, “Scattering Amplitudes and Conservative Binary Dynamics at O(G4 ),” Phys. Rev. Lett. 126 no. 17, (2021) 171601, arXiv:2101.07254 [hepth].
[56] J. Vines, “Scattering of two spinning black holes in postMinkowskian gravity, to all orders in spin, and effectiveonebody mappings,” Class. Quant. Grav. 35 no. 8, (2018) 084002, arXiv:1709.06016 [grqc].
[57] J. Vines, J. Steinhoff, and A. Buonanno, “Spinningblackhole scattering and the testblackhole limit at second postMinkowskian order,” Phys. Rev. D 99 no. 6, (2019) 064054, arXiv:1812.00956 [grqc].
[58] B. Maybee, D. O'Connell, and J. Vines, “Observables and amplitudes for spinning particles and black holes,” JHEP 12 (2019) 156, arXiv:1906.09260 [hepth].
[59] A. Guevara, A. Ochirov, and J. Vines, “Scattering of Spinning Black Holes from Exponentiated Soft Factors,” JHEP 09 (2019) 056, arXiv:1812.06895 [hepth].
[60] A. Guevara, A. Ochirov, and J. Vines, “Blackhole scattering with general spin directions from minimalcoupling amplitudes,” Phys. Rev. D 100 no. 10, (2019) 104024, arXiv:1906.10071 [hepth].
[61] R. Aoude, K. Haddad, and A. Helset, “Tidal effects for spinning particles,” JHEP 03 (2021) 097, arXiv:2012.05256 [hepth].
[62] M.Z. Chung, Y.t. Huang, J.W. Kim, and S. Lee, “Complete Hamiltonian for spinning binary systems at first postMinkowskian order,” JHEP 05 (2020) 105, arXiv:2003.06600 [hepth].
[63] Z. Bern, A. Luna, R. Roiban, C.H. Shen, and M. Zeng, “Spinning black hole binary dynamics, scattering amplitudes, and effective field theory,” Phys. Rev. D 104 no. 6, (2021) 065014, arXiv:2005.03071 [hepth].
[64] D. Kosmopoulos and A. Luna, “Quadraticinspin Hamiltonian at O(G2 ) from scattering amplitudes,” JHEP 07 (2021) 037, arXiv:2102.10137 [hepth].
[65] Z. Liu, R. A. Porto, and Z. Yang, “Spin Effects in the Effective Field Theory Approach to PostMinkowskian Conservative Dynamics,” JHEP 06 (2021) 012, arXiv:2102.10059 [hepth].
[66] E. Herrmann, J. ParraMartinez, M. S. Ruf, and M. Zeng, “Gravitational Bremsstrahlung from Reverse Unitarity,” Phys. Rev. Lett. 126 no. 20, (2021) 201602, arXiv:2101.07255 [hepth].
[67] P. Di Vecchia, C. Heissenberg, R. Russo, and G. Veneziano, “Radiation Reaction from Soft Theorems,” Phys. Lett. B 818 (2021) 136379, arXiv:2101.05772 [hepth].
[68] G. Mogull, J. Plefka, and J. Steinhoff, “Classical black hole scattering from a worldline quantum field theory,” JHEP 02 (2021) 048, arXiv:2010.02865 [hepth].
[69] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, “Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory,” Phys. Rev. Lett. 126 no. 20, (2021) 201103, arXiv:2101.12688 [grqc].
[70] S. Mougiakakos, M. M. Riva, and F. Vernizzi, “Gravitational Bremsstrahlung in the postMinkowskian effective field theory,” Phys. Rev. D 104 no. 2, (2021) 024041, arXiv:2102.08339 [grqc].
[71] J. B. Gilmore and A. Ross, “Effective field theory calculation of second postNewtonian binary dynamics,” Phys. Rev. D 78 (2008) 124021, arXiv:0810.1328 [grqc].
[72] S. Foffa and R. Sturani, “Effective field theory calculation of conservative binary dynamics at third postNewtonian order,” Phys. Rev. D 84 (2011) 044031, arXiv:1104.1122 [grqc].
[73] S. Foffa and R. Sturani, “Dynamics of the gravitational twobody problem at fourth postNewtonian order and at quadratic order in the Newton constant,” Phys. Rev. D 87 no. 6, (2013) 064011, arXiv:1206.7087 [grqc].
[74] S. Foffa, P. Mastrolia, R. Sturani, and C. Sturm, “Effective field theory approach to the gravitational twobody dynamics, at fourth postNewtonian order and quintic in the Newton constant,” Phys. Rev. D 95 no. 10, (2017) 104009, arXiv:1612.00482 [grqc].
[75] R. A. Porto and I. Z. Rothstein, “Spin(1)Spin(2) Effects in the Motion of Inspiralling Compact Binaries at Third Order in the PostNewtonian Expansion,” Phys. Rev. D 78 (2008) 044012, arXiv:0802.0720 [grqc]. [Erratum: Phys.Rev.D 81, 029904 (2010)].
[76] R. A. Porto and I. Z. Rothstein, “Apparent ambiguities in the postNewtonian expansion for binary systems,” Phys. Rev. D 96 no. 2, (2017) 024062, arXiv:1703.06433 [grqc].
[77] L. Bernard, L. Blanchet, G. Faye, and T. Marchand, “CenterofMass Equations of Motion and Conserved Integrals of Compact Binary Systems at the Fourth PostNewtonian Order,” Phys. Rev. D 97 no. 4, (2018) 044037, arXiv:1711.00283 [grqc].
[78] A. K. Leibovich, N. T. Maia, I. Z. Rothstein, and Z. Yang, “Second postNewtonian order radiative dynamics of inspiralling compact binaries in the Effective Field Theory approach,” Phys. Rev. D 101 no. 8, (2020) 084058, arXiv:1912.12546 [grqc].
[79] D. Bini, T. Damour, and A. Geralico, “Binary dynamics at the fifth and fifthandahalf postNewtonian orders,” Phys. Rev. D 102 no. 2, (2020) 024062, arXiv:2003.11891 [grqc].
[80] R. A. Porto, “PostNewtonian corrections to the motion of spinning bodies in NRGR,” Phys. Rev. D 73 (2006) 104031, arXiv:grqc/0511061.
[81] R. A. Porto and I. Z. Rothstein, “The Hyperfine EinsteinInfeldHoffmann potential,” Phys. Rev. Lett. 97 (2006) 021101, arXiv:grqc/0604099.
[82] R. A. Porto, “New results at 3PN via an effective field theory of gravity,” in 11th Marcel Grossmann Meeting on General Relativity, pp. 24932496. 1, 2007. arXiv:grqc/0701106.
[83] J. Steinhoff, S. Hergt, and G. Schaefer, “Spinsquared Hamiltonian of nexttoleading order gravitational interaction,” Phys. Rev. D 78 (2008) 101503, arXiv:0809.2200 [grqc].
[84] R. A. Porto and I. Z. Rothstein, “Next to Leading Order Spin(1)Spin(1) Effects in the Motion of Inspiralling Compact Binaries,” Phys. Rev. D 78 (2008) 044013, arXiv:0804.0260 [grqc]. [Erratum: Phys.Rev.D 81, 029905 (2010)].
[85] R. A. Porto, “Next to leading order spinorbit effects in the motion of inspiralling compact binaries,” Class. Quant. Grav. 27 (2010) 205001, arXiv:1005.5730 [grqc].
[86] M. Levi, “Next to Leading Order gravitational SpinOrbit coupling in an Effective Field Theory approach,” Phys. Rev. D 82 (2010) 104004, arXiv:1006.4139 [grqc].
[87] M. Levi, “Next to Leading Order gravitational Spin1Spin2 coupling with KaluzaKlein reduction,” Phys. Rev. D 82 (2010) 064029, arXiv:0802.1508 [grqc].
[88] M. Levi and J. Steinhoff, “Nexttonexttoleading order gravitational spinsquared potential via the effective field theory for spinning objects in the postNewtonian scheme,” JCAP 01 (2016) 008, arXiv:1506.05794 [grqc].
[89] M. Levi and J. Steinhoff, “Nexttonexttoleading order gravitational spinorbit coupling via the effective field theory for spinning objects in the postNewtonian scheme,” JCAP 01 (2016) 011, arXiv:1506.05056 [grqc].
[90] M. Levi, A. J. Mcleod, and M. Von Hippel, “N3 LO gravitational spinorbit coupling at order G4 ,” JHEP 07 (2021) 115, arXiv:2003.02827 [hepth].
[91] M. Levi, A. J. Mcleod, and M. Von Hippel, “N3 LO gravitational quadraticinspin interactions at G4 ,” JHEP 07 (2021) 116, arXiv:2003.07890 [hepth].
[92] M. Levi and J. Steinhoff, “Complete conservative dynamics for inspiralling compact binaries with spins at the fourth postNewtonian order,” JCAP 09 (2021) 029, arXiv:1607.04252 [grqc].
[93] M. Levi, “Binary dynamics from spin1spin2 coupling at fourth postNewtonian order,” Phys. Rev. D 85 (2012) 064043, arXiv:1107.4322 [grqc].
[94] W. D. Goldberger and I. Z. Rothstein, “Dissipative effects in the worldline approach to black hole dynamics,” Phys. Rev. D 73 (2006) 104030, arXiv:hepth/0511133.
[95] J. Steinhoff, S. Hergt, and G. Schaefer, “On the nexttoleading order gravitational spin(1)spin(2) dynamics,” Phys. Rev. D 77 (2008) 081501, arXiv:0712.1716 [grqc].
[96] C. R. Galley and M. Tiglio, “Radiation reaction and gravitational waves in the effective field theory approach,” Phys. Rev. D 79 (2009) 124027, arXiv:0903.1122 [grqc].
[97] W. D. Goldberger and A. Ross, “Gravitational radiative corrections from effective field theory,” Phys. Rev. D 81 (2010) 124015, arXiv:0912.4254 [grqc].
[98] C. R. Galley and A. K. Leibovich, “Radiation reaction at 3.5 postNewtonian order in effective field theory,” Phys. Rev. D 86 (2012) 044029, arXiv:1205.3842 [grqc].
[99] A. Ross, “Multipole expansion at the level of the action,” Phys. Rev. D 85 (2012) 125033, arXiv:1202.4750 [grqc].
[100] W. D. Goldberger and A. K. Ridgway, “Radiation and the classical double copy for color charges,” Phys. Rev. D 95 no. 12, (2017) 125010, arXiv:1611.03493 [hepth].
[101] C. R. Galley, A. K. Leibovich, R. A. Porto, and A. Ross, “Tail effect in gravitational radiation reaction: Time nonlocality and renormalization group evolution,” Phys. Rev. D 93 (2016) 124010, arXiv:1511.07379 [grqc].
[102] W. D. Goldberger, J. Li, and I. Z. Rothstein, “Nonconservative effects on spinning black holes from worldline effective field theory,” JHEP 06 (2021) 053, arXiv:2012.14869 [hepth].
[103] R. A. Porto, A. Ross, and I. Z. Rothstein, “Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 PostNewtonian order,” JCAP 09 (2012) 028, arXiv:1203.2962 [grqc].
[104] G. Cho, R. A. Porto, and Z. Yang, “Gravitational radiation from inspiralling compact objects: Spin effects to the fourth postNewtonian order,” Phys. Rev. D 106 no. 10, (2022) L101501, arXiv:2201.05138 [grqc].
[105] N. T. Maia, C. R. Galley, A. K. Leibovich, and R. A. Porto, “Radiation reaction for spinning bodies in effective field theory I: Spinorbit effects,” Phys. Rev. D 96 no. 8, (2017) 084064, arXiv:1705.07934 [grqc].
[106] N. T. Maia, C. R. Galley, A. K. Leibovich, and R. A. Porto, “Radiation reaction for spinning bodies in effective field theory II: Spinspin effects,” Phys. Rev. D 96 no. 8, (2017) 084065, arXiv:1705.07938 [grqc].
[107] B. A. Pardo and N. T. Maia, “Nexttoleading order spinorbit effects in the equations of motion, energy loss and phase evolution of binaries of compact bodies in the effective field theory approach,” Phys. Rev. D 102 (2020) 124020, arXiv:2009.05628 [grqc].
[108] G. Cho, B. Pardo, and R. A. Porto, “Gravitational radiation from inspiralling compact objects: Spinspin effects completed at the nexttoleading postNewtonian order,” Phys. Rev. D 104 no. 2, (2021) 024037, arXiv:2103.14612 [grqc].
[109] A. K. Leibovich, B. A. Pardo, and Z. Yang, “Radiation reaction for nonspinning bodies at 4.5PN in the effective field theory approach,” arXiv:2302.11016 [grqc].
[110] A. Gopakumar, B. R. Iyer, and S. Iyer, “Second postNewtonian gravitational radiation reaction for twobody systems: Nonspinning bodies,” Phys. Rev. D 55 (1997) 60306053, arXiv:grqc/9703075. [Erratum: Phys.Rev.D 57, 6562 (1998)].
[111] J. M. Mart´ınGarc´ “xAct: efficient tensor computer algebra for the wolfram ıa, language.” https://www.xAct.es.
[112] R. A. Porto, “The effective field theorist's approach to gravitational dynamics,” Phys. Rept. 633 (2016) 1104, arXiv:1601.04914 [hepth].
[113] M. Levi, “Effective Field Theories of PostNewtonian Gravity: A comprehensive review,” Rept. Prog. Phys. 83 no. 7, (2020) 075901, arXiv:1807.01699 [hepth].
[114] W. D. Goldberger, “Les Houches lectures on effective field theories and gravitational radiation,” in Les Houches Summer School  Session 86: Particle Physics and Cosmology: The Fabric of Spacetime. 1, 2007. arXiv:hepph/0701129.
[115] B. Grinstein and I. Z. Rothstein, “Effective field theory and matching in nonrelativistic gauge theories,” Phys. Rev. D 57 (1998) 7882, arXiv:hepph/9703298.
[116] B. M. Barker and R. F. O'Connell, “Nongeodesic motion in general relativity,” Gen. Rel. and Grav. 5 (Oct., 1974) 539554.
[117] L. E. Kidder, “Coalescing binary systems of compact objects to postNewtonian 5/2 order. 5. Spin effects,” Phys. Rev. D 52 (1995) 821847, arXiv:grqc/9506022.
[118] B. J. Owen, H. Tagoshi, and A. Ohashi, “Nonprecessional spin orbit effects on gravitational waves from inspiraling compact binaries to second postNewtonian order,” Phys. Rev. D 57 (1998) 61686175, arXiv:grqc/9710134.
[119] C. M. Will, “PostNewtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies,” Phys. Rev. D 71 (2005) 084027, arXiv:grqc/0502039.
[120] C. W. Lincoln and C. M. Will, “Coalescing Binary Systems of Compact Objects to (Post)5/2 Newtonian Order: Late Time Evolution and Gravitational Radiation Emission,” Phys. Rev. D 42 (1990) 11231143.
[121] C. R. Galley and I. Z. Rothstein, “Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations,” Phys. Rev. D 95 no. 10, (2017) 104054, arXiv:1609.08268 [grqc].
[122] Z. Yang and A. K. Leibovich, “Analytic Solutions to Compact Binary Inspirals With Leading Order SpinOrbit Contribution Using The Dynamical Renormalization Group,” Phys. Rev. D 100 no. 8, (2019) 084021, arXiv:1908.05688 [grqc].
[123] E. Racine, A. Buonanno, and L. E. Kidder, “Recoil velocity at 2PN order for spinning black hole binaries,” Phys. Rev. D 80 (2009) 044010, arXiv:0812.4413 [grqc].
[124] K. S. Thorne, “Multipole Expansions of Gravitational Radiation,” Rev. Mod. Phys. 52 (1980) 299339.
[125] M. J. Fitchett, “The influence of gravitational wave momentum losses on the centre of mass motion of a newtonian binary system,” MNRAS 203 no. 4, (Aug., 1983) 10491062.
[126] D. Bini and T. Damour, “Analytical determination of the twobody gravitational interaction potential at the fourth postNewtonian approximation,” Phys. Rev. D 87 no. 12, (2013) 121501, arXiv:1305.4884 [grqc].
[127] K. S. Thorne, “Nonradial Pulsation of GeneralRelativistic Stellar Models. IV. The Weakfield Limit,” Astrophys. J. 158 (1969) 997.
[128] W. L. Burke, “Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions,” J. Math. Phys. 12 (1971) 401418.
[129] B. R. Iyer and C. M. Will, “PostNewtonian gravitational radiation reaction for twobody systems,” Phys. Rev. Lett. 70 (1993) 113116.
[130] L. Blanchet, “Time asymmetric structure of gravitational radiation,” Phys. Rev. D 47 (1993) 43924420.
[131] B. R. Iyer and C. M. Will, “PostNewtonian gravitational radiation reaction for twobody systems: Nonspinning bodies,” Phys. Rev. D 52 (1995) 68826893.
[132] L. Blanchet, “Energy losses by gravitational radiation in inspiraling compact binaries to five halves postNewtonian order,” Phys. Rev. D 54 (1996) 14171438, arXiv:grqc/9603048. [Erratum: Phys.Rev.D 71, 129904 (2005)].
[133] S. Nissanke and L. Blanchet, “Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 postNewtonian order,” Class. Quant. Grav. 22 (2005) 10071032, arXiv:grqc/0412018.
[134] C. Konigsdorffer, G. Faye, and G. Schaefer, “The Binary black hole dynamics at the thirdandahalf postNewtonian order in the ADM formalism,” Phys. Rev. D 68 (2003) 044004, arXiv:grqc/0305048.
[135] P. Jaranowski and G. Schaefer, “Radiative 3.5 postNewtonian ADM Hamiltonian for many body pointmass systems,” Phys. Rev. D 55 (1997) 47124722.
[136] M. E. Pati and C. M. Will, “PostNewtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. 2. Twobody equations of motion to second postNewtonian order, and radiation reaction to 3.5 postNewtonian order,” Phys. Rev. D 65 (2002) 104008, arXiv:grqc/0201001.
[137] Y. Itoh, “Thirdandahalf order postNewtonian equations of motion for relativistic compact binaries using the strong field point particle limit,” Phys. Rev. D 80 (2009) 124003, arXiv:0911.4232 [grqc].
[138] C. R. Galley, “Classical Mechanics of Nonconservative Systems,” Phys. Rev. Lett. 110 no. 17, (2013) 174301, arXiv:1210.2745 [grqc].
[139] C. R. Galley, D. Tsang, and L. C. Stein, “The principle of stationary nonconservative action for classical mechanics and field theories,” arXiv:1412.3082 [mathph].
[140] C. R. Galley, A. K. Leibovich, and I. Z. Rothstein, “Finite size corrections to the radiation reaction force in classical electrodynamics,” Phys. Rev. Lett. 105 (2010) 094802, arXiv:1005.2617 [grqc].
[141] L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, “Gravitational wave inspiral of compact binary systems to 7/2 postNewtonian order,” Phys. Rev. D 65 (2002) 061501, arXiv:grqc/0105099. [Erratum: Phys.Rev.D 71, 129902 (2005)].
[142] G. Schott, “VI. On the motion of the Lorentz electron,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 29 no. 169, (Jan., 1915) 4962, https://doi.org/10.1080/14786440108635280.
[143] L. Blanchet, “Gravitational radiation reaction and balance equations to postNewtonian order,” Phys. Rev. D 55 (1997) 714732, arXiv:grqc/9609049.
[144] L. Blanchet and G. Faye, “Fluxbalance equations for linear momentum and centerofmass position of selfgravitating postNewtonian systems,” Class. Quant. Grav. 36 no. 8, (2019) 085003, arXiv:1811.08966 [grqc].
[145] G. Cho and H. M. Lee, “Analytic Kepleriantype parametrization for general spinning compact binaries with leading order spinorbit interactions,” Phys. Rev. D 100 no. 4, (2019) 044046, arXiv:1908.02927 [grqc].
[146] K. Chatziioannou, A. Klein, N. Yunes, and N. Cornish, “Constructing Gravitational Waves from Generic SpinPrecessing Compact Binary Inspirals,” Phys. Rev. D 95 no. 10, (2017) 104004, arXiv:1703.03967 [grqc].
[147] P. Csizmadia, G. Debreczeni, I. Racz, and M. Vasuth, “Gravitational waves from spinning eccentric binaries,” Class. Quant. Grav. 29 (2012) 245002, arXiv:1207.0001 [grqc]. 
Date Deposited: 
11 May 2023 12:55 
Last Modified: 
11 May 2023 12:55 
URI: 
http://dscholarship.pitt.edu/id/eprint/44392 
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)

View Item 
