Interface Problems in Two-Phase Magnetohydrodynamic Flows

by
Tian Jing

B.S., Nanjing Normal University, 2017

Submitted to the Graduate Faculty of
the Dietrich School of Arts and Sciences in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Tian Jing

It was defended on
March 16, 2023
and approved by
Prof. Dehua Wang, Department of Mathematics
Prof. Armin Schikorra, Department of Mathematics
Prof. Ming Chen, Department of Mathematics
Prof. Tan Tice, Department of Mathematical Sciences, Carnegie Mellon University,

Pittsburgh

1



Copyright (©) by Tian Jing
2023

1l



Interface Problems in Two-Phase Magnetohydrodynamic Flows
Tian Jing, PhD

University of Pittsburgh, 2023

We study the motion of two incompressible, conductive fluids in a magnetic field. The
viscosity and surface tension are considered. The study includes the existence of varifold
solutions, strong solutions, and their weak-strong uniqueness. To obtain varifold solutions,
we approximate the equations using the Galerkin method. Using solution operators and
the Schauder fixed-point theorem, we can obtain the approximate solutions. The weak
convergence method is then used for studying the limit of approximate solutions. Varifolds
are used for describing the interface. To find a strong solution, we apply the Hanzawa
transformation to the equations, which are transformed into a fixed-interface problem for a
short time. The new equations are divided into principal parts and nonlinear parts, which
are studied separately. The solution is obtained using the fixed-point theory of contraction
mappings. When the strong solution exists, all varifold solutions coincide with it. This
is proved by estimating the error between strong and varifold solutions using the relative
entropy. An inequality of the relative entropy is derived and controlled by utilizing the

Gronwall’s inequality:.

Keywords: 3-D MHD, two-phase, varifold solutions, strong solutions, weak-strong unique-

ness.
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1.0 Introduction

Magnetohydrodynamics (MHD) concerns the motion of electrically conducting fluids in
an electromagnetic field. It has a very wide range of applications in many physical areas.
For example, the motion of liquid metals, the magnetic field of the Earth, and the activities
of cosmic stars.

The two-phase MHD equation is a system of equations that describes the motion of two
conductive fluids in a magnetic field. In our study, we focus on fluids that are incompressible,
viscous and resistive. When a conductive fluid moves in a magnetic field, an electric current
is generated in the fluid. The motion of this charged fluid can be affected by the Lorentz force
due to the magnetic field. Meanwhile, the charged fluid itself generates its own magnetic field
around it, which will conversely affect the magnetic field in the whole region. The interface
between the two fluids is moving along the fluids. The surface tension on the interface is
also considered in our study. The equations consist of the Navier-Stokes equations and the
magnetic equations.

The study of the two-phase MHD equation is a development of the research on Navier-
Stokes equations and MHD equations. Thus, it is still a young and developing area. The
Navier-Stokes equations have been widely studied for many decades. The study on two-
phase Navier-Stokes equations is a relatively young branch. When the surface tension is
considered, it brings more difficulty to the solving of the equations. In 1993, Plotnikov
proved the existence of varifold solutions to the two-phase Navier-Stokes equation in R2.
In 2007, Abels studied the existence of varifold solutions in R? and R3. In 2013, Priiss, et
al. studied analytic solutions to the two-phase Navier-Stokes equation in a bounded domain
Q0 C R3. In 2020, Fischer and Hensel proved the weak-strong uniqueness of the two-phase
Navier-Stokes equation.

In 2010, Padula and Solonnikov studied the local existence of solutions to fluid-vacuum
MHD equations in bounded domains with surface tension considered [24]. In 2014, Secchi
and Trakhinin studied the well-posedness of ideal compressible MHD equations [32]. In
2019, Gu and Wang proved the local existence of solutions to ideal MHD equations without



surface tension [11]. In 2021, Wang and Xin proved the global existence of solutions to the
fluid-vacuum model in a slab-shaped region [39]. In 2022, Trakhinin and Wang studied the
local existence theory of the compressible model with perfect conductivity [38].

In Chapter 2, we study the existence theory of varifold solutions to the two-phase MHD
equations. We obtain varifold solutions by first approximating the equations using the
Galerkin method and then studying their weak limit. Due to the existence of the magnetic
field, it is hard to obtain approximate solutions using the theory of monotone operators.
In order to overcome this issue, we utilize solution operators to reduce the unknown vari-
ables. These operators can be obtained by independently solving the magnetic equation and
the transport equation. An operator is then constructed using the Galerkin approximate
equations and solution operators. The approximate solution is obtained using the Schauder
fixed-point theorem. Next, we obtain the weak convergence of approximate solutions using
the Banach-Alaoglu theorem. Stronger convergence can then be obtained using the Arzela-
Ascoli theorem and the Aubin-Lions lemma. Finally, we represent the weak limit of the
mean curvature terms with the help of varifolds, which completes the varifold solution.

In Chapter 3, we establish the local existence theory of strong solutions to the two-phase
MHD equations. The Hanzawa transformation is applied to transform the free interface
into a fixed interface for a short time. The transformed equations are divided into the
principal part and the nonlinear part. In the principal part, we use the theory of two-phase
Stokes equations and the theory of parabolic equations to solve the linearized problem with
arbitrary source terms. The study of the nonlinear part is mainly focused on the estimate
of its Fréchet derivative. The equations can then be rewritten using an operator, which is a
contraction mapping in some specific set. The solution is then obtained by finding the fixed
point of the operator.

In Chapter 4, we prove that when the unique strong solution to the two-phase MHD
equations exists, all varifold solutions coincide with it. We prove the weak-strong uniqueness
by controlling the error between the strong solution and a varifold solution using the relative
entropy. The construction of the relative entropy for MHD equations is inspired by [10].
A relative entropy inequality is derived by combining the energy inequalities and equations

with specific test functions. The Gronwall’s inequality is utilized to obtain the estimate of



the relative entropy, which implies the weak-strong uniqueness if the initial error is 0.

The rest of the thesis will be organized in the following structure. In Chapter 2, we
establish the global existence of varifold solutions to the two-phase MHD equations using
the Galerkin approximation and the weak convergence method. In Chapter 3, we prove the
local existence of the strong solution using the Hanzawa transformation and the contraction
mapping theory. In Chapter 4, we establish the weak-strong uniqueness of strong and varifold

solutions in R? using the relative entropy method.



2.0 Existence of Varifold Solutions to the Two-Phase MHD Equations

2.1 Introduction and Main Results

In this chapter, we study the two-phase magnetohydrodynamic (MHD) problem of two
immiscible Newtonian fluids which are incompressible, viscous and conducting, in a three-
dimensional bounded, simply connected smooth domain 2 C R3. The domains of the two
fluids are denoted by open sets Q1 (¢) and Q7 (¢). The interface between them is defined as
[(t) := 007 (t) \ 0. The sets QT (¢) , Q (¢) and T'(¢) give a partition of 2. We assume that

the density equals to 1 everywhere and consider the following equations:

ou4u-Vu—(VxB)xB-vEAu+Vp=0 in Q*(t), (2.1.1)
B -V x(uxB)+Vx(oVxB)=0 inQ, (2.1.2)

divu =0 in Q(t), (2.1.3)

divB=0 inQ, (2.1.4)

—[2v(x)Du — pI]n =rxHn onI'(t), (2.1.5)

Ve=n-u onT(t), (2.1.6)

ulon = 0, Blag = 0, (2.1.7)

uli—o = ug, Bli=o = Bo, (2.1.8)

where u € R3 is the velocity, B € R? the magnetic field, ¢ > 0 the magnetic diffusion
coefficient of both fluids, v+, v~ > 0 the viscosity coefficients of the two fluids, k > 0
the surface tension coefficient; The quantities Vi, n, H are all defined pointwisely on the
interface I'(t), where Vi denotes the velocity of the interface, n the normal vector, H the
mean curvature; The term Du := (Vu + Vu?)/2 is the strain rate tensor and |Dul is the
shear rate. In order to study the positions of Q*(¢) and Q7 (¢), we consider the indicator
function of Q*(t), i.e. x(t) := xa+«). Let v be such that v(1) = v* and v(0) = v~. Then

we can use v(x(t,z)) for the viscosity. The notation [f] denotes the jump of f across I'(¢).



We briefly review some related results. When there is no magnetic field B, the problem
becomes the two-phase Navier-Stokes equations. The problem of varifold solutions was first
studied by Plotnikov [25]. In his paper, the case of two incompressible non-Newtonian fluids
with surface tension has been considered in R%. In the seminal work [1], Abels proved the
existence of varifold solutions in more general cases, where the viscosity coefficients depend on
the shear rate | Du|. From [1], there exists a weak solution when x = 0 and a measure-valued
varifold solution when & > 0. For the case of k > 0, the equations have been studied in R?
and R®. When the viscosity coefficients are constants, Yeressian [40] has proved the existence
of varifold solutions in R3. When the strong solution exists, Fischer and Hensel proved the
weak-strong uniqueness in [10] with the technique of relative entropy. For interested readers
we also refer to [22,29,31].

Since the problem with x > 0 has been studied in R? and R? in [1] and [40] for the
Navier-Stokes equations, in this work we are interested in the case of bounded domains €2
for the magnetohydrodynamics, for which the both viscosity coefficients v+ are also taken to
be (different) constants. In [1] and [40] the approximate equations are derived by mollifying
the original equations. In the case of a bounded domain, it will be complicated to mollify
the equations near the boundary of the domain. Thus, we will use the Galerkin method to
construct the approximate solutions in this work.

We first give the definitions of varifold solutions and weak solutions based on the defini-
tions in [1]. The space R? is replaced by € in an appropriate way. Some boundary conditions

are also included.

Definition 2.1.1 (Varifold solution). Let ug, By € L*(2) such that divug = divBy = 0
weakly. Let Qr := Q x (0,7). Let f C Q be a bounded domain such that o = Xoi 1 of
finite perimeter. A quadruple (u, B, x, V') with

w e L0, T} HY(9)) 1 L=((0,T); L)),

B e LA(0,T}; HL()) 1 L=((0, T); 13(%)),

dive = divB = 0,

\ € L2(0, T): BV(9: {0,1})),

Ve L*([0,T); M(Q x §?)),



is called a varifold solution to the two-phase flow problem (2.1.1)-(2.1.8) with the initial data

(u07 BO) XO) if

(1).
_<u07 @(O))Q - <u7 atSO)QT - (u ® u, v@)QT + (B ® B, VSD)QT

T
+ (2v(x)Du, Dgo)QT + H/ OV (t),p(t))ydt =0
0
is satisfied for all ¢ € C2°([0,T") x ) with divp = 0;
(2).

—(Bo, 90<0))Q - (B7 @tw)QT - (u ® Bv VQO)QT + (B X u, vSO)QT + O(VB7 VSO)QT

is satisfied for all ¢ € C2°([0,T) x Q) with divp = 0;
(3). For almost every t € [0, T,

/ s - ab(x)dV(t) / YAV x(t)
Q><S2
is satisfied for all ) € Cy(Q);

(4). The indicator function x is the unique renormalized solution of

Ox+u-Vx=0 in (0,7) x Q,

Xli=0o = xo in €

(5). The generalized energy inequality

3 IO+ 5 IBOI+ 51V Ol +2 | [ v00IDuPdrds
v [ B ds < 5 ol + 5 1Bl + 5100
0

holds for almost every ¢t € [0, T7;

(2.1.9)

=0 (2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)

Remark 2.1.1. The notation (-,-)q and (-,-)g, stands for the inner product in L*(Q2) and

L*(Qr). For details about the renormalized solutions, see Proposition 2.2 in [1]. The term

OV in (4.1.4) is the first variation of the measure V. The definitions of 6V and (§V (¢),-) are

in Section 2.2.4. The initial energy is:

1 2 1 2
Eo = 5 l[uollzz + 5 | Bollze + & [Vxollyg -

(2.1.14)



Definition 2.1.2 (Weak solution). Let (u, B, x, V') be a varifold solution of the two-phase
flow problem (2.1.1)-(2.1.8) with the initial data (ug, Bo, xo0) as in definition 2.1.1. Then the

triple (u, B, x) is called a weak solution if for almost every ¢ € [0, T], the equality

OV (1), 0) = — (Hypyr ) = / P, : Vid| V(1))

holds for all ¢ € C2°(2) with divp = 0. Here P, :=1 —n®n and n := Vx(t)/|Vx(t)|.

Remark 2.1.2. The term y contains all the information to define the mean curvature func-
tional H,; see Section 2.2.3 for details. The term V() is a vector-valued Radon measure
on 2 and |Vx(t)| is the total variation measure of Vx(¢). Thus, the normal vector n can be
defined using the Radon-Nikodym derivative. See Section 2.2 for details. The varifold solu-
tion is weaker than the weak solution, since the weak limits of some terms are represented

by measures.

The main result of this work is given as the following:

Theorem 2.1.1. Let Q C R3 be a bounded, smooth and simply connected domain; ugy, By €
L3(Q) satisfy divug = divBy = 0; and xo = Xog - where Qf C Q is a simply connected
C?-domain such that Q_a“ C Q. Then for any T > 0, there exists a varifold solution to the

two-phase flow problem (2.1.1)-(2.1.8) on [0, T] with the initial data (ug, By, Xo)-

The proof of theorem 2.1.1 will be in the spirit of [1] with some new ideas to deal with
the bounded domain €2 and the magnetic field B. We shall use the Galerkin method to
construct the approximate solutions in a bounded domain. Due to the extra term B in
the equations, we cannot use the method of monotone operators in [1,42,43] to solve the
approximate equations. Instead, we will rewrite the approximate equations using operators
and solve the equations by finding the fixed points of the operators. In fact, if our velocity
u is from certain function spaces, then the quantity B and y are uniquely decided by u.
Thus, there exist solution operators that map each u to B(u) and x(u). These operators
have some good properties of continuity and boundedness, which will contribute to showing
the compactness of the fixed-point operator; see [1] and [12] for more details. Due to the free
interface I'(¢), it is hard to prove the Lipschitz continuity of the operators. Thus, we cannot

use the classical contraction mapping theorem to prove the existence of the fixed-points. In



order to overcome this difficulty, we firstly prove the compactness of the operators and then
use the Schauder fixed-point theorem.

The rest of this chapter is organized as follows. We firstly list some useful background
knowledge in Section 2.2. In Section 2.3, we will study the Galerkin approximate equations
on [0,7] and prove that the approximate solutions exists globally on [0,7]. Then we give a
uniform energy estimate for all the approximate solutions. Finally, we will study the limits

of the approximate solutions in Section 2.4.

2.2 Preliminary

2.2.1 Function spaces

We recall some definitions of function spaces. Given a bounded domain 2 C R¢. The
space C*(2) denotes the functions with continuous partial derivatives until order k. The
subspace CF(2) C C*(Q) consists of bounded functions with bounded derivatives up to order
k. The space C*(Q) is the subspace of C*(Q), such that for each f € C*(Q), we can find
F € C*R?) with f = F on Q. The space C2%(€2) consists of functions in C2°(Q2) which are

divergence-free. The following result will be useful.

Proposition 2.2.1 ( [41], Appendix (24d)). For a compact set K C R?, for any k € Z and
k >0, we have the compact embedding C**1(K) —— C*(K).

For a Banach space X and 1 < p < oo, the Bochner space LP(]0,T]; X) is the space of
functions u(t) from [0,7] to X such that

1
T P
il = ([ Tu0lfcat)” <o0 for 1<p < 00,0
0

[ull oo o 77:x0) = esssup [[u(t)|| x < oo for p = oo.
te[0,7

The space C([0,T]; X) consists of functions u(t) from [0, 7] to X such that for any ¢, € [0, 7]

lim [[u(t) — u(to)l] = 0.

t—to



For more details on function spaces, we refer to [23]. For Sobolev spaces and the embedding
theorems, we refer to [8,18].

For a locally compact separable metric space X, we denote the space of finite Radon
measures on X by M(X). We recall that M(X) = (Co(X))*.

We denote by L([0,T], M(X)) the space of functions f : [0,7] — M(X) such that:
for all ¢ € L'([0,T],Co(X)) the duality (f,)(t) is measurable on [0,7]; [f Ly (8) 1s

measurable on [0, T]; and esssupj 7y [| /| vy(x) (£) < 0o. More details can be found in [1,40].

2.2.2 Sets of finite perimeter

In order to study the free interface, we recall some topics about the sets with less regular
boundaries. Most of the topics here can be found in the geometric measure theory. We refer

to [5,19] for interested readers.

Definition 2.2.1 ( [5], definition 3.1). For an open set  C R%. A function u € L*(Q) is of

bounded variation in € if there exist finite Radon measures Ay, --- Ay € M(2) such that

/uagpdx:—/god)\i
o Ox; Q

holds for all ¢ € C2°(2) and i = 1,--- ,d. The space BV () consists of functions of bounded

variation in (2.
The variations of functions are useful when we study the space BV ().

Definition 2.2.2 ( [5], definition 3.4). Given a function u € L} ()™ with Q C R% Tts

variation in €2 is defined as
V(u, ) := sup {Z/ udivp®dr : o € CHQ)™, [l oo () < 1} :
a=1 Q

When studying the boundary of a set E, we usually consider its indicator function ypg.

The perimeter of E' is defined using the variation of xg. See [5,9] for details.



Definition 2.2.3 ( [5], definition 3.35). Let Q C R? be an open set and E' C R? a Lebesgue

measurable set. The perimeter of E in €2 is defined as:

P(B,9) = sup { [ dvpde: € CHOY, ollmia < 1} |
E

The set E' is of finite perimeter in Q2 if P(F, Q) < oc.

Remark 2.2.1. By this definition, only 0F N 2 will be counted into the perimeter of E.

2.2.3 Mean curvature functional

When calculating the weak form of (2.1.1), we will get a so-called mean curvature func-
tional. This functional is dependent on the interface I'(¢), and thus will be denoted by Hp

or H, ). When everything is smooth enough, we have the following formula:

(Hrwy, o(1)) = / Hn - odH'\(a),
r(t)

where H* denotes the k-dimensional Hausdorff measure. On the interface I' the tangential

divergence of a function ¢ € C}(I")¢ is defined as
divip:=divp—n®n: Vo= (I —-n®n): Ve,

where n(z) denotes the normal vector. Note that P, := I —n®n is the orthogonal projection
onto the tangent space, which is defined pointwisely on I'. The mean curvature is defined as
(see [5,19,33])

H = —divlo.

According to the generalized divergence theorem (see [19]),

/divrgded_1 = /Hn - pdH? +/ © - ngpdH > (2.2.1)
r r or

holds for all ¢ € C}(R4)?. In our problem, the set QF(¢) will always stay in the interior of €.
Thus, I'(t) will be a closed surface and will not have any edge, i.e. the (d — 2)-dimensional
boundary. As a result, the second term on the right-hand side in (2.2.1) vanishes. Now when

the surface I' becomes less regular, as long as a measure theoretical normal vector exists,

10



we can use the generalized divergence theorem to replace Hn - ¢ with divt ¢, and study the
generalized mean curvature functional.
In order to study the convergence of the mean curvature terms, we modify lemma 2.4

from [1] and obtain the following lemma.

Lemma 2.2.1 ( [1], lemma 2.4, revised). Let Q2 be a bounded, simply connected, smooth
domain. Let Qf be a bounded, simply connected C*-domain such that Q_a“ C Q. Suppose that
u, v € C([0,T]; C4(2)) with divu = dive = 0 and u — v in C([0,T]; C*(Q)). Then
fz,ny)dH (z) — f(z,n,)dH (z) (2.2.2)
Lu(?) Ly (t)

uniformly on [0, T). Here T'y(t) and T',(t) are interfaces obtained from u and v.

The details on how the velocity determines the interface are stated in Section 2.3.3.
The convergence of the flow mappings is still valid when the domain R? in [1] is replaced
by a bounded domain 2. Thus, using the same argument as in [1], we can apply a local

parameterization to 'y = Q4 to prove the lemma.

2.2.4 Varifolds

For the problem we study, even the measure theoretical normal vectors might not be
guaranteed to exist all the time. In this case, we have to use varifolds to describe the
surfaces. We refer to the definition in [1] and give an analogue one for the case of the
bounded domain €. A measure V' is called a general (d — 1)-varifold if it is a finite Radon
measure on 2 x ST ie. V € M(Q x S¥1). The varifold V' can be understood as assigning
different weight to vectors in © and S?!. In another word, it tells the possibility of a point
to be on the interface and the possibility of a vector to be the normal vector. For interested
readers we refer to [20,21,33].

The first variation of V' is defined as

0V, ) ::/Q Sd_l(l —sx8): VedV(x,s)

for any ¢ € C;(Q); see [33] chapter 8 or [3]. This allows us to replace the functional H,

with —0V/(t), and study the mean curvature functional when the interface is less regular.
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2.2.5 Compact operators

We recall some theory about compact operators; see [41] for details. The compact oper-

ators will be used to solve the Galerkin approximate equations.

Definition 2.2.4 ( [41], definition 2.9). Given two Banach spaces X and Y. An operator
T:D(T)C X =Y is called a compact operator if it is continuous and maps bounded sets

into precompact sets.
The following proposition is important when proving the compactness of an operator.

Proposition 2.2.2 ( [41], Appendix (24g)). The set M C C(Q) is precompact if and only if

(1) D pes SUD, g 1 (2)] < 0.
(2) For every e > 0, there exists 0 > 0, such that sup ¢y | f(x) — f(y)| < & for every x,y € Q
and |x —y| < 4.

We give a specific version of the Arzela-Ascoli theorem.
Theorem 2.2.1 ( [41], Appendix (24i)). Let X be a Banach space. The set A C C([0,T]; X)
s precompact if and only if
(1) For allt € [0,T], the set {f(t): f € A} is precompact in X .
(2) For allt € [0,T] and ¢ > 0, there exists § > 0, such that sup,c 4 || f(t) — f(s)llx <& for
all s € [0,T] and |t — s| < 9.

At last, we recall the Schauder fixed-point theorem of compact operators.
Theorem 2.2.2 ( [41], theorem 2.A). Let X be a Banach space. Suppose A C X is

nonempty, bounded, closed and conver. Given a compact operator T : A — A. There

exists a fived point of T in A.
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2.3 The Galerkin Method

2.3.1 Weak formula and energy estimate

We test (2.1.1) with ¢ € C°(][0,7) x ) such that divy = 0. For the first and second
terms we simply integrate them by parts; for the third term we recall the equality (V x
B) x B = B-VB —V(|BJ?)/2 and then integrate by parts; the fifth term will vanish; the

calculation of the fourth term will generate the mean curvature functional:

/S;V(X)AU@:/V(X)div(Vu_FvuT)go

Q

= /Q v(x) Z Z 9;(Oiuj + Oju;)p;
= /Q v(x) Z Z 9;((Oyu; + Ojui)p;) — /Q v(x) Z(@'uj + Ojui)0;¢p,

i %
=2(vt — V_)/n - (Duyp) — 2/ v(x)Du : Dy
r Q
:H/HTL - —2(v(x)Du, Dp)q.
r
Thus, we obtain the weak formula of (2.1.1):
_(UO’ 90(0»9 - (u7 at@)QT - (u ® u, VQO)QT + (B ® B, VSO)QT
T (2.3.1)
+2(v(x)Du, Dp)g, — /{/ / Hn - pdH? = 0.
0o Jr()

Testing (2.1.2) with ¢ € C°([0,T) x ) such that dive = 0. Using the fact that
V x (VxB)=V(divB) — AB, and V x (ux B)=—(u-V)B+ (B-V)u,
we obtain
—(Bo, 9(0))a = (B, 9ip)or = (u® B, Vo)o, + (B@u, Vp)o, +0(VB, Vp)g, = 0. (2.3.2)

Now we derive the energy estimate. Suppose all the functions are smooth enough. Testing

(2.1.1) and (2.1.2) on 2 with ¢ = u and ¢ = B respectively, we obtain

1d
57 ul|3> + (B ® B, Vu)g + 2(v(x)Du, Du)g — & o Hn -udH? =0,
¢
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1d
S ZBI% — (B® B, Vu)a+ 0 VB, = 0.

Adding these two equations, we have

1d
>q HUHiZ +

1d
2dt
+o||[VB|3, — & Hn - udH* = 0.
(1)

I1BI[72 +2(v(x)Du, Du)q

From the derivation of (1.9) in [1], we have

i%%r(t)) =— / HVrdH? = — Hn - udH>.
dt r (1) r(t)

Note that by Korn’s inequality, there exists ¢ > 0 such that
2(v(x)Du, Du)g > ¢||Vul[.
Finally, we obtain the energy inequality:

1 2 1 2 2 2

B )72 + ) 1B@)72 + RH?(D(t)) + ¢ ||VU||L2([0,T}xQ) t+o ”VBHL?([O,T}xQ) (2.3.3)
1 1 o
< > Jluollze + 3 1Bol[72 + wH?(To).

This estimate drives us to look for a solution (u, B,T") such that
u € L*([0,T]; Hy(Q)) N L=([0, T; L*()), B € L*([0,T]; Hy () N L=([0, T; L*(%)),

and H*(T'(t)) is bounded on [0, 7.
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2.3.2 Approximate equations

In order to use the Galerkin method, we pick the eigenfunctions of the Stokes operator

to be a basis. The existence of this basis is from the following theorem:

Theorem 2.3.1 ( [30], theorem 2.24). Let @ C R3 be a smooth bounded domain. Let A be
the Stokes operator, i.e. Au := —PAu where P is the Helmholtz projection. There exists a
set of functions N'= {ny,na,- -+, } such that

(1) the functions form an orthonormal basis of H(2);

(2) the functions form an orthogonal basis of V(Q);

(8) the functions belong to D(A) N C*(£2) and they are eigenfunctions of A with positive,

nondecreasing eigenvalues which goes to infinity.

Here H(Q2) denotes the closure of {¢ € C°(Q) : divp = 0} under the L? norm and
[l = lI"ll 12()- The space V(£2) := H($2) N H () and I[ly(ey = Il g1(q)- Note that all
the eigenfunctions 7; have trace 0. For details of the Stokes operator, see [35, 36].

Let G, := span{m,--- ,m,}. For each t € [0, 7], we consider the approximate equation:

(un(t), Mo — (w0, n)a — / (Un ® Un, VN))ads +/ (B, ® By, Vn)ads
’ 0 (2.3.4)

t t
2 / (v(xn) Dttn, D)ads + 5 / / P, Vid |V xa(s)] ds = 0,
0 0 Q

for all n € GG,,. We define the functionals M and N on G,, and rewrite the equation. Let

) = [u-n,

Q
(N(u,x,B),n) = (u®u,Vn)g — (B® B,Vn)q
~ 20D, Do+ [ s Vad 9],
By integrating N (u, x, B) from 0 to ¢, we define

([ was) = [ vy

Now we can rewrite the equation as:

¢
(M (0), 1) = M)} + [V o B s (235)

0
for all n € G,. It remains to represent xy and B with u using the solution operators, i.e.

x(u) and B(u) .
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2.3.3 Solution operators x(u) and B(u)

Suppose u € C([0,T];C2(Q)) and Qf is a simply connected C2-domain with QF C Q.
For each z € 2, we consider the ODE

d
ZX () =u(tX(t2), (2.3.6)

X(0,z) =x

By the Picard-Lindelof theorem there exists a unique solution locally in time. Since the
solution will not blow up as stated in remark 2.3.1, we can always extend it to [0,7]. When
we start from different initial values on €2, the solutions will not intersect. Thus, we obtain a
function X (¢, z) : [0,7] x Q — Q, which is a bijection on § for each fixed ¢. We call X (¢, z)
the flow mapping, and denote it by X;(z) in some cases. We will also use X, (¢, z) or X, (x)
if needed to emphasize the velocity field that generates this flow mapping.

Remark 2.3.1. When x € 0€), the Picard iterating always generate constant functions equal
to x. Thus, we can obtain a unique solution X (¢,x) = z on [0,7]. When z € Q, the local
solution will not exceed €2, so it can still be extended to [0,7]. In both cases, the proof of

uniqueness can be done by the Gronwall’s inequality.

Note that u € C([0,T]; C2(Q)). Similarly to the proof of theorem 2.10 in [37], we can
prove that X € C([0,T]; C*(Q)). Letting x(z,t) := xo(X; *(z)), then we have obtained the
indicator function x using the velocity w.

We now estimate the variation of x(x,t). From [4] Exercise 3.2, the Jacobian J(X;) = 1.

By changing of variable, we have

/Q (@, )dive(z)ds = / (X (), B)dive(X (1) dy. (2.3.7)

Q

Similarly to the argument in [1], we integrate by parts. Let A = (a;;)3x3 be the matrix
inverse of VX, i.e. A(y) = (V,Xi(y))™". Let p(y) = AT (y)o(Xi(y)) with AT being the
transpose of A. For the gradient of ¢(y), i.e. V,, (AT (y)¢(X:(y))), we consider its trace:

TV, (ATp(X,(1)

—Zzé‘ a0 ( Xy +Zzaﬂ- 0 (X(y))

=1+ I,
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Simplifying /5, we obtain

I = Z Z D 40 (Xu(y) - 0y, Xew(y)

=) (X)) - (Z ajﬁintyk(y)>
ik

)

= Z Z i (Xe(y)) - (Z ((VXt)_l)ji <VXt>z‘k;>

]

= 0;0;(Xi(y) = dive(Xi(y))-
J
Continuing with (2.3.7), we have

/Q V(X (), D) dive(X(y))dy = / (Xo(), ) Tady

~ [ XX T AT X))~ [ 2Kl
= [ X TV ATX ) ~ [ X)) 33 B (Ku)

— [TV - [0 Y s (Xilw)
—I5— 1.
Since xo € BV (Q2), we have

13| =

/ XO(y)diVy@(t,y)‘ < 1900yt 1Bl o1

<C ”VXOHM(Q) H%OHLoo(Q) HVAHLOO([O,T]XQ)

< HXOHBV(Q) HSOHLOO(Q)5(”“”0([0,T};C2(§)))-

The notation 3(-) denotes a continuous function. In ||[VAl| « q). we firstly find the Euclidean
norm |VA| and then find the L* norm of |[VA|. The situations later will be treated in the

same way. We then estimate I :

L] < CNIV A oo o zyx X0l L1 0 9K W) ] 1o 0

< ||X0||BV(Q) H(:OHLOO(Q)B(HUHC([QT];C?(Q)))'
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We still use the notation 5(-), so it represents different continuous functions in different

contexts. The estimates of I3 and I, implies

/QX(Xt(y),t)divgo(Xt(y))dy < Ixoll vy 1€l oo @) BUIl e o, mc2@))-

Thus, we have
V(x(8),€) < llxoll gy 0 Bllull o2 @)

Noticing that [|[x()ll1(q) = [1¥oll 11 gy and [VX(#) | uey < VIx(), 2), one has

X 5ve) = IXO 120y + IVXO 00

< xoll pr gy + V(X(8), ) < B(llull o my.c2@) X0l By -

Remark 2.3.2. In order to control (VX;)™! with Bllulleorsc2@y)» We only need to consider
VX;. This is because det(VX;) = 1, which implies that (VX;)™' = adj(VX;). We take the

derivatives of the following equation:
t
X(t,zx)=ua +/ u(s, X(s,x))ds, (2.3.8)
0

and then we use the Gronwall’s inequality. In order to estimate d,,a;;, we take the derivatives
of the equation (VX;)™! = adj(VX;). It remains to estimate the second derivatives of
X(t, z), which can be solved similarly by the Gronwall’s inequality.

Remark 2.3.3. When |[ull oo 1y.c2@)) < B we have [[x(w)|| oo 71.8v(0) < C(R).

Now we study the operator B(-). We recall the lemma 3.2 from [12].
Lemma 2.3.1 ( [12], lemma 3.2). Let Q C R? be a bounded C®-domain and u € C([0,T]; C2(Q)).
There ezists a unique solution operator B(-), such that B(u) solves (2.1.2), (2.1.4) and (2.1.8)

in the weak sense. Given any bounded set A C C([0,T]; C2(R)), the image B(A) is bounded
in L*([0, T); HY(Q)) N L>([0,T); L*(2)) and B(+) is continuous on A.

We will show later that the condition u € C([0, T]; C2(Q2)) will be guaranteed. Thus, we

can always use the operator B(-) when solving the approximate equations. Note that when

HuHC([O,T};CQ(ﬁ)) < R, we have ||B(U)HL2([0,T];H3(Q)) + HB<U>HLOO([O,T};L2(Q)) < C(R).
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2.3.4 Estimating the operator N(u,x, B)

Substituting x(u) and B(u), we obtain N(u) = N(u, x(u), B(u)). We estimate its oper-

ator norm. For convenience, we denote the formula by
(N(u),n) = L + I + I3 + 1,
where
I :/u®u:Vndx,
Q
[2:—/B®B:V77dx,
Q
I3 = —2/ v(x)Du : Dndz,
Q
I, = /4/ P.:Vnd|Vx|.
Q

We estimate the integrals as follows. Notice that the C!' norm is equivalent to the G,, norm

in the finite-dimensional space (,,. Thus, we obtain
1| < /Q [ul*[V] < [19llor gy lullza) < Clullg, lInllg, -
Similarly, we estimate I, and I3 as
Lo < 1nllor@y 1Bllz2(@) < C 1Bz e,

I3 < Ol Dul| 20 100|120y < Cllull, lInllg, -

Using the fact that |(Pr);;| = [0;; — ninj| < 1, we have
[P V| < [P[ [Vl < CVnl < Clnllg, ,
and then we obtain
sl < Xl gy oy [1Pr = Vil oo ) < Cllxll gy 71l -
Thus, the operator norm of N(u) is estimated as the following:

[V (w)]

o: () < C (lullZ, + lullg, + 1B@) ey + IX(@lpv@) @ (239)
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2.3.5 Operator for the fixed-point method
In order to construct the operator for the fixed-point method, we consider the equation
t
M(u(t)) = M(uo) + / N(u(s))ds, (2.3.10)
0
which can be rewritten as:
t
u(t) = M1 (M (ug)) + M (/ N(u(s))ds) : (2.3.11)
0

In order to prove M is invertible, we suppose M(n) = 0 in G, then we have H77||iz(9) =
(M(n),n) = 0. Since 71 is a continuous function, we have n = 0. Thus, M : G,, — G} is

invertible.
Remark 2.3.4. When vy € L?(2), the functional M (ug) € G, is still well defined.
Let @p :== M~ (M (u)), we define

t t
K(u(t)) .= M (M(uo) —i—/ N(u(s))ds) =T+ M (/ N(u(s))ds> : (2.3.12)
0 0
For convenience, we define the set:
Aa,b = {u S C([O,G],Gn) : ”uHLOO([O,a];Gn) < b}

Remark 2.3.5. Since all norms are equivalent in G,,, we pick an arbitrary norm and fix it
to be our |||, . We will consider the properties of K(-) on Ar- g. In fact, K(-) becomes a

compact operator on Ap« r for suitable 7" and R.
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Given u € A . From (2.3.9) and Section 2.3.3, we have the following estimate:
IN (@)l oo o3565) < C(R). (2.3.13)

We now study the properties of K. Firstly, we study the continuity of K with respect to t.
In fact, from (2.3.13), we have

() () = K (u)(s)l,

t
<M [ 1)

< C(R)|t — 5.

G (r)dr (2.3.14)

Thus, K(u) € C([0,T7], Gy).
Secondly, we study the boundedness of K(u). Still using the estimate in (2.3.13), we

obtain

1K (w)llg, () < llullq, + C(R)E. (2.3.15)
We choose R > ||ugl|;, and T* small enough, such that
[olle, + C(R)T* < R.

Then the operator K maps Ap- g into A« g.
Thirdly, we show that K (-) is a continuous operator on Ar« p. We fix v € Ay« p and let
u € Ap« g be such that v — v in C([0,7*]; G},). Since

1K (u) = K(v)|

t
o < M s ) / IN(u) = N(0)llg, (5)ds,

we need to estimate ||N(u) — N(v)|

o (t). For any t € [0,T*], we consider

(N(u) = N(v),n) =L+ L+ I3+ Iy (2.3.16)

where
11:/(u®u—v®v):V77,
Q
Qzui/@%®BH—Bw®Bﬁzvm
Q

(2.3.17)
I3 = —2/Q (v(xu)Du — v(x,)Dv) : Vn,

Iy =k </ P Vnd Vx| — / P, Vnd|VXv|) )
Q Q
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Here we denote B(u) and B(v) by B, and B, for short. The variable t is ignored for
convenience when there is no ambiguity. The terms I; to I, are estimated as follows. For I,

we have
|Il|§/|u®(u—v)+(u—v)®v||V7}|d$
Q
< / ful [ — | Vigldz + / ju — o] [v]|Vlda
Q Q

< ||uHL2(Q) Ju— UHL?(Q) ||V77”Loo(ﬂ) + [Ju— UHL?(Q) ||U||L2(Q) an”Lw(Q)
<C(llullg, + Ivlg,) lu=vllg, Inlg,

<CR|u—=wllg, lInle, -

Thus, supy |1(t)] < CR||lu—wv .. M|~ . Similarly to the estimate of I, we
(0,7%] C([0,T*];Gn) Gn

obtain

L] < / IB.|B. — B.||V| +/ B, — B,||B, ||V
Q Q

<C([I1Bullgz + 1Boll2) | Bu = Bl 2 Il

<C(R) By — Bul 12 lInllg, -

From lemma 2.3.1, we have supj 7 |[12(t)| < C(|lu = vll oo r-1.6.)) 11l Moreover, the

constant C({lu — v|[o(o.1.6,)) — 0 When [lu — v|[5(o 1.6,y — 0. For I3 we obtain

B <2 [ lu)Du = v(x) Dol [Vl
<2 [ Wl 1Du= Dl Val +2 [ () = vixa)l Dol
<c / 9w — )| V] + C / [ 0 7 (1= xa) = 7 x0 — 97 (1 = x| [Vl 7]
<C = vl Il + € ol I, | 1w =0l

The key point is to prove that [, [xu — xo| = 0 as u — v in C([0,T*]; G,). In fact, u — v
in C([0,T*]; G,,) implies u — v in C([0,T*]; C*(Q)). Thus, similarly to the argument in [1],
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we obtain X, — X, in C([0,T*]; CY(Q)). Let Qf(t) := X, (t,Q), U (t) :== X,(t,Q7) and
Lo(t) == Xu(t,To), T'y(t) := X,(¢,T). Notice that

/ N — Xl do = | Q2007 |
Q

where A denotes the symmetric difference of sets. For any € > 0, if | Xy — Xoll ¢ 0 74.00@)) <
g, then I',(t) € B(I',(t),e) for every t € [0,7*]. Here B(I',(t),e) is the e-neighborhood
of T',(t). Since v € C([0,T*];G,) C C([0,T*]; C*(Q)), we obtain that the flow mapping
X, (t,z) € C([0,T*]; C*(£2)). Since our 'y is a C? surface, we can apply a local parameteri-
zation to I'g. By composing with X, (¢, x), it will naturally give us a local parameterization
of T',(t). Suppose that ¢(ay,as) is a C*-diffeomorphism from an open set D C R? to a local

piece of ', (¢). Using the normal vector n(¢(ay,az)), the function

Y(a, az, a3) = (ar, as) + agn(p(ar, as))

gives us a diffeomorphism from D x (—¢, ) to an open set in B(I',(t), ). This allows us to ob-
tain a local parameterization of B(I',(t), ). Notice that both D x (—¢,¢) and (D x (—¢,¢))
are monotone increasing sets as ¢ increases. Thus, we can obtain the boundedness of the
integrands and then use the Lebesgue dominated convergence theorem. When € — 0, by cal-
culating the integrals, we have | B(I',(¢), €)| — 0 uniformly in ¢. Thus, [|u — v[|¢¢o74.6,) — 0
implies

sup /|Xu Xo| (t)dz — 0.

te[0,T]

Hence, supjor+ [13(t)| < C([lu = vllcqor.0)) 1Mlg, - Similarly to the constant term in I,

the constant C'([lu — v|[o(o.14.6,)) = 0 as [lu = vlloo.r.6,) — O-

In order to estimate I, we consider the functional F,(¢) such that

(Fu(t),m) == (Hyuw,m) — (Hy0m) -

Thus, I4(t) = £(Fu(t),n). Suppose [[u — vl gqor+.q,) — 0, we need to prove that

HFuHLw([O,T*};Gi) — 0.
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Note that {n € Gy : [[nllg, = 1} is a subset of A :={n € G, : |[nll2(qy < C} for a suitable
C. Thus, it is sufficient to show

sup sup [(F,(t),n)| — 0. (2.3.18)
te[0,7*] n€A

Note that since u, v € C([0, T*], G,), the interfaces T',(¢) and T',(¢) are both C*-surfaces for
all t € [0,7*]. Since Iy is compact, by applying a local parameterization and using the par-
tition of unity, we can consider the integrals locally. Let ¢(ay, as) be the C*-diffeomorphism
from an open set D C R? to a local piece on I'y. The function X, (¢, ¢(a;,as)) allows us to

calculate the normal vector
nu(Xu(t, o(a1,a2))) € C([0,T%]; CY(D)).

When u — v in C([0,T*]; C*(2)), we have X, — X, in C([0,T*]; C*(Q)). Thus, n, — n,
in C([0,7*] x D). Similarly, the Jacobians J(X,(t, (a1, a2))) goes to J(X,(t, (a1, a2))) in
C([0,T*] x D), and the test functions Vn(X,(t, ¢(a1,as))) goes to Vn(X,(t, (a1, as))) in
C([0,T7*] x D) as well. Then (2.3.18) is obtained by calculating the integrals.

Thus, for all n € G,,, we have

L = r [(Fu(t), )] < Cllu = vllozepa.) 1l -

The constant C([lu — vl ¢ o.7+1.6,)) goes to 0 as u — v in C([0, T%]; Gy,). From the estimates

)

of I to 14, we have

[N (u) — N(U)HC([O,T*];G;;) < C(fJu— UHC’([O,T*};GTL)) — 0. (2.3.19)

Finally, we obtain

1K (u) = K()ll o960
< ||M_1H£(G;,Gn) T ||N(u) — N(”)“c([o,T*];G;;)

< Cllu = vlleqoran) = 0,

which implies that K(-) is continuous on A« g.
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Now we prove that K(Az« ) is precompact. Given any v € K(Az- ) and ¢t € [0,77],

there exists u € Ap« g such that v = Ku. From (2.3.15), we have
[vllg, (£) = | Kullg, (t) < [laollg, + C(R)T™

Thus, the set {v(t) : v € K(Ar-r)} C G, is precompact since it is bounded and G, is
finite dimensional. From (2.3.14), the functions in K (A« g) are equicontinuous. Thus, from
proposition 2.2.2, K(Az- ) is precompact. Since Ap- g is already bounded, the operator K
maps all the bounded subsets of Ap- g into precompact sets. Thus, from definition 2.2.4, we
obtain that K is a compact operator.

It remains to verify the properties of the set Aps g in C([0,T%]; G,,). Since u(t) =0 is in
Ap« g, the set is non-empty. From the definition of Ay g, we know it is closed and bounded.

For the convexity of A« g, picking any v and v in Ay« g and any 0 < 6 < 1, we have

1w+ (1 =0)vllg, (t) <O lullg, @)+ (1 =0)[v]g, () < R

Thus, Ap- p is convex.

From theorem 2.2.2, there exists a solution u,(t) € C([0,7*]; G},). Replacing the initial
value ug by u(7T™*) and repeating the steps above, we can increase the value of T*. Currently,
we can only guarantee that there will be a limit when we increase 7. Thus, the maximum
interval would be either [0,7*) or [0,T], where T* < T. When T* is excluded from the
interval, it actually means the solution will go to infinity when ¢ is approaching T™. This

will not happen in our problem, as shown in the following section.

2.3.6 Extending the solution to [0, 7]

Assuming that T* < T', we derive a contradiction using the energy estimate. For each
fixed n, we need to prove that supy 7 [unllg, < C, which is equivalent to supjy 7y [[ual| 2 < C.
Since u,, is the solution of the approximate equation, we take the derivative of (2.3.4) with
respect to the variable ¢. Substituting n with w,(¢), and using (2.8) in [1], we obtain

1d

d
57 |22 + K VXl ey + (Bu @ B, Vun)a + 2(v(xn) Dttn, Dt ) = 0. (2.3.20)
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Integrating from 0 to ¢, we have

1 t
5 un @172 + #5190 (8) | ange) +/ (Bn ® Bn, Vug)ads
0 (2.3.21)

t
1
+2 [ 00D DunJads = 5 ol + 51930l -
0

For each w,, the solution operator B(-) gives us a weak solution of (2.1.2). Thus, by testing

(2.1.2) with ¢ = B,, on Q x [0, t], we obtain

1 1 t t
) ||Bn(t)||i2(9) ) ||BO||i2(Q) - /0 (Bn ® By, Vun)ods + ‘7/0 HVBnHi2(§2) =0. (2.3.22)

Using the same argument as in the energy estimate, for some ¢ > 0, we have

1 1 t
S 20y + 5 1Ba®)72) + £ 1V X O | pyey + 0/ IVt ()17 s
2 2 0 (2.3.23)

t
2 1 2 1 2
+0 [ IVB6) ey ds < 5 ol ooy + 5 Dol + 51 V00l = Fo

for any ¢ € [0,7*]. Thus, supjg 7+ [[un(t)[lg, < supjrC ||un(t)||L2(Q) <C.

From the ODE theory, we know that if the maximum interval of a solution is [0,7™),
then the solution must blow up at 7. We will use the same argument. Picking an increasing
sequence t,, € [0, T*) such that t,, — T™*, we consider the sequence {u,,(t,,)}°_; C G,. Since
supjo 1) |unllg, () < C and dimG,, < oo, we can find a subsequence, still denoted by ¢,,, such
that u,(t,,) — a € G, as m — oco. We only need to prove that lim; 7« [[u,(t) — all, = 0.
Then the solution wu,(t) can be continuously extended to [0,7*]. Using the Schauder fixed
point theorem again, with 7™ being the new initial time, we will get a contradiction. It
then follows that 7* = T. Now we assume that lim; ,p u,(t) # a, then there exists an
g0 > 0, such that for all 6 > 0, there exists T* —§ < s < T*, such that ||u,(s) — all, > 0.
Meanwhile, there exists an m, such that T* — 0 < ¢, < T* and |lu,(t,) —allg, < €0/2.

Thus, we obtain

[un(s) — un(tm)HGn > |Jun(s) — aHGn — Jun(tm) — aHGn > g0/2.
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Recall that

S

fin(e) = unttnl, = |7 [ NG )

m

< |m / Nl

< Cls — t,] < C6.

Let 0 be small enough such that Cd < £y/2, then we get a contradiction. Thus, ||u,(t) — all, —
Oast —T".

Consequently, we have found a solution u,, € C([0,T]; G,,). Using the solution operators,
we obtain the corresponding B, := B(u,) and X, := x(u,). The energy inequality

1 1
2 a3y + 5 1Ba (Ol 220y + 5 19500 g

2 2
+e[Vunllz2 o2y + o IV Ballzzomr2) < Eo

(2.3.24)

holds for all ¢ € [0, 7.

2.4 Passing the Limit

In this section, we study the limits of u,, B, and x,. Recall that
un € C([0,T);Gn),  Ba € L*([0,T]; Hy(Q)) N L2([0,T]; L*(Q)),  xa € L=([0,T]; BV(Q)),
and divu,, = divB,, = 0. From the energy inequality (2.3.24), we have the following estimates:

HunHLoo (o112 = V2E0,

|| 2 ([0,77; Hl(Q)) 2T Ey + Ey/c,
1Bl oo o,13:12(0)) < V 2E0,

| By, ”L2 (0.T1:HL () = 2T Ey + Ey/o,
Ey/k,

||Xn||Loo([o,T];BV(Q)) < Q[ + Eo/~.

(2.4.1)

| /\

IV Xn HL°°([O,T];M(Q)

27



2.4.1 Limits of u,, B, and Yy,
From the embedding theorems, we have
M(Q) — H3(Q).
From the estimates in (2.4.1) and the Banach-Alaoglu theorem (see [6]), we have

u, —*u in L>([0,T]; L*(Q)),

)
u, —v in L*([0,T]; Hy(2)),
B, —=* B in L>([0,T]; L*(2)),
B, — G in L*([0,T]; Hy(Q)),

Xn =" x in L([0,TT; L=(R2)),
Vxn =" ¢ in L®([0,T]; H(Q)),

for suitable subsequences.
In order to pass the limit in nonlinear terms, we need to obtain stronger convergence

properties of u,. We begin by showing an improved version of lemma A.3 in [13].

Lemma 2.4.1. Let Q C R? be bounded. Suppose that u, —* w in L*>([0,T]; L*(?)), and for
sup

any ¢ € H(Q),
/ungodx—/ugodx
telo,1] |.Ja Q

Then we have u, — u in C([0,T];V*(Q2)).

0. (2.4.2)

Proof. Assume that u, do not converge to u in C°([0,T]; V*), then there exists g > 0 and

t, € [0,T], such that

|un — ullye (tn) > €. (2.4.3)
Thus, there exist ¢, € V() with ||, ||y = 1, such that

[t o) (ta) = (1, 00} (E0)| > =, (2.4.4)
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where (-,-) denotes the dual pair on a space and its dual. Since ¢, € V = HN H] and
H} —— L? there exists ¢ € L*(Q) such that p, — ¢ in L*(Q). Using the fact that

HQOnHHé(Q) < C, we can obtain ¢ € V(£2). Now we have

sup [(un — u, on)| < sup [(up —u, o — 9)| + sup [{u, —u, )] (2.4.5)
t€[0,T] t€[0,T] t€[0,T]

The first term on the right-hand side goes to 0 since u,, and u are bounded in L>([0, T]; L*(£2)),
and ¢, — ¢ in L*(); the second term goes to 0 by the condition (2.4.2) of this lemma.
This contradicts with (2.4.4), which completes the proof. H

In order to use the lemma above, we still need to verify (2.4.2). We recall that elements
n; form an orthonormal basis of H(Q2) and an orthogonal basis of V(§2). Let n be a finite

linear combination of 7;. For all sufficiently large n, the Galerkin approximate equations

¢ ¢
/un(t)n—/uon://un®un:Vn—//Bn®Bn:Vn
Q Q 0o Jo 0o Jo
¢ ¢
—//V(Xn)Dun:Dn—/-@//PT:Vnd\Vxn!-
0o Jao 0o Ja

all hold for this . Considering the terms f,(t) := [, u,(t)ndz, we claim that f, have a

(2.4.6)

uniformly convergent subsequence. First, we prove that f,(¢) are equicontinuous. Given

0 <s<t<T. Since 7 is fixed, from (2.4.6) we have

t
[fa(t) = fu(s)] < C/ [unll7> + 1Ball72 + IVt 1+ 1V Xl oq

2 82 r 2.4.7
< (||un”LooL2 + ||B7LHL°0L2 + ||vXnHL°°M) |t — s +/0 X[s,t] HvunHLl (2.4.7)

<Clt—s|+CVt—s,

which implies that f, is equicontinuous on [0,7]. By letting s = 0 we can show that f, is
uniformly bounded. Thus, by the Arzela-Ascoli theorem, there exists a subsequence, still

denoted by f,, such that
sup | fu(t) —g(t)] = 0 (2.4.8)

t€[0,T]

for some g(t) € C[0,T], as n — oo.
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We recall that u,, — w in L*([0,T]; H}(2)). Now we want to show that

9= /Q un (2.4.9)

almost everywhere on [0,7]. Given any ¢ € L?[0,T]. Since ny € L*([0,T]; L*(Q2)) and
U, —* win L>([0,T]; L*(Q)), we have

T T T
/ fngodt:/ /unngod:cdt—>/ /ungpdmdt, (2.4.10)
0 0o Ja o Ja

which implies that f, — [, un weakly in L*[0,7T]. Since f, — g in C[0,T], we also have
fn — g weakly in L?[0, T, which proves (2.4.9).

Now we prove that (2.4.2) holds for all ¢ € H(2). Picking 7, using the argument above
we can find a subsequence of u,, denoted by wy,, such that fQ U — fQ um in C[0,T].
Now picking 72 and using the same argument, we can obtain a subsequence of uy,, denoted
by wg,, such that fQ UopMy — fQ une in C[0,T]. Repeating these steps we can obtain w,,,
for any m,n € N. Notice that for each m, the sequence u,,, is a subsequence of u,,, after

finitely many terms. Thus, the convergence

Q

holds for any k£ € N. The argument in (2.4.2) then follows the fact that {n,n,---} is a
basis of H(£2).

—0 (2.4.11)

lim sup
=00 t¢[0,T]

Now we estimate 0;B,,. Picking ¢ € C°(Q2) with dive = 0, we have
/ OBnp =1 + I + I3,
Q
where

[1 = / UnVBnSO,
Q

I, = / B,Vu,p,
Q

Igza/VBn:Vgo.
Q
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The estimates are given as the following;:

1 1

112 < Nunll oy 19 Bull ey Ills0y < € 22y NuallZ o 1 Ball g o Il
1 1

L] < ||Bn”L3(Q) ||vun||L2(Q) HSOHLG(Q) <C |’Bn||z2(g) ||Bn||?13(g) ||“n||H3(Q) ||S0HH01(Q) )

3] < CIVBall 20y 1V@lli2@) < CliBall o) 191l e -

Thus, we have

1 1
10:Bull =10 < C lltallZaqey ey ) 1 Bal g
1 1
O |1Bul 2y 1Ball 2oy ltnll iy oy + € 1Bullmy -

Integrating with respect to ¢, we obtain

T 1 T 1
0By < Ol ooy [ Ty 15l

1 T 1
+C HBn”iwqo,T];LQ(ﬂ))/o 1Ball 73 lnll g @y @t + C I Ball 1 o,y )

1 1
<C ”unH[Q,OO([QT};L?(Q)) ”un||[2/2([[)7T];Hé(Q)) HBHHLQ([O,T];H(}(Q))
1 1
+ ClBull 2o o,71,22 0 1Bl 220 1 ) 1l 2o,y ey + C 1 Bull oo ryimg e -
Thus, [|0:Bull11o75-1()) < C- By the Aubin-Lions lemma, we can find a suitable sub-

sequence, still denoted by B,, such that B, — K strongly in L?([0,T]; L*(Q2)) for some

K € L*([0,T]; L*(2)). We can prove the uniqueness of limits using the following argument.
Proposition 2.4.1. For the strong and weak limits B, G and K of B,,, we have B =G = K.
Proof. Since L*([0,T); H}(Q)) C L*([0,T); L*(Q)), B, — G in L*([0,T]; H}(Q)) implies
that B, — G in L*([0,T]; L*(2)). By the uniqueness of the limit, we have G = K. Since
L>=([0,T); L*(2)) € L3([0,T); L*(?)), B, —* B in L>([0,T]; L*(Q?)) implies that B, —* B
in L2([0,T]; L*(2)). Similarly to the first step, we have B = K. Thus, B=G = K. O
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We now consider the transport equation Oy, + u, - Vx, = 0. For ¢ € C(£2), we have

/ atXnSD
Q

Thus, [[0:Xnll-10) < [ltnll12(q). Which implies that

= }/QXnun ' VSO‘ < |lunll 2 ||90||H5(Q)-

”8tXnHL2([0,T};H—1(Q)) < HunHm([o,T};Hg(Q)) <C

Therefore, using the same argument as in [1], Section 5.2, we can find a suitable subsequence,
still denoted by x,, such that x, — x strongly in L?([0,T]; L*(Q2)). Now we prove that
¢ = Vx in the weak sense. For almost every ¢t € [0,7] and ¢ € C2°(€2), we have

/ Xndivpdr = — / @ -dVxn
Q Q

for any n. Since divp € L'(Q), we have

/an(t)divgod:v—>/Qx(t)divg0da:,
o avnt — [ ot

which implies that Vy = ¢ for almost every t € [0, T.

Therefore, we finally obtain

u, —*u in L>([0,T); L*(2)),
w, —u in L*([0,T]; Hy (),
u, — u in C([0,T]; V*(£2)),
B, —=* B in L>=([0,T]; L*(Q))

B, — B in L*([0,T); H} (%)),
B, — B in L*([0,T]; L*(Q2)),
J; L(2)),

Xn =" x in L>([0,T]; L
0,7 H73()),

(
Vxn =" Vx in L™(]

Xn — X in L*([0,T]; L*()).
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2.4.2 Varifold limit of H,,

Since we cannot pass the limit directly when dealing with H, , we will represent them
with varifolds, and then consider the weak limit of the varifolds. Recall that I'y(t) :=
X, (t,Tp), where ['y = 02f. Using the same argument as in [1], we consider the varifold

Vi (t) corresponding to I'y(t), i.e.

Vi(t). ) = / o (i (t,2)) d [V

for any ¢ € Co(Q x S?), where ny(t,z) := Vxi(t,x)/ |Vxi(t, )|. Since

[(Vi(@), @) < IVxr(®)l| a1l coans2y -

we have
V() lmaxszy < 1Vl pqy -

Now for all ¢ € L'([0,T]; Co(Q x S?)), we define

(Vi) = / / o (1, 2t 2)) d |V xi ()] .

Then we have
HVkHL%([O,T];M(QXgQ)) < Hvxk|’L&°([07T];M(Q))‘

Since Vj is bounded in LX([0, T]; M(Q x S?) and M(Q x S?) — H3(Q2 x §?), by the same
argument as in [1], there exists V € L([0,T]; M(Q x S?)), such that

Vi ="V in L(]0, T); H3(Q x S?)).
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For ¢ € C°([0,T) x Q), letting p(x, s,t) = dive) — s ® s : Vi), we have ¢ € LY([0, T]; Co( x

S?)). The regularity of ni(z) := —Vxi/|Vxx| is guaranteed since Vy;, are approximating
solutions. Thus, we have

T
/ (Hy,),1(1)) = /O /QPT : Vpd |V dt
:/ /Q(divw — N @ Ny : VQ/J)C“VXIJ dt
0
T
:/ / (divy) — s ® s : Vp)dVidt (2.4.12)
0 OxS?
T
—>/ / (divw —5®s: V;D)dth
0 QxS?
T
- / BV (1), 0(1)) dt

as k — oo. Letting p(z, s,t) = si(x,t), we have

T
/ (Vxe, ¥ / / V- npdH2dt
{xk= 1}
T
/ /1/) nd |V x| dt = / P - sdVdt.
0 OxS2?

Since Vy —* Vx in L®([0,T]; H3(Q)) and V, —=* V in L=([0,T]; H3(Q x S?)), we have

/OT (Vi ) ﬁ/OT (Vx4

T T
/ Wb - sdVidt — / b - sdVdt.
0 OxS2? 0 OxS?

Therefore, using the fact that C'2°(€2) is dense in Cy(£2), the equation

b sdV = — / bdVy. (2.4.13)
OxS? Q

holds for all ¥ € Cy(R2).
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2.4.3 Passing the limit

The weak formula represented by the varifolds is

(atum (p)QT - (un ) Up, VQO)QT + (Bn ® an V@)QT
T
20 (6) D Dy + 5 [ (BVa®). p(0) dt =0
0

where ¢ € C2°([0,T) x Q) and divep = 0. We have

T
/ /(un@)un—u@u):Vgp‘
o Jao

T T
/ /un®(un—u):V<p’+/ /(un—u)®u:Vg0‘::11+Ig.
o Ja o Ja

In I, the integrand equals to (u, — u) - (u,V¢). Since w, and ¢ are smooth, by direct

(2.4.14)
<

calculation we have div(u,V¢) = 0, which implies v,V € V(Q). Recall that |-||y, := H“Hé
and w,, is bounded in L*([0,T7; H(£2)), so we have

T
IL— / (i — 11, D)oy < [Jtn = tll ooy 1Vl 1o
0

(2.4.15)
< Clun — ull ooy ”unvSOHLQHg — 0.
The second term goes to 0 since u,, — u weakly in L*([0,T]; H}) and uVy € L*([0,T]; H}).
For the term (B, ® By, V¢)g,, we have

T
/ /Bn®Bn:V<p—B®B:Vgodxdt
0o Ja

< HB7L||L2(QT) 1B — B||L2(QT) ||VSDHL00(QT) + HB||L2(QT) 1B — B||L2(QT) HVSDHLoo(QT) )

which converges to 0. For the viscosity term, we have

|(V(Xn)Dum D@)QT - (V(X)Du7 D¢)QT|

/OT/Q (XnvDuy, + (1 — xu)v ™ Duy,) :D@_/OT/Q (xv* Du + (1 — )v~Du) :Dgp'

<v*

T T
/ /XnDUn :Dgp—xDu:Dgp‘le/_ / /(1—Xn)Dun:D@—(l—x)Du:Dgp‘.
0o Jo 0o Ja
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We only need to show the convergence of the first term, since the second term can be shown

by the same argument. For the first term, we have

XnDuy, : Dp — xDu : Dy
Q

0
T
S/ /|Xn—X||DUn||DSO|+ /Dun' xDy) — / /Du chp‘
0 Q

Since u, — w in L*([0,T]; H3(Q)) and ¢ € C>([0,T) x ), we have Du, — Du in
L3([0,T]; L*(Q2)) and xDy € L*([0,T); L*(Q2)). Thus, the second term goes to 0. Since
| Duy||Dy| € L*([0,T]; L*(£2)) and x,, — x strongly in L*([0, T]; L*(12)), we have

(2.4.16)

T
/0 / e — X|| D] | D] < C llxn — Xl g2g2 — O,

which finishes the proof.

For the transport equation,

(X0, 2(z,0))0 + (Xn, 0:0)Qr + (Xn, Un - V)qr =0.

Since dyp € L*([0,T); L*(2)), we have (xn,0ip)or — (X, Dp)oy. For the third term, we

T T
xnun-Vso—/ /XU'VSO‘
Q 0 Q

0
T T T T
xnun-Vso—/ /Xnu-VsO‘+ xnu-Vso—/ /XU'VSO‘
Q 0 Q Q 0 Q

< ||Xn||L2(QT) [wn — U||L2(QT) ||VS0||LOO(QT) + lIxn — X||L2(QT) ||U'||L2(QT) ||V90||L00(QT) )

have

which goes to 0 as n — oo.

From Section 2.4.2, we have proved that

/0<5v dt—>/ 5V (t

Therefore, by letting n — oo, we obtain

= (u0, 9(0))a = (4, 0p)or — (W@ u, Vp)o, + (B® B, Vp)q,

200D Dy + [ (V). p(0)) dt =0
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for all ¢ € C°([0,T) x Q) with div = 0. From (2.4.13), we have

@D-st:—/@Dde
Q

OxS2?

for all » € Cy(€2). From proposition 2.2 in [1], x is the unique renormalized solution of

odhx+u-Vxy=0 in Qr,

Xlt=0 = xo in Q.

[t remains to prove that (u, B, x, V') satisfies the generalized energy inequality. Since u,, — u,
B, — Bin L*([0,T]; L*(9)). For suitable subsequences, we have u,(t) — u(t), B,(t) — B(t)
in L?(Q2) for almost every ¢ € [0,7]. From theorem 1.1.1 in [7], we have

)l < Y it (6] 2.

1B 2 < lim inf | Bo(t)]

In Section 2.4.2 we have proved ||V, ()| vyqxs2) < VX ()| pg)- Given any ¢ € Co(€2), we

have
/ <pdV(t)‘: i [ godvn@)'snminfusouman<t>|rM(M2>
QXS2 n—oo QXSQ n—oo
S
< tim nf [ 19500y -
Thus,

IV )l adgaeey < Timinf [V50(0)l] e
Since VB,, — VB in L*([0,T]; L*(Q)). For all t € [0,T], we still have VB, — VB in
L2([0,t]; L*(Q)). Thus, . )
[ 9Bt < tmint [ 1951
For the viscosity term, notice that
fu i= (v(n) Dty = v(x) D) : (Dt — D)

= (xa" + (1 = xa)v") |Duy, — Dul* > 0.
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From Du,, — Du in L*([0,T]; L*(Q)), we have

t
| [#r=c
0 Ja
Thus, using Fatou’s lemma, we obtain

t t
OS/ /liminffngliminf/ /fn
t t
= liminf/ /V(Xn)Dun : Du,, + lim / /—V(Xn)Dun : Du
t t
+ lim / /—V(Xn)Du : Du, + lim / /V(Xn)Du : Du
n—oo n—oo
= lim inf/ / v(xn)Duy, : Du, — / / )Du : Du.
n—oo

This is because (2.4.16) yields x,,Du,, — xDu in L*([0,T]; L*(£2)), which implies that

¢
lim//—y(xn)Dun. u = hm/ /—u Xn)Du : Du,
n—oo n—oo

// )Du : Du.

Since |Du|* € L*([0,T]; L*(Q)) and x,, —=* x in L=([0,T]; L°(2)), we have

lim// (xn)Du : Du—// )Du : Du.
n—oo

Thus, the lower-semicontinuity in (2.4.17) has been proved.

Recall that (2.3.21) and (2.3.22) give us

(2.4.17)

1 1 ¢
3 @+ 5 B0l + 51V e +2 [ [ (06) Dt s Dutdads
0 7% (2.4.18)

t 1 1
2 2 2
t+o / IV Balljz ds < 5 lluol72 + 5 |1 BollZz + 5 [V xolly -

Taking the liminf on (2.4.18), and using the fact that lim inf a,, +liminf b,, < liminf(a, +b,),

we finally obtain

1
3 IOl + 5 1B+ 1V Oy +2 | [ 00D Dudads
(2.4.19)

vo [ 19B1ads < 3 ol + 3 1ol + 51901
0

which finishes the proof of the energy inequality.
Therefore, we have finished the proof of theorem 2.1.1.
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3.0 Existence of Strong Solutions to the Two-Phase MHD Equations

3.1 Introduction and Main Results

In this chapter, we study the existence of strong solutions to the two-phase magnetohy-
drodynamic (MHD) equations. The two immiscible fluids are incompressible, viscous and
resistive. They occupy an open, bounded, simply connected C* domain . The positions
of the inner and outer fluids are represented by open sets Q7 (¢) and Q7 (¢) respectively, and
the fluid-fluid interface is denoted by the set I'(¢). These three sets are disjoint and we have
Q) UT () UQ (t) = Q. In this work we assume that I'(¢) and Q1 (¢) do not touch the

boundary 0f). We consider the following equations:

ou+ (u-Vu—(Vx B)x B+Vp—vEAu=0 inQ\I(t), (3.1.1)
B -V x(uxB)+Vx(6VxB)=0 in(, (3.1.2)

divu =0 in Q\I'(¢), (3.1.3)

divB=0 inQ, (3.1.4)

- [{QViDu — p[]] n=xHn onl(t), (3.1.5)

Ve=u-n onl(t), (3.1.6)

ulpa =0, Blaa =0, (3.1.7)

uli=o = uo, Bli=o = Bo. (3.1.8)

The terms u, B and p stand for the velocity, magnetic field and pressure. The density of
both fluids is assumed to be equal to 1 everywhere and the magnetic diffusion coefficient o
remains a constant. The viscosity coefficient v takes different constant values v* and v~
in two fluids, which is sometimes written as v(y) to emphasize its dependency on the fluid
position. The indicator function x := xq+() expresses the position of the internal fluid. The
surface tension coefficient is k > 0. The mean curvature of the interface is H. The outward

(pointing to 0€2) normal vector and the speed of the interface are denoted by n and Vr. The
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term Du := (Vu + Vu')/2 stands for the strain rate tensor. The notation [f] stands for
the jump of f across the interface I, i.e. for all £ > 0 and all x € T'(¢),

[/1(2) = lim f(z+en() — lim f(z— en(a));

e—0t

when f does not have enough continuity, its one-side limits at I'(¢) are considered in the

sense of trace. For more details about this model, we refer to [1,10,14].

3.1.1 Related research

When the magnetic field vanishes, the problem turns into the two-phase Navier-Stokes
equations. In [27], Priiss and Simonett studied the problem in R™*! where the interface
can be expressed as the graph of a function defined on R™. For any time interval, if the
initial values satisfy some smallness conditions (dependent on the time interval), then the
unique strong solution exists. In [28] also by Priiss and Simonett, a different type of existence
theory is obtained. The smallness condition in [28] is only required for the initial interface,
which implies the local existence of the solution. The same equations have been studied in
a bounded domain by Kéhne, Priiss and Wilke in [15]. Moreover, Abels and Wilke have
studied the two-phase Navier—Stokes-Mullins—Sekerka system in [2].

There is also much research on global solutions to two-phase flows with surface tension
considered. In [25], Plotnikov has studied the two-phase Navier-Stokes equations for incom-
pressible non-Newtonian fluids in R%2. The case of incompressible non-Newtonian fluids in
R? has been studied by Abels in [1]. In [40], Yeressian has studied the case of Newtonian
fluids in R3. The weak-strong uniqueness of strong solutions and varifold solutions to the
two-phase incompressible Navier-Stokes equations has been studied by Fischer and Hensel

in [10].

3.1.2 Main results

Based on the settings in [15], we give the definition of strong solutions to the two-phase

MHD equations.
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Definition 3.1.1 (Strong solution). Let ¢ > 1 be a fixed number. Let ug € W27§’q(§2 \ o)
and By € W%%’q(Q) with Ty a W3 29 surface in Q. We call (u, B,p,I') a strong solution
to the two-phase MHD equations (3.1.1)-(3.1.8) on [0, 77 if:

1. we Wh([0,T]; L1(Q)) N LY([0, T]; W24(Q\ T(¢))) N C([0,T] x Q);

2. B e Wh([0,T]; L9(Q)) 1 LA([0, T]; W>1(42));

3. pe LU[0,T); Wh(Q\ T(t)));

4. T(t) is the graph of a height function h on some C? reference surface 3 and h €
W2 204([0, T); L)) N Wha([0, T); W a4(2)) N L([0, T]; W a4(S)) ie. T(t) = {z +
h(t,z)n(x) : x € ¥},

5. There exists a function p € W%i’q([O,T];Lq(Z)) N Lq([O,T];Wlﬁ’q(E)) such that
[p] (t,x + h(t,x)ns(z)) = p(t, z) almost everywhere on [0, 7] x X;

6. For almost every ¢ € [0, 7], the equations (3.1.1)-(3.1.8) are satisfied almost everywhere
on Q or I'(t).

When the initial interface I'y is smooth enough, we have the following result on existence.

Theorem 3.1.1. Let ¢ > 5 be a fized number and Q be a bounded C? domain. Given initial
value
uy € W 09UQ\Ty) N C(Q), Bye W 094Q), and T,e C3,
which satisfies the following compatibility conditions:
1. divug =0 in Q\ Ty, divBy = 0 in §;
2. ug= By=0 on 08;
3. Ty is a closed interface and T'y N 0N = (.
4. (I —np, @ nr,) [v* (Vuo + Vg )] nr, = 0;
Then there exists T > 0 such that the original problem (3.1.1) - (3.1.8) has a unique strong
solution on [0,T]. The reference surface ¥ =T.

When the initial interface has less regularity, we have the following result.

Theorem 3.1.2. Let ¢ > 5 be a fized number and Q be a bounded C® domain. Let X
be an arbitrary closed C* surface in Q such that ¥ N OQ = 0. For all My > 0, there

exists £o(X, My) > 0, such that for all admissible initial value (ug, By,To) in Definition
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3.1.1 wzth ||U()||VV2 < Mo, ||BO|IW2 < M(), ||u0||oo S M(),

@) = gy S Mos ol <
|Bolloe < Mo, and [|hol|czisy < €0, there exists T(X, Mo,e0) > 0, such that the problem
(3.1.1) - (3.1.8) has a unique strong solution on [0,T]. Here hy denotes the height function

of Ty on the reference surface 3.

The main difficulty of this work comes from the coupling of fluid equations and magnetic
equations, which changes the structure of both the principal part and the nonlinear part of
the transformed two-phase Navier-Stokes equations in e.g. [15]. The new principal part is
divided into two parts: the two-phase Stokes equations and the parabolic equations. Using
the maximal regularity theory of these two problems, we obtain a solution operator for the
principal part of the two-phase MHD equations. The remaining nonlinear terms and lower-
order terms are carefully estimated. A contraction mapping is then constructed and the
equation is solved by finding the fixed point of the contraction mapping.

We will organize this chapter as follows. In Section 3.2, we review some basic background
knowledge. In Section 3.3, we use the Hanzawa transformation to transform the free-interface
problem into a fixed-interface problem. The new equations will be separated into the linear
(principal) part and the nonlinear part. In Section 3.4, we study the solvability of the
linear part. Then we express the nonlinear part using an operator and estimate its Fréchet

derivative in Section 3.5. Finally, we prove the main theorem in Section 3.6.

3.2 Preliminary

3.2.1 Notations

In complicated formulas, we use | - ] to denote the values of variables, e.g. we use f [g(2)]

to express (f o g)(x).

The gradient V f of a scalar function f is considered as a column vector by default.
When f is a vector-valued function, the gradient of each entry is viewed as a column vector

in the matrix by default, i.e. (Vf);; := 0;f;. Notice that it then implies the formula
V(feog)=(Vg)((Vf)og).
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We denote the r-neighborhood of a point x by B(x;r). For a set A, we define

B(A;r) = U B(x;r).

T€A

For a function f, we define

74) = fla).

€A
Since the viscosity coefficient v remains a constant in each fluid, we may use notations

* or simply v in formulas. We remind readers that v is discontinuous at the interface.

v(x), v
To simplify statements, we write a < b if a < Cb for some constant C' > 0 which is
independent of any parameter.
We will frequently use the symmetric gradient DF := (VF + VF T) /2 for vector-valued
functions.

The projection matrix on a surface S is denoted by Pg := I — ng ® ng, where ng is the

normal vector of S.

3.2.2 Function spaces
3.2.2.1 Continuous and differentiable functions

In this problem, we mainly consider two types of domains in R?: a bounded, open, 3-
dimensional domain €; and a closed, 2-dimensional surface ¥. We say ¥ is C¥ if it can be
locally parameterized using C* functions. We say € is a C* domain if its boundary 02 is a
C* surface.

Let f be a function from [0,7] to a Banach space X. For any ¢y, € [0,T], we say f is

continuous at tg if

lim |[f(t) — f(to)l x = 0.

t—to

If f is continuous on [0, 7] then we say f € C([0,T]; X). We say g(ty) € X is the derivative

of f at ty if
f{t) = f(to)
t— 1

lim =0.
t—to

—g(to)
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If f has a continuous derivative g € C([0,T]; X), then we say f € C'([0,T]; X). Similarly,
we can define the space C*([0,T]; X) for k € Z, k > 0. We will frequently use the special
case that X = C™(Q2) and X = C™(X) for m € Z, m > 0.

Remark 3.2.1. For vector-valued or matrix-valued functions in spaces C*([0,T]; C™(f2)) or
Ck([0,T]; C™(%)), we define their norms by taking the C*([0,T]; C™) norm of each entry

and then taking the vector norm or the matrix norm.

3.2.2.2 Lebesgue and Sobolev spaces

We will use [f]1, to abbreviate ||£]l o .z @y 11z qo sy 11 (@) 08 11l esy.

depending on context.
Let Q@ C R". Given s € (0,1) and g € [1,00), we say a function f is in the fractional
Sobolev space W#4(Q) if

[ sy = 1l za) + [flwsa@) < oo

where | f]Wsﬁq(Q) is the Gagliardo seminorm defined as

[flwsag) = (/ﬂ/ﬂ%d(yw);.

For a Banach-space-valued function, i.e. f : [0,7] — X where X is a Banach space, the

Gagliardo seminorm is defined as

Flsey = (// I/ (= y|n+sq”Xd d) |

which enables us to define the space W*4(]0,T]; X). When s € (0,400) \ Z, the Sobolev

norm is defined as
Hf”Ws,q(Q) = Hf”stJ,q(Q) + [f]WS—LSJ«Q(Q) .

For a compact hypersurface 3 in R", the Sobolev space W*4(¥) can be defined similarly

since ¥ can be locally mapped to Euclidean spaces.
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3.2.3 Calculus on surfaces

Let f be a function defined in an open domain 2 C R™. Let X be a hypersurface in 2
whose normal vector field is denoted by n. For all = € 3, the surface gradient Vy f is defined
as

Vef=Vf—(n -Vfin=(I—-n®n)Vf
which is the projection of V f onto T,3. If F is a vector-valued function, then we can define
the surface divergence by
divg F := tr(VgF).
Thus, we can also define the Laplace-Beltrami operator Ay by

Azf = din sz

In fact, the surface derivatives only depend on the value of the function on ¥, which is
discussed in e.g. [5, Remark 7.26].

Using the surface gradient Vgny of the normal vector field ny, the Weingarten tensor
of ¥ is defined as Ly, := —Vyxnsy, which is a matrix-valued function defined on Y. For each
xr € X, we have Lyny, = 0; and Ly is an isomorphism on T,3. The principal curvatures
of ¥ at = are eigenvalues of Ly [z] . The mean curvature Hy [z] can be represented as
Hy [x] = trLy [z].

For more details on the calculus on surfaces, we refer to [5,19].

3.2.4 Nearest point projection

For the reader’s convenience, we restate the theorem of nearest point projection in [34,

Section 2.12.3] with some modification.

Theorem 3.2.1. Let Y be a compact, (m—1)-dimensional, C* manifold in R™. There exists
00(X) > 0 and a C*=* projection mapping 11 : B(3; 00) — %, such that for all x € B(X; 09):
1. x— H(.CE) 1 Tn(x)Z 5

2. dist(z,X) = |z — (x)|;

3. forally € ¥ and y # x we have dist(z,X) < |z — y;

4. forally € X and X € (0, 00), I(y + An(y)) = vy.
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3.2.5 Fréchet derivative

In this problem, we need to frequently study the derivatives of operators, which are called
Fréchet derivatives. Given Banach spaces X and Y and an operator F' : X — Y. Suppose
that for z € X there exists a linear operator A : X — Y such that

1mlﬂﬂx+m—P@9—Awy
(= 1Al x

— 0, (3.2.1)

then we say that F' is Fréchet differentiable at x. The linear operator A is called the Fréchet
derivative of F' at x and is denoted by DF(z).

Suppose that DF exists in an open neighborhood U of z € X, then we have an operator
DF : U — L(X;Y) and the second derivative D*F at x can be defined using the same way.
Notice that D*F(z) € L£(X;L(X;Y)). Similarly, we can obtain the n-th derivative D"F.
The space

LX;L(X;---L(X;Y))) (3.2.2)

is equal to the space of multilinear operators
L)X x - x X;Y), (3.2.3)

which is usually abbreviated to £M™ (X" Y).

The product rule and chain rule are still valid for Fréchet derivatives. Given F : X — Y]
and G : X — Y,5. Suppose that the product is well-defined, i.e. there exists a bilinear
mapping Y7 X Yo — Z which is called the “product”. Then the value of D(FG) at x € X is
a linear mapping, i.e. D(FG) [z] € L(X; Z), such that for each h € X we have

D(FG) 2] h = (DF [2] h) (G [2]) + (F [2]) (DG [z] ) . (3.2.4)

Given F': X — Y and G : Y — Z, the Fréchet derivative of Go F': X — Z at an arbitrary
x € X is a linear operator D(G o F)[z] € L(X; Z). For all h € X we have

D(G o F)[z] h = DG [F(z)] (DF [z] h). (3.2.5)

The proofs of these properties can be found in [41, Section 4.3].
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3.3 Transformation of the Problem

In this section, we apply the Hanzawa transformation to the original equations (3.1.1) -
(3.1.8). This allows us to turn the free-interface problem into a fixed-interface problem. We

refer to [15,29] for more details about this method.

3.3.1 Representation of the free interface

The key point of this part is to represent the free interface I'(¢) using a fixed reference
surface and a height function. This method is called normal parameterization.

By the assumption that I'y is a W34 surface and q > 5, we obtain that 'y is a C?
manifold. From [29, Section 2.3], we know that for all sufficiently small ¢, there exists an

analytic manifold 3 and a function hy € C?(X), such that
Lo ={z+ho(z)ns(z) :x € X} and  [|hollczx) <& (3.3.1)

By the theory of nearest point projection introduced in Section 3.2, there exists a tubular

neighborhood B(X; gg), such that the mapping

Az, r) =2+ rng(x) (3.3.2)
is a diffeomorphism from > x (—pgp, 00) to B(X; 09). Its inverse mapping is

A (z) = ((z), d(z)), (3.3.3)

where II(z) is the projection of z onto ¥, and d(z) is the signed distance between z and X,
where the positive direction of ¥ is defined to have the same direction as the exterior normal
vector ny.

Since there is a positive distance between 'y and 0f2, we may let gy be sufficiently small
such that B(X;00) € €. By replacing r with a height function h : 3 — (=09, 00), the
mapping A(z, h(z)) := x + h(z)ng(z) defines a surface in B(3; gp).
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For every height function h, we can define a diffeomorphism in €2 using the same idea as

in [15]. We define

z +n(d(x)/00)h(I(x))ns(l(x)), = € B(X; o),
On(z) := (3.3.4)
z, z ¢ B(%; 00)-
where 7 is a smooth cut-off function on R such that 0 < n < 1; n(s) = 1 when |s| < 1/3,
and 7n(s) = 0 when |s| > 2/3. Notice that the cutoff function can be ignored in the set

B(S;0) with o:= %. (3.3.5)

For convenience, we define the displacement of the point x under the diffeomorphism by
On(x) := Op(z) — x. (3.3.6)

Remark 3.3.1. In order to make ©), a bijection, we need to guarantee that ||h[|qoy, is suf-
ficiently small. As an example, we consider a mapping in R?. Suppose that ¥ is the z-axis
and h(z) = b > 0, then O(x,y) = (z,y + bn(y/00)). To make O a bijection, it is necessary
that the function f(y) := v+ bn(y/oo) should be a bijection, which requires b, i.e. |h|, to be

sufficiently small.

Remark 3.3.2. The derivative of the distance function is
Vd(x) = n(Il(x)). (3.3.7)

To calculate the derivative of the projection mapping I1, we take the derivative of z —II(z) =

d(x)n(II(x)), which implies

I —VI(z) =d(z)V, (n[Il(z)]) + V.d [z] ® n [1I(z)]

(3.3.8)
= d(x)VIL[z] (Ven) [I(2)] + n [I(z)] @ n ()] .
Recall that Ly, := —Vsn, so we have
I —n[ll(z)] @n[Il(z)] = VII(z) (I —d(x)Ly [II(z)]), (3.3.9)
which implies
VII(z) = Pg [(2)] (I — d(x) Ly [I(x)]) . (3.3.10)

We refer to [29, Section 2.3] or [34, Section 2.12.3] for more details on the nearest point

projection.
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3.3.2 Regular terms

Using the diffeomorphism ©, the original problem with interface I'(t) can be transformed
into equations with interface ¥. The interface I'(¢) can be determined as long as the function
h(t,x) : [0,T] x ¥ can be obtained. In order to do this, we need to change the variables
in (3.1.1)-(3.1.8) with the help of ©). We shall use similar arguments as in [15] with more
details included for completeness.

We first consider (3.1.1), which is equivalent to
1
(&tu +(u-V)u—(B-V)B+ §V(|B|2) + Vp — I/(X)Au) 00, =0 (3.3.11)

since O, is a bijection. We use ;' (¢, z) to denote the inverse mapping of Oy (+) at time ¢,

which implies ©;, ' (t,0;(t, 7)) = x. Given any function f in Q, we define

f(t,x) = f(t,On(t, x)), (3.3.12)

where f can be u, B, p, x, etc. In this chapter, we will ignore the subscript A in O when
there is no confusion. For any fixed ¢, by the definition of © we have ©;'(,-) = (On,)) ",

which implies that
ft,x) = f(t, 0, (t,2)). (3.3.13)

As opposed to partial derivatives with respect to specific variables, we will use 0y temporarily
to denote the partial derivative with respect to the position of the time variable. This helps
distinguish dyu(t, ©(t, x)) and du(t, O(t, x)).

Using similar arguments as in [15], we write the transformed equations in terms of the
new variables. More details can be found in [29, Section 1.3]. For the time derivative, we

have
owu(t,r) = 0,(u(t,0 ' (t,x))) = (0)uo O + Z((@Zﬂ) o @_1)&@[1, (3.3.14)
which implies

8tu 00 = aoﬂ + (815@71 o @)VU = atﬂ + (81/@71 @) @)Vﬂ (3315)
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Next, we calculate the formula of each entry of Vu, which is

Oatig(t, 1) = Oy up(t, x) = 0,,s(t, 07" (t,2)) = > _((05115) 0 ©7)0,,0;!

i a (3.3.16)
= _((05) 0 O ((VO) a0 ©7).

Taking the time derivative of the equation ©(t,©7(¢,z)) = z, we obtain
(00©) 0O+ 9,07 (V)0 O7) =0. (3.3.17)
Composing (3.3.17) with ©, we obtain
(8,67) 00 =-9,0 (VO) . (3.3.18)
From (3.3.18) and the equality (VO)™! =TI — (I + V#)~'V0, we obtain
(0,067 00 =-0,60(VO) =-9,0 (] —(I+V0)~'Vb). (3.3.19)
Similarly, we obtain from (3.3.16) that
(Vu)o© = (VO)'Vu = Vu— ((I+V6)~"'Vo) Vz, (3.3.20)

(divu) 0 © = (VO)™) " : Vi = divii — ((I + V6)~"'V0) : V. (3.3.21)

Taking one more derivative on (3.3.16), we obtain the Laplacian of each entry of w:

Auﬁ_z%a%uﬁ(t@ (t,z)) Z% (Z auﬁ)o@—l)axa@f)
_ZZa (8ig) 0 O 8xa@1+zz (05i5) 0 ©71) By O7)

(3.3.22)
—ZZZ (0515) ©©71) 0,,0;'0,,0;" +ZA Y ((95) 0 ©7Y)
= <(V®‘ ) (VO] : ((V255) 0©71) + 407" ((Vii5) 0 ©71).
The subscript in (3.3.22) can be removed to obtain the vector equality
(D) o6 = (((ve!) (Vo)) o) : V2 + (A07) 0 0) - (Va). (3.3.23)
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In the first term of the right-hand side of (3.3.23), using the formula of inverse functions, we

have

((vo)' (vo!)) oo =(ve)  (ve) ™, (3.3.24)
which implies that

(Au)o® = ((V@)_T (v<9)—1) V2 + ((A071) 0 0) - (Va) .
= ru+ ((VO) T (VO) ! ~ 1) Vi + ((407) 0 ©) - (V). -

Using exactly the same argument for u, we can transform the terms which contain B

and p. Using also (3.3.18), we can rewrite (3.3.11) as
0 — 0,0 (V) 'Vu+1 ((Ve)™)Vu— B ((Ve)™) VB
+ % (ve) v (\Eﬁ) +((Ve) ") Vi—v(x) (VO) " (VO)™") : VT (3.3.26)
— 1) ((£071) 00) - (V) = 0.
Using the fact that V x (ux B) = —(u-V)B+(B-V)uand V x (V x B) = V(divB) - AB,
we rewrite (3.1.2) as

(0B + (u-V)B - (B-V)u—ocAB)o®© =0. (3.3.27)

Using the same arguments as in (3.3.15) , (3.3.16) and (3.3.25), we can obtain the represen-
tation of 0, B, VB and A B, which imply

0B — 0,0 (V) 'VB+u(Ve) 'VB - B(VO) 'Vu (33.28)
— o (VO) T (VO) ™) : V2B — o (A6 0 ©) - (V) = 0. N

The divergence-free conditions (3.1.3) and (3.1.4) can be treated in the same way using

(3.3.21), which implies
0 = divu = diva — ((I + V6)~'V0) : Va, (3.3.29)

0=divB =divB — ((I + V6)~'V6) : VB. (3.3.30)

We will show in Section 3.3.4 that (3.3.30) can actually be ignored in the transformed

problem.
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3.3.3 Geometric terms

In the previous section, we have obtained the transformation of (3.1.1) to (3.1.4). It
remains to transform (3.1.5) and (3.1.6), which require representations of tangent vectors,
normal vectors and curvatures. To treat these terms, we follow the arguments in e.g. [15,29].
We include some details for convenience. In this section, we will temporarily do calculations

in R?, in order to maintain a clear structure.

3.3.3.1 Tangent and normal vectors

Suppose that ¥ is a C* surface, then it can be locally parameterized by a C* function
®, i.e. for all x € ¥ there exists a neighborhood B(z;a) MY such that there exists a domain
D C R*! and a diffeomorphism ®(s) from D to B(x;a) N, where s = (s1,-++ ,84.1) € D.

Let x = ®(s) € X, then the tangent vectors at = are

2(s) = 0;®(s), i=1,---d—1, (3.3.31)

(]

which form a basis of the tangent space T, . We will also use notations T(%)’k and Tgk to

denote the k-th entry of the i-th vector. These d — 1 vectors depend on the choice of ®.

Thus, we directly view 7 as a function defined in D. The normal vector ny is independent

of ®. Thus, it can be viewed as a function defined on .

To simplify calculations, we introduce another basis {7, -+, 72!} of the tangent plane
T,%. The new basis satisfies 73, - 7 = d;;, where d;; = 1if i = j and §;; = 0 if i # ;.
We ignore the name of surfaces in superscripts or subscripts when there is no ambiguity.
Suppose £ = Y ;7' = Y ¢'r;, then we have ¢; = - 7; and ¢ = £ - 7. We refer readers to [29]
for more details.

For every height function h, its corresponding surface is I',(¢) := ©,,(¢, X), which can be
parameterized using Oy, o ®. Its tangent vectors at y := O(z) = O(P(s)) are

7 (5) = 0, (B(2(s))) = D (0:9,) (9,00 D). (3.3.32)

J
To find the normal vector nr, we first seek for a € T, such that ny — « is perpendicular

to TowI'. We refer readers to [29, Section 2.2.2] for more details. For convenience, we
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include some key steps in the derivation of a. When z € B(X; 0) with ¢ = /3, we have
On(x) = x 4+ h(x)ng(z), which implies

On(B(s)) = B(s) + h(D(s))ns(®(s)). (3.3.33)

Taking derivatives of the equation (3.3.33), we have

7 (s) = 05,0(2(s)) = 0y, (V(s) + 0(D(s)))
(3.3.34)
= 0;®(s) + 05, (h o @) [s] ng [P [s]] + h [P [s]] Os,(ng 0 P) [s].
In this work, we let the parameterization ® : D — 3 be fixed once it has been chosen. To
make calculations concise, for any function f on ¥ we will abbreviate f o ® to f when there
is no confusion. We will also use the notation 0;f to represent the derivative O, (f(P(s))

when there is no confusion. This follows the convention in [29].

Now we simplify (3.3.34). Since |ny| =1, we have

20,,15(9(5)) - 1 (®(s)) = 05, (|ns(@(s))[*) = 0. (3.3.35)
In fact, the vectors ds,n, - - - , 0, ,n form a new basis of Ty 2. Using the Weingarten tensor
Ly, which satisfies
Ly [®(5)] 77 [s] := —0s,(ns 0 ®) [s], (3.3.36)
we can simplify (3.3.34) to
71 = (I — hLs)7” + O;hns. (3.3.37)

Next, we simplify the formula of o using (3.3.37). Since ny—« is required to be perpendicular
to To(s)I', we have (ny — o) L7} for all 1 <7 <d — 1, which implies

0=(ny—a) 7 =(ny—a) (77 + dhng + hd;ny)

=ny -7 +ny - (Ohng) +ng - (hding) —a-7° —a- (Ohng) —a- (hd;ng)  (3.3.38)

:O—i—aih—i—O—a-TiZ—O—a-(h@mz):@h—a-((I—hLZ)Tiz)-

Since I — hLy is a symmetric linear transformation (see e.g. Section 2.2 in [29]), we have

Oih = (I — hiLs)a) - 77 (3.3.39)

%
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Notice that (3.3.39) is the abbreviation of:
9, (h(®(5))) = (I = hlx)a) - 0;%(s), (3.3.40)
which can be solved by letting
(I —hLs)a =Vsh, ie. o= (—hLy) " Vsh. (3.3.41)

The surface gradient Vy, also called the tangential gradient, is explained in Section 3.2. We
refer interested readers to [5,19] for details about gradient, divergence and other differential

operators on surfaces. Now we have obtained that

_ony—(—hLg)'Vsh 3
TLF(S) = |n2 _ (] _ hLZ)fl Vzhl =. (nz (] hLE) Vzh) 67 (3342)

where f(s) is a scalar function that renormalizes the vector, as used in [29)].

3.3.3.2 Mean curvature

In this section, we express the mean curvature Hr in terms of ¥ and h. We recall
that the calculations are in the space R?. We start with the representation of Vrf for an
arbitrary function f defined on I'. From equation (2.47) in [29, Section 2.2.3|, we have the

representation of tangent vectors on I':
i -1 ;
m=Pr(I—hLs) 15, 1<i<d-1. (3.3.43)

Notice that for any function f on I' (parameterized by O} o ®) we have

d—1
(Z ; ffll') I =i f, (3.3.44)
j=1

which implies

d—1 d—1
Vef =Y 0ifrt = Pr(I—hLs)" R0;f =Pr (I —hls) Vs(fo®©).  (3345)

j=1 7j=1
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From the definition of mean curvature in Section 2.2.5 of [29], we have

d—1
Hp = —diV[‘TLF = — ZTIE : &-np. (3346)

We also refer to Section 7.3 in [5] for more details. Now it remains to calculate O;nr in

(3.3.46). From (3.3.42) we have
81‘7’LF(S) == 815 (TLZ - (I — hLz)il th) + B@Z (TLE — (I - hLE>71 Vzh> . (3347)

Using the same argument as in [29, Section 2.2.5], we obtain the formula of the mean cur-

vature

ZTF dynr
diﬁz( (5>) ZTF (80: (ns — (I — hLg) ' Vsh))

1=

—0+ Z (P (I =hLs) "' 7%) - (B (Lsr? + 8ia))

i1 (3.3.48)
-2 (I =nr®@nr) (I —hLls)" 15)- (B (Lemi + Oia))
=30 (=) (3 (7 + )
d;l (nr - ((I = hLg) ™ 7)) (Bnr - (Ler™ + Bia))
Still from [29 _SeCtIOH 2.2.5], we have the following equalities
: (T = hLg) ') - (Ler®) = tr (I = hLs) " Ly)). (3.3.49)
di I —hLs) ' 78) -0, =tr (I — hLs) ™ Vsxa), (3.3.50)
l_np (T =hLy) ) = =B (((I - hLg) ")), (3.3.51)

where 1 <75 <d—1.
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Remark 3.3.3. Since 7> - 7%, = 8;;, we combine them with the normal vector ny and obtain

(the notation ¥ is ignored for convenience):

QRN

T T(1),d T ny
= Liva. (3.3.52)
T(d—1),1 T(d—1),d
nl DY nd Tcgl) ... T(gd_l) nd

The left-hand side is commutative by the property of inverse matrices, which implies
d—1
Z Ti(k)T(k)’j = 5ij —nin; = (I —_ng n)ij (3353)
k=1

for all 1 <i,5 < d— 1. We recall that for any vector 7 € R? the matrix Vy7 is defined as

(Vsm, -+ Vsng), where each Vg, is viewed as a column vector. This implies that

d—1
i 3.3.54
(Z 7 )T@),j) (Vsn)y; = —n®mn): Vsy ( )

=trVyn — n' Vsnn = trVsn,

which can be utilized in the derivation of (3.3.48), (3.3.49) and (3.3.50).

Notice that the symmetric operator (I — hLx)™! in (3.3.51) maps tangent vectors to

tangent vectors and maps ny, to ny. Thus, for all 1 <7 < d — 1 we have

nr- (I —hLg) ' 1) =B (ns—a) - (I —hLls) ' 1) = —Ba- (I — hLls) ' 1)

| (3.3.55)
= —B((I—hLg) " a) 1= —B(I—hLs) " a),
and
nr - (Le7; + ;) = B (ng — a) - (Le7; + 0i)
—B(ng- Ly7i +ng - 8o — - Lyt — o - Bia) (3.3.56)

=030+ ny - dia+a-0iny —a-0ia)=pF(0;(ng-a)—a-dia)=—PFa- da.
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Notice that ny - a = 0 since « is a tangent vector of 3. From (3.3.48), (3.3.55) and (3.3.56),
we have
Hp = Bt (I — hLs) " (Ls + Vsa)) = Y 82 ((I — hLlg) ' a) (a- dia)
— (3.3.57)
= Btr (I — hLs) ' (Ls + Vsa)) — 82 (I — hLs) ' @) Vsaa'.

Remark 3.3.4. For convenience, we let { := (I — th)_l a and ignore the notation X in
tangent vectors. The term Vyaa' in (3.3.57) is obtained by the following calculation.

d—1 , d-1 d—1

> (I =hLy) ™ a) (a-dia)=> &(a-0a)=) (§-79)(a- i)

i—1 i—1 i—1
-1/ d 4
— (Z fkT,iZ)) (- O) .

We remind the readers that 0;« is the abbreviation of 9;(avo ®) by our convention. We view

(3.3.58)

the surface gradient of vector v as the matrix such that

(Vsa),; = (Vsay), . (3.3.59)

Notice that we assume all vectors to be written as row vectors, then for all 1 < k <d -1

we have
Opav = (8k0417 T aak@d)
(3.3.60)
= (Vsay 7, -+, Vsag - 71) = Vs«
Thus, we rewrite the last term in (3.3.58) as
-1 / d ‘ d—1 d
<Z §k7'kl)> (- Ox) Z (Zg Tk”) <Z a; T(Z Vﬂ)@)))
i=1 i=1 \k= j=1
-1 / d d
:Z Z’Ska > (ZQ] (ZT VZOéj )
i=1 (k:l j=1 s=1 (3.3.61)
d d d d-1 d
= Z Z Tlgz)T(Z) skaé] (VEaj)S = Z ka&j (VEOéJ)k
k=1 j=1 s=1 i=1 k=1 j=1
= ¢(Vsaa',

where the fourth equality is guaranteed by (3.3.53).
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3.3.3.3 Transformation of equations

Using the formulas of np and Hr in (3.3.42) and (3.3.57), we are able to transform
equations (3.1.5) and (3.1.6). Composing © with (3.1.5), we have

~ ([v(0) (Vu+Vu") = pI] nr) 0 © = (xHrnr) 0 ©. (3.3.62)

Due to the effect of O, the equation (3.3.62) is defined on X rather than I'(¢). We calculate
the projections of (3.3.62) to ny(xz) and T,¥ respectively using the same arguments as
in [15, Section 2] with some details included for convenience. We recall that nr - ny = .
Taking the inner product of (3.3.62) and nyg/f, we obtain the projection of the equation

onto the normal vector

—([(v(x) (Vu+VuT) 00)] (nn — (I — hLs) ' Vsh)) -ns + [p] = kHr.  (3.3.63)

From Vu o © = Vi — M; VT (see Section 3.3.4 for definitions of M;, i =0, - - ,4) we have
(v(x) (Vu+Vu')) o0 5360
=v(x) (Vu - MiVu+ (Va)" — (M;Va)').

Thus, we can rewrite (3.3.63) as

[p] — xHr
= ([(vx) (Va+va"))] nx) -ne — ([(vx) (Va+ Va'"))] MoVsh) - n (3:3.65)
— ([rx) (M1VE + (M;Va)")] (ns — MoVsh)) - ns
= ([v(x) (Va+ va')] ng) - ns + Gi.
Letting
Gy := w(Hy — DHr [0] h), (3.3.66)

where D Hy [0] is the Fréchet derivative of Hr at h = 0. Then we can linearize Hr using the
equality
I{Hr = IiDHF [0] h + gQ.

The equation (3.3.65) can then be written as
[p] — kDHr [0]h — Go = ([v(X) (Vu + Va')] ns) - ns + Gi, (3.3.67)
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which is the normal projection of (3.3.62). Next, we calculate the tangential projection of
(3.3.62). We first notice that for a symmetric matrix A = (a;;)axq and the normal vector n,

we have for any 1 < i < d that
d d d d d
(PAn); = Z Z ik — NN )Apjny = Z a;n; —n; Z Ny, (Z akjnj> : (3.3.68)
k=1 j=1 Jj=1 k=1 J=1
ie. PAn = An — ((An) - n)n. Now we let A := [v(x)(Vu+ Vu")] 0 © and recall that
a = MyVgh. We cancel kHr and [[p] by calculating (3.3.62) — (3.3.63)nr, which gives us

A(ny —a) = ((A(ng — @) - nx) (ns — a) (3.3.69)
Using (3.3.69) (in the third equality below), we have
PeA(ns — a) = (I — ny @ ns)A(ns — a)
— Alns — a) — ((A(ns — ) - ns) s
— (Alng — a)) - ns) (ns — @) — ((A(ny — ) - ng) ny
= —((A(ng —a)) -nz)

(3.3.70)

For convenience, we abbreviate v(x) and v(Y) to v and 7 respectively when there is no

confusion. Substituting with

A=[v(x)(Vu+Vu')] o0
(3.3.71)
- [[v(w +vaE — M, Va - (le)T)ﬂ ,
we obtain
Ps, HE(VE +Va' — M, Vu — (M1VE)T)H (ng — a)
(3.3.72)
= — ((HD(VG +Vu' — M,V — (M1VU)T)]] (ny — a)) : ng) a
Expanding the brackets in the left-hand side of (3.3.72) and rearranging the terms, we have
Ps [ (Vu+Va')] ns
= Py, [[y(f MOVa +7 (T — Ml)vafﬂ MoVsh + Py [7 (MyVE + (M VE) )] ns
— (([{7([ — M1)VU +7v ((I ./\/l ) ) ﬂ (nz - Monh)) . n2> Monh
=: —Gs.
(3.3.73)
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Now we can combine the tangential and normal projections by letting (3.3.67)nyx + (3.3.73),
which gives us the transformation of (3.1.5). From (3.3.20), (3.3.67), (3.3.73) and (3.3.57),

we obtain

—[(vx) (Va+vu"))] ns + [pl ns — & (DH[0] h) ny = (G1 + Go) s + Gs. (3.3.74)

In (3.5.124), we will prove that DHy [0] = (trL% + Ayx), which enables us to obtain the final

version of the transformed equation
~[(v®) (Va+va"))] + [plns — kAsh = (G + Go + wtrLEh) ny + G5 (3.3.75)
Now we transform (3.1.6). By [29, Section 2.5.2], the velocity of the interface satisfies
BOh =Vr 0O, = (u-np)oO;! = Bu- (ng — MyVsh), (3.3.76)
which implies that d;h = @ - (ng — MyVsh) and can then be rewritten as
Oh—u-ng+b-Vsh= (I —My)Vsh-u+ (b—u)Vsgh. (3.3.77)

The term b € Wl_i’q([O,T]; La(X)) N L4([0, T7; W2_%’q(2)) is an auxiliary function, which
will be specially selected in later sections. For details on Vi and the derivation of (3.3.77),

we refer to Section 2.2.5 in [29].
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3.3.4 Transformed equations

Similarly as in [15], we abbreviate some terms which will be frequently used in later

calculations. In (3.3.41), we define

Mg := (I —hLg)"". (3.3.78)

In (3.3.20), we define
My = ((I+V0)~'Vh). (3.3.79)

In (3.3.25), we define
M= (A0 0O, and M,:=(VO)  (VO) ' -1 (3.3.80)

In (3.3.19), we define
Ms =090 (I —(I+V0)~'Vb). (3.3.81)

We also remind the readers that the abbreviations G;, G, and Gz in the transformation of
the surface tension equation are defined in (3.3.65), (3.3.66) and (3.3.73).

Notice that (3.1.2) has the form 0,B = V x F. Thus, taking the divergence of the
equation, we obtain

8, divB = 0. (3.3.82)

Since the solution B in the transformed equations satisfies divB, = 0, the equation (3.1.4)
will always be satisfied and thus can be removed from the transformed problem.

Notice that the viscosity 7 in the transformed problem is independent of time since the
interface in the transformed problem is a fixed surface. Finally, using (3.3.26), (3.3.28),
(3.3.29), (3.3.75) and (3.3.77), the equations (3.1.1) - (3.1.8) can be transformed to

1 /1— _

0+ Vp—visu = —5V (|B[*) —avai + BYB + MV + iMVa
(3.3.83)

_ _ 1 _
— BM,VB + §M1V (]B\Z) + M VP +TMy : VU +TM, - (VT),
OB —o/AB = —uVB+ BVu+uM,VB - BM,Vu
B B B (3.3.84)
+ MgVB + O'./\/l4 : V2B + O'MQ . (VB),

divi = M : Va, (3.3.85)

61



[[—QI/(X)DEH ny + [p] ns — k(Ash)ng = (Ql + Gy + K,tl”L%h) ny + Gs, (3.3.86)
Oh—u-ng+b-Vsh= (I —M,y) Vsh-u+ (b—1u)Vsh, (3.3.87)
ﬂ‘ag = 0, §|QQ = 0, ﬂ‘t:() = ﬂo =UuUo @, E’t:() == EO = Bo0O. (3388)

For convenience, we ignore the bars in @, B and p when there is no confusion. The height

function h only exists in the transformed equations, so it always appears without a bar.

3.4 Linear Part

In this section, we consider the linear part of the equations (3.3.83) - (3.3.88), which
can be rewritten as the following linear problem. For convenience, we ignore the bars over

variables.

Ou+Vp—v(x)Au=g inQ\L, (3.4.1)
divu = g3 inQ\ X, (3.4.2)

[-v(x) (Vu+ Vu') +pI] ny — k(Ash)ns = g4 on X (3.4.3)
[ul =0 onX (3.4.4)

u=10 on Jf) (3.4.5)
Oth—u-ny+b-Vsh=g5 onX (3.4.6)
u(0) =uy inQ\ X, (3.4.7)

h(0) = hy on X. (3.4.8)

OB —0AB =gy, in{, (3.4.9)

B =0 on 04, (3.4.10)

B(0) =B, inQ. (3.4.11)

The linear problem can be divided into two sub-problems (3.4.1) - (3.4.8) and (3.4.9) -
(3.4.11), which can be solved using the theory of two-phase Stokes problems in [15,29] and
parabolic problems in [17, Theorem 9.1].
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Remark 3.4.1. We remark that the condition divB = 0 in the original problem can be
removed in the transformed problem by the argument in Section 3.3.4.

The equations (3.4.1)-(3.4.8), can be solved using [15, Theorem 1]. We restate the theo-

rem with some simplification.

Theorem 3.4.1 ( [15] Theorem 1, simplified). Let Q be a C? domain in RY. Let T > 0 and
g>d+2. Let ¥ C Q be a closed C*-hypersurface. Suppose

be W0, T); LU(S)) 0 ([0, T W7o (2)); (3.4.12)

Let the source terms and initial values be as follows:

g1 € LI([0,T] x Q);

ug € W 2/29(Q\ X)), ug = 0 on 09Q;

gs € LI([0, T); WhH(Q\ X)), divug = g3(0) = 0;

gs € W2207([0,T]; L9(2)) N La([0, T); W'~ (2));
Ps, HQVDUO]] = Psg4(0);

g5 € W'2([0, T); L4(%)) N LA([0, T); W2 29(x2));
ho € W3 59().

S N R

Then there ezists a unique solution (u,p,h) to (3.4.1)-(3.4.8), such that

1. we Wha([o, T); L9()) N LA([0, T, W(Q\ X));

2. pe L0, T WH(Q\ X));

5. [p] € Wa2a9([0, T); La(%)) 0 L9([0, T]; W' 20%(%));

4. he W2 ([0, T]; Le(%)) N Wha((0, T]; W2~ () N LI([0, T); W+ "(S));
5. The mapping (91, g3, 94, gs, Uo, ho, b) — (u, p, [p] , k) is continuous.

For the principal part of the magnetic equations, we use the theory of parabolic equations
in bounded domains, which can be found in e.g. [17, Theorem 9.1]. We also refer to [17,
Chapter IV, Section 4] and [16, Chapter 8, Section 3] for more details on the localization
and flattening of bounded domains. We will consider the case that 92 is at least C3, which
is stronger than the requirement of O? in [17]. We refer to [17, Chapter I, Section 1] for

definitions of O!, H' and C' spaces when the domain is a surface.
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Theorem 3.4.2 ( [17] Chapter IV Theorem 9.1, simplified). Let Q be a C* domain. Let
T >0 and q > 3/2. Suppose go € LU([0,T] x Q), By € W?~2/99(Q) and By|gq = 0. Then

there exists a unique solution
B € Wh([0,T]; L*(Q)) N LY([0, T]; W>4(Q)) (3.4.13)
to (3.4.9)-(3.4.11). The solution has the estimate

1Bllwsaosaen + 1B Loy < CT) (1o2lgommey + 1BolZ2) (3414
where the constant C(T) is bounded when T is finite.

Consequently, we can obtain a continuous solution operator defined as follows.
Definition 3.4.1. Given 7' > 0 and ¢ > 5. Given (ug, By, hg, b) such that

U € Wng’q(Q \ X)NC(N2), up =0 on 98

By € W>49(Q), By =0 on 0%;

ho € W3 4(3);

b e W'24([0, T]; L)) N LI([0, T]; W2 04(%)).

Ll

Given source terms (g1, g2, 93, g4, g5) such that

g1 € L([0,T] x Q);
g2 € LU([0,T] x Q);
g3 € L([0,TY; Wl’q(Q \Y)), divug = g5(0) = 0;

g € WH2TVEDa([0, T]; L9(S)) N LA([0, T|; W' /#9(S)), - Prga(0) = Py 20D

gs € WY@0a([0, T]; () N LA([0, T); W2 a9(5)).

AR

We define the solution operator S, Bynb), O simply S if there is no confusion, by

S(uo,Bo,ho,b) (gla 92, 93, g4, 95) = (u7 BJP? w, h)7 (3415)

where (u, p, @, h) is the solution to (3.4.1) - (3.4.8) with @ = [[p] an auxiliary variable; and
B is the solution to (3.4.9) - (3.4.11).

From Theorem 3.4.1 and Theorem 3.4.2, we know that Sy, By,np) 15 @ continuous oper-
ator. When the initial value vanishes, the solution operator becomes linear, which implies

that S0, is a bounded linear operator.
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3.5 Nonlinear Part

In this section, we estimate the terms on the right-hand side of (3.3.83) - (3.3.88) by

calculating and estimating their Fréchet derivatives.

3.5.1 Equations and spaces

For convenience, we define the linear parts and the nonlinear parts of the transformed
equations by L; and G similarly as in [15]. The bars over variables are ignored for conve-

nience. We define

Ly = 0w+ Vp —v(x)Au, (3.5.1)

Ly = &,B — 0AB, (3.5.2)

Ls := divu, (3.5.3)

L, :=[-2v(x)Du] ny + wny — k(Ash)ns, (3.5.4)
Ls = 0h—u-ng +b- Vsh, (3.5.5)

1
Gyi=—5V (IB*) = uVu+ BVB + M3Vu + uM;Vu — BM,VB

3.5.6)
| (
+ §M1V (’B|2) + M1Vp + V(X)M4 : V2u + V(X)MQ . (VU),

Gy := —uVB + BVu +uMVB — BMVu+ M3VB + oM, : V2B + oM, - (VB),

(3.5.7)
Gg = Ml . VU, (358)
Gy = (G + Go + K(trLE)h) ny + Ga, (3.5.9)
Gs = ((I = Mo) Vsh) -u+ (b—u) - Vsh. (3.5.10)
For convenience, we rewrite the formulas of My to My:
Mo = (I —hLs)™, (3.5.11)
My = (I1+V0)"'Vo, (3.5.12)
M,y = (L071) 00, (3.5.13)
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Mz =080 (I —(I+V6)~'V), (3.5.14)
My=(VO) T (VO) ' — 1. (3.5.15)

To make the arguments concise, we abbreviate some common function spaces. Based on the

settings in [15], we define

uw € W = W0, T]; LYQ)) N LU0, T]; W>4(Q\ £)), (3.5.16)
B e WI .= Wh([0,T]; L)) N LI([0, T); W9(12)), (3.5.17)
pe WL = LYy[0,T); WH(Q\ X)), (3.5.18)
@ e W! = Wz 29([0, T]; LU(X)) N LU0, T); W'~ a4(%)), (3.5.19)

he WE = W2 2([0, T, L9(%)) N WH9((0, T]; W () N LI((0, T]; W +(%)).
(3.5.20)

For convenience, we define
WE .= W29([0, T); LY(Q)) N LI([0, T]; WH(Q\ ), (3.5.21)
which is the space that Vu and V B belong to. Similarly to [15], we define the solution space
W' = {(u, B,p, @, h) € W[ x Wy x Wi x W x W] : [p] =w}. (3.5.22)

We denote by §; the space that source terms belong to, i.e.

Gy € St = L]0, T]; L)), (3.5.23)
Gy € 8 = L([0,T]; L)), (3.5.24)
Gs € SI' .= wha([0, T); W=14(Q)) N LI([0, T]; WH(Q\ B)), (3.5.25)
Gy e ST .= W3 24([0, T); L)) N LI([0, T); W' 24(%)), (3.5.26)
Gs € ST .= W' 29([0, T]; LU(X)) N LY([0, T); W 74(%)). (3.5.27)
Then we define
ST =8 x SI' x 8T x ST x ST. (3.5.28)
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We will also frequently use the following spaces:
Cy = C"([0,T); C°(Q)),
eF = CO((0, T () N €1 ([0, T]; C(2)), (3.5.29)
C3 = C°([0,T]; C*(92)) N C([0, T]; CH ().
For convenience, we also define

Ci = C%[0,T);C* (), and CI :=C°[0,T];C*Q)). (3.5.30)

The spaces C;, i = 0,1,2,3,4, can also be defined on [0,7] x ¥, which can be expressed
by replacing 2 with ¥. We will ignore the notation of domain (e.g. © or ) and the time

variable T" when there is no confusion. For all spaces Z with the form X ([0,7];Y), we use
ZT and X([0,T];Y) (3.5.31)

to denote the subspace of elements whose initial values on the time interval [0, 7] are 0 in

the sense of limit or trace. If Z is the intersection of spaces, i.e.
7' = X,([0,T); Y1) N -+ -0 Xk([0, T); Yz) (3.5.32)
for some k € N. Then we use Z7 to denote

ZT = X1([0,T]; Y1) N -+~ N X, ([0, T); Ya). (3.5.33)

3.5.2 Fréchet derivatives of M, and their estimates

In this section, we assume that 2 C R™ for m > 2. We will estimate the terms M,
i =0,1,2,3,4 in (3.5.11) - (3.5.15), which are introduced in [15]. We will also calculate
and estimate their Fréchet derivatives DM;. The estimates are studied on a generic time
interval [0, 7] C [0, Tp] with Ty > 0 a fixed number. We temporarily ignore the parameter 7'

in the notations of function spaces for convenience.
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3.5.2.1 ./\/l() and DM()

We recall that My := (I — hLx)™! . Since ¥ is a fixed surface, its Weingarten tensor

Ly, := —Vsny is a fixed, matrix-valued function on 3. The entries of I — hiLy, are
1—nhlyy,  —hlis --+  —hlyy,
I—hie=| M 1_ﬁ&2:“ o (3.5.34)
—hlpy —hlpe -+ 1= hlyum

The determinant of I — hLy, is in the form of 14+ hP(h), where P(h) denotes a polynomial of
h. The entries of the adjugate matrix adj(/ — hLy) can all be represented using polynomials

Qij(h). From the inverse matrix formula A~! = adj(A)/det(A), we have

B 1 Qy(h)
(1 th)ij =T hP0 (i)’ (3.5.35)
Let O denote either the time or spatial derivative, we have

(1+ hP(h))* ~1+hP(h)
Let do(X) > 0 be sufficiently small and assume without loss of generality that dy < 1, then
for all ||A[[;, < do we have

. 1
‘h+hpm) =5 (3.5.37)

Co

which implies that
(7 = L), < C(m, ). (3.5.38)
Taking higher-order derivatives, we obtain

L+hP(h)

O (I = hLg);' = (3.5.39)

where P and @Zj are also polynomials. Similarly, in (3.5.39), we can stay away from the
singularities of the denominator by letting ||h||,, < do for some do(m, %, k) € (0, 1). Moreover,

let M > 0 be an upper bound of the derivatives of h, then we can bound the numerator as
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well. Specially, for k = 0, 1,2, there exists do(m, ¥, k) € (0,1) such that for all [|hl|,, < do

and ||Allo, < M we have
IMoll, = [|(1 = hLs) ", < C(m, %, M). (3.5.40)

Next, we estimate the Fréchet derivative DM,. We decompose Mg into F' : h — [ —hLyx,
and G : A — A7' where A is an invertible m x m matrix. Then we can calculate their

Fréchet derivatives using the definition, which implies
DF[h¢=—¢Ly and DG[A|H=-A"THA™ (3.5.41)

for all ¢ in the same space as for h and all H in the same space as for A. The term DG is

obtained by considering
(A+H) ' = A=A (I+HA ) =) (3.5.42)
and expanding (I + HA™')~! using power series. Thus, we have

DM, [h] ¢ = D(G o F)[h] ¢ = DG [F [h]] DF [h] ¢ 5513
= (I —hLx) " (pLs) (I — hLz) ™" = MoLsMop. -

Therefore, from (3.5.40) we know that for & = 0, 1,2, there exists do(m, 2, k) € (0,1), such
that for all [|Al|,, < do, [[All,, < M and ¢ € Cr, we have

IDMo [h] @llg, = Moy LeMollg,

, (3.5.44)
< [[Mollg, lILsllorsy llelle, < Clm, 2, M) [lelg, -
When k£ = 1, we also have for all 0 < T < Tj that
IDMs (] elly < Cm, To, S, ) [ Mol L llos s 67 505

S C(m7 T07 Ea‘]a M) HSOHSZ :
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3.5.2.2 ./\/ll and DMl

Now we estimate M; = (I + V0)~'V0 in (3.5.12). We recall that

0ule) = 1 (?) h(I1(2))vs (11(2))
when z € B(X; 00) and 0,(x) =0 if x ¢ B(X; 00) -

Since Y is a fixed surface, we can write 0 as

(3.5.46)

where m := n(d(z)/00)ns(I1(z)) is an extension of the normal vector field ny to Q, which is

supported in B(3; gp); and h is an extension of A from ¥ to € by letting h(x) := h(Il(z))

for € B(X; 00) and h(z) := 0 otherwise. Thus, we have

VO =V(hn) =Vh®n+ hVn,
which implies that

IVOlle, == [IVOlcr o100y + IVOllcqoricor e
= IV |l o1 o 11:cB:00y) T IV B0 0,101 (B:00)))

S C(Z) H]hHCl([O,T];Cl(B(Z;Qo))) + O(E) ‘|]11||C([0,T];C2(B(E;QO)))
< C(5) |Ibfle, < CE) [[Alle, -

Using similar arguments and the fact that ¥ is a C? surface, we obtain

IVOls, = [Vh @mnl|g, + [[hVnl|g,
< C(X)[[Vhlg, + (%) Ih]s, < C() [Ihlly, < CE) (A, -

Letting ' : h — (I 4+ V)1, for ¢ € W; we have

DF[h]p = —(I+V(hn))"'V (¢n) (I + V(hn)) ™"
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The entries of I + V (hn) are

1+ Gl]hml -+ ]hallll 81]th + ]hal]IIQ s 81]h]nm + ]h@lmm
621}:1m1 —+ ]haglfll 1+ 821}111&2 + ]hagl'flz cee 821hmm + lhazﬂlm
‘ _ ' (3.5.51)
Oppyhmy + ho,,my Opmhny + ho,,my --- 1+ 0,,hn,, +ho,,n,,

Since Vm only depends on ¥, it is a fixed matrix. Thus, the determinant of I + V (hn) is

det (I + V (hn)) = 1 + 3hP(3h). (3.5.52)

To simplify the statement, we temporarily use the notation dh when:

1. this term is either h or its derivatives;

2. in all cases, the term can be controlled using the norm in the context.

Without loss of generality, we also slightly abuse the notation 0hP(dh) to denote the sum

of multiple terms with this structure, e.g.
h(1 +ho,,h) + 0,,h(1 + ).

This notation does not bring trouble as long as the term dh can be controlled by the needed
norm in the context. The entries of the adjugate matrix of I + V(hn) are all in the form of
P(h,dh). Thus, all entries of the matrix (I + V (hn)) ™" can be expressed as

Qi;(0h)

1+ 0h P(0h) (3:5.53)

Moreover, their time or spatial derivatives, i.e.

can also be expressed using the same formula as in (3.5.53). We recall that the polynomial
fractions in (3.5.53) only depend on Y. Thus, when ||h||,, < d for some sufficiently small
d0(%), we are able to exclude all singularities. Suppose we also have [|h[|,, < M for some
M > 0, then we have

[(1+ ¥ (hm)) ||, < C(m, %, M). (3.5.54)

C
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We remark that the C3 norm is enough in the condition ||Al|,, < do, since taking derivatives
of polynomial fractions does not create higher-order derivatives in their denominators.

To get the formula of DM, we still need to calculate the Fréchet derivative of G : h +—
V0, ie. DG[h]¢ = V(emn). Using the product rule of Fréchet derivatives, we then obtain
that

D(FG) ]y = ((DF) [h] ) (G [h]) + (£ [h]) (DG) [b] ¢)

— — (I +V(hn))"' V(¢n) (I + V(hn)) "' V (hn) 4+ (I + V(hn)) " V (gn)  (3.5.55)
= (I +V(hn)) "'V (¢n) (I + V(hn)) "' V (hn),
where the last equality is obtained using —(I + V0)™'V0 + I = (I + V#)~'V6. Since there

is no singularity in V(hn), we have

IV(hn)ll, < C(m, ¥) [, (3.5.56)

The term V(¢m) can be treated in the same way since h and ¢ are in the same space.

Finally, letting H : h +— h, we have DM, = DM = D((FG) o H) and
D((FG) o H)[h]Y = D(FG) [H [h]] DH [h] ¥
= (DF[H [h]] DH [n] ) (G [H [n]]) + (F [H [h]]) (DG [H [h]] DH [h] )

= — (I +V(hm))"" V(¢ o m) (I + V(hm)) ™" V (hn) + (1 + V(hm)) "' V ((¢ o [)m)
(3.5.57)

for all ¢ € Co. Consequently, we obtain the following estimates for M; and DM,.

Proposition 3.5.1. There exists 0y(m, X)) € (0, 1), such that for all ||h||s, < do, if [|h|lo, < M
for some M > 0 then

M [B]lle, < C(m, 5, M) ||A]l, ; (3.5.58)

and for all p € Co we have

|DM; (B gl, < Clm. 2. M) g, (3.5.59)

Remark 3.5.1. For the operator H : h +— h, its Fréchet derivative is DH [h] : ¢ — @ o IL

Notice that H is a linear operator.
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3.5.2.3 ./\/lz and DMQ

Now we study My in (3.5.13). Letting 1 : x — z be the identity mapping in 2, we have
©=i1+hnand VO =1 + V0 = [ + V(hn). Using the inverse function theorem, we have

Za ve;! Za (VO)lo0™)
= Z Z 0:9;" (9;(VO)y') o &7 (3.5.60)
= ZZ (VO);' 2 07") ((9;(VO)i) 0 ©7")
which implies that

(My), = (26" ZZ (VO);" (9,(VO),) . (3.5.61)

Here we abbreviated ( (V@)fl) (V@) for convenience. In order to estimate (A©~!)o
O, we only need to estimate its entries (A@;l) o O, which only requires the estimate of
(VO);;' (9;(VO);'). We only need to estimate one entry, i.e. for a fixed choice of (i, j, k),
since all entries have the same structure.

Letting F': h — (VO);;! and G : h — §;(VO);,!. Similar to the arguments for M, we

obtain

DF[h]¢ = = ((V(i +hm)) ™" V(em) (Vi +hn) ), (3.5.62)
DG ] = —08; ((V(i+hn))"' V(¢n) (V(i +hn)) "), . (3.5.63)
Notice that V(i + hn) = I + V(hn). Then we have
D(FG) [h] ¢ = (DF [h] ¢) (G [h]) + (F [b]) (DG [b] ¢)
— (I +V (Im) ™ V(em) (I + V (hn)) ™) (95 (1 + V (hm)),,)

(3.5.64)
— (I +V (mm) ™), 0; (I +V ()™ V(en) (I +V (hm) "),
= [1 + [2.
In term I;, we have
0; (I +V (hm)),, = 85hny + 0;homy, + 0;hdmy, + homny, (3.5.65)
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which implies
105 (I +V (hn)) [, < C(m, %) A, - (3.5.66)

When |[|h]l,, < do for some sufficiently small J5(¥), using the same argument as in the

derivation of (3.5.54), we have

(1 +V (hm)) 7|, < C(m,X). (3.5.67)

C

We remark that conditions like |||, < M are not required in the current estimation. Using

(3.5.67), we obtain that

(7 + 9 (0m)) ™ Vom) (1 + ¥ (1)) ), [,

S|+ V (hm) ™ V(en) (I +V (ﬂm))—luéo

o (3.5.68)
ST+ @) 11V (o),
< C(m, X) [lellg,
for all p € Cog, which completes the estimate
[1lle, < Cm, %5, M) llgllg, (3.5.69)
In order to estimate I, we first obtain that
11+ V(hn)|,, < C(m, %) (1+ ||All,) - (3.5.70)

To estimate the term 9; ((I + V(hn)) ™" V(gn) (I + V(]hm))_l)ik, we first notice that for
three matrices A, B and C' we have

10;(ABC)itllg, = 1(0;ABC)ir, + (A0; BC) it + (ABO;C)i|

S N05Alle, 1Bllg, 1Cle, + 1 Alle, 195 Bllg, 1C e, + 1Alle, 1B, 105C1e, »

(3.5.71)

i.e. the entry of the product of matrices can be estimated using the matrix norm.

Remark 3.5.2. We remind the reader that for vector-valued or matrix-valued functions in Cy,
the norm is defined by first taking the Cx norm of components, and then taking the matrix

or vector norm.
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We recall that we already have
IV (en)llg, < CE) lellg, » (3.5.72)

10; (V(em))llg, < C(E) lllle, - (3.5.73)

It remains to estimate the matrix norm of d; (I + V(hm))™", which can be obtained using
the same argument as in the derivation of (3.5.54). In fact, there exists 6o(X) € (0, 1), such
that for all [|Al|,, < do, if [|A[lo, < M for some M > 0, then we have

10; (1 + V(@) ™). <C(m, 2, M), (3.5.74)

le,

which completes the estimate
1 L2][¢, < C(m, 2, M) [lellg, - (3.5.75)

Consequently, we have the following estimates.

Proposition 3.5.2. There exists do(X) € (0,1), such that for all [|h|e, < do, if ||, < M
for some M > 0, then

[Malle, < C(m, %, M); (3.5.76)

and for all p € Cy we have

DM [B] ¢llg, < C(m, S, M) [[ollg, - (3.5.77)
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3.56.2.4 ./\/lg and DMg
The term M3z = 9,0 (I — (I + V0)~'V#) can be written as
Ms = 0, (hm) (I — M,). (3.5.78)

Letting F':h+— I — Mj and G : h — 9, (hn). Using the same calculation as in (3.5.55), we
have for all ¢ € C, that

DF ¢ =— (I +V(hn)) "V (¢n) (I + V(hn)) . (3.5.79)
Since 0,0 = 0;(lhm) = 0;hn, we have
DG [h] ¢ = Oppm. (3.5.80)

Thus, the Fréchet derivative of M3 is

D(GF) [b] ¢ = (G [h]) (DF [b] ¢) + (DG [h] o) (F [b])
= (0hn) (— (I + V(hn)) "' V (¢n) (I + V(hn)) ™) (3.5.81)
+ (Qpm) (I — (I +V(hn))™" V(hn)).
Composing with the mapping h — h = h o II, we have the following estimates.
Proposition 3.5.3. There exists 0o(X) € (0,1), such that for all [|h|e, < do, if ||hll,, < M

for some M > 0, then

M B, < C(m, %, M) ||R]le, ; (3.5.82)

and for all p € él,
[DMs [R] ¢lg, < Clm, 2. 00) [, (3.5.83)
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3.5.2.5 ./\/l4 and DM4

In order to estimate M, = (VO) ' (VO) ™' — I, we first rewrite it as

M= (Ve) ' (I-ve've)ve)!
= —(VO) ' (V4TVO+ V6 +V06)(VO) ",

which allows us to separate the variable h.

Next, we study the Fréchet derivative. We define
F:Am ATA- 1,
where A is a matrix. Since
F(A+H)—F(A)=A"TH+HTA+H'"H,
we have
DF[AJH=A"H + H'"A.
We recall that for the inverse matrix operator G : A — A~! we have

DG[AJH = —-A"'"HA™.

Thus, we have

D(FoG)[A|H = DF[G[A] DG[A]H = — A" (A*lﬁ + (A’lH)T> A

(3.5.84)

(3.5.85)

(3.5.86)

(3.5.87)

(3.5.88)

(3.5.89)

For the operator K : h +— VO = I 4+ V6, we have DK [h] ¢ = V (¢h). This implies that

D(FoGoK)hlg=D(FoG)[K()] DK [h] ¢

= —(I+V(hm))~" ((1 +V (hn)) ™' V (¢m) + (1 + V (hm)) ™' V (gom))T> (I+V (hm))™".

(3.5.90)

Composing F' o G o K with the mapping h — h and using the same argument as in the

estimate of M, we obtain the following estimate.
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Proposition 3.5.4. There exists §o(2) € (0,1), such that for all [|hl|., < o,

M [Bllle, < Clom, ) 1Al : (3.5.91)

and for all ¢ € Cs,
DMy [h]plls, < C(m,2) llell, - (3.5.92)

Therefore, we have obtained the estimates of terms Mg to My. In the remaining part
of this chapter, we will fix a value for dy such that all these estimates can be satisfied, which
can be done by taking the minimum of finite many values.

Remark 3.5.3. Notice that the variable we consider is h when we calculate the Fréchet
derivatives, rather than the point x € Q. Thus, the function O(x) = z + h(x)n(z) is
understood as a mapping h +— h +— 1+ hn, where i : + — x and n are fixed functions
defined in . The Fréchet derivative is the derivative of an operator, so it is taken with

respect to h rather than z.

3.5.3 Fréchet derivatives of G, and their estimates

In this section, we estimate nonlinear terms G;, i = 1,2, 3 in the surface tension equation,
which are defined in (3.3.65) (3.3.66) and (3.3.73). These terms have been studied in e.g.
[15,28]. In our calculation, we add more details for completeness. We remind the readers that
we still calculate in R™ instead of R? in order to have clearer structures. For convenience,

we do not mark the dependency on m in constant terms.

G = — ([[V(X) (Vu + VUT)]] MOVgh) Ny
— ([[V(X) (/\/hVu + (M1Vu)T)]] (nz - MoVEh)) Ny
gg = /ﬁ}HF - HDHF [0] h, (3594)

(3.5.93)

Gy = P V(0 = M)V +v(0) (= M)Vw) | MoV

+Ps [0 MTu 4 v(0) (M T0) T s

— (00t = M)Vu+ () (1 = M)V | (15 = MoVsh)) - ns ) MoVish.
(3.5.95)
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3.5.3.1 Estimate of «

We recall that in (3.3.41) we defined the auxiliary vector @ := MyVgh to help calculate
nr. Suppose that ||k, < M. Since ¥ is fixed, from (3.5.40), there exists dp(X) € (0, 1) such
that

lalle, < ClIMolle, [Vshlle, < C(E, M) [|A]lc, - (3.5.96)

Moreover, we have

lalls, < C(To, X) [Molle, IVhlls, < C(To, 3, M) [|Al],y, - (3.5.97)

Now we estimate the Fréchet derivative Da. Given z = (u, B,p,w,h) € W and ¢ =
(Spua ¥B; Pp, Pw, Soh) S W, we have
(Dalz]) ¢ = Dy [h] (MoVsh) o
= (DpMogn) (Vsh) + (Mo) (D, (Vsh) ¢n) (3.5.98)
= (MopnLsMo) (Vsh) + Mo (Vsen) -

Here we use D), to express that the derivative is taken only with respect to h. Suppose that

|A]le, < M. From (3.5.40), there exists do(2) € (0,1) such that if [|A[|, < do, then

[ Daylls, = [[(MopnLsMo) (Vsh) + Mo (Vsen)lls,
S Moz, IVshlle, llenlle, + [Molle, Vsenlle, (3.5.99)
< C(E, M) (14 hllg,) llenllg, -

Moreover, we have

[Day|ls, = [[(MoprnLsMo) (Vsh) + Mo (Vsen) s,
< C(To, %) [[Molle, IVshlls, lenlle, + C(To, 2) [Mollg, IVsenlls, (3.5.100)
< C(To, 3, M) (1+ ([l ) lenllyi, -

where we used the embedding theory in [28, Proposition 5.1] in the last inequality.

Remark 3.5.4. In order to make calculations concise, we will frequently use notations like
D (Vsh) without additionally using DF' by defining F'(h) := Vsh. The simplified notation
denotes the derivative of the mapping h + Vygh at h. This is similar to notations like (x?)’

or d(z?) in calculus. Moreover, we will not distinguish D and D;, when there is no confusion.
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3.5.3.2 Estimate of G,

We still assume that |||, < do for a sufficiently small § and |||, < M. We rewrite

g, as
G = — ([v(x) (Vu+ Vu")] MoVsh) - ny

— ([r(x) M:1Vu+ (M Vu) )] (s — MoVsh)) - ns (3.5.101)
= Il + IQ.

In the term [1, the operator F: u — [v(x) (Vu+ Vu')] is linear, which implies

DF [u] ¢ = [v(x) (Veu + Vo, )] (3.5.102)

for all ¢ = (¢u, Y8, Pp: P, Pn) € W. Thus, the Fréchet derivative DI, at z = (u, B,p,w, h)

dependents only on » and h, i.e.

DIy = — ((DFp,) MVsh+ Flu] D(MyVsh)gp) - ns (3.5.103)
— —((DFg)a+ F[u] (Dagy) - ns.

This implies the following estimate:
IDLgllsr < C(T, %) IDFeullsy (llellsy + llall) + C(To, D) I1F [u]ll g7 | Dagaller
< C(T0, %) Ieallisy (Il + 1Bl ) + C(To, 2 ullye lpnlly

< O, To) (zllwr + [12lloo) ol

(3.5.104)
where the constants are fixed for all T € (0, Tp).
To estimate I5, we define G : z — M;Vu, whose derivative is
DG [zl ¢ = (DMypr) Vu + MV, (3.5.105)

Then we obtain
DI,z = — ([{u (DG% n (DG%)T)H (ns — Movgh)) ng
+ ([v (G +GT)] (D (MoVsh) ¢n)) - nx (3.5.106)
= — ([[y (DG(ph + (DGgph)T)ﬂ (ny — a)> “ny + ([[V (G + GT)]] (Dagph)) ‘Ny.
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Thus, using the estimates of o and Dea, we have for all T' € (0, Ty] that

DLl < 1) [v (DGen + (DGeT)]

s = ol
+ (5, M Ty) |[[v (G + G, (Dasen) e,

< C(Z, M, Ty) (1 + ||2lle,) IDGenllyi, + C (5, M, Tp) [|Gllyy, lenlle,

<O, M, To) (1+ [1hlle,) (IDMien) Vaull g, + M1V eullyiy,)
+ C(%, M, Tp) M1 Vullyy, llenlle,

< C(Z, M, To) | DMagnlle, IV ully, + C(E, M, To) (Ml + IMillo) Vel
+ C(Z, M, To) [|Mulle, [Vully, [lenlle,

< O3, M, Ty) lgnlle, [IVully, + C(Z, M, To) ([Vehlly, + 1Vshllo) 1Veully,
+O(2, M, Tp) || hlle, IVully, lenlle,

< C(%, To, M) lenllyi, lully, +C2 M, To) (121, + Vshll) eull,
+ C(Z, To, M) [[Rlle, [lullyy, lenll,

< O3, To, M) (Izlhwr + Vbl o) lellir
(3.5.107)

where and the last inequality is guaranteed by (3.5.58) and (3.5.59). For convenience, we
ignored the parameter 7" in some notations of function spaces.

From (3.5.104) and (3.5.106), we finally obtain

1DG: 1) pllsy < O M, o) (Jzllye + ller ) el (3.5.108)

3.5.3.3 Estimate of G,

As a preparation of the estimate of Gy, we first calculate the derivative of the mean

curvature Hr in (3.3.57):

Hyp = ftr (Mg (Ly + Vsa)) — 52 (Moya) Vsaa " (3.5.109)

For the function F'(s) := 1/s, we have

DF [s]r = ——. (3.5.110)
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For the Euclidean norm G(x) := |z| x? + -+ + 22, its Fréchet derivative is

Letting H(h) := ny — MyVxh, we have for all ¢ € W that

DH [h] ¢ = = (DM [h] @) (Vzh) = (Mo [h]) (V).
Since f(h) = F o G o H(h), we have

DB[hlp = DF[G(H(h))] DG [H(h)] DH [h] ¢
(ng — MoVsh) - (DMg[h] p) (Vsh) + Mg [h] V)
|ng - M0V2h|3

= (ng — a) - (DMog) (Vsh) + MoVsp)

which implies

D(B°) [h] o = 3587 (DB [h] ) = 35” (nx — a) - (DMop) (Vsh) + MoVsyp).

(3.5.111)

(3.5.112)

(3.5.113)

(3.5.114)

Now we calculate the derivative of £/ : h +— tr (Mg (Ls + Vsa)). Letting F' : h — Ly+Vsa,

we have
DF [ = Vs ((DMo [h]¢) (Vsh) + (Mo [1]) (Vsp)).
Letting G : h — MyF, we have
DG [h] ¢ = (DM [h] @) (F [h]) + (Mo [B]) (DF [h] )
= (DM()QO) (LE -+ VEOé) + Mo (VZ ((DM()QO) (Vzh) + MQVEQO)) .
Letting H : A +— tr(A), we have
DE[h]p = DH [G(h)] DG [h] ¢
=tr ((DM()(,O) (LE + Vz;Oé) + Mo (Vz ((DM()(,D) (ngh) + M()Vz(p))) .
Using (3.5.112), we have
D (Moa) [h] ¢ = D (MoMoVsh) [h] ¢
= (DMop) (MoVsh) + (M) (D (MoVsh)@).

82

(3.5.115)

(3.5.116)

(3.5.117)

(3.5.118)



Using (3.5.112) and (3.5.115), we obtain
D (Vsaa™) (1o = (D (Vsa) [19) (2T [1) + (Vsa 1) (D (a7)) 1] ¢)
— (Vs (DMo ] ) (Vsh) + (Mo [A]) (V50))) (a” 1] (35.119)
+ (Vs [h]) (DM [h] @) (Vsh) + (Mo [1]) (V) -

Thus, we have

DHr [h] ¢ = ((DB) ) tr (Mo (Ly + Vsa)) + (8) (D (tr (Mo (Ls + Vsa))) ¢)

— (D (B*) ¢) (Moa) (Vsaa™)

—(8%) (D (Moa) ) (Vsaa ") — (8%) (Moa) (D (Vzaa') ¢)

= 0% (ns — @) (DMop) (Vsh) + MoVep) (tr (Mo) (Ls + Vza)))

+ 6 (tr (DMop) (L + Va) + Mo (Vs (DMop) (Vsh) + MoVspn))))

=36 (ng — a) - (DMow) (Vsh) + MoVsgr) (Moa) (Vsaa')

— B ((DMop) (MoVsh) + (Mo) (D (MoVzh) @) (Vsaa')

— 8" Moa (Vs ((DMop) Vish + MoVsn) a” + Vsa (DMow) Vsh+ MoVsin) )

= ]1+Ig-]3-]4-[5.
(3.5.120)

When h = 0, we have My = I and Vyh = 0, which implies & = 0 and 8 = 1/ ||ng]| = 1.

Thus, the term I; turns to
I[0] =ng (0 + V) trLy =0 (3.5.121)
since ny is perpendicular to Vy. The term I, turns to
L[0] = tr (¢Lys (Ly, +0) + Vs (04 V) I) = (trL3 + Asx) ¢. (3.5.122)
By definition, we have « [h] = 0 when h = 0. Thus, we obtain
I3[0 =1,][0] =I5[0] =0 (3.5.123)
with no need for calculation. Therefore, we have

DHy [0] = trL2 + Ag. (3.5.124)
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Since the mapping F : h +— DHr [0] h is linear, its derivative is DF [h] = DHry [0] for all h.
Thus, the Fréchet derivative of G, is

DGy [h ¢ =D(Hr[h] — DHr[0]h)p =1 + I, — Iy — I, — Iy — (trL3 + Ay) ¢ (3.5.125)

with I; to I5 defined in (3.5.120). It remains to estimate |||, ||I3]|, ||Z4ll, ||I5]] and
|l — (trL% + Ayx) ¢|| term by term.

For I, we first notice that the terms with structures like ny, - Vs f or ny - MoV f will
vanish. This is because the tangential gradient Vs, of a function is a tangent vector, which
is perpendicular to the normal vector ny; moreover, the matrix M, maps tangent vectors

to tangent vectors. Thus, we obtain

(ng — ) (DMop) (Vsh) + MoVse)
= ny (DMop) (Vsh) — a (DMoy) (Vsh) + MoVse),

(3.5.126)

which implies that

I = 3 (ny — a) ((DMop) (Vsh) + MoVse) (tr (Mo (Ls 4+ Vza)))
= 53 (ng (DMQQO) (Vzh) — ((DM()QO) (Vzh) + MQVEQO)) (tr (Mo (LE + Vg&)))

= ﬁSIn[lz-
(3.5.127)

Using [28, (5.3)], we have

11 0lg, < CTo) ||8%|e, ITullg, (IDell + T2lls,) - (3.5.128)

From the formula of 3 in (3.3.42), we can find a sufficiently small §y(3) € (0,1), such that
for all ||All,, < do, if [|A[lo, < M for some M > 0 then

18%, < C(E, M). (3.5.129)
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Without loss of generality, we can always use the same notation d; and M in the derivation
of (3.5.129). This is because we can always choose the smallest dp and the largest M from

finite many candidates. From [28, (5.4)], we have for all T € (0, Tj] that

11117 = [Ins (DMop) (Vsh) — a (DMop) (Vsh) + MoVsen)|ls,
< |Ins (DMop) (Vsh)|| g, + lla (DMop) (Vsh) + MoVson) g,
< C(%,To) [DMogllg, (IVshlls, +11Vshll)
+C(5,T) (llalls, + lalle) DMop) (Vsh) + MoVsenllg,
< C(%,To, M) lenlls, (IVshlls, + 1 Vshll,)
+C(2,To, M) ([IVshlls, + 1 Vshll) ((IVshlls, + 1Vshllo) lenlls, + 1 Vsenlls,)

< O, To, M) (Izllyr + IVshll ) lellir -
(3.5.130)

The parameter T' in the notations of function spaces is ignored for convenience. When

1]l o7 < do and [|h]| 7 < M, for all T € (0, Tp] we have
0 1

[ 112l s7 < C(To, ) [[Moll, [Ls + Vsals,

< C(1, %) [Molle, (IZ5llens) + IVsalls,)

(3.5.131)
<O, To, M) (1+[lalls,) < C(E,To, M) (14 [|hlly,)
< CO(%, To, M) (14 [|2]lyyr) -
Moreover, we have
I12le, S IMollg, I1Ls + Vsallg, < C(S, M), (3.5.132)
Thus, when ||h]|,, < & and ||A]le, < M, for all € Sy and T € (0, Tp] we have
L]y < O, To, M) (1 + [[zllyyr) (lzllyr + [ Vehll) lellgr - (3.5.133)

Similarly to the derivation of I;, we remove those vanishing products of perpendicular

terms in I3 and I, which implies

IEsllsy < € To, M) (14 [zlhyr) (Il + Dler ) el (3.5.134)
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and
sl gy < C (3, To, M) [|(DMog) (MoVsh) + (Mo) (D (MoVsh) @)ller | Vsallsr [[a[|er

< C(S,To, M) (1 + [lleg ) I1lleg el =l
(3.5.135)

provided that [|h]|,7y < do and [|h||,, < M. For the term I, we have to be careful with
0 2
the selection of norms in order to estimate higher-order derivatives with our nonredundant

regularity. We have for all T' € (0, Tp] that

1 sllgr < C(,To, M) [[Moalle, (lalls, + lall) Vs (DMopn)(Vsh) + MoVsen)llg,
+ C(%, To, M) | Moalle, [[Vealls, [(DMopn)(Vsh) + MoVsenllg,

< C(%,To, M) [|hlle, (IVshlls, + 1Vshll) (DMopn)(Vsh) + MoVsonlls,
+ C(2,To, M) [[hli¢, 1Rl [(DMopn)(Vsh) + MoVsenl|s,

< C(B,To, M) (IVshlls, + IVshllo) (lenlle, 1Rl + lenll,)
+ (2, To, M) [|hllyy, (lenlle, IRlle, + llenlle,)

< C(,To, M) (Iklleg + zllwr ) (1 Iklleg + Nzl ) i
(3.5.136)

It remains to estimate I, — (trL% + Ax) ¢p, which can be written as

L — (trL3 + Ay) ¢
= B (tr (DMog) (Ls + Vza) + (Vs (DMop) (Vsh) + MoVsp)) Mo)) — (trLs + As) ¢
= tr (8 (DMop) (Ls + Vza) — Lip) +tr (8 (Vs (DMop) (Vsh) + MoVsp)) My — Vi)
= tr (B (DMoy) Ly — Lgp) + tr (B (DMoyp) Vsa)

+tr (BVs (DMop) (Vsh)) Mo) +tr (BVs (MoVsp) My — Vi)

=:tr ([21 + [22 + [23 + [24) .
(3.5.137)

We still assume that [|hl|o, < do, [|Allo, < M and T € (0,7p]. We recall that the product

of two bounded and Lipschitz continuous functions is still Lipschitz continuous. Thus, the
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estimate of Iy to Iy, can be simplified to the estimate of their factors. For I5;, we have for
all T € (0,Tp) that
||]21||3°4T = ||5 (DMgp) Ly — L%@Hg;
< [|8(DMog) L — LA g + |BL30 — L]l (3.5.138)
<O, To) [1Ble, IMoLsMo — Ly, llenlls, + C(E,To) |8 — s, lenlle, -

From the structure of 5 in (3.3.42) and the fact that |ng| = 1, there exists do(X) € (0, 1),

such that when ||A[|,, < do and [|h]|,, < M we have

1
Ins —alle, > 5 and [18lle, < C(S, M).

Then we can obtain that

1 — —
18—1| = __1': nsl = lns — o] o] <Cla|. (3.5.139)
Ing — Ing — Ins — o
It then follows that
18— 1]ls, < C(S, M, Ty) [Vshlls, (3.5.140)
and
18 =1l < ) [[Vshll - (3.5.141)
Moreover, from the structure of M in (3.5.35), we have
Mo — 1|5, = [[MoLshlls, < C(E, M, To) |[lls, ; (3.5.142)
which implies that
[MoLs Mo — Ll s
< |[[(Mo —I) LsMollg, + [[Ls (Mo — T)||
. S (3.5.143)

< C(To, 2) [ILsMolle, 1Mo = Tlls, + C(To, ) | Ll o sy Mo = Tl
< C(%, Ty, M) | Mo = 1|5, < C(X, To, M) |[B] g7 -

From (3.5.138), (3.5.140) and (3.5.143), we have for all T' € (0, Tp] that

[ L1l gr < O, M, To) ||Allyyr lonllir - (3.5.144)
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Using estimates in [28, Lemma 5.2], we obtain the estimate of Iy:

[ L2l gy < C(5,T0) [[Bller [[DMonl| 7 <||V204||s;{ + \|V204Hcg>

(3.5.145)
< O, To, M) (Ihlhwg + 1kller ) lnllsy

Since ¢y, € Wg), the term 93 have the estimate

[ Lol gr < C (5, T0) [|Blle, [V (DMog) (Vh))llg, [[Molle,
< CE,To, M) [[Vs (DMop) (Vsh))llg,

C (3, To, M) [[Vs (DMop) (Vsh)| g, + C (2, To, M) [[(DMop) Vs (Vsh)|| g,
< C(2,To, M) Vs (DMop) g, (IVshlls, +IVshll,) + O, To, M) [[DMoglle, [|VER| s,
< C(%,To, M) [[DMopllg, (IVshlls, + IVshlly) + C(E, To, M) [lell, R,
< (5, To, M) ([[zlhyr + [1Vshllo) llelhir -

(3.5.146)

Similarly, we obtain the estimate of Io4:

[ Lallgy < 16 (Vs (MoVsipn) Mo — Vo) H54 +[(8-1) V22<Ph||§4
< C(To) [1Blle, I(MoVsen) Mo = Vsnlls, + C(To) (118 — 1s, + 18 = 1l.0) [ Vaen|s,
< C(8,To, M) |hllg, [ Vs@nlls, + C(S, To, M) (| Vshls, + [ Vshll) [|VEen]s,

< C(%, T, M) (bllwg + 1V5hl.) Il
(3.5.147)

From the estimates of Iy to Iy, we obtain the estimate of I, — (trLi + Ax) ¢p. For all

T € (0,Tp] we have

|12 — (trL% + Ay) SDhHgg < O(%, Ty, M) (HZHwT + Hthg) lollypr - (3.5.148)

Consequently, from (3.5.125) and the estimates in (3.5.133), (3.5.134), (3.5.135), (3.5.136)
and (3.5.148), we obtain for all T' € (0, Tp] that

1DG [2) ellsy < O, To, M) (11hlleg + Nzlhyr ) (14 Whlleg + llhyr ) llhr - (3.5.149)
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3.5.3.4 Estimate of G;

Now we study G3. We abbreviate it to

Gs =Py HV(X)((I — M)Vu+ (I - Ml)vu)T)ﬂ MoVsh
+Px HV(X) (MNu + (M1VU)T>]] -
_ ((HV(X) ((I — M)Vu+ (I — Ml)VU)T>ﬂ (ns: — MQVZh)> .n2> MoVsh

= [1 + [2 — [3.
(3.5.150)
To estimate [;, we first calculate the Fréchet derivative of F': z — (I — M;) Vu:

DF [2] ¢ = (=DMupn) (Vu) + (I = My) (V) , (3.5.151)
which implies that

DIy [zl =Ps [[V((—DMM%) (Vu) + (I = M) (Veu))
+u((=DMygy) (V) + (I — My) (V@u))THMOVgh
+Ps |00 (1= M)Vt (= M)V )| (MognLsMa) (V) + Mo (Vsipn)

=: I11 + Lo,
(3.5.152)
Notice that the estimation of [A+ AT] is equivalent to the estimation of [A]. Moreover,

the projection matrix Py is fixed and thus will only become a constant in the estimation.

Suppose that ||hl|,, < do for some sufficiently small do(¥) and ||k, < M for some M. In

111, we first obtain

[[(=DMapp) (Vu) + (I = Mi) (Veu)]lls,

S [(=DMugy) (Vu) + (I = My) (Veu) [y,

< C(E,To) [ DMagnllg, Vaully, + C(E,To) ([ — Mille, [Veoullyy, (3.5.153)
< (5, To, M) [lenllg, lully, + C (35 To, M) lleully,

< O, To, M) (1+ [lzlhy) el -
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The estimation of MyVsh =: a has been studied in Section 3.5.3.1. To estimate I15, we use

the same argument as in (3.5.153) to obtain
[ — M) Vu]ls, < C(E, To, M) [|ull,y, - (3.5.154)
Moreover, we have
[(MowpnLsMo) (Vsh) + Mo (Vspn)lls, < C(5,To, M) |[enllg, - (3.5.155)

Therefore, by (3.5.153), (3.5.154) and (3.5.155) we have

IDL [ ¢lls, < C(2,To, M) (1 + [Izlly) el (12l + 1Vshll) + C(8, To, M) |lullyy, lenlle, -
(3.5.156)

Using almost the same argument as for I;, we obtain the Fréchet derivative of Iy and I5:

Do =Py [v (DMigs) (V) + MiVi, + (DM (V) + M V0,) ") | s,
(3.5.157)

and
Dlsp = <([[ v((=DMugy) (Vu) + (I = M) (V) )
F((=DMigy) (Va) + (1= M1) (V) ) | (s = MoVsh)

+ [[l/(f — /\/ll)Vu + v ((I — M1>VU)TH ((MogthzMO> (Vzh) + Mo (Vz@h))) 'ﬂz) MoVZh

+ (( [{u(z — M)Vu+v((I - Ml)Vu)Tﬂ (ns — MOVEh)> ' ”E) (D (MoVsh) ¢n)

=: Al —+ AQ.
(3.5.158)
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We remind the readers to be careful with the brackets in the term A; due to its complexity.

Using the estimates in [28, Proposition 5.1 (a)], we have

IDLellg, S II(DMagr) (Vu) + MiVe ]|,

S [(DMapr) (Vu) + MiVeu|l,

< C(2,To) [DMagnlle, [Vully, + C(ETo) (IMilly, + IMille) [Veullyy,  (3:5:159)
< O, To, M) [[enllg, IVully, +C(E, To, M) ([[Vshlly, + 1Vshll ) IVeull,

< C(%, To, M) lenllyis, lelly, +C 2, To, M) (Al + 1Vshl) leull, -

To estimate I3, we need the following estimates. For the term A; in (3.5.158), we

abbreviate it to
(([[V ([31 + [3T1)]] I39 + [[V (133 + I?,Tg)]] [34) 'nz) I35, (3.5.160)

where

I3 := (=DMign) (Vu) + (I — M) (Vo) ,
I35 :=ny — MyVsh,
Iy := (I — M;)Vu, (3.5.161)
I34 := (Mo L Mo) (Vsh) + Mo (Vo) ,
I35 .= MyVxh.
For I3; we have
[(DMapn) (Vu) + (I = Mi) (Veu) i,
< O, To) [[DMaenlig, Vullyy, + CE, To) (|1 = Malle, [Veoullyi,

(3.5.162)
< O, To, M) llenlle, Vullyy, + C(, To, M) [[Veeullyy,
< O, To, M) [[enlly, [Vullyy, + C(5, To, M) [[@ullyy, -
For I35 we have
[ns — MoVshll, < C(X, M). (3.5.163)

For I35 we have

11 = M)Vl < CETo) [ = Mille, [Vl < O, To, M) Jully, . (35.164)
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For I3, we have
[(MopnLsMo) (Vsh) + Mo (Vsen)llg,

< [[MopnLsMollg, IVshlle, + [ Molle, [Vsenlls, (3.5.165)
< C(E, M) llenllg, IAlle, + C(E, M) [lenlle, -

For I35 we have

[MoVshlle, S [[Molle, [Vshlle, < C(E, M) [[R], - (3.5.166)
Thus, we have
(0 (i + B0 F+ o s )] ) ) sl
< C(3,To) (IlZalllg, 1 E2lle, + 1za]lls, 1aalle,) (s lls, + 12351l )
< C(5,To) (Msally, I s2lle, + I sslly, [ Zsalle,) (1 Zsslls, + 1351l )
< C(%,To, M)(H%Hm IVullyy, + leulli, + lull, lenlle, 1],
+ ully, Ionlle, ) (I9sRllg, + I 95RlL)
< C(2,To, M) (lell 2l + el + Izl el Rlle, + T2l lelhy) (Rl + 1Vl

< C(Z,To, M) (L + [Izll) (12l + 1VsRlL) Tl -
(3.5.167)

The term A in (3.5.158) can be abbreviated to
(([v (Iss + Lss) ] 132) - ns) (Davgy) (3.5.168)
where « is defined in (3.5.98) and estimated in (3.5.96) and (3.5.99). Thus, we have

[(([v (Zss + L53)] Is2) - mz) (Dagn) || 5, < C(2, Do) [[ss]ls, 1 I52le, 1 Davpnlle,

< C(8, To, M) [[Izs]ly, llnlle, < C (2, To, M) [[ullyy, llenlle, < CE,To, M) ||zl @l -
(3.5.169)

From (3.5.167) and (3.5.169), we obtain

IDLells, < C(2,To, M) (1+ [12lw) (1rllw, + 1Vshll) ey + O, To, M) 12l el -
(3.5.170)

Consequently, the estimate of DGj follows (3.5.156), (3.5.159) and (3.5.170). For all T €
(0, Tp] we have

1DGs [z] llgr < O, To, M) (1 + [|z[lyr) (lzllyr + [Vshll o) lelhir - (3.5.171)
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3.5.4 Estimates of nonlinear terms

In this section, we estimate the nonlinear operators (; using the S; norm with i =
1,--+,5, using similar ideas as in [15,28]. Similar to the arguments before, we still assume
|Alle, < do for some sufficiently small §o(X) and ||h],, < M. We will also ignore the

parameter 1" in function spaces when there is no confusion.

3.5.4.1 Term G,

We start with the Fréchet derivative of G. We will use the S; norm, i.e. the L9([0, T; L9(2))

norm. For the 1st term we have
1
D (§V (|B|2)> ¢w=D(VB-B)p=Vepp-B+VB-yppg. (3.5.172)
Its estimate is
1 2
D§V (|B| ) ©
Slleslle [1Blls, + 1Bllw, el

S leslh, 1Bllw, + 1Blhw, leslhy, < CE,To) [zl @l -

- SIVesllg, 1Blls, + IIVBlls, [Vesll,
S1

(3.5.173)

The 2nd and 3rd terms can be estimated using exactly the same argument and function

spaces. For the 4th term we have

D (M3Vu) o = (DMspr) Vu+ M3V,. (3.5.174)
Using (3.5.83), we have

1D (MsVu) ¢lls, S 1DMsenllg, [Vulls, + [Mslls, [[Veulle,
< O, To, M) llenlle, l[ully, +C To, M) [[9chlls, leullii, (3.5.175)

< O, To, M) ||zl el -

For the 5th term we have

D (uM1Vu) p = o, M1Vu+u(DMigy) Vu + uMiV,. (3.5.176)
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Its estimate is

1D (uMyVu) |5,
S lleullg, IMalle, Vulls, + lull [DMaenlig, [[Vulls, + [lulls, [[Malle, [Veulle,

< C(,To, M) (Ipulle, 1Rlle, lell, + lull llonle, Nl + lully, [Blle, lleule,)
< C(Z,To, M) ([7lley + leelloo) 12l ol -

(3.5.177)
Using the same argument, we obtain the estimate of the 6th term:
ID (BMYB) ¢llg, < C(E,To, M) (Ihlle, + 1B11) =1y el (3.5.178)
For the 7th term we have
1
D (§M1V (|B|2)) @ = (DM1Q0) VBB + M1VQDBB + M1VBQOB. (35179)
Estimating by terms, we obtain
[(DM1p) VBB|g, S [|DMuignllg, [IVBls, | Bl (3.5.180)
< O3, To, M) [[enlly, [1Bllw, 1Bl < C(E, To, M) llellyp 2l 1Bl »
[MiVepBls S [Mille, [Veslle, 1Blls, (3:5.181)
< C(5,To, M) [[hle, sy, 1By, < CTo, M) [|hlle, el 1zl
and
MV Beglls, S [Mille, leslle, VB, (35.182)
< C(%,To, M) [[hlle, lleslli, |1 Blly, < CE, To, M) [[hlle, [lelly Izl -
Thus, we have
1
D (37080 ) | < €T 00) (bl 1B Bl by (35159
For the 8th term we have
D (M Vp) ¢ = (DMygy) Vp + MV, (3.5.184)
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For any ¢ € W we have the estimate

ID (MiVp) ells, S I1DMaenllg, IVPlls, + [[Mallo IVenlls,
< C(3,To, M) |[enlle, [Ipllw, + €5 To, M) [Vshll [l@pll,
< O, To, M) |lenlli, IPllw, + O To, M) |[Vshll llenll,

< O, To, M) ([[2]ly + Vi) llelly -

(3.5.185)

For the 9th term, notice that the viscosity v is a fixed function in the transformed equations

since the interface has been pulled to a fixed interface. Thus, we have
D (I/M4 : V2u) 0 = v (DMypp) : Vu+vMy : Vi,
For any ¢ € W we have the estimate

1D (v M= V2u) |5, S UDManlle, |V, + IMallc [ VEeulls,

o0 ‘

< C(5,To, M) [lenlle, llully, + (5 To, M) [[Vshll l@ully,
< O, To, M) |lnllyi, llullw, + O, To, M) [[Vshll leulls,
< C(3,To, M) ([|zlly + Vbl il -

For the 10th term we have
D (v My - (Vu)) o = v (DMapy) - (Vu) + v My - (V) .

For any ¢ € W we have the estimate

1D (v Mz - (V) ells, S IDMagnllg, [Vulls, + I Mell [[Veulls,
< C(3,To, M) [lnlle, l[ullw, +C,To, M) [ Vbl leull,
< (5,70, M) (2l + [V2hllo) el -

Combining the estimates of all these 10 terms, we obtain

IDG [ ells, < O To, M) ([[Vshlly + (L4 [lulloe + 1Blloo) [12llw) el -
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3.5.4.2 Term G,

Now we estimate G5 using the Sy norm, which is equal to the §; norm. The 1st and 2nd
terms uV B and BVu can be treated using the same argument as in (3.5.172) and (3.5.173)

since their structures and spaces are exactly the same. Thus, we have

1D (wVB)¢lls, < Cllzlly el (3.5.191)
and

1D (BVu) o5, < Cllzllyy llelly - (3.5.192)
The 3rd and 4th terms uM{VB and BM{Vu can be treated using the same argument as

in (3.5.176) and (3.5.177), which implies

I1D (uMVB) |5,

< CO(%, To, M) llpullg, lle, 1By, + C (3, To, M) [[ull  lenlle, 1B,

(3.5.193)
+ O, To, M) [lullyy, [[Plle, lleslle,
< C(2,To, M) (I1Pll, + i) Izl el
and
1D (BMy V) olls, < O(E,To, M) (lIhle, + IBlle) 12l llelhy (3.5.194)

The 5th, 6th and 7th terms M3V B, oM, : V2B, and 0 M, - VB can be treated using the
same argument as in (3.5.175), (3.5.187), and (3.5.189), which implies

1D (MaVB) lls, < C(S.To, M) 1zl lolhyp (3.5.195)
|D (oM - V2B) ||, < C(S.To. M) (lzlly + Vbl [l (3.5.196)

and
ID (0M; - (VB)) ¢lls, < C(Z,To, M) (2l + 1Vl lelhe (3.5.197)

Consequently, we have the same estimate as in (3.5.190):

IDG2 2] ¢lls, < C(5,To, M) (I[Vshll + (1 + l[ullo + 1 Bllo) 12llw) lellyy - (3:5.198)
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3.5.4.3 Term G3

For term (3, we only need to estimate M : Vu. Its Fréchet derivative is

DG3p =D (M :Vu)p = (DMypy) : Vu+ My : V. (3.5.199)

Suppose that [|h[|,, < do and [|h[|,, < M. For all ¢ € W, using similar ideas as in [28, (5.20)],
we have
I1DGsellg, = 1D (M : Vu) ollg,
< |D (M : Vu) SDHWLq([o,T};W—Lq(Q)) +[|D (M : Vu) <PHLq([o,T];WLq(Q))
< C(2,To, M) (IIVshll oo + Ibllag + Nl ) (Il + lenlhig ) (3.5.200)
+ CIDMigler IV ullyy + C [ Milleg [Vl

< O, To, M) (IVshllo + 2lw) el -

3.5.4.4 Term G,

For term Gy, all its components have been studied in Section 3.5.3. We estimate its

Fréchet derivative

DGy = (DGign + DGoy, + K(trL3,) 1) ns + DGspp,. (3.5.201)

When |[|h]|,, < &o and |||, < M, using (3.5.108), (3.5.149) and (3.5.171), we obtain for all
0 €W and all T € (0, T}] that

IDGapllsr S IIDGienlls, + 1DGapnlls, + [[trLEenlls, + 1 DGsenlls,

< C(2,To, M) (lzllyy + I2le,) el
+C(3,To, M) (IBlle, + lIzllw) (L+ [1Rle, + 12lw) lelly + C [ltrLien|| s,
+C (3, Ty, M) (1 + [Izlly) (I12lle, + 11zlhw) el

< C(S,To, M) (1+ lleg + 2lhyr ) (Ihlleg + I2lhwr ) I lir + ClltrLanll g7 -
(3.5.202)
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3.5.4.5 Term Gj

In the term G5, we recall that b is a fixed auxiliary function for linearity. The details of

the term b can be found in [15]. For all ¢ € W we have

DGsp = — ((DMopn)(Vsh)) - u+ (I — Mo)Vspn) - u
+ (I = Mo)Vgh) - 00 — @u - Vsh+ (b —u) - Vs (3.5.203)
= _Il+[2+[3_[4+15-

Suppose that [|hl|,, < do and ||h[|,, < M. From [26, Proposition 5.1 (a) and Lemma 5.5], we
have for all 7" € (0, Tp] that

1] gr < C(5,Tp) [u" (DMown)|| s, (IVshlls, + IVshll,)
< C(Ty) lulls, IDMognlls, (IVshlls, + IVshll)
< C(2,To, M) |lullg, enlle, (IVshlls, + IVshll) (3.5.204)
< O3, To, M) lullw, lenllhi, (Rl +1Vshlly)
< C(%,To, M) [|zllyyr (2l + 1Vshll o) lellyir -
Since I — My = (I — hLs)™' (I — hLs) — I) = —MLsh, we have
12l g7 = [[((MoLsh)Vsen) - ullg

< C(2.To, M) (Ihlls, + [11l10) (ulls, + llull) 1Vsenlls, (3.5.205)

< C(,To, M) ([|2llyr + [1Pllee) Clzllyr + llullo) elhir

Similarly, we obtain the estimates for I3, I, and I5:

Illsr = [(MoLsh)Vsh) - eulls,
< (8, To, M) ([hlls, + 1hlle) (IVshlls, + [95h]) leuls,

(3.5.206)
< C(2,To, M) ([l + 112lls0) (hllyy, + [Vshll) loulls,
< O, To, M) (12l + 12]l) (2l + 1Vshl ) el
[ La]| g < C(E,To) ([Vshlls, + [[Vshll) lleulls,
% ( S ) lleulls (3.5.207)

< O To) (zlhyr + [[Vehll) llelhir
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and
1 55llsr < C(5,T0) (16— ulls, + 10— ullo) lenllg,

(3.5.208)
< O, 1) (|16 = ullgy + 16 = ull ) llpllir
Consequently, we have
I1DGsell g, < C(X,To, M) (1 + 2]l + 2]l + llullo) Uzl + IRl ) 1@l
S5 w (=l 64) W (3.5.200)

+C(E,To) (16— ulls, + 16— ull) lelly-

3.5.4.6 Estimate of operator G
Combining (3.5.190), (3.5.198), (3.5.200), (3.5.202) and (3.5.209), we have the following
estimate.

Proposition 3.5.5. Given any C? surface 3, there erists 6o(3) € (0,1) sufficiently small,
such that for all Ty > 0 and all z = (u, B,p,w,h) € W, if

1. ||hHCIO < 50,'
2. bl re < M for some M > 0;
2

then for all T € (0,T0] we have the estimate
IDG ) pllsr
< C(%,To, M) (1 + [ll oo go.1x0) + 1Bl Lo (o2 + 12ller + HZHWT)
- (lleg + lzllyyr ) Il

+C [[trLegnlgp + CTo) (16 = wllgg + 116 =l oz1sy ) Il

(3.5.210)

for all o = (pu, ¢B, Pp, P, Pn) € W,
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3.6 Local Existence

In this section, we study the existence of strong solutions. Without loss of generality, we
fix Ty > 0 and only consider time intervals [0, 7] C [0, Tp]. We first consider the case that
the initial interface is a C® surface. In this case, we choose the initial interface itself to be
the reference surface, which implies that the initial height function hg = 0. Next, we study
the case that the initial interface is a W32/ surface and is close to some C? surface in the

sense of C? norm.

3.6.1 (2 initial interface
Suppose that we have the initial condition
uy € W 0UQ\T) N C(Q), Bye W 29Q), and T, e C?,

which satisfy:

divug = 0in Q \ T'g; divBy = 0 in Q;

uy = By = 0 on 0€);

I’y is a closed interface and I'y N 02 = 0;
Pr, Hybuoﬂ nr, = 0.

Ll

Letting the reference surface be ¥ := I'y, then we have hg = 0, Ty = ug and By = B,. The
solution can be obtained by first finding an auxiliary solution with initial value uy and By,
then finding the remaining part, which has an initial value of 0.

Picking an arbitrary Ty > 0, using the same argument as in [15, Theorem 2], we can
extend the initial value ug to a function u, € Wfo. Letting b be the restriction of u; to X,
ie.

b:= ub’[07TO}XZ}. (361)

We recall the solution operator S in Section 3.4, which allows us to define the auxiliary
solution by

Ra '= (uom Ba, Pas @as ha) = S(uo,Bo,O,b)(07 0,0,0, O) (362)
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Next, similarly as in [15], we consider the equation
L(z+ z4) = G(z+ 24), 2(0)=0. (3.6.3)

with z € W. The sum z + z, will then solve the transformed equations with initial value

(wo, Bo, ho) = (ug, Bo, 0). The equation (3.6.3) implies
Lz=G(z+ z4) — Lz,.

When t = 0, the right-hand side turns to G(z9) — L(20). The compatibility conditions for
G(z0) — L(zo) are divug = 0 and (I —nr, ®nr,) [v (Vug + Vug )| nr, = 0, which are exactly
included in the requirements of the initial conditions. Thus, using the solution operator

S0,00p) and the fact that Lz, = 0, we obtain the equation
Z = 5(07070,1,)G(Z + Za> = K(Z) (364)

It remains to find the fixed point of K in the space W, which can be done by a contraction
mapping argument. Let ro > 0 be a sufficiently large fixed number. For r € (0,ry] and
T € (0,Tp], we define

BY = {we W : |Jw|r <7} (3.6.5)

Our goal is to show that K is a contraction mapping on B! for suitable r and T
In the auxiliary solution z,, we have ho(0) = hy = 0, which implies that ||hq(0)| o2 = 0.
Moreover, by [28, Proposition 5.1] we have h,, € Wg‘) — c;fO, which implies that h, € CI' =
C([0,T); C*(X)). Thus, given any £ > 0, there exists a sufficiently small 7} > 0 such that
1ha(®)llc2gsy < € on [0,T1], ie. ||ha||cfl <e.
Given any z1, 29 € B®, we have the estimate
1K (21) = K(22)[[yr < ISI1G (21 + 20) — G224 2a) |

(3.6.6)
<9 Sup DG [cz1 + (1 — ¢)z2 + 2a]ll 7 |21 — 22llypr -

Letting z¢ := cz; + (1 — ¢)2, for abbreviation, we estimate the operator DG.

Proposition 3.6.1. The term 14 |lull + || Bl + [|hllo, + 2],y in (3.5.210) is bounded on

Tt
B,
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Proof.  We start with the estimation of [Ju¢| ;oo 7y1x0) @0 [[tall (o 7y x0)-
Since uq € W < C([0, Tp]; C1(Q\ X)) and ug € W2 e < 01 with o = 1 — (n+2)/q
(see e.g. [15, Section 4]). There exists M;(Ty) > 0 such that

[tall Lo o,y x 0y < M- (3.6.7)
Since ug € BI°, we have by [28, Proposition 5.1 (a)] that
||u§||cu’([07To};Cl(Q\Z)) <C ||U§||V\;To < Cro, (3~6-8)
where the constant C' is independent of Ty. Thus, we have
g + tall oo o 15 x) < CTo + M. (3.6.9)
Using the same argument and [28, Proposition 5.1 (d)], we can also obtain
||B§ + BO‘”L‘X’([O,TD]XQ) < OTO + Ml (3610)

and

Ih + hallgro < Cro + M, (3.6.11)

where we still use the notation M; without loss of generality. For the term ||z||,, we have
I2lhyr < llzallwr + lzellypr < C (20, To, %) 470
for all T' € (0, Tp], which completes the proof. O

Next, using the same idea as in [15] we claim that the norm of [|A[|or +|z[|,yr in (3.5.210)

can be as small as we need by picking a sufficiently small 7" € (0, Tp].

Proposition 3.6.2. There exists a constant Cy, such that for any € > 0, there exists T'(e) >

0 and r(e) > 0, such that for all z¢ € Bl we have

lhe + haller + 11z + zallyr < Cie. (3.6.12)
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Proof. Since z, € W, which consists of Sobolev spaces, we obtain
jl}ir%) | zallyr =0 (3.6.13)

using the Lebesgue dominated convergence theorem. Thus, we can pick a sufficiently small
T(e) < Ty such that
| Zallyr < €. (3.6.14)

Without loss of generality, we assume r < ¢, which implies that
|2e + zallyyr <e+71 <2 (3.6.15)
Since he € W, for all T € (0, Tp), we have
leller < Ihellem < C llhellym < Cr < Ce. (3.6.16)

where the constant C' is independent of T or Ty.
Since ha(0) = 0 and h, € C([0, Tp]; C*(X)) =: C;?, there exists a sufficiently small T(¢)
such that for all ¢ € [0, 7] we have

e (Ol o2y <e, (3.6.17)
which implies
[Paller <e. (3.6.18)
This completes the proof.
O

Proposition 3.6.3. Let ¢ > 5 be fized. Let ¥ be a compact C® surface in R®. For all e > 0,
there exists T'(q, X, e) > 0, such that

[trL3enllgp < € llenllsy (3.6.19)

for all ¢y, € W5T
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Proof. For convenience, we abbreviate ¢, by ¢ and let

1 1 1
r=1--, s:=-——  and f:=trL3.
q 2 2q

From the definition of S, we have

HULQE @Hgg = |\f%0’|§g < Hf(pHWSaQ([O,T};Lq(E)) + HfSOHLq([o,T];Ww(E)) :

Step 1:

Given any ¢ € [0, 71, we estimate || f@| i) (). First, we have

HfSO”Lq(z) < ||fHL°°(Z) ”SOHLq(E) :

Next, we estimate the Gagliardo seminorm:

o ([ [ LT )

<cw ([ [ @) (@) = e+ £ () = S )" iyir)’

- — g™

< C(g) ”f”Loo(z) [SO]WW(E) +C(q) [f]qu(z) ||90||L°<>(E) :

Thus, we have

HfSOHWW(z) = HfSDHLq(z) + [f%o]wnq(g)
< C(q) HfHLOO(E) HSOHqu(z) +C(q) [f]wnq(z) H‘PHLoo(Z) :

Taking the L? norm on [0, 7] and notice that f is independent of ¢, we have

HfSDHLq([o,T];Wm(E)) < C(q) HfHLq([o,T];Loo(z)) H%OHLOO([O,T];WW(E))

+ O 11 oo rpmwracsyy 101l oo o 1)
1 1
< Cl@: BT [ fll sy llelhir + Cla, 2)T | Fllwraes) el
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where we used the embedding theory in [28, Proposition 5.1] in the 2nd inequality.
Step 2:
Now we estimate || /||y a0 1e(sy)- From (3.6.23) and (3.6.24), we have

HfSOHLq([o,T];Lq(Z)) < C(g) HfHLQ([O,T];LOO(E)) H‘PHLOO([O,T];WW(Z))

1 (3.6.25)
< C(@, 2T | fll ooy Nl -

It remains to estimate the Gagliardo seminorm. Since f is independent of time, we have

Hfs@ Fo(m)lIe, :
[felwsaqomyrasy : (/ / T L) dth)
( / / 1 10s ”"0_)|1+Sf >|| dtd7>q
(R e [ T L
(/ / = [iﬁ]ﬁq( : dth) (3.6.26)

105 12 o0 / / !t—7|2dtd7)
< O T0) | fll e kuwT(/ / dtm)

<O T)TH ([f ooy 1l -

IN

From (3.6.25) and (3.6.26), we obtain

1 a+3
1 elhwsagoansy < C@ 5 To) (T +T% ) || fll sy lelhis - (3.6.27)

Consequently, from (3.6.24) and (3.6.27), by assuming 7" < 1 without any loss of gener-

ality, we have

lirLiellsy < OB T ([0rL3 ]| sy + 1523 [yrags, ) I lhir

S Cl(Q7 E7T0)TE HQDHWST .

(3.6.28)

For any € > 0, a sufficiently small T such that C;T"? < ¢ completes the proof. m

Using the same idea as in [15,28], we obtain the following result.
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Proposition 3.6.4. There exists a constant C(X) such that for any € > 0, there exists

T(e) > 0 and r(g) > 0, such that for all z¢ € BE we have
16— ullsr + 116 = ulleo o) < C(X)e. (3.6.29)

Proof. Notice that Ss consists of Sobolev spaces and Lebesgue spaces. Without loss of
generality, we require r < €. Using the same arguments as in (3.6.13) and (3.6.14), we can

find a sufficiently small 7', such that
|b— u||55T < |b— ua||S5T + ““EHS;-F <e+4r<2e. (3.6.30)
On the other hand, for a sufficiently small T', we have
6=l < 1Ib = talleuc) + C 0o ) luelhiy <&+ O (3631)
which finishes the proof. m

Consequently, we can obtain the smallness of DG, which implies the existence of a strong

solution.

Proof of Theorem 3.1.1. From Proposition 3.6.1, Proposition 3.6.2, Proposition 3.6.3 and

Proposition 3.6.4, we can let T" and r be sufficiently small such that
1
[ K (21) — K(z2>||y°v < B} |21 — Z2||V°v (3.6.32)

for all 2y, zo € BY. Thus, by the contraction mapping theorem, the operator K has a unique

fixed point z5 € BY', which implies that
Z = (UW,EW,@Y, Wy, hy) = 24 + 28

is the unique solution to the transformed equations on [0,7]. Here we return the bars to
transformed terms.

Now we recover the original solution. Since ¥ € C® and

h € W5 — CH([0,T]; C*(%)) N C°([0, T]; C*(%2)),
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the diffeomorphism 0, € C''([0, T]; C*(2))NC°([0, T]; C*(X)). Thus, in the original solution,
the terms u =wuo @,:1, B=DBo @;1 and p = po ©; " have the same regularity as u, B and
p and the equations are satisfied almost everywhere on corresponding domains. The jump
of the pressure [p] = wo @;1 also satisfies the requirement in Definition 3.1.1. This finishes

the proof of the theorem.

3.6.2 W?’_% initial interface

In this section, we prove Theorem 3.1.2. Suppose that we have a C3 surface ¥ and the
nearest point projection property is valid in B(X; go) for some go(X) > 0. Let My > 0 be an
arbitrary number and €y > 0 a number to be determined later. Let (ug, By, 'g) be an initial

value and hg be the corresponding height function, such that:

uy € szg’q(ﬂ \Ty)NC(RN), Bye WQ*%"](Q), and Ty is a W3 27 surface;
luoll o200y < 2g S Mo, [1Boll oo () < Mo;

Lo € B(3; 00), ||h0||W3_g(E) < Mo, ||h0||cz(g) < €o;

1.

2 Mo, ol ey < Mor 1Boll
3

4. divug=0in Q\ Ty, divBy=0in ;
)

6

ug = By = 0 on 09);
Pr, HuDuoﬂ nr, = 0.

Using the argument in Section 3.3, we obtain the initial condition of the transformed problem
(ﬂ07§07 h’O) = (U‘O o @h(n BO o @h07 hO)

Let Ty > 0 be a fixed, sufficiently large number. Using again the same argument as in [15,
Theorem 2], we obtain the auxiliary term b in (3.3.87) by extending 7y to @, € W{® and

letting

b := Tp|[0,1]x -

Using [15, Proposition 2], we can extend

divig and 2Ps [[I/Dﬂoﬂ ny
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to two auxiliary functions as € S?)T " and ay € S;°. Using the solution operator S from

Section 3.4, we obtain an auxiliary solution
2o i= (U, Bay Doy Wary Pa) 1= 5(507507,1011))(0,0,043,044, 0). (3.6.33)
Similarly as in [15], we consider the equation
L(z+ z,) = G(z+ z4), 2(0)=0 (3.6.34)
with z € W, which can be rewritten as
Lz =G(z2+ 24) — Lza.

The compatibility conditions for G(zy) — L(z) are exactly the transformation (via ©p,) of

the initial conditions

divug =0 and Pr, HZI/DUOH nr, = 0.
Using the solution operator S0, we rewrite the equation as
2= S000p) (G2 + 2a) = Lza) =: K(2). (3.6.35)
Similarly as in Section 3.6.1, we fix ry > 0 and define for all r € (0,70] and T' € (0, Tp] that
BE = {we W™ : |Jw|r <7} (3.6.36)

It remains to find suitable r and T' such that K is a contraction mapping on B!. Since
ho # 0, we need to slightly modify the estimates in Section 3.6.1.
Given any zy, 29 € B, we consider the same estimate as stated in Section 3.6.1:
1K (z1) = K(22)[lyr < [ISIIG(21 + 20) — Gl22 + 2a) || g

(3.6.37)
< OISl sup DG ez + (1= )zz + zalll 22 = z2llypr -
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Letting z¢ := ¢z + (1 — ¢)29 and ¢ = 21 — 29, we need to estimate (3.5.210) using similar
ideas as in [15,28]. We rewrite the inequality for convenience. Suppose ||| 5 < My, then
2

for all T' € (0, Tp] we have
DG [za + 2] @llgr < C(E,To, My) (1 + [Jua + UJ&”Loo([o,T]XQ) + || Ba + BéHLoo([o,T]XQ)
e+ el + 120 + 2l ) (I + helley + Iz + Zelhyr ) lellir

+ CltrLawnll g + (T, ) (116 = o = vellgr + 116 = ta = tell e orynsy ) llhir
(3.6.38)

The estimates in Proposition 3.6.3 and Proposition 3.6.4 can be obtained without any

change. We slightly modify the arguments in Proposition 3.6.1 and Proposition 3.6.2.

Proposition 3.6.5 (Modification of Proposition 3.6.1). For My and €y defined in the begin-
ning of Section 3.6.2. For all T € (0,Ty] and all z¢ € B

s we have

Lt e+ el + 1 Ba+ Bell oy + e + hellgg + 120 + 2ellyr < C(E, Ty, 70, My). (3.6.39)

The constant C(3, Ty, ro, My) is independent of hy or &.

Proof. We recall that the solution operator S in Section 3.4 is continuous with respect to

S MO and HhoHW < Mo,

the initial value. Since HuoHW 2 < Mo, HBOHW -Fary) =

@) = i)
from the derivation of z,, we have for all T € (0, Tp] that

Izallwr < llzallyz < C(Mo, To, %).
From the embedding theory in [28, Proposition 5.1 (d)], we have for all T' € (0, Tp] that
1halley < 1hallgre < C(To, 2) hallyr < C(Mo, T, %3).

The rest of the proof can be carried out using similar arguments as in Proposition 3.6.1,

which implies (3.6.39). O

We also modify Proposition 3.6.2 since hy # 0 in the current case.
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Proposition 3.6.6 (Modification of Proposition 3.6.2). There exists a constant Cy, such

that for any e1 > 0, there exists T(e1) > 0 and r(e1) > 0, such that for all z¢ € BF we have
1he + haller + 1126 + zallyyr < €0+ Cher. (3.6.40)

Here the number g is the upper bound of ||hol|c2(sy as stated at the beginning of this section.

Proof. We only need to modify the estimate of h, since hy # 0 in the current case. Notice
that ||ha(0)||c2 = |lholl2 < €0 by the assumption of the initial conditions. Since h, €
C([0, Ty); C%(X)) =: C°, we can let T(g) be sufficiently small, such that for all ¢ € [0, T] we
have

[a®llea < lholles + () = hollea < 0 + 21, (3.6.41)
which implies

1haller < eo+ e (3.6.42)

This completes the proof.

We can now prove Theorem 3.1.2 using similar ideas as in [15,28].
Proof of Theorem 3.1.2. First, we verify the condition

12ller == I1hll oo ey < o
as stated in Proposition 3.5.5, which enables us to use the estimate in (3.5.210). Notice that
0o only depends on ¥ and thus is a fixed number. Without loss of generality, we assume
go < /4 and Cie; < &p/4. From Proposition 3.6.6, there exists 77 € (0,7Tp], such that
Bllgn < .
Given any ¢y and &1, from Proposition 3.6.3, Proposition 3.6.4, Proposition 3.6.5 and

Proposition 3.6.6, we can find 7" € (0,77] and r € (0, o] sufficiently small, such that

IDG [2a + 2¢] ¢llgr < Co(Mo, To, 7o) (0 + Ciren) [[ollypr + Cs(To)er [lenllypr (3.6.43)

+ Cu(To)er llellypr -
Thus, for sufficiently small ¢y and 1, we can obtain a contraction mapping. The rest of the

proof can be proceeded using the same arguments as in the proof of Theorem 3.1.1.
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4.0 Weak-Strong Uniqueness of the Two-Phase MHD Equations

In this chapter, we consider the two-phase MHD equations in the whole space R3, i.e.

ou+ (u-Viu—(VxB)x B—vEAu+Vp=0 inR3\T(¢), (4.0.1)
OAB—-Vx((uxB)+Vx(@VxB)=0 inR? (4.0.2)

divu =0 inR*\ ['(2), (4.0.3)

divB=0 inR? (4.0.4)

—[2v(x)Du — pI]n=rxHn onI\(t), (4.0.5)

Ve =wu-n onT(t), (4.0.6)

u|—o = g, Bli—o = By, T'(0) = T. (4.0.7)

The two fluids occupy R? and are separated by a closed interface I'(t). We denote the
interior and exterior fluids by open sets Q7 (¢) and Q~(¢) respectively. Then we have that
QF(t), Q (¢) and T'(t) are disjoint and QT (¢) UT(t) U Q™ (t) = R3. In our equations, the
term u denotes the fluid velocity; B denotes the magnetic field; p the pressure; H the mean
curvature of I'(¢); Vr is the speed of the interface; n is the normal vector of I'(¢). The
viscosity coefficient, magnetic diffusion coefficient and surface tension coefficient are denoted
by v*, 0 and k. Here v* takes different values in Q*(¢) and ¢ remains a constant in R3.
The initial interface I'y is a compact C* surface. The notation Du := (Vu + Vu') /2 is the

strain rate tensor.

4.1 Preliminary and Main Result

In this section, we introduce some basic background knowledge and the main result. We

first give the definition of strong solutions in the sense of [10].

Definition 4.1.1 (Strong solution). Let ¢ > 5 be a fixed number. Let (ug, By, xo) be such
that:
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1. Tg:=0{x € R®: xo(x) = 1} is a compact C? surface;

2. wuy € W27§’q(R3 \ Ty), divug = 0 in R3\ Ty, [ug] = 0 on Ty, Pr, [v*Dug] nr, = 0 on Ty;
3. By e W #4R?), divB, = 0 in R?.

Here [-] denotes the jump of functions; Pr, := I — np, ® nr, is the projection mapping;

Dugy = (Vuo + Vug) /2 is the strain rate tensor.

A triple (u, B, x) is called a strong solution to (4.0.1) - (4.0.7) with initial value (uo, Bo, X0)

if the following conditions are satisfied.

Ll

uw e HY([0,To); L*(R3)) N L>([0, Tp); HY(R?)). Vu € LY([0, To]; BV(R?)); div u =0;
B e HY([0,Tp); L*(R3)) N L>=([0, Ty]; HY(R?)). VB € L'([0,Ty); BV (R?)).

X € L>=([0, Tp]; BV (R?)) is an indicator function.

For all p € C°([0,Tp) x R3) with div = 0 and almost all ¢ € [0, Tp),

/u() p(t)ds = [ - (0 dx—//u atsad:cdw//u@u Vidudr
R3 R3 R3
// B® B: Vgpdmdr—// Vu+Vu ):VgpdwdT
R3 R3

+l€/ / Hn - pdSdr.
0 JI'(1)

For almost all p € C°([0,Ty) x R?) with divp = 0 and all ¢ € [0, Tp),

t t
/ B(t) - o(t)dx — / By - ¢(0)dz = / / B - Oppdxdr +/ / u® B : Vodrdr
R3 R3 0o Jr3 o Jr3
t t
—/ / B®u:V<pda:dT—a/ VB : Vedxdr.
0 JR3 0 JR3

For all ¢ € C°([0,Tp) x R?) and almost all ¢ € [0,Tp),

t t
/X(t)w(t)dx—/ Xo(p(())d:v:// Xatgodxdr—i—/ / xu - Vodrdr.  (4.1.3)
R3 R3 0 R3 0 R3

The terms Viu and V'B for i = 0, 1,2, 3, and terms 9,V*u and 0,V*B for k = 0,1, are

(4.1.1)

(4.1.2)

all bounded on the set

U ®\T@) x {t}.

t€[0,70)

There exists O(t, ) : [0,Tp) x R? — R3, which satisfies the following conditions.
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a. For each t € [0,Ty), O(t,-) is a C* diffeomorphism.
b. Fort=0,0(0,z) =
c. The norm (||| o (o 7). w30 (r3y) 18 finite.
d. The time derivative 9,0 € C([0, Tp); C*(R?)).
e. There exists gy > 0 such that for all t € [0,7;) and = € T'(¢), the surface I'(¢) N
B(z;209) can be represented as the graph of a function on the tangent plane 7,I'(t).
The sets that represent two fluids and the interface can be represented using © by
QF(t) =0(t,Qd), Q= (t) =0(t,9Qy) and T'(t) = O(£,Ty).
We now give the definition of varifold solutions in the whole space R3, which is based on
the definition in [10, 14].
Definition 4.1.2 (Varifold solution). Let ug, By € L*(R?) such that divuy = divBy = 0
weakly. Let f C R3 be a bounded domain such that y, = Xagf has finite perimeter. A
quadruple (u, B, x, V) with
u € L*([0,T]; H(R)) N L>([0, T); L*(R?)),
B € L2([0,T); H'(R*) 11 L=([0, T}; L2(R%)),
divu = divB = 0,
x € L*([0,T]; BV(R* {0, 1})),
Ve L([0, T) M(R® x §2)),
is called a varifold solution to the two-phase MHD equations (2.1.1)-(2.1.8) with initial value

(uo, By, x0) if the following conditions are satisfied.

1. For almost every t € [0,Tp),

t
/ u(t)p ()da:—/ uoap(())dw—/ / u@tapdxdT—/ / u®u: Vodrdr
R3 R3
// B®B: V(pdxdT—I—Q// X)Du : Dodxdr (4.1.4)
R3 R3

+/<¢// (I —s®s):VedVdr =0
0 JR3xS?

is satisfied for all p € C2°(]0,Tp) x R?) with divy = 0.
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2. For almost every ¢ € [0,Tp),

/B() ()da:—/ Bop(0 da;—//RsB@t@dxdT—//Rgu®B:Vgpdfch

(4.1.5)
/ / B®u: Vgpdmdr+a/ / VB :Vedrdr =0
R3 R3
is satisfied for all p € C°(]0,T) x R?) with dive = 0.
3. For almost every t € [0, Ty),
/ s-dV(t)=— | »dVx(t) (4.1.6)
R3xS2 R3

is satisfied for all ¢ € Cy(R3?).
4. For almost every ¢ € [0, Tp),

t t
/ x(t)p(t)dx —/ Xoyp(0)dx —/ / XOypdxdr —/ / xv - Vodedr =0 (4.1.7)
R3 R3 0 JR3 0 JR3

for all p € C=([0,Tp) x R?).

5. The generalized energy inequality

1
IO+ 5 IBOI + 1V Ol +2 [ [ v00IDuldads
(4.1.8)
+o / IVB(EIdr < 5 ol + 5 1Bl + Vo e
0
holds for almost every t € [0, Tp).
6. The energy
1 1
3 10O+ 5 IBE + K1V agass (419

is a nonincreasing function of ¢.

To measure the scale of the error between a strong solution and a varifold solution, we
introduce the concept of relative entropy, which is constructed based on the structure of the

relative entropy for two-phase Navier-Stokes equations in [10].
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Definition 4.1.3 (Relative entropy). Given a strong solution (v, B,,I',) and a varifold
solution (u, By, Xu, Vi) to the two-phase MHD equations (3.1.1)-(3.1.8). Given an auxiliary
function w € L%([0, Tp); H(R?)) N H([0, Tp); LY3(R?) + L2(R?)). Let gy > 0 be such that
the nearest point projection (see Section 3.2.4) is valid in B(I'(¢); go) for all ¢ € [0,T5). We

define the relative entropy by

VXu 1 2
Et::m/l—g- dVXu—ir/—u—v—w dx
) R3 VXl | | R32‘ |

) i(x) (4.1.10)
+/ —|Bu—Bv|2d:U+ff/ 1—9(t)dV*+/ IXu — Xo| |8 (—)‘dm
R3 2 R3 RR3 Qo
The term ¢ is the extension of the normal vector n, defined as
§(2) = n(d(@)(1 — d(a))n,(11(x)), (4.1.11)

where d and II are the signed distance function and the projection mapping in the theory
of nearest point projection (see Section 3.2.4 for details); the function 7 is a fixed cut-off
function such that n =1 on [—00/2, 00/2] and 7 = 0 on (—o00, — o] U [0, +00); the function
0(t) is the Radon-Nikodym derivative

_ d[Vxu(®)]

00 ==t (4.1.12)

between the total variation measure |Vx,(t)| and the measure V,(¢), which is defined as
(Va(t)) (A) == |V (t)| (A x S?) for A C R? such that A x S? is measurable.

We now state our main result.

Theorem 4.1.1. Let (v, B,,T,) and (u, By, Xu, Vi) be the strong solution (in the sense of
Definition 4.1.1 ) and a varifold solution (in the sense of Definition 4.1.2 ) to (3.1.1)-(3.1.8)

with the same initial value (ug, By, X0). Then
u=v and B, = B, in L*([0,Ty]; H'(R?));  xu = Xo in L=([0, Tp] x R?);
and for almost every t € [0, Ty] and all p € Cy(R3 x S?) we have

/R3><S2 o(x, s)dV (t) :/ (2, n,(2))d |Vxy| -

RS

Here n, is the Radon-Nikodym derivative Vx.,/ |V Xl
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4.2 Relative Entropy Inequality

In this section, we derive an inequality of the relative entropy E. The terms in this
inequality will be estimated in the next section, which allows us to control F(t) by utilizing
the Gronwall’s inequality:.

Let (v, By, Xv) be a strong solution and (u, By, x4, V) be a varifold solution. Suppose
that the strong solution exists on [0, Tp).

The terms without the magnetic field can be treated using similar arguments as in [10],
while the magnetic terms will be treated differently. We include some important formulas
and steps from [10] for completeness and convenience. First, in the equations of the strong

solution, we test (4.0.1) with ¢ € C°([0,Ty) x R?), then for all ¢ € [0,Tp) we have

—/v~<,0(t)+/ //v Oy — //v@v Vgo—l—//B@B Vo
RS RS R3 R3 RS
// v(xv)(2Dv) : D(p—li/ Hn - .

R3 Ly (7)

Similarly as in [10, (185)], we obtain from the transport equation of quantity vy that

[ etr= [ ws0= [ [ aves [ [ oo

(4.2.1)

(4.2.2)
/ / vngH—/ / vVup.
R3 R3
Remark 4.2.1. When ¢ is a scalar function, for all 1 < k£ < n we have
[ oot~ [ e = [ [ atwer+ [ [ 05
‘ : (4.2.3)
/ 8tUkS0+/ / kaé‘tsw/ / szavkwr/ / szvk&%
R3 R3 R3 R3
which implies
[ ooet) = [ el = / B + / [ v
# R (4.2.4)

//vva0+//vVg0
R3 R3
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When ¢ is a vector-valued function, we have

[ow-c0r- [ we0=[ [ aweo+[ [ vvoe

_//32¢+//Z (azw>

[ [ Bawne [ [ Soane [ [ £n(Sone)
+/0t/RS;vj (Z:wajsoi>

:/Ot aw//aw//zzawf/zzw

t t t t
:/ atv-g0+//v~(9t<p+//vva0+//vVgov.
0 Jr3 0 Jrs 0 Jr3 o Jr3

Let w be an auxiliary function as defined in [10]. Adding (4.2.1) and (4.2.2) and then

(4.2.5)

let ¢ = u — v — w, we obtain

t
// v(xv)(2Dv) V(u—v—w)—ﬁ/ Hn, - (u —v —w)dSdr = 0.
R3 0 JTu(7)
(4.2.6)

Next, we consider the equations of varifold solutions. Similarly as in [10, (184) |, we

consider the transport equation of the quantity |v + wl|?/2, which implies

1
5 lwtwPt) =5 | Jo+wl(0)
2 Jus 243 (4.2.7)

t
—/ / (v4+w) h(v+w)+u- (Vv+w)(v+w)).
0 JR3
We recall the energy inequality of the varifold solution:

1 1 t t
5 [ 1P@ 5 [ B+ IV Ol +2 [ [ vouDaf v [ [ VB
R3 R3 0 JR3 0 JR3

g% /R [u|*(0) + % /R | Bul?(0) + & Vxo|(R?).
(4.2.8)
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Similarly as in [10], we test the momentum equation (4.0.1) of the varifold solution with

¢ = v + w, which implies

_ /R u() - (v+ w)(t) + /]R w(0) - (v + w)(0)

_/Ot/Rgu~8t(v+w)—/ot/R3u®u:V(v%—w)—l-/ot/R?’Bu@Bu:V(U+w) (4.2.9)

+/Ot/ng(Xu)(2Du);V(v+w)+mAtASXSQ(1—s®S):V(v+w)dV(T)dT.

Now we consider the magnetic equation in the varifold solution. Similarly as in (4.2.7), we

consider the transport equation (along velocity field u) of the quantity %|Bv|2:

1 2 1 2 L[ o 1 [ 2
3 [BLO =5 [ BrO=5 | [aBrrg [ [ w-vimp
. . (4.2.10)
:// Bv-f)th—l—//u(X)BU:VBv.
0o JRr3 0o Jr3
In the magnetic equation of the varifold solution, we let ¢ = B,, and obtain
t
—/ B(t)-Bv(t)—i—/B( // B, - 0;B, //u@Bu:VBv
R3 0 JRrs
//B@u VB+0//VB VB,.
R3 R3

(4.2.11)
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Letting (4.2.6) + (4.2.7) + (4.2.8) + (4.2.9), we obtain for almost all ¢ € [0, Ty) that

1
[ o+ wpe ——/ - /|u| —/ B.(t)
2 Jes

+m||v<t>||M(Rsxs2>+2 / / v(x)IDul’ + o / / VB,
0 R3 0 R3

_/Rsu(t) (U+w)(t)+/ u(0) - (v +w)(0)

</0t O (1 — v —w //R (Vo(u— v — w))

// v(x,)(2Dv) V(u—v—w)—ﬁ/ Hn, - (u—v—w
R3 0 JTyu(7)

—l—/o /R38v®BU:V(u—v—w)+/t/RB'(v—l—w%at(v—l—w)

+At43u.(v<v+w o w)+ 5 [ PO +5 [ IBFO)+ Tl ®)
_/Ot/Rgu.at(Hw)_/o /Rgu@)u:V(v—l—w)—i-/ot/RgBu@BuZV(U+w>

+2/0t/R$u(Xu)Du:V(v+w)+/£/0t/R3XSQ(I—8®s):V(v+w)dV(t),

which is abbreviated to

L4+ < T+ + s

(4.2.12)

(4.2.13)

Now we reorder these terms and collect all the component terms of the relative entropy

E. The terms without magnetic field can be treated in the same way as in [10, Section

7]. We include these terms in our arguments for convenience and completeness. First, the

velocity term of the relative entropy E can be obtained by

1
L+L+Ig== [ |u—v—w?()dr,
2 Jus

Li+Ily—Jg=—= [ |u—v—wf0)ds.

From [10, (194)], we obtain the varifold term in E:

Iy = KV x| (B®) + & / 1 B(t)aVi(t),

RS

J10 = I€|VX0|(R3)
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Since the two fluids have the same density p = 1, the term Ry in [10] vanishes in our case.

Thus, the terms Rygy, Aadw, Rar and Ag in [10] satisfies

(JQ + Jr + Jlg) (Jl + Jg + J11

——/Ot/Rava(u—v— //Rsu—v— w)Vo(u —v —w)
—/Ot/RSwV(v—l—w)(u—v—w)—/o/R3(u—v—w)Vw(u—v—w)

t
_//(u_v_w)'atw:Radv+Aadv+Rdt+Adt~
R3

The terms that contain mean curvature are

t t
J4+J15:/£// ([—s®s):VvdV(T)—/<;/ Hn, - (u —v)dSdr
R3 X2 0 JT,(7)

t t
+/~€/ / (I-s5®s): V’de(T)—l—/i/ Hn, - wdSdr.
0 JR3xS2? 0 JIw(7)

The viscosity terms Ry;s. and Ay in [10] are treated by

t
J3_]6+J14:Rvisc+Avisc_2/ / V(Xu)|D(U—U—U)>|2
0 JR3

Therefore, we obtain:

1/ lu—v — w|? ()d:c+n|vxu()|(R3)+f<o/ 1—6(t)dV.(t)

2
/\B[ +a//|VB[2+2// ()| D = v — w)?

<1/ lu — v — w|*(0)dz + K|V xuol(R?) + 2/ | B.|?(0)

//B@B V(v+w)+ //B@B V(iu—v—w)
R3 R3

+ Radv + Aadv + Rdt + Adt + Rvisc + Avisc + J4 + J15-
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By (202), (208) and (210) in [10], we obtain

— [ o) €0avl+ [t - iol]s (42))
+3 | lu= o= wPOds+ oV OIE) +x [ 1-swdv

/|B| +a//|VB |2+2/ /R D = v — w)?

<—/<;/ Nu,0€(0)d | Vxuo| + = / lu — v — w|*(0)dz + K|V xuol (R?) + ;/R3‘B“’2<O)

//B@B V(v +w) + //B@B V(u—v—w)
R3 R3

+ Radv + Aadv + Rdt + Adt + Rvisc + Avisc + Rsu'rTen + AsurTen + RweightVol + AweightVol
d(x)
+/ Xu0 = Xvol 5( )’
R3 Qo

The definitions of Rsurren, AsurTen, Ruweightvol, Aweightvor and 5 can be found in [10, Proposi-

(4.2.20)

tion 10]. It remains to obtain the term |B, — B,|? to complete the relative entropy. In order
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to do this, we add (4.2.10) and (4.2.11) to (4.2.20), which implies

= [t eavl+ [ o s (%7)

+5 [ lum o= i + 9 OI®) + [ 1o

+% R3‘BU|2<t)_/R3 Bu(t)-Bv(t)—i-/Rg;BuP(t)

t t
+a/ |VBu\2+2// v(xu)|D(u — v —w)f?
0 JR3 0 JR3
1
R M LA
R3 R3

i1 [ 1B o) - / &mwam /“4B|<>

//B@B V(v+w)+ //B@B Viu—v—w)
R3 R3

+ Radv + Aadv + Rdt + Adt + Rm’sc + Avisc + RsurTen + AsurTen + RweightVol + AweightVol

d(z
+/ ’Xu,O_Xv,O‘ 5<—( ))’
Qo
t t
//B - OB, //u@Bu:VBv—i—//Bu@u:VBv
]R3 ]R3 ]R3
+<7/ VB, VB—I—//B @B%—//u@B VB,.
0 JR3 R3 R3

We recall that

(4.2.21)

vauMRﬂ—m/

RS

€OV = [ 10, 60T (1.2.22)

RS

and

[ smro- [ B0+ [ B0 [ SB-BEO. @22

Using the same argument, we combine corresponding terms in (4.2.21) and obtain terms

/1_nu,0.5(o>d|vxu(0)\ and /%|Bu—Bv\2(0).
R3 R3
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We can now replace the corresponding terms with £(¢) and E(0) and obtain

E(t)+a/t RB]VB 12+2/ /R v(xu)|D(u — v —w)|?

E O) + Radv + Aadv + Rdt + Adt + Rmsc + szsc + RsurTen + AsurTen + Rwezght\/ol + AwezghtVol

-l—//B ® B, : V(v+w)+ //B@B V(u—v—w)
0 JR3 R3
//u® (B, — By,) : VB,
0 R3 R3
//B@uVB—i—U/ VB, :VB,.
R3 0 JR3

(4.2.24)
Combining the second term and the last term in (4.2.24), we have
¢ ¢
O'/ |VB,|* — a/ VB, :VB,
0o JRr3 0 Jr3
: . (4.2.25)
:0/ ]V(Bu—Bv)|2—|—a/ VB, :V (B, — B,).
0 JR3 0 JRr3
Thus, we can rewrite (4.2.24) as
+2// v(x)ID(w — v — w |2+a/ Y (B, — B,)P
R3 R3
(4.2.26)

S E<O) + Radv + Aadv + Rdt + Adt + Rvisc + Avisc + Rsu'r‘Ten + AsurTen

+ Rweight\/ol + AweightVol + [1 4+ 4+ [6;

where t € [0,T;) and

o+ Ig

//R3B ® B, :V(v+w)+ //RSB ® By V(u—1v—w)
//R3 w— By) - 0B, //Rsu@)B_ ) : VB, (4.2.27)

//B@uVB—a/ VB, :V(B, — B,).
R3 0o JR3
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Now we rewrite terms Iy, I, and I5. For I, we replace B, with B, — B, + B, and obtain

t
II—// B, ® B, : V(v+w)
0o JRrs
t

:/0/IRS(BU—BU+BU)®(Bu—BU+Bv)1V(U+w>
- L.
+/Ot/Rng®(Bu—Bv):V(v+w)+/0 A3BU®BU:V<v+w>-

Using the same idea as for I, we obtain

t
——//u@(Bu—BU):VBv
0o Jr3

—/Ot (u—(v+w)+@v+w)® By~ B,): VB,

_ t/RJ
_/0 /Rs(“_”_w)@?(Bu—Bv):VBv
_/ot/Rs(“w)@(Bu—Bv):VBv

(Bu—By+By)®@(u—(v+w)+ (v+w)): VB,

(B, — B,) ® (B, — B,) : V(v +w) //RS v) @ B, : V(v + w)

(4.2.28)

(4.2.29)

(4.2.30)

w):VBer/Ot/RB(B

¢
/Bv® U—1v—w ):VBU+//Bv®(U+w):VBU.
R3 0 R3

® (v+w): VB,



Thus, we have

L+ +1 —// (B, — By) ® (B, — By,) : V(v + w)
R3

+ v) @ By : V(v +w) + //B® B,) : V(v + w)
3 R3

_|_

I
I

B, ® B, : V(v+w) //B@B V(iu—v—w)
R3

J o
J
/O/RB //R u=v—w)®(By~B,): VB, (4.2.31)
A
J

O

/ vt w) <U—Bv>:VBU+/AS<BU—BU>®<u—v—w>:VBv

o,

//B®v+w) VB—a/ VB, : V(B — By).
R3 0 JR3

Notice that term 4 cancels term 12 and term 5 cancels term 11. Thus, we finally obtain the

O

® (v+w): VB, +//B®u—v— w) : VB,
R3

relative entropy inequality:

+2// (o) D — v — w |2—|—0/ V(B, - B,)|’
R3 R3

(O) + Radv + Aadv + Rdt + Adt + szsc + szsc + RsurTen + AsurTen (4232)

+ RweightVol + AweightVol + Igood + Ibada

where t € [0,7). The terms R and A are defined in [10]. The two terms Iop0q and Ip.q are
defined as:

Tgooa 1= /0 /Rg(Bu ~B,)® (B, — B,): V(v+w)

—/Ot/RS(u—v—w)Qb(Bu—Bv):VBU+/Ot/RS(Bu—BU)®(u—v—w):VBU

(4.2.33)
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aln

Jm.blééB —B)®B,: V(v+w)+ / @3@9 B,): V(v+w)
1;@v+w (Bu— B) : VB+/ 4J3 _B)@(w+w): VB,
/O/R B—U/Ot [ VB V(B B)

//SBU® B): V(v+uw)

//ngrw (Bu— B,): VB, — //R%B ~B,) 0,8 —a/ot | VB V(BB

(4.2.34)

=
=

The term I},q can only be controlled using fg E(t % rather than fo . In order to utilize

the Gronwall’s inequality, we still need to treat Iy,,q using the equations of the strong solution.

By the transport theorem we have

[ @a= [ (5w - / [y //Rgvvg )
//RgatB 90+//R3B 8tgo+//RBv®g0 VB, +//R3U®B V.

Next, we consider the magnetic equation (4.0.2) of the strong solution. Testing the equation

with ¢ € C°([0,Tp) x R?), divp = 0, we obtain for all ¢t € [0, Tp) that

/B(t)'go(t) /BO (0 //B atgo—l—//RBv@B Vi
//RSB ®v: Vgo—a//RSVB V.

Subtracting (4.2.36) from (4.2.35), we have

t t t t
/ 8th-go+//v®<p:VBv+//BU®U:V¢+0//VBU:V<p:
0 Jr3 0 JR3 0o JRrs 0o Jr3

(4.2.37)

(4.2.35)

(4.2.36)

Letting ¢ = B, — B, in (4.2.37) and combining it with I,,,q, we finally obtain

t
]bad:_// B,®@w:V(B, — //w® (B, — B,) : VB,. (4.2.38)
0 JR3 R3
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4.3 Control of Relative Entropy

Now we can estimate Igo0q and Ip,q in terms of the relative entropy £. We let

t
[good+[bad = / / (Bu_Bv)®(Bu_Bv) : V('U‘FUJ)
0 R3

_/tég(u—v—w)®(3u—3v)¢VBv+/t/RS(Bu_B”)®(“_U_w):VBU (4.3.1)
[ fmevsin- [ [romnon

:Zfl—I2+[3—I4—I5.

We assume in advance that E(t) < €%(¢) for an auxiliary function €(t) € C*([0, Tp); [0, 00))-
The auxiliary function w has been carefully studied in [10, Proposition 28]. In the estimation

of magnetic terms, we will use the following two properties of w in [10]:

1 1
||vw<t)||L°O(]R3) < CE |10g €<t>| Hv||W2v°°(R3\Fv(t)) + CE HV3UHLOO(R3\FU(t))
0 0 (4.3.2)

1
+ CE (14+H*(Tu(1))) V][ y2.00 oty (1))
0

and

M2
[ wpar<c (—4 - 1)
R3 Qo

(L,

< C(v,00)E(t)

2 2 2
+ + - -
R +‘Vhe(t> + e +’Vhe<t>

) (4.3.3)

where M > 0 is a fixed number such that B(I',(¢); 00) € B(0; M) and the functions hf(t) and
Vhf(t) are defined in [10].
Now we estimate I; to I5 in (4.3.1) term by term. Using (4.3.2), we obtain

t t
|11] S/ IV (0 +w)|| oo | Bu — Boll3> 5/ C(1)E(7)dr (4.3.4)
0 0

where

1
C(r) = ||VUHL°°(R3\FU(T)) + E |log e(7)] ||U||w2,oo(R3\rv(T))
0 (4.3.5)

1 1
+ Q_g Hv3UHL°°(R3\FU(T)) + 0_8 (1 + H2(Fv(7-))) HU||W2,OQ(R3\FU(T)) .
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Using Holder’s inequality, we have
t
Ll +15IS [ [ Ju=v-ullB, - BJIVE,
0 JR3

t
< / IV Bo(r) ey 18— © = 0] pogany [ B — Boll s

t (4.3.6)
S /0 ”VBU(T)HLOO(R?’) <||U —v-= 7~U||i2(R3) + | Bu — Bv||2L2(]R3)>
t
S [ IVB ey BV
Without loss of generality, we assume gy < 1, then for all § > 0 we have
t
1S [ 1Bl Nl 19 (B = Bl
0
t ) 1 t 5
6 [ 1Bulimgen V(B = Blagen + 5 | WBullmqan 0lces
0 0 (4.3.7)
2
6 [ 1Bl V(B = B) e
1/tCHBu||Loo <1 )
+ = — 2 | —||lv o - +1) E(7).
5 . Qé Qg H ||W2 (R3\I'y (7)) ( )
Finally, using Holder’s inequality, we have
t
1S | 1V Bullim o Il 1 = Boll e
t t
S | U9 Bullgon 1B = Bl + [ IV Bl 0l
43.8
o VBl (1 439
S| VBl e gsy E(7) + A\ [0l 2o @avr, () + 1 | E(7)
0 0 0 0
t
VBl (1
S| 1 | g e @,y + 1) E(7).
0 ) 0
Thus, we obtain
t
Bl 1] < O BT 00, ) [ (1 foge(r)) B(r)dr
0 (4.3.9)

t
L C(B)S / IV (B, — B,)|% dr.
0
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The estimates in the right-hand side of (4.3.9) do not change the structure of the relative
entropy inequality in [10, (176)]. Thus, when the assumption F(t) < €2(¢) holds, by choosing

0 sufficiently small, we can find ¢y, co > 0, such that

E(t) +cl/0 . |V (u—v— w)\2 + 02/0 g |V (B, — Bv)]2
< B(0) + C(0. BT 0,0) [ {1+ [logelr)]) E(r)ar
.00 (4.3.10)
+C(v, By, Ty, 90,5)/0 (14 [log €(8)]) e() B3 (7)dr
+C’(U,Bv,f‘v,g0,5)/o ¢ (r)E(r)dr.

The right-hand side of (4.3.10) is the same as in [10, Section 6.9]. Therefore, the arguments
in [10] can be carried out directly to obtain E(¢) = 0, which completes the proof of the

weak-strong uniqueness.
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Appendix Basic Theorems and Details of Proofs

We include some useful details in the appendix for the readers’ reference.
We state the Aubin-Lions lemma, which is used for obtaining stronger convergence in

the study of varifold solutions.

Theorem A.0.1 ( [23], Theorem 1.71). Given Banach spaces X, Y and Z such that
X <= Y — Z. Let ¢ € (1,00] be a fized number. Let {f,}>>, be a bounded sequence
in L4([0, T); Y)N LY([0,T]; X). Suppose that {0, f,}2, is bounded in L*([0,T]; Z). Then for
all p € [1,q), the sequence {f,}2, is relatively compact in LP([0,T];Y).

We write the estimate of the product of two functions from different spaces. The depen-

dency of constant terms on parameters are carefully studied.

Proposition A.0.1. Let Q2 be a bounded open set. Let Ty > 0, s € (0,1), 7 € (0,1) and g > 1
be fized numbers. For all T € (0,Tp), suppose that f € C1([0,T];C(R2)) N C([0,T]; C1(Q))
and g € W=4([0,T]; LY(2)) N LI([0, T]; W™4(2)). Then

||fg||Ws,tILquanq S C ||fHClcmccl “g”WquLquthq .

Proof. Step 1:
For all t € [0,7] we have

1fgllwraey ) = £l o (8) + [fglyra (£)-

We ignore the variable ¢ when there is no confusion. For the L? norm we have

Hfg”Lq(Q) < Hf“C(Q) ”gHLq(Q) :
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For the seminorm we have

iy = ([ [ L= 000
< (C(q>// |f(:c)|q|g(:c)—g(f/x)\i;ﬁg)—f(y)!qlg(y)\qdydx)q

0 - q+ q1 T — / ! %
( 5 /||f||o l9(z) — 9(v)| |'lfﬂf' ' lo(w)l dydx) (A0.1)

|z —

< C@ Il oy + €@ Il ([ o1 ([ o=y a) dy>;

< C(@) [1fllco [glywra + Clg, diam()) [[ 1 |9l o
< Clg, diam(Q)) [| fll o lgllywr.a

IN

where C(q, diam(€2)) is an increasing function of diam(2). Thus, we have

. :
1£ 9l pne = ( T . <t>dt)

. A.0.2
< C(q, diam(® (/ T ||g||qum<>dt) (4.02)

< C(g, diam(2)) | fllcocr 191l awra

where the constant is still an increasing function of diam(€2) and it is independent of Tj or
T.
Step 2: We recall that

”ngWs,qu = ”ngLqu + [fg]Ws,qu

with the seminorm defined as

Ws ara = (/ / 1+sq dth) .
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We have the estimate

Folase = ( [ Y (t)g(tft__f@ffﬂ”“m)dth>"

7|

<C (/OT/OT 17(®) (9(t) = 9(T))| L) + 10/ (D) —f(T))g(T)\ﬁ;q(mdth)q

’t o 7_|1+Sq

o ( / / 170 ooy 195) = 9 )y + 178) = F gy NG dT) :

|t i 7_|1+sq

<o) (/OT/OT 1F @l co@ 19() = 9D I7e() + 1 lo1co !t—T|q||g(T)||qudth>q

’t o 7_’1+5q

1
q

T T
< O(@) I loven hwease + C@ I lerco (/ Lo, ( / |t—r|—1—sq+th)df)

< C(Q) ||f||00()0 [Q]Ws,qu + C(Qa T) ||f||0100 ||9||Lqu

< Clg; T) 1 fllereo lgllweara
(A.0.3)

where C(q,T') is an increasing function of 7.

Consequently, since €2 and Tj are fixed and T < Tj, we obtain for all T' € (0, Tp] that

Hfg|’Ws,q([Q,T];Lq(Q))qu([o,T};qu(Q)) = 1 f9ll pawra + 1 f9llyprssara
< Clg, diam(Q)) [| fllgocr 191 Lawra + C(a: To) [ Fll oo 9 llwoara (A.04)

< Cq, diam(R2), To) | f | o1 o, c0yneqorier @y N9 llwesqorypo@nzaqommwra)) -
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