
Interface Problems in Two-Phase Magnetohydrodynamic Flows

by

Tian Jing

B.S., Nanjing Normal University, 2017

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2023



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Tian Jing

It was defended on

March 16, 2023

and approved by

Prof. Dehua Wang, Department of Mathematics

Prof. Armin Schikorra, Department of Mathematics

Prof. Ming Chen, Department of Mathematics

Prof. Ian Tice, Department of Mathematical Sciences, Carnegie Mellon University,

Pittsburgh

ii



Copyright © by Tian Jing

2023

iii



Interface Problems in Two-Phase Magnetohydrodynamic Flows

Tian Jing, PhD

University of Pittsburgh, 2023

We study the motion of two incompressible, conductive fluids in a magnetic field. The

viscosity and surface tension are considered. The study includes the existence of varifold

solutions, strong solutions, and their weak-strong uniqueness. To obtain varifold solutions,

we approximate the equations using the Galerkin method. Using solution operators and

the Schauder fixed-point theorem, we can obtain the approximate solutions. The weak

convergence method is then used for studying the limit of approximate solutions. Varifolds

are used for describing the interface. To find a strong solution, we apply the Hanzawa

transformation to the equations, which are transformed into a fixed-interface problem for a

short time. The new equations are divided into principal parts and nonlinear parts, which

are studied separately. The solution is obtained using the fixed-point theory of contraction

mappings. When the strong solution exists, all varifold solutions coincide with it. This

is proved by estimating the error between strong and varifold solutions using the relative

entropy. An inequality of the relative entropy is derived and controlled by utilizing the

Gronwall’s inequality.

Keywords: 3-D MHD, two-phase, varifold solutions, strong solutions, weak-strong unique-

ness.
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3.5.3 Fréchet derivatives of Gi and their estimates . . . . . . . . . . . . . . . 78

3.5.3.1 Estimate of α . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.3.2 Estimate of G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5.3.3 Estimate of G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.3.4 Estimate of G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.4 Estimates of nonlinear terms . . . . . . . . . . . . . . . . . . . . . . . 93

vi



3.5.4.1 Term G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.4.2 Term G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5.4.3 Term G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5.4.4 Term G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5.4.5 Term G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5.4.6 Estimate of operator G . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Local Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6.1 C3 initial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6.2 W 3− 2
q initial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.0 Weak-Strong Uniqueness of the Two-Phase MHD Equations . . . . . . 111

4.1 Preliminary and Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Relative Entropy Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Control of Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix. Basic Theorems and Details of Proofs . . . . . . . . . . . . . . . . 130

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

vii



Preface

This dissertation is devoted to the well-posedness theory of the two-phase magnetohy-

drodynamic equations, which includes the global existence of varifold solutions, the local

existence of strong solutions, and their weak strong uniqueness. These problems have been

challenges for me. I spent a lot of time and energy overcoming these difficulties. During my

study, I have received a lot of help from many people. I would like to express my gratitude

and appreciation to them.

I would like to thank my advisors, Professor Dehua Wang and Professor Armin Schikorra.

I have got a lot of valuable advice from them and they were always willing to discuss with

me when I have confusions. They also supported me with research assistant positions, which

enabled me to focus on research.

I would like to thank the rest of the members of the thesis committee: Professor Ming

Chen (University of Pittsburgh) and Professor Ian Tice (Carnegie Mellon University), for

their valuable suggestions on my research projects and my thesis.

I would like to thank Professor Helmut Abels for being willing to discuss a lot with me

on the two-phase problem and related areas, as well as for many valuable suggestions on the

development of my academic career. I would also like to thank Professor Mathias Wilke,
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1.0 Introduction

Magnetohydrodynamics (MHD) concerns the motion of electrically conducting fluids in

an electromagnetic field. It has a very wide range of applications in many physical areas.

For example, the motion of liquid metals, the magnetic field of the Earth, and the activities

of cosmic stars.

The two-phase MHD equation is a system of equations that describes the motion of two

conductive fluids in a magnetic field. In our study, we focus on fluids that are incompressible,

viscous and resistive. When a conductive fluid moves in a magnetic field, an electric current

is generated in the fluid. The motion of this charged fluid can be affected by the Lorentz force

due to the magnetic field. Meanwhile, the charged fluid itself generates its own magnetic field

around it, which will conversely affect the magnetic field in the whole region. The interface

between the two fluids is moving along the fluids. The surface tension on the interface is

also considered in our study. The equations consist of the Navier-Stokes equations and the

magnetic equations.

The study of the two-phase MHD equation is a development of the research on Navier-

Stokes equations and MHD equations. Thus, it is still a young and developing area. The

Navier-Stokes equations have been widely studied for many decades. The study on two-

phase Navier-Stokes equations is a relatively young branch. When the surface tension is

considered, it brings more difficulty to the solving of the equations. In 1993, Plotnikov

proved the existence of varifold solutions to the two-phase Navier-Stokes equation in R2.

In 2007, Abels studied the existence of varifold solutions in R2 and R3. In 2013, Prüss, et

al. studied analytic solutions to the two-phase Navier-Stokes equation in a bounded domain

Ω ⊆ R3. In 2020, Fischer and Hensel proved the weak-strong uniqueness of the two-phase

Navier-Stokes equation.

In 2010, Padula and Solonnikov studied the local existence of solutions to fluid-vacuum

MHD equations in bounded domains with surface tension considered [24]. In 2014, Secchi

and Trakhinin studied the well-posedness of ideal compressible MHD equations [32]. In

2019, Gu and Wang proved the local existence of solutions to ideal MHD equations without
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surface tension [11]. In 2021, Wang and Xin proved the global existence of solutions to the

fluid-vacuum model in a slab-shaped region [39]. In 2022, Trakhinin and Wang studied the

local existence theory of the compressible model with perfect conductivity [38].

In Chapter 2, we study the existence theory of varifold solutions to the two-phase MHD

equations. We obtain varifold solutions by first approximating the equations using the

Galerkin method and then studying their weak limit. Due to the existence of the magnetic

field, it is hard to obtain approximate solutions using the theory of monotone operators.

In order to overcome this issue, we utilize solution operators to reduce the unknown vari-

ables. These operators can be obtained by independently solving the magnetic equation and

the transport equation. An operator is then constructed using the Galerkin approximate

equations and solution operators. The approximate solution is obtained using the Schauder

fixed-point theorem. Next, we obtain the weak convergence of approximate solutions using

the Banach-Alaoglu theorem. Stronger convergence can then be obtained using the Arzela-

Ascoli theorem and the Aubin-Lions lemma. Finally, we represent the weak limit of the

mean curvature terms with the help of varifolds, which completes the varifold solution.

In Chapter 3, we establish the local existence theory of strong solutions to the two-phase

MHD equations. The Hanzawa transformation is applied to transform the free interface

into a fixed interface for a short time. The transformed equations are divided into the

principal part and the nonlinear part. In the principal part, we use the theory of two-phase

Stokes equations and the theory of parabolic equations to solve the linearized problem with

arbitrary source terms. The study of the nonlinear part is mainly focused on the estimate

of its Fréchet derivative. The equations can then be rewritten using an operator, which is a

contraction mapping in some specific set. The solution is then obtained by finding the fixed

point of the operator.

In Chapter 4, we prove that when the unique strong solution to the two-phase MHD

equations exists, all varifold solutions coincide with it. We prove the weak-strong uniqueness

by controlling the error between the strong solution and a varifold solution using the relative

entropy. The construction of the relative entropy for MHD equations is inspired by [10].

A relative entropy inequality is derived by combining the energy inequalities and equations

with specific test functions. The Gronwall’s inequality is utilized to obtain the estimate of

2



the relative entropy, which implies the weak-strong uniqueness if the initial error is 0.

The rest of the thesis will be organized in the following structure. In Chapter 2, we

establish the global existence of varifold solutions to the two-phase MHD equations using

the Galerkin approximation and the weak convergence method. In Chapter 3, we prove the

local existence of the strong solution using the Hanzawa transformation and the contraction

mapping theory. In Chapter 4, we establish the weak-strong uniqueness of strong and varifold

solutions in R3 using the relative entropy method.

3



2.0 Existence of Varifold Solutions to the Two-Phase MHD Equations

2.1 Introduction and Main Results

In this chapter, we study the two-phase magnetohydrodynamic (MHD) problem of two

immiscible Newtonian fluids which are incompressible, viscous and conducting, in a three-

dimensional bounded, simply connected smooth domain Ω ⊆ R3. The domains of the two

fluids are denoted by open sets Ω+(t) and Ω−(t). The interface between them is defined as

Γ(t) := ∂Ω+(t) \ ∂Ω. The sets Ω+(t) , Ω−(t) and Γ(t) give a partition of Ω. We assume that

the density equals to 1 everywhere and consider the following equations:

∂tu+ u · ∇u− (∇×B)×B − ν±△u+∇p = 0 in Ω±(t), (2.1.1)

∂tB −∇× (u×B) +∇× (σ∇×B) = 0 in Ω, (2.1.2)

divu = 0 in Ω±(t), (2.1.3)

divB = 0 in Ω, (2.1.4)

− J2ν(χ)Du− pIKn = κHn on Γ(t), (2.1.5)

VΓ = n · u on Γ(t), (2.1.6)

u|∂Ω = 0, B|∂Ω = 0, (2.1.7)

u|t=0 = u0, B|t=0 = B0, (2.1.8)

where u ∈ R3 is the velocity, B ∈ R3 the magnetic field, σ > 0 the magnetic diffusion

coefficient of both fluids, ν+, ν− ≥ 0 the viscosity coefficients of the two fluids, κ ≥ 0

the surface tension coefficient; The quantities VΓ, n, H are all defined pointwisely on the

interface Γ(t), where VΓ denotes the velocity of the interface, n the normal vector, H the

mean curvature; The term Du := (∇u + ∇uT )/2 is the strain rate tensor and |Du| is the

shear rate. In order to study the positions of Ω+(t) and Ω−(t), we consider the indicator

function of Ω+(t), i.e. χ(t) := χΩ+(t). Let ν be such that ν(1) = ν+ and ν(0) = ν−. Then

we can use ν(χ(t, x)) for the viscosity. The notation JfK denotes the jump of f across Γ(t).
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We briefly review some related results. When there is no magnetic field B, the problem

becomes the two-phase Navier-Stokes equations. The problem of varifold solutions was first

studied by Plotnikov [25]. In his paper, the case of two incompressible non-Newtonian fluids

with surface tension has been considered in R2. In the seminal work [1], Abels proved the

existence of varifold solutions in more general cases, where the viscosity coefficients depend on

the shear rate |Du|. From [1], there exists a weak solution when κ = 0 and a measure-valued

varifold solution when κ > 0. For the case of κ > 0, the equations have been studied in R2

and R3. When the viscosity coefficients are constants, Yeressian [40] has proved the existence

of varifold solutions in R3. When the strong solution exists, Fischer and Hensel proved the

weak-strong uniqueness in [10] with the technique of relative entropy. For interested readers

we also refer to [22,29,31].

Since the problem with κ > 0 has been studied in R2 and R3 in [1] and [40] for the

Navier-Stokes equations, in this work we are interested in the case of bounded domains Ω

for the magnetohydrodynamics, for which the both viscosity coefficients ν± are also taken to

be (different) constants. In [1] and [40] the approximate equations are derived by mollifying

the original equations. In the case of a bounded domain, it will be complicated to mollify

the equations near the boundary of the domain. Thus, we will use the Galerkin method to

construct the approximate solutions in this work.

We first give the definitions of varifold solutions and weak solutions based on the defini-

tions in [1]. The space Rd is replaced by Ω in an appropriate way. Some boundary conditions

are also included.

Definition 2.1.1 (Varifold solution). Let u0, B0 ∈ L2(Ω) such that divu0 = divB0 = 0

weakly. Let QT := Ω× (0, T ). Let Ω+
0 ⊆ Ω be a bounded domain such that χ0 = χΩ+

0
is of

finite perimeter. A quadruple (u,B, χ, V ) with

u ∈ L2([0, T ];H1
0 (Ω)) ∩ L∞([0, T ];L2(Ω)),

B ∈ L2([0, T ];H1
0 (Ω)) ∩ L∞([0, T ];L2(Ω)),

divu = divB = 0,

χ ∈ L∞([0, T ];BV (Ω; {0, 1})),

V ∈ L∞([0, T ];M(Ω× S2)),
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is called a varifold solution to the two-phase flow problem (2.1.1)-(2.1.8) with the initial data

(u0, B0, χ0) if

(1).

−(u0, φ(0))Ω − (u, ∂tφ)QT
− (u⊗ u,∇φ)QT

+ (B ⊗B,∇φ)QT

+ (2ν(χ)Du,Dφ)QT
+ κ

∫ T

0

⟨δV (t), φ(t)⟩ dt = 0
(2.1.9)

is satisfied for all φ ∈ C∞
c ([0, T )× Ω) with divφ = 0;

(2).

−(B0, φ(0))Ω − (B, ∂tφ)QT
− (u⊗B,∇φ)QT

+ (B⊗ u,∇φ)QT
+ σ(∇B,∇φ)QT

= 0 (2.1.10)

is satisfied for all φ ∈ C∞
c ([0, T )× Ω) with divφ = 0;

(3). For almost every t ∈ [0, T ],∫
Ω×S2

s · ψ(x)dV (t)(x, s) = −
∫
Ω

ψd∇χ(t) (2.1.11)

is satisfied for all ψ ∈ C0(Ω);

(4). The indicator function χ is the unique renormalized solution of

∂tχ+ u · ∇χ = 0 in (0, T )× Ω,

χ|t=0 = χ0 in Ω;
(2.1.12)

(5). The generalized energy inequality

1

2
∥u(t)∥2L2 +

1

2
∥B(t)∥2L2 + κ ∥V (t)∥M(Ω×S2) + 2

∫ t

0

∫
Ω

ν(χ)|Du|2dxds

+σ

∫ t

0

∥∇B(s)∥2L2 ds ≤
1

2
∥u0∥2L2 +

1

2
∥B0∥2L2 + κ ∥∇χ0∥M(Ω)

(2.1.13)

holds for almost every t ∈ [0, T ];

Remark 2.1.1. The notation (·, ·)Ω and (·, ·)QT
stands for the inner product in L2(Ω) and

L2(QT ). For details about the renormalized solutions, see Proposition 2.2 in [1]. The term

δV in (4.1.4) is the first variation of the measure V . The definitions of δV and ⟨δV (t), ·⟩ are

in Section 2.2.4. The initial energy is:

E0 :=
1

2
∥u0∥2L2 +

1

2
∥B0∥2L2 + κ ∥∇χ0∥M . (2.1.14)
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Definition 2.1.2 (Weak solution). Let (u,B, χ, V ) be a varifold solution of the two-phase

flow problem (2.1.1)-(2.1.8) with the initial data (u0, B0, χ0) as in definition 2.1.1. Then the

triple (u,B, χ) is called a weak solution if for almost every t ∈ [0, T ], the equality

⟨δV (t), φ⟩ = −
〈
Hχ(t), φ

〉
:=

∫
Ω

Pτ : ∇φd|∇χ(t)|

holds for all φ ∈ C∞
c (Ω) with divφ = 0. Here Pτ := I − n⊗ n and n := ∇χ(t)/ |∇χ(t)|.

Remark 2.1.2. The term χ contains all the information to define the mean curvature func-

tional Hχ; see Section 2.2.3 for details. The term ∇χ(t) is a vector-valued Radon measure

on Ω and |∇χ(t)| is the total variation measure of ∇χ(t). Thus, the normal vector n can be

defined using the Radon-Nikodym derivative. See Section 2.2 for details. The varifold solu-

tion is weaker than the weak solution, since the weak limits of some terms are represented

by measures.

The main result of this work is given as the following:

Theorem 2.1.1. Let Ω ⊆ R3 be a bounded, smooth and simply connected domain; u0, B0 ∈

L2(Ω) satisfy divu0 = divB0 = 0; and χ0 := χΩ+
0
, where Ω+

0 ⊆ Ω is a simply connected

C2-domain such that Ω+
0 ⊆ Ω. Then for any T > 0, there exists a varifold solution to the

two-phase flow problem (2.1.1)-(2.1.8) on [0, T ] with the initial data (u0, B0, χ0).

The proof of theorem 2.1.1 will be in the spirit of [1] with some new ideas to deal with

the bounded domain Ω and the magnetic field B. We shall use the Galerkin method to

construct the approximate solutions in a bounded domain. Due to the extra term B in

the equations, we cannot use the method of monotone operators in [1, 42, 43] to solve the

approximate equations. Instead, we will rewrite the approximate equations using operators

and solve the equations by finding the fixed points of the operators. In fact, if our velocity

u is from certain function spaces, then the quantity B and χ are uniquely decided by u.

Thus, there exist solution operators that map each u to B(u) and χ(u). These operators

have some good properties of continuity and boundedness, which will contribute to showing

the compactness of the fixed-point operator; see [1] and [12] for more details. Due to the free

interface Γ(t), it is hard to prove the Lipschitz continuity of the operators. Thus, we cannot

use the classical contraction mapping theorem to prove the existence of the fixed-points. In
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order to overcome this difficulty, we firstly prove the compactness of the operators and then

use the Schauder fixed-point theorem.

The rest of this chapter is organized as follows. We firstly list some useful background

knowledge in Section 2.2. In Section 2.3, we will study the Galerkin approximate equations

on [0, T ] and prove that the approximate solutions exists globally on [0, T ]. Then we give a

uniform energy estimate for all the approximate solutions. Finally, we will study the limits

of the approximate solutions in Section 2.4.

2.2 Preliminary

2.2.1 Function spaces

We recall some definitions of function spaces. Given a bounded domain Ω ⊆ Rd. The

space Ck(Ω) denotes the functions with continuous partial derivatives until order k. The

subspace Ck
b (Ω) ⊆ Ck(Ω) consists of bounded functions with bounded derivatives up to order

k. The space Ck(Ω) is the subspace of Ck(Ω), such that for each f ∈ Ck(Ω), we can find

F ∈ Ck(Rd) with f = F on Ω. The space C∞
c,σ(Ω) consists of functions in C

∞
c (Ω) which are

divergence-free. The following result will be useful.

Proposition 2.2.1 ( [41], Appendix (24d)). For a compact set K ⊆ Rd, for any k ∈ Z and

k ≥ 0, we have the compact embedding Ck+1(K) ↪→↪→ Ck(K).

For a Banach space X and 1 ≤ p ≤ ∞, the Bochner space Lp([0, T ];X) is the space of

functions u(t) from [0, T ] to X such that

∥u∥Lp([0,T ];X) :=

(∫ T

0

∥u(t)∥pX dt
) 1

p

<∞ for 1 ≤ p <∞, or

∥u∥L∞([0,T ];X) := ess sup
t∈[0,T ]

∥u(t)∥X <∞ for p = ∞.

The space C([0, T ];X) consists of functions u(t) from [0, T ] to X such that for any t0 ∈ [0, T ]

lim
t→t0

∥u(t)− u(t0)∥X = 0.
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For more details on function spaces, we refer to [23]. For Sobolev spaces and the embedding

theorems, we refer to [8, 18].

For a locally compact separable metric space X, we denote the space of finite Radon

measures on X by M(X). We recall that M(X) = (C0(X))∗.

We denote by L∞
w ([0, T ],M(X)) the space of functions f : [0, T ] → M(X) such that:

for all φ ∈ L1([0, T ], C0(X)) the duality (f, φ)(t) is measurable on [0, T ]; ∥f∥M(X) (t) is

measurable on [0, T ]; and ess sup[0,T ] ∥f∥M(X) (t) <∞. More details can be found in [1, 40].

2.2.2 Sets of finite perimeter

In order to study the free interface, we recall some topics about the sets with less regular

boundaries. Most of the topics here can be found in the geometric measure theory. We refer

to [5, 19] for interested readers.

Definition 2.2.1 ( [5], definition 3.1). For an open set Ω ⊆ Rd. A function u ∈ L1(Ω) is of

bounded variation in Ω if there exist finite Radon measures λ1, · · ·λd ∈ M(Ω) such that∫
Ω

u
∂φ

∂xi
dx = −

∫
Ω

φdλi

holds for all φ ∈ C∞
c (Ω) and i = 1, · · · , d. The space BV (Ω) consists of functions of bounded

variation in Ω.

The variations of functions are useful when we study the space BV (Ω).

Definition 2.2.2 ( [5], definition 3.4). Given a function u ∈ L1
loc(Ω)

m with Ω ⊆ Rd. Its

variation in Ω is defined as

V(u,Ω) := sup

{
m∑

α=1

∫
Ω

uαdivφαdx : φ ∈ C1
c (Ω)

md, ∥φ∥L∞(Ω) ≤ 1

}
.

When studying the boundary of a set E, we usually consider its indicator function χE.

The perimeter of E is defined using the variation of χE. See [5, 9] for details.

9



Definition 2.2.3 ( [5], definition 3.35). Let Ω ⊆ Rd be an open set and E ⊆ Rd a Lebesgue

measurable set. The perimeter of E in Ω is defined as:

P(E,Ω) := sup

{∫
E

divφdx : φ ∈ C1
c (Ω)

d, ∥φ∥L∞(Ω) ≤ 1

}
.

The set E is of finite perimeter in Ω if P(E,Ω) <∞.

Remark 2.2.1. By this definition, only ∂E ∩ Ω will be counted into the perimeter of E.

2.2.3 Mean curvature functional

When calculating the weak form of (2.1.1), we will get a so-called mean curvature func-

tional. This functional is dependent on the interface Γ(t), and thus will be denoted by HΓ(t)

or Hχ(t). When everything is smooth enough, we have the following formula:

〈
HΓ(t), φ(t)

〉
:=

∫
Γ(t)

Hn · φdHd−1(x),

where Hk denotes the k-dimensional Hausdorff measure. On the interface Γ the tangential

divergence of a function φ ∈ C1(Γ)d is defined as

divΓφ := divφ− n⊗ n : ∇φ = (I − n⊗ n) : ∇φ,

where n(x) denotes the normal vector. Note that Pτ := I−n⊗n is the orthogonal projection

onto the tangent space, which is defined pointwisely on Γ. The mean curvature is defined as

(see [5, 19,33])

H := −divΓφ.

According to the generalized divergence theorem (see [19]),∫
Γ

divΓφdHd−1 =

∫
Γ

Hn · φdHd−1 +

∫
∂Γ

φ · n∂ΓdHd−2 (2.2.1)

holds for all φ ∈ C1
c (Rd)d. In our problem, the set Ω+(t) will always stay in the interior of Ω.

Thus, Γ(t) will be a closed surface and will not have any edge, i.e. the (d − 2)-dimensional

boundary. As a result, the second term on the right-hand side in (2.2.1) vanishes. Now when

the surface Γ becomes less regular, as long as a measure theoretical normal vector exists,
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we can use the generalized divergence theorem to replace Hn · φ with divΓφ, and study the

generalized mean curvature functional.

In order to study the convergence of the mean curvature terms, we modify lemma 2.4

from [1] and obtain the following lemma.

Lemma 2.2.1 ( [1], lemma 2.4, revised). Let Ω be a bounded, simply connected, smooth

domain. Let Ω+
0 be a bounded, simply connected C2-domain such that Ω+

0 ⊆ Ω. Suppose that

u, v ∈ C([0, T ];C2
b (Ω)) with divu = divv = 0 and u→ v in C([0, T ];C1(Ω)). Then∫

Γu(t)

f(x, nx)dHd−1(x) →
∫
Γv(t)

f(x, nx)dHd−1(x) (2.2.2)

uniformly on [0, T ]. Here Γu(t) and Γv(t) are interfaces obtained from u and v.

The details on how the velocity determines the interface are stated in Section 2.3.3.

The convergence of the flow mappings is still valid when the domain Rd in [1] is replaced

by a bounded domain Ω. Thus, using the same argument as in [1], we can apply a local

parameterization to Γ0 = ∂Ω+
0 to prove the lemma.

2.2.4 Varifolds

For the problem we study, even the measure theoretical normal vectors might not be

guaranteed to exist all the time. In this case, we have to use varifolds to describe the

surfaces. We refer to the definition in [1] and give an analogue one for the case of the

bounded domain Ω. A measure V is called a general (d − 1)-varifold if it is a finite Radon

measure on Ω×Sd−1, i.e. V ∈ M(Ω×Sd−1). The varifold V can be understood as assigning

different weight to vectors in Ω and Sd−1. In another word, it tells the possibility of a point

to be on the interface and the possibility of a vector to be the normal vector. For interested

readers we refer to [20,21,33].

The first variation of V is defined as

⟨δV, φ⟩ :=
∫
Ω×Sd−1

(I − s× s) : ∇φdV (x, s)

for any φ ∈ C1
0(Ω); see [33] chapter 8 or [3]. This allows us to replace the functional HχE(t)

with −δV (t), and study the mean curvature functional when the interface is less regular.
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2.2.5 Compact operators

We recall some theory about compact operators; see [41] for details. The compact oper-

ators will be used to solve the Galerkin approximate equations.

Definition 2.2.4 ( [41], definition 2.9). Given two Banach spaces X and Y . An operator

T : D(T ) ⊂ X → Y is called a compact operator if it is continuous and maps bounded sets

into precompact sets.

The following proposition is important when proving the compactness of an operator.

Proposition 2.2.2 ( [41], Appendix (24g)). The set M ⊆ C(Ω) is precompact if and only if

(1) supf∈M supx∈Ω |f(x)| <∞.

(2) For every ε > 0, there exists δ > 0, such that supf∈M |f(x)−f(y)| < ε for every x, y ∈ Ω

and |x− y| < δ.

We give a specific version of the Arzela-Ascoli theorem.

Theorem 2.2.1 ( [41], Appendix (24i)). Let X be a Banach space. The set A ⊆ C([0, T ];X)

is precompact if and only if

(1) For all t ∈ [0, T ], the set {f(t) : f ∈ A} is precompact in X.

(2) For all t ∈ [0, T ] and ε > 0, there exists δ > 0, such that supf∈A ∥f(t)− f(s)∥X < ε for

all s ∈ [0, T ] and |t− s| < δ.

At last, we recall the Schauder fixed-point theorem of compact operators.

Theorem 2.2.2 ( [41], theorem 2.A). Let X be a Banach space. Suppose A ⊆ X is

nonempty, bounded, closed and convex. Given a compact operator T : A → A. There

exists a fixed point of T in A.
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2.3 The Galerkin Method

2.3.1 Weak formula and energy estimate

We test (2.1.1) with φ ∈ C∞
c ([0, T ) × Ω) such that divφ = 0. For the first and second

terms we simply integrate them by parts; for the third term we recall the equality (∇ ×

B) × B = B · ∇B − ∇(|B|2)/2 and then integrate by parts; the fifth term will vanish; the

calculation of the fourth term will generate the mean curvature functional:∫
Ω

ν(χ)△uφ =

∫
Ω

ν(χ)div(∇u+∇uT )φ

=

∫
Ω

ν(χ)
∑
j

∑
i

∂i(∂iuj + ∂jui)φj

=

∫
Ω

ν(χ)
∑
j

∑
i

∂i((∂iuj + ∂jui)φj)−
∫
Ω

ν(χ)
∑
j

∑
i

(∂iuj + ∂jui)∂iφj

=2(ν+ − ν−)

∫
Γ

n · (Duφ)− 2

∫
Ω

ν(χ)Du : Dφ

=κ

∫
Γ

Hn · φ− 2(ν(χ)Du,Dφ)Ω.

Thus, we obtain the weak formula of (2.1.1):

−(u0, φ(0))Ω − (u, ∂tφ)QT
− (u⊗ u,∇φ)QT

+ (B ⊗B,∇φ)QT

+ 2(ν(χ)Du,Dφ)QT
− κ

∫ T

0

∫
Γ(t)

Hn · φdH2 = 0.
(2.3.1)

Testing (2.1.2) with φ ∈ C∞
c ([0, T )× Ω) such that divφ = 0. Using the fact that

∇× (∇×B) = ∇(divB)−△B, and ∇× (u×B) = −(u · ∇)B + (B · ∇)u,

we obtain

−(B0, φ(0))Ω − (B, ∂tφ)QT
− (u⊗B,∇φ)QT

+ (B ⊗ u,∇φ)QT
+ σ(∇B,∇φ)QT

= 0. (2.3.2)

Now we derive the energy estimate. Suppose all the functions are smooth enough. Testing

(2.1.1) and (2.1.2) on Ω with φ = u and φ = B respectively, we obtain

1

2

d

dt
∥u∥2L2 + (B ⊗B,∇u)Ω + 2(ν(χ)Du,Du)Ω − κ

∫
Γ(t)

Hn · udH2 = 0,
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1

2

d

dt
∥B∥2L2 − (B ⊗B,∇u)Ω + σ ∥∇B∥2L2 = 0.

Adding these two equations, we have

1

2

d

dt
∥u∥2L2 +

1

2

d

dt
∥B∥2L2 + 2(ν(χ)Du,Du)Ω

+σ ∥∇B∥2L2 − κ

∫
Γ(t)

Hn · udH2 = 0.

From the derivation of (1.9) in [1], we have

d

dt
H2(Γ(t)) = −

∫
Γ(t)

HVΓdH2 = −
∫
Γ(t)

Hn · udH2.

Note that by Korn’s inequality, there exists c > 0 such that

2(ν(χ)Du,Du)Ω ≥ c ∥∇u∥2L2 .

Finally, we obtain the energy inequality:

1

2
∥u(t)∥2L2 +

1

2
∥B(t)∥2L2 + κH2(Γ(t)) + c ∥∇u∥2L2([0,T ]×Ω) + σ ∥∇B∥2L2([0,T ]×Ω)

≤ 1

2
∥u0∥2L2 +

1

2
∥B0∥2L2 + κH2(Γ0).

(2.3.3)

This estimate drives us to look for a solution (u,B,Γ) such that

u ∈ L2([0, T ];H1
0 (Ω)) ∩ L∞([0, T ];L2(Ω)), B ∈ L2([0, T ];H1

0 (Ω)) ∩ L∞([0, T ];L2(Ω)),

and H2(Γ(t)) is bounded on [0, T ].
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2.3.2 Approximate equations

In order to use the Galerkin method, we pick the eigenfunctions of the Stokes operator

to be a basis. The existence of this basis is from the following theorem:

Theorem 2.3.1 ( [30], theorem 2.24). Let Ω ⊆ R3 be a smooth bounded domain. Let A be

the Stokes operator, i.e. Au := −P△u where P is the Helmholtz projection. There exists a

set of functions N = {η1, η2, · · · , } such that

(1) the functions form an orthonormal basis of H(Ω);

(2) the functions form an orthogonal basis of V(Ω);

(3) the functions belong to D(A) ∩ C∞(Ω) and they are eigenfunctions of A with positive,

nondecreasing eigenvalues which goes to infinity.

Here H(Ω) denotes the closure of {φ ∈ C∞
c (Ω) : divφ = 0} under the L2 norm and

∥·∥H(Ω) := ∥·∥L2(Ω). The space V(Ω) := H(Ω) ∩H1
0 (Ω) and ∥·∥V(Ω) := ∥·∥H1(Ω). Note that all

the eigenfunctions ηj have trace 0. For details of the Stokes operator, see [35,36].

Let Gn := span{η1, · · · , ηn}. For each t ∈ [0, T ], we consider the approximate equation:

(un(t), η)Ω − (u0, η)Ω −
∫ t

0

(un ⊗ un,∇η)Ωds+
∫ t

0

(Bn ⊗Bn,∇η)Ωds

+2

∫ t

0

(ν(χn)Dun, Dη)Ωds+ κ

∫ t

0

∫
Ω

Pτ : ∇ηd |∇χn(s)| ds = 0,

(2.3.4)

for all η ∈ Gn. We define the functionals M and N on Gn and rewrite the equation. Let

⟨M(u), η⟩ :=
∫
Ω

u · η,

⟨N(u, χ,B), η⟩ := (u⊗ u,∇η)Ω − (B ⊗B,∇η)Ω

− 2(ν(χ)Du,Dη)Ω + κ

∫
Ω

Pτ : ∇ηd |∇χ| .

By integrating N(u, χ,B) from 0 to t, we define〈∫ t

0

Nds, η

〉
:=

∫ t

0

⟨N(s), η⟩ ds.

Now we can rewrite the equation as:

⟨M(un(t)), η⟩ = ⟨M(u0), η⟩+
∫ t

0

⟨N(un, χn, Bn), η⟩ ds (2.3.5)

for all η ∈ Gn. It remains to represent χ and B with u using the solution operators, i.e.

χ(u) and B(u) .

15



2.3.3 Solution operators χ(u) and B(u)

Suppose u ∈ C([0, T ];C2(Ω)) and Ω+
0 is a simply connected C2-domain with Ω+

0 ⊆ Ω.

For each x ∈ Ω, we consider the ODE

d

dt
X(t, x) = u (t,X(t, x)) ,

X(0, x) = x.

(2.3.6)

By the Picard-Lindelöf theorem there exists a unique solution locally in time. Since the

solution will not blow up as stated in remark 2.3.1, we can always extend it to [0, T ]. When

we start from different initial values on Ω, the solutions will not intersect. Thus, we obtain a

function X(t, x) : [0, T ]×Ω → Ω, which is a bijection on Ω for each fixed t. We call X(t, x)

the flow mapping, and denote it by Xt(x) in some cases. We will also use Xu(t, x) or Xu,t(x)

if needed to emphasize the velocity field that generates this flow mapping.

Remark 2.3.1. When x ∈ ∂Ω, the Picard iterating always generate constant functions equal

to x. Thus, we can obtain a unique solution X(t, x) ≡ x on [0, T ]. When x ∈ Ω, the local

solution will not exceed Ω, so it can still be extended to [0, T ]. In both cases, the proof of

uniqueness can be done by the Gronwall’s inequality.

Note that u ∈ C([0, T ];C2
0(Ω)). Similarly to the proof of theorem 2.10 in [37], we can

prove that X ∈ C([0, T ];C2(Ω)). Letting χ(x, t) := χ0(X
−1
t (x)), then we have obtained the

indicator function χ using the velocity u.

We now estimate the variation of χ(x, t). From [4] Exercise 3.2, the Jacobian J(Xt) ≡ 1.

By changing of variable, we have∫
Ω

χ(x, t)divφ(x)dx =

∫
Ω

χ(Xt(y), t)divφ(Xt(y))dy. (2.3.7)

Similarly to the argument in [1], we integrate by parts. Let A = (aij)3×3 be the matrix

inverse of ∇Xt, i.e. A(y) := (∇yXt(y))
−1. Let φ̃(y) = AT (y)φ(Xt(y)) with AT being the

transpose of A. For the gradient of φ̃(y), i.e. ∇y

(
AT (y)φ(Xt(y))

)
, we consider its trace:

Tr∇y

(
ATφ(Xt(y))

)
=
∑
i

∑
j

∂yiaji · φj(Xt(y)) +
∑
i

∑
j

aji · ∂yiφj(Xt(y))

= I1 + I2.
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Simplifying I2, we obtain

I2 =
∑
i

∑
j

∑
k

aji∂kφj(Xt(y)) · ∂yiXt,k(y)

=
∑
j

∑
k

∂kφj(Xt(y)) ·

(∑
i

aji∂yiXt,k(y)

)

=
∑
j

∑
k

∂kφj(Xt(y)) ·

(∑
i

(
(∇Xt)

−1
)
ji
(∇Xt)ik

)

=
∑
j

∂jφj(Xt(y)) = divφ(Xt(y)).

Continuing with (2.3.7), we have∫
Ω

χ(Xt(y), t)divφ(Xt(y))dy =

∫
Ω

χ(Xt(y), t)I2dy

=

∫
Ω

χ(Xt(y), t)Tr∇y(A
Tφ(Xt(y)))−

∫
Ω

χ(Xt(y), t)I1

=

∫
Ω

χ(Xt(y), t)Tr∇y(A
Tφ(Xt(y)))−

∫
Ω

χ(Xt(y), t)
∑
i

∑
j

∂yiaji · φj(Xt(y))

=

∫
Ω

χ0(y)Tr∇y(φ̃(y))−
∫
Ω

χ0(y)
∑
i

∑
j

∂yiaji · φj(Xt(y))

=I3 − I4.

Since χ0 ∈ BV (Ω), we have

|I3| =
∣∣∣∣∫

Ω

χ0(y)divyφ̃(t, y)

∣∣∣∣ ≤ ∥∇χ0∥M(Ω) ∥φ̃∥L∞([0,T ]×Ω)

≤ C ∥∇χ0∥M(Ω) ∥φ∥L∞(Ω) ∥∇A∥L∞([0,T ]×Ω)

≤ ∥χ0∥BV (Ω) ∥φ∥L∞(Ω) β(∥u∥C([0,T ];C2(Ω))).

The notation β(·) denotes a continuous function. In ∥∇A∥L∞(Ω), we firstly find the Euclidean

norm |∇A| and then find the L∞ norm of |∇A|. The situations later will be treated in the

same way. We then estimate I4:

|I4| ≤ C ∥∇A∥L∞([0,T ]×Ω) ∥χ0∥L1(Ω) ∥φ(Xt(y))∥L∞(Ω)

≤ ∥χ0∥BV (Ω) ∥φ∥L∞(Ω) β(∥u∥C([0,T ];C2(Ω))).
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We still use the notation β(·), so it represents different continuous functions in different

contexts. The estimates of I3 and I4 implies∣∣∣∣∫
Ω

χ(Xt(y), t)divφ(Xt(y))dy

∣∣∣∣ ≤ ∥χ0∥BV (Ω) ∥φ∥L∞(Ω) β(∥u∥C([0,T ];C2(Ω))).

Thus, we have

V(χ(t),Ω) ≤ ∥χ0∥BV (Ω) β(∥u∥C([0,T ];C2(Ω))).

Noticing that ∥χ(t)∥L1(Ω) = ∥χ0∥L1(Ω) and ∥∇χ(t)∥M(Ω) ≤ V(χ(t),Ω), one has

∥χ(t)∥BV (Ω) = ∥χ(t)∥L1(Ω) + ∥∇χ(t)∥M(Ω)

≤ ∥χ0∥L1(Ω) + V(χ(t),Ω) ≤ β(∥u∥C([0,T ];C2(Ω))) ∥χ0∥BV (Ω) .

Remark 2.3.2. In order to control (∇Xt)
−1 with β(∥u∥C([0,T ];C2(Ω))), we only need to consider

∇Xt. This is because det(∇Xt) = 1, which implies that (∇Xt)
−1 = adj(∇Xt). We take the

derivatives of the following equation:

X(t, x) = x+

∫ t

0

u(s,X(s, x))ds, (2.3.8)

and then we use the Gronwall’s inequality. In order to estimate ∂yiaji, we take the derivatives

of the equation (∇Xt)
−1 = adj(∇Xt). It remains to estimate the second derivatives of

X(t, x), which can be solved similarly by the Gronwall’s inequality.

Remark 2.3.3. When ∥u∥C([0,T ];C2(Ω)) ≤ R we have ∥χ(u)∥L∞([0,T ];BV (Ω)) ≤ C(R).

Now we study the operator B(·). We recall the lemma 3.2 from [12].

Lemma 2.3.1 ( [12], lemma 3.2). Let Ω ⊆ R3 be a bounded C3-domain and u ∈ C([0, T ];C2
0(Ω)).

There exists a unique solution operator B(·), such that B(u) solves (2.1.2), (2.1.4) and (2.1.8)

in the weak sense. Given any bounded set A ⊆ C([0, T ];C2
0(Ω)), the image B(A) is bounded

in L2([0, T ];H1
0 (Ω)) ∩ L∞([0, T ];L2(Ω)) and B(·) is continuous on A.

We will show later that the condition u ∈ C([0, T ];C2
0(Ω)) will be guaranteed. Thus, we

can always use the operator B(·) when solving the approximate equations. Note that when

∥u∥C([0,T ];C2(Ω)) ≤ R, we have ∥B(u)∥L2([0,T ];H1
0 (Ω)) + ∥B(u)∥L∞([0,T ];L2(Ω)) ≤ C(R).
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2.3.4 Estimating the operator N(u, χ,B)

Substituting χ(u) and B(u), we obtain N(u) = N(u, χ(u), B(u)). We estimate its oper-

ator norm. For convenience, we denote the formula by

⟨N(u), η⟩ = I1 + I2 + I3 + I4,

where

I1 =

∫
Ω

u⊗ u : ∇ηdx,

I2 = −
∫
Ω

B ⊗B : ∇ηdx,

I3 = −2

∫
Ω

ν(χ)Du : Dηdx,

I4 = κ

∫
Ω

Pτ : ∇ηd|∇χ|.

We estimate the integrals as follows. Notice that the C1 norm is equivalent to the Gn norm

in the finite-dimensional space Gn. Thus, we obtain

|I1| ≤
∫
Ω

|u|2|∇η| ≤ ∥η∥C1(Ω) ∥u∥
2
L2(Ω) ≤ C ∥u∥2Gn

∥η∥Gn
.

Similarly, we estimate I2 and I3 as

|I2| ≤ ∥η∥C1(Ω) ∥B∥2L2(Ω) ≤ C ∥B∥2L2(Ω) ∥η∥Gn
,

|I3| ≤ C ∥Du∥L2(Ω) ∥Dη∥L2(Ω) ≤ C ∥u∥Gn
∥η∥Gn

.

Using the fact that |(Pτ )ij| = |δij − ninj| ≤ 1, we have

|Pτ : ∇η| ≤ |Pτ | |∇η| ≤ C |∇η| ≤ C ∥η∥Gn
,

and then we obtain

|I4| ≤ ∥χ∥BV (Ω) ∥Pτ : ∇η∥L∞(Ω) ≤ C ∥χ∥BV (Ω) ∥η∥Gn
.

Thus, the operator norm of N(u) is estimated as the following:

∥N(u)∥G∗
n
(t) ≤ C

(
∥u∥2Gn

+ ∥u∥Gn
+ ∥B(u)∥2L2(Ω) + ∥χ(u)∥BV (Ω)

)
(t). (2.3.9)
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2.3.5 Operator for the fixed-point method

In order to construct the operator for the fixed-point method, we consider the equation

M(u(t)) =M(u0) +

∫ t

0

N(u(s))ds, (2.3.10)

which can be rewritten as:

u(t) =M−1(M(u0)) +M−1

(∫ t

0

N(u(s))ds

)
. (2.3.11)

In order to prove M is invertible, we suppose M(η) = 0 in G∗
n, then we have ∥η∥2L2(Ω) =

⟨M(η), η⟩ = 0. Since η is a continuous function, we have η = 0. Thus, M : Gn → G∗
n is

invertible.

Remark 2.3.4. When u0 ∈ L2(Ω), the functional M(u0) ∈ G∗
n is still well defined.

Let ũ0 :=M−1(M(u)), we define

K(u(t)) :=M−1

(
M(u0) +

∫ t

0

N(u(s))ds

)
= ũ0 +M−1

(∫ t

0

N(u(s))ds

)
. (2.3.12)

For convenience, we define the set:

Aa,b := {u ∈ C([0, a], Gn) : ∥u∥L∞([0,a];Gn)
≤ b}.

Remark 2.3.5. Since all norms are equivalent in Gn, we pick an arbitrary norm and fix it

to be our ∥·∥Gn
. We will consider the properties of K(·) on AT ∗,R. In fact, K(·) becomes a

compact operator on AT ∗,R for suitable T ∗ and R.
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Given u ∈ AT,R. From (2.3.9) and Section 2.3.3, we have the following estimate:

∥N(u)∥L∞([0,T ];G∗
n)

≤ C(R). (2.3.13)

We now study the properties of K. Firstly, we study the continuity of K with respect to t.

In fact, from (2.3.13), we have

∥K(u)(t)−K(u)(s)∥Gn

≤
∥∥M−1

∥∥
L(G∗

n,Gn)

∫ t

s

∥N(u)∥G∗
n
(r)dr

≤ C(R)|t− s|.

(2.3.14)

Thus, K(u) ∈ C([0, T ], Gn).

Secondly, we study the boundedness of K(u). Still using the estimate in (2.3.13), we

obtain

∥K(u)∥Gn
(t) ≤ ∥ũ0∥Gn

+ C(R)t. (2.3.15)

We choose R > ∥ũ0∥Gn
and T ∗ small enough, such that

∥ũ0∥Gn
+ C(R)T ∗ < R.

Then the operator K maps AT ∗,R into AT ∗,R.

Thirdly, we show that K(·) is a continuous operator on AT ∗,R. We fix v ∈ AT ∗,R and let

u ∈ AT ∗,R be such that u→ v in C([0, T ∗];Gn). Since

∥K(u)−K(v)∥Gn
(t) ≤

∥∥M−1
∥∥
L(G∗

n,Gn)

∫ t

0

∥N(u)−N(v)∥G∗
n
(s)ds,

we need to estimate ∥N(u)−N(v)∥G∗
n
(t). For any t ∈ [0, T ∗], we consider

⟨N(u)−N(v), η⟩ = I1 + I2 + I3 + I4, (2.3.16)

where

I1 =

∫
Ω

(u⊗ u− v ⊗ v) : ∇η,

I2 = −
∫
Ω

(Bu ⊗Bu −Bv ⊗Bv) : ∇η,

I3 = −2

∫
Ω

(ν(χu)Du− ν(χv)Dv) : ∇η,

I4 = κ

(∫
Ω

Pτ : ∇ηd |∇χu| −
∫
Ω

Pτ : ∇ηd |∇χv|
)
.

(2.3.17)
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Here we denote B(u) and B(v) by Bu and Bv for short. The variable t is ignored for

convenience when there is no ambiguity. The terms I1 to I4 are estimated as follows. For I1,

we have

|I1| ≤
∫
Ω

|u⊗ (u− v) + (u− v)⊗ v| |∇η|dx

≤
∫
Ω

|u||u− v||∇η|dx+
∫
Ω

|u− v||v||∇η|dx

≤∥u∥L2(Ω) ∥u− v∥L2(Ω) ∥∇η∥L∞(Ω) + ∥u− v∥L2(Ω) ∥v∥L2(Ω) ∥∇η∥L∞(Ω)

≤C
(
∥u∥Gn

+ ∥v∥Gn

)
∥u− v∥Gn

∥η∥Gn

≤CR ∥u− v∥Gn
∥η∥Gn

.

Thus, sup[0,T ∗] |I1(t)| ≤ CR ∥u− v∥C([0,T ∗];Gn)
∥η∥Gn

. Similarly to the estimate of I1, we

obtain

|I2| ≤
∫
Ω

|Bu||Bu −Bv||∇η|+
∫
Ω

|Bu −Bv||Bv||∇η|

≤C (∥Bu∥L2 + ∥Bv∥L2) ∥Bu −Bv∥L2 ∥η∥Gn

≤C(R) ∥Bu −Bv∥L2 ∥η∥Gn
.

From lemma 2.3.1, we have sup[0,T ∗] |I2(t)| ≤ C(∥u− v∥C([0,T ∗];Gn)
) ∥η∥Gn

. Moreover, the

constant C(∥u− v∥C([0,T ∗];Gn)
) → 0 when ∥u− v∥C([0,T ∗];Gn)

→ 0. For I3 we obtain

|I3| ≤ 2

∫
Ω

|ν(χu)Du− ν(χv)Dv| |∇η|

≤2

∫
Ω

|ν(χu)| |Du−Dv||∇η|+ 2

∫
Ω

|ν(χu)− ν(χv)| |Dv||∇η|

≤C
∫
Ω

|∇(u− v)||∇η|+ C

∫
Ω

∣∣ν+χu + ν−(1− χu)− ν+χv − ν−(1− χv)
∣∣ |∇v||∇η|

≤C ∥u− v∥Gn
∥η∥Gn

+ C ∥v∥Gn
∥η∥Gn

∫
Ω

|χu − χv| .

The key point is to prove that
∫
Ω
|χu − χv| → 0 as u → v in C([0, T ∗];Gn). In fact, u → v

in C([0, T ∗];Gn) implies u → v in C([0, T ∗];C1(Ω)). Thus, similarly to the argument in [1],
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we obtain Xu → Xv in C([0, T ∗];C1(Ω)). Let Ω+
u (t) := Xu(t,Ω

+
0 ), Ω

+
v (t) := Xv(t,Ω

+
0 ) and

Γu(t) := Xu(t,Γ0), Γv(t) := Xv(t,Γ0). Notice that∫
Ω

|χu − χv| dx =
∣∣Ω+

u△Ω+
v

∣∣
where△ denotes the symmetric difference of sets. For any ε > 0, if ∥Xu −Xv∥C([0,T ∗];C1(Ω)) <

ε, then Γu(t) ⊆ B(Γv(t), ε) for every t ∈ [0, T ∗]. Here B(Γv(t), ε) is the ε-neighborhood

of Γv(t). Since v ∈ C([0, T ∗];Gn) ⊆ C([0, T ∗];C2(Ω)), we obtain that the flow mapping

Xv(t, x) ∈ C([0, T ∗];C2(Ω)). Since our Γ0 is a C2 surface, we can apply a local parameteri-

zation to Γ0. By composing with Xv(t, x), it will naturally give us a local parameterization

of Γv(t). Suppose that φ(a1, a2) is a C
2-diffeomorphism from an open set D ⊆ R2 to a local

piece of Γv(t). Using the normal vector n(φ(a1, a2)), the function

ψ(a1, a2, a3) := φ(a1, a2) + a3n(φ(a1, a2))

gives us a diffeomorphism fromD×(−ε, ε) to an open set in B(Γv(t), ε). This allows us to ob-

tain a local parameterization of B(Γv(t), ε). Notice that both D×(−ε, ε) and ψ(D×(−ε, ε))

are monotone increasing sets as ε increases. Thus, we can obtain the boundedness of the

integrands and then use the Lebesgue dominated convergence theorem. When ε→ 0, by cal-

culating the integrals, we have |B(Γv(t), ε)| → 0 uniformly in t. Thus, ∥u− v∥C([0,T ∗];Gn)
→ 0

implies

sup
t∈[0,T ∗]

∫
Ω

|χu − χv| (t)dx→ 0.

Hence, sup[0,T ∗] |I3(t)| ≤ C(∥u− v∥C([0,T ∗];Gn)
) ∥η∥Gn

. Similarly to the constant term in I2,

the constant C(∥u− v∥C([0,T ∗];Gn)
) → 0 as ∥u− v∥C([0,T ∗];Gn)

→ 0.

In order to estimate I4, we consider the functional Fu(t) such that

⟨Fu(t), η⟩ :=
〈
Hχu(t), η

〉
−
〈
Hχv(t), η

〉
.

Thus, I4(t) = κ⟨Fu(t), η⟩. Suppose ∥u− v∥C([0,T ∗];Gn)
→ 0, we need to prove that

∥Fu∥L∞([0,T ∗];G∗
n)

→ 0.
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Note that {η ∈ Gn : ∥η∥Gn
= 1} is a subset of A := {η ∈ Gn : ∥η∥C2(Ω) ≤ C} for a suitable

C. Thus, it is sufficient to show

sup
t∈[0,T ∗]

sup
η∈A

|⟨Fu(t), η⟩| → 0. (2.3.18)

Note that since u, v ∈ C([0, T ∗], Gn), the interfaces Γu(t) and Γv(t) are both C
2-surfaces for

all t ∈ [0, T ∗]. Since Γ0 is compact, by applying a local parameterization and using the par-

tition of unity, we can consider the integrals locally. Let φ(a1, a2) be the C
2-diffeomorphism

from an open set D ⊆ R2 to a local piece on Γ0. The function Xu(t, φ(a1, a2)) allows us to

calculate the normal vector

nu(Xu(t, φ(a1, a2))) ∈ C([0, T ∗];C1(D)).

When u → v in C([0, T ∗];C1(Ω)), we have Xu → Xv in C([0, T ∗];C1(Ω)). Thus, nu → nv

in C([0, T ∗]×D). Similarly, the Jacobians J(Xu(t, φ(a1, a2))) goes to J(Xv(t, φ(a1, a2))) in

C([0, T ∗] × D), and the test functions ∇η(Xu(t, φ(a1, a2))) goes to ∇η(Xv(t, φ(a1, a2))) in

C([0, T ∗]×D) as well. Then (2.3.18) is obtained by calculating the integrals.

Thus, for all η ∈ Gn, we have

|I4| = κ |⟨Fu(t), η⟩| ≤ C(∥u− v∥C([0,T ∗];Gn)
) ∥η∥Gn

.

The constant C(∥u− v∥C([0,T ∗];Gn)
) goes to 0 as u→ v in C([0, T ∗];Gn). From the estimates

of I1 to I4, we have

∥N(u)−N(v)∥C([0,T ∗];G∗
n)

≤ C(∥u− v∥C([0,T ∗];Gn)
) → 0. (2.3.19)

Finally, we obtain

∥K(u)−K(v)∥C([0,T ∗];Gn)

≤
∥∥M−1

∥∥
L(G∗

n,Gn)
T ∗ ∥N(u)−N(v)∥C([0,T ∗];G∗

n)

≤ C(∥u− v∥C([0,T ∗];Gn)
) → 0,

which implies that K(·) is continuous on AT ∗,R.
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Now we prove that K(AT ∗,R) is precompact. Given any v ∈ K(AT ∗,R) and t ∈ [0, T ∗],

there exists u ∈ AT ∗,R such that v = Ku. From (2.3.15), we have

∥v∥Gn
(t) = ∥Ku∥Gn

(t) ≤ ∥ũ0∥Gn
+ C(R)T ∗.

Thus, the set {v(t) : v ∈ K(AT ∗,R)} ⊆ Gn is precompact since it is bounded and Gn is

finite dimensional. From (2.3.14), the functions in K(AT ∗,R) are equicontinuous. Thus, from

proposition 2.2.2, K(AT ∗,R) is precompact. Since AT ∗,R is already bounded, the operator K

maps all the bounded subsets of AT ∗,R into precompact sets. Thus, from definition 2.2.4, we

obtain that K is a compact operator.

It remains to verify the properties of the set AT ∗,R in C([0, T ∗];Gn). Since u(t) ≡ 0 is in

AT ∗,R, the set is non-empty. From the definition of AT ∗,R, we know it is closed and bounded.

For the convexity of AT ∗,R, picking any u and v in AT ∗,R and any 0 ≤ θ ≤ 1, we have

∥θu+ (1− θ)v∥Gn
(t) ≤ θ ∥u∥Gn

(t) + (1− θ) ∥v∥Gn
(t) ≤ R.

Thus, AT ∗,R is convex.

From theorem 2.2.2, there exists a solution un(t) ∈ C([0, T ∗];Gn). Replacing the initial

value u0 by u(T
∗) and repeating the steps above, we can increase the value of T ∗. Currently,

we can only guarantee that there will be a limit when we increase T ∗. Thus, the maximum

interval would be either [0, T ∗) or [0, T ], where T ∗ ≤ T . When T ∗ is excluded from the

interval, it actually means the solution will go to infinity when t is approaching T ∗. This

will not happen in our problem, as shown in the following section.

2.3.6 Extending the solution to [0, T ]

Assuming that T ∗ < T , we derive a contradiction using the energy estimate. For each

fixed n, we need to prove that sup[0,T ] ∥un∥Gn
≤ C, which is equivalent to sup[0,T ] ∥un∥L2 ≤ C.

Since un is the solution of the approximate equation, we take the derivative of (2.3.4) with

respect to the variable t. Substituting η with un(t), and using (2.8) in [1], we obtain

1

2

d

dt
∥un∥2L2 + κ

d

dt
∥∇χn∥M(Ω) + (Bn ⊗Bn,∇un)Ω + 2(ν(χn)Dun, Dun)Ω = 0. (2.3.20)
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Integrating from 0 to t, we have

1

2
∥un(t)∥2L2 + κ ∥∇χn(t)∥M(Ω) +

∫ t

0

(Bn ⊗Bn,∇un)Ωds

+ 2

∫ t

0

(ν(χn)Dun, Dun)Ωds =
1

2
∥u0∥2L2 + κ ∥∇χ0∥M(Ω) .

(2.3.21)

For each un, the solution operator B(·) gives us a weak solution of (2.1.2). Thus, by testing

(2.1.2) with φ = Bn on Ω× [0, t], we obtain

1

2
∥Bn(t)∥2L2(Ω) −

1

2
∥B0∥2L2(Ω) −

∫ t

0

(Bn ⊗Bn,∇un)Ωds+ σ

∫ t

0

∥∇Bn∥2L2(Ω) = 0. (2.3.22)

Using the same argument as in the energy estimate, for some c > 0, we have

1

2
∥un(t)∥2L2(Ω) +

1

2
∥Bn(t)∥2L2(Ω) + κ ∥∇χn(t)∥M(Ω) + c

∫ t

0

∥∇un(s)∥2L2(Ω) ds

+ σ

∫ t

0

∥∇Bn(s)∥2L2(Ω) ds ≤
1

2
∥u0∥2L2(Ω) +

1

2
∥B0∥2L2(Ω) + κ ∥∇χ0∥M(Ω) = E0

(2.3.23)

for any t ∈ [0, T ∗]. Thus, sup[0,T ∗] ∥un(t)∥Gn
≤ sup[0,T ∗]C ∥un(t)∥L2(Ω) ≤ C.

From the ODE theory, we know that if the maximum interval of a solution is [0, T ∗),

then the solution must blow up at T ∗. We will use the same argument. Picking an increasing

sequence tm ∈ [0, T ∗) such that tm → T ∗, we consider the sequence {un(tm)}∞m=1 ⊂ Gn. Since

sup[0,T ] ∥un∥Gn
(t) ≤ C and dimGn <∞, we can find a subsequence, still denoted by tm, such

that un(tm) → a ∈ Gn, as m → ∞. We only need to prove that limt→T ∗ ∥un(t)− a∥Gn
= 0.

Then the solution un(t) can be continuously extended to [0, T ∗]. Using the Schauder fixed

point theorem again, with T ∗ being the new initial time, we will get a contradiction. It

then follows that T ∗ = T . Now we assume that limt→T ∗ un(t) ̸= a, then there exists an

ε0 > 0, such that for all δ > 0, there exists T ∗ − δ < s < T ∗, such that ∥un(s)− a∥Gn
> ε0.

Meanwhile, there exists an m, such that T ∗ − δ < tm < T ∗ and ∥un(tm)− a∥Gn
< ε0/2.

Thus, we obtain

∥un(s)− un(tm)∥Gn
≥ ∥un(s)− a∥Gn

− ∥un(tm)− a∥Gn
> ε0/2.

26



Recall that

∥un(s)− un(tm)∥Gn
=

∥∥∥∥M−1

∫ s

tm

N(un)

∥∥∥∥
Gn

≤
∥∥M−1

∥∥∫ s

tm

∥N(un)∥G∗
n

≤ C|s− tm| < Cδ.

Let δ be small enough such that Cδ < ε0/2, then we get a contradiction. Thus, ∥un(t)− a∥Gn
→

0 as t→ T ∗.

Consequently, we have found a solution un ∈ C([0, T ];Gn). Using the solution operators,

we obtain the corresponding Bn := B(un) and χn := χ(un). The energy inequality

1

2
∥un(t)∥2L2(Ω) +

1

2
∥Bn(t)∥2L2(Ω) + κ ∥∇χn(t)∥M(Ω)

+c ∥∇un∥2L2([0,T ];L2(Ω)) + σ ∥∇Bn∥2L2([0,T ];L2(Ω)) ≤ E0

(2.3.24)

holds for all t ∈ [0, T ].

2.4 Passing the Limit

In this section, we study the limits of un, Bn and χn. Recall that

un ∈ C([0, T ];Gn), Bn ∈ L2([0, T ];H1
0 (Ω)) ∩ L∞([0, T ];L2(Ω)), χn ∈ L∞([0, T ];BV (Ω)),

and divun = divBn = 0. From the energy inequality (2.3.24), we have the following estimates:

∥un∥L∞([0,T ];L2(Ω)) ≤
√

2E0,

∥un∥L2([0,T ];H1
0 (Ω)) ≤

√
2TE0 + E0/c,

∥Bn∥L∞([0,T ];L2(Ω)) ≤
√

2E0,

∥Bn∥L2([0,T ];H1
0 (Ω)) ≤

√
2TE0 + E0/σ,

∥∇χn∥L∞([0,T ];M(Ω)) ≤ E0/κ,

∥χn∥L∞([0,T ];BV (Ω)) ≤ |Ω|+ E0/κ.

(2.4.1)
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2.4.1 Limits of un, Bn and χn

From the embedding theorems, we have

M(Ω) ↪→ H−3(Ω).

From the estimates in (2.4.1) and the Banach-Alaoglu theorem (see [6]), we have

un ⇀
∗ u in L∞([0, T ];L2(Ω)),

un ⇀ v in L2([0, T ];H1
0 (Ω)),

Bn ⇀
∗ B in L∞([0, T ];L2(Ω)),

Bn ⇀ G in L2([0, T ];H1
0 (Ω)),

χn ⇀
∗ χ in L∞([0, T ];L∞(Ω)),

∇χn ⇀
∗ ζ in L∞([0, T ];H−3(Ω)),

for suitable subsequences.

In order to pass the limit in nonlinear terms, we need to obtain stronger convergence

properties of un. We begin by showing an improved version of lemma A.3 in [13].

Lemma 2.4.1. Let Ω ⊆ R3 be bounded. Suppose that un ⇀
∗ u in L∞([0, T ];L2(Ω)), and for

any φ ∈ H(Ω),

sup
t∈[0,T ]

∣∣∣∣∫
Ω

unφdx−
∫
Ω

uφdx

∣∣∣∣→ 0. (2.4.2)

Then we have un → u in C([0, T ];V∗(Ω)).

Proof. Assume that un do not converge to u in C0([0, T ];V∗), then there exists ε0 > 0 and

tn ∈ [0, T ], such that

∥un − u∥V∗ (tn) > ε0. (2.4.3)

Thus, there exist φn ∈ V(Ω) with ∥φn∥V ≡ 1, such that

|⟨un, φn⟩(tn)− ⟨u, φn⟩(tn)| >
ε0
2
, (2.4.4)
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where ⟨·, ·⟩ denotes the dual pair on a space and its dual. Since φn ∈ V = H ∩ H1
0 and

H1
0 ↪→↪→ L2, there exists φ ∈ L2(Ω) such that φn → φ in L2(Ω). Using the fact that

∥φn∥H1
0 (Ω) ≤ C, we can obtain φ ∈ V(Ω). Now we have

sup
t∈[0,T ]

|⟨un − u, φn⟩| ≤ sup
t∈[0,T ]

|⟨un − u, φn − φ⟩|+ sup
t∈[0,T ]

|⟨un − u, φ⟩| . (2.4.5)

The first term on the right-hand side goes to 0 since un and u are bounded in L∞([0, T ];L2(Ω)),

and φn → φ in L2(Ω); the second term goes to 0 by the condition (2.4.2) of this lemma.

This contradicts with (2.4.4), which completes the proof.

In order to use the lemma above, we still need to verify (2.4.2). We recall that elements

ηi form an orthonormal basis of H(Ω) and an orthogonal basis of V(Ω). Let η be a finite

linear combination of ηi. For all sufficiently large n, the Galerkin approximate equations∫
Ω

un(t)η −
∫
Ω

u0η =

∫ t

0

∫
Ω

un ⊗ un : ∇η −
∫ t

0

∫
Ω

Bn ⊗Bn : ∇η

−
∫ t

0

∫
Ω

ν(χn)Dun : Dη − κ

∫ t

0

∫
Ω

Pτ : ∇ηd |∇χn| .
(2.4.6)

all hold for this η. Considering the terms fn(t) :=
∫
Ω
un(t)ηdx, we claim that fn have a

uniformly convergent subsequence. First, we prove that fn(t) are equicontinuous. Given

0 ≤ s < t ≤ T . Since η is fixed, from (2.4.6) we have

|fn(t)− fn(s)| ≤ C

∫ t

s

∥un∥2L2 + ∥Bn∥2L2 + ∥∇un∥L1 + ∥∇χn∥M

≤
(
∥un∥2L∞L2 + ∥Bn∥2L∞L2 + ∥∇χn∥L∞M

)
|t− s|+

∫ T

0

χ[s,t] ∥∇un∥L1

≤ C |t− s|+ C
√
t− s,

(2.4.7)

which implies that fn is equicontinuous on [0, T ]. By letting s = 0 we can show that fn is

uniformly bounded. Thus, by the Arzela-Ascoli theorem, there exists a subsequence, still

denoted by fn, such that

sup
t∈[0,T ]

|fn(t)− g(t)| → 0 (2.4.8)

for some g(t) ∈ C[0, T ], as n→ ∞.
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We recall that un ⇀ u in L2([0, T ];H1
0 (Ω)). Now we want to show that

g =

∫
Ω

uη (2.4.9)

almost everywhere on [0, T ]. Given any φ ∈ L2[0, T ]. Since ηφ ∈ L2([0, T ];L2(Ω)) and

un ⇀
∗ u in L∞([0, T ];L2(Ω)), we have∫ T

0

fnφdt =

∫ T

0

∫
Ω

unηφdxdt→
∫ T

0

∫
Ω

uηφdxdt, (2.4.10)

which implies that fn ⇀
∫
Ω
uη weakly in L2[0, T ]. Since fn → g in C[0, T ], we also have

fn ⇀ g weakly in L2[0, T ], which proves (2.4.9).

Now we prove that (2.4.2) holds for all φ ∈ H(Ω). Picking η1, using the argument above

we can find a subsequence of un, denoted by u1n, such that
∫
Ω
u1nη1 →

∫
Ω
uη1 in C[0, T ].

Now picking η2 and using the same argument, we can obtain a subsequence of u1n, denoted

by u2n, such that
∫
Ω
u2nη2 →

∫
Ω
uη2 in C[0, T ]. Repeating these steps we can obtain umn

for any m,n ∈ N. Notice that for each m, the sequence unn is a subsequence of umn after

finitely many terms. Thus, the convergence

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫
Ω

unnηk − uηk

∣∣∣∣ = 0 (2.4.11)

holds for any k ∈ N. The argument in (2.4.2) then follows the fact that {η1, η2, · · · } is a

basis of H(Ω).

Now we estimate ∂tBn. Picking φ ∈ C∞
c (Ω) with divφ = 0, we have∫

Ω

∂tBnφ = I1 + I2 + I3,

where

I1 =

∫
Ω

un∇Bnφ,

I2 =

∫
Ω

Bn∇unφ,

I3 = σ

∫
Ω

∇Bn : ∇φ.
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The estimates are given as the following:

|I1| ≤ ∥un∥L3(Ω) ∥∇Bn∥L2(Ω) ∥φ∥L6(Ω) ≤ C ∥un∥
1
2

L2(Ω) ∥un∥
1
2

H1
0 (Ω)

∥Bn∥H1
0 (Ω) ∥φ∥H1

0 (Ω) ,

|I2| ≤ ∥Bn∥L3(Ω) ∥∇un∥L2(Ω) ∥φ∥L6(Ω) ≤ C ∥Bn∥
1
2

L2(Ω) ∥Bn∥
1
2

H1
0 (Ω)

∥un∥H1
0 (Ω) ∥φ∥H1

0 (Ω) ,

|I3| ≤ C ∥∇Bn∥L2(Ω) ∥∇φ∥L2(Ω) ≤ C ∥Bn∥H1
0 (Ω) ∥φ∥H1

0 (Ω) .

Thus, we have

∥∂tBn∥H−1(Ω) ≤ C ∥un∥
1
2

L2(Ω) ∥un∥
1
2

H1
0 (Ω)

∥Bn∥H1
0 (Ω)

+C ∥Bn∥
1
2

L2(Ω) ∥Bn∥
1
2

H1
0 (Ω)

∥un∥H1
0 (Ω) + C ∥Bn∥H1

0 (Ω) .

Integrating with respect to t, we obtain∫ T

0

∥∂tBn∥H−1(Ω) ≤ C ∥un∥
1
2

L∞([0,T ];L2(Ω))

∫ T

0

∥un∥
1
2

H1
0 (Ω)

∥Bn∥H1
0 (Ω) dt

+ C ∥Bn∥
1
2

L∞([0,T ];L2(Ω))

∫ T

0

∥Bn∥
1
2

H1
0 (Ω)

∥un∥H1
0 (Ω) dt+ C ∥Bn∥L1([0,T ];H1

0 (Ω))

≤ C ∥un∥
1
2

L∞([0,T ];L2(Ω)) ∥un∥
1
2

L2([0,T ];H1
0 (Ω))

∥Bn∥L2([0,T ];H1
0 (Ω))

+ C ∥Bn∥
1
2

L∞([0,T ];L2(Ω)) ∥Bn∥
1
2

L2([0,T ];H1
0 (Ω))

∥un∥L2([0,T ];H1
0 (Ω)) + C ∥Bn∥L2([0,T ];H1

0 (Ω)) .

Thus, ∥∂tBn∥L1([0,T ];H−1(Ω)) ≤ C. By the Aubin-Lions lemma, we can find a suitable sub-

sequence, still denoted by Bn, such that Bn → K strongly in L2([0, T ];L2(Ω)) for some

K ∈ L2([0, T ];L2(Ω)). We can prove the uniqueness of limits using the following argument.

Proposition 2.4.1. For the strong and weak limits B, G and K of Bn, we have B = G = K.

Proof. Since L2([0, T ];H1
0 (Ω)) ⊆ L2([0, T ];L2(Ω)), Bn ⇀ G in L2([0, T ];H1

0 (Ω)) implies

that Bn ⇀ G in L2([0, T ];L2(Ω)). By the uniqueness of the limit, we have G = K. Since

L∞([0, T ];L2(Ω)) ⊆ L2([0, T ];L2(Ω)), Bn ⇀
∗ B in L∞([0, T ];L2(Ω)) implies that Bn ⇀

∗ B

in L2([0, T ];L2(Ω)). Similarly to the first step, we have B = K. Thus, B = G = K.

31



We now consider the transport equation ∂tχn + un · ∇χn = 0. For φ ∈ C∞
c (Ω), we have∣∣∣∣∫

Ω

∂tχnφ

∣∣∣∣ = ∣∣∣∣∫
Ω

χnun · ∇φ
∣∣∣∣ ≤ ∥un∥L2(Ω) ∥φ∥H1

0 (Ω) .

Thus, ∥∂tχn∥H−1(Ω) ≤ ∥un∥L2(Ω), which implies that

∥∂tχn∥L2([0,T ];H−1(Ω)) ≤ ∥un∥L2([0,T ];H1
0 (Ω)) ≤ C.

Therefore, using the same argument as in [1], Section 5.2, we can find a suitable subsequence,

still denoted by χn, such that χn → χ strongly in L2([0, T ];L2(Ω)). Now we prove that

ζ = ∇χ in the weak sense. For almost every t ∈ [0, T ] and φ ∈ C∞
c (Ω), we have∫

Ω

χndivφdx = −
∫
Ω

φ · d∇χn

for any n. Since divφ ∈ L1(Ω), we have∫
Ω

χn(t)divφdx −→
∫
Ω

χ(t)divφdx,∫
Ω

φ · d∇χn(t) −→
∫
Ω

φ · dζ(t),

which implies that ∇χ = ζ for almost every t ∈ [0, T ].

Therefore, we finally obtain

un ⇀
∗ u in L∞([0, T ];L2(Ω)),

un ⇀ u in L2([0, T ];H1
0 (Ω)),

un → u in C([0, T ];V∗(Ω)),

Bn ⇀
∗ B in L∞([0, T ];L2(Ω)),

Bn ⇀ B in L2([0, T ];H1
0 (Ω)),

Bn → B in L2([0, T ];L2(Ω)),

χn ⇀
∗ χ in L∞([0, T ];L∞(Ω)),

∇χn ⇀
∗ ∇χ in L∞([0, T ];H−3(Ω)),

χn → χ in L2([0, T ];L2(Ω)).
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2.4.2 Varifold limit of Hχn

Since we cannot pass the limit directly when dealing with Hχn , we will represent them

with varifolds, and then consider the weak limit of the varifolds. Recall that Γk(t) :=

Xuk
(t,Γ0), where Γ0 = ∂Ω+

0 . Using the same argument as in [1], we consider the varifold

Vk(t) corresponding to Γk(t), i.e.

⟨Vk(t), φ⟩ :=
∫
Ω

φ (x, nk(t, x)) d |∇χk(t)|

for any φ ∈ C0(Ω× S2), where nk(t, x) := ∇χk(t, x)/ |∇χk(t, x)|. Since

|⟨Vk(t), φ⟩| ≤ ∥∇χk(t)∥M(Ω) ∥φ∥C0(Ω×S2) ,

we have

∥Vk(t)∥M(Ω×S2) ≤ ∥∇χk(t)∥M(Ω) .

Now for all φ ∈ L1([0, T ];C0(Ω× S2)), we define

⟨Vk, φ⟩ :=
∫ T

0

∫
Ω

φ (t, x, nk(t, x)) d |∇χk(t)| dt.

Then we have

∥Vk∥L∞
w ([0,T ];M(Ω×S2)) ≤ ∥∇χk∥L∞

w ([0,T ];M(Ω)) .

Since Vk is bounded in L∞
w ([0, T ];M(Ω× S2) and M(Ω× S2) ↪→ H−3(Ω× S2), by the same

argument as in [1], there exists V ∈ L∞
w ([0, T ];M(Ω× S2)), such that

Vk ⇀
∗ V in L∞([0, T ];H−3(Ω× S2)).

33



For ψ ∈ C∞
c ([0, T )×Ω), letting φ(x, s, t) = divψ− s⊗ s : ∇ψ, we have φ ∈ L1([0, T ];C0(Ω×

S2)). The regularity of nk(x) := −∇χk/ |∇χk| is guaranteed since ∇χk are approximating

solutions. Thus, we have

−
∫ T

0

〈
Hχk(t), ψ(t)

〉
=

∫ T

0

∫
Ω

Pτ : ∇ψd |∇χk| dt

=

∫ T

0

∫
Ω

(
divψ − nk ⊗ nk : ∇ψ

)
d |∇χk| dt

=

∫ T

0

∫
Ω×S2

(
divψ − s⊗ s : ∇ψ

)
dVkdt

→
∫ T

0

∫
Ω×S2

(
divψ − s⊗ s : ∇ψ

)
dV dt

=

∫ T

0

⟨δV (t), ψ(t)⟩ dt

(2.4.12)

as k → ∞. Letting φ(x, s, t) = sψ(x, t), we have∫ T

0

⟨∇χk, ψ⟩ = −
∫ T

0

∫
∂∗{χk=1}

ψ · nkdH2dt

=−
∫ T

0

∫
Ω

ψ · nkd |∇χk| dt = −
∫ T

0

∫
Ω×S2

ψ · sdVkdt.

Since ∇χk ⇀
∗ ∇χ in L∞([0, T ];H−3(Ω)) and Vk ⇀

∗ V in L∞([0, T ];H−3(Ω× S2)), we have∫ T

0

⟨∇χk, ψ⟩ →
∫ T

0

⟨∇χ, ψ⟩ ,∫ T

0

∫
Ω×S2

ψ · sdVkdt→
∫ T

0

∫
Ω×S2

ψ · sdV dt.

Therefore, using the fact that C∞
c (Ω) is dense in C0(Ω), the equation∫
Ω×S2

ψ · sdV = −
∫
Ω

ψd∇χ. (2.4.13)

holds for all ψ ∈ C0(Ω).
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2.4.3 Passing the limit

The weak formula represented by the varifolds is

(∂tun, φ)QT
− (un ⊗ un,∇φ)QT

+ (Bn ⊗Bn,∇φ)QT

+2(ν(χn)Dun, Dφ)QT
+ κ

∫ T

0

⟨δVn(t), φ(t)⟩ dt = 0,

where φ ∈ C∞
c ([0, T )× Ω) and divφ = 0. We have∣∣∣∣∫ T

0

∫
Ω

(un ⊗ un − u⊗ u) : ∇φ
∣∣∣∣

≤
∣∣∣∣∫ T

0

∫
Ω

un ⊗ (un − u) : ∇φ
∣∣∣∣+ ∣∣∣∣∫ T

0

∫
Ω

(un − u)⊗ u : ∇φ
∣∣∣∣ =: I1 + I2.

(2.4.14)

In I1, the integrand equals to (un − u) · (un∇φ). Since un and φ are smooth, by direct

calculation we have div(un∇φ) = 0, which implies un∇φ ∈ V(Ω). Recall that ∥·∥V := ∥·∥H1
0

and un is bounded in L2([0, T ];H1
0 (Ω)), so we have

I1 =

∫ T

0

⟨un − u, ψ⟩V∗,V ≤ ∥un − u∥L∞V∗ ∥un∇φ∥L1V

≤ C ∥un − u∥L∞V∗ ∥un∇φ∥L2H1
0
→ 0.

(2.4.15)

The second term goes to 0 since un ⇀ u weakly in L2([0, T ];H1
0 ) and u∇φ ∈ L2([0, T ];H1

0 ).

For the term (Bn ⊗Bn,∇φ)QT
, we have∣∣∣∣∫ T

0

∫
Ω

Bn ⊗Bn : ∇φ−B ⊗B : ∇φdxdt
∣∣∣∣

≤∥Bn∥L2(QT ) ∥Bn −B∥L2(QT ) ∥∇φ∥L∞(QT ) + ∥B∥L2(QT ) ∥Bn −B∥L2(QT ) ∥∇φ∥L∞(QT ) ,

which converges to 0. For the viscosity term, we have

|(ν(χn)Dun, Dφ)QT
− (ν(χ)Du,Dφ)QT

|

=

∣∣∣∣∫ T

0

∫
Ω

(
χnν

+Dun + (1− χn)ν
−Dun

)
: Dφ−

∫ T

0

∫
Ω

(
χν+Du+ (1− χ)ν−Du

)
: Dφ

∣∣∣∣
≤ν+

∣∣∣∣∫ T

0

∫
Ω

χnDun : Dφ− χDu : Dφ

∣∣∣∣+ ν−
∣∣∣∣∫ T

0

∫
Ω

(1− χn)Dun : Dφ− (1− χ)Du : Dφ

∣∣∣∣ .
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We only need to show the convergence of the first term, since the second term can be shown

by the same argument. For the first term, we have∣∣∣∣∫ T

0

∫
Ω

χnDun : Dφ− χDu : Dφ

∣∣∣∣
≤
∫ T

0

∫
Ω

|χn − χ| |Dun| |Dφ|+
∣∣∣∣∫ T

0

∫
Ω

Dun : (χDφ)−
∫ T

0

∫
Ω

Du : (χDφ)

∣∣∣∣ . (2.4.16)

Since un ⇀ u in L2([0, T ];H1
0 (Ω)) and φ ∈ C∞

c ([0, T ) × Ω), we have Dun ⇀ Du in

L2([0, T ];L2(Ω)) and χDφ ∈ L2([0, T ];L2(Ω)). Thus, the second term goes to 0. Since∣∣Dun∣∣∣∣Dφ∣∣ ∈ L2([0, T ];L2(Ω)) and χn → χ strongly in L2([0, T ];L2(Ω)), we have∫ T

0

∫
Ω

∣∣χn − χ
∣∣∣∣Dun∣∣∣∣Dφ∣∣ ≤ C ∥χn − χ∥L2L2 → 0,

which finishes the proof.

For the transport equation,

(χ0, φ(x, 0))Ω + (χn, ∂tφ)QT
+ (χn, un · ∇φ)QT

=0.

Since ∂tφ ∈ L1([0, T ];L1(Ω)), we have (χn, ∂tφ)QT
→ (χ, ∂tφ)QT

. For the third term, we

have ∣∣∣∣∫ T

0

∫
Ω

χnun · ∇φ−
∫ T

0

∫
Ω

χu · ∇φ
∣∣∣∣

≤
∣∣∣∣∫ T

0

∫
Ω

χnun · ∇φ−
∫ T

0

∫
Ω

χnu · ∇φ
∣∣∣∣+ ∣∣∣∣∫ T

0

∫
Ω

χnu · ∇φ−
∫ T

0

∫
Ω

χu · ∇φ
∣∣∣∣

≤∥χn∥L2(QT ) ∥un − u∥L2(QT ) ∥∇φ∥L∞(QT ) + ∥χn − χ∥L2(QT ) ∥u∥L2(QT ) ∥∇φ∥L∞(QT ) ,

which goes to 0 as n→ ∞.

From Section 2.4.2, we have proved that∫ T

0

⟨δVn(t), φ⟩ dt→
∫ T

0

⟨δV (t), φ⟩ dt.

Therefore, by letting n→ ∞, we obtain

− (u0, φ(0))Ω − (u, ∂tφ)QT
− (u⊗ u,∇φ)QT

+ (B ⊗B,∇φ)QT

+ 2(ν(χ)Du,Dφ)QT
+ κ

∫ T

0

⟨δV (t), φ(t)⟩ dt = 0
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for all φ ∈ C∞
c ([0, T )× Ω) with divφ = 0. From (2.4.13), we have∫

Ω×S2
ψ · sdV = −

∫
Ω

ψd∇χ

for all ψ ∈ C0(Ω). From proposition 2.2 in [1], χ is the unique renormalized solution of

∂tχ+ u · ∇χ = 0 in QT ,

χ|t=0 = χ0 in Ω.

It remains to prove that (u,B, χ, V ) satisfies the generalized energy inequality. Since un → u,

Bn → B in L2([0, T ];L2(Ω)). For suitable subsequences, we have un(t) → u(t), Bn(t) → B(t)

in L2(Ω) for almost every t ∈ [0, T ]. From theorem 1.1.1 in [7], we have

∥u(t)∥L2 ≤ lim inf
n→∞

∥un(t)∥L2 ,

∥B(t)∥L2 ≤ lim inf
n→∞

∥Bn(t)∥L2 .

In Section 2.4.2 we have proved ∥Vn(t)∥M(Ω×S2) ≤ ∥∇χn(t)∥M(Ω). Given any φ ∈ C0(Ω), we

have ∣∣∣∣∫
Ω×S2

φdV (t)

∣∣∣∣ = ∣∣∣∣ limn→∞

∫
Ω×S2

φdVn(t)

∣∣∣∣ ≤ lim inf
n→∞

∥φ∥L∞ ∥Vn(t)∥M(Ω×S2)

≤ lim inf
n→∞

∥φ∥L∞ ∥∇χn(t)∥M(Ω) .

Thus,

∥V (t)∥M(Ω×S2) ≤ lim inf
n→∞

∥∇χn(t)∥M(Ω) .

Since ∇Bn ⇀ ∇B in L2([0, T ];L2(Ω)). For all t ∈ [0, T ], we still have ∇Bn ⇀ ∇B in

L2([0, t];L2(Ω)). Thus, ∫ t

0

∥∇B∥2L2 ≤ lim inf
n→∞

∫ t

0

∥∇Bn∥2L2 .

For the viscosity term, notice that

fn := (ν(χn)Dun − ν(χn)Du) : (Dun −Du)

=
(
χnν

+ + (1− χn)ν
−) |Dun −Du|2 ≥ 0.

37



From Dun ⇀ Du in L2([0, T ];L2(Ω)), we have∫ t

0

∫
Ω

fn ≤ C.

Thus, using Fatou’s lemma, we obtain

0 ≤
∫ t

0

∫
Ω

lim inf
n→∞

fn ≤ lim inf
n→∞

∫ t

0

∫
Ω

fn

= lim inf
n→∞

∫ t

0

∫
Ω

ν(χn)Dun : Dun + lim
n→∞

∫ t

0

∫
Ω

−ν(χn)Dun : Du

+ lim
n→∞

∫ t

0

∫
Ω

−ν(χn)Du : Dun + lim
n→∞

∫ t

0

∫
Ω

ν(χn)Du : Du

= lim inf
n→∞

∫ t

0

∫
Ω

ν(χn)Dun : Dun −
∫ t

0

∫
Ω

ν(χ)Du : Du.

(2.4.17)

This is because (2.4.16) yields χnDun ⇀ χDu in L2([0, T ];L2(Ω)), which implies that

lim
n→∞

∫ t

0

∫
Ω

−ν(χn)Dun : Du = lim
n→∞

∫ t

0

∫
Ω

−ν(χn)Du : Dun

= −
∫ t

0

∫
Ω

ν(χ)Du : Du.

Since |Du|2 ∈ L1([0, T ];L1(Ω)) and χn ⇀
∗ χ in L∞([0, T ];L∞(Ω)), we have

lim
n→∞

∫ t

0

∫
Ω

ν(χn)Du : Du =

∫ t

0

∫
Ω

ν(χ)Du : Du.

Thus, the lower-semicontinuity in (2.4.17) has been proved.

Recall that (2.3.21) and (2.3.22) give us

1

2
∥un(t)∥2L2 +

1

2
∥Bn(t)∥2L2 + κ ∥∇χn(t)∥M + 2

∫ t

0

∫
Ω

ν(χn)Dun : Dundxds

+ σ

∫ t

0

∥∇Bn∥2L2 ds ≤
1

2
∥u0∥2L2 +

1

2
∥B0∥2L2 + κ ∥∇χ0∥M .

(2.4.18)

Taking the lim inf on (2.4.18), and using the fact that lim inf an+lim inf bn ≤ lim inf(an+bn),

we finally obtain

1

2
∥u(t)∥2L2 +

1

2
∥B(t)∥2L2 + κ ∥V (t)∥M(Ω×S2) + 2

∫ t

0

∫
Ω

ν(χ)Du : Dudxds

+σ

∫ t

0

∥∇B∥2L2 ds ≤
1

2
∥u0∥2L2 +

1

2
∥B0∥2L2 + κ ∥∇χ0∥M ,

(2.4.19)

which finishes the proof of the energy inequality.

Therefore, we have finished the proof of theorem 2.1.1.
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3.0 Existence of Strong Solutions to the Two-Phase MHD Equations

3.1 Introduction and Main Results

In this chapter, we study the existence of strong solutions to the two-phase magnetohy-

drodynamic (MHD) equations. The two immiscible fluids are incompressible, viscous and

resistive. They occupy an open, bounded, simply connected C3 domain Ω. The positions

of the inner and outer fluids are represented by open sets Ω+(t) and Ω−(t) respectively, and

the fluid-fluid interface is denoted by the set Γ(t). These three sets are disjoint and we have

Ω+(t) ∪ Γ(t) ∪ Ω−(t) = Ω. In this work we assume that Γ(t) and Ω+(t) do not touch the

boundary ∂Ω. We consider the following equations:

∂tu+ (u · ∇)u− (∇×B)×B +∇p− ν±△u = 0 in Ω \ Γ(t), (3.1.1)

∂tB −∇× (u×B) +∇× (σ∇×B) = 0 in Ω, (3.1.2)

divu = 0 in Ω \ Γ(t), (3.1.3)

divB = 0 in Ω, (3.1.4)

−
r
2ν±D̃u− pI

z
n = κHn on Γ(t), (3.1.5)

VΓ = u · n on Γ(t), (3.1.6)

u|∂Ω = 0, B|∂Ω = 0, (3.1.7)

u|t=0 = u0, B|t=0 = B0. (3.1.8)

The terms u, B and p stand for the velocity, magnetic field and pressure. The density of

both fluids is assumed to be equal to 1 everywhere and the magnetic diffusion coefficient σ

remains a constant. The viscosity coefficient ν takes different constant values ν+ and ν−

in two fluids, which is sometimes written as ν(χ) to emphasize its dependency on the fluid

position. The indicator function χ := χΩ+(t) expresses the position of the internal fluid. The

surface tension coefficient is κ > 0. The mean curvature of the interface is H. The outward

(pointing to ∂Ω) normal vector and the speed of the interface are denoted by n and VΓ. The
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term D̃u := (∇u + ∇u⊤)/2 stands for the strain rate tensor. The notation JfK stands for

the jump of f across the interface Γ, i.e. for all t ≥ 0 and all x ∈ Γ(t),

JfK (x) := lim
ε→0+

f(x+ εn(x))− lim
ε→0+

f(x− εn(x));

when f does not have enough continuity, its one-side limits at Γ(t) are considered in the

sense of trace. For more details about this model, we refer to [1, 10, 14].

3.1.1 Related research

When the magnetic field vanishes, the problem turns into the two-phase Navier-Stokes

equations. In [27], Prüss and Simonett studied the problem in Rn+1, where the interface

can be expressed as the graph of a function defined on Rn. For any time interval, if the

initial values satisfy some smallness conditions (dependent on the time interval), then the

unique strong solution exists. In [28] also by Prüss and Simonett, a different type of existence

theory is obtained. The smallness condition in [28] is only required for the initial interface,

which implies the local existence of the solution. The same equations have been studied in

a bounded domain by Köhne, Prüss and Wilke in [15]. Moreover, Abels and Wilke have

studied the two-phase Navier–Stokes-Mullins–Sekerka system in [2].

There is also much research on global solutions to two-phase flows with surface tension

considered. In [25], Plotnikov has studied the two-phase Navier-Stokes equations for incom-

pressible non-Newtonian fluids in R2. The case of incompressible non-Newtonian fluids in

R3 has been studied by Abels in [1]. In [40], Yeressian has studied the case of Newtonian

fluids in R3. The weak-strong uniqueness of strong solutions and varifold solutions to the

two-phase incompressible Navier-Stokes equations has been studied by Fischer and Hensel

in [10].

3.1.2 Main results

Based on the settings in [15], we give the definition of strong solutions to the two-phase

MHD equations.
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Definition 3.1.1 (Strong solution). Let q ≥ 1 be a fixed number. Let u0 ∈ W 2− 2
q
, q(Ω \ Γ0)

and B0 ∈ W 2− 2
q
, q(Ω) with Γ0 a W 3− 2

q
, q surface in Ω. We call (u,B, p,Γ) a strong solution

to the two-phase MHD equations (3.1.1)-(3.1.8) on [0, T ] if:

1. u ∈ W 1,q([0, T ];Lq(Ω)) ∩ Lq([0, T ];W 2,q(Ω \ Γ(t))) ∩ C([0, T ]× Ω);

2. B ∈ W 1,q([0, T ];Lq(Ω)) ∩ Lq([0, T ];W 2,q(Ω));

3. p ∈ Lq([0, T ]; Ẇ 1,q(Ω \ Γ(t)));

4. Γ(t) is the graph of a height function h on some C3 reference surface Σ and h ∈

W 2− 1
2q

,q([0, T ];Lq(Σ)) ∩W 1,q([0, T ];W 2− 1
q
,q(Σ)) ∩ Lq([0, T ];W 3− 1

q
,q(Σ)) i.e. Γ(t) = {x +

h(t, x)n(x) : x ∈ Σ};

5. There exists a function p̃ ∈ W
1
2
− 1

2q
,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 1− 1

q
,q(Σ)) such that

JpK (t, x+ h(t, x)nΣ(x)) = p̃(t, x) almost everywhere on [0, T ]× Σ;

6. For almost every t ∈ [0, T ], the equations (3.1.1)-(3.1.8) are satisfied almost everywhere

on Ω or Γ(t).

When the initial interface Γ0 is smooth enough, we have the following result on existence.

Theorem 3.1.1. Let q > 5 be a fixed number and Ω be a bounded C3 domain. Given initial

value

u0 ∈ W 2− 2
q
, q(Ω \ Γ0) ∩ C(Ω), B0 ∈ W 2− 2

q
, q(Ω), and Γ0 ∈ C3,

which satisfies the following compatibility conditions:

1. divu0 = 0 in Ω \ Γ0, divB0 = 0 in Ω;

2. u0 = B0 = 0 on ∂Ω;

3. Γ0 is a closed interface and Γ0 ∩ ∂Ω = ∅.

4. (I − nΓ0 ⊗ nΓ0)
q
ν±
(
∇u0 +∇u⊤0

)y
nΓ0 = 0;

Then there exists T > 0 such that the original problem (3.1.1) - (3.1.8) has a unique strong

solution on [0, T ]. The reference surface Σ = Γ0.

When the initial interface has less regularity, we have the following result.

Theorem 3.1.2. Let q > 5 be a fixed number and Ω be a bounded C3 domain. Let Σ

be an arbitrary closed C3 surface in Ω such that Σ ∩ ∂Ω = ∅. For all M0 > 0, there

exists ε0(Σ,M0) > 0, such that for all admissible initial value (u0, B0,Γ0) in Definition
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3.1.1 with ∥u0∥
W

2− 2
q , q

(Ω\Γ0)
≤ M0, ∥B0∥

W
2− 2

q , q
(Ω)

≤ M0, ∥h0∥
W

3− 2
q , q

(Σ)
≤ M0, ∥u0∥∞ ≤ M0,

∥B0∥∞ ≤ M0, and ∥h0∥C2(Σ) < ε0, there exists T (Σ,M0, ε0) > 0, such that the problem

(3.1.1) - (3.1.8) has a unique strong solution on [0, T ]. Here h0 denotes the height function

of Γ0 on the reference surface Σ.

The main difficulty of this work comes from the coupling of fluid equations and magnetic

equations, which changes the structure of both the principal part and the nonlinear part of

the transformed two-phase Navier-Stokes equations in e.g. [15]. The new principal part is

divided into two parts: the two-phase Stokes equations and the parabolic equations. Using

the maximal regularity theory of these two problems, we obtain a solution operator for the

principal part of the two-phase MHD equations. The remaining nonlinear terms and lower-

order terms are carefully estimated. A contraction mapping is then constructed and the

equation is solved by finding the fixed point of the contraction mapping.

We will organize this chapter as follows. In Section 3.2, we review some basic background

knowledge. In Section 3.3, we use the Hanzawa transformation to transform the free-interface

problem into a fixed-interface problem. The new equations will be separated into the linear

(principal) part and the nonlinear part. In Section 3.4, we study the solvability of the

linear part. Then we express the nonlinear part using an operator and estimate its Fréchet

derivative in Section 3.5. Finally, we prove the main theorem in Section 3.6.

3.2 Preliminary

3.2.1 Notations

In complicated formulas, we use [ · ] to denote the values of variables, e.g. we use f [g(x)]

to express (f ◦ g)(x).

The gradient ∇f of a scalar function f is considered as a column vector by default.

When f is a vector-valued function, the gradient of each entry is viewed as a column vector

in the matrix by default, i.e. (∇f)ij := ∂ifj. Notice that it then implies the formula

∇(f ◦ g) = (∇g) ((∇f) ◦ g) .
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We denote the r-neighborhood of a point x by B(x; r). For a set A, we define

B(A; r) :=
⋃
x∈A

B(x; r).

For a function f , we define

f(A) :=
⋃
x∈A

f(x).

Since the viscosity coefficient ν remains a constant in each fluid, we may use notations

ν(χ), ν± or simply ν in formulas. We remind readers that ν is discontinuous at the interface.

To simplify statements, we write a ≲ b if a ≤ Cb for some constant C > 0 which is

independent of any parameter.

We will frequently use the symmetric gradient D̃F :=
(
∇F +∇F⊤) /2 for vector-valued

functions.

The projection matrix on a surface S is denoted by PS := I − nS ⊗ nS, where nS is the

normal vector of S.

3.2.2 Function spaces

3.2.2.1 Continuous and differentiable functions

In this problem, we mainly consider two types of domains in R3: a bounded, open, 3-

dimensional domain Ω; and a closed, 2-dimensional surface Σ. We say Σ is Ck if it can be

locally parameterized using Ck functions. We say Ω is a Ck domain if its boundary ∂Ω is a

Ck surface.

Let f be a function from [0, T ] to a Banach space X. For any t0 ∈ [0, T ], we say f is

continuous at t0 if

lim
t→t0

∥f(t)− f(t0)∥X = 0.

If f is continuous on [0, T ] then we say f ∈ C([0, T ];X). We say g(t0) ∈ X is the derivative

of f at t0 if

lim
t→t0

∥∥∥∥f(t)− f(t0)

t− t0
− g(t0)

∥∥∥∥
X

= 0.
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If f has a continuous derivative g ∈ C([0, T ];X), then we say f ∈ C1([0, T ];X). Similarly,

we can define the space Ck([0, T ];X) for k ∈ Z, k ≥ 0. We will frequently use the special

case that X = Cm(Ω) and X = Cm(Σ) for m ∈ Z, m ≥ 0.

Remark 3.2.1. For vector-valued or matrix-valued functions in spaces Ck([0, T ];Cm(Ω)) or

Ck([0, T ];Cm(Σ)), we define their norms by taking the Ck([0, T ];Cm) norm of each entry

and then taking the vector norm or the matrix norm.

3.2.2.2 Lebesgue and Sobolev spaces

We will use ∥f∥∞ to abbreviate ∥f∥L∞([0,T ];L∞(Ω)), ∥f∥L∞([0,T ];L∞(Σ)), ∥f∥L∞(Ω) or ∥f∥L∞(Σ),

depending on context.

Let Ω ⊆ Rn. Given s ∈ (0, 1) and q ∈ [1,∞), we say a function f is in the fractional

Sobolev space W s,q(Ω) if

∥f∥W s,q(Ω) := ∥f∥Lq(Ω) + [f ]W s,q(Ω) <∞,

where [f ]W s,q(Ω) is the Gagliardo seminorm defined as

[f ]W s,q(Ω) :=

(∫
Ω

∫
Ω

|f(x)− f(y)|q

|x− y|n+sq dydx

) 1
q

.

For a Banach-space-valued function, i.e. f : [0, T ] → X where X is a Banach space, the

Gagliardo seminorm is defined as

[f ]W s,q(Ω) :=

(∫
Ω

∫
Ω

∥f(x)− f(y)∥qX
|x− y|n+sq dydx

) 1
q

,

which enables us to define the space W s,q([0, T ];X). When s ∈ (0,+∞) \ Z, the Sobolev

norm is defined as

∥f∥W s,q(Ω) := ∥f∥W ⌊s⌋,q(Ω) + [f ]W s−⌊s⌋,q(Ω) .

For a compact hypersurface Σ in Rn, the Sobolev space W s,q(Σ) can be defined similarly

since Σ can be locally mapped to Euclidean spaces.
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3.2.3 Calculus on surfaces

Let f be a function defined in an open domain Ω ⊆ Rm. Let Σ be a hypersurface in Ω

whose normal vector field is denoted by n. For all x ∈ Σ, the surface gradient ∇Σf is defined

as

∇Σf := ∇f − (n · ∇f)n = (I − n⊗ n)∇f,

which is the projection of ∇f onto TxΣ. If F is a vector-valued function, then we can define

the surface divergence by

divΣF := tr(∇ΣF ).

Thus, we can also define the Laplace–Beltrami operator △Σ by

△Σf := divΣ ∇Σf.

In fact, the surface derivatives only depend on the value of the function on Σ, which is

discussed in e.g. [5, Remark 7.26].

Using the surface gradient ∇ΣnΣ of the normal vector field nΣ, the Weingarten tensor

of Σ is defined as LΣ := −∇ΣnΣ, which is a matrix-valued function defined on Σ. For each

x ∈ Σ, we have LΣnΣ = 0; and LΣ is an isomorphism on TxΣ. The principal curvatures

of Σ at x are eigenvalues of LΣ [x] . The mean curvature HΣ [x] can be represented as

HΣ [x] = trLΣ [x].

For more details on the calculus on surfaces, we refer to [5, 19].

3.2.4 Nearest point projection

For the reader’s convenience, we restate the theorem of nearest point projection in [34,

Section 2.12.3] with some modification.

Theorem 3.2.1. Let Σ be a compact, (m−1)-dimensional, Ck manifold in Rm. There exists

ϱ0(Σ) > 0 and a Ck−1 projection mapping Π : B(Σ; ϱ0) → Σ, such that for all x ∈ B(Σ; ϱ0):

1. x− Π(x) ⊥ TΠ(x)Σ ;

2. dist(x,Σ) = |x− Π(x)|;

3. for all y ∈ Σ and y ̸= x we have dist(x,Σ) < |x− y|;

4. for all y ∈ Σ and λ ∈ (0, ϱ0), Π(y + λn(y)) = y.
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3.2.5 Fréchet derivative

In this problem, we need to frequently study the derivatives of operators, which are called

Fréchet derivatives. Given Banach spaces X and Y and an operator F : X → Y . Suppose

that for x ∈ X there exists a linear operator A : X → Y such that

lim
∥h∥X→0

∥F (x+ h)− F (x)− Ah∥Y
∥h∥X

= 0, (3.2.1)

then we say that F is Fréchet differentiable at x. The linear operator A is called the Fréchet

derivative of F at x and is denoted by DF (x).

Suppose that DF exists in an open neighborhood U of x ∈ X, then we have an operator

DF : U → L(X;Y ) and the second derivative D2F at x can be defined using the same way.

Notice that D2F (x) ∈ L(X;L(X;Y )). Similarly, we can obtain the n-th derivative DnF .

The space

L(X;L(X; · · · L(X;Y ))) (3.2.2)

is equal to the space of multilinear operators

L(n)(X × · · · ×X;Y ), (3.2.3)

which is usually abbreviated to L(n)(Xn;Y ).

The product rule and chain rule are still valid for Fréchet derivatives. Given F : X → Y1

and G : X → Y2. Suppose that the product is well-defined, i.e. there exists a bilinear

mapping Y1 × Y2 → Z which is called the “product”. Then the value of D(FG) at x ∈ X is

a linear mapping, i.e. D(FG) [x] ∈ L(X;Z), such that for each h ∈ X we have

D(FG) [x]h = (DF [x]h) (G [x]) + (F [x]) (DG [x]h) . (3.2.4)

Given F : X → Y and G : Y → Z, the Fréchet derivative of G ◦ F : X → Z at an arbitrary

x ∈ X is a linear operator D(G ◦ F )[x] ∈ L(X;Z). For all h ∈ X we have

D(G ◦ F ) [x]h = DG [F (x)] (DF [x]h). (3.2.5)

The proofs of these properties can be found in [41, Section 4.3].
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3.3 Transformation of the Problem

In this section, we apply the Hanzawa transformation to the original equations (3.1.1) -

(3.1.8). This allows us to turn the free-interface problem into a fixed-interface problem. We

refer to [15,29] for more details about this method.

3.3.1 Representation of the free interface

The key point of this part is to represent the free interface Γ(t) using a fixed reference

surface and a height function. This method is called normal parameterization.

By the assumption that Γ0 is a W 3− 2
q surface and q > 5, we obtain that Γ0 is a C2

manifold. From [29, Section 2.3], we know that for all sufficiently small ε, there exists an

analytic manifold Σ and a function h0 ∈ C2(Σ), such that

Γ0 = {x+ h0(x)nΣ(x) : x ∈ Σ} and ∥h0∥C2(Σ) < ε. (3.3.1)

By the theory of nearest point projection introduced in Section 3.2, there exists a tubular

neighborhood B(Σ; ϱ0), such that the mapping

Λ(x, r) := x+ rnΣ(x) (3.3.2)

is a diffeomorphism from Σ× (−ϱ0, ϱ0) to B(Σ; ϱ0). Its inverse mapping is

Λ−1(x) = (Π(x), d(x)), (3.3.3)

where Π(x) is the projection of x onto Σ, and d(x) is the signed distance between x and Σ,

where the positive direction of Σ is defined to have the same direction as the exterior normal

vector nΣ.

Since there is a positive distance between Γ0 and ∂Ω, we may let ϱ0 be sufficiently small

such that B(Σ; ϱ0) ⋐ Ω. By replacing r with a height function h : Σ → (−ϱ0, ϱ0), the

mapping Λ(x, h(x)) := x+ h(x)nΣ(x) defines a surface in B(Σ; ϱ0).
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For every height function h, we can define a diffeomorphism in Ω using the same idea as

in [15]. We define

Θh(x) :=

x+ η(d(x)/ϱ0)h(Π(x))nΣ(Π(x)), x ∈ B(Σ; ϱ0),

x, x /∈ B(Σ; ϱ0).
(3.3.4)

where η is a smooth cut-off function on R such that 0 ≤ η ≤ 1; η(s) = 1 when |s| < 1/3,

and η(s) = 0 when |s| > 2/3. Notice that the cutoff function can be ignored in the set

B(Σ; ϱ) with ϱ :=
ϱ0
3
. (3.3.5)

For convenience, we define the displacement of the point x under the diffeomorphism by

θh(x) := Θh(x)− x. (3.3.6)

Remark 3.3.1. In order to make Θh a bijection, we need to guarantee that ∥h∥C0(Σ) is suf-

ficiently small. As an example, we consider a mapping in R2. Suppose that Σ is the x-axis

and h(x) = b > 0, then Θ(x, y) = (x, y + bη(y/ϱ0)). To make Θ a bijection, it is necessary

that the function f(y) := y + bη(y/ϱ0) should be a bijection, which requires b, i.e. |h|, to be

sufficiently small.

Remark 3.3.2. The derivative of the distance function is

∇d(x) = n(Π(x)). (3.3.7)

To calculate the derivative of the projection mapping Π, we take the derivative of x−Π(x) =

d(x)n(Π(x)), which implies

I −∇Π(x) = d(x)∇x (n [Π(x)]) +∇xd [x]⊗ n [Π(x)]

= d(x)∇Π [x] (∇Σn) [Π(x)] + n [Π(x)]⊗ n [Π(x)] .
(3.3.8)

Recall that LΣ := −∇Σn, so we have

I − n [Π(x)]⊗ n [Π(x)] = ∇Π(x) (I − d(x)LΣ [Π(x)]) , (3.3.9)

which implies

∇Π(x) = PΣ [Π(x)] (I − d(x)LΣ [Π(x)])−1 . (3.3.10)

We refer to [29, Section 2.3] or [34, Section 2.12.3] for more details on the nearest point

projection.
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3.3.2 Regular terms

Using the diffeomorphism Θh, the original problem with interface Γ(t) can be transformed

into equations with interface Σ. The interface Γ(t) can be determined as long as the function

h(t, x) : [0, T ] × Σ can be obtained. In order to do this, we need to change the variables

in (3.1.1)-(3.1.8) with the help of Θh. We shall use similar arguments as in [15] with more

details included for completeness.

We first consider (3.1.1), which is equivalent to(
∂tu+ (u · ∇)u− (B · ∇)B +

1

2
∇(|B|2) +∇p− ν(χ)△u

)
◦Θh = 0 (3.3.11)

since Θh is a bijection. We use Θ−1
h (t, x) to denote the inverse mapping of Θh(t)(·) at time t,

which implies Θ−1
h (t,Θh(t, x)) = x. Given any function f in Ω, we define

f(t, x) := f(t,Θh(t, x)), (3.3.12)

where f can be u, B, p, χ, etc. In this chapter, we will ignore the subscript h in Θh when

there is no confusion. For any fixed t, by the definition of Θ we have Θ−1
h (t, ·) = (Θh(t,·))

−1,

which implies that

f(t, x) = f(t,Θ−1
h (t, x)). (3.3.13)

As opposed to partial derivatives with respect to specific variables, we will use ∂0 temporarily

to denote the partial derivative with respect to the position of the time variable. This helps

distinguish ∂0u(t,Θ(t, x)) and ∂tu(t,Θ(t, x)).

Using similar arguments as in [15], we write the transformed equations in terms of the

new variables. More details can be found in [29, Section 1.3]. For the time derivative, we

have

∂tu(t, x) = ∂t(u(t,Θ
−1(t, x))) = (∂0)u ◦Θ−1 +

∑
i

((∂iu) ◦Θ−1)∂tΘ
−1
i , (3.3.14)

which implies

∂tu ◦Θ = ∂0u+ (∂tΘ
−1 ◦Θ)∇u = ∂tu+ (∂tΘ

−1 ◦Θ)∇u. (3.3.15)
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Next, we calculate the formula of each entry of ∇u, which is

∂αuβ(t, x) = ∂xαuβ(t, x) = ∂xαuβ(t,Θ
−1(t, x)) =

∑
i

((∂iuβ) ◦Θ−1)∂xαΘ
−1
i

=
∑
i

((∂iuβ) ◦Θ−1)(((∇Θ)−1)αi ◦Θ−1).
(3.3.16)

Taking the time derivative of the equation Θ(t,Θ−1(t, x)) = x, we obtain

(∂0Θ) ◦Θ−1 + ∂tΘ
−1
(
(∇Θ) ◦Θ−1

)
= 0. (3.3.17)

Composing (3.3.17) with Θ, we obtain

(
∂tΘ

−1
)
◦Θ = −∂tΘ (∇Θ)−1 . (3.3.18)

From (3.3.18) and the equality (∇Θ)−1 = I − (I +∇θ)−1∇θ, we obtain

(
∂tΘ

−1
)
◦Θ = −∂tΘ(∇Θ)−1 = −∂tθ

(
I − (I +∇θ)−1∇θ

)
. (3.3.19)

Similarly, we obtain from (3.3.16) that

(∇u) ◦Θ = (∇Θ)−1∇u = ∇u−
(
(I +∇θ)−1∇θ

)
∇u, (3.3.20)

(divu) ◦Θ =
(
(∇Θ)−1

)⊤
: ∇u = divu−

(
(I +∇θ)−1∇θ

)
: ∇u. (3.3.21)

Taking one more derivative on (3.3.16), we obtain the Laplacian of each entry of u:

△uβ =
∑
α

∂xα∂xαuβ(t,Θ
−1(t, x)) =

∑
α

∂xα

(∑
i

((∂iuβ) ◦Θ−1)∂xαΘ
−1
i

)
=
∑
α

∑
i

∂xα

(
(∂iuβ) ◦Θ−1

)
∂xαΘ

−1
i +

∑
α

∑
i

(
(∂iuβ) ◦Θ−1

)
∂xαxαΘ

−1
i

=
∑
α

∑
i

∑
j

(
(∂jiuβ) ◦Θ−1

)
∂xαΘ

−1
i ∂xαΘ

−1
j +

∑
i

△
(
Θ−1

i

) (
(∂iuβ) ◦Θ−1

)
=
((

∇Θ−1
)⊤ (∇Θ−1

))
:
((
∇2uβ

)
◦Θ−1

)
+△Θ−1 ·

(
(∇uβ) ◦Θ−1

)
.

(3.3.22)

The subscript in (3.3.22) can be removed to obtain the vector equality

(△u) ◦Θ =
(((

∇Θ−1
)⊤ (∇Θ−1

))
◦Θ
)
: ∇2u+

((
△Θ−1

)
◦Θ
)
· (∇u). (3.3.23)
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In the first term of the right-hand side of (3.3.23), using the formula of inverse functions, we

have ((
∇Θ−1

)⊤ (∇Θ−1
))

◦Θ = (∇Θ)−⊤ (∇Θ)−1 , (3.3.24)

which implies that

(△u) ◦Θ =
(
(∇Θ)−⊤ (∇Θ)−1

)
: ∇2u+

((
△Θ−1

)
◦Θ
)
· (∇u)

= △u+
(
(∇Θ)−⊤ (∇Θ)−1 − I

)
: ∇2u+

((
△Θ−1

)
◦Θ
)
· (∇u).

(3.3.25)

Using exactly the same argument for u, we can transform the terms which contain B

and p. Using also (3.3.18), we can rewrite (3.3.11) as

∂tu− ∂tΘ (∇Θ)−1∇u+ u
(
(∇Θ)−1

)
∇u−B

(
(∇Θ)−1

)
∇B

+
1

2

(
(∇Θ)−1

)
∇
(∣∣B∣∣2)+ ((∇Θ)−1

)
∇p− ν(χ)

(
(∇Θ)−⊤(∇Θ)−1

)
: ∇2u

− ν(χ)
((
△Θ−1

)
◦Θ
)
· (∇u) = 0.

(3.3.26)

Using the fact that ∇× (u×B) = −(u ·∇)B+(B ·∇)u and ∇× (∇×B) = ∇(divB)−△B,

we rewrite (3.1.2) as

(∂tB + (u · ∇)B − (B · ∇)u− σ△B) ◦Θ = 0. (3.3.27)

Using the same arguments as in (3.3.15) , (3.3.16) and (3.3.25), we can obtain the represen-

tation of ∂tB, ∇B and △B, which imply

∂tB − ∂tΘ(∇Θ)−1∇B + u(∇Θ)−1∇B −B(∇Θ)−1∇u

− σ
(
(∇Θ)−⊤(∇Θ)−1

)
: ∇2B − σ

((
△Θ−1

)
◦Θ
)
· (∇B) = 0.

(3.3.28)

The divergence-free conditions (3.1.3) and (3.1.4) can be treated in the same way using

(3.3.21), which implies

0 = divu = divu−
(
(I +∇θ)−1∇θ

)
: ∇u, (3.3.29)

0 = divB = divB −
(
(I +∇θ)−1∇θ

)
: ∇B. (3.3.30)

We will show in Section 3.3.4 that (3.3.30) can actually be ignored in the transformed

problem.
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3.3.3 Geometric terms

In the previous section, we have obtained the transformation of (3.1.1) to (3.1.4). It

remains to transform (3.1.5) and (3.1.6), which require representations of tangent vectors,

normal vectors and curvatures. To treat these terms, we follow the arguments in e.g. [15,29].

We include some details for convenience. In this section, we will temporarily do calculations

in Rd, in order to maintain a clear structure.

3.3.3.1 Tangent and normal vectors

Suppose that Σ is a Ck surface, then it can be locally parameterized by a Ck function

Φ, i.e. for all x ∈ Σ there exists a neighborhood B(x; a)∩Σ such that there exists a domain

D ⊆ Rd−1 and a diffeomorphism Φ(s) from D to B(x; a) ∩Σ, where s = (s1, · · · , sd−1) ∈ D.

Let x = Φ(s) ∈ Σ, then the tangent vectors at x are

τΣi (s) = ∂iΦ(s), i = 1, · · · d− 1, (3.3.31)

which form a basis of the tangent space TxΣ . We will also use notations τΣ(i),k and τ
(i)
Σ,k to

denote the k-th entry of the i-th vector. These d − 1 vectors depend on the choice of Φ.

Thus, we directly view τΣi as a function defined in D. The normal vector nΣ is independent

of Φ. Thus, it can be viewed as a function defined on Σ.

To simplify calculations, we introduce another basis {τ 1Σ, · · · , τ d−1
Σ } of the tangent plane

TxΣ. The new basis satisfies τ iΣ · τΣj = δij, where δij = 1 if i = j and δij = 0 if i ̸= j.

We ignore the name of surfaces in superscripts or subscripts when there is no ambiguity.

Suppose ξ =
∑
ciτ

i =
∑
ciτi, then we have ci = ξ · τi and ci = ξ · τ i. We refer readers to [29]

for more details.

For every height function h, its corresponding surface is Γh(t) := Θh(t,Σ), which can be

parameterized using Θh ◦ Φ. Its tangent vectors at y := Θ(x) = Θ(Φ(s)) are

τΓi (s) = ∂si (Θ(Φ(s))) =
∑
j

(∂iΦj) (∂jΘ ◦ Φ) . (3.3.32)

To find the normal vector nΓ, we first seek for α ∈ TxΣ such that nΣ − α is perpendicular

to TΘ(x)Γ. We refer readers to [29, Section 2.2.2] for more details. For convenience, we
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include some key steps in the derivation of α. When x ∈ B(Σ; ϱ) with ϱ = ϱ/3, we have

Θh(x) = x+ h(x)nΣ(x), which implies

Θh(Φ(s)) = Φ(s) + h(Φ(s))nΣ(Φ(s)). (3.3.33)

Taking derivatives of the equation (3.3.33), we have

τΓi (s) = ∂siΘ(Φ(s)) = ∂si (Φ(s) + θ(Φ(s)))

= ∂iΦ(s) + ∂si(h ◦ Φ) [s]nΣ [Φ [s]] + h [Φ [s]] ∂si(nΣ ◦ Φ) [s] .
(3.3.34)

In this work, we let the parameterization Φ : D → Σ be fixed once it has been chosen. To

make calculations concise, for any function f on Σ we will abbreviate f ◦Φ to f when there

is no confusion. We will also use the notation ∂if to represent the derivative ∂si(f(Φ(s))

when there is no confusion. This follows the convention in [29].

Now we simplify (3.3.34). Since |nΣ| ≡ 1 , we have

2∂sinΣ(Φ(s)) · nΣ(Φ(s)) = ∂si(|nΣ(Φ(s))|2) = 0. (3.3.35)

In fact, the vectors ∂s1n, · · · , ∂sd−1
n form a new basis of TΦ(s)Σ. Using the Weingarten tensor

LΣ, which satisfies

LΣ [Φ(s)] τΣi [s] := −∂si(nΣ ◦ Φ) [s] , (3.3.36)

we can simplify (3.3.34) to

τΓi = (I − hLΣ) τ
Σ
i + ∂ihnΣ. (3.3.37)

Next, we simplify the formula of α using (3.3.37). Since nΣ−α is required to be perpendicular

to TΘ(Φ(s))Γ, we have (nΣ − α)⊥τΓi for all 1 ≤ i ≤ d− 1, which implies

0 = (nΣ − α) · τΓi = (nΣ − α) ·
(
τΣi + ∂ihnΣ + h∂i nΣ

)
= nΣ · τΣi + nΣ · (∂ihnΣ) + nΣ · (h∂i nΣ)− α · τΣi − α · (∂ihnΣ)− α · (h∂i nΣ)

= 0 + ∂ih+ 0− α · τΣi − 0− α · (h ∂inΣ) = ∂ih− α ·
(
(I − hLΣ) τ

Σ
i

)
.

(3.3.38)

Since I − hLΣ is a symmetric linear transformation (see e.g. Section 2.2 in [29]), we have

∂ih = ((I − hLΣ)α) · τΣi . (3.3.39)
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Notice that (3.3.39) is the abbreviation of:

∂si(h(Φ(s))) = ((I − hLΣ)α) · ∂iΦ(s), (3.3.40)

which can be solved by letting

(I − hLΣ)α = ∇Σh, i.e. α = (I − hLΣ)
−1∇Σh. (3.3.41)

The surface gradient ∇Σ, also called the tangential gradient, is explained in Section 3.2. We

refer interested readers to [5,19] for details about gradient, divergence and other differential

operators on surfaces. Now we have obtained that

nΓ(s) =
nΣ − (I − hLΣ)

−1∇Σh∣∣nΣ − (I − hLΣ)
−1∇Σh

∣∣ =:
(
nΣ − (I − hLΣ)

−1∇Σh
)
β, (3.3.42)

where β(s) is a scalar function that renormalizes the vector, as used in [29].

3.3.3.2 Mean curvature

In this section, we express the mean curvature HΓ in terms of Σ and h. We recall

that the calculations are in the space Rd. We start with the representation of ∇Γf for an

arbitrary function f defined on Γ. From equation (2.47) in [29, Section 2.2.3], we have the

representation of tangent vectors on Γ:

τ iΓ = PΓ (I − hLΣ)
−1 τ iΣ , 1 ≤ i ≤ d− 1. (3.3.43)

Notice that for any function f on Γ (parameterized by Θh ◦ Φ) we have(
d−1∑
j=1

∂jfτ
j
Γ

)
τΓi = ∂if, (3.3.44)

which implies

∇Γf =
d−1∑
j=1

∂jfτ
j
Γ =

d−1∑
j=1

PΓ (I − hLΣ)
−1 τ jΣ∂jf = PΓ (I − hLΣ)

−1∇Σ(f ◦Θ). (3.3.45)
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From the definition of mean curvature in Section 2.2.5 of [29], we have

HΓ := −divΓnΓ = −
d−1∑
i=1

τ iΓ · ∂inΓ. (3.3.46)

We also refer to Section 7.3 in [5] for more details. Now it remains to calculate ∂inΓ in

(3.3.46). From (3.3.42) we have

∂inΓ(s) = ∂iβ
(
nΣ − (I − hLΣ)

−1∇Σh
)
+ β ∂i

(
nΣ − (I − hLΣ)

−1∇Σh
)
. (3.3.47)

Using the same argument as in [29, Section 2.2.5], we obtain the formula of the mean cur-

vature

HΓ = −
d−1∑
i=1

τ iΓ · ∂inΓ

= −
d−1∑
i=1

τ iΓ ·
(
∂iβ

(
nΓ

β

))
−

d−1∑
i=1

τ iΓ ·
(
β∂i
(
nΣ − (I − hLΣ)

−1∇Σh
))

= 0 +
d−1∑
i=1

(
PΓ (I − hLΣ)

−1 τ iΣ
)
·
(
β
(
LΣτ

Σ
i + ∂iα

))
=

d−1∑
i=1

(
(I − nΓ ⊗ nΓ) (I − hLΣ)

−1 τ iΣ
)
· (β (LΣτi + ∂iα))

=
d−1∑
i=1

(
(I − hLΣ)

−1 τ iΣ
)
·
(
β
(
LΣτ

Σ
i + ∂iα

))
−

d−1∑
i=1

(
nΓ ·

(
(I − hLΣ)

−1 τ iΣ
)) (

βnΓ ·
(
LΣτ

Σ
i + ∂iα

))
.

(3.3.48)

Still from [29, Section 2.2.5], we have the following equalities:

d−1∑
i=1

(
(I − hLΣ)

−1 τ iΣ
)
·
(
LΣτ

Σ
i

)
= tr

((
(I − hLΣ)

−1 LΣ

))
, (3.3.49)

d−1∑
i=1

(
(I − hLΣ)

−1 τ iΣ
)
· ∂iα = tr

(
(I − hLΣ)

−1∇Σα
)
, (3.3.50)

nΓ ·
(
(I − hLΣ)

−1 τ jΣ
)
= −β

((
(I − hLΣ)

−1 α
))j

, (3.3.51)

where 1 ≤ j ≤ d− 1.
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Remark 3.3.3. Since τΣi · τ jΣ = δij, we combine them with the normal vector nΣ and obtain

(the notation Σ is ignored for convenience):
τ(1),1 · · · τ(1),d
...

. . .
...

τ(d−1),1 · · · τ(d−1),d

n1 · · · nd




τ
(1)
1 · · · τ

(d−1)
1 n1

...
. . .

...
...

τ
(1)
d · · · τ

(d−1)
d nd

 = Id×d. (3.3.52)

The left-hand side is commutative by the property of inverse matrices, which implies

d−1∑
k=1

τ
(k)
i τ(k),j = δij − ninj = (I − n⊗ n)ij (3.3.53)

for all 1 ≤ i, j ≤ d − 1. We recall that for any vector η ∈ Rd the matrix ∇Ση is defined as

(∇Ση1, · · · ∇Σηd), where each ∇Σηi is viewed as a column vector. This implies that

d−1∑
i=1

τ (i) ·
(
∇Σητ(i)

)
=

d−1∑
i=1

d∑
k=1

d∑
j=1

τ
(i)
k (∇Ση)kj τ(i),j

=
d∑

k=1

d∑
j=1

(
d−1∑
i=1

τ
(i)
k τ(i),j

)
(∇Ση)kj = (I − n⊗ n) : ∇Ση

= tr∇Ση − n⊤∇Ση n = tr∇Ση,

(3.3.54)

which can be utilized in the derivation of (3.3.48), (3.3.49) and (3.3.50).

Notice that the symmetric operator (I − hLΣ)
−1 in (3.3.51) maps tangent vectors to

tangent vectors and maps nΣ to nΣ. Thus, for all 1 ≤ i ≤ d− 1 we have

nΓ ·
(
(I − hLΣ)

−1 τ iΣ
)
= β (nΣ − α) ·

(
(I − hLΣ)

−1 τ iΣ
)
= −βα ·

(
(I − hLΣ)

−1 τ iΣ
)

= −β
(
(I − hLΣ)

−1 α
)
· τ iΣ =: −β

(
(I − hLΣ)

−1 α
)i
,

(3.3.55)

and

nΓ · (LΣτi + ∂iα) = β (nΣ − α) · (LΣτi + ∂iα)

= β (nΣ · LΣτi + nΣ · ∂iα− α · LΣτi − α · ∂iα)

= β (0 + nΣ · ∂iα + α · ∂inΣ − α · ∂iα) = β (∂i (nΣ · α)− α · ∂iα) = −βα · ∂iα.

(3.3.56)
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Notice that nΣ ·α = 0 since α is a tangent vector of Σ. From (3.3.48), (3.3.55) and (3.3.56),

we have

HΓ = βtr
(
(I − hLΣ)

−1 (LΣ +∇Σα)
)
−

d−1∑
i=1

β3
(
(I − hLΣ)

−1 α
)i
(α · ∂iα)

= βtr
(
(I − hLΣ)

−1 (LΣ +∇Σα)
)
− β3

(
(I − hLΣ)

−1 α
)
∇Σαα

⊤.

(3.3.57)

Remark 3.3.4. For convenience, we let ξ := (I − hLΣ)
−1 α and ignore the notation Σ in

tangent vectors. The term ∇Σαα
⊤ in (3.3.57) is obtained by the following calculation.

d−1∑
i=1

(
(I − hLΣ)

−1 α
)i
(α · ∂iα) =

d−1∑
i=1

ξi (α · ∂iα) =
d−1∑
i=1

(
ξ · τ (i)

)
(α · ∂iα)

=
d−1∑
i=1

(
d∑

k=1

ξkτ
(i)
k

)
(α · ∂iα) .

(3.3.58)

We remind the readers that ∂iα is the abbreviation of ∂i(α ◦Φ) by our convention. We view

the surface gradient of vector α as the matrix such that

(∇Σα)ij := (∇Σαj)i . (3.3.59)

Notice that we assume all vectors to be written as row vectors, then for all 1 ≤ k ≤ d − 1

we have

∂kα = (∂kα1, · · · , ∂kαd)

= (∇Σα1 · τk, · · · ,∇Σαd · τk) = τk∇Σα
(3.3.60)

Thus, we rewrite the last term in (3.3.58) as

d−1∑
i=1

(
d∑

k=1

ξkτ
(i)
k

)
(α · ∂iα) =

d−1∑
i=1

(
d∑

k=1

ξkτ
(i)
k

)(
d∑

j=1

αj

(
τ(i) · (∇Σαj)

))

=
d−1∑
i=1

(
d∑

k=1

ξkτ
(i)
k

)(
d∑

j=1

αj

(
d∑

s=1

τ(i),s (∇Σαj)s

))

=
d∑

k=1

d∑
j=1

d∑
s=1

d−1∑
i=1

τ
(i)
k τ(i),sξkαj (∇Σαj)s =

d∑
k=1

d∑
j=1

ξkαj (∇Σαj)k

= ξ∇Σαα
⊤,

(3.3.61)

where the fourth equality is guaranteed by (3.3.53).
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3.3.3.3 Transformation of equations

Using the formulas of nΓ and HΓ in (3.3.42) and (3.3.57), we are able to transform

equations (3.1.5) and (3.1.6). Composing Θ with (3.1.5), we have

−
(q
ν(χ)

(
∇u+∇u⊤

)
− pI

y
nΓ

)
◦Θ = (κHΓnΓ) ◦Θ. (3.3.62)

Due to the effect of Θ, the equation (3.3.62) is defined on Σ rather than Γ(t). We calculate

the projections of (3.3.62) to nΣ(x) and TxΣ respectively using the same arguments as

in [15, Section 2] with some details included for convenience. We recall that nΓ · nΣ = β.

Taking the inner product of (3.3.62) and nΣ/β, we obtain the projection of the equation

onto the normal vector

−
(q(

ν(χ)
(
∇u+∇u⊤

)
◦Θ
)y (

nΣ − (I − hLΣ)
−1∇Σh

))
· nΣ + JpK = κHΓ. (3.3.63)

From ∇u ◦Θ = ∇u−M1∇u (see Section 3.3.4 for definitions of Mi, i = 0, · · · , 4) we have(
ν(χ)

(
∇u+∇u⊤

))
◦Θ

= ν(χ)
(
∇u−M1∇u+ (∇u)⊤ − (M1∇u)⊤

)
.

(3.3.64)

Thus, we can rewrite (3.3.63) as

JpK − κHΓ

=
(q(

ν(χ)
(
∇u+∇u⊤

))y
nΣ

)
· nΣ −

(q(
ν(χ)

(
∇u+∇u⊤

))y
M0∇Σh

)
· nΣ

−
(q
ν(χ)

(
M1∇u+ (M1∇u)⊤

)y
(nΣ −M0∇Σh)

)
· nΣ

=:
(q
ν(χ)

(
∇u+∇u⊤

)y
nΣ

)
· nΣ + G1.

(3.3.65)

Letting

G2 := κ(HΓ −DHΓ [0]h), (3.3.66)

where DHΓ [0] is the Fréchet derivative of HΓ at h = 0. Then we can linearize HΓ using the

equality

κHΓ = κDHΓ [0]h+ G2.

The equation (3.3.65) can then be written as

JpK − κDHΓ [0]h− G2 =
(q
ν(χ)

(
∇u+∇u⊤

)y
nΣ

)
· nΣ + G1, (3.3.67)
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which is the normal projection of (3.3.62). Next, we calculate the tangential projection of

(3.3.62). We first notice that for a symmetric matrix A = (aij)d×d and the normal vector n,

we have for any 1 ≤ i ≤ d that

(PAn)i =
d∑

k=1

d∑
j=1

(δik − nink)akjnj =
d∑

j=1

aijnj − ni

d∑
k=1

nk

(
d∑

j=1

akjnj

)
, (3.3.68)

i.e. PAn = An − ((An) · n)n. Now we let A :=
q
ν(χ)(∇u+∇u⊤)

y
◦ Θ and recall that

α = M0∇Σh. We cancel κHΓ and JpK by calculating (3.3.62)− (3.3.63)nΓ, which gives us

A(nΣ − α) = ((A(nΣ − α)) · nΣ) (nΣ − α) (3.3.69)

Using (3.3.69) (in the third equality below), we have

PΣA(nΣ − α) = (I − nΣ ⊗ nΣ)A(nΣ − α)

= A(nΣ − α)− ((A(nΣ − α)) · nΣ)nΣ

= ((A(nΣ − α)) · nΣ) (nΣ − α)− ((A(nΣ − α)) · nΣ)nΣ

= − ((A(nΣ − α)) · nΣ)α.

(3.3.70)

For convenience, we abbreviate ν(χ) and ν(χ) to ν and ν respectively when there is no

confusion. Substituting with

A =
q
ν(χ)(∇u+∇u⊤)

y
◦Θ

=
r
ν(∇u+∇u⊤ −M1∇u− (M1∇u)⊤)

z
,

(3.3.71)

we obtain

PΣ

r
ν(∇u+∇u⊤ −M1∇u− (M1∇u)⊤)

z
(nΣ − α)

= −
((r

ν(∇u+∇u⊤ −M1∇u− (M1∇u)⊤)
z
(nΣ − α)

)
· nΣ

)
α

(3.3.72)

Expanding the brackets in the left-hand side of (3.3.72) and rearranging the terms, we have

PΣ

q
ν
(
∇u+∇u⊤

)y
nΣ

= PΣ

r
ν(I −M1)∇u+ ν ((I −M1)∇u)⊤

z
M0∇Σh+ PΣ

q
ν
(
M1∇u+ (M1∇u)⊤

)y
nΣ

−
((r

ν(I −M1)∇u+ ν ((I −M1)∇u)⊤
z
(nΣ −M0∇Σh)

)
· nΣ

)
M0∇Σh

=: −G3.

(3.3.73)
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Now we can combine the tangential and normal projections by letting (3.3.67)nΣ + (3.3.73),

which gives us the transformation of (3.1.5). From (3.3.20), (3.3.67), (3.3.73) and (3.3.57),

we obtain

−
q(
ν(χ)

(
∇u+∇u⊤

))y
nΣ + JpKnΣ − κ (DH [0]h)nΣ = (G1 + G2)nΣ + G3. (3.3.74)

In (3.5.124), we will prove that DHΓ [0] = (trL2
Σ +△Σ), which enables us to obtain the final

version of the transformed equation

−
q(
ν(χ)

(
∇u+∇u⊤

))y
+ JpKnΣ − κ△Σh =

(
G1 + G2 + κtrL2

Σh
)
nΣ + G3. (3.3.75)

Now we transform (3.1.6). By [29, Section 2.5.2], the velocity of the interface satisfies

β∂th = VΓ ◦Θ−1
t = (u · nΓ) ◦Θ−1

t = βu · (nΣ −M0∇Σh) , (3.3.76)

which implies that ∂th = u · (nΣ −M0∇Σh) and can then be rewritten as

∂th− u · nΣ + b · ∇Σh = (I −M0)∇Σh · u+ (b− u)∇Σh. (3.3.77)

The term b ∈ W 1− 1
2q

,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 2− 1
q
,q(Σ)) is an auxiliary function, which

will be specially selected in later sections. For details on VΓ and the derivation of (3.3.77),

we refer to Section 2.2.5 in [29].
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3.3.4 Transformed equations

Similarly as in [15], we abbreviate some terms which will be frequently used in later

calculations. In (3.3.41), we define

M0 := (I − hLΣ)
−1 . (3.3.78)

In (3.3.20), we define

M1 :=
(
(I +∇θ)−1∇θ

)
. (3.3.79)

In (3.3.25), we define

M2 :=
(
△Θ−1

)
◦Θ, and M4 := (∇Θ)−⊤ (∇Θ)−1 − I. (3.3.80)

In (3.3.19), we define

M3 := ∂tθ
(
I − (I +∇θ)−1∇θ

)
. (3.3.81)

We also remind the readers that the abbreviations G1, G2 and G3 in the transformation of

the surface tension equation are defined in (3.3.65), (3.3.66) and (3.3.73).

Notice that (3.1.2) has the form ∂tB = ∇ × F . Thus, taking the divergence of the

equation, we obtain

∂tdivB = 0. (3.3.82)

Since the solution B in the transformed equations satisfies divB0 = 0, the equation (3.1.4)

will always be satisfied and thus can be removed from the transformed problem.

Notice that the viscosity ν in the transformed problem is independent of time since the

interface in the transformed problem is a fixed surface. Finally, using (3.3.26), (3.3.28),

(3.3.29), (3.3.75) and (3.3.77), the equations (3.1.1) - (3.1.8) can be transformed to

∂tu+∇p− ν△u = −1

2
∇
(∣∣B∣∣2)− u∇u+B∇B +M3∇u+ uM1∇u

−BM1∇B +
1

2
M1∇

(∣∣B∣∣2)+M1∇p+ νM4 : ∇2u+ νM2 · (∇u),
(3.3.83)

∂tB − σ△B = −u∇B +B∇u+ uM1∇B −BM1∇u

+M3∇B + σM4 : ∇2B + σM2 · (∇B),
(3.3.84)

divu = M1 : ∇u, (3.3.85)
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r
−2ν(χ)D̃u

z
nΣ + JpKnΣ − κ(△Σh)nΣ =

(
G1 + G2 + κtrL2

Σh
)
nΣ + G3, (3.3.86)

∂th− u · nΣ + b · ∇Σh = (I −M0)∇Σh · u+ (b− u)∇Σh, (3.3.87)

u|∂Ω = 0, B|∂Ω = 0, u|t=0 = u0 := u ◦Θ, B|t=0 = B0 := B ◦Θ. (3.3.88)

For convenience, we ignore the bars in u, B and p when there is no confusion. The height

function h only exists in the transformed equations, so it always appears without a bar.

3.4 Linear Part

In this section, we consider the linear part of the equations (3.3.83) - (3.3.88), which

can be rewritten as the following linear problem. For convenience, we ignore the bars over

variables.

∂tu+∇p− ν(χ)△u = g1 in Ω \ Σ, (3.4.1)

divu = g3 in Ω \ Σ, (3.4.2)

q
−ν(χ)

(
∇u+∇u⊤

)
+ pI

y
nΣ − κ(△Σh)nΣ = g4 on Σ (3.4.3)

JuK = 0 on Σ (3.4.4)

u = 0 on ∂Ω (3.4.5)

∂th− u · nΣ + b · ∇Σh = g5 on Σ (3.4.6)

u(0) = u0 in Ω \ Σ, (3.4.7)

h(0) = h0 on Σ. (3.4.8)

∂tB − σ△B = g2 in Ω, (3.4.9)

B = 0 on ∂Ω, (3.4.10)

B(0) = B0 in Ω. (3.4.11)

The linear problem can be divided into two sub-problems (3.4.1) - (3.4.8) and (3.4.9) -

(3.4.11), which can be solved using the theory of two-phase Stokes problems in [15, 29] and

parabolic problems in [17, Theorem 9.1].
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Remark 3.4.1. We remark that the condition divB = 0 in the original problem can be

removed in the transformed problem by the argument in Section 3.3.4.

The equations (3.4.1)-(3.4.8), can be solved using [15, Theorem 1]. We restate the theo-

rem with some simplification.

Theorem 3.4.1 ( [15] Theorem 1, simplified). Let Ω be a C3 domain in Rd. Let T > 0 and

q > d+ 2. Let Σ ⊆ Ω be a closed C3-hypersurface. Suppose

b ∈ W 1− 1
2q

,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 2− 1
q
,q(Σ)); (3.4.12)

Let the source terms and initial values be as follows:

1. g1 ∈ Lq([0, T ]× Ω);

2. u0 ∈ W 2−2/q,q(Ω \ Σ), u0 = 0 on ∂Ω;

3. g3 ∈ Lq([0, T ];W 1,q(Ω \ Σ)), divu0 = g3(0) = 0;

4. g4 ∈ W
1
2
− 1

2q
,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 1− 1

q
,q(Σ));

5. PΣ

r
2νD̃u0

z
= PΣg4(0);

6. g5 ∈ W 1− 1
2q

,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 2− 1
2q

,q(Σ));

7. h0 ∈ W 3− 2
q
,q(Σ).

Then there exists a unique solution (u, p, h) to (3.4.1)-(3.4.8), such that

1. u ∈ W 1,q([0, T ];Lq(Ω)) ∩ Lq([0, T ];W 2,q(Ω \ Σ));

2. p ∈ Lq([0, T ]; Ẇ 1,q(Ω \ Σ));

3. JpK ∈ W
1
2
− 1

2q
,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 1− 1

2q
,q(Σ));

4. h ∈ W 2− 1
2q

,q([0, T ];Lq(Σ)) ∩W 1,q([0, T ];W 2− 1
q
,q(Σ)) ∩ Lq([0, T ];W 3− 1

q
,q(Σ));

5. The mapping (g1, g3, g4, g5, u0, h0, b) 7→ (u, p, JpK , h) is continuous.

For the principal part of the magnetic equations, we use the theory of parabolic equations

in bounded domains, which can be found in e.g. [17, Theorem 9.1]. We also refer to [17,

Chapter IV, Section 4] and [16, Chapter 8, Section 3] for more details on the localization

and flattening of bounded domains. We will consider the case that ∂Ω is at least C3, which

is stronger than the requirement of O2 in [17]. We refer to [17, Chapter I, Section 1] for

definitions of Ol, H l and C l spaces when the domain is a surface.
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Theorem 3.4.2 ( [17] Chapter IV Theorem 9.1, simplified). Let Ω be a C2 domain. Let

T > 0 and q > 3/2. Suppose g2 ∈ Lq([0, T ] × Ω), B0 ∈ W 2−2/q,q(Ω) and B0|∂Ω = 0. Then

there exists a unique solution

B ∈ W 1,q([0, T ];Lq(Ω)) ∩ Lq([0, T ];W 2,q(Ω)) (3.4.13)

to (3.4.9)-(3.4.11). The solution has the estimate

∥B∥W 1,q([0,T ];Lq(Ω)) + ∥B∥Lq([0,T ];W 2,q(Ω)) ≤ C(T )
(
∥g2∥Lq([0,T ]×Ω) + ∥B0∥2−2/q

Lq(Ω)

)
, (3.4.14)

where the constant C(T ) is bounded when T is finite.

Consequently, we can obtain a continuous solution operator defined as follows.

Definition 3.4.1. Given T > 0 and q > 5. Given (u0, B0, h0, b) such that

1. u0 ∈ W 2− 2
q
,q(Ω \ Σ) ∩ C(Ω), u0 = 0 on ∂Ω;

2. B0 ∈ W 2− 2
q
,q(Ω), B0 = 0 on ∂Ω;

3. h0 ∈ W 3− 2
q
,q(Σ);

4. b ∈ W 1− 1
2q

,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 2− 1
q
,q(Σ)).

Given source terms (g1, g2, g3, g4, g5) such that

1. g1 ∈ Lq([0, T ]× Ω);

2. g2 ∈ Lq([0, T ]× Ω);

3. g3 ∈ Lq([0, T ];W 1,q(Ω \ Σ)), divu0 = g3(0) = 0;

4. g4 ∈ W 1/2−1/(2q),q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 1−1/q,q(Σ)), PΣg4(0) = PΣ

r
2νD̃u0

z
;

5. g5 ∈ W 1−1/(2q),q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 2− 1
q
,q(Σ)).

We define the solution operator S(u0,B0,h0,b), or simply S if there is no confusion, by

S(u0,B0,h0,b)(g1, g2, g3, g4, g5) := (u,B, p,ϖ, h), (3.4.15)

where (u, p,ϖ, h) is the solution to (3.4.1) - (3.4.8) with ϖ = JpK an auxiliary variable; and

B is the solution to (3.4.9) - (3.4.11).

From Theorem 3.4.1 and Theorem 3.4.2, we know that S(u0,B0,h0,b) is a continuous oper-

ator. When the initial value vanishes, the solution operator becomes linear, which implies

that S(0,0,0,b) is a bounded linear operator.
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3.5 Nonlinear Part

In this section, we estimate the terms on the right-hand side of (3.3.83) - (3.3.88) by

calculating and estimating their Fréchet derivatives.

3.5.1 Equations and spaces

For convenience, we define the linear parts and the nonlinear parts of the transformed

equations by Li and Gi similarly as in [15]. The bars over variables are ignored for conve-

nience. We define

L1 := ∂tu+∇p− ν(χ)△u, (3.5.1)

L2 := ∂tB − σ△B, (3.5.2)

L3 := divu, (3.5.3)

L4 := J−2ν(χ)DuKnΣ +ϖnΣ − κ(△Σh)nΣ, (3.5.4)

L5 := ∂th− u · nΣ + b · ∇Σh, (3.5.5)

G1 := −1

2
∇
(
|B|2

)
− u∇u+B∇B +M3∇u+ uM1∇u−BM1∇B

+
1

2
M1∇

(
|B|2

)
+M1∇p+ ν(χ)M4 : ∇2u+ ν(χ)M2 · (∇u),

(3.5.6)

G2 := −u∇B +B∇u+ uM1∇B −BM1∇u+M3∇B + σM4 : ∇2B + σM2 · (∇B),

(3.5.7)

G3 = M1 : ∇u, (3.5.8)

G4 =
(
G1 + G2 + κ(trL2

Σ)h
)
nΣ + G3, (3.5.9)

G5 = ((I −M0)∇Σh) · u+ (b− u) · ∇Σh. (3.5.10)

For convenience, we rewrite the formulas of M0 to M4:

M0 = (I − hLΣ)
−1, (3.5.11)

M1 = (I +∇θ)−1∇θ, (3.5.12)

M2 =
(
△Θ−1

)
◦Θ, (3.5.13)
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M3 = ∂tθ
(
I − (I +∇θ)−1∇θ

)
, (3.5.14)

M4 = (∇Θ)−⊤ (∇Θ)−1 − I. (3.5.15)

To make the arguments concise, we abbreviate some common function spaces. Based on the

settings in [15], we define

u ∈ WT
1 := W 1,q([0, T ];Lq(Ω)) ∩ Lq([0, T ];W 2,q(Ω \ Σ)), (3.5.16)

B ∈ WT
2 := W 1,q([0, T ];Lq(Ω)) ∩ Lq([0, T ];W 2,q(Ω)), (3.5.17)

p ∈ WT
3 := Lq([0, T ]; Ẇ 1,q(Ω \ Σ)), (3.5.18)

ϖ ∈ WT
4 := W

1
2
− 1

2q
,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 1− 1

q
,q(Σ)), (3.5.19)

h ∈ WT
5 := W 2− 1

2q
,q([0, T ];Lq(Σ)) ∩W 1,q([0, T ];W 2− 1

q
,q(Σ)) ∩ Lq([0, T ];W 3− 1

q
,q(Σ)).

(3.5.20)

For convenience, we define

WT
6 := W

1
2
,q([0, T ];Lq(Ω)) ∩ Lq([0, T ];W 1,q(Ω \ Σ)), (3.5.21)

which is the space that ∇u and ∇B belong to. Similarly to [15], we define the solution space

WT :=
{
(u,B, p,ϖ, h) ∈ WT

1 ×WT
2 ×WT

3 ×WT
4 ×WT

5 : JpK = ϖ
}
. (3.5.22)

We denote by Si the space that source terms belong to, i.e.

G1 ∈ ST
1 := Lq([0, T ];Lq(Ω)), (3.5.23)

G2 ∈ ST
2 := Lq([0, T ];Lq(Ω)), (3.5.24)

G3 ∈ ST
3 := W 1,q([0, T ]; Ẇ−1,q(Ω)) ∩ Lq([0, T ];W 1,q(Ω \ Σ)), (3.5.25)

G4 ∈ ST
4 := W

1
2
− 1

2q
,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 1− 1

q
,q(Σ)), (3.5.26)

G5 ∈ ST
5 := W 1− 1

2q
,q([0, T ];Lq(Σ)) ∩ Lq([0, T ];W 2− 1

q
,q(Σ)). (3.5.27)

Then we define

ST := ST
1 × ST

2 × ST
3 × ST

4 × ST
5 . (3.5.28)
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We will also frequently use the following spaces:

CT
0 := C0([0, T ];C0(Ω)),

CT
1 := C0([0, T ];C1(Ω)) ∩ C1([0, T ];C0(Ω)),

CT
2 := C0([0, T ];C2(Ω)) ∩ C1([0, T ];C1(Ω)).

(3.5.29)

For convenience, we also define

CT
3 := C0([0, T ];C1(Ω)), and CT

4 := C0([0, T ];C2(Ω)). (3.5.30)

The spaces Ci, i = 0, 1, 2, 3, 4, can also be defined on [0, T ] × Σ, which can be expressed

by replacing Ω with Σ. We will ignore the notation of domain (e.g. Ω or Σ) and the time

variable T when there is no confusion. For all spaces Z with the form X([0, T ];Y ), we use

Z̊T and X̊([0, T ];Y ) (3.5.31)

to denote the subspace of elements whose initial values on the time interval [0, T ] are 0 in

the sense of limit or trace. If Z is the intersection of spaces, i.e.

ZT = X1([0, T ];Y1) ∩ · · · ∩Xk([0, T ];Yk) (3.5.32)

for some k ∈ N. Then we use Z̊T to denote

Z̊T = X̊1([0, T ];Y1) ∩ · · · ∩ X̊k([0, T ];Yk). (3.5.33)

3.5.2 Fréchet derivatives of Mi and their estimates

In this section, we assume that Ω ⊆ Rm for m ≥ 2. We will estimate the terms Mi,

i = 0, 1, 2, 3, 4 in (3.5.11) - (3.5.15), which are introduced in [15]. We will also calculate

and estimate their Fréchet derivatives DMi. The estimates are studied on a generic time

interval [0, T ] ⊆ [0, T0] with T0 > 0 a fixed number. We temporarily ignore the parameter T

in the notations of function spaces for convenience.
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3.5.2.1 M0 and DM0

We recall that M0 := (I − hLΣ)
−1 . Since Σ is a fixed surface, its Weingarten tensor

LΣ := −∇ΣnΣ is a fixed, matrix-valued function on Σ. The entries of I − hLΣ are

I − hLΣ =


1− hl11 −hl12 · · · −hl1m
−hl21 1− hl22 · · · −hl2m

...
...

. . .
...

−hlm1 −hlm2 · · · 1− hlmm

 . (3.5.34)

The determinant of I−hLΣ is in the form of 1+hP (h), where P (h) denotes a polynomial of

h. The entries of the adjugate matrix adj(I−hLΣ) can all be represented using polynomials

Qij(h). From the inverse matrix formula A−1 = adj(A)/det(A), we have

(I − hLΣ)
−1
ij =

Qij(h)

1 + hP (h)
. (3.5.35)

Let ∂ denote either the time or spatial derivative, we have

∂ (I − hLΣ)
−1
ij =

∂ (Qij(h)) (1 + hP (h))− (Qij(h)) ∂ (1 + hP (h))

(1 + hP (h))2
=
Q̃ij(h, ∂h)

1 + hP̃ (h)
. (3.5.36)

Let δ0(Σ) > 0 be sufficiently small and assume without loss of generality that δ0 < 1, then

for all ∥h∥C0 < δ0 we have ∥∥∥1 + hP̃ (h)
∥∥∥
C0

≥ 1

2
, (3.5.37)

which implies that ∥∥(I − hLΣ)
−1
∥∥
C0

≤ C(m,Σ). (3.5.38)

Taking higher-order derivatives, we obtain

∂k (I − hLΣ)
−1
ij =

Qij(h, ∂h, · · · , ∂kh)
1 + hP (h)

, (3.5.39)

where P and Qij are also polynomials. Similarly, in (3.5.39), we can stay away from the

singularities of the denominator by letting ∥h∥C0 < δ0 for some δ0(m,Σ, k) ∈ (0, 1). Moreover,

let M > 0 be an upper bound of the derivatives of h, then we can bound the numerator as
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well. Specially, for k = 0, 1, 2, there exists δ0(m,Σ, k) ∈ (0, 1) such that for all ∥h∥C0 < δ0

and ∥h∥Ck < M we have

∥M0∥Ck =
∥∥(I − hLΣ)

−1
∥∥
Ck

≤ C(m,Σ,M). (3.5.40)

Next, we estimate the Fréchet derivative DM0. We decompose M0 into F : h 7→ I−hLΣ

and G : A 7→ A−1, where A is an invertible m × m matrix. Then we can calculate their

Fréchet derivatives using the definition, which implies

DF [h]φ = −φLΣ and DG [A]H = −A−1HA−1 (3.5.41)

for all φ in the same space as for h and all H in the same space as for A. The term DG is

obtained by considering

(A+H)−1 − A−1 = A−1
(
(I +HA−1)−1 − I

)
(3.5.42)

and expanding (I +HA−1)−1 using power series. Thus, we have

DM0 [h]φ = D(G ◦ F ) [h]φ = DG [F [h]]DF [h]φ

= (I − hLΣ)
−1 (φLΣ) (I − hLΣ)

−1 = M0LΣM0φ.
(3.5.43)

Therefore, from (3.5.40) we know that for k = 0, 1, 2, there exists δ0(m,Σ, k) ∈ (0, 1), such

that for all ∥h∥C0 < δ0, ∥h∥Ck < M and φ ∈ C̊k, we have

∥DM0 [h]φ∥C̊k = ∥M0φLΣM0∥C̊k
≤ ∥M0∥2Ck ∥LΣ∥Ck(Σ) ∥φ∥C̊k ≤ C(m,Σ,M) ∥φ∥C̊k .

(3.5.44)

When k = 1, we also have for all 0 ≤ T ≤ T0 that

∥DM0 [h]φ∥S̊T
4
≤ C(m,T0,Σ, q) ∥M0∥2CT

1
∥LΣ∥C1(Σ) ∥φ∥S̊T

4

≤ C(m,T0,Σ, q,M) ∥φ∥S̊T
4
.

(3.5.45)
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3.5.2.2 M1 and DM1

Now we estimate M1 = (I +∇θ)−1∇θ in (3.5.12). We recall that

θh(x) = η

(
d(x)

ϱ0

)
h(Π(x))νΣ(Π(x))

when x ∈ B(Σ; ϱ0) and θh(x) = 0 if x /∈ B(Σ; ϱ0) .

Since Σ is a fixed surface, we can write θ as

θ(x) = h(x)n(x), (3.5.46)

where n := η(d(x)/ϱ0)nΣ(Π(x)) is an extension of the normal vector field nΣ to Ω, which is

supported in B(Σ; ϱ0); and h is an extension of h from Σ to Ω by letting h(x) := h(Π(x))

for x ∈ B(Σ; ϱ0) and h(x) := 0 otherwise. Thus, we have

∇θ = ∇(hn) = ∇h⊗ n+ h∇n, (3.5.47)

which implies that

∥∇θ∥C1 := ∥∇θ∥C1([0,T ];C(Ω)) + ∥∇θ∥C([0,T ];C1(Ω))

= ∥∇(hn)∥C1([0,T ];C(B(Σ;ϱ0)))
+ ∥∇(hn)∥C([0,T ];C1(B(Σ;ϱ0)))

≤ C(Σ) ∥h∥C1([0,T ];C1(B(Σ;ϱ0)))
+ C(Σ) ∥h∥C([0,T ];C2(B(Σ;ϱ0)))

≤ C(Σ) ∥h∥C2 ≤ C(Σ) ∥h∥C2 .

(3.5.48)

Using similar arguments and the fact that Σ is a C3 surface, we obtain

∥∇θ∥S5
= ∥∇h⊗ n∥S5

+ ∥h∇n∥S5

≤ C(Σ) ∥∇h∥S5
+ C(Σ) ∥h∥S5

≤ C(Σ) ∥h∥W5
≤ C(Σ) ∥h∥W5

.
(3.5.49)

Letting F : h → (I +∇θ)−1, for φ ∈ W̊5 we have

DF [h]φ = − (I +∇(hn))−1∇ (φn) (I +∇(hn))−1 (3.5.50)
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The entries of I +∇ (hn) are
1 + ∂1hn1 + h∂1n1 ∂1hn2 + h∂1n2 · · · ∂1hnm + h∂1nm

∂2hn1 + h∂2n1 1 + ∂2hn2 + h∂2n2 · · · ∂2hnm + h∂2nm

...
...

. . .
...

∂mhn1 + h∂mn1 ∂mhn2 + h∂mn2 · · · 1 + ∂mhnm + h∂mnm

 . (3.5.51)

Since ∇n only depends on Σ, it is a fixed matrix. Thus, the determinant of I +∇ (hn) is

det (I +∇ (hn)) = 1 + ðhP (ðh). (3.5.52)

To simplify the statement, we temporarily use the notation ðh when:

1. this term is either h or its derivatives;

2. in all cases, the term can be controlled using the norm in the context.

Without loss of generality, we also slightly abuse the notation ðhP (ðh) to denote the sum

of multiple terms with this structure, e.g.

h(1 + h∂xi
h) + ∂xi

h(1 + h).

This notation does not bring trouble as long as the term ðh can be controlled by the needed

norm in the context. The entries of the adjugate matrix of I +∇(hn) are all in the form of

P (h, ∂h). Thus, all entries of the matrix (I +∇ (hn))−1 can be expressed as

Qij(ðh)
1 + ðhP (ðh)

. (3.5.53)

Moreover, their time or spatial derivatives, i.e.

∂t

(
Qij(ðh)

1 + ðhP (ðh)

)
or ∂xk

(
Qij(ðh)

1 + ðhP (ðh)

)
,

can also be expressed using the same formula as in (3.5.53). We recall that the polynomial

fractions in (3.5.53) only depend on Σ. Thus, when ∥h∥C3 ≤ δ0 for some sufficiently small

δ0(Σ), we are able to exclude all singularities. Suppose we also have ∥h∥C2 ≤ M for some

M > 0, then we have ∥∥(I +∇ (hn))−1
∥∥
C1

≤ C(m,Σ,M). (3.5.54)
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We remark that the C3 norm is enough in the condition ∥h∥C3 ≤ δ0, since taking derivatives

of polynomial fractions does not create higher-order derivatives in their denominators.

To get the formula of DM1, we still need to calculate the Fréchet derivative of G : h 7→

∇θ, i.e. DG [h]φ = ∇(φn). Using the product rule of Fréchet derivatives, we then obtain

that

D(FG) [h]φ = ((DF ) [h]φ) (G [h]) + (F [h]) ((DG) [h]φ)

= − (I +∇(hn))−1∇ (φn) (I +∇(hn))−1∇ (hn) + (I +∇(hn))−1∇ (φn)

= (I +∇(hn))−1∇ (φn) (I +∇(hn))−1∇ (hn) ,

(3.5.55)

where the last equality is obtained using −(I +∇θ)−1∇θ + I = (I +∇θ)−1∇θ. Since there

is no singularity in ∇(hn), we have

∥∇(hn)∥C1 ≤ C(m,Σ) ∥h∥C2 . (3.5.56)

The term ∇(φn) can be treated in the same way since h and φ are in the same space.

Finally, letting H : h 7→ h, we have DM1 = DhM1 = D((FG) ◦H) and

D((FG) ◦H) [h]ψ = D(FG) [H [h]]DH [h]ψ

= (DF [H [h]]DH [h]ψ) (G [H [h]]) + (F [H [h]]) (DG [H [h]]DH [h]ψ)

= − (I +∇(hn))−1∇ ((ψ ◦ Π)n) (I +∇(hn))−1∇ (hn) + (I +∇(hn))−1∇ ((ψ ◦ Π)n)
(3.5.57)

for all ψ ∈ C̊2. Consequently, we obtain the following estimates for M1 and DM1.

Proposition 3.5.1. There exists δ0(m,Σ) ∈ (0, 1), such that for all ∥h∥C3 < δ0, if ∥h∥C1 < M

for some M > 0 then

∥M1 [h]∥C1 ≤ C(m,Σ,M) ∥h∥C2 ; (3.5.58)

and for all φ ∈ C̊2 we have

∥DM1 [h]φ∥C̊1 ≤ C(m,Σ,M) ∥φ∥C̊2 . (3.5.59)

Remark 3.5.1. For the operator H : h 7→ h, its Fréchet derivative is DH [h] : φ 7→ φ ◦ Π.

Notice that H is a linear operator.
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3.5.2.3 M2 and DM2

Now we study M2 in (3.5.13). Letting i : x→ x be the identity mapping in Ω, we have

Θ = i+ hn and ∇Θ = I +∇θ = I +∇(hn). Using the inverse function theorem, we have

△Θ−1
k =

∑
i

∂i(∇Θ−1
k )i =

∑
i

∂i
(
(∇Θ)−1

ik ◦Θ−1
)

=
∑
i

∑
j

∂iΘ
−1
j

(
∂j(∇Θ)−1

ik

)
◦Θ−1

=
∑
i

∑
j

(
(∇Θ)−1

ij ◦Θ−1
) ((

∂j(∇Θ)−1
ik

)
◦Θ−1

)
,

(3.5.60)

which implies that

(M2)k =
(
△Θ−1

k

)
◦Θ =

∑
i

∑
j

(∇Θ)−1
ij

(
∂j(∇Θ)−1

ik

)
. (3.5.61)

Here we abbreviated
(
(∇Θ)−1)

ij
to (∇Θ)−1

ij for convenience. In order to estimate (△Θ−1) ◦

Θ, we only need to estimate its entries
(
△Θ−1

k

)
◦ Θ, which only requires the estimate of

(∇Θ)−1
ij

(
∂j(∇Θ)−1

ik

)
. We only need to estimate one entry, i.e. for a fixed choice of (i, j, k),

since all entries have the same structure.

Letting F : h 7→ (∇Θ)−1
ij and G : h 7→ ∂j(∇Θ)−1

ik . Similar to the arguments for M1, we

obtain

DF [h]φ = −
(
(∇(i+ hn))−1∇(φn) (∇(i+ hn))−1)

ij
, (3.5.62)

DG [h]φ = −∂j
(
(∇(i+ hn))−1∇(φn) (∇(i+ hn))−1)

ik
. (3.5.63)

Notice that ∇(i+ hn) = I +∇(hn). Then we have

D(FG) [h]φ = (DF [h]φ) (G [h]) + (F [h]) (DG [h]φ)

= −
(
(I +∇ (hn))−1∇(φn) (I +∇ (hn))−1)

ij
(∂j (I +∇ (hn))ik)

−
(
(I +∇ (hn))−1)

ij
∂j
(
(I +∇ (hn))−1∇(φn) (I +∇ (hn))−1)

ik

=: I1 + I2.

(3.5.64)

In term I1, we have

∂j (I +∇ (hn))ik = ∂2jihnk + ∂ih∂jnk + ∂jh∂ink + h∂2jink, (3.5.65)
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which implies

∥∂j (I +∇ (hn))ik∥C0 ≤ C(m,Σ) ∥h∥C4 . (3.5.66)

When ∥h∥C3 < δ0 for some sufficiently small δ0(Σ), using the same argument as in the

derivation of (3.5.54), we have

∥∥(I +∇ (hn))−1
∥∥
C0

≤ C(m,Σ). (3.5.67)

We remark that conditions like ∥h∥C1 < M are not required in the current estimation. Using

(3.5.67), we obtain that∥∥((I +∇ (hn))−1∇(φn) (I +∇ (hn))−1)
ik

∥∥
C̊0

≲
∥∥(I +∇ (hn))−1∇(φn) (I +∇ (hn))−1

∥∥
C̊0

≲
∥∥(I +∇ (hn))−1

∥∥2
C0
∥∇(φn)∥C̊0

≤ C(m,Σ) ∥φ∥C̊3

(3.5.68)

for all φ ∈ C̊3, which completes the estimate

∥I1∥C0 ≤ C(m,Σ,M) ∥φ∥C̊3 . (3.5.69)

In order to estimate I2, we first obtain that

∥I +∇(hn)∥C0 ≤ C(m,Σ)
(
1 + ∥h∥C3

)
. (3.5.70)

To estimate the term ∂j
(
(I +∇(hn))−1∇(φn) (I +∇(hn))−1)

ik
, we first notice that for

three matrices A, B and C we have

∥∂j(ABC)ik∥C0 = ∥(∂jABC)ik + (A∂jBC)ik + (AB∂jC)ik∥C0
≲ ∥∂jA∥C0 ∥B∥C0 ∥C∥C0 + ∥A∥C0 ∥∂jB∥C0 ∥C∥C0 + ∥A∥C0 ∥B∥C0 ∥∂jC∥C0 ,

(3.5.71)

i.e. the entry of the product of matrices can be estimated using the matrix norm.

Remark 3.5.2. We remind the reader that for vector-valued or matrix-valued functions in Ck,

the norm is defined by first taking the Ck norm of components, and then taking the matrix

or vector norm.
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We recall that we already have

∥∇(φn)∥C̊3 ≤ C(Σ) ∥φ∥C̊4 , (3.5.72)

∥∂j (∇(φn))∥C̊0 ≤ C(Σ) ∥φ∥C̊4 . (3.5.73)

It remains to estimate the matrix norm of ∂j (I +∇(hn))−1, which can be obtained using

the same argument as in the derivation of (3.5.54). In fact, there exists δ0(Σ) ∈ (0, 1), such

that for all ∥h∥C3 < δ0, if ∥h∥C4 < M for some M > 0, then we have

∥∥∂j ((I +∇(hn))−1)∥∥
C0

≤ C(m,Σ,M), (3.5.74)

which completes the estimate

∥I2∥C̊0 ≤ C(m,Σ,M) ∥φ∥C̊4 . (3.5.75)

Consequently, we have the following estimates.

Proposition 3.5.2. There exists δ0(Σ) ∈ (0, 1), such that for all ∥h∥C3 < δ0, if ∥h∥C4 < M

for some M > 0, then

∥M2∥C0 ≤ C(m,Σ,M); (3.5.76)

and for all φ ∈ C̊4 we have

∥DM2 [h]φ∥C̊0 ≤ C(m,Σ,M) ∥φ∥C̊4 . (3.5.77)
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3.5.2.4 M3 and DM3

The term M3 = ∂tθ (I − (I +∇θ)−1∇θ) can be written as

M3 = ∂t (hn) (I −M1). (3.5.78)

Letting F : h 7→ I −M1 and G : h 7→ ∂t (hn). Using the same calculation as in (3.5.55), we

have for all φ ∈ C̊1 that

DF [h]φ = − (I +∇(hn))−1∇ (φn) (I +∇(hn))−1 . (3.5.79)

Since ∂tθ = ∂t(hn) = ∂thn, we have

DG [h]φ = ∂tφn. (3.5.80)

Thus, the Fréchet derivative of M3 is

D(GF ) [h]φ = (G [h]) (DF [h]φ) + (DG [h]φ) (F [h])

= (∂thn)
(
− (I +∇(hn))−1∇ (φn) (I +∇(hn))−1)

+ (∂tφn)
(
I − (I +∇(hn))−1∇(hn)

)
.

(3.5.81)

Composing with the mapping h 7→ h = h ◦ Π, we have the following estimates.

Proposition 3.5.3. There exists δ0(Σ) ∈ (0, 1), such that for all ∥h∥C3 < δ0, if ∥h∥C1 < M

for some M > 0, then

∥M3 [h]∥C0 ≤ C(m,Σ,M) ∥h∥C1 ; (3.5.82)

and for all φ ∈ C̊1,

∥DM3 [h]φ∥C̊0 ≤ C(m,Σ,M) ∥φ∥C̊1 . (3.5.83)
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3.5.2.5 M4 and DM4

In order to estimate M4 = (∇Θ)−⊤ (∇Θ)−1 − I, we first rewrite it as

M4 = (∇Θ)−⊤ (I −∇Θ⊤∇Θ
)
(∇Θ)−1

= − (∇Θ)−⊤ (∇θ⊤∇θ +∇θ⊤ +∇θ
)
(∇Θ)−1 ,

(3.5.84)

which allows us to separate the variable h.

Next, we study the Fréchet derivative. We define

F : A 7→ A⊤A− I, (3.5.85)

where A is a matrix. Since

F (A+H)− F (A) = A⊤H +H⊤A+H⊤H, (3.5.86)

we have

DF [A]H = A⊤H +H⊤A. (3.5.87)

We recall that for the inverse matrix operator G : A 7→ A−1 we have

DG [A]H = −A−1HA−1. (3.5.88)

Thus, we have

D(F ◦G) [A]H = DF [G [A]]DG [A]H = −A−⊤
(
A−1H +

(
A−1H

)⊤)
A−1. (3.5.89)

For the operator K : h 7→ ∇Θ = I +∇θ, we have DK [h]φ = ∇ (φh). This implies that

D(F ◦G ◦K) [h]φ = D(F ◦G) [K(h)]DK [h]φ

= − (I +∇ (hn))−⊤
(
(I +∇ (hn))−1∇ (φn) +

(
(I +∇ (hn))−1∇ (φn)

)⊤)
(I +∇ (hn))−1 .

(3.5.90)

Composing F ◦ G ◦ K with the mapping h 7→ h and using the same argument as in the

estimate of M1, we obtain the following estimate.
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Proposition 3.5.4. There exists δ0(Σ) ∈ (0, 1), such that for all ∥h∥C3 < δ0,

∥M4 [h]∥C0 ≤ C(m,Σ) ∥h∥C3 ; (3.5.91)

and for all φ ∈ C̊3,

∥DM4 [h]φ∥C̊0 ≤ C(m,Σ) ∥φ∥C̊3 . (3.5.92)

Therefore, we have obtained the estimates of terms M0 to M4. In the remaining part

of this chapter, we will fix a value for δ0 such that all these estimates can be satisfied, which

can be done by taking the minimum of finite many values.

Remark 3.5.3. Notice that the variable we consider is h when we calculate the Fréchet

derivatives, rather than the point x ∈ Ω. Thus, the function Θ(x) = x + h(x)n(x) is

understood as a mapping h 7→ h 7→ i + hn, where i : x → x and n are fixed functions

defined in Ω. The Fréchet derivative is the derivative of an operator, so it is taken with

respect to h rather than x.

3.5.3 Fréchet derivatives of Gi and their estimates

In this section, we estimate nonlinear terms Gi, i = 1, 2, 3 in the surface tension equation,

which are defined in (3.3.65) (3.3.66) and (3.3.73). These terms have been studied in e.g.

[15,28]. In our calculation, we add more details for completeness. We remind the readers that

we still calculate in Rm instead of R3 in order to have clearer structures. For convenience,

we do not mark the dependency on m in constant terms.

G1 := −
(q
ν(χ)

(
∇u+∇u⊤

)y
M0∇Σh

)
· nΣ

−
(q
ν(χ)

(
M1∇u+ (M1∇u)⊤

)y
(nΣ −M0∇Σh)

)
· nΣ

(3.5.93)

G2 := κHΓ − κDHΓ [0]h, (3.5.94)

G3 = PΣ

r
ν(χ)(I −M1)∇u+ ν(χ) ((I −M1)∇u)⊤

z
M0∇Σh

+ PΣ

r
ν(χ)M1∇u+ ν(χ) (M1∇u)⊤

z
nΣ

−
((r

ν(χ)(I −M1)∇u+ ν(χ) ((I −M1)∇u)⊤
z
(nΣ −M0∇Σh)

)
· nΣ

)
M0∇Σh.

(3.5.95)
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3.5.3.1 Estimate of α

We recall that in (3.3.41) we defined the auxiliary vector α := M0∇Σh to help calculate

nΓ. Suppose that ∥h∥C2 < M . Since Σ is fixed, from (3.5.40), there exists δ0(Σ) ∈ (0, 1) such

that

∥α∥C1 ≤ C ∥M0∥C1 ∥∇Σh∥C1 ≤ C(Σ,M) ∥h∥C2 . (3.5.96)

Moreover, we have

∥α∥S5
≤ C(T0,Σ) ∥M0∥C2 ∥∇Σh∥S5

≤ C(T0,Σ,M) ∥h∥W5
. (3.5.97)

Now we estimate the Fréchet derivative Dα. Given z = (u,B, p,ϖ, h) ∈ W and φ =

(φu, φB, φp, φϖ, φh) ∈ W̊ , we have

(Dα [z])φ = Dh [h] (M0∇Σh)φh

= (DhM0φh) (∇Σh) + (M0) (Dh (∇Σh)φh)

= (M0φhLΣM0) (∇Σh) +M0 (∇Σφh) .

(3.5.98)

Here we use Dh to express that the derivative is taken only with respect to h. Suppose that

∥h∥C2 < M . From (3.5.40), there exists δ0(Σ) ∈ (0, 1) such that if ∥h∥C0 < δ0, then

∥Dαφ∥C̊1 = ∥(M0φhLΣM0) (∇Σh) +M0 (∇Σφh)∥C̊1
≲ ∥M0∥2C1 ∥∇Σh∥C1 ∥φh∥C̊1 + ∥M0∥C1 ∥∇Σφh∥C̊1
≤ C(Σ,M)

(
1 + ∥h∥C2

)
∥φh∥C̊2 .

(3.5.99)

Moreover, we have

∥Dαφ∥S̊5
= ∥(M0φhLΣM0) (∇Σh) +M0 (∇Σφh)∥S̊5

≤ C(T0,Σ) ∥M0∥2C2 ∥∇Σh∥S5
∥φh∥C̊2 + C(T0,Σ) ∥M0∥C2 ∥∇Σφh∥S̊5

≤ C(T0,Σ,M)
(
1 + ∥h∥W5

)
∥φh∥W̊5

,

(3.5.100)

where we used the embedding theory in [28, Proposition 5.1] in the last inequality.

Remark 3.5.4. In order to make calculations concise, we will frequently use notations like

D (∇Σh) without additionally using DF by defining F (h) := ∇Σh. The simplified notation

denotes the derivative of the mapping h 7→ ∇Σh at h. This is similar to notations like (x2)′

or d(x2) in calculus. Moreover, we will not distinguish D and Dh when there is no confusion.
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3.5.3.2 Estimate of G1

We still assume that ∥h∥C4 < δ0 for a sufficiently small δ0 and ∥h∥C2 ≤ M . We rewrite

G1 as

G1 = −
(q
ν(χ)

(
∇u+∇u⊤

)y
M0∇Σh

)
· nΣ

−
(q
ν(χ)

(
M1∇u+ (M1∇u)⊤

)y
(nΣ −M0∇Σh)

)
· nΣ

=: I1 + I2.

(3.5.101)

In the term I1, the operator F : u 7→
q
ν(χ)

(
∇u+∇u⊤

)y
is linear, which implies

DF [u]φ =
q
ν(χ)

(
∇φu +∇φ⊤

u

)y
(3.5.102)

for all φ = (φu, φB, φp, φϖ, φh) ∈ W̊ . Thus, the Fréchet derivative DI1 at z = (u,B, p,ϖ, h)

dependents only on u and h, i.e.

DI1φ = − ((DFφu)M0∇Σh+ F [u]D (M0∇Σh)φh) · nΣ

= − ((DFφu)α + F [u] (Dαφh)) · nΣ.
(3.5.103)

This implies the following estimate:

∥DI1φ∥S̊T
4
≤ C(T0,Σ) ∥DFφu∥S̊T

4

(
∥α∥ST

4
+ ∥α∥∞

)
+ C(T0,Σ) ∥F [u]∥ST

4
∥Dαφh∥C̊T

1

≤ C(T0,Σ) ∥φu∥W̊T
1

(
∥h∥WT

5
+ ∥h∥∞

)
+ C(T0,Σ) ∥u∥WT

1
∥φh∥C̊T

2

≤ C(Σ, T0) (∥z∥WT + ∥h∥∞) ∥φ∥W̊T ,

(3.5.104)

where the constants are fixed for all T ∈ (0, T0].

To estimate I2, we define G : z 7→ M1∇u, whose derivative is

DG [z]φ = (DM1φh)∇u+M1∇φu. (3.5.105)

Then we obtain

DI2 [z]φ = −
(r
ν
(
DGφh + (DGφh)

⊤
)z

(nΣ −M0∇Σh)
)
· nΣ

+
(q
ν
(
G+G⊤)y (D (M0∇Σh)φh)

)
· nΣ

= −
(r
ν
(
DGφh + (DGφh)

⊤
)z

(nΣ − α)
)
· nΣ +

(q
ν
(
G+G⊤)y (Dαφh)

)
· nΣ.

(3.5.106)
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Thus, using the estimates of α and Dα, we have for all T ∈ (0, T0] that

∥DI2 [z]φ∥S̊T
4

≤ (Σ,M, T0)
∥∥∥rν (DGφh + (DGφh)

⊤
)z∥∥∥

S̊4

∥(nΣ − α)∥C1

+ (Σ,M, T0)
∥∥qν (G+G⊤)y∥∥

S4
∥(Dαφh)∥C̊1

≤ C(Σ,M, T0)
(
1 + ∥h∥C2

)
∥DGφh∥W̊6

+ C(Σ,M, T0) ∥G∥W6
∥φh∥C̊2

≤ C(Σ,M, T0)
(
1 + ∥h∥C2

) (
∥(DM1φh)∇u∥W̊6

+ ∥M1∇φu∥W̊6

)
+ C(Σ,M, T0) ∥M1∇u∥W6

∥φh∥C̊2
≤ C(Σ,M, T0) ∥DM1φh∥C̊1 ∥∇u∥W6

+ C(Σ,M, T0)
(
∥M1∥W6

+ ∥M1∥∞
)
∥∇φu∥W̊6

+ C(Σ,M, T0) ∥M1∥C1 ∥∇u∥W6
∥φh∥C̊2

≤ C(Σ,M, T0) ∥φh∥C̊2 ∥∇u∥W6
+ C(Σ,M, T0)

(
∥∇Σh∥W6

+ ∥∇Σh∥∞
)
∥∇φu∥W̊6

+ C(Σ,M, T0) ∥h∥C2 ∥∇u∥W6
∥φh∥C̊2

≤ C(Σ, T0,M) ∥φh∥W̊5
∥u∥W1

+ C(Σ,M, T0)
(
∥h∥W5

+ ∥∇Σh∥∞
)
∥φu∥W̊1

+ C(Σ, T0,M) ∥h∥C2 ∥u∥W1
∥φh∥W̊5

≤ C(Σ, T0,M) (∥z∥WT + ∥∇Σh∥∞) ∥φ∥W̊T ,

(3.5.107)

where and the last inequality is guaranteed by (3.5.58) and (3.5.59). For convenience, we

ignored the parameter T in some notations of function spaces.

From (3.5.104) and (3.5.106), we finally obtain

∥DG1 [z]φ∥S̊T
4
≤ C(Σ,M, T0)

(
∥z∥WT + ∥h∥CT

4

)
∥φ∥W̊T . (3.5.108)

3.5.3.3 Estimate of G2

As a preparation of the estimate of G2, we first calculate the derivative of the mean

curvature HΓ in (3.3.57):

HΓ = βtr (M0 (LΣ +∇Σα))− β3 (M0α)∇Σαα
⊤ (3.5.109)

For the function F (s) := 1/s, we have

DF [s] r = − r

s2
. (3.5.110)
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For the Euclidean norm G(x) := |x| =
√
x21 + · · ·+ x2n, its Fréchet derivative is

DG [x] v =
x · v
|x|

. (3.5.111)

Letting H(h) := nΣ −M0∇Σh, we have for all φ ∈ W̊T
5 that

DH [h]φ = − (DM0 [h]φ) (∇Σh)− (M0 [h]) (∇Σφ) . (3.5.112)

Since β(h) = F ◦G ◦H(h), we have

Dβ [h]φ = DF [G(H(h))]DG [H(h)]DH [h]φ

=
(nΣ −M0∇Σh) · ((DM0 [h]φ) (∇Σh) +M0 [h]∇Σφ)

|nΣ −M0∇Σh|3

= β3 (nΣ − α) · ((DM0φ) (∇Σh) +M0∇Σφ) ,

(3.5.113)

which implies

D(β3) [h]φ = 3β2 (Dβ [h]φ) = 3β5 (nΣ − α) · ((DM0φ) (∇Σh) +M0∇Σφ) . (3.5.114)

Now we calculate the derivative of E : h 7→ tr (M0 (LΣ +∇Σα)). Letting F : h 7→ LΣ+∇Σα,

we have

DF [h]φ = ∇Σ

(
(DM0 [h]φ) (∇Σh) + (M0 [h]) (∇Σφ)

)
. (3.5.115)

Letting G : h 7→ M0F , we have

DG [h]φ = (DM0 [h]φ) (F [h]) + (M0 [h]) (DF [h]φ)

= (DM0φ) (LΣ +∇Σα) +M0 (∇Σ ((DM0φ) (∇Σh) +M0∇Σφ)) .
(3.5.116)

Letting H : A 7→ tr(A), we have

DE [h]φ = DH [G(h)]DG [h]φ

= tr ((DM0φ) (LΣ +∇Σα) +M0 (∇Σ ((DM0φ) (∇Σh) +M0∇Σφ))) .
(3.5.117)

Using (3.5.112), we have

D (M0α) [h]φ = D (M0M0∇Σh) [h]φ

= (DM0φ) (M0∇Σh) + (M0) (D (M0∇Σh)φ) .
(3.5.118)
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Using (3.5.112) and (3.5.115), we obtain

D
(
∇Σαα

⊤) [h]φ = (D (∇Σα) [h]φ)
(
α⊤ [h]

)
+ (∇Σα [h])

((
D
(
α⊤)) [h]φ)

= (∇Σ ((DM0 [h]φ) (∇Σh) + (M0 [h]) (∇Σφ)))
(
α⊤ [h]

)
+ (∇Σα [h]) ((DM0 [h]φ) (∇Σh) + (M0 [h]) (∇Σφ))

⊤ .

(3.5.119)

Thus, we have

DHΓ [h]φ = ((Dβ)φ) tr (M0 (LΣ +∇Σα)) + (β) (D (tr (M0 (LΣ +∇Σα)))φ)

−
(
D
(
β3
)
φ
)
(M0α)

(
∇Σαα

⊤)
−
(
β3
)
(D (M0α)φ)

(
∇Σαα

⊤)− (β3
)
(M0α)

(
D
(
∇Σαα

⊤)φ)
= β3 (nΣ − α) ((DM0φ) (∇Σh) +M0∇Σφh) (tr ((M0) (LΣ +∇Σα)))

+ β (tr ((DM0φ) (LΣ +∇Σα) +M0 (∇Σ ((DM0φ) (∇Σh) +M0∇Σφh))))

− 3β5 (nΣ − α) · ((DM0φ) (∇Σh) +M0∇Σφh) (M0α)
(
∇Σαα

⊤)
− β3 ((DM0φ) (M0∇Σh) + (M0) (D (M0∇Σh)φ))

(
∇Σαα

⊤)
− β3M0α

(
∇Σ ((DM0φ)∇Σh+M0∇Σφh)α

⊤ +∇Σα ((DM0φ)∇Σh+M0∇Σφh)
⊤
)

=: I1 + I2 − I3 − I4 − I5.

(3.5.120)

When h = 0, we have M0 = I and ∇Σh = 0, which implies α = 0 and β = 1/ ∥nΣ∥ = 1.

Thus, the term I1 turns to

I1 [0] = nΣ (0 +∇Σφ) trLΣ = 0 (3.5.121)

since nΣ is perpendicular to ∇Σφ. The term I2 turns to

I2 [0] = tr (φLΣ (LΣ + 0) +∇Σ (0 +∇Σφ) I) =
(
trL2

Σ +△Σ

)
φ. (3.5.122)

By definition, we have α [h] = 0 when h = 0. Thus, we obtain

I3 [0] = I4 [0] = I5 [0] = 0 (3.5.123)

with no need for calculation. Therefore, we have

DHΓ [0] = trL2
Σ +△Σ. (3.5.124)
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Since the mapping F : h 7→ DHΓ [0]h is linear, its derivative is DF [h] = DHΓ [0] for all h.

Thus, the Fréchet derivative of G2 is

DG2 [h]φ = D(HΓ [h]−DHΓ [0]h)φ = I1 + I2 − I3 − I4 − I5 −
(
trL2

Σ +△Σ

)
φ (3.5.125)

with I1 to I5 defined in (3.5.120). It remains to estimate ∥I1∥, ∥I3∥, ∥I4∥, ∥I5∥ and

∥I2 − (trL2
Σ +△Σ)φ∥ term by term.

For I1, we first notice that the terms with structures like nΣ · ∇Σf or nΣ · M0∇Σf will

vanish. This is because the tangential gradient ∇Σ of a function is a tangent vector, which

is perpendicular to the normal vector nΣ; moreover, the matrix M0 maps tangent vectors

to tangent vectors. Thus, we obtain

(nΣ − α) ((DM0φ) (∇Σh) +M0∇Σφ)

= nΣ (DM0φ) (∇Σh)− α ((DM0φ) (∇Σh) +M0∇Σφ) ,
(3.5.126)

which implies that

I1 = β3 (nΣ − α) ((DM0φ) (∇Σh) +M0∇Σφ) (tr (M0 (LΣ +∇Σα)))

= β3 (nΣ (DM0φ) (∇Σh)− α ((DM0φ) (∇Σh) +M0∇Σφ)) (tr (M0 (LΣ +∇Σα)))

=: β3I11I12.

(3.5.127)

Using [28, (5.3)], we have

∥I1∥S̊4
≤ C(Σ, T0)

∥∥β3
∥∥
C1
∥I11∥S̊4

(
∥I12∥∞ + ∥I12∥S4

)
. (3.5.128)

From the formula of β in (3.3.42), we can find a sufficiently small δ0(Σ) ∈ (0, 1), such that

for all ∥h∥C3 < δ0, if ∥h∥C2 < M for some M > 0 then

∥∥β3
∥∥
C1

≤ C(Σ,M). (3.5.129)
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Without loss of generality, we can always use the same notation δ0 and M in the derivation

of (3.5.129). This is because we can always choose the smallest δ0 and the largest M from

finite many candidates. From [28, (5.4)], we have for all T ∈ (0, T0] that

∥I11∥S̊T
4
= ∥nΣ (DM0φ) (∇Σh)− α ((DM0φ) (∇Σh) +M0∇Σφh)∥S̊4

≤ ∥nΣ (DM0φ) (∇Σh)∥S̊4
+ ∥α ((DM0φ) (∇Σh) +M0∇Σφh)∥S̊4

≤ C(Σ, T0) ∥DM0φ∥S̊4

(
∥∇Σh∥S4

+ ∥∇Σh∥∞
)

+ C(Σ, T0)
(
∥α∥S4

+ ∥α∥∞
)
∥(DM0φ) (∇Σh) +M0∇Σφh∥S̊4

≤ C(Σ, T0,M) ∥φh∥S̊4

(
∥∇Σh∥S4

+ ∥∇Σh∥∞
)

+ C(Σ, T0,M)
(
∥∇Σh∥S4

+ ∥∇Σh∥∞
) ((

∥∇Σh∥S4
+ ∥∇Σh∥∞

)
∥φh∥S̊4

+ ∥∇Σφh∥S̊4

)
≤ C(Σ, T0,M) (∥z∥WT + ∥∇Σh∥∞) ∥φ∥W̊T .

(3.5.130)

The parameter T in the notations of function spaces is ignored for convenience. When

∥h∥CT0
0

≤ δ0 and ∥h∥CT0
1

≤M , for all T ∈ (0, T0] we have

∥I12∥ST
4
≤ C(T0,Σ) ∥M0∥C1 ∥LΣ +∇Σα∥S4

≤ C(T0,Σ) ∥M0∥C1
(
∥LΣ∥C1(Σ) + ∥∇Σα∥S4

)
≤ C(Σ, T0,M)

(
1 + ∥α∥S5

)
≤ C(Σ, T0,M)

(
1 + ∥h∥W5

)
≤ C(Σ, T0,M) (1 + ∥z∥WT ) .

(3.5.131)

Moreover, we have

∥I12∥C0 ≲ ∥M0∥C0 ∥LΣ +∇Σα∥C0 ≤ C(Σ,M). (3.5.132)

Thus, when ∥h∥C0 < δ0 and ∥h∥C1 < M , for all φ ∈ S̊4 and T ∈ (0, T0] we have

∥I1∥S̊T
4
≤ C(Σ, T0,M) (1 + ∥z∥WT ) (∥z∥WT + ∥∇Σh∥∞) ∥φ∥S̊T

4
. (3.5.133)

Similarly to the derivation of I1, we remove those vanishing products of perpendicular

terms in I3 and I4, which implies

∥I3∥S̊T
4
≤ C(Σ, T0,M) (1 + ∥z∥WT )

(
∥h∥WT

5
+ ∥h∥CT

4

)
∥φ∥W̊T

5
(3.5.134)
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and

∥I4∥S̊T
4
≤ C(Σ, T0,M) ∥(DM0φ) (M0∇Σh) + (M0) (D (M0∇Σh)φ)∥C̊T

1
∥∇Σα∥ST

4

∥∥α⊤∥∥
CT
1

≤ C(Σ, T0,M)
(
1 + ∥h∥CT

2

)
∥h∥CT

2
∥φ∥W̊T ∥z∥WT

(3.5.135)

provided that ∥h∥CT0
0
< δ0 and ∥h∥CT0

2
< M . For the term I5, we have to be careful with

the selection of norms in order to estimate higher-order derivatives with our nonredundant

regularity. We have for all T ∈ (0, T0] that

∥I5∥S̊T
4

≤ C(Σ, T0,M) ∥M0α∥C1
(
∥α∥S4

+ ∥α∥∞
)
∥∇Σ ((DM0φh)(∇Σh) +M0∇Σφh)∥S̊4

+ C(Σ, T0,M) ∥M0α∥C1 ∥∇Σα∥S4
∥(DM0φh)(∇Σh) +M0∇Σφh∥C̊1

≤ C(Σ, T0,M) ∥h∥C2
(
∥∇Σh∥S4

+ ∥∇Σh∥∞
)
∥(DM0φh)(∇Σh) +M0∇Σφh∥S̊5

+ C(Σ, T0,M) ∥h∥C2 ∥h∥W5
∥(DM0φh)(∇Σh) +M0∇Σφh∥C̊1

≤ C(Σ, T0,M)
(
∥∇Σh∥S4

+ ∥∇Σh∥∞
) (

∥φh∥C̊2 ∥h∥W5
+ ∥φh∥W̊5

)
+ C(Σ, T0,M) ∥h∥W5

(
∥φh∥C̊1 ∥h∥C2 + ∥φh∥C̊2

)
≤ C(Σ, T0,M)

(
∥h∥CT

3
+ ∥z∥WT

)(
1 + ∥h∥CT

2
+ ∥z∥WT

)
∥φ∥W̊T .

(3.5.136)

It remains to estimate I2 − (trL2
Σ +△Σ)φh, which can be written as

I2 −
(
trL2

Σ +△Σ

)
φ

= β (tr ((DM0φ) (LΣ +∇Σα) + (∇Σ ((DM0φ) (∇Σh) +M0∇Σφ))M0))−
(
trL2

Σ +△Σ

)
φ

= tr
(
β (DM0φ) (LΣ +∇Σα)− L2

Σφ
)
+ tr

(
β (∇Σ ((DM0φ) (∇Σh) +M0∇Σφ))M0 −∇2

Σφ
)

= tr
(
β (DM0φ)LΣ − L2

Σφ
)
+ tr (β (DM0φ)∇Σα)

+ tr (β∇Σ ((DM0φ) (∇Σh))M0) + tr
(
β∇Σ (M0∇Σφ)M0 −∇2

Σφ
)

=: tr (I21 + I22 + I23 + I24) .

(3.5.137)

We still assume that ∥h∥C0 < δ0, ∥h∥C2 < M and T ∈ (0, T0]. We recall that the product

of two bounded and Lipschitz continuous functions is still Lipschitz continuous. Thus, the

86



estimate of I21 to I24 can be simplified to the estimate of their factors. For I21, we have for

all T ∈ (0, T0] that

∥I21∥S̊T
4
=
∥∥β (DM0φ)LΣ − L2

Σφ
∥∥
S̊T
4

≤
∥∥β (DM0φ)LΣ − βL2

Σφ
∥∥
S̊T
4
+
∥∥βL2

Σφ− L2
Σφ
∥∥
S̊T
4

≤ C(Σ, T0) ∥β∥C1 ∥M0LΣM0 − LΣ∥S4
∥φh∥C̊1 + C(Σ, T0) ∥β − 1∥S4

∥φh∥C̊1 .

(3.5.138)

From the structure of β in (3.3.42) and the fact that |nΣ| = 1, there exists δ0(Σ) ∈ (0, 1),

such that when ∥h∥C3 < δ0 and ∥h∥C2 < M we have

∥nΣ − α∥C0 ≥
1

2
and ∥β∥C1 ≤ C(Σ,M).

Then we can obtain that

|β − 1| =
∣∣∣∣ 1

|nΣ − α|
− 1

∣∣∣∣ = ∣∣∣∣ |nΣ| − |nΣ − α|
|nΣ − α|

∣∣∣∣ ≤ |α|
|nΣ − α|

≤ C |α| . (3.5.139)

It then follows that

∥β − 1∥S4
≤ C(Σ,M, T0) ∥∇Σh∥S4

(3.5.140)

and

∥β − 1∥∞ ≤ C(Σ) ∥∇Σh∥∞ . (3.5.141)

Moreover, from the structure of M0 in (3.5.35), we have

∥M0 − I∥S4
= ∥M0LΣh∥S4

≤ C(Σ,M, T0) ∥h∥S4
, (3.5.142)

which implies that

∥M0LΣM0 − LΣ∥ST
4

≤ ∥(M0 − I)LΣM0∥S4
+ ∥LΣ (M0 − I)∥S4

≤ C(T0,Σ) ∥LΣM0∥C1 ∥M0 − I∥S4
+ C(T0,Σ) ∥LΣ∥C1(Σ) ∥M0 − I∥S4

≤ C(Σ, T0,M) ∥M0 − I∥S4
≤ C(Σ, T0,M) ∥h∥ST

4
.

(3.5.143)

From (3.5.138), (3.5.140) and (3.5.143), we have for all T ∈ (0, T0] that

∥I21∥S̊T
4
≤ C(Σ,M, T0) ∥h∥WT ∥φh∥W̊T . (3.5.144)
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Using estimates in [28, Lemma 5.2], we obtain the estimate of I22:

∥I22∥S̊T
4
≤ C(Σ, T0) ∥β∥CT

1
∥DM0φh∥S̊T

4

(
∥∇Σα∥ST

4
+ ∥∇Σα∥CT

0

)
≤ C(Σ, T0,M)

(
∥h∥WT

5
+ ∥h∥CT

4

)
∥φh∥S̊T

4
.

(3.5.145)

Since φh ∈ W̊5, the term I23 have the estimate

∥I23∥S̊T
4
≤ C(Σ, T0) ∥β∥C1 ∥∇Σ ((DM0φ) (∇Σh))∥S̊4

∥M0∥C1
≤ C(Σ, T0,M) ∥∇Σ ((DM0φ) (∇Σh))∥S̊4

≤ C(Σ, T0,M) ∥∇Σ (DM0φ) (∇Σh)∥S̊4
+ C(Σ, T0,M) ∥(DM0φ)∇Σ (∇Σh)∥S̊4

≤ C(Σ, T0,M) ∥∇Σ (DM0φ)∥S̊4

(
∥∇Σh∥S4

+ ∥∇Σh∥∞
)
+ C(Σ, T0,M) ∥DM0φ∥C̊1

∥∥∇2
Σh
∥∥
S4

≤ C(Σ, T0,M) ∥DM0φ∥S̊5

(
∥∇Σh∥S4

+ ∥∇Σh∥∞
)
+ C(Σ, T0,M) ∥φ∥C̊1 ∥h∥W5

≤ C(Σ, T0,M) (∥z∥WT + ∥∇Σh∥∞) ∥φ∥W̊T .

(3.5.146)

Similarly, we obtain the estimate of I24:

∥I24∥S̊T
4

≤
∥∥β (∇Σ (M0∇Σφh)M0 −∇2

Σφh

)∥∥
S̊4

+
∥∥(β − 1)∇2

Σφh

∥∥
S̊4

≤ C(T0) ∥β∥C1 ∥(M0∇Σφh)M0 −∇Σφh∥S̊4
+ C(T0)

(
∥β − 1∥S4

+ ∥β − 1∥∞
) ∥∥∇2

Σφh

∥∥
S̊4

≤ C(Σ, T0,M) ∥h∥S4
∥∇Σφh∥S̊4

+ C(Σ, T0,M)
(
∥∇Σh∥S4

+ ∥∇Σh∥∞
) ∥∥∇2

Σφh

∥∥
S̊4

≤ C(Σ, T0,M)
(
∥h∥WT

5
+ ∥∇Σh∥∞

)
∥φ∥W̊T .

(3.5.147)

From the estimates of I21 to I24, we obtain the estimate of I2 − (trL2
Σ +△Σ)φh. For all

T ∈ (0, T0] we have

∥∥I2 − (trL2
Σ +△Σ

)
φh

∥∥
S̊T
4
≤ C(Σ, T0,M)

(
∥z∥WT + ∥h∥CT

4

)
∥φ∥W̊T . (3.5.148)

Consequently, from (3.5.125) and the estimates in (3.5.133), (3.5.134), (3.5.135), (3.5.136)

and (3.5.148), we obtain for all T ∈ (0, T0] that

∥DG2 [z]φ∥S̊T
4
≤ C(Σ, T0,M)

(
∥h∥CT

4
+ ∥z∥WT

)(
1 + ∥h∥CT

2
+ ∥z∥WT

)
∥φ∥W̊T . (3.5.149)
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3.5.3.4 Estimate of G3

Now we study G3. We abbreviate it to

G3 = PΣ

r
ν(χ)((I −M1)∇u+ ((I −M1)∇u)⊤)

z
M0∇Σh

+ PΣ

r
ν(χ)

(
M1∇u+ (M1∇u)⊤

)z
nΣ

−
((r

ν(χ)
(
(I −M1)∇u+ ((I −M1)∇u)⊤

)z
(nΣ −M0∇Σh)

)
· nΣ

)
M0∇Σh

=: I1 + I2 − I3.

(3.5.150)

To estimate I1, we first calculate the Fréchet derivative of F : z 7→ (I −M1)∇u:

DF [z]φ = (−DM1φh) (∇u) + (I −M1) (∇φu) , (3.5.151)

which implies that

DI1 [z]φ = PΣ

r
ν
(
(−DM1φh) (∇u) + (I −M1) (∇φu)

)
+ν
(
(−DM1φh) (∇u) + (I −M1) (∇φu)

)⊤z
M0∇Σh

+ PΣ

r
ν(χ)

(
(I −M1)∇u+ ((I −M1)∇u)⊤

)z
((M0φhLΣM0) (∇Σh) +M0 (∇Σφh))

=: I11 + I12.

(3.5.152)

Notice that the estimation of
q
A+ A⊤y

is equivalent to the estimation of JAK. Moreover,

the projection matrix PΣ is fixed and thus will only become a constant in the estimation.

Suppose that ∥h∥C4 < δ0 for some sufficiently small δ0(Σ) and ∥h∥C2 < M for some M . In

I11, we first obtain

∥J(−DM1φh) (∇u) + (I −M1) (∇φu)K∥S̊4

≲ ∥(−DM1φh) (∇u) + (I −M1) (∇φu)∥W6

≤ C(Σ, T0) ∥DM1φh∥C̊1 ∥∇u∥W6
+ C(Σ, T0) ∥I −M1∥C1 ∥∇φu∥W̊6

≤ C(Σ, T0,M) ∥φh∥C̊2 ∥u∥W1
+ C(Σ, T0,M) ∥φu∥W̊1

≤ C(Σ, T0,M) (1 + ∥z∥W) ∥φ∥W̊ .

(3.5.153)
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The estimation of M0∇Σh =: α has been studied in Section 3.5.3.1. To estimate I12, we use

the same argument as in (3.5.153) to obtain

∥J(I −M1)∇uK∥S4
≤ C(Σ, T0,M) ∥u∥W1

. (3.5.154)

Moreover, we have

∥(M0φhLΣM0) (∇Σh) +M0 (∇Σφh)∥C̊1 ≤ C(Σ, T0,M) ∥φh∥C̊2 . (3.5.155)

Therefore, by (3.5.153), (3.5.154) and (3.5.155) we have

∥DI1 [z]φ∥S̊4
≤ C(Σ, T0,M) (1 + ∥z∥W) ∥φ∥W̊

(
∥h∥W5

+ ∥∇Σh∥∞
)
+ C(Σ, T0,M) ∥u∥W1

∥φh∥C̊2 .
(3.5.156)

Using almost the same argument as for I1, we obtain the Fréchet derivative of I2 and I3:

DI2φ = PΣ

r
ν
(
(DM1φh) (∇u) +M1∇φu + ((DM1φh) (∇u) +M1∇φu)

⊤
)z

nΣ,

(3.5.157)

and

DI3φ =

((r
ν
(
(−DM1φh) (∇u) + (I −M1) (∇φu)

)
+ν
(
(−DM1φh) (∇u) + (I −M1) (∇φu)

)⊤z
(nΣ −M0∇Σh)

+
r
ν(I −M1)∇u+ ν ((I −M1)∇u)⊤

z (
(M0φhLΣM0) (∇Σh) +M0 (∇Σφh)

))
·nΣ

)
M0∇Σh

+

((r
ν(I −M1)∇u+ ν ((I −M1)∇u)⊤

z
(nΣ −M0∇Σh)

)
· nΣ

)
(D (M0∇Σh)φh)

=: A1 + A2.

(3.5.158)
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We remind the readers to be careful with the brackets in the term A1 due to its complexity.

Using the estimates in [28, Proposition 5.1 (a)], we have

∥DI2φ∥S̊4
≲ ∥J(DM1φh) (∇u) +M1∇φuK∥S̊4

≲ ∥(DM1φh) (∇u) +M1∇φu∥W̊6

≤ C(Σ, T0) ∥DM1φh∥C̊1 ∥∇u∥W6
+ C(Σ, T0)

(
∥M1∥W6

+ ∥M1∥∞
)
∥∇φu∥W̊6

≤ C(Σ, T0,M) ∥φh∥C̊2 ∥∇u∥W6
+ C(Σ, T0,M)

(
∥∇Σh∥W6

+ ∥∇Σh∥∞
)
∥∇φu∥W̊6

≤ C(Σ, T0,M) ∥φh∥W̊5
∥u∥W1

+ C(Σ, T0,M)
(
∥h∥W5

+ ∥∇Σh∥∞
)
∥φu∥W̊1

.

(3.5.159)

To estimate I3, we need the following estimates. For the term A1 in (3.5.158), we

abbreviate it to ((q
ν
(
I31 + I⊤31

)y
I32 +

q
ν
(
I33 + I⊤33

)y
I34
)
· nΣ

)
I35, (3.5.160)

where

I31 := (−DM1φh) (∇u) + (I −M1) (∇φu) ,

I32 := nΣ −M0∇Σh,

I33 := (I −M1)∇u,

I34 := (M0φhLΣM0) (∇Σh) +M0 (∇Σφh) ,

I35 := M0∇Σh.

(3.5.161)

For I31 we have

∥(DM1φh) (∇u) + (I −M1) (∇φu)∥W̊6

≤ C(Σ, T0) ∥DM1φh∥C̊1 ∥∇u∥W6
+ C(Σ, T0) ∥I −M1∥C1 ∥∇φu∥W̊6

≤ C(Σ, T0,M) ∥φh∥C̊2 ∥∇u∥W6
+ C(Σ, T0,M) ∥∇φu∥W̊6

≤ C(Σ, T0,M) ∥φh∥W̊5
∥∇u∥W6

+ C(Σ, T0,M) ∥φu∥W̊1
.

(3.5.162)

For I32 we have

∥nΣ −M0∇Σh∥C1 ≤ C(Σ,M). (3.5.163)

For I33 we have

∥(I −M1)∇u∥W6
≤ C(Σ, T0) ∥I −M1∥C1 ∥∇u∥W6

≤ C(Σ, T0,M) ∥u∥W1
. (3.5.164)
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For I34 we have

∥(M0φhLΣM0) (∇Σh) +M0 (∇Σφh)∥C̊1
≤ ∥M0φhLΣM0∥C̊1 ∥∇Σh∥C1 + ∥M0∥C1 ∥∇Σφh∥C̊1
≤ C(Σ,M) ∥φh∥C̊1 ∥h∥C2 + C(Σ,M) ∥φh∥C̊2 .

(3.5.165)

For I35 we have

∥M0∇Σh∥C1 ≲ ∥M0∥C1 ∥∇Σh∥C1 ≤ C(Σ,M) ∥h∥C2 . (3.5.166)

Thus, we have∥∥((qν (I31 + I⊤31
)y
I32 +

q
ν
(
I33 + I⊤33

)y
I34
)
· nΣ

)
I35
∥∥
S̊4

≤ C(Σ, T0)
(
∥JI31K∥S̊4

∥I32∥C1 + ∥JI33K∥S4
∥I34∥C̊1

) (
∥I35∥S4

+ ∥I35∥∞
)

≤ C(Σ, T0)
(
∥I31∥W̊6

∥I32∥C1 + ∥I33∥W6
∥I34∥C̊1

) (
∥I35∥S4

+ ∥I35∥∞
)

≤ C(Σ, T0,M)
(
∥φh∥W̊5

∥∇u∥W6
+ ∥φu∥W̊1

+ ∥u∥W1
∥φh∥C̊2 ∥h∥C2

+ ∥u∥W1
∥φh∥C̊2

) (
∥∇Σh∥S4

+ ∥∇Σh∥∞
)

≤ C(Σ, T0,M)
(
∥φ∥W̊ ∥z∥W + ∥φ∥W̊ + ∥z∥W ∥φ∥W̊ ∥h∥C2 + ∥z∥W ∥φ∥W̊

) (
∥h∥W5

+ ∥∇Σh∥∞
)

≤ C(Σ, T0,M) (1 + ∥z∥W)
(
∥h∥W5

+ ∥∇Σh∥∞
)
∥φ∥W̊ .

(3.5.167)

The term A2 in (3.5.158) can be abbreviated to

((q
ν
(
I33 + I⊤33

)y
I32
)
· nΣ

)
(Dαφh) , (3.5.168)

where α is defined in (3.5.98) and estimated in (3.5.96) and (3.5.99). Thus, we have∥∥((qν (I33 + I⊤33
)y
I32
)
· nΣ

)
(Dαφh)

∥∥
S̊4

≤ C(Σ, T0) ∥JI33K∥S4
∥I32∥C1 ∥Dαφh∥C̊1

≤ C(Σ, T0,M) ∥I33∥W6
∥φh∥C̊2 ≤ C(Σ, T0,M) ∥u∥W1

∥φh∥C̊2 ≤ C(Σ, T0,M) ∥z∥W ∥φ∥W̊ .

(3.5.169)

From (3.5.167) and (3.5.169), we obtain

∥DI3φ∥S̊4
≤ C(Σ, T0,M) (1 + ∥z∥W)

(
∥h∥W5

+ ∥∇Σh∥∞
)
∥φ∥W̊ + C(Σ, T0,M) ∥z∥W ∥φ∥W̊ .

(3.5.170)

Consequently, the estimate of DG3 follows (3.5.156), (3.5.159) and (3.5.170). For all T ∈

(0, T0] we have

∥DG3 [z]φ∥S̊T
4
≤ C(Σ, T0,M) (1 + ∥z∥WT ) (∥z∥WT + ∥∇Σh∥∞) ∥φ∥W̊T . (3.5.171)
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3.5.4 Estimates of nonlinear terms

In this section, we estimate the nonlinear operators Gi using the Si norm with i =

1, · · · , 5, using similar ideas as in [15, 28]. Similar to the arguments before, we still assume

∥h∥C4 < δ0 for some sufficiently small δ0(Σ) and ∥h∥C2 < M . We will also ignore the

parameter T in function spaces when there is no confusion.

3.5.4.1 Term G1

We start with the Fréchet derivative ofG1. We will use the S1 norm, i.e. the Lq([0, T ];Lq(Ω))

norm. For the 1st term we have

D

(
1

2
∇
(
|B|2

))
φ = D(∇B ·B)φ = ∇φB ·B +∇B · φB. (3.5.172)

Its estimate is∥∥∥∥(D1

2
∇
(
|B|2

))
φ

∥∥∥∥
S̊1

≲ ∥∇φB∥C̊0 ∥B∥S1
+ ∥∇B∥S1

∥∇φB∥C̊0

≲ ∥φB∥C̊1 ∥B∥S1
+ ∥B∥W6

∥φB∥C̊0
≲ ∥φB∥W̊2

∥B∥W2
+ ∥B∥W2

∥φB∥W̊2
≤ C(Σ, T0) ∥z∥W ∥φ∥W̊ .

(3.5.173)

The 2nd and 3rd terms can be estimated using exactly the same argument and function

spaces. For the 4th term we have

D (M3∇u)φ = (DM3φh)∇u+M3∇φu. (3.5.174)

Using (3.5.83), we have

∥D (M3∇u)φ∥S̊1
≲ ∥DM3φh∥C̊0 ∥∇u∥S1

+ ∥M3∥S1
∥∇φu∥C̊0

≤ C(Σ, T0,M) ∥φh∥C̊1 ∥u∥W1
+ C(Σ, T0,M) ∥∂th∥S1

∥φu∥W̊1

≤ C(Σ, T0,M) ∥z∥W ∥φ∥W̊ .

(3.5.175)

For the 5th term we have

D (uM1∇u)φ = φuM1∇u+ u (DM1φh)∇u+ uM1∇φu. (3.5.176)
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Its estimate is

∥D (uM1∇u)φ∥S̊1

≲ ∥φu∥C̊0 ∥M1∥C0 ∥∇u∥S1
+ ∥u∥∞ ∥DM1φh∥C̊0 ∥∇u∥S1

+ ∥u∥S1
∥M1∥C0 ∥∇φu∥C̊0

≤ C(Σ, T0,M)
(
∥φu∥C̊0 ∥h∥C3 ∥u∥W1

+ ∥u∥∞ ∥φh∥C̊3 ∥u∥W1
+ ∥u∥W1

∥h∥C3 ∥φu∥C̊3
)

≤ C(Σ, T0,M)
(
∥h∥C3 + ∥u∥∞

)
∥z∥W ∥φ∥W̊ .

(3.5.177)

Using the same argument, we obtain the estimate of the 6th term:

∥D (BM1∇B)φ∥S̊1
≤ C(Σ, T0,M)

(
∥h∥C1 + ∥B∥∞

)
∥z∥W ∥φ∥W̊ . (3.5.178)

For the 7th term we have

D

(
1

2
M1∇

(
|B|2

))
φ = (DM1φ)∇BB +M1∇φBB +M1∇BφB. (3.5.179)

Estimating by terms, we obtain

∥(DM1φ)∇BB∥S̊1
≲ ∥DM1φh∥C̊0 ∥∇B∥S1

∥B∥∞

≤ C(Σ, T0,M) ∥φh∥W̊5
∥B∥W2

∥B∥∞ ≤ C(Σ, T0,M) ∥φ∥W̊ ∥z∥W ∥B∥∞ ,
(3.5.180)

∥M1∇φBB∥S̊1
≲ ∥M1∥C0 ∥∇φB∥C̊0 ∥B∥S1

≤ C(Σ, T0,M) ∥h∥C3 ∥φB∥W̊2
∥B∥W2

≤ C(Σ, T0,M) ∥h∥C3 ∥φ∥W̊ ∥z∥W ,
(3.5.181)

and

∥M1∇BφB∥S̊1
≲ ∥M1∥C0 ∥φB∥C̊0 ∥∇B∥S1

≤ C(Σ, T0,M) ∥h∥C3 ∥φB∥W̊2
∥B∥W2

≤ C(Σ, T0,M) ∥h∥C3 ∥φ∥W̊ ∥z∥W .
(3.5.182)

Thus, we have∥∥∥∥D(1

2
M1∇

(
|B|2

))
φ

∥∥∥∥
S̊1

≤ C(Σ, T0,M)
(
∥h∥C3 + ∥B∥∞

)
∥z∥W ∥φ∥W̊ . (3.5.183)

For the 8th term we have

D (M1∇p)φ = (DM1φh)∇p+M1∇φp. (3.5.184)

94



For any φ ∈ W̊ we have the estimate

∥D (M1∇p)φ∥S̊1
≲ ∥DM1φh∥C̊0 ∥∇p∥S1

+ ∥M1∥∞ ∥∇φp∥S1

≤ C(Σ, T0,M) ∥φh∥C̊1 ∥p∥W3
+ C(Σ, T0,M) ∥∇Σh∥∞ ∥φp∥W̊3

≤ C(Σ, T0,M) ∥φh∥W̊5
∥p∥W3

+ C(Σ, T0,M) ∥∇Σh∥∞ ∥φp∥W̊3

≤ C(Σ, T0,M) (∥z∥W + ∥∇Σh∥∞) ∥φ∥W̊ .

(3.5.185)

For the 9th term, notice that the viscosity ν is a fixed function in the transformed equations

since the interface has been pulled to a fixed interface. Thus, we have

D
(
νM4 : ∇2u

)
φ = ν (DM4φh) : ∇2u+ νM4 : ∇2φu. (3.5.186)

For any φ ∈ W̊ we have the estimate∥∥D (νM4 : ∇2u
)
φ
∥∥
S1

≲ ∥DM4φh∥C̊0
∥∥∇2u

∥∥
S1

+ ∥M4∥∞
∥∥∇2φu

∥∥
S1

≤ C(Σ, T0,M) ∥φh∥C̊3 ∥u∥W1
+ C(Σ, T0,M) ∥∇Σh∥∞ ∥φu∥W̊1

≤ C(Σ, T0,M) ∥φh∥W̊5
∥u∥W1

+ C(Σ, T0,M) ∥∇Σh∥∞ ∥φu∥W̊1

≤ C(Σ, T0,M) (∥z∥W + ∥∇Σh∥∞) ∥φ∥W̊ .

(3.5.187)

For the 10th term we have

D (νM2 · (∇u))φ = ν (DM2φh) · (∇u) + νM2 · (∇φu) . (3.5.188)

For any φ ∈ W̊ we have the estimate

∥D (νM2 · (∇u))φ∥S1
≲ ∥DM2φh∥C̊0 ∥∇u∥S1

+ ∥M2∥∞ ∥∇φu∥S1

≤ C(Σ, T0,M) ∥φh∥C̊4 ∥u∥W1
+ C(Σ, T0,M) ∥∇Σh∥∞ ∥φu∥W̊1

≤ C(Σ, T0,M) (∥z∥W + ∥∇Σh∥∞) ∥φ∥W̊ .

(3.5.189)

Combining the estimates of all these 10 terms, we obtain

∥DG1 [z]φ∥S1
≤ C(Σ, T0,M) (∥∇Σh∥∞ + (1 + ∥u∥∞ + ∥B∥∞) ∥z∥W) ∥φ∥W̊ . (3.5.190)
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3.5.4.2 Term G2

Now we estimate G2 using the S2 norm, which is equal to the S1 norm. The 1st and 2nd

terms u∇B and B∇u can be treated using the same argument as in (3.5.172) and (3.5.173)

since their structures and spaces are exactly the same. Thus, we have

∥D (u∇B)φ∥S2
≤ C ∥z∥W ∥φ∥W̊ (3.5.191)

and

∥D (B∇u)φ∥S2
≤ C ∥z∥W ∥φ∥W̊ . (3.5.192)

The 3rd and 4th terms uM1∇B and BM1∇u can be treated using the same argument as

in (3.5.176) and (3.5.177), which implies

∥D (uM1∇B)φ∥S2

≤ C(Σ, T0,M) ∥φu∥C̊0 ∥h∥C3 ∥B∥W2
+ C(Σ, T0,M) ∥u∥∞ ∥φh∥C̊3 ∥B∥W2

+ C(Σ, T0,M) ∥u∥W1
∥h∥C3 ∥φB∥C̊3

≤ C(Σ, T0,M)
(
∥h∥C3 + ∥u∥∞

)
∥z∥W ∥φ∥W̊ ,

(3.5.193)

and

∥D (BM1∇u)φ∥S2
≤ C(Σ, T0,M)

(
∥h∥C3 + ∥B∥∞

)
∥z∥W ∥φ∥W̊ . (3.5.194)

The 5th, 6th and 7th terms M3∇B, σM4 : ∇2B, and σM2 · ∇B can be treated using the

same argument as in (3.5.175), (3.5.187), and (3.5.189), which implies

∥D (M3∇B)φ∥S2
≤ C(Σ, T0,M) ∥z∥W ∥φ∥W̊ , (3.5.195)

∥∥D (σM4 : ∇2B
)
φ
∥∥
S2

≤ C(Σ, T0,M) (∥z∥W + ∥∇Σh∥∞) ∥φ∥W̊ , (3.5.196)

and

∥D (σM2 · (∇B))φ∥S2
≤ C(Σ, T0,M) (∥z∥W + ∥∇Σh∥∞) ∥φ∥W̊ . (3.5.197)

Consequently, we have the same estimate as in (3.5.190):

∥DG2 [z]φ∥S2
≤ C(Σ, T0,M) (∥∇Σh∥∞ + (1 + ∥u∥∞ + ∥B∥∞) ∥z∥W) ∥φ∥W̊ . (3.5.198)
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3.5.4.3 Term G3

For term G3, we only need to estimate M1 : ∇u. Its Fréchet derivative is

DG3φ = D (M1 : ∇u)φ = (DM1φh) : ∇u+M1 : ∇φu. (3.5.199)

Suppose that ∥h∥C4 < δ0 and ∥h∥C2 < M . For all φ ∈ W̊ , using similar ideas as in [28, (5.20)],

we have

∥DG3φ∥S̊3
= ∥D (M1 : ∇u)φ∥S̊3

≤ ∥D (M1 : ∇u)φ∥W̊ 1,q([0,T ];Ẇ−1,q(Ω)) + ∥D (M1 : ∇u)φ∥Lq([0,T ];W 1,q(Ω))

≤ C(Σ, T0,M)
(
∥∇Σh∥∞ + ∥h∥WT

5
+ ∥u∥WT

1

)(
∥φu∥W̊T

1
+ ∥φh∥W̊T

5

)
+ C ∥DM1φh∥C̊T

3
∥∇u∥WT

1
+ C ∥M1∥CT

3
∥∇φu∥W̊T

1

≤ C(Σ, T0,M) (∥∇Σh∥∞ + ∥z∥W) ∥φ∥W̊T .

(3.5.200)

3.5.4.4 Term G4

For term G4, all its components have been studied in Section 3.5.3. We estimate its

Fréchet derivative

DG4φ =
(
DG1φh +DG2φh + κ(trL2

Σ)φh

)
nΣ +DG3φh. (3.5.201)

When ∥h∥C4 < δ0 and ∥h∥C2 < M , using (3.5.108), (3.5.149) and (3.5.171), we obtain for all

φ ∈ W̊ and all T ∈ (0, T0] that

∥DG4φ∥S̊T
4
≲ ∥DG1φh∥S̊4

+ ∥DG2φh∥S̊4
+
∥∥trL2

Σφh

∥∥
S̊4

+ ∥DG3φh∥S̊4

≤ C(Σ, T0,M)
(
∥z∥W + ∥h∥C4

)
∥φ∥W

+ C(Σ, T0,M)
(
∥h∥C4 + ∥z∥W

) (
1 + ∥h∥C2 + ∥z∥W

)
∥φ∥W̊ + C

∥∥trL2
Σφh

∥∥
S̊4

+ C(Σ, T0,M) (1 + ∥z∥W)
(
∥h∥C4 + ∥z∥W

)
∥φ∥W̊

≤ C(Σ, T0,M)
(
1 + ∥h∥CT

2
+ ∥z∥WT

)(
∥h∥CT

4
+ ∥z∥WT

)
∥φ∥W̊T + C

∥∥trL2
Σφh

∥∥
S̊T
4
.

(3.5.202)
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3.5.4.5 Term G5

In the term G5, we recall that b is a fixed auxiliary function for linearity. The details of

the term b can be found in [15]. For all φ ∈ W̊ we have

DG5φ = − ((DM0φh)(∇Σh)) · u+ ((I −M0)∇Σφh) · u

+ ((I −M0)∇Σh) · φu − φu · ∇Σh+ (b− u) · ∇Σφh

=: −I1 + I2 + I3 − I4 + I5.

(3.5.203)

Suppose that ∥h∥C4 < δ0 and ∥h∥C2 < M . From [26, Proposition 5.1 (a) and Lemma 5.5], we

have for all T ∈ (0, T0] that

∥I1∥S̊T
5
≤ C(Σ, T0)

∥∥u⊤(DM0φh)
∥∥
S̊5

(
∥∇Σh∥S5

+ ∥∇Σh∥∞
)

≤ C(T0) ∥u∥S5
∥DM0φh∥C̊2

(
∥∇Σh∥S5

+ ∥∇Σh∥∞
)

≤ C(Σ, T0,M) ∥u∥S5
∥φh∥C̊2

(
∥∇Σh∥S5

+ ∥∇Σh∥∞
)

≤ C(Σ, T0,M) ∥u∥W1
∥φh∥W̊5

(
∥h∥W5

+ ∥∇Σh∥∞
)

≤ C(Σ, T0,M) ∥z∥WT (∥z∥WT + ∥∇Σh∥∞) ∥φ∥W̊T .

(3.5.204)

Since I −M0 = (I − hLΣ)
−1 ((I − hLΣ)− I) = −M0LΣh, we have

∥I2∥S̊T
5
= ∥((M0LΣh)∇Σφh) · u∥S̊5

≤ C(Σ, T0,M)
(
∥h∥S5

+ ∥h∥∞
) (

∥u∥S5
+ ∥u∥∞

)
∥∇Σφh∥S̊5

≤ C(Σ, T0,M) (∥z∥WT + ∥h∥∞) (∥z∥WT + ∥u∥∞) ∥φ∥W̊T .

(3.5.205)

Similarly, we obtain the estimates for I3, I4 and I5:

∥I3∥S̊T
5
= ∥((M0LΣh)∇Σh) · φu∥S̊5

≤ C(Σ, T0,M)
(
∥h∥S5

+ ∥h∥∞
) (

∥∇Σh∥S5
+ ∥∇Σh∥∞

)
∥φu∥S̊5

≤ C(Σ, T0,M)
(
∥h∥S5

+ ∥h∥∞
) (

∥h∥W5
+ ∥∇Σh∥∞

)
∥φu∥S̊5

≤ C(Σ, T0,M) (∥z∥WT + ∥h∥∞) (∥z∥WT + ∥∇Σh∥∞) ∥φ∥W̊T ,

(3.5.206)

∥I4∥S̊T
5
≤ C(Σ, T0)

(
∥∇Σh∥S5

+ ∥∇Σh∥∞
)
∥φu∥S̊5

≤ C(Σ, T0) (∥z∥WT + ∥∇Σh∥∞) ∥φ∥W̊T ,
(3.5.207)
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and

∥I5∥S̊T
5
≤ C(Σ, T0)

(
∥b− u∥S5

+ ∥b− u∥∞
)
∥φh∥S̊5

≤ C(Σ, T0)
(
∥b− u∥ST

5
+ ∥b− u∥∞

)
∥φ∥W̊T .

(3.5.208)

Consequently, we have

∥DG5φ∥S̊5
≤ C(Σ, T0,M) (1 + ∥z∥W + ∥h∥∞ + ∥u∥∞)

(
∥z∥W + ∥h∥C4

)
∥φ∥W̊

+ C(Σ, T0)
(
∥b− u∥S5

+ ∥b− u∥∞
)
∥φ∥W̊ .

(3.5.209)

3.5.4.6 Estimate of operator G

Combining (3.5.190), (3.5.198), (3.5.200), (3.5.202) and (3.5.209), we have the following

estimate.

Proposition 3.5.5. Given any C3 surface Σ, there exists δ0(Σ) ∈ (0, 1) sufficiently small,

such that for all T0 > 0 and all z = (u,B, p,ϖ, h) ∈ W, if

1. ∥h∥CT0
4
< δ0;

2. ∥h∥CT0
2

≤M for some M > 0;

then for all T ∈ (0, T0] we have the estimate

∥DG [z]φ∥S̊T

≤ C(Σ, T0,M)
(
1 + ∥u∥L∞([0,T ]×Ω) + ∥B∥L∞([0,T ]×Ω) + ∥h∥CT

2
+ ∥z∥WT

)
·
(
∥h∥CT

4
+ ∥z∥WT

)
∥φ∥W̊T

+ C
∥∥trL2

Σφh

∥∥
S̊T
4
+ C(Σ, T0)

(
∥b− u∥ST

5
+ ∥b− u∥L∞([0,T ]×Σ)

)
∥φ∥W̊T

(3.5.210)

for all φ = (φu, φB, φp, φϖ, φh) ∈ W̊T .
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3.6 Local Existence

In this section, we study the existence of strong solutions. Without loss of generality, we

fix T0 > 0 and only consider time intervals [0, T ] ⊆ [0, T0]. We first consider the case that

the initial interface is a C3 surface. In this case, we choose the initial interface itself to be

the reference surface, which implies that the initial height function h0 = 0. Next, we study

the case that the initial interface is a W 3−2/q surface and is close to some C3 surface in the

sense of C2 norm.

3.6.1 C3 initial interface

Suppose that we have the initial condition

u0 ∈ W 2− 2
q
, q(Ω \ Γ0) ∩ C(Ω), B0 ∈ W 2− 2

q
, q(Ω), and Γ0 ∈ C3,

which satisfy:

1. divu0 = 0 in Ω \ Γ0; divB0 = 0 in Ω;

2. u0 = B0 = 0 on ∂Ω;

3. Γ0 is a closed interface and Γ0 ∩ ∂Ω = ∅;

4. PΓ0

r
νD̃u0

z
nΓ0 = 0.

Letting the reference surface be Σ := Γ0, then we have h0 = 0, u0 = u0 and B0 = B0. The

solution can be obtained by first finding an auxiliary solution with initial value u0 and B0,

then finding the remaining part, which has an initial value of 0.

Picking an arbitrary T0 > 0, using the same argument as in [15, Theorem 2], we can

extend the initial value u0 to a function ub ∈ WT0
1 . Letting b be the restriction of ub to Σ,

i.e.

b := ub|[0,T0]×Σ. (3.6.1)

We recall the solution operator S in Section 3.4, which allows us to define the auxiliary

solution by

zα := (uα, Bα, pα, ϖα, hα) := S(u0,B0,0,b)(0, 0, 0, 0, 0). (3.6.2)
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Next, similarly as in [15], we consider the equation

L(z + zα) = G(z + zα), z(0) = 0. (3.6.3)

with z ∈ W̊ . The sum z + zα will then solve the transformed equations with initial value

(u0, B0, h0) = (u0, B0, 0). The equation (3.6.3) implies

Lz = G(z + zα)− Lzα.

When t = 0, the right-hand side turns to G(z0) − L(z0). The compatibility conditions for

G(z0)−L(z0) are divu0 = 0 and (I−nΓ0 ⊗nΓ0)
q
ν
(
∇u0 +∇u⊤0

)y
nΓ0 = 0, which are exactly

included in the requirements of the initial conditions. Thus, using the solution operator

S(0,0,0,b) and the fact that Lzα = 0, we obtain the equation

z = S(0,0,0,b)G(z + zα) =: K(z). (3.6.4)

It remains to find the fixed point of K in the space W̊ , which can be done by a contraction

mapping argument. Let r0 > 0 be a sufficiently large fixed number. For r ∈ (0, r0] and

T ∈ (0, T0], we define

BT
r := {w ∈ W̊T : ∥w∥WT ≤ r}. (3.6.5)

Our goal is to show that K is a contraction mapping on BT
r for suitable r and T .

In the auxiliary solution zα, we have hα(0) = h0 = 0, which implies that ∥hα(0)∥C2 = 0.

Moreover, by [28, Proposition 5.1] we have hα ∈ WT0
5 ↪→ CT0

2 , which implies that hα ∈ CT
4 =

C([0, T ];C2(Σ)). Thus, given any ε > 0, there exists a sufficiently small T1 > 0 such that

∥hα(t)∥C2(Σ) < ε on [0, T1], i.e. ∥hα∥CT1
4
< ε.

Given any z1, z2 ∈ BT0
r , we have the estimate

∥K(z1)−K(z2)∥WT ≤ ∥S∥ ∥G(z1 + zα)−G(z2 + zα)∥

≤ C ∥S∥ sup
0≤c≤1

∥DG [cz1 + (1− c)z2 + zα]∥ST ∥z1 − z2∥W̊T .
(3.6.6)

Letting zξ := cz1 + (1− c)z2 for abbreviation, we estimate the operator DG.

Proposition 3.6.1. The term 1+ ∥u∥∞ + ∥B∥∞ + ∥h∥C2 + ∥z∥W in (3.5.210) is bounded on

BT0
r0
.
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Proof. We start with the estimation of ∥uξ∥L∞([0,T0]×Ω) and ∥uα∥L∞([0,T0]×Ω).

Since uα ∈ WT0
1 ↪→ C([0, T0];C

1(Ω\Σ)) and u0 ∈ W 2− 2
q
,q ↪→ C1,α with α = 1− (n+2)/q

(see e.g. [15, Section 4]). There exists M1(T0) > 0 such that

∥uα∥L∞([0,T0]×Ω) < M1. (3.6.7)

Since uξ ∈ BT0
r , we have by [28, Proposition 5.1 (a)] that

∥uξ∥C̊([0,T0];C1(Ω\Σ)) ≤ C ∥uξ∥W̊T0 ≤ Cr0, (3.6.8)

where the constant C is independent of T0. Thus, we have

∥uξ + uα∥L∞([0,T0]×Ω) ≤ Cr0 +M1. (3.6.9)

Using the same argument and [28, Proposition 5.1 (d)], we can also obtain

∥Bξ +Bα∥L∞([0,T0]×Ω) ≤ Cr0 +M1 (3.6.10)

and

∥hξ + hα∥CT0
2

≤ Cr0 +M1, (3.6.11)

where we still use the notation M1 without loss of generality. For the term ∥z∥W we have

∥z∥WT ≤ ∥zα∥WT + ∥zξ∥W̊T ≤ C(z0, T0,Σ) + r0

for all T ∈ (0, T0], which completes the proof.

Next, using the same idea as in [15] we claim that the norm of ∥h∥CT
4
+∥z∥WT in (3.5.210)

can be as small as we need by picking a sufficiently small T ∈ (0, T0].

Proposition 3.6.2. There exists a constant C1, such that for any ε > 0, there exists T (ε) >

0 and r(ε) > 0, such that for all zξ ∈ BT
r we have

∥hξ + hα∥CT
4
+ ∥zξ + zα∥WT < C1ε. (3.6.12)
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Proof. Since zα ∈ W , which consists of Sobolev spaces, we obtain

lim
T→0

∥zα∥WT = 0 (3.6.13)

using the Lebesgue dominated convergence theorem. Thus, we can pick a sufficiently small

T (ε) ≤ T0 such that

∥zα∥WT < ε. (3.6.14)

Without loss of generality, we assume r < ε, which implies that

∥zξ + zα∥WT < ε+ r < 2ε. (3.6.15)

Since hξ ∈ W̊T0
5 , for all T ∈ (0, T0], we have

∥hξ∥C̊T
2
≤ ∥hξ∥C̊T0

2
≤ C ∥hξ∥W̊T0

5
< Cr < Cε. (3.6.16)

where the constant C is independent of T or T0.

Since hα(0) = 0 and hα ∈ C([0, T0];C
2(Σ)) =: CT0

4 , there exists a sufficiently small T (ε)

such that for all t ∈ [0, T ] we have

∥hα(t)∥C2(Σ) < ε, (3.6.17)

which implies

∥hα∥C̊T
4
< ε. (3.6.18)

This completes the proof.

Proposition 3.6.3. Let q > 5 be fixed. Let Σ be a compact C3 surface in R3. For all ε > 0,

there exists T (q,Σ, ε) > 0, such that

∥∥trL2
Σφh

∥∥
S̊T
4
< ε ∥φh∥S̊T

4
(3.6.19)

for all φh ∈ W̊T
5 .
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Proof. For convenience, we abbreviate φh by φ and let

r := 1− 1

q
, s :=

1

2
− 1

2q
, and f := trL2

Σ.

From the definition of S4, we have

∥∥trL2
Σ φ
∥∥
S̊T
4
= ∥fφ∥S̊T

4
≤ ∥fφ∥W s,q([0,T ];Lq(Σ)) + ∥fφ∥Lq([0,T ];W r,q(Σ)) . (3.6.20)

Step 1:

Given any t ∈ [0, T ], we estimate ∥fφ∥W r,q(Σ) (t). First, we have

∥fφ∥Lq(Σ) ≤ ∥f∥L∞(Σ) ∥φ∥Lq(Σ) . (3.6.21)

Next, we estimate the Gagliardo seminorm:

[fφ]W r,q(Σ) :=

(∫
Σ

∫
Σ

|f(x)φ(x)− f(y)φ(y)|q

|x− y|n+rq dydx

) 1
q

≤ C(q)

(∫
Σ

∫
Σ

|f(x)|q |φ(x)− φ(y)|q + |f(x)− f(y)|q |φ(y)|q

|x− y|n+rq dydx

) 1
q

≤ C(q) ∥f∥L∞(Σ) [φ]W r,q(Σ) + C(q) [f ]W r,q(Σ) ∥φ∥L∞(Σ) .

(3.6.22)

Thus, we have

∥fφ∥W r,q(Σ) := ∥fφ∥Lq(Σ) + [fφ]W r,q(Σ)

≤ C(q) ∥f∥L∞(Σ) ∥φ∥W r,q(Σ) + C(q) [f ]W r,q(Σ) ∥φ∥L∞(Σ) .
(3.6.23)

Taking the Lq norm on [0, T ] and notice that f is independent of t, we have

∥fφ∥Lq([0,T ];W r,q(Σ)) ≤ C(q) ∥f∥Lq([0,T ];L∞(Σ)) ∥φ∥L∞([0,T ];W r,q(Σ))

+ C(q) ∥f∥Lq([0,T ];W r,q(Σ)) ∥φ∥L∞([0,T ]×Σ)

≤ C(q,Σ)T
1
q ∥f∥L∞(Σ) ∥φ∥W̊T

5
+ C(q,Σ)T

1
q ∥f∥W r,q(Σ) ∥φ∥W̊T

5

(3.6.24)
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where we used the embedding theory in [28, Proposition 5.1] in the 2nd inequality.

Step 2:

Now we estimate ∥fφ∥W s,q([0,T ];Lq(Σ)). From (3.6.23) and (3.6.24), we have

∥fφ∥Lq([0,T ];Lq(Σ)) ≤ C(q) ∥f∥Lq([0,T ];L∞(Σ)) ∥φ∥L∞([0,T ];W r,q(Σ))

≤ C(q,Σ)T
1
q ∥f∥L∞(Σ) ∥φ∥W̊T

5
.

(3.6.25)

It remains to estimate the Gagliardo seminorm. Since f is independent of time, we have

[fφ]W s,q([0,T ];Lq(Σ)) :=

(∫ T

0

∫ T

0

∥fφ(t)− fφ(τ)∥qLq(Σ)

|t− τ |1+sq dtdτ

) 1
q

≤

(∫ T

0

∫ T

0

∥f∥qLq(Σ) ∥φ(t)− φ(τ)∥qL∞(Σ)

|t− τ |1+sq dtdτ

) 1
q

≤

(∫ T

0

∫ T

0

∥f∥qLq(Σ) ∥φ∥
q

C̊1([0,T ];C1(Σ))
|t− τ |q

|t− τ |1+sq dtdτ

) 1
q

≤
(
∥f∥qLq(Σ) ∥φ∥

q

C̊1([0,T ];C1(Σ))

∫ T

0

∫ T

0

|t− τ |
q−1
2 dtdτ

) 1
q

≤ C(Σ, T0) ∥f∥L∞(Σ) ∥φ∥W̊T
5

(∫ T

0

∫ T

0

T
q−1
2 dtdτ

) 1
q

≤ C(Σ, T0)T
q+3
2q ∥f∥L∞(Σ) ∥φ∥W̊T

5
.

(3.6.26)

From (3.6.25) and (3.6.26), we obtain

∥fφ∥W s,q([0,T ];Lq(Σ)) ≤ C(q,Σ, T0)
(
T

1
q + T

q+3
2q

)
∥f∥L∞(Σ) ∥φ∥W̊T

5
. (3.6.27)

Consequently, from (3.6.24) and (3.6.27), by assuming T < 1 without any loss of gener-

ality, we have∥∥trL2
Σφ
∥∥
ST
4
≤ C(q,Σ, T0)T

1
q

(∥∥trL2
Σ

∥∥
L∞(Σ)

+
∥∥trL2

Σ

∥∥
W r,q(Σ)

)
∥φ∥W̊T

5

≤ C1(q,Σ, T0)T
1
q ∥φ∥W̊T

5
.

(3.6.28)

For any ε > 0, a sufficiently small T such that C1T
1/q < ε completes the proof.

Using the same idea as in [15,28], we obtain the following result.
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Proposition 3.6.4. There exists a constant C(Σ) such that for any ε > 0, there exists

T (ε) > 0 and r(ε) > 0, such that for all zξ ∈ BT
r we have

∥b− u∥ST
5
+ ∥b− u∥C̊([0,T ];C(Σ)) < C(Σ)ε. (3.6.29)

Proof. Notice that S5 consists of Sobolev spaces and Lebesgue spaces. Without loss of

generality, we require r < ε. Using the same arguments as in (3.6.13) and (3.6.14), we can

find a sufficiently small T , such that

∥b− u∥ST
5
≤ ∥b− uα∥ST

5
+ ∥uξ∥S̊T

5
≤ ε+ r < 2ε. (3.6.30)

On the other hand, for a sufficiently small T , we have

∥b− u∥∞ ≤ ∥b− uα∥C̊([0,T ];C(Σ)) + C(T0,Σ) ∥uξ∥W̊T
1
< ε+ C(Σ)r, (3.6.31)

which finishes the proof.

Consequently, we can obtain the smallness of DG, which implies the existence of a strong

solution.

Proof of Theorem 3.1.1. From Proposition 3.6.1, Proposition 3.6.2, Proposition 3.6.3 and

Proposition 3.6.4, we can let T and r be sufficiently small such that

∥K(z1)−K(z2)∥W̊ ≤ 1

2
∥z1 − z2∥W̊ (3.6.32)

for all z1, z2 ∈ BT
r . Thus, by the contraction mapping theorem, the operator K has a unique

fixed point zβ ∈ BT
r , which implies that

z := (uγ, Bγ, pγ, ϖγ, hγ) := zα + zβ

is the unique solution to the transformed equations on [0, T ]. Here we return the bars to

transformed terms.

Now we recover the original solution. Since Σ ∈ C3 and

h ∈ W5 ↪→ C1([0, T ];C1(Σ)) ∩ C0([0, T ];C2(Σ)),
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the diffeomorphism Θh ∈ C1([0, T ];C1(Σ))∩C0([0, T ];C2(Σ)). Thus, in the original solution,

the terms u = u ◦Θ−1
h , B = B ◦Θ−1

h and p = p ◦Θ−1
h have the same regularity as u, B and

p and the equations are satisfied almost everywhere on corresponding domains. The jump

of the pressure JpK = ϖ ◦Θ−1
h also satisfies the requirement in Definition 3.1.1. This finishes

the proof of the theorem.

3.6.2 W 3− 2
q initial interface

In this section, we prove Theorem 3.1.2. Suppose that we have a C3 surface Σ and the

nearest point projection property is valid in B(Σ; ϱ0) for some ϱ0(Σ) > 0. Let M0 > 0 be an

arbitrary number and ε0 > 0 a number to be determined later. Let (u0, B0,Γ0) be an initial

value and h0 be the corresponding height function, such that:

1. u0 ∈ W 2− 2
q
, q(Ω \ Γ0) ∩ C(Ω), B0 ∈ W 2− 2

q
, q(Ω), and Γ0 is a W 3− 2

q
, q surface;

2. ∥u0∥
W

2− 2
q , q

(Ω\Γ0)
≤M0, ∥u0∥L∞(Ω) ≤M0, ∥B0∥

W
2− 2

q , q
(Ω)

≤M0, ∥B0∥L∞(Ω) ≤M0;

3. Γ0 ⊆ B(Σ; ϱ0), ∥h0∥
W

3− 2
q (Σ)

≤M0, ∥h0∥C2(Σ) < ε0;

4. divu0 = 0 in Ω \ Γ0, divB0 = 0 in Ω;

5. u0 = B0 = 0 on ∂Ω;

6. PΓ0

r
νD̃u0

z
nΓ0 = 0.

Using the argument in Section 3.3, we obtain the initial condition of the transformed problem

(u0, B0, h0) = (u0 ◦Θh0 , B0 ◦Θh0 , h0).

Let T0 > 0 be a fixed, sufficiently large number. Using again the same argument as in [15,

Theorem 2], we obtain the auxiliary term b in (3.3.87) by extending u0 to ub ∈ WT0
1 and

letting

b := ub|[0,T0]×Σ.

Using [15, Proposition 2], we can extend

divu0 and 2PΣ

r
νD̃u0

z
nΣ
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to two auxiliary functions α3 ∈ ST0
3 and α4 ∈ ST0

4 . Using the solution operator S from

Section 3.4, we obtain an auxiliary solution

zα := (uα, Bα, pα, ϖα, hα) := S(u0,B0,h0,b)
(0, 0, α3, α4, 0). (3.6.33)

Similarly as in [15], we consider the equation

L(z + zα) = G(z + zα), z(0) = 0 (3.6.34)

with z ∈ W̊ , which can be rewritten as

Lz = G(z + zα)− Lzα.

The compatibility conditions for G(z0) − L(z0) are exactly the transformation (via Θh0) of

the initial conditions

divu0 = 0 and PΓ0

r
2νD̃u0

z
nΓ0 = 0.

Using the solution operator S(0,0,0,b), we rewrite the equation as

z = S(0,0,0,b) (G(z + zα)− Lzα) =: K(z). (3.6.35)

Similarly as in Section 3.6.1, we fix r0 > 0 and define for all r ∈ (0, r0] and T ∈ (0, T0] that

BT
r := {w ∈ W̊T : ∥w∥WT ≤ r}. (3.6.36)

It remains to find suitable r and T such that K is a contraction mapping on BT
r . Since

h0 ̸= 0, we need to slightly modify the estimates in Section 3.6.1.

Given any z1, z2 ∈ BT
r , we consider the same estimate as stated in Section 3.6.1:

∥K(z1)−K(z2)∥WT ≤ ∥S∥ ∥G(z1 + zα)−G(z2 + zα)∥S̊T

≤ C ∥S∥ sup
0≤c≤1

∥DG [cz1 + (1− c)z2 + zα]∥ ∥z1 − z2∥W̊T .
(3.6.37)
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Letting zξ := cz1 + (1 − c)z2 and φ := z1 − z2, we need to estimate (3.5.210) using similar

ideas as in [15, 28]. We rewrite the inequality for convenience. Suppose ∥h∥CT0
2

≤ Mh, then

for all T ∈ (0, T0] we have

∥DG [zα + zξ]φ∥S̊T ≤ C(Σ, T0,Mh)
(
1 + ∥uα + uξ∥L∞([0,T ]×Ω) + ∥Bα +Bξ∥L∞([0,T ]×Ω)

+ ∥hα + hξ∥CT
2
+ ∥zα + zξ∥WT

)(
∥hα + hξ∥CT

4
+ ∥zα + zξ∥WT

)
∥φ∥W̊T

+ C
∥∥trL2

Σφh

∥∥
S̊T
4
+ C(T0,Σ)

(
∥b− uα − uξ∥ST

5
+ ∥b− uα − uξ∥L∞([0,T ]×Σ)

)
∥φ∥W̊T .

(3.6.38)

The estimates in Proposition 3.6.3 and Proposition 3.6.4 can be obtained without any

change. We slightly modify the arguments in Proposition 3.6.1 and Proposition 3.6.2.

Proposition 3.6.5 (Modification of Proposition 3.6.1). For M0 and ε0 defined in the begin-

ning of Section 3.6.2. For all T ∈ (0, T0] and all zξ ∈ BT
r0
, we have

1 + ∥uα + uξ∥∞ + ∥Bα +Bξ∥∞ + ∥hα + hξ∥CT
2
+ ∥zα + zξ∥WT ≤ C(Σ, T0, r0,M0). (3.6.39)

The constant C(Σ, T0, r0,M0) is independent of h0 or ε0.

Proof. We recall that the solution operator S in Section 3.4 is continuous with respect to

the initial value. Since ∥u0∥
W

2− 2
q ,q

(Ω\Γ0)
≤M0, ∥B0∥

W
2− 2

q ,q
(Ω)

≤M0 and ∥h0∥
W

3− 2
q ,q

(Σ)
≤M0,

from the derivation of zα, we have for all T ∈ (0, T0] that

∥zα∥WT ≤ ∥zα∥WT0 ≤ C(M0, T0,Σ).

From the embedding theory in [28, Proposition 5.1 (d)], we have for all T ∈ (0, T0] that

∥hα∥CT
2
≤ ∥hα∥CT0

2
≤ C(T0,Σ) ∥hα∥WT0

5
≤ C(M0, T0,Σ).

The rest of the proof can be carried out using similar arguments as in Proposition 3.6.1,

which implies (3.6.39).

We also modify Proposition 3.6.2 since h0 ̸= 0 in the current case.
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Proposition 3.6.6 (Modification of Proposition 3.6.2). There exists a constant C1, such

that for any ε1 > 0, there exists T (ε1) > 0 and r(ε1) > 0, such that for all zξ ∈ BT
r we have

∥hξ + hα∥CT
4
+ ∥zξ + zα∥WT < ε0 + C1ε1. (3.6.40)

Here the number ε0 is the upper bound of ∥h0∥C2(Σ) as stated at the beginning of this section.

Proof. We only need to modify the estimate of hα since h0 ̸= 0 in the current case. Notice

that ∥hα(0)∥C2 = ∥h0∥C2 < ε0 by the assumption of the initial conditions. Since hα ∈

C([0, T0];C
2(Σ)) =: CT0

4 , we can let T (ε) be sufficiently small, such that for all t ∈ [0, T ] we

have

∥hα(t)∥C2 ≤ ∥h0∥C2 + ∥hα(t)− h0∥C2 < ε0 + ε1, (3.6.41)

which implies

∥hα∥CT
4
< ε0 + ε1. (3.6.42)

This completes the proof.

We can now prove Theorem 3.1.2 using similar ideas as in [15,28].

Proof of Theorem 3.1.2. First, we verify the condition

∥h∥CT
4
:= ∥h∥C([0,T ];C2(Σ)) < δ0

as stated in Proposition 3.5.5, which enables us to use the estimate in (3.5.210). Notice that

δ0 only depends on Σ and thus is a fixed number. Without loss of generality, we assume

ε0 < δ0/4 and C1ε1 < δ0/4. From Proposition 3.6.6, there exists T1 ∈ (0, T0], such that

∥h∥CT1
4
< δ0.

Given any ε0 and ε1, from Proposition 3.6.3, Proposition 3.6.4, Proposition 3.6.5 and

Proposition 3.6.6, we can find T ∈ (0, T1] and r ∈ (0, r0] sufficiently small, such that

∥DG [zα + zξ]φ∥S̊T ≤ C2(M0, T0, r0) (ε0 + C1ε1) ∥φ∥W̊T + C3(T0)ε1 ∥φh∥W̊T
5

+ C4(T0)ε1 ∥φ∥W̊T .
(3.6.43)

Thus, for sufficiently small ε0 and ε1, we can obtain a contraction mapping. The rest of the

proof can be proceeded using the same arguments as in the proof of Theorem 3.1.1.
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4.0 Weak-Strong Uniqueness of the Two-Phase MHD Equations

In this chapter, we consider the two-phase MHD equations in the whole space R3, i.e.

∂tu+ (u · ∇)u− (∇×B)×B − ν±△u+∇p = 0 in R3 \ Γ(t), (4.0.1)

∂tB −∇× (u×B) +∇× (σ∇×B) = 0 in R3, (4.0.2)

divu = 0 in R3 \ Γ(t), (4.0.3)

divB = 0 in R3, (4.0.4)

− J2ν(χ)Du− pIKn = κHn on Γ(t), (4.0.5)

VΓ = u · n on Γ(t), (4.0.6)

u|t=0 = u0, B|t=0 = B0, Γ(0) = Γ0. (4.0.7)

The two fluids occupy R3 and are separated by a closed interface Γ(t). We denote the

interior and exterior fluids by open sets Ω+(t) and Ω−(t) respectively. Then we have that

Ω+(t), Ω−(t) and Γ(t) are disjoint and Ω+(t) ∪ Γ(t) ∪ Ω−(t) = R3. In our equations, the

term u denotes the fluid velocity; B denotes the magnetic field; p the pressure; H the mean

curvature of Γ(t); VΓ is the speed of the interface; n is the normal vector of Γ(t). The

viscosity coefficient, magnetic diffusion coefficient and surface tension coefficient are denoted

by ν±, σ and κ. Here ν± takes different values in Ω±(t) and σ remains a constant in R3.

The initial interface Γ0 is a compact C3 surface. The notation Du :=
(
∇u+∇u⊤

)
/2 is the

strain rate tensor.

4.1 Preliminary and Main Result

In this section, we introduce some basic background knowledge and the main result. We

first give the definition of strong solutions in the sense of [10].

Definition 4.1.1 (Strong solution). Let q > 5 be a fixed number. Let (u0, B0, χ0) be such

that:
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1. Γ0 := ∂{x ∈ R3 : χ0(x) = 1} is a compact C3 surface;

2. u0 ∈ W 2− 2
q
, q(R3 \ Γ0), divu0 = 0 in R3 \ Γ0, Ju0K = 0 on Γ0, PΓ0 Jν±Du0KnΓ0 = 0 on Γ0;

3. B0 ∈ W 2− 2
q
, q(R3), divB0 = 0 in R3.

Here J·K denotes the jump of functions; PΓ0 := I − nΓ0 ⊗ nΓ0 is the projection mapping;

Du0 :=
(
∇u0 +∇u⊤0

)
/2 is the strain rate tensor.

A triple (u,B, χ) is called a strong solution to (4.0.1) - (4.0.7) with initial value (u0, B0, χ0)

if the following conditions are satisfied.

1. u ∈ H1([0, T0];L
2(R3)) ∩ L∞([0, T0];H

1(R3)). ∇u ∈ L1([0, T0];BV (R3)); div u =0;

2. B ∈ H1([0, T0];L
2(R3)) ∩ L∞([0, T0];H

1(R3)). ∇B ∈ L1([0, T0];BV (R3)).

3. χ ∈ L∞([0, T0];BV (R3)) is an indicator function.

4. For all φ ∈ C∞
c ([0, T0)× R3) with divφ = 0 and almost all t ∈ [0, T0),∫

R3

u(t) · φ(t)dx−
∫
R3

u0 · φ(0)dx =

∫ t

0

∫
R3

u · ∂tφdxdτ +
∫ t

0

∫
R3

u⊗ u : ∇φdxdτ

−
∫ t

0

∫
R3

B ⊗B : ∇φdxdτ −
∫ t

0

∫
R3

ν(χ)
(
∇u+∇u⊤

)
: ∇φdxdτ

+ κ

∫ t

0

∫
Γ(τ)

Hn · φdSdτ.

(4.1.1)

5. For almost all φ ∈ C∞
c ([0, T0)× R3) with divφ = 0 and all t ∈ [0, T0),∫

R3

B(t) · φ(t)dx−
∫
R3

B0 · φ(0)dx =

∫ t

0

∫
R3

B · ∂tφdxdτ +
∫ t

0

∫
R3

u⊗B : ∇φdxdτ

−
∫ t

0

∫
R3

B ⊗ u : ∇φdxdτ − σ

∫ t

0

∫
R3

∇B : ∇φdxdτ.

(4.1.2)

6. For all φ ∈ C∞
c ([0, T0)× R3) and almost all t ∈ [0, T0),∫

R3

χ(t)φ(t)dx−
∫
R3

χ0φ(0)dx =

∫ t

0

∫
R3

χ∂tφdxdτ +

∫ t

0

∫
R3

χu · ∇φdxdτ. (4.1.3)

7. The terms ∇iu and ∇iB for i = 0, 1, 2, 3, and terms ∂t∇ku and ∂t∇kB for k = 0, 1, are

all bounded on the set ⋃
t∈[0,T0)

(
R3 \ Γ(t)

)
× {t}.

8. There exists Θ(t, x) : [0, T0)× R3 → R3, which satisfies the following conditions.
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a. For each t ∈ [0, T0), Θ(t, ·) is a C3 diffeomorphism.

b. For t = 0, Θ(0, x) = x.

c. The norm ∥Θ∥L∞([0,T0);W 3,∞(R3)) is finite.

d. The time derivative ∂tΘ ∈ C([0, T0);C
2(R3)).

e. There exists ϱ0 > 0 such that for all t ∈ [0, T0) and x ∈ Γ(t), the surface Γ(t) ∩

B(x; 2ϱ0) can be represented as the graph of a function on the tangent plane TxΓ(t).

The sets that represent two fluids and the interface can be represented using Θ by

Ω+(t) = Θ(t,Ω+
0 ), Ω

−(t) = Θ(t,Ω−
0 ) and Γ(t) = Θ(t,Γ0).

We now give the definition of varifold solutions in the whole space R3, which is based on

the definition in [10,14].

Definition 4.1.2 (Varifold solution). Let u0, B0 ∈ L2(R3) such that divu0 = divB0 = 0

weakly. Let Ω+
0 ⊆ R3 be a bounded domain such that χ0 = χΩ+

0
has finite perimeter. A

quadruple (u,B, χ, V ) with

u ∈ L2([0, T ];H1(R3)) ∩ L∞([0, T ];L2(R3)),

B ∈ L2([0, T ];H1(R3)) ∩ L∞([0, T ];L2(R3)),

divu = divB = 0,

χ ∈ L∞([0, T ];BV (R3; {0, 1})),

V ∈ L∞([0, T ];M(R3 × S2)),

is called a varifold solution to the two-phase MHD equations (2.1.1)-(2.1.8) with initial value

(u0, B0, χ0) if the following conditions are satisfied.

1. For almost every t ∈ [0, T0),∫
R3

u(t)φ(t)dx−
∫
R3

u0φ(0)dx−
∫ t

0

∫
R3

u∂tφdxdτ −
∫ t

0

∫
R3

u⊗ u : ∇φdxdτ

+

∫ t

0

∫
R3

B ⊗B : ∇φdxdτ + 2

∫ t

0

∫
R3

ν(χ)Du : Dφdxdτ

+ κ

∫ t

0

∫
R3×S2

(I − s⊗ s) : ∇φdV dτ = 0

(4.1.4)

is satisfied for all φ ∈ C∞
c ([0, T0)× R3) with divφ = 0.
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2. For almost every t ∈ [0, T0),∫
R3

B(t)φ(t)dx−
∫
R3

B0φ(0)dx−
∫ t

0

∫
R3

B∂tφdxdτ −
∫ t

0

∫
R3

u⊗B : ∇φdxdτ

+

∫ t

0

∫
R3

B ⊗ u : ∇φdxdτ + σ

∫ t

0

∫
R3

∇B : ∇φdxdτ = 0

(4.1.5)

is satisfied for all φ ∈ C∞
c ([0, T )× R3) with divφ = 0.

3. For almost every t ∈ [0, T0),∫
R3×S2

s · ψdV (t) = −
∫
R3

ψd∇χ(t) (4.1.6)

is satisfied for all ψ ∈ C0(R3).

4. For almost every t ∈ [0, T0),∫
R3

χ(t)φ(t)dx−
∫
R3

χ0φ(0)dx−
∫ t

0

∫
R3

χ∂tφdxdτ −
∫ t

0

∫
R3

χv · ∇φdxdτ = 0 (4.1.7)

for all φ ∈ C∞
c ([0, T0)× R3).

5. The generalized energy inequality

1

2
∥u(t)∥2L2 +

1

2
∥B(t)∥2L2 + κ ∥V (t)∥M(R3×S2) + 2

∫ t

0

∫
R3

ν(χ)|Du|2dxdτ

+σ

∫ t

0

∥∇B(τ)∥2L2 dτ ≤ 1

2
∥u0∥2L2 +

1

2
∥B0∥2L2 + κ ∥∇χ0∥M(R3)

(4.1.8)

holds for almost every t ∈ [0, T0).

6. The energy
1

2
∥u(t)∥2L2 +

1

2
∥B(t)∥2L2 + κ ∥V (t)∥M(R3×S2) (4.1.9)

is a nonincreasing function of t.

To measure the scale of the error between a strong solution and a varifold solution, we

introduce the concept of relative entropy, which is constructed based on the structure of the

relative entropy for two-phase Navier-Stokes equations in [10].
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Definition 4.1.3 (Relative entropy). Given a strong solution (v,Bv,Γv) and a varifold

solution (u,Bu, χu, Vu) to the two-phase MHD equations (3.1.1)-(3.1.8). Given an auxiliary

function w ∈ L2([0, T0];H
1(R3)) ∩ H1([0, T0];L

4/3(R3) + L2(R3)). Let ϱ0 > 0 be such that

the nearest point projection (see Section 3.2.4) is valid in B(Γ(t); ϱ0) for all t ∈ [0, T0). We

define the relative entropy by

E(t) := κ

∫
R3

1− ξ · ∇χu

|∇χu|
d |∇χu|+

∫
R3

1

2
|u− v − w|2 dx

+

∫
R3

1

2
|Bu −Bv|2 dx+ κ

∫
R3

1− θ(t)dV∗ +

∫
R3

|χu − χv|
∣∣∣∣β (d(x)ϱ0

)∣∣∣∣ dx. (4.1.10)

The term ξ is the extension of the normal vector nv defined as

ξ(x) := η(d(x))(1− d2(x))nv(Π(x)), (4.1.11)

where d and Π are the signed distance function and the projection mapping in the theory

of nearest point projection (see Section 3.2.4 for details); the function η is a fixed cut-off

function such that η = 1 on [−ϱ0/2, ϱ0/2] and η = 0 on (−∞,−ϱ0] ∪ [ϱ0,+∞); the function

θ(t) is the Radon-Nikodym derivative

θ(t) :=
d |∇χu(t)|
dV∗(t)

(4.1.12)

between the total variation measure |∇χu(t)| and the measure V∗(t), which is defined as

(V∗(t)) (A) := |V (t)| (A× S2) for A ⊆ R3 such that A× S2 is measurable.

We now state our main result.

Theorem 4.1.1. Let (v,Bv,Γv) and (u,Bu, χu, Vu) be the strong solution (in the sense of

Definition 4.1.1 ) and a varifold solution (in the sense of Definition 4.1.2 ) to (3.1.1)-(3.1.8)

with the same initial value (u0, B0, χ0). Then

u = v and Bu = Bv in L2([0, T0];H
1(R3)); χu = χv in L∞([0, T0]× R3);

and for almost every t ∈ [0, T0] and all φ ∈ C0(R3 × S2) we have∫
R3×S2

φ(x, s)dV (t) =

∫
R3

φ(x, nv(x))d |∇χv| .

Here nv is the Radon-Nikodym derivative ∇χv/ |∇χv|.

115



4.2 Relative Entropy Inequality

In this section, we derive an inequality of the relative entropy E. The terms in this

inequality will be estimated in the next section, which allows us to control E(t) by utilizing

the Gronwall’s inequality.

Let (v,Bv, χv) be a strong solution and (u,Bu, χu, V ) be a varifold solution. Suppose

that the strong solution exists on [0, T0).

The terms without the magnetic field can be treated using similar arguments as in [10],

while the magnetic terms will be treated differently. We include some important formulas

and steps from [10] for completeness and convenience. First, in the equations of the strong

solution, we test (4.0.1) with φ ∈ C∞
c ([0, T0)× R3), then for all t ∈ [0, T0) we have

−
∫
R3

v · φ(t) +
∫
R3

v · φ(0) = −
∫ t

0

∫
R3

v · ∂tφ−
∫ t

0

∫
R3

v ⊗ v : ∇φ+

∫ t

0

∫
R3

Bv ⊗Bv : ∇φ

+

∫ t

0

∫
R3

ν(χv)(2Dv) : Dφ− κ

∫ t

0

∫
Γv(τ)

Hn · φ.

(4.2.1)

Similarly as in [10, (185)], we obtain from the transport equation of quantity vφ that∫
R3

v(t) · φ(t)−
∫
R3

v0 · φ(0) =
∫ t

0

∫
R3

∂tv · φ+

∫ t

0

∫
R3

v · ∂tφ

+

∫ t

0

∫
R3

v∇φv +
∫ t

0

∫
R3

v∇vφ.
(4.2.2)

Remark 4.2.1. When φ is a scalar function, for all 1 ≤ k ≤ n we have∫
R3

vk(t)φ(t)−
∫
R3

(v0)kφ(0) =

∫ t

0

∫
R3

∂t(vkφ) +

∫ t

0

∫
R3

v · ∇(vkφ)

=

∫ t

0

∫
R3

∂tvkφ+

∫ t

0

∫
R3

∑
j

vk∂tφ+

∫ t

0

∫
R3

∑
i

vi∂ivkφ+

∫ t

0

∫
R3

∑
i

vivk∂iφ,
(4.2.3)

which implies ∫
R3

v(t)φ(t)−
∫
R3

v0φ(0) =

∫ t

0

∫
R3

∂tvφ+

∫ t

0

∫
R3

v∂tφ

+

∫ t

0

∫
R3

v∇vφ+

∫ t

0

∫
R3

(v · ∇φ)v.
(4.2.4)
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When φ is a vector-valued function, we have∫
R3

v(t) · φ(t)−
∫
R3

v0 · φ(0) =
∫ t

0

∫
R3

∂t(v · φ) +
∫ t

0

∫
R3

v · ∇(v · φ)

=

∫ t

0

∫
R3

∂t
∑
i

viφi +

∫ t

0

∫
R3

∑
j

vj

(
∂j
∑
i

viφi

)

=

∫ t

0

∫
R3

∑
i

∂tviφi +

∫ t

0

∫
R3

∑
i

vi∂tφi +

∫ t

0

∫
R3

∑
j

vj

(∑
i

∂jviφi

)

+

∫ t

0

∫
R3

∑
j

vj

(∑
i

vi∂jφi

)

=

∫ t

0

∫
R3

∂tv · φ+

∫ t

0

∫
R3

v · ∂tφ+

∫ t

0

∫
R3

∑
j

∑
i

vj∂jviφi +

∫ t

0

∫
R3

∑
j

∑
i

vj∂jφivi

=

∫ t

0

∫
R3

∂tv · φ+

∫ t

0

∫
R3

v · ∂tφ+

∫ t

0

∫
R3

v∇vφ+

∫ t

0

∫
R3

v∇φv.

(4.2.5)

Let w be an auxiliary function as defined in [10]. Adding (4.2.1) and (4.2.2) and then

let φ = u− v − w, we obtain∫ t

0

∫
R3

∂tv · (u− v − w) +

∫ t

0

∫
R3

v · ((∇v) · (u− v − w)) +

∫ t

0

∫
R3

Bv ⊗Bv : ∇(u− v − w)

+

∫ t

0

∫
R3

ν(χv)(2Dv) : ∇(u− v − w)− κ

∫ t

0

∫
Γv(τ)

Hnv · (u− v − w)dSdτ = 0.

(4.2.6)

Next, we consider the equations of varifold solutions. Similarly as in [10, (184) ], we

consider the transport equation of the quantity |v + w|2/2, which implies

1

2

∫
R3

|v + w|2(t)− 1

2

∫
R3

|v + w|2(0)

=

∫ t

0

∫
R3

(v + w) · ∂t(v + w) + u · (∇(v + w)(v + w)) .

(4.2.7)

We recall the energy inequality of the varifold solution:

1

2

∫
R3

|u|2(t) + 1

2

∫
R3

|Bu|2(t) + κ ∥V (t)∥M(R3×S2) + 2

∫ t

0

∫
R3

ν(χu)|Du|2 + σ

∫ t

0

∫
R3

|∇Bu|2

≤1

2

∫
R3

|u|2(0) + 1

2

∫
R3

|Bu|2(0) + κ|∇χ0|(R3).

(4.2.8)
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Similarly as in [10], we test the momentum equation (4.0.1) of the varifold solution with

φ = v + w, which implies

−
∫
R3

u(t) · (v + w)(t) +

∫
R3

u(0) · (v + w)(0)

= −
∫ t

0

∫
R3

u · ∂t(v + w)−
∫ t

0

∫
R3

u⊗ u : ∇(v + w) +

∫ t

0

∫
R3

Bu ⊗Bu : ∇(v + w)

+

∫ t

0

∫
R3

ν(χu)(2Du) : ∇(v + w) + κ

∫ t

0

∫
R3×S2

(I − s⊗ s) : ∇(v + w)dV (τ)dτ.

(4.2.9)

Now we consider the magnetic equation in the varifold solution. Similarly as in (4.2.7), we

consider the transport equation (along velocity field u) of the quantity 1
2
|Bv|2:

1

2

∫
R3

|Bv|2(t)−
1

2

∫
R3

|Bv|2(0) =
1

2

∫ t

0

∫
R3

∂t|Bv|2 +
1

2

∫ t

0

∫
R3

u · ∇(|Bv|2)

=

∫ t

0

∫
R3

Bv · ∂tBv +

∫ t

0

∫
R3

u⊗Bv : ∇Bv.

(4.2.10)

In the magnetic equation of the varifold solution, we let φ = Bv and obtain

−
∫
R3

Bu(t) ·Bv(t) +

∫
R3

Bu(0) ·Bv(0) = −
∫ t

0

∫
R3

Bu · ∂tBv −
∫ t

0

∫
R3

u⊗Bu : ∇Bv

+

∫ t

0

∫
R3

Bu ⊗ u : ∇Bv + σ

∫ t

0

∫
R3

∇Bu : ∇Bv.

(4.2.11)
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Letting (4.2.6) + (4.2.7) + (4.2.8) + (4.2.9), we obtain for almost all t ∈ [0, T0) that

1

2

∫
R3

|v + w|2(t)− 1

2

∫
R3

|v + w|2(0) + 1

2

∫
R3

|u|2(t) + 1

2

∫
R3

|Bu|2(t)

+ κ ∥V (t)∥M(R3×S2) + 2

∫ t

0

∫
R3

ν(χu)|Du|2 + σ

∫ t

0

∫
R3

|∇Bu|2

−
∫
R3

u(t) · (v + w)(t) +

∫
R3

u(0) · (v + w)(0)

≤
∫ t

0

∫
R3

∂tv · (u− v − w) +

∫ t

0

∫
R3

v · (∇v(u− v − w))

+

∫ t

0

∫
R3

ν(χv)(2Dv) : ∇(u− v − w)− κ

∫ t

0

∫
Γv(τ)

Hnv · (u− v − w)dSdτ

+

∫ t

0

∫
R3

Bv ⊗Bv : ∇(u− v − w) +

∫ t

0

∫
R3

(v + w) · ∂t(v + w)

+

∫ t

0

∫
R3

u · (∇(v + w)(v + w)) +
1

2

∫
R3

|u|2(0) + 1

2

∫
R3

|Bu|2(0) + κ|∇χu,0|(R3)

−
∫ t

0

∫
R3

u · ∂t(v + w)−
∫ t

0

∫
R3

u⊗ u : ∇(v + w) +

∫ t

0

∫
R3

Bu ⊗Bu : ∇(v + w)

+ 2

∫ t

0

∫
R3

ν(χu)Du : ∇(v + w) + κ

∫ t

0

∫
R3×S2

(I − s⊗ s) : ∇(v + w)dV (t),

(4.2.12)

which is abbreviated to

I1 + · · ·+ I9 ≤ J1 + · · ·+ J15. (4.2.13)

Now we reorder these terms and collect all the component terms of the relative entropy

E. The terms without magnetic field can be treated in the same way as in [10, Section

7]. We include these terms in our arguments for convenience and completeness. First, the

velocity term of the relative entropy E can be obtained by

I1 + I3 + I8 =
1

2

∫
R3

|u− v − w|2(t)dx,

I2 + I9 − J8 = −1

2

∫
R3

|u− v − w|2(0)dx.
(4.2.14)

From [10, (194)], we obtain the varifold term in E:

I5 = κ|∇χu(t)|(R3) + κ

∫
R3

1− θ(t)dV∗(t),

J10 = κ|∇χ0|(R3).

(4.2.15)
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Since the two fluids have the same density ρ = 1, the term Rdt in [10] vanishes in our case.

Thus, the terms Radv, Aadv, Rdt and Adt in [10] satisfies

(J2 + J7 + J12) + (J1 + J6 + J11)

= −
∫ t

0

∫
R3

v∇w(u− v − w)−
∫ t

0

∫
R3

(u− v − w)∇v(u− v − w)

−
∫ t

0

∫
R3

w∇(v + w)(u− v − w)−
∫ t

0

∫
R3

(u− v − w)∇w(u− v − w)

−
∫ t

0

∫
R3

(u− v − w) · ∂tw = Radv + Aadv +Rdt + Adt.

(4.2.16)

The terms that contain mean curvature are

J4 + J15 = κ

∫ t

0

∫
R3×S2

(I − s⊗ s) : ∇vdV (τ)− κ

∫ t

0

∫
Γv(τ)

Hnv · (u− v)dSdτ

+ κ

∫ t

0

∫
R3×S2

(I − s⊗ s) : ∇wdV (τ) + κ

∫ t

0

∫
Γv(τ)

Hnv · wdSdτ.
(4.2.17)

The viscosity terms Rvisc and Avisc in [10] are treated by

J3 − I6 + J14 = Rvisc + Avisc − 2

∫ t

0

∫
R3

ν(χu)|D(u− v − w)|2. (4.2.18)

Therefore, we obtain:

1

2

∫
R3

|u− v − w|2(t)dx+ κ|∇χu(t)|(R3) + κ

∫
R3

1− θ(t)dV∗(t)

+
1

2

∫
R3

|Bu|2(t) + σ

∫ t

0

∫
R3

|∇Bu|2 + 2

∫ t

0

∫
R3

ν(χu)|D(u− v − w)|2

≤ 1

2

∫
R3

|u− v − w|2(0)dx+ κ|∇χu,0|(R3) +
1

2

∫
R3

|Bu|2(0)

+

∫ t

0

∫
R3

Bu ⊗Bu : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗Bv : ∇(u− v − w)

+Radv + Aadv +Rdt + Adt +Rvisc + Avisc + J4 + J15.

(4.2.19)
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By (202), (208) and (210) in [10], we obtain

− κ

∫
R3

nu(t) · ξ(t)d |∇χu|+
∫
R3

|χu(t)− χv(t)|
∣∣∣∣β (d(x)ϱ0

)∣∣∣∣
+

1

2

∫
R3

|u− v − w|2(t)dx+ κ|∇χu(t)|(R3) + κ

∫
R3

1− θ(t)dV∗(t)

+
1

2

∫
R3

|Bu|2(t) + σ

∫ t

0

∫
R3

|∇Bu|2 + 2

∫ t

0

∫
R3

ν(χu)|D(u− v − w)|2

≤ −κ
∫
R3

nu,0ξ(0)d |∇χu,0|+
1

2

∫
R3

|u− v − w|2(0)dx+ κ|∇χu,0|(R3) +
1

2

∫
R3

|Bu|2(0)

+

∫ t

0

∫
R3

Bu ⊗Bu : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗Bv : ∇(u− v − w)

+Radv + Aadv +Rdt + Adt +Rvisc + Avisc +RsurTen + AsurTen +RweightV ol + AweightV ol

+

∫
R3

|χu,0 − χv,0|
∣∣∣∣β (d(x)ϱ0

)∣∣∣∣ .
(4.2.20)

The definitions of RsurTen, AsurTen, RweightV ol, AweightV ol and β can be found in [10, Proposi-

tion 10]. It remains to obtain the term |Bu −Bv|2 to complete the relative entropy. In order
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to do this, we add (4.2.10) and (4.2.11) to (4.2.20), which implies

− κ

∫
R3

nu(t) · ξ(t)d |∇χu|+
∫
R3

|χu(t)− χv(t)|
∣∣∣∣β (d(x)ϱ0

)∣∣∣∣
+

1

2

∫
R3

|u− v − w|2(t)dx+ κ|∇χu(t)|(R3) + κ

∫
R3

1− θ(t)dV∗(t)

+
1

2

∫
R3

|Bu|2(t)−
∫
R3

Bu(t) ·Bv(t) +

∫
R3

1

2
|Bv|2(t)

+ σ

∫ t

0

∫
R3

|∇Bu|2 + 2

∫ t

0

∫
R3

ν(χu)|D(u− v − w)|2

≤ −κ
∫
R3

nu,0ξ(0)d |∇χu,0|+
1

2

∫
R3

|u− v − w|2(0)dx+ κ|∇χu,0|(Ω)

+
1

2

∫
R3

|Bu|2(0)−
∫
R3

Bu(0) ·Bv(0) +

∫
R3

1

2
|Bv|2(0)

+

∫ t

0

∫
R3

Bu ⊗Bu : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗Bv : ∇(u− v − w)

+Radv + Aadv +Rdt + Adt +Rvisc + Avisc +RsurTen + AsurTen +RweightV ol + AweightV ol

+

∫
R3

|χu,0 − χv,0|
∣∣∣∣β (d(x)ϱ0

)∣∣∣∣
−
∫ t

0

∫
R3

Bu · ∂tBv −
∫ t

0

∫
R3

u⊗Bu : ∇Bv +

∫ t

0

∫
R3

Bu ⊗ u : ∇Bv

+ σ

∫ t

0

∫
R3

∇Bu : ∇Bv +

∫ t

0

∫
R3

Bv · ∂tBv +

∫ t

0

∫
R3

u⊗Bv : ∇Bv.

(4.2.21)

We recall that

κ|∇χu(t)|(R3)− κ

∫
R3

nu · ξ(t)d |∇χu| =
∫
R3

1− nu · ξ(t)d |∇χu(t)| (4.2.22)

and ∫
R3

1

2
|Bu|2(t)−

∫
R3

Bu(t) ·Bv(t) +

∫
R3

1

2
|Bv|2(t) =

∫
R3

1

2
|Bu −Bv|2(t). (4.2.23)

Using the same argument, we combine corresponding terms in (4.2.21) and obtain terms∫
R3

1− nu,0 · ξ(0)d |∇χu(0)| and

∫
R3

1

2
|Bu −Bv|2(0).
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We can now replace the corresponding terms with E(t) and E(0) and obtain

E(t) + σ

∫ t

0

∫
R3

|∇Bu|2 + 2

∫ t

0

∫
R3

ν(χu)|D(u− v − w)|2

≤ E(0) +Radv + Aadv +Rdt + Adt +Rvisc + Avisc +RsurTen + AsurTen +RweightV ol + AweightV ol

+

∫ t

0

∫
R3

Bu ⊗Bu : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗Bv : ∇(u− v − w)

−
∫ t

0

∫
R3

(Bu −Bv) · ∂tBv −
∫ t

0

∫
R3

u⊗ (Bu −Bv) : ∇Bv

+

∫ t

0

∫
R3

Bu ⊗ u : ∇Bv + σ

∫ t

0

∫
R3

∇Bu : ∇Bv.

(4.2.24)

Combining the second term and the last term in (4.2.24), we have

σ

∫ t

0

∫
R3

|∇Bu|2 − σ

∫ t

0

∫
R3

∇Bu : ∇Bv

= σ

∫ t

0

∫
R3

|∇(Bu −Bv)|2 + σ

∫ t

0

∫
R3

∇Bv : ∇(Bu −Bv).

(4.2.25)

Thus, we can rewrite (4.2.24) as

E(t) + 2

∫ t

0

∫
R3

ν(χu)|D(u− v − w)|2 + σ

∫ t

0

∫
R3

|∇(Bu −Bv)|2

≤ E(0) +Radv + Aadv +Rdt + Adt +Rvisc + Avisc +RsurTen + AsurTen

+RweightV ol + AweightV ol + I1 + · · ·+ I6,

(4.2.26)

where t ∈ [0, T0) and

I1 + · · ·+ I6

:=

∫ t

0

∫
R3

Bu ⊗Bu : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗Bv : ∇(u− v − w)

−
∫ t

0

∫
R3

(Bu −Bv) · ∂tBv −
∫ t

0

∫
R3

u⊗ (Bu −Bv) : ∇Bv

+

∫ t

0

∫
R3

Bu ⊗ u : ∇Bv − σ

∫ t

0

∫
R3

∇Bv : ∇(Bu −Bv).

(4.2.27)
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Now we rewrite terms I1, I4 and I5. For I1, we replace Bu with Bu −Bv +Bv and obtain

I1 =

∫ t

0

∫
R3

Bu ⊗Bu : ∇(v + w)

=

∫ t

0

∫
R3

(Bu −Bv +Bv)⊗ (Bu −Bv +Bv) : ∇(v + w)

=

∫ t

0

∫
R3

(Bu −Bv)⊗ (Bu −Bv) : ∇(v + w) +

∫ t

0

∫
R3

(Bu −Bv)⊗Bv : ∇(v + w)

+

∫ t

0

∫
R3

Bv ⊗ (Bu −Bv) : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗Bv : ∇(v + w).

(4.2.28)

Using the same idea as for I1, we obtain

I4 = −
∫ t

0

∫
R3

u⊗ (Bu −Bv) : ∇Bv

= −
∫ t

0

∫
R3

(u− (v + w) + (v + w))⊗ (Bu −Bv) : ∇Bv

= −
∫ t

0

∫
R3

(u− v − w)⊗ (Bu −Bv) : ∇Bv

−
∫ t

0

∫
R3

(v + w)⊗ (Bu −Bv) : ∇Bv

(4.2.29)

and

I5 =

∫ t

0

∫
R3

Bu ⊗ u : ∇Bv

=

∫ t

0

∫
R3

(Bu −Bv +Bv)⊗ (u− (v + w) + (v + w)) : ∇Bv

=

∫ t

0

∫
R3

(Bu −Bv)⊗ (u− v − w) : ∇Bv +

∫ t

0

∫
R3

(Bu −Bv)⊗ (v + w) : ∇Bv

+

∫ t

0

∫
R3

Bv ⊗ (u− v − w) : ∇Bv +

∫ t

0

∫
R3

Bv ⊗ (v + w) : ∇Bv.

(4.2.30)
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Thus, we have

I1 + · · ·+ I6 :=

∫ t

0

∫
R3

(Bu −Bv)⊗ (Bu −Bv) : ∇(v + w)

+

∫ t

0

∫
R3

(Bu −Bv)⊗Bv : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗ (Bu −Bv) : ∇(v + w)

+

∫ t

0

∫
R3

Bv ⊗Bv : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗Bv : ∇(u− v − w)

−
∫ t

0

∫
R3

(Bu −Bv) · ∂tBv −
∫ t

0

∫
R3

(u− v − w)⊗ (Bu −Bv) : ∇Bv

−
∫ t

0

∫
R3

(v + w)⊗ (Bu −Bv) : ∇Bv +

∫ t

0

∫
R3

(Bu −Bv)⊗ (u− v − w) : ∇Bv

+

∫ t

0

∫
R3

(Bu −Bv)⊗ (v + w) : ∇Bv +

∫ t

0

∫
R3

Bv ⊗ (u− v − w) : ∇Bv

+

∫ t

0

∫
R3

Bv ⊗ (v + w) : ∇Bv − σ

∫ t

0

∫
R3

∇Bv : ∇(Bu −Bv).

(4.2.31)

Notice that term 4 cancels term 12 and term 5 cancels term 11. Thus, we finally obtain the

relative entropy inequality:

E(t) + 2

∫ t

0

∫
R3

ν(χu)|D(u− v − w)|2 + σ

∫ t

0

∫
R3

|∇(Bu −Bv)|2

≤ E(0) +Radv + Aadv +Rdt + Adt +Rvisc + Avisc +RsurTen + AsurTen

+RweightV ol + AweightV ol + Igood + Ibad,

(4.2.32)

where t ∈ [0, T0). The terms R and A are defined in [10]. The two terms Igood and Ibad are

defined as:

Igood :=

∫ t

0

∫
R3

(Bu −Bv)⊗ (Bu −Bv) : ∇(v + w)

−
∫ t

0

∫
R3

(u− v − w)⊗ (Bu −Bv) : ∇Bv +

∫ t

0

∫
R3

(Bu −Bv)⊗ (u− v − w) : ∇Bv

(4.2.33)
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and

Ibad :=

∫ t

0

∫
R3

(Bu −Bv)⊗Bv : ∇(v + w) +

∫ t

0

∫
R3

Bv ⊗ (Bu −Bv) : ∇(v + w)

−
∫ t

0

∫
R3

(v + w)⊗ (Bu −Bv) : ∇Bv +

∫ t

0

∫
R3

(Bu −Bv)⊗ (v + w) : ∇Bv

−
∫ t

0

∫
R3

(Bu −Bv) · ∂tBv − σ

∫ t

0

∫
R3

∇Bv : ∇(Bu −Bv)

=

∫ t

0

∫
R3

Bv ⊗ (Bu −Bv) : ∇(v + w)

−
∫ t

0

∫
R3

(v + w)⊗ (Bu −Bv) : ∇Bv −
∫ t

0

∫
R3

(Bu −Bv) · ∂tBv − σ

∫ t

0

∫
R3

∇Bv : ∇(Bu −Bv).

(4.2.34)

The term Ibad can only be controlled using
∫ t

0
E(t)

1
2 rather than

∫ t

0
E(t). In order to utilize

the Gronwall’s inequality, we still need to treat Ibad using the equations of the strong solution.

By the transport theorem we have∫
R3

(Bv · φ) (t)−
∫
R3

(B0 · φ) (0) =
∫ t

0

∫
R3

∂t (Bv · φ) +
∫ t

0

∫
R3

v · ∇ (Bv · φ)

=

∫ t

0

∫
R3

∂tBv · φ+

∫ t

0

∫
R3

Bv · ∂tφ+

∫ t

0

∫
R3

v ⊗ φ : ∇Bv +

∫ t

0

∫
R3

v ⊗Bv : ∇φ.
(4.2.35)

Next, we consider the magnetic equation (4.0.2) of the strong solution. Testing the equation

with φ ∈ C∞
c ([0, T0)× R3), divφ = 0, we obtain for all t ∈ [0, T0) that∫

R3

Bv(t) · φ(t)−
∫
R3

B0 · φ(0) =
∫ t

0

∫
R3

Bv · ∂tφ+

∫ t

0

∫
R3

v ⊗Bv : ∇φ

−
∫ t

0

∫
R3

Bv ⊗ v : ∇φ− σ

∫ t

0

∫
R3

∇Bv : ∇φ.
(4.2.36)

Subtracting (4.2.36) from (4.2.35), we have∫ t

0

∫
R3

∂tBv · φ+

∫ t

0

∫
R3

v ⊗ φ : ∇Bv +

∫ t

0

∫
R3

Bv ⊗ v : ∇φ+ σ

∫ t

0

∫
R3

∇Bv : ∇φ = 0.

(4.2.37)

Letting φ = Bu −Bv in (4.2.37) and combining it with Ibad, we finally obtain

Ibad = −
∫ t

0

∫
R3

Bv ⊗ w : ∇(Bu −Bv)−
∫ t

0

∫
R3

w ⊗ (Bu −Bv) : ∇Bv. (4.2.38)
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4.3 Control of Relative Entropy

Now we can estimate Igood and Ibad in terms of the relative entropy E. We let

Igood + Ibad =

∫ t

0

∫
R3

(Bu −Bv)⊗ (Bu −Bv) : ∇(v + w)

−
∫ t

0

∫
R3

(u− v − w)⊗ (Bu −Bv) : ∇Bv +

∫ t

0

∫
R3

(Bu −Bv)⊗ (u− v − w) : ∇Bv

−
∫ t

0

∫
R3

Bv ⊗ w : ∇(Bu −Bv)−
∫ t

0

∫
R3

w ⊗ (Bu −Bv) : ∇Bv

=: I1 − I2 + I3 − I4 − I5.

(4.3.1)

We assume in advance that E(t) ≤ ϵ2(t) for an auxiliary function ϵ(t) ∈ C1([0, T0); [0, ϱ0)).

The auxiliary function w has been carefully studied in [10, Proposition 28]. In the estimation

of magnetic terms, we will use the following two properties of w in [10]:

∥∇w(t)∥L∞(R3) ≤ C
1

ϱ40
|log ϵ(t)| ∥v∥W 2,∞(R3\Γv(t))

+ C
1

ϱ30

∥∥∇3v
∥∥
L∞(R3\Γv(t))

+ C
1

ϱ90

(
1 +H2(Γv(t))

)
∥v∥W 2,∞(R3\Γv(t))

(4.3.2)

and ∫
R3

|w(t)|2 dx ≤ C

(
M2

ϱ40
∥v∥W 2,∞(R3\Γv(t))

+ 1

)
·
(∫

Γv(t)

∣∣∣h+ϵ(t)∣∣∣2 + ∣∣∣∇h+ϵ(t)∣∣∣2 + ∣∣∣h−ϵ(t)∣∣∣2 + ∣∣∣∇h−ϵ(t)∣∣∣2 dS)
≤ C(v, ϱ0)E(t)

(4.3.3)

whereM > 0 is a fixed number such that B(Γv(t); ϱ0) ⊆ B(0;M) and the functions h±ϵ(t) and

∇h±ϵ(t) are defined in [10].

Now we estimate I1 to I5 in (4.3.1) term by term. Using (4.3.2), we obtain

|I1| ≲
∫ t

0

∥∇(v + w)∥L∞ ∥Bu −Bv∥2L2 ≲
∫ t

0

C(τ)E(τ)dτ (4.3.4)

where

C(τ) = ∥∇v∥L∞(R3\Γv(τ))
+

1

ϱ40
|log ϵ(τ)| ∥v∥W 2,∞(R3\Γv(τ))

+
1

ϱ30

∥∥∇3v
∥∥
L∞(R3\Γv(τ))

+
1

ϱ90

(
1 +H2(Γv(τ))

)
∥v∥W 2,∞(R3\Γv(τ))

.
(4.3.5)
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Using Hölder’s inequality, we have

|I2|+ |I3| ≲
∫ t

0

∫
R3

|u− v − w| |Bu −Bv| |∇Bv|

≲
∫ t

0

∥∇Bv(τ)∥L∞(R3) ∥u− v − w∥L2(R3) ∥Bu −Bv∥L2(R3)

≲
∫ t

0

∥∇Bv(τ)∥L∞(R3)

(
∥u− v − w∥2L2(R3) + ∥Bu −Bv∥2L2(R3)

)
≲
∫ t

0

∥∇Bv(τ)∥L∞(R3)E(τ)dτ.

(4.3.6)

Without loss of generality, we assume ϱ0 < 1, then for all δ > 0 we have

|I4| ≲
∫ t

0

∥Bv∥L∞(R3) ∥w∥L2(R3) ∥∇(Bu −Bv)∥L2(R3)

≲ δ

∫ t

0

∥Bv∥L∞(R3) ∥∇(Bu −Bv)∥2L2(R3) +
1

δ

∫ t

0

∥Bv∥L∞(R3) ∥w∥
2
L2(R3)

≲ δ

∫ t

0

∥Bv∥L∞(R3) ∥∇(Bu −Bv)∥2L2(R3)

+
1

δ

∫ t

0

C ∥Bv∥L∞

ϱ40

(
1

ϱ40
∥v∥W 2,∞(R3\Γv(τ))

+ 1

)
E(τ).

(4.3.7)

Finally, using Hölder’s inequality, we have

|I5| ≲
∫ t

0

∥∇Bv∥L∞(R3) ∥w∥L2(R3) ∥Bu −Bv∥L2(R3)

≲
∫ t

0

∥∇Bv∥L∞(R3) ∥Bu −Bv∥2L2(R3) +

∫ t

0

∥∇Bv∥L∞(R3) ∥w∥
2
L2(R3)

≲
∫ t

0

∥∇Bv∥L∞(R3)E(τ) +

∫ t

0

∥∇Bv∥L∞

ϱ40

(
1

ϱ40
∥v∥W 2,∞(R3\Γv(τ))

+ 1

)
E(τ)

≲
∫ t

0

∥∇Bv∥L∞

ϱ40

(
1

ϱ40
∥v∥W 2,∞(R3\Γv(τ))

+ 1

)
E(τ).

(4.3.8)

Thus, we obtain

|I1|+ · · ·+ |I5| ≤ C(v,Bv,Γv, ϱ0, δ)

∫ t

0

(1 + |log ϵ(τ)|)E(τ)dτ

+ C(Bv)δ

∫ t

0

∥∇(Bu −Bv)∥2L2 dτ.

(4.3.9)

128



The estimates in the right-hand side of (4.3.9) do not change the structure of the relative

entropy inequality in [10, (176)]. Thus, when the assumption E(t) ≤ ϵ2(t) holds, by choosing

δ sufficiently small, we can find c1, c2 > 0, such that

E(t) + c1

∫ t

0

∫
R3

|∇ (u− v − w)|2 + c2

∫ t

0

∫
R3

|∇ (Bu −Bv)|2

≤ E(0) + C(v,Bv,Γv, ϱ0, δ)

∫ t

0

(1 + |log ϵ(τ)|)E(τ)dτ

+ C(v,Bv,Γv, ϱ0, δ)

∫ t

0

(1 + |log ϵ(t)|) ϵ(τ)E
1
2 (τ)dτ

+ C(v,Bv,Γv, ϱ0, δ)

∫ t

0

ϵ′(τ)E(τ)dτ.

(4.3.10)

The right-hand side of (4.3.10) is the same as in [10, Section 6.9]. Therefore, the arguments

in [10] can be carried out directly to obtain E(t) ≡ 0, which completes the proof of the

weak-strong uniqueness.
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Appendix Basic Theorems and Details of Proofs

We include some useful details in the appendix for the readers’ reference.

We state the Aubin-Lions lemma, which is used for obtaining stronger convergence in

the study of varifold solutions.

Theorem A.0.1 ( [23], Theorem 1.71). Given Banach spaces X, Y and Z such that

X ↪→↪→ Y ↪→ Z. Let q ∈ (1,∞] be a fixed number. Let {fn}∞n=1 be a bounded sequence

in Lq([0, T ];Y )∩L1([0, T ];X). Suppose that {∂tfn}∞n=1 is bounded in L1([0, T ];Z). Then for

all p ∈ [1, q), the sequence {fn}∞n=1 is relatively compact in Lp([0, T ];Y ).

We write the estimate of the product of two functions from different spaces. The depen-

dency of constant terms on parameters are carefully studied.

Proposition A.0.1. Let Ω be a bounded open set. Let T0 > 0, s ∈ (0, 1), r ∈ (0, 1) and q ≥ 1

be fixed numbers. For all T ∈ (0, T0], suppose that f ∈ C1([0, T ];C(Ω)) ∩ C([0, T ];C1(Ω))

and g ∈ W s,q([0, T ];Lq(Ω)) ∩ Lq([0, T ];W r,q(Ω)). Then

∥fg∥W s,qLq∩LqW r,q ≤ C ∥f∥C1C∩CC1 ∥g∥W s,qLq∩LqW r,q .

Proof. Step 1:

For all t ∈ [0, T ] we have

∥fg∥W r,q(Ω) (t) := ∥fg∥Lq (t) + [fg]W r,q (t).

We ignore the variable t when there is no confusion. For the Lq norm we have

∥fg∥Lq(Ω) ≤ ∥f∥C(Ω) ∥g∥Lq(Ω) .
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For the seminorm we have

[fg]W r,q(Ω) :=

(∫
Ω

∫
Ω

|f(x)g(x)− f(y)g(y)|q

|x− y|n+rq dydx

) 1
q

≤
(
C(q)

∫
Ω

∫
Ω

|f(x)|q |g(x)− g(y)|q + |f(x)− f(y)|q |g(y)|q

|x− y|n+rq dydx

) 1
q

≤
(
C(q)

∫
Ω

∫
Ω

∥f∥qC0 |g(x)− g(y)|q + ∥f∥qC1 |x− y|q |g(y)|q

|x− y|n+rq dydx

) 1
q

≤ C(q) ∥f∥C0 [g]W r,q + C(q) ∥f∥C1

(∫
Ω

|g(y)|q
(∫

Ω

|x− y|−n−rq+q dx

)
dy

) 1
q

≤ C(q) ∥f∥C0 [g]W r,q + C(q, diam(Ω)) ∥f∥C1 ∥g∥Lq

≤ C(q, diam(Ω)) ∥f∥C1 ∥g∥W r,q

(A.0.1)

where C(q, diam(Ω)) is an increasing function of diam(Ω). Thus, we have

∥fg∥LqW r,q :=

(∫ T

0

∥fg∥qW r,q(Ω) (t)dt

) 1
q

≤ C(q, diam(Ω))

(∫ T

0

∥f∥qC1(Ω) (t) ∥g∥
q
W r,q(Ω) (t)dt

) 1
q

≤ C(q, diam(Ω)) ∥f∥C0C1 ∥g∥LqW r,q ,

(A.0.2)

where the constant is still an increasing function of diam(Ω) and it is independent of T0 or

T .

Step 2: We recall that

∥fg∥W s,qLq := ∥fg∥LqLq + [fg]W s,qLq

with the seminorm defined as

[f ]W s,qLq :=

(∫ T

0

∫ T

0

|f(t)− f(τ)|q

|x− y|1+sq dtdτ

) 1
q

.
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We have the estimate

[fg]W s,qLq :=

(∫ T

0

∫ T

0

∥f(t)g(t)− f(τ)g(τ)∥qLq(Ω)

|t− τ |1+sq dtdτ

) 1
q

≤ C(q)

(∫ T

0

∫ T

0

∥f(t) (g(t)− g(τ))∥qLq(Ω) + ∥(f(t)− f(τ)) g(τ)∥qLq(Ω)

|t− τ |1+sq dtdτ

) 1
q

≤ C(q)

(∫ T

0

∫ T

0

∥f(t)∥qC0(Ω) ∥g(t)− g(τ)∥qLq(Ω) + ∥f(t)− f(τ)∥qC0(Ω) ∥g(τ)∥
q
Lq

|t− τ |1+sq dtdτ

) 1
q

≤ C(q)

(∫ T

0

∫ T

0

∥f(t)∥qC0(Ω) ∥g(t)− g(τ)∥qLq(Ω) + ∥f∥qC1C0 |t− τ |q ∥g(τ)∥qLq

|t− τ |1+sq dtdτ

) 1
q

≤ C(q) ∥f∥C0C0 [g]W s,qLq + C(q) ∥f∥C1C0

(∫ T

0

∥g(τ)∥qLq

(∫ T

0

|t− τ |−1−sq+q dt

)
dτ

) 1
q

≤ C(q) ∥f∥C0C0 [g]W s,qLq + C(q, T ) ∥f∥C1C0 ∥g∥LqLq

≤ C(q, T ) ∥f∥C1C0 ∥g∥W s,qLq ,

(A.0.3)

where C(q, T ) is an increasing function of T .

Consequently, since Ω and T0 are fixed and T ≤ T0, we obtain for all T ∈ (0, T0] that

∥fg∥W s,q([0,T ];Lq(Ω))∩Lq([0,T ];W r,q(Ω)) := ∥fg∥LqW r,q + ∥fg∥W s,qLq

≤ C(q, diam(Ω)) ∥f∥C0C1 ∥g∥LqW r,q + C(q, T0) ∥f∥C1C0 ∥g∥W s,qLq

≤ C(q, diam(Ω), T0) ∥f∥C1([0,T ];C(Ω))∩C([0,T ];C1(Ω)) ∥g∥W s,q([0,T ];Lq(Ω))∩Lq([0,T ];W r,q(Ω)) .

(A.0.4)
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