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Multilevel, including bilevel, optimization has been widely applied in real world hierarchi-

cal systems, such as power systems and transportation systems. However, this optimization

scheme is complex and its extension to handle uncertainty is very limited. In this disser-

tation, we explore the mathematical structure and develop efficient solution methods for

two types of such optimization problem: bilevel mixed-integer nonlinear programming and

robust bilevel optimization. Two applications, wind farm capacity expansion problem and

optimal decision tree problem, are investigated using the proposed methods.

In our first study, we consider general bilevel mixed-integer nonlinear programming prob-

lems. By analyzing the structure of the problem, we provide optimality conditions based

reformulation and computing scheme for both optimistic and pessimistic cases.

Our second study focuses on bilevel optimization with uncertainty and develops robust

bilevel optimization (RBO) models along with solution methods. We first study single-stage

RBO problems and provide solution methods to deal with different types of uncertainties. For

single-stage RBO with discrete uncertainty set, we develop a novel cut-and-branch algorithm.

We then study two-stage RBO problems, which involve wait-and-see decisions. We provide

two basic models and their variations, as well as column-and-constraint generation algorithms

to exactly handle uncertainties.

Finally, we apply our proposed methods to wind farm capacity expansion problem and

optimal decision tree problem. In the first application, we formulate the wind farm invest-

ment problem into a two-stage RBO model and solve it by a proposed column-and-constraint

generation algorithm. In the second application, we develop a new mixed-integer program-

ming (MIP) based formulation to construct an optimal classification tree. We improve the

generalizability of the model through a data-driven hyperparameter tuning approach in the

bilevel optimization framework.

iv



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Bilevel Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Bilevel Optimization With Uncertainty . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.0 On Solving Bilevel Mixed Integer Nonlinear Programming Problems . 9

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Single Level Reformulation of BO ProblemsWith Convex Lower Level Problem 11

2.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Bilevel Optimization With Convex Lower Level Problem . . . . . . . 13

2.2.3 Generalized Pessimistic Bilevel Optimization and Reformulation . . . 15

2.2.4 Bilevel Optimization With Bounded Rationality and Suboptimality . 20

2.3 Optimality Conditions Based Reformulation of Bilevel Mixed Integer Non-

linear Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Reformulation of Optimistic Bilevel Mixed Integer Programming Prob-

lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Reformulation of Generalized Pessimistic Bilevel Mixed Integer Pro-

gramming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Solution Method for BiMINLP Problems . . . . . . . . . . . . . . . . . . . 31

2.4.1 Decomposition Algorithm and Computational Complexity . . . . . . 31

2.4.2 Illustration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Metabolic Network Optimization . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Numerical Study on General BiMINLP Problems . . . . . . . . . . . 38

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.0 Robust Bilevel Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



3.1 Motivation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Current Status on Bilevel Optimization With Uncertainties . . . . . 40

3.1.2 Basic Concepts and Properties of Bilevel Optimization . . . . . . . . 43

3.2 Robust Bilevel Model With Exogenous Uncertainty . . . . . . . . . . . . . 45

3.2.1 Model Development and Basic Properties . . . . . . . . . . . . . . . 46

3.2.2 Reformulations and Relaxations for Computing R1−BO . . . . . . 48

3.2.3 Cut-and-Branch Algorithm for Discrete Uncertainty Sets . . . . . . . 52

3.3 Robust Bilevel Model Under Uncertainties in Perception . . . . . . . . . . 55

3.4 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.0 Two-Stage Robust Bilevel Optimization . . . . . . . . . . . . . . . . . . . 60

4.1 Bilevel Optimization With Scenario-Specific Decisions Under Exogenous

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Two-Stage Robust Bilevel Optimization Formulations and Properties 60

4.1.2 Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Bilevel Optimization With Scenario-Specific Decisions Under Endogenous

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Extensions of Robust Bilevel Optimization Models . . . . . . . . . . . . . . 71

4.3.1 Robust Bilevel Optimization With Multiple Objectives . . . . . . . . 71

4.3.2 Robust Bilevel Optimization With Objective Function Uncertainty . 72

4.3.3 Robust Bilevel Optimization With Communication Uncertainty . . . 74

4.3.4 Robust Bilevel Optimization With Multiple Uncertainty Sets . . . . 76

4.4 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Design of Vehicle Sharing System Under Uncertainty . . . . . . . . . 77

4.4.2 Capacitated Plant Selection Problem Under Uncertainty . . . . . . . 82

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.0 Capacity Expansion of Wind Farm in a Market Environment Under

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Bilevel Wind Farm Capacity Expansion Formulation . . . . . . . . . . . . 87

vi



5.3 Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.0 Data Driven Optimal Decision Trees Considering Local Information . 95

6.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Data-Driven Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Bilevel Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.2 Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.0 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix A. Computational Study Detail for BiMINLP Problems . . . . . 114

Appendix B. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.2 Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.3 Proof of Proposition 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vii



List of Tables

Table 1: Comparison of Different Categories of Uncertainties . . . . . . . . . . . 6

Table 2: Computational Result of Metabolic Network Problem . . . . . . . . . . 37

Table 3: Computing Time for Solving P-MOMA . . . . . . . . . . . . . . . . . . 37

Table 4: Experiment Results on Randomly Generated BiMIQP Instances . . . . 38

Table 5: Experiment Results on Randomly Generated BiMISOCP Instances . . . 39

Table 6: Experiment Results on Randomly Generated BiMIBLP Instances . . . . 39

Table 7: Result of RBFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 8: Performance of the Cut-and-Branch Algorithm . . . . . . . . . . . . . . 59

Table 9: Impact of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 10: Computational Performance on Randomly Generated Instances . . . . . 85

Table 11: Notation in RWFIP Formulation . . . . . . . . . . . . . . . . . . . . . . 88

Table 12: Worst Case Performance Evaluation . . . . . . . . . . . . . . . . . . . . 93

Table 13: Notation in the OCT Formulation . . . . . . . . . . . . . . . . . . . . . 100

Table 14: Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 15: Average Training Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table 16: Average Test Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



List of Figures

Figure 1: Different Types of Uncertainties . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2: Uncertainty in the Decision Making Process . . . . . . . . . . . . . . . 7

Figure 3: Transportation Network With Corridor Structure . . . . . . . . . . . . 81

Figure 4: Worst Case Profit for Ω = 0.2 and Ω = 0.4 . . . . . . . . . . . . . . . . 81

Figure 5: Performance Evaluation of the Solution Method . . . . . . . . . . . . . 94

Figure 6: Percentage of Instances Solved Over Time . . . . . . . . . . . . . . . . 112

ix



Preface

First, I would like to give special thanks to my advisor, Dr. Bo Zeng, for his consistent

support during my Ph.D. study. He dedicates so much time to work with me on my research,

helping me not only overcome technical challenges but also grow up to be an independent

researcher. His passion toward scientific work impresses and encourages me a lot, especially

during my hard time. Without his guidance and encouragement, it is impossible to complete

the research in this dissertation. It is my great honor to work with Dr. Zeng, and I believe

such experience will benefit my whole career.

I would also like to thank Dr. Daniel R. Jiang, Dr. Hoda Bidkhori, and Dr. Zhi-Hong

Mao for serving as my Ph.D. dissertation committee member. They help me to improve my

dissertation from more perspectives with their valuable comments. Furthermore, I would like

to thank the faculty in the industrial engineering department for their high quality inspiring

courses and the staff team for their great support.

Finally, I want to give thanks to my family, especially to my wife and my parents, for

their unconditional love and support. Thanks to all my beloved friends for accompanying

me through this unforgettable journey. I am so grateful to have you in my life!

x



1.0 Introduction

Bilevel optimization [43, 49] is a powerful framework to model and investigate hierarchical

systems such as power systems and transportation systems. However, solving bilevel opti-

mization problems is very challenging, and the simplest bilevel linear programming problems

have been proven NP-hard [53]. Moreover, uncertainty such as missing data and estimation

error is almost always involved in a decision making process. In this dissertation, we study

two types of bilevel optimization problems, namely, bilevel mixed integer nonlinear program-

ming problems and robust bilevel optimization problems. Two applications that take the

advantage of our proposed model and solution method are also included in this dissertation.

1.1 Bilevel Optimization

Many practical systems are organized and operated in a hierarchical structure, where two

types of decision makers (DMs) with different interests act in two levels. An upper level DM

(referred to as she) first makes her decision, which is then passed to DM(s) in the lower level

(referred to as he for a single DM) and affects his reasoning. After the lower level DM makes

his decision, he discloses it to the upper level DM. The performance of the upper level DM

will be evaluated by the aggregated decisions, i.e., the decision from her and the one(s) from

DM(s) in the lower level. For example, in a highway system, the transportation authority,

acting as the upper level DM, sets tolls on arcs of a transportation network to generate

revenue, and vehicle drivers, acting as the lower level DMs, select their routes considering

travelling costs. It is clear that the revenue received by the authority is jointly determined

by the overall toll scheme and traffic flows on arcs.

Similar situations can be found in a deregulated electricity market consisting of the

market administrator and market participants regarding power generation, market bidding,

and capacity expansion issues [114, 72, 77], a waste management system consisting of a

regional planning agency and private firms to determine effective pollution control policies

1



[6], an emergency evacuation system consisting of a central planner and evacuees to deter-

mine shelter locations and support facilities [69]. Another typical application can be found

in a security system where one defender allocates protective resources with an assumption

that attacker(s) respond her decisions subsequently. Also, an interesting application arises

in biological engineering where the hierarchical structure includes the human DM in the

upper level to make biochemical or genetic changes and the biological system as the lower

level DM to respond according to biological mechanisms [110, 34]. Indeed, in many stud-

ies of economics, such sequential hierarchical decision making has long been recognized as

Stackelberg leader-follower game [123], where the leader and the follower correspond to the

aforementioned upper and lower DMs respectively. So, as in most existing literature, the

leader (the follower, respectively) and the upper level DM (the lower level DM, respectively)

are used interchangeably in this dissertation for ease of exposition.

To quantitatively analyze that hierarchical decision making process, especially to support

the upper level DM, the regular monolithic optimization formulation is extended in a nested

fashion to the following bilevel optimization (BO) formulation. Let x and y denote decision

variables, and F and f be objective functions of DMs in the upper and the lower levels,

respectively. The BO formulation is

BO : Θ∗ = min
(x,ỹ)

F (x, ỹ) (1.1)

s.t. G(x) ≤ 0,x ∈ X ⊆ Rmc
+ × Zmd

+ , (1.2)

ỹ ∈ ϕ(x) ≡ argmin{f(x,y) : g(x,y) ≤ 0,y ∈ Y ⊆ Rnc
+ × Znd

+ } (1.3)

We mention that the embedded optimization model in (1.3), which takes the upper level

decision x as input parameters, represents the decision making problem of the lower level

DM. The logic of the complete decision making goes as follows. The upper level DM selects

a particular x considering the upper level constraints, and sends it to the follower. After

receiving x, the follower computes and feeds back an optimal solution ỹ to the upper level.

Hence, we, on behalf of the leader, should search for a feasible x that can generate, in an

indirect way, a desired ỹ to jointly minimize her cost function represented by F (x, ỹ). This

formulation was initially presented in [29, 30] and referred to two-level or bilevel optimization

2



model in [36] in 1970s. Since then, because of its strong modeling capacity and practical sig-

nificance, bilevel optimization has received enormous research interests on its mathematical

structures, computational algorithms, and applications to solve real problems [43, 49].

It has been well recognized in the literature of the regular monolithic (i.e., single level)

optimization that assuming the deterministic information, i.e., no random or unknown pa-

rameters, is rather restrictive. It often fails to yield a solution that is feasible or with an

acceptable performance in practice. To address this challenge, countless research has been

devoted to modeling, analyzing or mitigating random factors or uncertainties within an op-

timization model. Up now, many variants that extend and generalize a deterministic single

level model to consider uncertainties have been developed, and abundant theoretical and

computational studies have been appeared in the literature. Examples include stochastic

programming, robust optimization and distributionally robust optimization schemes and re-

lated studies. Nevertheless, we observe that the study of bilevel optimization subject to

uncertainty is rather limited and many critical issues remain open. As described previously,

the challenge of uncertainty is generally fundamental and unavoidable in such a hierarchical

decision making problem. Compared with that of regular single level mathematical pro-

grams, the uncertainty issue in bilevel optimization is more prevalent, demonstrates a richer

variety of forms, and generates more complex impacts directly or indirectly on both DMs.

1.2 Bilevel Optimization With Uncertainty

In the context of regular optimization built for a single decision maker, many random

factors presented in the real world have been considered and studied. As they often directly

impact the decision making process and solutions’ performance, those factors generally can

be easily recognized, modeled and then incorporated into an optimization formulation. Nev-

ertheless, for bilevel optimization, the situation could be very different. One reason behind is

that some new types of random factors unique to this hierarchical system arise, which might

be hidden in this system or harder to be described. Another reason is that the participation

of random factors in the decision making process could be much more involved. Indeed,

3



given that two DMs exchange information and take actions in a sequential way, this whole

process might expose itself to various random factors and become vulnerable to them. To

help us understand random factors’ sources and their roles in this hierarchical system, we

introduce in Figure 1 a scheme that classifies them into three categories.

Figure 1: Different Types of Uncertainties

The left category in Figure 1, i.e., the exogenous uncertainties, includes random factors

originated outside of this hierarchical system. Basically all random factors occurred in the

external environment of this system, including those in the natural or the social/culture

environment, can be classified into this group. Typical examples include the wind speed,

the prices of products, and the customers’ choices, as long as that the nature, the price

maker or customers are not DMs in this system. Note that those random factors generally

can be observed and modeled easily, and their participation in the decision making process

is often straightforward. Hence, up to now, the majority of uncertainty studies on regular

monolithic optimization (i.e., optimization with single DM) and almost all of them on bilevel

optimization are concerned with this type of randomness [107, 27, 25, 17, 60]. Different from

this classical group, the middle and the right categorise of uncertainties are either unique

to the fundamental structure of this hierarchical system or much less common, to which we

refer as the endogenous uncertainties and the uncertainties in perception, respectively.

A bilevel optimization model is built on half of the leader. It is often the case that

the leader might not have perfect information of the follower. As a result, the lower level

4



decision making problem (DMP) she adopts may only be a surrogate of the actual one.

In another case, the follower may be a dynamic system switching between two or more

working modes over time, and such a system is not transparent to the leader. In both cases,

the leader will only have imperfect information regarding the follower’s DMP. Note also

that two-way communications are involved to transmit information between DMs. Since

communications are subject to intentional or unintentional modifications or errors, DMs

could receive inaccurate or erroneous information in their decision making process. Since

all those uncertainties, as well as other similar uncertainties occurred within the system, are

reflected in one DM’s understanding of the other one, we classify them as the uncertainties in

perception, as shown in the right category in Figure 1. Actually, it is often observed that the

leader uses a single lower level DMP or a simple one to approximate a set of lower level DMPs

or a complex one (e.g., a piecewise linear function to replace a nonlinear one) to simplify her

reasoning. Such approximation inevitably carries uncertainties in her perception.

The last category, i.e., the endogenous uncertainties in Figure 1, is introduced to represent

the following two types of random factors that are influenced by decisions.

1. One is the response uncertainty, which reflects an essential challenge underlying bilevel

optimization. It happens when the optimal solution set of the lower level DMP is not

guaranteed to be a singleton. If the follower is not fully cooperative with the leader and

is neutral to any optimal solution, his response towards the leader’s decision is subject

to implicit uncertainty hidden between DMs. This observation has been well recognized

in the bilevel optimization literature for a long time [98, 89, 94]. Actually, researchers

do not consider it from the perspective of uncertainty at the beginning. Nevertheless,

different treatments on this issue has led to a couple of fundamental bilevel optimization

formulations that coincide to several popular strategies on handling uncertainties. It is

worth mentioning that, if the follower is tolerable to take an ϵ-optimal decision (which

has been interpreted as the bounded rationality), such response uncertainty is almost

unavoidable when continuous decisions are involved.

2. Another type is the decision-dependent uncertainty, a concept originally introduced for

the regular optimization [64, 101]. It indeed describes a situation when some exoge-

nous random factor’s sampling space and/or distribution is changing with respect to

5



the particular values of decision variables. In bilevel optimization, this concept is clearly

applicable when the upper or lower level DM has to handle similar exogenous random fac-

tor. Moreover, we mention that some uncertainties in perception could be evolved into

decision-dependent ones, noting that the scale of communication error or noise could

depend on the genuine signals. As a decision-dependent uncertainty stems from some

uncertainty in other two categories, we enclose the general concept by a dashed box with

links to two other types of uncertainties in Figure 1 to highlight such connections.

Table 1: Comparison of Different Categories of Uncertainties

Uncertainties Source Attributes Controllability

Exogenous external factors independent of the system not affected by DMs

Endogenous DM’s decisions (upon external factors) within the system directly affected by DMs

Perception insufficient understandings between DMs within the system might be reduced or refined

A comparison among the three types of uncertainties is summarized in Table 1. Besides

the aforementioned classification scheme, we note that it is common to have multiple random

factors of different types co-exist and jointly affect a hierarchical system. For example, the

leader needs to handle an exogenous random factor, but she just has incomplete information

regarding the follower’s DMP. The situation could be more complicated if the follower is

tolerable to ϵ-optimal decisions, yielding a pool of choices for him to select. Under such

a situation, the leader clearly needs to address those three types of random factors in a

holistic approach if she expects a sound decision. Indeed, different combinations of various

random factors could be found in practice, which indicates modeling tools should be flexible

to capture them within the associated bilevel optimization problem.

The hierarchical structure of bilevel optimization naturally provides a stage-wise decision

making interpretation. The consideration of random factors within a regular optimization

model generally renders it a stage-wise decision making structure. In particular, if there ex-

ist recourse opportunities after (some) random factors are fixed, i.e., some decisions can be

flexibly made according to the realized scenario, that regular optimization model will expand

into either a two-stage or a multi-stage model, depending on the number of recourse oppor-

tunities [105, 13]. Otherwise, that optimization model remains a single-stage formulation. In

6



the context of bilevel optimization, we present in Figure 2 a schematic diagram showing the

basic interactions between random factors (collectively denoted by u) and the associated hi-

erarchical decision making system. Note that the upper and lower level variables x and y are

separated into (x1,x2) and (y1,y2), respectively, to indicate the decisions made before and

after the randomness is fixed. Additionally, x∗ and y∗ are decisions transmitted between the

leader and the follower, which are subjected to the aforementioned communication errors.

Figure 2: Uncertainty in the Decision Making Process

Regardless of the fact that those two DMs make decisions sequentially, we would like

to mention that the existence of scenario-specific recourse decisions, which can be from

the leader or the follower, still differentiates between single-stage and two- or multi-stage

bilevel optimization. For example, only considering the response uncertainty in a bilevel

formulation (i.e., the pessimistic bilevel formulation) does not convert it into a two-stage

decision making model, given that there is no scenario-specific adjustments. Also, if both

DMs make a single decision across all scenarios and pass it to the other DM, the bilevel

formulation remains a single-stage one. The reason behind is that neither DM’s decision is

scenario-specific. Certainly, if one or both DMPs have scenario-specific decisions, the overall

bilevel formulation will naturally evolve into a two-stage or multi-stage one.

1.3 Contribution and Outline

In this dissertation, we investigate mathematical properties of and develop solution meth-

ods for bilevel mixed integer nonlinear programming problems and robust bilevel optimiza-

tion problems. The proposed methods are applied to two practical problems: wind farm
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capacity expansion problem and data-driven optimal decision tree problem.

In Chapter 2, we study bilevel mixed integer nonlinear programming problems, where

the lower level problem is generally non-convex. In this case, the widely adopted KKT

conditions based reformulation approach is no long applicable. By exploiting the structure of

the problem, we provide optimality conditions based reformulation as well as a decomposition

based computing scheme for both optimistic and pessimistic cases.

Chapter 3 and Chapter 4 study robust bilevel optimization (RBO). In particular, Chapter

3 considers single-stage RBO problems, where both the leader and the follower make their

decisions before any realization of random variables. Several RBO models along with solution

methods are provided to deal with different types of uncertainties. For single-stage RBO with

discrete uncertainty set, a novel cut-and-branch algorithm is also developed. In Chapter 4,

we further consider two-stage RBO problems, where some of the leader’s decisions are made

after the realization of random variables. We provide two basic models and their variations

to take different types of uncertainties into consideration. Mathematical properties and

computational methods of those developed models are also explored.

In Chapter 5, we study wind farm investment problem, taking wind power uncertainty

into consideration. In a decentralized electricity market, investment decisions are made

before the randomness of wind reveals, and market operates after the wind generators are

built and wind intensity is determined. Thus, the wind farm capacity expansion problem

is indeed a multistage decision making process. We formulate this decision making process

as a two-stage RBO model. Our computational study on IEEE test sets demonstrates the

superiority of the proposed model and solution method.

Finally in Chapter 6, an optimal decision tree problem is studied. We develop a new data-

driven mixed-integer programming (MIP) based formulation that takes local information into

consideration We then apply the bilevel optimization framework to perform hyperparameter

tuning such that the generalizability of the model is enhanced. Numerical experiments are

performed on benchmark datasets, and the experimental results demonstrate the outstanding

performance of the proposed model.
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2.0 On Solving Bilevel Mixed Integer Nonlinear Programming Problems

2.1 Motivation

In this chapter, we consider the following bilevel optimization problem

OBO : min
x,y

F (x,y)

s.t.G(x,y) ≤ 0,x ∈ X

y ∈ argmin
y

{f(x,y) : g(x,y) ≤ 0,y ∈ Rny},

where F, f : Rnx ×Rny → R, G : Rnx ×Rny → Rp, g : Rnx ×Rny → Rq, and X ⊆ Rnx . x is

the upper level decision variable and y is the lower level decision variable. If the lower level

problem has multiple optimal solutions for some fixed x, then (2.1) actually represents the

optimistic formulation, where the two DMs are cooperative, i.e. among all optimal solutions,

the follower picks the one that is favorable to the leader. If the two DMs are not cooperative,

pessimistic formulations are needed to reflect this conflict [94]. We use BO and optimistic

bilevel optimization (OBO) problem interchangeably in the remainder of this chapter, and

explicitly mention pessimistic bilevel optimization (PBO) formulation if needed.

As mentioned in the introduction section, solving BO is computationally challenging.

Even in the simplest case, where both the upper level problem and the lower level problem

are linear programs (LP), BO is still NP-hard [53]. Linear BO problems are often solved

through KKT conditions based single level reformulation. For BO with nonlinear convex

lower level problem, Edmunds and Bard [55] propose a branch-and-bound (B&B) algorithm

to deal with BO with convex quadratic lower level problem. Recently, Dempe and Franke

[50] propose a local algorithm for BO with fully convex lower level problem.

For BO whose lower level problem has integer variables, the KKT conditions based sin-

gle level reformulation cannot be applied directly, and only limited algorithms have been

developed. In particular, special cases of bilevel mixed integer nonlinear programming prob-

lems are studied by Gümüş and Floudas in [66] via a reformulation approach, where the
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lower level integer variables are first relaxed to continuous ones through a constructed con-

vex hull and then replaced by its corresponding KKT conditions, and the resulting single

level mixed integer nonlinear problem is solved by B&B based algorithms [3]. For more

general BO problems, obtaining an exact solution may not be achievable. As a result, an

ϵ-optimal solution is often considered being practically acceptable [96], and algorithms aim-

ing at ϵ-optimal solution have been developed. To the best of our knowledge, Mitsos [97]

introduces the first global algorithm that deals with general BO problems by sequentially

generating tighter bound to approximate the optimal value function. Very recently, a novel

branch-and-sandwich algorithm, which branches the upper level and the lower level vari-

ables simultaneously while maintaining the bilevel feasibility, is employed by Kleniati and

Adijiman [81, 79, 80]. Due to the non-convex nature of bilevel programs, most of the afore-

mentioned algorithms are developed within the B&B framework. Nevertheless, those B&B

based algorithms often result in heavy computational burden, and only small size instances

are solved in the literature for demonstration purpose.

In addition to the B&B approach, scholars also attempt to address the challenging prob-

lem from other different perspectives, such as simulated annealing approach in [115] and

parametric programming approach for bilevel quadratic and bilevel mixed integer linear

problems in [56]. We notice that the former one does not guarantee global optimal, and that

the later one does not have numerical results.

In [133], a decomposition algorithm is developed and shows very strong capacity in solving

bilevel mixed integer linear programming (BiMILP) problems. In this chapter, we further

develop this framework to solve more general BO problems with mixed integer nonlinear

lower level problem, in both optimistic and pessimistic settings.

The remaining of this chapter is organized as follows. Section 2 provides preliminaries and

introduces a generalized pessimistic BO model. Several optimality based reformulations for

bilevel mixed integer nonlinear programming (BiMINLP) problems are derived in Section

3. Decomposition algorithms are provided in Section 4. Section 5 presents a systematic

computational study on various types of randomly generated BiMINLP instances as well as

a case study on pessimistic bilevel gene knockout model. Section 6 concludes this chapter.
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2.2 Single Level Reformulation of BO Problems With Convex Lower Level

Problem

2.2.1 Preliminaries

In this section, we review some important definitions and assumptions.

1. The constraint region of BO is denoted by

ΩBO = {(x,y) ∈ Rnx ×Rny : G(x,y) ≤ 0,x ∈ X, g(x,y) ≤ 0}.

The projection of ΩBO on the upper level variable x is denoted by

Projx(ΩBO) = {x ∈ X : ∃ y ∈ Rny such that G(x,y) ≤ 0, g(x,y) ≤ 0}.

For a fixed x ∈ Projx(ΩBO), we denote the lower level feasible region by

L(x) = {y ∈ Rny : g(x,y) ≤ 0},

and assume that L(x) is bounded. For a fixed x ∈ Projx(ΩBO), we denote the lower level

rational reaction set by

R(x) = argmin
y

{f(x,y) : y ∈ L(x)}.

The inducible region (IR) of BO is denoted by

IRBO = {(x,y) ∈ Rnx ×Rny : G(x,y) ≤ 0,x ∈ X,y ∈ R(x)}.

With the concept of IR, we can rewrite BO as

min
x,y

{F (x,y) : (x,y) ∈ IRBO}.

We assume that IRBO ̸= ∅, that F,G, f, g are continuous over their domains, and that

f and g are convex in y for fixed x. Denote the lower level of BO by

θ(x) : min
y

{f(x,y) : g(x,y) ≤ 0,y ∈ Rny},

then it is easy to verify that θ(x) is a convex optimization problem for fixed x.
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2. The Lagrangian L(x,y, µ) : Rny ×Rq → R of θ(x) for a fixed x ∈ Projx(ΩBO) is defined

as

L(x,y, µ) = f(x,y) +

q∑
i=1

µigi(x,y).

We denote µ = (µ1, µ2, ..., µq)
T and g = (g1, g2, ..., gq)

T . The Lagrange dual function

h(x, µ) : Rq → R of θ(x) for a fixed x is defined as the minimum of L(x,y, µ) over y, i.e.

h(x, µ) = inf
y∈Rny

L(x,y, µ) = inf
y∈Rny

{f(x,y) +
q∑
i=1

µigi(x,y)}.

The dual problem of θ(x) is denoted by

λ(x) : max
µ

{h(x, µ) : µ ∈ Rq
+},

which is also a convex optimization problem. For θ(x) and its dual problem λ(x), we

have the following results. (1) Weak duality: for a fixed x ∈ Projx(ΩBO), if y is feasible

to θ(x) and µ is feasible to λ(x), then f(x,y) ≥ h(x, µ). (2) Strong duality: for a fixed

x ∈ Projx(ΩBO), let θ
∗(x) and λ∗(x) be the optimal value of θ(x) and λ(x) respectively,

we say the strong duality holds if θ∗(x) = λ∗(x). The weak duality always holds while

the strong duality does not. For a convex optimization problem, the strong duality holds

if some constraint qualifications are satisfied. There are various constraint qualifications,

and Slater’s condition is often used in convex optimization [28].

3. For a fixed x ∈ Projx(ΩBO), θ(x) satisfies Slater’s condition (also called Slater’s constraint

qualification) if there exists a y ∈ Rny such that g(x,y) < 0. If some of the constraints

in θ(x) are affine, those constraints do not have to hold as strict inequalities. Hence, if

θ(x) is an LP, it satisfies Slater’s condition as long as it is feasible.
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2.2.2 Bilevel Optimization With Convex Lower Level Problem

In convex optimization, the strong duality provides a condition to verify optimality for

a pair of primal-dual problems. Inspired by this observation, we have the following result.

Lemma 2.1. If θ(x) satisfies Slater’s condition for any x ∈ Projx(ΩBO), then BO is equiv-

alent to

1. The strong duality based single level formulation

min
x,y,µ

{F (x,y) : G(x,y) ≤ 0, g(x,y) ≤ 0, f(x,y) ≤ h(x, µ),x ∈ X,y ∈ Rny , µ ∈ Rq
+}.

(2.1)

2. The KKT conditions based single level formulation

min
x,y,µ

{F (x,y) :G(x,y) ≤ 0,∇yf(x,y) + µT∇yg(x,y) = 0, g(x,y) ≤ 0,

µTg(x,y) = 0,x ∈ X,y ∈ Rny , µ ∈ Rq
+}.

(2.2)

if f and g are continuously differentiable with respect to y for any x ∈ Projx(ΩBO).

Proof. 1. To show the equivalence between BO and (2.1), it is sufficient to show that a

pair of primal-dual variable (y∗, µ∗) is optimal to θ(x) and λ(x) if it satisfies

g(x,y∗) ≤ 0, f(x,y∗) ≤ h(x, µ∗),y∗ ∈ Rny , µ∗ ∈ Rq
+. (2.3)

It is obvious that y∗ is feasible to θ(x) and that µ∗ is feasible to λ(x). From weak duality,

we have f(x,y∗) ≥ h(x, µ∗), which together with the second constraint of (2.3) implies

f(x,y∗) = h(x, µ∗). As θ(x) is a convex problem with Slater’s condition satisfied, the

strong duality holds. Therefore, the optimality of θ(x) is guaranteed.

2. As θ(x) is a convex optimization problem with Slater’s condition satisfied for any x ∈

Projx(ΩBO), the KKT conditions are necessary and sufficient condition for its optimality

[28]. By replacing θ(x) with its KKT conditions, we have that (2.2) is equivalent to BO.
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Both of the two single level equivalent formulations depend on the fact that θ(x) satisfies

Slater’s condition for any x ∈ Projx(ΩBO). However, θ(x) does not necessarily have this

property. To address this issue, we introduce an extended formulation for θ(x) as

θ̂(x) : min
y,ŷ

{f(x,y) +MeT ŷ : g(x,y) ≤ ŷ,y ∈ Rny , ŷ ∈ Rq
+},

where e ∈ Rq is a vector with all elements being 1 and M is a sufficiently large positive

number. Similarly, the dual problem of θ̂(x) is

λ̂(x) : max
µ

{ĥ(x, µ) : µ ≤Me, µ ∈ R
nq

+ },

where ĥ(x, µ) : Rq
+ → R is defined as

ĥ(x, µ) = inf
y∈Rny ,ŷ∈Rq

+

{f(x,y) +MeT ŷ+

q∑
i=1

µi(gi(x,y)− ŷi)},

and ŷ = (ŷ1, ŷ2, ..., ŷq)
T .

Remark 2.1. θ̂(x) satisfies Slater’s condition as ŷ can be arbitrarily large. Hence, the strong

duality holds for θ̂(x) and λ̂(x). Moreover, if f and g are continuously differentiable with

respect to y, the KKT conditions are necessary and sufficient optimality condition for θ̂(x).

Lemma 2.2. 1. The extended formulation θ̂(x) is a relaxation of θ(x).

2. If θ(x) has an optimal solution and M is sufficiently large, then θ̂(x) has an optimal

solution that is also optimal to θ(x).

Proof. 1. For a fixed x ∈ Projx(ΩBO), if y is feasible to θ(x), then (y, ŷ) with ŷ = 0 is

feasible to θ̂(x).

2. For a fixed x ∈ Projx(ΩBO), θ̂(x) has an optimal solution since L(x) is nonempty and

bounded. Let (y∗, ŷ∗) be an optimal solution to θ̂(x), and let y∗∗ be an optimal solution

to θ(x). For a sufficiently large M , we have f(x,y∗∗) +M
∑q

i 0 < f(x,y∗) +MeT ŷ∗ if

ŷ∗ > 0. This contradicts the fact that (y∗, ŷ∗) is an optimal solution to θ̂(x). Thus, we

have ŷ∗ = 0 for a sufficiently large M . Since (y∗∗,0) is feasible to θ̂(x), it is also optimal

to θ̂(x), i.e. the relaxation is tight.
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In practice, checking whether θ(x) satisfies Slater’s condition for any x ∈ Projx(ΩBO)

could be hard, and we can take the advantage of the extended formulation θ̂(x) to have

single level formulations of BO.

Lemma 2.3. The strong duality based single level extended formulation

min
x,y,ŷ,µ

{F (x,y) :G(x,y) ≤ 0, g(x,y) ≤ ŷ, µ ≤Me,x ∈ X,

is equivalent to BO.

Proof. From Remark 2.1 and Lemma 2.2, we know that θ̂(x) satisfies Slater’s condition and

is a tight relaxation of θ(x). Therefore, replacing θ(x) with θ̂(x) and applying Lemma 2.1

lead to the result.

Remark 2.2. Similar as Lemma 2.1, if f and g are continuously differentiable with respect

to y for any x ∈ Projx(ΩBO), we can obtain the KKT conditions based single level extended

formulation, which is also equivalent to BO.

Remark 2.3. With minor modifications, Lemma 2.1 (as well as Lemma 2.3) can be applied

to BO with multiple followers. By replacing each lower level problem with its optimality

conditions, such a BO problem is converted to a single level problem with multiple sets of

optimality conditions based constraints.

2.2.3 Generalized Pessimistic Bilevel Optimization and Reformulation

As mentioned previously, pessimistic formulations are employed if the follower does not

cooperate with the leader, or if the leader wants to hedge against risks by considering the

worst case scenario.

If there is no coupled constraints, i.e., y does not appear in the upper level constraints,

the pessimistic counterpart of BO is given by

min
x

max
y∈R(x)

{F (x,y) : G(x) ≤ 0,x ∈ X},

where R(x) is the lower level rational reaction set. Recent studies on pessimistic bilevel

optimization can be found in [40, 126, 52, 136, 93, 11, 86, 132]. For BO problems with
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pessimistic coupled constraints, G(x,y) ≤ 0 needs to be satisfied for all y ∈ R(x), and a

reformulation method is introduced in [132].

Since BO with coupled constraints can be rewritten as

min
x,t,y

{t : F (x,y)− t ≤ 0, G(x,y) ≤ 0,x ∈ X, t ∈ R,y ∈ R(x)},

we can without loss of generality consider BO in a reduced form as

BO-O : min
x,y

{F (x) : x ∈ X, G(x,y) ≤ 0,y ∈ R(x)}.

In the optimistic setting, the follower picks a point in R(x) to satisfy the coupled constraints,

and the resulting problem is BO-O. However, if the follower does not cooperate with the

leader, he can pick a point in R(x) such that some of the coupled constraints are violated.

To ensure feasibility, the leader needs to choose an x ∈ X such that G(x,y) ≤ 0 holds for

all y in the rational reaction set by considering the following problem

BO-P : min
x,y

{F (x) : x ∈ X, G(x,y) ≤ 0,∀y ∈ R(x)}.

Denoting the IR of BO-O by

IRBO-O = {(x,y) ∈ Rnx ×Rny : x ∈ X, G(x,y) ≤ 0,y ∈ R(x)}

and the IR of BO-P by

IRBO-P = {(x,y) ∈ Rnx ×Rny : x ∈ X, G(x,y) ≤ 0,∀y ∈ R(x)},

we have IRBO-P ⊆ IRBO-O, which implies BO-O is a relaxation of BO-P.

In fact, BOP-O and BOP-P are two extreme cases. In BO-O, all the coupled constraints

are optimistic, i.e., they are satisfied if there exist y ∈ R(x) and x ∈ X such that G(x,y) ≤ 0.

In contrast, all the coupled constraints are pessimistic in BO-P, and thus G(x,y) ≤ 0 must

hold for all y ∈ R(x). We now consider a more general case where some coupled constraints

are optimistic while others are pessimistic and introduce a new bilevel model.
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Let CC = {1, 2, ..., p} be the index set of the coupled constraints, PCC ⊆ CC be the

index set of the pessimistic coupled constraints, and Gi be the ith coupled constraint, then

a generalized pessimistic bilevel optimization (GPBO) problem is given by

GPBO : min
x,y

{F (x) :Gi(x,y) ≤ 0,∀i ∈ CC\PCC,

Gi(x,y) ≤ 0,∀y ∈ R(x), i ∈ PCC,x ∈ X,y ∈ R(x)},

where is the lower level rational reaction set.

Remark 2.4. GPBO reduces to BO-O if PCC = ∅, and reduces to BO-P if PCC = CC.

Moreover, if PCC1 ⊆ PCC2 ⊆ CC, then GPBO with PCC = PCC1 is a relaxation of the one

with PCC = PCC2.

If we simply drop off the pessimistic coupled constraints, GPBO reduces to

GPBO-O : min
x,y

{F (x) : Gi(x,y) ≤ 0,∀i ∈ CC\PCC,x ∈ X,y ∈ R(x)},

which is a instance of BO-O and a relaxation of GPBO. By applying Lemma 2.3, we can

obtain a single level reformulation of GPBO-O, and obtain a lower bound of GPBO by

solving this single level problem.

The projection of the IR of GPBO-O on x is denoted by

Projx(IRGPBO-O) = {x ∈ X : ∃ y ∈ R(x) with Gi(x,y) ≤ 0,∀i ∈ CC\PCC}.

For a fixed x∗ ∈ Projx(IRGPBO-O) and j ∈ PCC, denote the optimal value of

max
y

{Gj(x
∗,y) : y ∈ R(x∗)} (2.4)

by vj(x
∗), then it is not hard to verify that

Gj(x
∗,y) ≤ 0,∀y ∈ R(x∗) ⇐⇒ vj(x

∗) ≤ 0.

Hence, we can rewrite GPBO as

min
x,y

{F (x) :Gi(x,y) ≤ 0,∀i ∈ CC\PCC, vi(x) ≤ 0, ∀i ∈ PCC,x ∈ X,y ∈ R(x)}. (2.5)

We see that (2.5) is actually a tri-level problem since each constraint in the form of vi(x) ≤ 0

requires solving a BO problem defined in (2.4). To solve such a complicated problem, we

introduce a reformulation method that converts GPBO to a standard BO problem with

multiple followers.
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Lemma 2.4. For a fixed x∗ ∈ Projx(IRGPBO-O) and j ∈ PCC, vj(x∗) ≤ 0 if and only if

there exist ȳ∗
j ∈ L(x∗) and y∗

j ∈ Sj(x
∗, ȳ∗

j ) ≡ argmaxy{Gj(x
∗,y) : g(x∗,y) ≤ 0, f(x∗,y) ≤

f(x∗, ȳ∗
j ),y ∈ Rny} such that Gj(x

∗,y∗
j ) ≤ 0

Proof. We first show the “⇒” part. Sicne x∗ ∈ Projx(IRGPBO-O), we have R(x∗) ̸= ∅. As

f, g are continuous and L(x∗) is bounded, R(x∗) is compact. By the continuity of Gj, the

problem

max
y

{Gj(x
∗,y) : y ∈ R(x∗)} (2.6)

has an optimal solution. Let y∗
j be an optimal solution to (2.6) and let ȳ∗

j = y∗
j , then we

have Gj(x
∗,y∗

j) = vj(x
∗) ≤ 0, ȳ∗

j ∈ L(x∗), and R(x∗) = {y ∈ Rny : g(x∗,y) ≤ 0, f(x∗,y) ≤

f(x∗, ȳ∗
j)}. Hence, y∗

j ∈ Sj(x
∗, ȳ∗

j).

We next show the “⇐” part. For fixed x∗ ∈ Projx(IRGPBO-O) and ȳ∗
j ∈ L(x∗), let

y∗
j ∈ Sj(x

∗, ȳ∗
j), i.e., y

∗
j is an optimal solution to the problem

zj(x
∗, ȳ∗

j) = max
y

{Gj(x
∗,y) : g(x∗,y) ≤ 0, f(x∗,y) ≤ f(x∗, ȳ∗

j),y ∈ Rny}, (2.7)

then we have

vj(x
∗) ≤ zj(x

∗, ȳ∗
j) ≤ Gj(x

∗,y∗
j) ≤ 0.

The first inequality follows the fact R(x∗) ⊆ {y ∈ Rny : g(x∗,y) ≤ 0, f(x∗,y) ≤ f(x∗, ȳ∗
j)},

and the second inequality is implied by the optimality of y∗
j to (2.7).

Theorem 2.1. Let Si(x, ȳ) be defined as in Lemma 2.4, then GPBO is equivalent to the

following BO problem

GPBO-R : min
x,ȳ,y,yi

{F (x) :Gi(x,y) ≤ 0,∀i ∈ CC\PCC, Gi(x,yi) ≤ 0,∀i ∈ PCC

yi ∈ Si(x, ȳ),∀i ∈ PCC,x ∈ X, ȳ ∈ L(x),y ∈ R(x)}.

Proof. According to Lemma 2.4, it is easy to verify that GPBO is equivalent to

min
x,ȳi,y,yi

{F (x) :Gi(x,y) ≤ 0, ∀i ∈ CC\PCC, Gi(x,yi) ≤ 0,∀i ∈ PCC

yi ∈ Si(x, ȳi),∀i ∈ PCC,x ∈ X, ȳi ∈ L(x),y ∈ R(x)}.
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Let ȳ = mini{ȳi}, then ȳ ∈ L(x). For a fixed x∗ ∈ Projx(IRGPBO-O) and an arbitrary

i ∈ PCC, let y∗
i ∈ Si(x

∗, ȳi) and y0
i ∈ Si(x

∗, ȳ), then y0
i is an optimal solution to

max
yi

{Gi(x
∗,yi) : g(x

∗,yi) ≤ 0, f(x∗,yi) ≤ f(x∗, ȳ),yi ∈ Rny}.

If vi(x
∗) ≤ 0, then we have

Gi(x
∗,y0

i ) ≤ max
yi∈Rny

{Gi(x
∗,yi) : g(x

∗,yi) ≤ 0, f(x∗,yi) ≤ f(x∗, ȳi)} ≤ Gi(x
∗,y∗

i ) ≤ 0.

The first inequality holds as ȳ ≤ ȳi, and the second inequality follows as y∗
i ∈ Si(x

∗, ȳi).

Conversely, for i ∈ PCC, if ȳ ∈ L(x∗), y∗
i ∈ Si(x

∗, ȳ) and Gi(x
∗,y∗

i ) ≤ 0 , then we have

vi(x
∗) = max

yi

{Gi(x
∗,yi) : yi ∈ R(x∗)}

≤ max
yi

{Gi(x
∗,yi) : g(x

∗,yi) ≤ 0, f(x∗,yi) ≤ f(x∗, ȳi),yi ∈ Rny} ≤ Gi(x
∗,y∗

i ) ≤ 0.

Since i ∈ PCC is arbitrary, the result follows.

It is worthy to mention that we cannot replace ȳ with y unless PCC = CC. Theorem 2.1

shows that GPBO is equivalent to a standard BO problem with |PCC| + 1 followers. Fur-

thermore, if Gi(x,y) is concave in y for fixed x ∈ Projx(IRGPBO-O), then the maximization

problem maxy{Gi(x,y) : g(x,y) ≤ 0, f(x,y) ≤ f(x, ȳj),y ∈ Rny} is a convex optimization

problem. Therefore, if Gi(x,y) is concave in y for all i ∈ PCC, we can apply Lemma 2.3 to

obtain a single level problem that is equivalent to GPBO.

From Lemma 2.1, if θ(x) satisfies Slater’s condition, then y ∈ R(x) implies there exists

µ ∈ Rq
+ such that g(x,y) ≤ 0 and f(x,y) ≤ h(x, µ), where h(x, µ) is the dual function.

Let R̂(x) = {(y, µ) ∈ Rny × Rq
+ : g(x,y) ≤ 0, f(x,y) ≤ h(x, µ)}, then for a fixed x∗ ∈

Projx(IRGPBO-O), we can rewrite maxy{Gj(x
∗,y) : y ∈ R(x∗)} as

max
y,µ

{Gj(x
∗,y) : (y, µ) ∈ R̂(x∗)}. (2.8)

Denote the optimal solution set of (2.8) by Ŝj(x
∗), we can have an alternative reformulation

of GPBO as

min
x,y,µ,yi,µi

{F (x) :Gi(x,y) ≤ 0,∀i ∈ CC\PCC, Gi(x,yi) ≤ 0,∀i ∈ PCC,

(yi, µi) ∈ Ŝi(x),∀i ∈ PCC,x ∈ X, (y, µ) ∈ R̂(x)}.
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Similar as GPBO-R, we can also apply Lemma 2.3 to obtain a single level equivalent problem

if Gi(x,y) is concave for all i ∈ PCC. We indicate that applying the extended formula is

essential as both maxy{Gj(x
∗,y) : y ∈ R(x∗)} and (2.8) may not satisfy Slater’s condition,

which guarantees the strong duality.

2.2.4 Bilevel Optimization With Bounded Rationality and Suboptimality

In bilevel optimization, the follower is traditionally assumed to be fully rational, i.e., he

always selects a point in the rational reaction set R(x) as a response to the leader. However,

in practice, the follower’s rationality is often limited due to imperfect information.

For a fixed x ∈ {x ∈ X : L(x) ̸= ∅} and ϵ ≥ 0, we denote the optimal value of the lower

level problem by θ∗(x), and denote the bounded rational reaction set of the follower by

Rϵ(x) = {y ∈ Rny : g(x,y) ≤ 0, f(x,y) ≤ θ∗(x) + ϵ}. (2.9)

The parameter ϵ measures the willingness and capacity of the follower to achieve opti-

mality, and a small ϵ corresponds to strong willingness and capacity. It is easy to see that

Rϵ(x) reduces to R(x) if ϵ = 0, and reduces to L(x) if ϵ is sufficiently large. In general, we

have R(x) ⊆ Rϵ(x) ⊆ L(x) for ϵ ≥ 0.

Before incorporating Rϵ(x) into GPBO, we revisit BO-O and BO-P to gain some insights.

Consider BO-O with a bounded rational reaction set

BO-O-BR : p(ϵ) = min
x,y

{F (x) : x ∈ X, G(x,y) ≤ 0,y ∈ Rϵ(x)},

then we have that IRBO-O ⊆ IRBO-O-BR, and that p(ϵ) is decreasing in ϵ. By introducing a

new variable ŷ, we can rewrite BO-O-BR as

min
x,y,ŷ

{F (x) :G(x,y) ≤ 0,x ∈ X, f(x,y) ≤ f(x, ŷ) + ϵ,y ∈ L(x), ŷ ∈ R(x)}, (2.10)

which, according to Lemma 2.3, can be further converted to a single level problem.

In fact, BO-O-BR has a very meaningful economic interpretation and can be used for

sensitivity analysis. From the follower’s perspective, ϵ can be interpreted as the maximum

loss that he would like to incur in order to benefit the leader. From the leader’s perspective,
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the additional benefit gained from the follower can be quantified by p(0)−p(ϵ). If p(0)−p(ϵ) ≥

ϵ, the leader has incentive to compensate the follower up to ϵ such that both she and the

follower are better off.

For BO-P, we can also introduce a bounded rational reaction set, and have the pessimistic

counterpart of BO-O-BR as

BO-P-BR : q(ϵ) = min
x

{F (x) : x ∈ X, G(x,y) ≤ 0,∀y ∈ Rϵ(x)}.

Similarly, we have IRBO-P-BR ⊆ IRBO-P, and q(ϵ) is increasing in ϵ.

We point out that the follower in BO-P-BR is implicitly assumed to act consistently, i.e.,

to have a homogeneous ϵ toward all different pessimistic coupled constraints. However, as we

mentioned previously, the follower may not act consistently due to his bounded rationality,

and such inconsistency results in heterogeneous ϵ. Suppose there are |PCC| pessimistic

coupled constraints in BO-P, then a generalized model is given by

GBO-P-BR : q(ϵ1, ϵ2, ..., ϵ|PCC|) = min
x

{F (x) : x ∈ X, Gi(x,y) ≤ 0,∀y ∈ Rϵi(x), i ∈ PCC},

which has multiple bounded rational reaction sets. GBO-P-BR reduces to BO-P-BR if

ϵi = ϵ for all i, and reduces to BO-P if ϵi = 0 for all i. Without loss of generality, we can set

ϵ = max{ϵ1, ϵ2, ..., ϵ|PCC|}, and have IRBO-P-BR ⊆ IRGBO-P-BR ⊆ IRBO-P.

In practice, if the leader does not know the safety margin, i.e., ϵi, for each constraint, she

can employ BO-P-BR with ϵ = max{ϵ1, ϵ2, ..., ϵ|PCC|} as a conservative estimation. However,

the leader can be significantly benefited if she has an accurate estimation of each ϵi. Consider

an illustrative example, where the lower level feasible region is set to be independent of x

for simplicity.

Example 2.1.

q(ϵ1, ϵ2) = min
x

{−x :0 ≤ x ≤ 5, x+ y ≤ 2,∀y ∈ Rϵ1(x)

x+ 2y ≤ 4,∀y ∈ Rϵ2(x), R0(x) = argmin
y

{y : 1 ≤ y ≤ 2}}.
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The rational reaction set R0(x) = {1}. For ϵ1 = ϵ2 = 0, the unique optimal solution is

x∗ = 1, and q(0, 0) = −1. If the leader has little information about the follower and thus

conservatively estimates ϵ1 = ϵ2 = 0.5, the bounded rational reaction set will be R0.5(x) =

{y : 1 ≤ y ≤ 1.5}. The optimal solution will be x∗ = 0.5, and q(0.5, 0.5) = −0.5, resulting

in 50% loss of the optimal value. If the leader has more accurate information and is able to

specify (ϵ1, ϵ2) = (0.2, 0.5), then the optimal solution will be x∗ = 0.8, and q(0.2, 0.5) = −0.8,

which is much better than −0.5.

Now we can take bounded rationality into consideration by incorporating multiple bounded

rational reaction sets into the general GPBO model. Let Rϵ(x) be defined as in (2.9), we

can extend GPBO to

GPBO-BR : min
x,y

{F (x) :Gi(x,y) ≤ 0,∀i ∈ CC\PCC

Gi(x,y) ≤ 0,∀y ∈ Rϵi(x), i ∈ PCC,x ∈ X,y ∈ Rϵ0(x)},

which has |PCC| + 1 bounded rational reaction sets. Let Sϵi(x, ȳ) = argmax{Gi(x,y) :

g(x,y) ≤ 0, f(x,y) ≤ f(x, ȳ) + ϵi,y ∈ Rny}, we can apply Theorem 2.1 and (2.10) to have

a reformulation of GPBO-BR as

GPBO-BR-R : min
x,ȳ,y,yi

{F (x) :Gi(x,y) ≤ 0, ∀i ∈ CC\PCC, f(x,y) ≤ f(x, ȳ) + ϵ0, Gi(x,yi) ≤ 0,

∀i ∈ PCC,yi ∈ Sϵi(x, ȳ), ∀i ∈ PCC,x ∈ X,y ∈ L(x), ȳ ∈ R(x)}.

Similar as for GPBO, we can also apply Lemma 2.3 to obtain a single level equivalent problem

to GPBO-BR if Gi(x,y) is concave in y for i ∈ PCC.
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2.3 Optimality Conditions Based Reformulation of Bilevel Mixed Integer

Nonlinear Programming Problems

2.3.1 Reformulation of Optimistic Bilevel Mixed Integer Programming Prob-

lems

In this section, we consider general bilevel mixed integer nonlinear programming (BiMINLP)

problem

BiMINLP : min
x,y,z

F (x,y, z)

s.t.G(x, y, z) ≤ 0,x ∈ X

(y, z) ∈ argmin
y,z

{f(x,y, z) : g(x,y, z) ≤ 0,y ∈ Rny , z ∈ Z},

where F, f : Rnx ×Rny × Znz → R, G : Rnx ×Rny × Znz → Rp, g : Rnx ×Rny × Znz → Rq,

X ⊆ Rnx , Z ⊆ Znz , and |Z| = K < +∞. We assume that f and g are convex in y in the

remainder of this chapter. It is easy to see that BiMINLP is an extension of BO, and thus

the concepts reviewed in the preliminaries section can be naturally extended. For example,

the projection of ΩBiMINLP on the upper level variable x is given by

Projx(ΩBiMINLP) = {x ∈ X : ∃ (y, z) ∈ Rny × Z with G(x,y, z) ≤ 0, g(x,y, z) ≤ 0}.

Denote the projection of ΩBiMINLP on the lower level integer variable by

Projz(ΩBiMINLP) = {z ∈ Z : ∃ (x,y) ∈ X×Rny with G(x,y, z) ≤ 0, g(x,y, z) ≤ 0},

then BiMINLP is feasible only if Projz(ΩBiMINLP) ̸= ∅. We without loss of generality assume

that Z = Projz(ΩBiMINLP) as otherwise we can re-define Z by Projz(ΩBiMINLP) as in [131].

Due to the presence of the integer variable z, we cannot apply Lemma 2.1 or Lemma 2.3

to solve BiMINLP since neither the strong duality nor the KKT conditions holds for mixed

integer programming problems. However, we notice that for fixed (x, z) ∈ Projx(ΩBiMINLP)×

Z, the remaining lower level problem

ξ(x, z) : min
y

{f(x,y, z), g(x,y, z) ≤ 0,y ∈ Rny}
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and its dual problem

ρ(x, z) : max
µ

{s(x, z, µ) : µ ∈ Rq
+}

are convex optimization problems, where s(x, z, µ) = infy∈Rny{f(x,y, z)+
∑q

i=1 µigi(x,y, z)}.

Denote the feasible region of ξ(x, z) by P (x, z) = {y ∈ Rny : g(x,y, z) ≤ 0}, and that

of ρ(x, z) by Q(x, z), then we can also rewrite ξ(x, z) and ρ(x, z) as miny{f(x,y, z) : y ∈

P (x, z)} and maxµ{s(x, z, µ) : µ ∈ Q(x, z)}, respectively.

If P (x, z) is nonempty and bounded, then ξ(x, z) has an optimal solution. We say the

problem ξ(x, z) has the relatively complete response property if it has a finite optimal value

for any fixed (x, z) ∈ Projx(ΩBiMINLP)× Z [133].

Remark 2.5. If for any fixed (x, z) ∈ Projx(ΩBiMINLP)×Z, P (x, z) is bounded, and ξ(x, z)

satisfies Slater’s condition, then ξ(x, z) has the relatively complete response property. More-

over, if the lower level problem of BiMINLP is a mixed integer linear programming problem

that has the relatively complete response property, then ξ(x, z) satisfies Slater’s condition for

any fixed (x, z) ∈ Projx(ΩBiMINLP)× Z.

Since the cardinality of Z is finite, we can obtain a single level reformulation of BiMINLP

by enumerating all the possible values of the integer variable z.

Theorem 2.2. If ξ(x, z) has the relatively complete response property and satisfies Slater’s

condition for any (x, z) ∈ Projx(ΩBiMINLP)× Z, then BiMINLP is equivalent to

1. The strong duality based single level formulation

min
x,y0,z0,µk

F (x,y0, z0)

s.t.G(x,y0, z0) ≤ 0

g(x,y0, z0) ≤ 0

f(x,y0, z0) ≤ s(x, µk, zk), k = 1, 2, ..., K

x ∈ X,y0 ∈ Rny , z0 ∈ Z, µk ∈ Rq
+, k = 1, 2, ..., K,

(2.11)

where zk ∈ Z for k = 1, 2, ..., K, and µk are dual variables corresponding to zk.
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2. The KKT conditions based single level formulation

min
x,y0,z0,yk,µk

F (x,y0, z0)

s.t.G(x,y0, z0) ≤ 0

g(x,y0, z0) ≤ 0

f(x,y0, z0) ≤ f(x,yk, zk), k = 1, 2, ..., K

∇ykf(x,yk, zk) + (µk)T∇ykg(x,yk, zk) = 0, k = 1, 2..., K

g(x,yk, zk) ≤ 0, k = 1, 2..., K

(µk)Tg(x,yk, zk) = 0, k = 1, 2..., K

x ∈ X,y0 ∈ Rny , z0 ∈ Z,yk ∈ Rny , µk ∈ Rq
+, k = 1, 2..., K,

(2.12)

where zk ∈ Z for k = 1, 2, ..., K, and yk, µk are corresponding to zk if f and g are

continuously differentiable with respect to y for any fixed (x, z) ∈ Projx(ΩBiMINLP)× Z.

Proof. 1. It is obvious that BiMINLP can be equivalently rewritten as

min
x,y0,z0

{F (x,y0, z0) :G(x,y0, z0) ≤ 0, g(x,y0, z0) ≤ 0,x ∈ X,y0 ∈ Rny , z0 ∈ Z

f(x,y0, z0) ≤ min
y,z

{f(x,y, z) : g(x,y, z) ≤ 0,y ∈ Rny , z ∈ Z}}.
(2.13)

Since ξ(x, z) has the relatively complete response property, it has a finite optimal value

for any fixed (x, z) ∈ Projx(ΩBiMINLP)×Z. Thus, by enumerating all the possible values

of z and introducing corresponding variable y for each z, the last constraint in (2.13)

can be equivalently rewritten as

f(x,y0, z0) ≤ min
yk

{f(x,yk, zk) : g(x,yk, zk) ≤ 0,yk ∈ Rny}, k = 1, 2, ..., K, (2.14)

where zk ∈ Z are fixed for k = 1, 2, ..., K. Since ξ(x, z) satisfies Slater’s condition for

each k, the strong duality holds for the right hand side minimization problem of (2.14).

Replacing the minimization problem by its dual problem for each k, we have

f(x,y0, z0) ≤ max
µk

{s(x, µk, zk) : µk ∈ Rq
+}, k = 1, 2, ..., K. (2.15)

25



Since the right hand side of (2.15) is a maximization problem, the ”max” operator can

be dropped. Hence, (2.15) is equivalent to

f(x,y0, z0) ≤ s(x, µk, zk), µk ∈ Rq
+, k = 1, 2, ..., K. (2.16)

Replacing the last constraint in (2.13) by (2.16) leads to the result.

2. Since the right hand side problem of (2.14) is a convex problem with Slater’s condition

satisfied, and f and g are continuously differentiable with respect to y, we can replace

it with its KKT conditions and rewrite (2.14) as

f(x,y0, z0) ≤ f(x,yk, zk), k = 1, 2, ..., K

∇ykf(x,yk, zk) + (µk)T∇ykg(x,yk, zk) = 0, k = 1, 2..., K

g(x, yk, zk) ≤ 0, k = 1, 2..., K

(µk)Tg(x,yk, zk) = 0, k = 1, 2..., K

x ∈ X,y0 ∈ Rny , z0 ∈ Z,yk ∈ Rny , µk ∈ Rq
+, k = 1, 2..., K,

(2.17)

where zk ∈ Z are fixed, and yk, µk are primal and dual variables corresponding to zk.

Replacing the last constraint in (2.13) by (2.17) leads to the result.

Remark 2.6. For any Z̄ ⊆ Z, problem (2.11) (same for (2.12)) with Z replaced by Z̄ is a

relaxation of BiMINLP.

We indicate that the strong duality based formulation is indeed more general than the

KKT conditions based one. To see this, we consider the following BiMINLP instance whose

lower level problem is a mixed integer quadratic programming (MIQP) problem.

Example 2.2.

min
x,y,z

{−3x+ y + z : 0 ≤ x ≤ 1, (y, z) ∈ argmin
y,z

{1
2
y2 : y − 2z ≥ x, 0 ≤ y ≤ 2, z ∈ {0, 1}}}.
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Example 2.2 has an unique optimal solution (x∗, y∗, z∗) = (1, 1, 0) with the optimal value

of −2. The parameterized lower level problem of is

ξ(x, z) : min
y

{1
2
y2 : y ≥ x+ 2z, 0 ≤ y ≤ 2},

and P (x, z) = {y ∈ R : y ≥ x + 2z, 0 ≤ y ≤ 2} is the feasible region of ξ(x, z). For

(x, z) = (1, 1), P (x, z) = ∅, and thus ξ(x, z) does not have the relatively complete response

property. Applying the strong duality based formulation to Example 2.2, we have

min− 3x+ y0 + z0

s.t.0 ≤ x ≤ 1, x− y0 + 2z0 ≤ 0, 0 ≤ y0 ≤ 2

1

2
(y0)2 ≤ −1

2
(µ1

1 + µ1
2 − µ1

3)
2 + xµ1

1 − 2µ1
3

1

2
(y0)2 ≤ −1

2
(µ2

1 + µ2
2 − µ2

3)
2 + (x+ 2)µ2

1 − 2µ2
3

z0 ∈ {0, 1}, µ1
1, µ

1
2, µ

1
3, µ

2
1, µ

2
2, µ

2
3 ≥ 0.

(2.18)

It is easy to verify that (x∗, y0
∗
, z0

∗
) = (1, 1, 0) is optimal to (2.18), and that the optimal

value is −2. The KKT conditions based formulation of Example 2.2 is given by

min− 3x+ y0 + z0

s.t.0 ≤ x ≤ 1, x− y0 + 2z0 ≤ 0, 0 ≤ y0 ≤ 2

1

2
(y0)2 ≤ 1

2
(y1)2

x− y1 ≤ 0, 0 ≤ y1 ≤ 2

y1 − µ1
1 − µ1

2 + µ1
3 = 0

µ1
1(y

1 − x) = 0, µ1
2y

1 = 0, µ1
3(2− y1) = 0

1

2
(y0)2 ≤ 1

2
(y2)2

x− y2 + 2 ≤ 0, 0 ≤ y2 ≤ 2

y2 − µ2
1 − µ2

2 + µ2
3 = 0

µ2
1(y

2 − x− 2) = 0, µ2
2y

2 = 0, µ2
3(2− y2) = 0

z0 ∈ {0, 1}, µ1
1, µ

1
2, µ

1
3, µ

2
1, µ

2
2, µ

2
3 ≥ 0.

(2.19)
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The optimal solution to (2.19) is (x∗, y0
∗
, z0

∗
) = (0, 0, 0) with the optimal value of 0. How-

ever, the optimal solution is infeasible to (2.19) since x− y2 + 2 ≤ 0 is violated when x = 1.

For the aforementioned example, the strong duality based formulation is equivalent to the

original bilevel problem while the KKT conditions based one is not. This is because the lower

level primal constraints that may be violated are not in the strong duality based formulation,

and thus do not cut off an optimal solution. Indeed, the strong duality based formulation is

applicable even if ξ(x, z) does not have the relatively complete response property.

Theorem 2.3. If Q(x, z) is independent of z, and ξ(x, z) satisfies Slater’s condition for

fixed (x, z) ∈ Projx(ΩBiMINLP) × Z such that P (x, z) ̸= ∅, then the strong duality based

formulation (2.11) is equivalent to BiMINLP, i.e. if (x∗,y∗, z∗) is optimal to BiMINLP then

there exists (µ∗
1, µ

∗
2, ..., µ

∗
K) such that (x∗,y∗, z∗, µ∗

1, µ
∗
2, ..., µ

∗
K) is optimal to (2.11); and if

(x∗,y0∗, z0
∗
, µ∗

1, µ
∗
2, ..., µ

∗
K) is optimal to (2.11), (x∗,y0∗, z0

∗
) is optimal to BiMINLP.

Proof. We first show the existence of (µ∗
1, µ

∗
2, ..., µ

∗
K) and then show that the optimal value

of (2.11) is F (x∗,y∗, z∗). As (x∗,y∗, z∗) is optimal to BiMINLP, we have G(x∗,y∗, z∗) ≤ 0

and g(x∗,y∗, z∗) ≤ 0. Moreover, as Q(x, z) is independent of z, we have Q(x∗, zk) ̸= ∅ for

all k. Otherwise we would have Q(x∗, zk) = ∅ for all k, and thus ξ(x, z) is either infeasible

or unbounded for all k, which contradicts the fact that BiMINLP has an optimal solution.

For a fixed k, if P (x∗, zk) = ∅, the problem

max
µk

{s(x∗, µk, zk) : µk ∈ Q(x∗, zk)}

is unbounded, and the constraint f(x∗,y∗, z∗) ≤ s(x∗, µk, zk) naturally holds. If P (x∗, zk) ̸=

∅, we have

f(x∗,y∗, z∗) ≤ min
y,z

{f(x∗,y, z) : g(x∗,y, z) ≤ 0,y ∈ Rny , z ∈ Z}

≤ min
yk

{f(x∗,yk, z) : g(x∗,yk, z) ≤ 0,yk ∈ Rny , z = zk}

= max
µk

{s(x∗, µk, zk) : µk ∈ Q(x∗, zk)}.

The first inequality holds due to the optimality of BiMINLP, and the second one holds

because (yk, zk) is feasible to BiMINLP. The last equality holds by the strong duality and
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implies that there exits a µk such that f(x∗,y∗, z∗) ≤ s(x∗, µk, zk). Since such a dual variable

µk can be found for each k, the existence of (µ∗
1, µ

∗
2, ..., µ

∗
K) follows.

We next show that the optimal value of (2.11) is F (x∗,y∗, z∗) by contradiction. Suppose

there exists a feasible solution (x̄, ȳ0, z̄0, µ̄1, µ̄2, ..., µ̄K) such that F (x̄, ȳ0, z̄0) < F (x∗,y∗, z∗).

By the feasibility of (x̄, ȳ0, z̄0, µ̄1, µ̄2, ..., µ̄K), we have

f(x̄, ȳ0, z̄0) ≤ s(x̄, µ̄k, z̄k), µ̄k ∈ Q(x̄, z̄k), k = 1, 2, ..., K,

which is the same as

f(x̄, ȳ0, z̄0) ≤ max
µk

{s(x̄, µk, z̄k) : µk ∈ Q(x̄, z̄k)}, k = 1, 2, ..., K.

For each k, if P (x̄, z̄k) = ∅ then the problem

min
yk

{f(x̄,yk, z̄k) : g(x̄,yk, z̄k) ≤ 0,yk ∈ Rny}

is infeasible, and the constraint

f(x̄, ȳ0, z̄0) ≤ min
yk

{f(x̄,yk, z̄k) : g(x̄,yk, z̄k) ≤ 0,yk ∈ Rny}

holds. If P (x̄, z̄k) ̸= ∅, by the weak duality, the above inequality also holds, and we have

f(x̄, ȳ0, z̄0) ≤ min
yk

{f(x̄,yk, z̄k) : g(x̄,yk, z̄k) ≤ 0,yk ∈ Rny}, k = 1, 2, ..., K.

Thus (x̄, ȳ0, z̄0) is feasible to BiMINLP, and F (x̄, ȳ0, z̄0) < F (x∗,y∗, z∗) contradicts the fact

that (x∗,y∗, z∗) is optimal to BiMINLP.

For the converse part, let (x∗,y0∗, z0
∗
, µ∗

1, µ
∗
2, ..., µ

∗
K) be optimal to (2.11) but (x∗,y0∗, z0

∗
)

not optimal to BiMINLP. Then there exists an optimal solution (x̂, ŷ, ẑ) to BiMINLP such

that F (x̂, ŷ, ẑ) < F (x∗,y0∗, z0
∗
). By the first part of Theorem 2.3, there exists (µ̂1, µ̂2, ..., µ̂K)

such that (x̂, ŷ, ẑ, µ̂1, µ̂2, ..., µ̂K) is optimal to (2.11). As F (x̂, ŷ, ẑ) < F (x∗y0∗, z0
∗
), it con-

tradicts the fact (x∗,y0∗, z0
∗
, µ∗

1, µ
∗
2, ..., µ

∗
K) is optimal to (2.11) and the result follows.
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In practice, verifying whether ξ(x, z) satisfies Slater’s condition for any fixed (x, z) ∈

Projx(ΩBiMINLP)×Z can be challenging. In this case, we can adopt the method introduced in

Section 2.2.2 to get an extended formulation of ξ(x, z) as ξ̂(x, z) : miny,ŷ{f(x,y, z)+MeT ŷ :

g(x,y, z) ≤ ŷ,y ∈ Rny , ŷ ∈ Rq
+}, where e ∈ Rq with all elements being 1, and M ≥ 0. Same

as θ̂(x), ξ̂(x, z) satisfies Slater’s condition for any (x, z) ∈ Projx(ΩBiMINLP)×Z, thus we can

replace the lower level problem of BiMINLP by miny,ŷ,z{f(x,y, z) +MeT ŷ : g(x,y, z) ≤

ŷ,y ∈ Rny , ŷ ∈ Rq
+, z ∈ Z} and apply Theorem 2.2 or Theorem 2.3 to obtain a single level

formulation.

2.3.2 Reformulation of Generalized Pessimistic Bilevel Mixed Integer Program-

ming Problems

In this subsection, we consider the extension of GPBO with integer variables, which we

refer as generalized pessimistic bilevel mixed integer programming problem (GPBiMINLP)

GPBiMINLP : min
x,y,z

{F (x) :Gi(x,y, z) ≤ 0,∀i ∈ CC\PCC,

Gi(x,y, z) ≤ 0,∀(y, z) ∈ R̃(x), i ∈ PCC,x ∈ X, (y, z) ∈ R̃(x)},

where R̃(x) = argminy,z{f(x,y, z) : g(x,y, z) ≤ 0,y ∈ Rny , z ∈ Z} is the lower level rational

reaction set. For GPBiMINLP to have an optimal solution, it is necessary to assume that

Projx(ΩGPBiMINLP) = {x ∈ X :∃ (y, z) ∈ Rny × Z with g(x,y, z) ≤ 0,

Gi(x,y, z) ≤ 0,∀i ∈ CC\PCC} ̸= ∅.

Furthermore, since Theorem 2.1 makes no convexity assumption, we can apply it to convert

GPBiMINLP to a standard BiMINLP problem with multiple followers.

Corollary 2.1. Denote the lower level feasible set of GPBiMINLP by L̃(x) = {(y, z) ∈ Rny×

Z : g(x,y, z) ≤ 0}, and let S̃i(ȳi, z̄i) = argmaxy,z{Gi(x,y, z) : g(x,y, z) ≤ 0, f(x,y, z) ≤

f(x, ȳi, z̄i),y ∈ Rny , z ∈ Z}, then GPBiMINLP is equivalent to

min
x,ȳ,z̄,y,yi,z,zi

{F (x) :Gi(x,y, z) ≤ 0,∀i ∈ CC\PCC, Gi(x,yi, zi) ≤ 0,∀i ∈ PCC

(yi, zi) ∈ Si(x, ȳ, z̄),∀i ∈ PCC,x ∈ X, (ȳ, z̄) ∈ L̃(x), (y, z) ∈ R̃(x)},

which is denoted by GPBiMINLP-R.

Proof. We omit the proof as it is almost identical to that of Theorem 2.1.
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2.4 Solution Method for BiMINLP Problems

2.4.1 Decomposition Algorithm and Computational Complexity

Based on the reformulation method introduced in Section 2.3, a single level equivalent

formulation can be obtained for BiMINLP under certain conditions. However, as the cardi-

nality of Z can be extremely large, solving (2.11) or (2.12) directly is not practically possible

for medium or large size problems. According to Remark 2.6, if Z is replaced by its subset, a

relaxation problem can be obtained, and the optimal value of the relaxation problem provides

a lower bound. Moreover, by enlarging the subset of Z, the low bound can be tightened.

Following this observation, we propose a decomposition algorithm to solve BiMINLP.

In particular, in each iteration, we solve a relaxation problem of BiMINLP as the master

problem (MP) to get an optimal upper level solution x∗, and then solve sub-problems for x∗.

If the optimality gap is not within a predetermined tolerance, a new z∗ from the sub-problem

is added to the subset of Z so that a tighter lower bound can be obtained. Furthermore, by

solving the sub-problems, we may get a feasible solution that leads to an upper bound of

BiMINLP, and high quality upper bounds can significantly accelerate the convergence.

Let LB and UB be the lower bound and upper bound respectively, ϵ be the optimality

tolerance, and l be the iteration index. We present the detailed solution procedure based on

the single level formulation (2.11), and it can also be used for (2.12).

Theorem 2.4. For a BiMINLP instance that satisfies the conditions in Theorem 2.2 or

Theorem 2.3, Algorithm 1 returns an optimal solution of the instance in finite number of

iterations, and the optimality gap is bounded by ϵ.

Proof. Since the cardinality of Z is finite, it is sufficient to show that a repeated z∗ obtained

from SP1 or SP2 leads to the termination of the algorithm. Suppose in iteration l, we obtain

(x∗,y0∗, z0
∗
) from MP, and z∗ from SP1 or SP2, but z∗ has been obtained in a previous

iteration. If LB − UB ≤ ϵ, then the algorithm terminates; otherwise, new variables and

constraints are added to MP with zl+1 = z∗. In iteration l+1, LB does not change since z∗
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Algorithm 1 Decomposition algorithm for solving BiMINLP

1: Initialize LB = −∞, UB = +∞, Z̄ = ∅, and l = 0

2: while UB − LB ≥ ϵ do

3: Solve MP:

η∗ = min{F (x,y0, z0) :G(x,y0, z0) ≤ 0, g(x,y0, z0) ≤ 0,x ∈ X,y0 ∈ Rny ,

z0 ∈ Z, f(x,y0, z0) ≤ s(x, µk, zk), µk ∈ Rq
+,∀zk ∈ Z̄},

obtain an optimal solution (x∗,y0∗, z0
∗
, µ1∗, ..., µ|Z̄|∗), and update LB = η∗

4: For x∗ obtained from MP, solve the first sub-problem (SP1)

P (x∗) = min
y,z

{f(x∗,y, z) : g(x∗,y, z) ≤ 0,y ∈ Rny , z ∈ Z},

and get an optimal solution (y∗
F , z

∗
F ).

5: Solve the second sub-problem (SP2)

min
y,z

{F (x∗,y, z) : G(x∗,y, z) ≤ 0, g(x∗,y, z) ≤ 0, f(x∗,y, z) ≤ P (x∗),y ∈ Rny , z ∈ Z}.

6: if SP2 has an optimal solution (y∗
S, z

∗
S) then

7: Set z∗ = z∗S and update UB = min{UB,F (x∗,y∗
S, z

∗
S)}.

8: else

9: Set z∗ = z∗F

10: end if

11: Update Z̄ = Z̄ ∪ {z∗}

12: Set l = l + 1

13: end while

14: Return (x∗,y0∗, z0
∗
) as an optimal solution.
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is repeated and the constraints added are identical to those added previously, thus we have

LB = F (x∗,y0∗, z0
∗
)

= min
y0,z0,µk

{F (x∗,y0, z0) : G(x∗,y0, z0) ≤ 0, g(x∗,y0, z0) ≤ 0,

f(x∗,y0, z0) ≤ s(x∗, µk, zk), k = 1, 2, ..., l + 1,

y0 ∈ Rny , z0 ∈ Z, µk ∈ Rq
+, k = 1, 2, ..., l + 1}

≥ min
y0,z0,µl+1

{F (x∗,y0, z0) : G(x∗,y0, z0) ≤ 0, g(x∗,y0, z0) ≤ 0,

f(x∗,y0, z0) ≤ s(x∗, µl+1, zl+1),

y0 ∈ Rny , z0 ∈ Z, µl+1 ∈ Rq
+}

≥ min
y0,z0

{F (x∗,y0, z0) : G(x∗,y0, z0) ≤ 0, g(x∗,y0, z0) ≤ 0,

f(x∗,y0, z0) ≤ P (x∗),y0 ∈ Rny , z0 ∈ Z}

≥ UB.

The first inequality holds as removing l set of constraints results in a relaxation of MP. For

the second inequality, since zl+1 is optimal to SP1, by weak duality, s(x∗, µl+1, zl+1) ≤ P (x∗).

Thus, replacing s(x∗, µl+1, zl+1) with P (x∗) leads to a further relaxation of MP.

The number of iterations is bounded by |Z| + 1. Although |Z| can be very large, later

numerical study shows that the actual number of iterations is much smaller than |Z| as the

linking constraints f(x,y0, z0) ≤ s(x, µk, zk) along with the dual constraints make the MP a

much tighter relaxation than a high point problem [99]. In addition to tighter relaxation, the

algorithm can be further improved if a high quality feasible solution can be found through

some heuristics. It is important to mention that finding a feasible solution to BiMINLP may

not be easy as the lower level variable y and z are involved in the upper level constraint. As

a result, solving the lower level problem for a fixed x does not necessarily lead to a feasible

solution. For fixed x∗, the lower level problem may have multiple optimal solutions, and the

second sub-problem finds those satisfying the upper level coupled constraint and minimizing

the upper level objective function.
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2.4.2 Illustration Examples

In this section, two instances are solved by the proposed decomposition algorithm. In

particular, we first solve Example 2.2 using the strong duality based formulation (2.11) and

then solve another BiMINLP instance using the KKT conditions based formulation (2.12).

In the previous section, we see that 2.2 can be reformulated into a single level problem

through (2.11). Now we solve it through Algorithm 1. Specifically, the initial MP

min
x,y0,z0

{−3x+ y0 + z0 : 0 ≤ x ≤ 1, x− y0 + 2z0 ≤ 0, 0 ≤ y0 ≤ 2, z0 ∈ {0, 1}}

is solved. We have (x∗, y0
∗
, z0

∗
) = (1, 1, 0) and LB = −2. We then solve SP1

P (x∗) = min
y,z

{1
2
y2 : y − 2z ≥ 0, 0 ≤ y ≤ 2, z ∈ {0, 1}}

is solved for x∗ = 1. We have (y∗F , z
∗
F ) = (1, 0) and P (x∗) = 0.5. Next, SP2

min
y,z

{y + z : y − 2z − 1 ≥ 0,
1

2
y2 ≤ 0.5, 0 ≤ y ≤ 2, z ∈ {0, 1}}

is solved for x∗ = 1 and P (x∗) = 0.5. As SP2 has an optimal solution of (y∗S, z
∗
S) = (1, 0),

we have UB = min{+∞, F (x∗, y∗S, z
∗
S)} = −2 = LB. Therefore, the algorithm stops and

returns the unique optimal solution, which is (1, 1, 0).

The second example is adopted from [97], where we replace x1 ∈ [−1, 1] with x1 ∈ [−1, 0]

so that the lower level problem is convex in y for any fixed (x1, x2, z). It is easy to verify that

Example 2.3 satisfies the conditions in Theorem 2.2, and thus can be solved by Algorithm 1.

Example 2.3.

min
x1,x2,y,z

{ − x2 − x1 − z + x1y + 10y2 : x1 − 0.5x2 ≤ 0,−1 ≤ x1 ≤ 0, x2 ∈ {0, 1},

(y, z) ∈ argmin
y,z

{z − x1y
2 + 0.5y4 : y − 0.2z ≤ 0,−1 ≤ y ≤ 1, z ∈ {0, 1}}}
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In the first iteration, we obtain an optimal solution (x∗1, x
∗
2, y

0∗, z0
∗
) = (0, 1, 0, 1) from

the following MP

min
x1,x2,y0,z0

{−x2 − x1 − z0 + x1y
0 + 10(y0)2 :x1 − 0.5x2 ≤ 0, y0 − 0.2z0 ≤ 0

− 1 ≤ x1 ≤ 0,−1 ≤ y0 ≤ 1, x2, z
0 ∈ {0, 1}},

and we have LB = F (x∗1, x
∗
2, y

0∗, z0
∗
) = F (0, 1, 0, 1) = −2. Then, SP1

P (x∗1, x
∗
2) = min

y,z
{z + 0.5y4 : y − 0.2z ≤ 0,−1 ≤ y ≤ 1, z ∈ {0, 1}}

and SP2

min
y,z

{−1− z + 10y2 : y − 0.2z ≤ 0,−1 ≤ y ≤ 1, z ∈ {0, 1}, z + 0.5y4 ≤ P (x∗1, x
∗
2)}

are solved for (x∗1, x
∗
2) = (0, 1). An optimal solution (y∗S, z

∗
S) = (0, 0) is obtained form the

SP2, and UB = min{+∞, F (0, 1, 0, 0)} = −1. Since UB > LB, the following variables and

constraints

z0 − x1(y
0)2 + 0.5(y0)4 ≤ −x1(y1)2 + 0.5(y1)4, 2x1y

1 − 2(y1)3 + µ1 ≥ 0

y1 + 1 ≥ 0, y1(2x1y
1 − 2(y1)3 + µ1) = 0, µ1(y1 + 1) = 0, y1 ≤ 0, µ1 ≥ 0

are added to MP with z1 = z∗S = 0. In the next iteration, we obtain an optimal solution

(x∗1, x
∗
2, y

0∗, z0
∗
, y1

∗
, µ1∗) = (0, 1, 0, 0, 0, 0) and LB = −1 from the augmented MP. Then the

two sub-problems are solved for (x∗1, x
∗
2) = (0, 1). The optimal solution to SP2 is (y∗S, z

∗
S) =

(0, 0), and UB = min{UB,F (0, 0)} = −1. Since LB = UB, the algorithm terminates.

The optimal solution (x∗1, x
∗
2, y

∗, z∗) = (0, 1, 0, 0) and the optimal value−1 are the same as

those reported in [97]. As the original problem is a relaxation of Example 2.3 and its optimal

solution is feasible to Example 2.3, the two problems have the same optimal solution.
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2.5 Numerical Study

In this section, the proposed solution method is applied to BiMINLP instances. The

experiments are implemented in Julia [26], and the commercial solver Gurobi [68] and Mosek

[9] are used to solve single level formulations such as MP, SP1, and SP2. Some instances are

solved with the help of the Julia package BilevelJuMP [62].

Our numerical study includes two parts. In the first part, we apply the proposed method

to solve a metabolic network [117, 140] optimization problem in the pessimistic settings. In

the second part, we test the method on randomly generated instances of general BiMINLP

problems. In particular, we study bilevel mixed integer quadratic programming (BiMIQP)

problems, bilevel mixed integer second-order cone programming (BiMISOCP) problems, and

bilevel mixed integer bilinear programming (BiMIBLP) problems.

2.5.1 Metabolic Network Optimization

Bilevel optimization has been applied in metabolic engineering [117, 140]. The upper

level problem is to achieve an engineering target such as to maximize the production of

certain chemicals through gene knockouts. The lower level problem is a metabolic networks

problem. Under the MOMA assumption [117], such a problem is formulated as a bilevel

quadratic programming (BiQP) problem [110]. We consider the pessimistic counterpart of

this problem, which is given by

P-MOMA:max
y

min
v∈R(y)

vchemical

s.t.
∑
j∈J

(1− yj) ≤ K, yj ∈ {0, 1}, ∀j ∈ J

R(y) = argmin
v

{
∑

j ̸=chemical

(vj − wj)
2 :

∑
j∈J

Sijvj = 0, ∀i ∈ I

vglc = vglc uptake

vbiom ≥ vtargetbiom

vminj yj ≤ vj ≤ vmaxj yj, ∀ ∈ J}.
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The upper level objective is to maximize the desired biochemical production. Binary

variables yj ∈ {0, 1} for j ∈ J indicates if reaction j is knocked out (yj = 0), we allow up to

K genes or reactions to be knocked out. The lower level problem is to minimize the metabolic

adjustment process subject to flux balance and bound restrictions. Since our purpose is to

evaluate the proposed algorithm rather than to study the metabolic network problem itself,

we do not provide the derivation of the bilevel MOMA model, which can be found in [110].

We also consider bounded rationality in P-MOMA. We denote the optimal value of the

lower level problem by θ(y), denote the lower level feasible set by L(y), and denote the

enlarged lower level optimal solution set by

Rϵ(y) = {v : v ∈ L(y),
∑

j ̸=chemical

(vj − wj)
2 ≤ (1 + ϵ)θ(y)}.

We replace R(y) with Rϵ(y) in P-MOMA, and then apply Corollary 2.1 and Lemma 2.1 to

P-MOMA so that it can be solved by Gurobi.

The test data are based on [8] with modifications. The metabolic network has 77 nodes

with three configurations, i.e. with 80, 100, and 120 arcs (i.e., removable reactions). We

evaluate the solution of both the optimistic and pessimistic MOMA model for different ϵ, and

the objective value and computing time are reported in Table 2 and Table 3, respectively.

Table 2: Computational Result of Metabolic Network Problem

Arcs ϵ 0.1 0.2 0.3 0.4

80 O-MOMA 59.06 43.78 32.08 22.23
P-MOMA 58.55 43.98 32.86 25.98

100 O-MOMA 81.97 68.47 58.12 49.47
P-MOMA 106.17 106.17 106.17 106.17

120 O-MOMA 86.93 73.05 62.35 53.36
P-MOMA 107.77 107.77 107.77 107.77

Table 3: Computing Time for Solving P-MOMA

Arcs 0.1 0.2 0.3 0.4 Avg.(s)

80 739.85 675.40 365.56 312.95 523.44
100 1707.74 736.57 424.38 984.27 963.24
120 3147.29 1695.46 728.68 695.20 1566.66
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We observe that P-MOMA is better able to provide reliable solutions against uncertainty

caused by bounded rationality. Almost in all cases, P-MOMA has better evaluation result.

Moreover, in the 100-arc and 120-arc cases, P-MOMA gives unique solution regardless of ϵ,

demonstrated its strong robustness.

From Table 3, we see that most instances are solved within half an hour. The computing

time increases as the number of arcs increases. We also notice that it takes much time to

solve P-MOMA than to solve O-MOMA, which typically only takes less than 5 minutes.

2.5.2 Numerical Study on General BiMINLP Problems

In this section, we further evaluate the proposed solution method on general BiMINLP

problems. In particular, we solve three types of BiMINLP instances: namely, BiMIQP,

BiMISOCP, and BiMIBLP. The formulations are provided in the appendix.

The computational results are reported in Table 4, Table 5, and Table 6. ”NC” and

”NV” denote the number of constraints and that of variables, respectively. Moreover, we

use ”NV(U)” to denote the number of upper level variables, and use ”NV(C/D)” to indicate

the number of continuous/discrete variables in the lower level problem. For each setting,

we compute 10 randomly generated instances and report the average time and number of

iterations. The computing time is limited to one hour, and ”Gap (%)” is reported if an

instance was not solved to optimality in one hour.

Table 4: Experiment Results on Randomly Generated BiMIQP Instances

Type NC(U+L) NV(U) NV(C/D) # of iterations Time (s) Gap (%)

BiMIQP 5 5 5/5 4.8 12.99
10 10/10 3.7 317.23

10 5 5/5 2.4 3.11
10 10/10 4.7 495.93

20 10 10/10 5.2 392.14
15 15/15 3.0 1644.35 4.88

We observe that the proposed method can solve small to moderate size BiMINLP prob-

lems efficiently in just few iterations. For BiMIOP problem, instances with up to 20 con-

straints and 45 variables are solved in half an hour on average. For BiMISOCP, the computing

time is even much faster, and all the instances are solved in just few seconds. Furthermore,
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Table 5: Experiment Results on Randomly Generated BiMISOCP Instances

Type NC(U+L) NV(U) NV(C/D) # of iterations Time (s) Gap (%)

MISOCP 5 5 5/5 3.1 1.21
10 10/10 3.5 2.07

10 5 5/5 2.1 0.50
10 10/10 2.1 0.96

20 10 10/10 1.8 1.08
15 15/15 1.9 1.49

Table 6: Experiment Results on Randomly Generated BiMIBLP Instances

Type NC(U+L) NV(U) NV(C/D) # of iterations Time (s) Gap (%)

BiMIBLP 10 10 20/10 1.6 1.17
20 40/20 1.8 5.03

20 10 20/10 1.6 10.63
20 40/20 1.8 358.69

30 10 20/10 2.4 46.45
20 40/20 1.83 1627.55 5.34

our method is able to solve BiMIBLP instances with up to 30 constraints and 80 variables

within 2 iterations averagely. To the best of our to knowledge, no systematic computational

study on instances with similar size has been found in the existing literature.

2.6 Conclusion

In this chapter, we investigate general BiMINLP problems. Several optimality condi-

tions based reformulations are developed for both BO with convex lower level problem and

that with lower level integer variables. A generalized pessimistic BO framework is introduce

that includes optimistic and pessimistic optimization into special case. Based on the single

level reformulation, a computing scheme is developed. The numerical studies on real world

metabolic network problem and on general BiMINLP problems demonstrate the computa-

tional efficiency of the proposed solution method. Better reformulation and fast approxima-

tion algorithms could be a future research topic for large scale BiMINLP problems.
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3.0 Robust Bilevel Optimization

3.1 Motivation and Preliminaries

As mentioned in the introduction part, the current research on bilevel optimization con-

sidering uncertainties is rather limited. Indeed, existing methodologies in both modeling and

computational aspects are insufficient to address practical challenges. Up to now, we ob-

serve that stochastic programming based approaches are the dominating strategy to handle

random factors, primarily exogenous ones. Nevertheless, the uncertain response issue has

been long recognized and studied, although it is not treated as a uncertainty challenge. In

this chapter, we use BO to refer the problem defined by (1.1) - (1.3).

3.1.1 Current Status on Bilevel Optimization With Uncertainties

Stochastic Bilevel Optimization: Stochastic programming (SP) [27] is a method-

ology initially developed for the regular monolithic optimization to handle probabilistic un-

certainties. The basic idea is to consider the expected performance (or similar risk measure)

across all possible scenarios, especially for a finite set of scenarios that might be obtained

from sampling. When recourse decisions exist, the deterministic model will be extended to

build a two-stage (or multi-stage) SP model by introducing recurse variables and constraints

for every scenario. This simple and effective strategy can easily be applied to a bilevel opti-

mization model to develop a stochastic bilevel one. We note that if only the follower needs

to handle randomness, it is also related to stochastic programs with equilibrium constraints,

noting that the lower level DMP can be replaced by its optimality conditions [103, 91]. A

particular advantage of stochastic bilevel optimization is that its deterministic equivalent de-

rived from enumerating the finite number of scenarios (i.e., the associated recurse variables

and constraints), although large-scale, demonstrates a block structure friendly for developing

decomposition algorithms, e.g. [70] for the linear case. Hence, stochastic bilevel optimiza-

tion has been often adopted to study practical hierarchical systems. When the underlying
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distribution is continuous, similar to SP in the regular optimization, sampling or discretizing

methods are commonly used to approximate it by generating a finite set of scenarios [119].

In addition to capturing uncertainties occurring in external environment or in perception,

this SP based approach can model a decision-dependent uncertainty by allowing scenarios’

realization probabilities change according to some decision variables. For stochastic bilevel

linear program directly dealing with a general distribution, theoretical analysis regarding the

continuity, differentiability, and stability issues is reported in [35].

Applications of stochastic bilevel optimization can be found in addressing many practical

problems, such as pricing and operational problems of electricity market (e.g., [39, 83]),

capacity expansion problems in power systems (e.g., [127, 133]), and network design problems

in logistics, supply chain and transportation systems (e.g., [111, 130, 5]). It is noted that the

majority of applications consider exogenous random factors, e.g., demands, traffic flows or

wind power generations, which appear in the right-hand-sides of the lower level DMPs. Some

studies also recognize the unsureness regarding the follower’s DMP in practice, e.g., [41, 90,

75]. Also, the concerned randomness is often modeled by a finite set of scenarios with fixed

realization probabilities. One exception appears in [135], which studies a generation capacity

expansion problem subject to wind, demand and price uncertainties with decision-dependent

probabilities. So, it considers both exogenous and decision-dependent uncertainties.

Robust Bilevel Optimization: Robust optimization (RO) is a relatively new method-

ology that assumes no probabilistic information on uncertainties [17]. Rather, it simply

assumes that DMP’s random parameters belong to a set, referred to as an uncertainty set.

Hence, it is very suitable to model uncertainties whose distributional information is not

available or less reliable. Then, instead of considering probability-based risk measures, RO

seeks to derive solutions of the best performance in any worst situation within the uncer-

tainty set. Indeed, the existence of multiple optimal solutions in the lower level DMP has

been recognized long ago, and the philosophy behind RO has already been applied in bilevel

optimization to hedge against the associated response uncertainty [98, 89, 94]. Different from

BO, the resulting model imposes an additional maximization operation over ỹ in the upper
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level objective function as the following.

PBL : Φ∗ = min
x

max
ỹ

{F (x, ỹ) : (1.2)− (1.3)} (3.1)

Clearly, this formulation reflects the leader’s pessimistic belief that the follower is not coop-

erative and always feed back an optimal solution against her interest. Hence, it is referred

to as the pessimistic bilevel optimization(PBL) model, also known as the weak formulation

[94]. On the contrary, BO demonstrates that the follower is fully cooperative to the leader

and thereafter is referred to as the optimistic model, also known as the strong formulation.

Compared to BO, PBL, a complex tri-level formulation, is much less investigated or uti-

lized. Existing studies on optimality conditions and solution methods include [94, 52, 126,

132] and references therein. Research on robust bilevel optimization considering other types

of uncertainties only appear in a few papers. One study in [42] considers a robust bilevel

polynomial optimization model with linear upper level constraints and a linear lower level

DMP subject to interval uncertainty sets in constraints of both levels. A solution proce-

dure based on computing a sequence of semidefinite programming relaxations is developed.

Note that both the leader and the follower are robust optimizers when handle their own

(exogenous) uncertainties, and there is no scenario-specific recourse decision. Hence, it is

a single stage robust bilevel model. A couple of recent studies in [116, 32] analyze robust

bilevel linear programs with uncertain coefficients in the lower level objective functions from

the pessimistic perspective, therefore considering uncertainties both in perception and in

response. Because those models are of simple or particular structures, special algorithms

have been designed. Noting that the follower makes his decision after the exact information

is revealed, those models are actually two-stage robust bilevel formulations.

Hybrid Bilevel Optimization: Given the strength of SP and the very limited devel-

opment of RO in the context of bilevel optimization, we note that hybrid strategies making

use of both SP and RO have been developed. One is the strong-weak bilevel optimization

formulation proposed and studied in [1, 38] that computes a weighted sum of BO and PBL.

Since weights can be interpreted as the probabilities of the follower being cooperative and

non-cooperative, it employs SP and RO to jointly consider uncertainties in perception and in

response. Another one is a two-stage stochastic bilevel optimization model studied in [129].
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It adopts the pessimistic view to handel the response uncertainty and develops a decision

rule based approximation method to derive lower and upper bounds. Also, it is noted in [35]

that several structural properties developed for stochastic (optimistic) bilevel linear program

naturally extend to its pessimistic counterpart.

Overall, we mention that the existing research on bilevel optimization with uncertainties

is at its early stage and we do not have a full set of strong and general methodologies

to address practical challenges yet, regardless the ubiquitous existence of random factors

within a real hierarchical system. This is particularly the case for robust optimization

based approaches, which are believed to be more appropriate when a system cares more

on reliability or the distributional information is not available or accurate. To change such a

situation and to provide practical tools, we present a systematic study on RO based modeling

and solution methodologies to address the impacts of uncertainties in bilevel optimization.

Specifically, our provide a set of models that are able to capture all types of uncertainties and

their interactions, except the decision-dependent uncertainty (which requires an application-

specific function to describe the change of uncertainty set with regard to decisions). Also, we

consider decision making models within a single stage and over two different stages explicitly.

Then, a set of effective solution methods, along with their convergence analysis, are developed

to accurately compute all the proposed robust bilevel models. We expect that the presented

results provide a substantial support for bilevel optimization in practice, and pave the way

to address uncertainty challenges in hierarchical decision making systems.

3.1.2 Basic Concepts and Properties of Bilevel Optimization

In the remainder of this chapter, we assume that all functions involved in bilevel opti-

mization, i.e., F , G, f , and g, are continuously differentiable on their respective domains,

and X and Y are non-empty and compact with no discrete variable in y. Note that the

concepts and properties listed in this subsection are mainly developed for the optimistic

formulation BO, as it has been the mainstream in the literature.

The constraint set of a bilevel optimization model is defined by all constraints from both
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the upper and lower level problems, i.e.,

Ω = {(x,y) : G(x) ≤ 0, g(x,y) ≤ 0,x ∈ X,y ∈ Y}.

A regular monolithic optimization model defined on Ω with the upper level objective function

F is called the high point problem [99], denoted by H(Ω).

For a fixed upper level variable x, the lower level feasible set is

ψ(x) = {y : g(x,y) ≤ 0,y ∈ Y},

and the lower level optimal solution set (also known as rational reaction set) is

ϕ(x) = argmin
y

{f(x,y) : y ∈ ψ(x)}.

The inducible region of a bilevel optimization model is defined as

IR = {(x, ỹ) : G(x) ≤ 0,x ∈ X, ỹ ∈ ϕ(x)},

which is actually the feasible region of BO. Therefore, we can rewrite BO as

min
x,ỹ

{F (x, ỹ) : (x, ỹ) ∈ IR}.

The lower level optimal value function is

v(x) = min
y

{f(x,y) : y ∈ ψ(x)},

and BO can also be rewritten as

min
x,ỹ

{F (x, ỹ) : G(x) ≤ 0,x ∈ X, g(x, ỹ) ≤ 0, ỹ ∈ Y, f(x, ỹ) ≤ v(x)}.

Given that IR ⊆ Ω and they share the same objective function, the high point problem

H(Ω) is a relaxation of BO. This property and H(Ω) have often been employed as a basis

to make use of various methods of regular optimization to attack complex BO.

Remark 3.1. When f is continuous and ψ(x) is compact for fixed x, the lower level problem

has an optimal solution as long as ψ(x) is not empty. Therefore, it is clear that IR ≠ ∅ if

and only if Ω ̸= ∅.
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Different from regular optimization problems, the existence of optimal solutions of BO

might not be straightforward. In the following, we present a set of sufficient conditions that

ensure the existence of an optimal solution to them.

Theorem 3.1. Suppose that Ω ̸= ∅, then BO has an optimal solution if (i) [Adapted from

[49]] the Mangasarian-Fromovitz constraint qualification (with respect to y) is satisfied for

all (x,y) ∈ Ω, or (ii) x is discrete, i.e., X ⊆ Zmd
+ .

Corollary 3.1 (Adapted from [49]). If Ω ̸= ∅ and all functions involved in BO are linear,

then it has an optimal solution.

Note that this result holds if x also involves discrete variables, given that we can enumerate

discrete variables.

Remark 3.2. (i) Bilevel optimization problems are generally difficult to solve. Even for the

simplest linear BO with both upper and lower DMPs being linear programs, it is strongly

NP-hard [53]. Since all robust bilevel optimization models presented in this chapter reduce

to standard BO if no uncertainty exists, they are strongly NP-hard too.

(ii) Regarding the computational issue of BO, many analytical and heuristic methods have

been developed [14, 49, 43], including vertex enumeration, penalty and descent methods. We

note that the most popular strategy adopted is to compute a regular single level reformulation.

Specifically, if BO has a convex lower level DMP satisfying some constraint qualification,

then the lower level DMP can be replaced by its optimality conditions, e.g., those based on

Karush–Kuhn–Tucker (KKT) conditions and based on the strong duality. The resulting single

level formulation can be either computed by customizing nonlinear programming algorithms

according to its particular structure, or converted into a mixed integer program (MIP) [10]

and computed by general-purpose MIP solvers.

3.2 Robust Bilevel Model With Exogenous Uncertainty

In this section, we study robust bilevel optimization without scenario-specific recourse

decisions, i.e., both the leader and the follower make a single decision across all possible
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scenarios. We start with the simple case where only exogenous uncertainty is involved.

Then we proceed to consider uncertainties in perception and response. In fact, if the response

uncertainty is ignored, it implies the optimistic settings are considered, where the follower

is cooperative towards the leader.

3.2.1 Model Development and Basic Properties

Let variables u ∈ U (and w ∈ W) respectively) represent the exogenous random factors

considered by the leader (and the follower, respectively). Without loss of generality, we

assume in the remainder of this chapter that uncertainty sets U and W are compact and non-

empty. Also, objective functions of both DMs, i.e., F and f , are independent of uncertainties,

noting that we can always introduce dummy variables to represent objective functions while

treat those objective functions as constraints. The single-stage robust bilevel optimization

model subject to exogenous uncertainties can be formulated next.

R1−BO : Θ∗
R1 = minF (x, ỹ) (3.2)

s.t. G(x,u) ≤ 0, ∀u ∈ U,x ∈ X (3.3)

ỹ ∈ ϕW(x) ≡ argmin{f(x,y) : g(x,y,w) ≤ 0, ∀w ∈ W,y ∈ Y}. (3.4)

Following the convention in bilevel optimization literature, we define the constraint set of

R1−BO as

ΩR1−BO = {(x,y) : G(x,u) ≤ 0,∀u ∈ U, g(x,y,w) ≤ 0,∀w ∈ W,x ∈ X,y ∈ Y},

and denote the corresponding high point problem by H(Ω1R−BO). Again, we have that

H(ΩR1−BO) is a relaxation of R1−BO. Note that H(ΩR1−BO) can be treated as an RO

formulation of H(Ω). Correspondingly, the inducible region of this robust bilevel optimiza-

tion is defined as

IRR1−BO = {(x, ỹ) : G(x,u) ≤ 0,∀u ∈ U,x ∈ X, ỹ ∈ ϕW(x)}.

It is easy to verify that IRR1−BO ̸= ∅ if and only if ΩR1−BO ̸= ∅. Moreover, by using

maximization operation to replace the constraint satisfaction with respect to all u and w in
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ΩR1−BO, it is clear that computing the following bilevel optimization model helps check the

feasibility of R1−BO.

Proposition 3.1. Let e1 and e2 be vectors with all elements being 1, and

z∗ = min
x∈X,y∈Y,t1,t2≥0

{eT1 t1 + eT2 t2 : G(x,u) ≤ t1,∀u ∈ U, g(x,y,w) ≤ t2,∀w ∈ W}. (3.5)

We have that R1−BO is feasible (equivalently IRR1−BO ̸= ∅) if and only if z∗ = 0.

Proof. If IRR1−BO ̸= ∅, then ΩR1−BO ̸= ∅. Thus, there exists (x∗,y∗) such that G(x∗,u) ≤

0,∀u ∈ U, g(x∗,y∗,w) ≤ 0, ∀w ∈ W,x∗ ∈ X,y∗ ∈ Y. Let t∗1 = t∗2 = 0, then (x∗,y∗, t∗1, t
∗
2) is

optimal to (3.5), and z∗ = 0. Conversely, if z∗ = 0, then we must have t∗1 = t∗2 = 0. This

implies that ΩR1−BO ̸= ∅ and thus IRR1−BO ̸= ∅.

Note that the feasibility check problem (3.5) is a RO formulation of a single-level opti-

mization problem. It can be solved by a couple of matured methods in existing RO literature

such as those in [58, 22]. The next result provides a sufficient condition for the existence of

optimal solutions to R1−BO. We omit the proof as it is directly implied by Theorem 3.1.

Corollary 3.2. Let ΩR1−BO ̸= ∅, then R1−BO has an optimal solution if the Mangasarian-

Fromovitz constraint qualification (MFCQ) is satisfied with respect to y for all (x,y) ∈

ΩR1−BO.

Regarding the instance of R1−BO studied in [42], its lower level problem is a robust

LP with matrix coefficients belonging to a box uncertainty set. As that robust LP can be

equivalently reformulated as a larger LP with constraints populated by enumerating extreme

points of the box set, MFCQ is satisfied and the problem has an optimal solution as long

as its constraint set is non-empty. Note that using the duality based reduction method

described in the following, this conclusion holds for any polyhedral uncertainty set.
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3.2.2 Reformulations and Relaxations for Computing R1−BO

As both upper and low level constraints need to hold for all possible u ∈ U and w ∈ W,

the upper and lower level DMPs in R1−BO could be two complex semi-infinite problems,

which makes the complete formulation R1−BO very challenging to analyze and compute.

By using maximization operation to replace such constraint satisfaction, R1−BO can be

readily converted into the following multi-level formulation.

Theorem 3.2. Let Cl = {1, . . . , p} and Cf = {1, . . . , q} denote the index sets of constraints

of the upper and lower level DMPs, respectively. The robust bilevel model R1−BO is

equivalent to the following one.

min F (x, ỹ) (3.6)

max
ui∈U

Gi(x,ui) ≤ 0, ∀i ∈ Cl (3.7)

x ∈ X, (3.8)

ỹ ∈ argmin{f(x,y) : (3.9)

max
wj∈W

gj(x,y,wj) ≤ 0, ∀j ∈ Cf (3.10)

y ∈ Y}. (3.11)

Proof. Note that an upper level solution x0 satisfies all upper level constraints simultane-

ously for u ∈ U in R1−BO if and only if

Gi(x
0,ui) ≤ 0,∀ui ∈ U, i ∈ Cl

which is equivalent to

max
ui∈U

Gi(x
0,ui) ≤ 0, i ∈ Cl

Since Gi is continuous and U is non-empty compact, the maximization problems in (3.7)

achieve their optimal values. For a fixed upper level decision x0, the same argument holds

for a feasible lower level solution y0 with respect to W. Hence, the conclusion follows.
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Compared to the initial formulation R1−BO, this constraint-wise equivalent one allows

us to consider the impact of randomness on constraints individually. Note that variable ui

or wj in one constraint is independent of those of other constraints. In particular, if U or W

is a convex set and Gi or gj is concave in ui or wj, the KKT conditions or the strong duality

for the maximization operation can be utilized to further reduce the model complexity. We

illustrate a strong duality based reduction for R1−BO as follows.

Corollary 3.3. Suppose that U and W are convex sets satisfying Slater’s condition, and

Gi and gj are concave in ui and wj for i ∈ Cl and j ∈ Cf , respectively. Assume the dual

problem of (3.7) can be analytically represented as minvli
{G′

i(x,vli) : vli ∈ Vli(x) for i ∈ Cl},

and that of (3.10) as minvfj
{g′j(x,y,vfj) : vfj ∈ Vfj(x,y) for j ∈ Cf}. R1−BO can be

reformulated as

R1−BO/D : min F (x, ỹ)

G′
i(x,vli) ≤ 0, i = 1, . . . , p

vli ∈ Vli(x), i = 1, . . . , p

x ∈ X,

ỹ ∈ argmin{f(x,y) :

g′j(x,y,vfj) ≤ 0, j = 1, . . . , q

vfj ∈ Vfj(x,y), j = 1, . . . , q

y ∈ Y}.

Proof. Because the uncertainty set Ul is convex with Slater’s condition satisfied and Gi is

concave in uli , the strong duality holds and (3.7) can be replaced by its dual problem to

have

minG′
i(x,vli) ≤ 0, vli ∈ Vli(x)

for all i. The minimization operation can be safely removed as it appears in the left-hand-

side (LHS) of the ”≤” sign. By applying the same argument to the robust lower level DMP,

the desired result follows.
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By applying Corollary 3.3, the multi-level robust optimization model R1−BO can be

reduced to a deterministic bilevel optimization model R1−BO/D. Note that the KKT

conditions can also be used to achieve a similar reduced formulation, which then has com-

plementary slackness constraints.

Remark 3.3. (i) Many uncertainty sets adopted in the robust optimization literature, in-

cluding interval, general polyhedral and ellipsoidal sets, readily support this duality based

reduction as they are convex sets satisfying Slater’s condition. Indeed, such reduction opera-

tion might not drastically increase the complexity of the upper or lower level DMP. As shown

in [23, 19], the dual problem of a robust linear constraint over a polyhedral uncertainty set

is just a linear program of a size proportional to the dimensions of the uncertainty set and

the number of uncertain coefficients.

(ii) The deterministic bilevel reformulation R1−BO/D provides us a great convenience to

study and compute the original R1−BO using existing methodologies for classical bilevel

optimization. For example, if the lower level DMP in R1−BO/D is convex and satisfies

some constraint qualification, it can be replaced by its KKT conditions or dual problems to

convert R1−BO/D into a single level formulation that could be directly solved by off-the-

shelf packages.

(iii) If ui only appears in the right-hand-side (RHS) of the i−th constraint for some i ∈ Cl,

i.e., the constraint is in the form of Gi(x) ≤ h(ui),∀ui ∈ U, it can be simplified by pre-

processing. Specifically, let h∗i = min{h(ui) : ui ∈ U}. Then, this constraint can be replaced

by Gi(x) ≤ h∗i . The same strategy can be applied to a constraint in the lower level DMP if

the uncertainty only appears in its RHS.

Note that the duality or KKT conditions based reduction method is not applicable to

a general discrete uncertainty set. We might be interested in solving R1−BO’s less com-

plicated relaxations. For the classical RO formulations of a single level optimization, it is

observed that an RO model built upon a subset of the original uncertainty set is a relaxation,

regardless of the original uncertainty set’s continuity. This observation actually is the foun-

dation to develop the iterative cutting plane (also known as constraint generation) method

for exact solutions [58, 22]. Nevertheless, as shown in the next, that relaxation strategy
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is only valid for the upper level DMP of R1−BO, while it can be extended in a rather

counter-intuitive way to derive a correct relaxation of the complete robust formulation.

Theorem 3.3. Let Ǔ, W̌ and Ŵ be three uncertainty sets such that Ǔ ⊆ U and W̌ ⊆ W ⊆ Ŵ,

respectively. The following robust bilevel optimization problem is a relaxation to R1−BO

R1−BO/R(Ǔ, W̌, Ŵ) : minF (x, ỹ)

st. x ∈ X, G(x,u) ≤ 0,∀u ∈ Ǔ,

ỹ ∈ Y, g(x, ỹ,w) ≤ 0, ∀w ∈ W̌

f(x, ỹ) ≤ η

η = min{f(x,y) : g(x,y,w) ≤ 0,∀w ∈ Ŵ,y ∈ Y}.

Denoting its optimal value by Θ̃∗
R1−e(Ǔ, W̌, Ŵ), we have

Θ̃∗
R1−e(Ǔ, W̌, Ŵ) ≤ Θ̃∗

R1−e(U,W,W) = Θ∗
R1.

Proof. As η is a dummy variable to enforce the optimality regarding ỹ, it is easy to

see that R1−BO and R1−BO/R(U,W,W) are equivalent. Let the optimal value of

R1−BO/R(Ǔ, W̌, Ŵ) denoted by Θ̃∗
R1−e(Ǔ, W̌, Ŵ). As W ⊆ Ŵ, we have

min{f(x,y) : y ∈ Y, g(x,y,w) ≤ 0,∀w ∈ Ŵ} ≥

min{f(x,y) : y ∈ Y, g(x,y,w) ≤ 0,∀w ∈ W},

regardless the value of x. Hence,

Θ̃∗
R1−e(U,W, Ŵ) ≤ Θ̃∗

R1−e(U,W,W) = Θ∗
R1.

Moreover, for any fixed Ŵ, we have

Θ̃∗
R1−e(Ǔ, W̌, Ŵ) ≤ Θ̃∗

R1−e(U,W, Ŵ),

as the feasible set of (x, ỹ) in the first problem is at least as large as that in the last problem.

Hence, the desired conclusion follows.

The next result simply allows us to consider the continuous relaxation of discrete W.

51



Corollary 3.4. Assume W is a discrete set and W̃ is a continuous set subsuming W, and

sets Ǔ and W̌ are defined as in Theorem 3.3. Then, R1−BO/R(Ǔ, W̌, W̃) is a relaxation

to R1−BO, and we have Θ̃∗
R1−e(Ǔ, W̌, W̃) ≤ Θ̃∗

R1−e(U,W,W) = Θ∗
R1.

Remark 3.4. Let Cr(W) denote the continuous relaxation of W. If the convexity conditions

in Corollary 3.3 hold for Cr(W) and gj, the lower level problem of R1−BO/R(Ǔ, W̌,Cr(W))

renders itself suitable for the optimality conditions based reduction method, through which we

will have a robust bilevel model with a deterministic lower level DMP as that of R1−BO/D.

By replacing the lower level DMP with its optimality conditions, R1−BO/R(Ǔ, W̌,Cr(W))

can be converted into an RO formulation for a single level optimization problem. As men-

tioned, this type of RO formulations, regardless of the continuity of U, can be directly com-

puted by the cutting plane method [58, 22].

By Corollary 3.4 and the aforementioned discussion, we can derive a more computation-

ally friendly relaxation and solve R1−BO with discrete uncertainty sets approximately.

Moreover, it also provides a basis to develop an exact solution procedure by iteratively

strengthening that relaxation.

3.2.3 Cut-and-Branch Algorithm for Discrete Uncertainty Sets

In this section, we develop a novel algorithm to solve R1−BO with discrete uncer-

tainty set, W = {w ∈ Znw : D(w) ≤ 0}. As discussed previously, such a problem is

equivalent to R1−BO/R(U,W,W), and we also have its continuous relaxation problem

R1−BO/R(U,W, Cr(W)), where Cr(W) is the continuous relaxation of W. Moreover, for

W1,W2 ⊆ Cr(W) such that W1 ∩W2 = ∅ and W ⊆ W1 ∪W2, if we denote W′ = W1 ∪W2,

then we have R1−BO/R(U,W,W′) is a stronger relaxation of R1−BO/R(U,W,W).

To solve R1−BO, we first solve R1−BO/R(U,W, Cr(W)) and obtain an optimal

x∗ as well as a lower bound (LB). Then we solve the lower level problem through cutting

plane method for x∗ and obtain an optimal y∗ as well as an upper bound (UB). If the

difference between UB and LB is not within a pre-defined tolerance (ϵ), we solve separation

problems to find w ∈ Cr(W)\W and then branch on w to have W1,W2 ⊆ Cr(W) satisfying

the aforementioned conditions to get a tighter LB. We name this solution method Cut-
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and-Branch Algorithm since we borrow the branching idea from integer programming and

integrates it with the classical cutting plane method developed for the regular RO [58, 22].

In addition to UB, LB and ϵ, we also denote by Wk the relaxation of W in the kth

iteration. Following Remark 3.4, we assume that an oracle based on the cutting plane

method (i.e., the cutting plane oracle) is available to solve the RO formulation of a single

level optimization model, including R1−BO/R(U,W,Cr(W)) with the lower level problem

satisfying necessary convexity conditions and replaced by its optimality conditions.

Algorithm 2 Cut-and-Branch Algorithm for R1−BO

1: Initialize UB = +∞, UB = −∞, k = 0, and Wk = Cr(W)

2: while UB − LB ≥ ϵ do

3: SolveR1−BO/R(U,W,Wk) by the oracle, obtain an optimal solution (xk∗, ỹk∗, ηk∗)

4: Update LB = F (xk∗, ỹk∗)

5: For xk∗, solve the lower level problem in (3.9-3.11) and obtain an optimal yk∗.

6: Update UB = min{UB,F (xk∗,yk∗)}

7: for j ∈ Cf do

8: Solve the separation problem

ξj(x
k∗,yk∗) = max{gj(xk∗,yk∗,wk

j ) : w
k
j ∈ Wk}

and obtain an optimal solution wk∗
j for given (xk∗,yk∗)

9: if ξj(x
k∗,yk∗) > 0 then

10: Branch on wk∗
j , i.e., choose l ∈ {1, 2, ...nw} such that wk∗

jl
is not an integer,

then set Wk
j1
= {wk

j ∈ Wk : wk
jl
≤ ⌊wk∗

jl
⌋} and Wk

j2
= {wk

j ∈ Wk : wk
jl
≥ ⌈wk∗

jl
⌉}

11: Update Wk = Wk
j1
∪Wk

j2
, k = k + 1

12: Break

13: else

14: Return (xk∗, ỹk∗) as a solution for R1−BO and terminate

15: end if

16: end for

17: end while

18: Return (xk∗, ỹk∗) as a solution for R1−BO and terminate
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Theorem 3.4. Suppose (xk∗, ỹk∗, ηk∗,yk∗) is an optimal solution to R1−BO/R(U,W,Wk)

in the kth iteration, and yk∗ ∈ ϕW(xk∗), i.e., yk∗ is an optimal solution to the lower level

problem of R1−BO, then (xk∗, ỹk∗) is optimal to R1−BO if

argmax{gj(xk∗,yk∗,wk
j ) : w

k
j ∈ Wk} ∩W ̸= ∅,∀j ∈ Cf .

Proof. Without loss of generality, we assume |Cf | = 1, then argmax{gj(xk∗,yk∗,wk
j ) : w

k
j ∈

Wk} ∩W ̸= ∅ for all j ∈ Cf reduces to argmax{g(xk∗,yk∗,wk) : wk ∈ Wk} ∩W ̸= ∅. Let

wk∗ ∈ argmax{g(xk∗,yk∗,wk) : wk ∈ Wk} ∩W, then we have

max{g(xk∗,yk∗,wk) : wk ∈ Wk} ≤ g(xk∗,yk∗,wk∗) ≤ 0,

where the second inequality follows the fact that wk∗ ∈ W and yk∗ ∈ ϕW(x
k∗). Hence, yk∗

is feasible and thus optimal to the lower level problem of R1−BO/R(U,W,Wk) since the

lower level problem of R1−BO is a relaxation of that of R1−BO/R(U,W,Wk). Thus,

the lower level problem of R1−BO/R(U,W,Wk) and that of R1−BO have the same

optimal value for xk∗, which is f(xk∗,yk∗). This implies that ỹk∗ ∈ ϕW(x
k∗). Therefore,

(xk∗, ỹk∗) is feasible and thus optimal to R1−BO.

Corollary 3.5. If UB−LB ≥ ϵ, then there exists wk∗
j ∈ Wk such that gj(x

k∗,yk∗,wk∗
j ) > 0

for some j ∈ Cf . In this case, we can branch on wk∗
j . As |W| < +∞, Algorithm 2 converges

in finite number of iterations.

Proof. This result is directly implied by Theorem 3.4.

Remark 3.5. (i) If the lower level uncertainty set W is a mixed integer set, we mention

that the Cut-and-Branch algorithm remains valid and still converges to an optimal solutions,

noting that the branching operation is readily applicable with little change. Also, if the upper

level uncertainty set U is a friendly convex set, the duality or KKT conditions based reduction

method can be adopted within the cutting plane oracle for the related robust constraints (as

showed in Corollary 3.3).

(ii) In the aforementioned implementation, only one branching operation is performed every

iteration on a single uncertainty set (and the associated constraint) in the lower level problem

of R1−BO/R(U,W,Wk). A straightforward extension is to branch multiple uncertainty
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sets and their associated constraints per iteration. By doing that, the number of iterations

certainly should also be reduced significantly, while the size of the lower level DMP also

increases quickly. Hence, a study on the number of branching operations can be considered

to achieve the desired trade-off with a better performance.

3.3 Robust Bilevel Model Under Uncertainties in Perception

In this subsection, we first consider single-stage robust bilevel optimization with uncer-

tainty in perception. As discussed in introduction part, uncertainty in perception occurs

when inaccurate or erroneous information is transmitted within this hierarchical system, or

either the leader or the follower has less confidence regarding the other’s DMP. We consider

a relative easier case here where the leader proactively hedges an inexact feedback from the

follower. We will investigate more sophisticated cases in the next chapter.

Specifically, let Uy be a compact uncertainty set, and (ỹ+y′) with y′ ∈ Uy represent the

perceived decisions in place of ỹ, respectively. The robust bilevel optimization is formulated

as the next.

R1p−BO : min
x,ỹ

max
y′∈Uy

F (x, ỹ + y′) (3.12)

s.t. (1.2)− (1.3) (3.13)

Since y′ does not appear in any constraint, it will not affect the feasibility of R1p−BO.

Hence, it is clear that R1p−BO is feasible if and only if BO is feasible. Next, we give

some sufficient conditions guaranteeing the existence of an optimal solution.

Theorem 3.5. Assume that the deterministic counterpart BO satisfies the condition in

Theorem 3.1, then R1p−BO has an optimal solution (i) if F ′(x, ỹ) ≡ maxy′∈Uy{F (x, ỹ +

y′)} has a unique optimal solution for all (x, ỹ) ∈ ΩBO. or (ii) if the lower level optimal

value function v(x) is continuous.
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Proof. (i) Since maxy′∈Uy{F (x, ỹ + y′)} has a unique optimal solution for fixed (x, ỹ), its

optimal solution can be denoted by y′(x, ỹ) for fixed (x,y), and thus R1p−BO can be

rewritten as

min
x,ỹ

{F (x, ỹ,y′(x, ỹ)) : x ∈ X, G(x) ≤ 0, ỹ ∈ ϕ(x)}.

As F is continuously differentiable with respect to x and ỹ, by the implicit function theorem

[44, 84], F ′ is also continuously differentiable. Noting thatR1p−BO andBO have identical

constraints, so R1p−BO also satisfies the conditions in Theorem 3.1, and thus has an

optimal solution. (ii) It is easy to see that R1p−BO is equivalent to

min
x,ỹ

{F ′(x, ỹ) : x ∈ X, G(x) ≤ 0, ỹ ∈ Y, g(x, ỹ) ≤ 0, f(x, ỹ) ≤ v(x)}. (3.14)

Since v(x) is continuous, the feasible region of (3.14) is non-empty and compact. Moreover,

as F is continuous, so is F ′. Hence, R1p−BO has an optimal solution by the Weierstrass

theorem.

Remark 3.6. Although v(x) is not continuous in general, it has this property for several typ-

ical lower level problems such as LP, second-order cone programming (SCOP), and semidef-

inite programming (SDP), where x appears in the RHS of the lower level problem.

3.4 Numerical Study

Facility location problem is a well-studied topic, and it has been widely applied in prac-

tice. In our numerical study, we consider a robust bilevel facility location problem. By

convention, we use a regular lower case letter to represent a scalar and a bolded letter to

represent the corresponding vector.

Sets

I the index set of customers, indexed by i;

J the index set of potential building locations, indexed by j;

Parameters

56



fj the fixed cost of using location j;

gj the unit capacity cost of facility j;

hj the operating cost of facility j;

K budget;

Uj the upper bound of the capacity of facility j;

cij the cost incurred by customer i if going to lacation j;

di the demand of customer i;

Variables

xj binary variables: xj = 1 if location j is used for building a facility,

and xj = 0 otherwise;

wj the capacity of facility j;

yij the fraction of demand of customer i provided by location j.

Using the aforementioned notations, a bilevel facility location model is defined as

min
x,w

∑
j∈J

fjxj +
∑
j∈J

gjwj + min
y∈S(x,w)

∑
j∈J

hj
∑
i∈I

yij

s.t.
∑
j∈J

xj ≤ K

wj ≤ Ujxj, ∀j ∈ J

xj ∈ {0, 1}, wj ≥ 0,∀j ∈ J

(3.15)

where S(x,w) is the set of optimal solutions to the following problem for fixed x and w.

min
y

∑
i∈I

∑
j∈J

cijyij

s.t.
∑
j∈J

yij ≥ di, ∀i ∈ I

∑
i∈I

yij ≤ wj, ∀j ∈ J

yij ≥ 0, ∀i ∈ I, j ∈ J

(3.16)

The upper level problem is to minimize the total cost subject to budget constraint and

capacity bound constraints, and the lower level problem is to minimize transportation cost

while meeting all the demands subject to capacity constraints.

57



In practice, the system may be subject to various types of uncertainties. For instance,

some products may get damaged in transit. Such a scenario can be reflected by a stochastic

coefficient matrix in (3.16). Suppose that the coefficient matrix of the constraint
∑

j∈J yij ≥

di is of the form A = [ãij] and that ãij ∈ [aij− âij, aij],∀i ∈ I, j ∈ J , then we have the robust

counterpart of (3.16) as

min
y

∑
i∈I

∑
j∈J

cijyij

s.t.
∑
j∈J

aijyij − max
Si⊆J,|Si|≤Γi

{
∑
j∈Si

âijyij} ≥ di, ∀i ∈ I

∑
i∈I

yij ≤ wj, ∀j ∈ J

yij ≥ 0, ∀i ∈ I, j ∈ J

(3.17)

where Γi is the maximum number of the uncertain parameters in the ith constraint. We

replace (3.16) with (3.17) and refer the resulting problem as robust bilevel facility location

problem (RBFLP).

We first solve RBFLP instances approximately by applying Theorem 3.2 and Corollary

3.3, and then solve them by the proposed cut-and-branch algorithm. From Table 7, we see

that the total cost increases in Γ. Table 8 reports the performance of the proposed cut-and-

branch algorithm. First, we observe that the relaxation is strong as the average gap is only

1.42%. Also, we see that the cut-and-branch algorithm is efficient in solving problems of

small to moderate size. All the instances are solved in just few minutes, and only very small

number of branching operations were performed.

Table 7: Result of RBFL

I J Γ 0 0.3 0.6 0.9 1.2

5 5 Optimal value (App) 3659.41 3775.25 3891.09 4006.93 4813.29
Optimal value (C&B) 3659.41 3756.90 3720.58 3754.19 4813.29

10 Optimal value (App) 2218.12 2291.29 2956.18 3111.06 3172.97
Optimal value (C&B) 2218.12 2291.29 2322.49 2335.58 3172.97
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Table 8: Performance of the Cut-and-Branch Algorithm

I J Γ 0 0.3 0.6 0.9 1.2 Avg.

5 5 Optimality gap (App) 0.00% 1.16% 2.28% 3.36% 0.31% 1.42%
Optimality gap (C&B) 0.00% 0.98% 0.62% 0.96% 0.31% 0.57%
Gap closed via branching 0.00% 0.18% 1.66% 2.41% 0.00% 0.85%
Time (C&B) 0.04 0.2 1.03 0.58 1.15 0.60
Number of branching performed 0 2 5 5 0 2.4

10 Optimality gap (App) 0.00% 0.00% 3.33% 5.18% 0.12% 1.73%
Optimality gap (C&B) 0.00% 0.00% 0.00% 0.00% 0.12% 0.02%
Gap closed via branching 0.00% 0.00% 3.33% 5.18% 0.00% 1.70%
Time (C&B) 0.06 0.06 0.44 1.62 0.33 0.50
Number of branching performed 0 0 2 4 0 1.2

3.5 Conclusion

In this chapter, we study single-stage robust bilevel optimization problems. We develop

a general single-stage robust bilevel optimization model that considers both upper level and

lower level uncertainty. We further provide a novel relaxation of this model, based on which

a novel cut-and-branch is developed for single-stage RBO problem with discrete uncertainty

set. The numerical study shows the effectiveness and the efficiency of our proposed model

and solution method in handling with uncertainty.
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4.0 Two-Stage Robust Bilevel Optimization

In the previous chapter, we assume that all the decisions are made before the uncertainty

is revealed, and thus no scenario-specific decision is involved. In practice, the leader may

have an opportunity to make some scenario-specific ”wait and see” decisions. Such decision

making processes are often described by a two-stage optimization model.

In this chapter, we first introduce robust bilevel optimization formulations with scenario-

specific decisions. Then we study their structural properties and develop algorithms to solve

this type of problem.

4.1 Bilevel Optimization With Scenario-Specific Decisions Under Exogenous

Uncertainty

We first consider two-stage bilevel optimization model with exogenous uncertainty. As

discussed in the introduction section, exogenous uncertainty refers to random factors outside

of the system. Such factors are often assumed to be in an uncertainty set that is independent

of the decisions made by the two DMs in a bilevel optimization problem.

4.1.1 Two-Stage Robust Bilevel Optimization Formulations and Properties

Denote the first and the second stage decision of the leader by x1 and x2, respectively.

Also denote the uncertain parameter by u. Then, the follower makes a decision based on

given upper level decisions and a realized scenario. Hence, for fixed (x1,u,x2) the lower level

feasible region is

ψ(x1,u,x2) = {y : g(x1,u,x2,y) ≤ 0,y ∈ Y},

and the lower level rational reaction set is

ϕ(x1,u,x2) = argmin
y

{f(x1,u,x2,y) : y ∈ ψ(x1,u,x2)}.
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Then, the aforementioned decision making process is modeled by a two-stage robust bilevel

optimization (TSROBLO) formulation

TSROBLO : min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0,ỹ∈ϕ(x1,u,x2)}

F (x1,u,x2, ỹ).

In addition to the assumptions we made in the previous chapters, we further assume that

H is continuous, and that X2 ⊆ Rm2c
+ × Zm2d

+ is a non-empty compact set. We refer {x2 ∈

X2, H(x1,u,x2) ≤ 0} as the second stage feasible region.

Since both the second stage and the lower level feasible region are jointly determined by

the first stage decision and the random factors, the leader needs to guarantee the second

stage and the lower level feasibility while making the first stage decision. Denote S(x1,u) =

{(x2,y) : H(x1,u,x2) ≤ 0, g(x1,u,x2,y) ≤ 0,x2 ∈ X2,y ∈ Y}, then S(x1,u) is compact

for fixed (x1,u). For a fixed x0
1 ∈ {x1 ∈ X1, G(x1) ≤ 0}, either S(x0

1,u) ̸= ∅, ∀u ∈ U or

∃u0 ∈ U such that S(x0
1,u

0) = ∅. Hence, to make the second stage and the lower level

problem feasible for all u ∈ U, x1 has to be in

XU = {x1 : x1 ∈ X1, G(x1) ≤ 0,S(x1,u) ̸= ∅,∀u ∈ U}.

Theorem 4.1. Let e1 and e2 be a vector with all elements being one, and let z∗(x1) be the

optimal value of the following problem for fixed x1

max
u∈U

{ min
x2,y,t1,t2≥0

eT1 t1 + eT2 t2 : H(x1,u,x2) ≤ t1, g(x1,u,x2,y) ≤ t2,x2 ∈ X2,y ∈ Y}, (4.1)

then x1 ∈ XU if and only if x1 ∈ X1, G(x1) ≤ 0 and z∗(x1) = 0.

Proof. For fixed (x1,u), let w
∗(x1,u) be the optimal value of the inner problem of (4.1)

w∗(x1,u) = min
x2,y,t1,t2≥0

{eT1 t1 + eT2 t2 : H(x1,u,x2) ≤ t1, g(x1,u,x2,y) ≤ t2,x2 ∈ X2,y ∈ Y},

(4.2)

then it is obvious that w∗(x1,u) ≥ 0. If S(x1,u) ̸= ∅, then there exists (x2,y) ∈ X2 × Y

such that H(x1,u,x2) ≤ 0 and g(x1,u,x2,y) ≤ 0. Let t1 = t2 = 0, then (x2,y, t1, t2) is

an optimal solution to (4.2), and w∗(x1,u) = eT1 t1 + eT2 t2 = 0. Conversely, if (x∗
2,y

∗, t∗1, t
∗
2)

is an optimal solution to (4.2), then we have w∗(x1,u) = eT1 t
∗
1 + eT2 t

∗
2 = 0, which implies
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t∗1 = t∗2 = 0. Hence, we have x∗
2 ∈ X2, y

∗ ∈ Y, H(x1,u,x
∗
2) ≤ 0 and g(x1,u,x

∗
2,y

∗) ≤ 0. As

(x∗
2,y

∗) ∈ S(x1,u), we have S(x1,u) ̸= ∅.

If x1 ∈ XU, then for any u ∈ U, S(x1,u) ̸= ∅. This implies that w∗(x1,u) = 0 for any

u ∈ U, and thus z∗(x1) = 0. Conversely, if z∗(x1) = 0 but x1 /∈ XU, then there exists u∗ ∈ U

such that S(x1,u
∗) = ∅. Hence, w∗(x1,u

∗) > 0 = z∗(x1), which contradicts the fact that the

optimal value of (4.1) is 0. Therefore, z∗(x1) = 0 implies x1 ∈ XU.

Remark 4.1. We say TSROBLO has the relatively complete recourse property [133] if

S(x1,u) ̸= ∅ for any (x1,u). In this case, XU simply reduces to the upper level first stage

feasible region {x1 : x1 ∈ X1, G(x1) ≤ 0}.

For fixed first stage decision x1 and uncertain parameter u, TSROBLO reduces to

min{F (x1,u,x2, ỹ) : x2 ∈ X2, H(x1,u,x2) ≤ 0, ỹ ∈ ϕ(x1,u,x2)}. (4.3)

Notice that (4.3) is solved based on a particular realized scenario, and thus x2 and y are

scenario-specific decisions. Denoting the index set of U by KU ≡ {k : uk ∈ U} and introduc-

ing (x2k , ỹk) for each k, then we can rewrite TSROBLO as

min η

s.t. G(x1) ≤ 0,x1 ∈ X1 (4.4)

H(x1,uk,x2k) ≤ 0,x2k ∈ X2,∀k ∈ KU (4.5)

η ≥ F (x1,uk,x2k , ỹk), ∀k ∈ KU (4.6)

ỹk ∈ ϕ(x1,uk,x2k),∀k ∈ KU, (4.7)

Indeed, we can have a relaxation of TSROBLO by considering a subset of the scenarios

in the uncertainty set, i.e., by replacing U with Ū. Such a relaxation provides a lower bound.

By generating scenarios and enlarging Ū, we can tighten the bound to achieve optimality.
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4.1.2 Decomposition Algorithm

As mentioned previously, for Ū ⊆ U, we have a relaxation of TSROBLO as

MP1 : min{η : (4.4), (4.5)− (4.7),∀k ∈ KŪ},

whose optimal value provides a lower bound.

An optimal x∗
1 obtained fromMP1 may not be in XU. In this case, a feasibility cut is gen-

erated by the following ”max−min” problem, which we refer as a feasibility cut generation

problem (FCGP)

FCGP : z∗(x1) = maxu∈U{ min
x2,y,t1,t2≥0

eT1 t1 + eT2 t2 : H(x1,u,x2) ≤ t1,

g(x1,u,x2,y) ≤ t2,x2 ∈ X2,y ∈ Y},

where e1 and e2 are both a vector with all elements being one. According to Theorem 4.1,

if u∗ is an optimal solution to FCGP with z∗(x∗
1) > 0, then S(x∗

1,u
∗) = ∅, and thus we can

add H(x1,u
∗,x2) ≤ 0 and g(x1,u

∗,x2,y) ≤ 0 to MP1. If z
∗(x∗

1) = 0, then x∗
1 ∈ XU, and we

solve the following sub-problem (SP)

SP1 : max
{u∈U}

min
{x2∈X2,H(x∗

1,u,x2)≤0,ỹ∈ϕ(x∗
1,u,x2)}

F (x∗
1,u,x2, ỹ).

If (u∗,x∗
2,y

∗) is an optimal solution to SP1, then F (x∗
1,u

∗,x∗
2,y

∗) is an upper bound of

TSROBLO. If the gap between the upper bound and the lower bound is not within our

predetermined optimality tolerance, we set Ū = Ū∪{u∗} and go back to solveMP1; otherwise

we can terminate the algorithm. Denote the optimal value function of the lower level problem

by v(x1,u,x2) for fixed (x1,u,x2), we can rewrite ϕ(x1,u,x2) as {y : g(x1,u,x2,y) ≤ 0,y ∈

Y, f(x1,u,x2,y) ≤ v(x1,u,x2)}.

Let LB and UB be the lower bound and upper bound respectively, ϵ be the optimality tol-

erance, and k be the iteration index, we propose a decomposition algorithm for TSROBLO.

Theorem 4.2. Suppose v is continuous, X1 and U are compact, then Algorithm 3 either

terminates in finite number of iterations returning an ϵ-optimal solution, or generates a

sequence {xi1}i∈N containing a limit point x∗
1 that is an ϵ-optimal solution to TSROBLO.
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Algorithm 3 Decomposition algorithm for TSROBLO

1: Initialize LB = −∞, UB = +∞, Ū = ∅, k = 0

2: while UB − LB > ϵ do

3: Solve MP1, obtain an optimal solution x∗
1

4: Update LB = η∗

5: Solve FCGP and obtain an optimal solution u∗

6: if z∗(x∗
1) > 0 then

7: Add H(x1,u
∗,x2) ≤ 0 and g(x1,u

∗,x2,y) ≤ 0 to MP1, k = k + 1

8: else

9: Solve SP1 for x∗
1, obtain an optimal solution (u∗,x∗

2, ỹ
∗)

10: Update UB = min{UB,F (x∗
1,u

∗,x∗
2, ỹ

∗)}

11: end if

12: Set Ū = Ū ∪ {u∗}, add corresponding variables and constraints to MP1, k = k + 1

13: end while

14: Return x∗
1 as an optimal solution and terminate

Proof. We first assume that TSROBLO has the relatively complete recourse property

and extend the result to general case later. Let z∗ be the optimal value of TSROBLO, if

Algorithm 3 terminates, then we have UB−z∗ ≤ UB−LB ≤ ϵ, and the best feasible solution

found is ϵ-optimal. If Algorithm 3 does not terminate, by the Bolzano-Weierstrass theorem

and by taking necessary sub-sequence, we can assume that the sequence {(xi1, ηi,ui)}i∈N
generated by Algorithm 3 converges to a limit point (x∗

1, η
∗,u∗). By the relatively complete

recourse property, we have S(x∗
1,u) ̸= ∅, ∀u ∈ U. Let Q(x1,u) = {(x2,y) : H(x1,u,x2) ≤

0,x2 ∈ X2,y ∈ ϕ(x1,u,x2)}, then Q(x∗
1,u) ̸= ∅,∀u ∈ U, and there are two possible cases.

1) For any u0 ∈ U, there exists (x0
2,y

0) ∈ Q(x∗
1,u

0) such that η∗ ≥ F (x∗
1,u

0,x0
2,y

0).

Then we have LB = η∗ ≥ maxu∈U min(x2,y)∈Q(x∗
1,u)

F (x∗
1,u,x2,y) ≥ UB. As LB = UB, x∗

1

is optimal to TSROBLO.

2) There exists u0 ∈ U such that η∗ < F (x∗
1,u

0,x2,y), ∀(x2,y) ∈ Q(x∗
1,u

0). Hence, we
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have

η∗ < min
(x2,y)∈Q(x∗

1,u
0)
F (x∗

1,u
0,x2,y)

≤ max
u∈U

min
(x2,y)∈Q(x∗

1,u)
F (x∗

1,u,x2,y)

= min
(x2,y)∈Q(x∗

1,u
∗)
F (x∗

1,u
∗,x2,y),

(4.8)

where the equality follows the fact that u∗ is an optimal solution to SP1 for x∗
1. By the

continuity of F , f , and v, and the compactness of S, for sufficiently large i, we have

ηi < min
x2,y

{F (xi1,u0,x2,y) : (x2,y) ∈ S(xi1,u0), f(xi1,u
0,x2,y) ≤ v(xi1,u

0,x2)}

≤ max
u∈U

min
x2,y

{F (xi1,u,x2,y) : (x2,y) ∈ S(xi1,u), f(xi1,u,x2,y) ≤ v(xi1,u,x2)}

= min
x2,y

{F (xi1,ui,x2,y) : (x2,y) ∈ S(xi1,ui), f(xi1,ui,x2,y) ≤ v(xi1,u
i,x2)}

≥ UB.

If UB − LB ≤ ϵ, the algorithm terminates; otherwise the following constraints

η ≥ F (x1,u
i,xi2,y

i), (xi2,y
i) ∈ S(x1,u

i), f(x1,u
i,xi2,y

i) ≤ v(x1,u
i,xi2)

are added to MP1. Let (x
i+1
1 , ηi+1) be an optimal solution to SP1 in the next iteration, we

have

ηi+1 ≥ min
x2,y

{F (xi+1
1 ,ui,x2,y) :(x2,y) ∈ S(xi+1

1 ,ui), f(xi+1
1 ,ui,x2,y) ≤ v(xi+1

1 ,ui,x2)}.

By the continuity of F , f , and v, and the compactness of S, as i→ +∞, we have

η∗ ≥ min
x2,y

{F (x∗
1,u

∗,x2,y) : (x2,y) ∈ S(x∗
1,u

∗), f(x∗
1,u

∗,x2,y) ≤ v(x∗
1,u

∗,x2)}

= min
(x2,y)∈Q(x∗

1,u
∗)
F (x∗

1,u
∗,x2,y),

which leads to a contradiction with (4.8), and thus completes the proof.

For a TSROBLO instance without the relatively complete recourse property, the feasi-

bility cuts generated by FCGP lead to an ϵ-feasible solution [73, 82].

Remark 4.2. As mentioned in Remark 3.6, v is continuous for several typical problems

that are often used in practice. Furthermore, if the lower level problem is an LP, and the

uncertainty set U is a nonempty polytope, then there always exists an u that is optimal to

FCGP and is an extreme point of U. In this case, the number of iterations to generate an

x1 in XU is bounded by the number of extreme points of U, which is finite.
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4.2 Bilevel Optimization With Scenario-Specific Decisions Under Endogenous

Uncertainty

In this section, we consider endogenous uncertainty, i.e., the follower may not cooperate

with the leader. To hedge against such uncertainty, we have the following formulation

TSRPBLO : min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0}

max
{ỹ∈ϕ(x1,u,x2)}

F (x1,u,x2, ỹ),

which is the counterpart of TSROBLO. Since the second stage and the lower level feasible

region of TSRPBLO are identical to those of TSROBLO, Theorem 4.1 and Remark 4.1

can be directly applied to TSRPBLO. Same as for TSROBLO, we can have a relaxation

of TSRPBLO by only considering a subset of the uncertainty set.

We can also obtain a lower bound by replacing ϕ(x1,u,x2) with ψ(x1,u,x2), i.e., by

ignoring the lower level objective function. The resulting problem is

TSRBLOL : min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0,y∈ψ(x1,u,x2)}

F (x1,u,x2,y).

Furthermore, the following problem

TSRBLOU : min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0}

max
{y∈ψ(x1,u,x2)}

F (x1,u,x2,y),

gives an over pessimistic solution and provides an upper bound forTSROBLO andTSRPBLO.

Theorem 4.3. Let z∗1, z
∗
2, z

∗
3, z

∗
4 be the optimal value of TSRBLOL, TSROBLO, TSRPBLO,

and TSRBLOU, respectively, then

1) z∗1 ≤ z∗2 ≤ z∗3 ≤ z∗4;

2) If there exist a non-negative number α such that f(x1,u,x2,y) = αF (x1,u,x2,y),

then z∗1 = z∗2 and z∗3 = z∗4;

3) If ϕ(x1,u,x2) is a singleton for any (x1,u,x2) such that ϕ(x1,u,x2) ̸= ∅, then z∗2 = z∗3.

Proof. We provide the proof in the appendix.
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In practice, uncertainty may occur after all decisions are made by the leader. In this

case, there is no scenario-specific decisions for the leader, then TSROBLO reduces to

TSROBLO2 : min
{x∈X,G(x)≤0}

max
{u∈U}

min
{ỹ∈ϕ(x,u)}

F (x,u, ỹ),

and TSRPBLO reduces to

TSRPBLO2 : min
{x∈X,G(x)≤0}

max
{u∈U,ỹ∈ϕ(x,u)}

F (x,u, ỹ),

where ϕ(x,u) = argminy{f(x,u,y) : g(x,u,y) ≤ 0,y ∈ Y}. Similarly, we have

TSROBLO2L min
{x∈X,G(x)≤0}

max
{u∈U}

min
{y∈ψ(x,u)}

F (x,u,y),

and

TSROBLO2U : min
{x∈X,G(x)≤0}

max
{u∈U,y∈ψ(x,u)}

F (x,u,y),

where ψ(x,u) = {y : g(x,u,y) ≤ 0,y ∈ Y}. As TSROBLO2U is a deterministic BO

problem, it is relatively easy to compute, and its optimal value provides an upper bound

for TSROBLO2 and TSRPBLO2. On the contrary, TSROBLO2L is a two-stage robust

optimization problem, which is still not easy to solve. The following result shows that we

can obtain a lower bound of TSRPBLO2 by solving a standard BO problem, and that the

bound is tight under some easily verifiable conditions.

Theorem 4.4. 1) Let ζ(x,u, ȳ) = {y : g(x,u,y) ≤ 0, f(x,u,y) ≤ f(x,u, ȳ),y ∈ Y}, then

the BO problem

TSROBLOR
2L : min

{x∈X,G(x)≤0,g(x,u,ȳ)≤0,ȳ∈Y}
max

{u∈U,y∈ζ(x,u,ȳ)}
F (x,u,y)

is a relaxation of TSRPBLO2.

2) If (x∗, ȳ∗
R,u

∗
R,y

∗
R) is an optimal solution to TSROBLOR

2L, (u
∗,y∗) is an optimal solution

to maxu,y{F (x∗,u,y) : u ∈ U,y ∈ ϕ(x∗,u)} for fixed x∗, and g(x∗,u∗, ȳ∗
R) ≤ 0, then

(x∗,u∗,y∗) is an optimal solution to TSRPBLO2.
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Proof. 1) It is sufficient to show that a feasible solution to TSRPBLO2 is also feasible to

TSROBLOR
2L. Suppose (x

0,u0,y0) is a feasible solution toTSRPBLO2, then we have x0 ∈

X, G(x0) ≤ 0, (u0,y0) ∈ argmaxu,y{F (x0,u,y) : u ∈ U,y ∈ ϕ(x0,u)}, where ϕ(x0,u) =

argminy{f(x0,u,y) : g(x0,u,y) ≤ 0,y ∈ Y}. Let ȳ0 = y0, then for TSROBLOR
2L, we have

x0 ∈ X, G(x0) ≤ 0, ȳ0 ∈ Y, g(x0,u, ȳ0) ≤ 0. Furthermore, as ȳ0 = y0 and y0 ∈ ϕ(x0,u0),

we have ϕ(x0,u0) = ζ(x0,u0, ȳ0), and thus (u0,y0) ∈ argmaxu,y{F (x0,u,y) : u ∈ U,y ∈

ζ(x0,u, ȳ0)}. Therefore, (x0, ȳ0,u0,y0) is feasible to TSROBLOR
2L, and the result follows.

2) It is easy to verify that (x∗,u∗,y∗) is feasible to TSRPBLO2, and thus F (x∗,u∗,y∗) ≥

F (x∗,u∗
R,y

∗
R). Moreover, we have

F (x∗,u∗,y∗) = max
u,y

{F (x∗,u,y) : u ∈ U,y ∈ ϕ(x∗,u)}, (4.9)

and

F (x∗,u∗
R,y

∗
R) = max

u,y
{F (x∗,u,y) : u ∈ U, g(x∗,u, ȳ∗

R) ≤ 0,y ∈ ζ(x∗,u, ȳ∗
R)}. (4.10)

Let z∗ be the optimal value of the following problem

max
u,y

{F (x∗,u,y) : u ∈ U, g(x∗,u, ȳ∗
R) ≤ 0,y ∈ ϕ(x∗,u)}, (4.11)

then (4.9) is a relaxation of (4.11), and thus F (x∗,u∗,y∗) ≥ z∗. If g(x∗,u∗, ȳ∗
R) ≤ 0,

then (x∗,u∗,y∗) is optimal to (4.11), and F (x∗,u∗,y∗) = z∗. As ϕ(x∗,u) ⊆ ζ(x∗,u, ȳ∗
R),

(4.10) is a relaxation of (4.11), and thus F (x∗,u∗
R,y

∗
R) ≥ z∗, which implies F (x∗,u∗,y∗) ≤

F (x∗,u∗
R,y

∗
R). Therefore, (x∗,u∗,y∗) is optimal to TSRPBLO2, and F (x∗,u∗,y∗) =

F (x∗,u∗
R,y

∗
R), i.e. the relaxation is tight.

Remark 4.3. For a special case of TSRPBLO2, where u only appears in the lower level

objective function [116, 32], the relaxation problem TSROBLOR
2L is tight since the constraint

g(x∗,u∗, ȳ∗
R) ≤ 0 always holds in the absence of u.
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Algorithm 4 Decomposition algorithm for TSRPBLO

1: Initialize LB = −∞, UB = +∞, Ū = ∅, k = 0

2: while UB − LB > ϵ do

3: Solve MP2, obtain an optimal solution x∗
1

4: Update LB = η∗

5: Solve FCGP and obtain an optimal solution u∗

6: if z∗(x∗
1) > 0 then

7: Add H(x1,u
∗,x2) ≤ 0 and g(x1,u

∗,x2,y) ≤ 0 to MP2, k = k + 1

8: else

9: Solve SP2 for x∗
1, obtain an optimal solution (u∗,x∗

2, ỹ
∗)

10: Update UB = min{UB,F (x∗
1,u

∗,x∗
2, ỹ

∗)}

11: end if

12: Set Ū = Ū ∪ {u∗}, add corresponding variables and constraints to MP2, k = k + 1

13: end while

14: Return x∗
1 as an optimal solution and terminate

To solve TSRPBLO, we can slightly modify Algorithm 3. In particular, we have

MP2 : min{η : (4.4), (4.5)− (4.6), ŷk ∈ ψ(x1,uk,x2k), ỹk ∈ ζ(x1,uk,x2k , ŷk),∀k ∈ KŪ},

where ζ(x1,u,x2, ŷ) = {y : g(x1,u,x2,y) ≤ 0, f(x1,u,x2,y) ≤ f(x1,u,x2, ŷ),y ∈ Y}; and

SP2 : max
{u∈U}

min
{x2∈X2,H(x∗

1,u,x2)≤0}
max

{ỹ∈ϕ(x∗
1,u,x2)}

F (x∗
1,u,x2, ỹ)

for TSRPBLO, respectively.

Theorem 4.2 holds for Algorithm 4 if w̄(x1,u,x2) = max{F (x1,u,x2,y) : g(x1,u,x2,y) ≤

0,y ∈ Y, f(x1,u,x2,y) ≤ v(x1,u,x2)} is continuous, where v(x1,u,x2) is the optimal value

function of the lower level problem. We further denote w(x1,u,x2) = miny{F (x1,u,x2,y) :

g(x1,u,x2,y) ≤ 0,y ∈ Y, f(x1,u,x2,y) ≤ v(x1,u,x2)}. In practice, verifying the existence

of optimal solutions of TSROBLO and TSRPBLO analytically can be very hard, and the

decomposition algorithm indeed provides us a method to investigate such problems.
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Theorem 4.5. Denote the lower level optimal value function of TSROBLO and TSRPBLO

by v and let w and w̄ be defined as previously. Suppose that XU ̸= ∅, X1,U, and X2 are

compact, and that v, w and w̄ are continuous in y, then we have the following sufficient

conditions for the existence of optimal solutions of TSROBLO and TSRPBLO.

1) If the cardinality of U or that of X1 is finite, then both TSROBLO and TSRPBLO

have an optimal x1.

2) If u does not affect x2, i.e. the constraint H(x1,u,x2) ≤ 0 reduces to H(x1,x2) ≤ 0,

let ϕ(x1,u,x2) = argminy{f(x1,u,x2,y) : g(x1,u,x2,y) ≤ 0} as defined previously, then

TSROBLO has an optimal x1 if the bilevel optimization problem

min
x2,y

{F (x1,u,x2,y) : H(x1,x2) ≤ 0,x2 ∈ X2,y ∈ ϕ(x1,u,x2)} (4.12)

has an optimal solution for any fixed (x1,u) ∈ XU ×U; and TSRPBLO has an optimal x1

if the pessimistic bilevel optimization problem

min
x2

max
y

{F (x1,u,x2,y) : H(x1,x2) ≤ 0,x2 ∈ X2,y ∈ ϕ(x1,u,x2)} (4.13)

has an optimal solution for any fixed (x1,u) ∈ XU × U.

3) If f , g and H are convex and continuously differentiable, f is separable, x2 and y are

continuous variables, and the lower level problem satisfies Slater’s condition for any fixed

(x1,u,x2), then TSROBLO has an optimal x1 if the problem

min
x2,y

{F (x1,u,x2,y) : H(x1,u,x2) ≤ 0,x2 ∈ X2,y ∈ ϕ(x1,u,x2)} (4.14)

has an optimal solution for any fixed (x1,u) ∈ XU × U.

Proof. We provide the proof in the appendix.

Remark 4.4. Bounded rationality can be readily incorporated into the two-stage robust bilevel

models. For example, we can introduce bounded rationality to TSROBLO and TSRPBLO.

The resulting problems are

min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0,y∈ϕϵ(x1,u,x2)}

F (x1,u,x2,y) (4.15)

and

min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0}

max
{y∈ϕϵ(x1,u,x2)}

F (x1,u,x2,y). (4.16)

With slight modifications, (4.15) and (4.16) can be solved by the proposed algorithms.
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4.3 Extensions of Robust Bilevel Optimization Models

In this section, we extend our previously proposed robust bilevel models to deal with

different types of uncertainties and their combinations.

4.3.1 Robust Bilevel Optimization With Multiple Objectives

As mentioned previously, imperfect information may cause modeling errors. One typical

case is that the follower may have multiple objectives, i.e., for a fixed decision made by the

leader, the follower’s DMP is given by

min
y

{
|I|∑
i=1

wifi(x,y) : g(x,y) ≤ 0,y ∈ Y}, (4.17)

where wi is the weight of the objective function fi for i = 1, 2, ..., |I|.

As the leader may not know the exact value of the weight, she can consider the worse case

scenario through a robust bilevel model, where the weight is considered in an uncertainty

set W. Let ϕ(x,w) be the optimal solution set of (4.17) for fixed x and w, then one has

min
{x∈X,G(x)≤0}

max
{w∈W}

min
{y∈ϕ(x,w)}

F (x,y) (4.18)

if the follower is expected to cooperate, and

min
{x∈X,G(x)≤0}

max
{w∈W,y∈ϕ(x,w)}

F (x,y) (4.19)

if the follower is not expected to do so. From Remark 4.3, we know that (4.19) can be solved

through the tight relaxation introduced in Theorem 4.4.

In addition to the uncertainty of the weight, other random factors may also be involved.

For this more general case, we can incorporate the modeling errors into the basic robust

bilevel models. For fixed (x1,u,w,x2), the lower level problem is extended to

min
y

{
|I|∑
i=1

wifi(x1,u,x2,y) : g(x1,u,x2,y) ≤ 0,y ∈ Y}, (4.20)
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whose optimal solution set is denoted by ϕ(x1,u,w,x2). Thus, we can modify TSROBLO

as

min
{x1∈X1,G(x1)≤0}

max
{u∈U,w∈W}

min
{x2∈X2,H(x1,u,x2)≤0,y∈ϕ(x1,u,w,x2)}

F (x1,u,x2,y), (4.21)

and TSRPBLO as

min
{x1∈X1,G(x1)≤0}

max
{u∈U,w∈W}

min
{x2∈X2,H(x1,u,x2)≤0}

max
{y∈ϕ(x1,u,w,x2)}

F (x1,u,x2,y), (4.22)

such that both the exogenous uncertainty (represented by U) and the perception uncertainty

(represented by W) are taken into consideration.

We point out that all the four models (i.e., (4.18), (4.19), (4.21), and (4.22)) can be

readily solved by Algorithm 3 or Algorithm 4. In particular, for fixed x1, the worst case

(u,w) is obtained from the sub-problem and its corresponding variables and constraints are

added to the master problem.

4.3.2 Robust Bilevel Optimization With Objective Function Uncertainty

The follower may partially cooperate with the leader [38]. This leads to a strong-weak

formulation

min
x,ys,yw

αFs + (1− α)Fw

s.t.G(x) ≤ 0,x ∈ X

Fs = min
ys∈ϕ(x)

F (x,ys)

Fw = max
yw∈ϕ(x)

F (x,yw)

ϕ(x) = argmin
y

{f(x,y) : g(x,y) ≤ 0,y ∈ Y}.

(4.23)

The parameter 0 ≤ α ≤ 1 represents the cooperation degree of the follower, and the optimal

value of (4.23) is non-increasing in α.

It is shown in [38, 137] that the follower can be better off by partially cooperating, i.e. by

setting 0 < α < 1. In this case, it is better for the leader to consider α being in an uncertain

set rather than a constant and to solve the following robust bilevel optimization problem

min
{x∈X,G(x)≤0}

max
0≤α≤1

{αFs + (1− α)Fw : Fs = min
ys∈ϕ(x)

F (x,ys), Fw = max
yw∈ϕ(x)

F (x,yw)}. (4.24)
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As (4.24) has a special structure, it can be solved more efficiently. Notice that the optimal

value of minys∈ϕ(x) F (x,ys) and that of maxyw∈ϕ(x) F (x,yw) depend only on x, we do not

have to solve a complicated multi-level sub-problem. Instead, for fixed x, we can solve those

two problems independently to get the value of Fs and Fw. Then the worst case α can be

found by solving a very simple LP max0≤α≤1 αFs + (1− α)Fw, where Fs and Fw are fixed.

In practice, the follower may not know the upper level objective function exactly. In this

case, he would make decisions based on an approximation of the true upper level objective

function. If we denote the approximation of F by F̃ and the lower level optimal solution set

again by ϕ(x), then the leader’s DMP is

minF (x, ỹ)

s.t.G(x) ≤ 0,x ∈ X

ỹ ∈ S1(x) = argmin{F̃ (x,y) : y ∈ ϕ(x)}.

(4.25)

Due to the limited information the follower has, it might be better for the leader to also

consider the response uncertainty, leading to the pessimistic counterpart of (4.25)

minF (x, ỹ)

s.t.G(x) ≤ 0,x ∈ X

ỹ ∈ S2(x) = argmax{F̃ (x,y) : y ∈ ϕ(x)}.

(4.26)

In general, F̃ is in an uncertainty set F rather than deterministic. Hence, we can extend

(4.25) to

min
{G(x)≤0,x∈X}

max
{F̃∈F}

min
{ỹ∈S1(x)}

F̃ (x, ỹ), (4.27)

and extend (4.26) to

min
{G(x)≤0,x∈X}

min
{F̃∈F ,ỹ∈S2(x)}

F̃ (x, ỹ). (4.28)

Remark 4.5. If the true upper level objective function F is in the uncertainty set F , then

(4.27) reduces to an instance of optimistic bilevel optimization problem

min
{G(x)≤0,x∈X,ỹ∈ϕ(x)}

F (x, ỹ),

and (4.28) reduces to an instance of pessimistic bilevel optimization problem

min
{G(x)≤0,x∈X}

max
{ỹ∈ϕ(x)}

F (x, ỹ).
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4.3.3 Robust Bilevel Optimization With Communication Uncertainty

In a hierarchical system described by a bilevel model, the two DMs interact with each

other by exchanging information. However, the information may get lost or affected by noise

while passing from one DM to the other. Such incomplete or inaccurate information causes

communication uncertainty, which is a typical instance of perception uncertainty.

We first consider the circumstances that information get affected while passing from the

leader to the follower. In this case, an upper level decision (denoted by x) along with noise

(denoted by ux) passes to the follower, who then makes a decision based on his DMP, i.e.,

min
y

{f(x,ux,y) : g(x,ux,y) ≤ 0,y ∈ Y},

whose optimal solution set is denoted by ϕ(x,ux).

To consider the worst case noise, we have

min
{x∈X,G(x)≤0}

max
{ux∈Ux}

min
{y∈ϕ(x,ux)}

F (x,y) (4.29)

for the cooperative case, and

min
{x∈X,G(x)≤0}

max
{ux∈Ux,y∈ϕ(x,ux)}

F (x,y) (4.30)

for the non-cooperative case. Both (4.29) and (4.30) can be solved by Algorithm 3 and

Algorithm 4, respectively. Moreover, information can also get affected while passing back to

the leader, i.e., a lower level decision y comes back with noise uy as a respond to the leader.

If the follower is cooperative, we can consider him and the leader together as one DM,

and the noise as exogenous random factor in an uncertainty set Uy. Since no decision is

made after the uncertainty reveals, we can employ a single-stage robust bilevel model

min
{x∈X,G(x)≤0,y∈ϕ(x)}

max
{uy∈Uy}

F (x,y,uy), (4.31)

where ϕ(x) = argminy{f(x,y) : g(x,y) ≤ 0,y ∈ Y} is independent of uy.

For fixed (x,y), the worst case scenario is obtained by solving

max
uy

{F (x,y,uy) : uy ∈ Uy}. (4.32)
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From the continuity of F and the compactness of Uy, we know that (4.32) has an optimal

solution for any fixed (x,y). Furthermore, we can have the dual problem of (4.32), namely

min
vy

{F̂ (x,y,vy) : vy ∈ Vy(x,y)}. (4.33)

A sufficient condition for the strong duality to hold for (4.32) and (4.33) is that Uy is a

convex set with an interior point and F is concave in uy. Then, we can rewrite (4.31) as

min
x,y,vy

{F̂ (x,y,vy) : x ∈ X, G(x) ≤ 0,y ∈ ϕ(x),vy ∈ Vy(x,y)},

which is an instance of optimistic bilevel optimization problem.

If the follower is non-cooperative, we can consider him along with the noise together

as one follower, who plays against the leader. Such settings lead to a pessimistic bilevel

optimization instance as

min
{x∈X,G(x)≤0}

max
{y∈ϕ(x),uy∈Uy}

F (x,y,uy), (4.34)

which can be solved by existing methods such as [136, 132].

Information interference may occur while going from and coming back to the leader. For

the cooperative case, we can combine (4.29) and (4.33) to have a robust bilevel model as

min
{x∈X,G(x)≤0}

max
{ux∈Ux}

min
{y∈ϕ(x,ux),vy∈Vy(x,y)}

F̂ (x,y,vy). (4.35)

The existence of optimal solution of (4.32) along with the strong duality implies that (4.33)

also has an optimal solution for any fixed (x,y). Hence, we have

ϕ(x,ux) = Projy(argmin
y,vy

{f(x,ux,y) : g(x,ux,y) ≤ 0,y ∈ Y,vy ∈ Vy(x,y)})

since Vy(x,y) ̸= ∅ for any fixed (x,y). Therefore, y and vy can be considered as one follower,

and thus (4.35) is reduced to an instance of TSROBLO.

For the non-cooperative case, we can combine (4.30) and (4.34) to have

min
{x∈X,G(x)≤0}

max
{ux∈Ux,y∈ϕ(x,ux),uy∈Uy}

F (x,y,uy),

which is reduced to an instance of TSRPBLO.
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4.3.4 Robust Bilevel Optimization With Multiple Uncertainty Sets

In some cases, we may need multiple uncertainty sets to better capture the uncertainty

arising in practice. In the presence of scenario-specific decisions, we can extend the two

stage robust bilevel models to include multiple uncertainty sets, which can better reflect the

leader’s conservativeness and reduce the impact of unrealistic scenarios [7].

Suppose there are |I| uncertainty sets and ρi is the weight of uncertainty set Ui, then

TSROBLO can be extended as

min
{x1∈X1,G(x1)≤0}

∑
i∈I

ρi( max
{ui∈Ui}

min
{x2i

∈X2,Hi(x1,ui,x2i
)≤0,yi∈ϕi(x1,ui,x2i

)}
F (x1,ui,x2i ,yi)), (4.36)

and TSRPBLO can be extended as

min
{x1∈X1,G(x1)≤0}

∑
i∈I

ρi( max
{ui∈Ui}

min
{x2i

∈X2,Hi(x1,ui,x2i
)≤0}

max
{yi∈ϕi(x1,ui,x2i

)}
F (x1,ui,x2i ,yi)), (4.37)

where ϕi(x1,ui,x2i) = argminyi
{fi(x1,ui,x2i ,yi) : gi(x1,ui,x2i ,yi) ≤ 0,yi ∈ Y}.

With minor modifications, (4.36) and (4.37) can be solved by Algorithm 3 and Algorithm

4, respectively. Specifically, for fixed x1, |I| independent sub-problems are solved, and |I|

worst case scenarios are obtained. Then each scenario with its corresponding variables and

constraints are added to the MP. As the problem size of increases in the number of uncertainty

sets, it is better to keep |I| small in practice.

4.4 Computational Study

In this section, we apply the proposed model and algorithm to solve two practical prob-

lems arising from real world systems, namely, a vehicle sharing system design problem and

a plant selection problem, both of which are subject to uncertainty.
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4.4.1 Design of Vehicle Sharing System Under Uncertainty

In recent years, vehicle sharing systems (VSSs) have been implemented in many different

cities [118], and companies such as Zipcar, Hertz, Enterprise, now have car sharing programs.

With the help of VSSs, people have more traveling options, and vehicles are utilized more

efficiently. As a result, VSSs are expected to increase in the near future [138]. Studies on

design of VSSs can be found in [12, 46, 95, 100] and the references therein.

The model for our computational study is adopted from [100] with some modifications.

Most notations are the same as those in [100] for consistency purpose. By convention, we

use a regular lower case letter to represent a scalar and a bolded letter to represent the

corresponding vector.

Sets

G(V,A) a transportation network

V the set of sites of G(V,A)

A the set of arcs of G(V,A)

Vs ⊆ V the set of candidate sharing sites

As ⊆ A the set of sharing arcs

A ⊆ A the set of non-frequency based arcs

A\A the set of frequency based arcs

K the set of OD pairs, indexed by k

D the uncertainty set of the demand, and dik ∈ D

Parameters
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rij revenue gained from arc (i, j) ∈ As

cs costs of building a vehicle sharing station

cp costs of adding a parking slot

cv unit cost for a vehicle

U the upper bound of the capacity of a candidate site

yub upper bound of a parking slot

cij costs of traveling through arc (i, j) ∈ A

dik demand at site i ∈ V for OD pair k

fij frequency parameter for arc (i, j) ∈ A\A

a the checkout replacement ratio, a ≥ 1

Variables

xi binary variable, 1 if a vehicle sharing station is built at site i ∈ Vs;

0 otherwise

yi the capacity of station i ∈ Vs

zi the number of vehicles at station i ∈ Vs

vijk flow decision variable over arc (i, j) ∈ A for OD pair k

wik waiting time at site i ∈ V for OD pair k

Using the aforementioned notations, a robust vehicle sharing system design problem (RVSSDP)

can be modeled as follows

RVSSDP: max
(x,y,z)∈M

−(
∑
i∈Vs

csxi + cpyi + cvzi) + min
d∈D,(v,w)∈R(x,y,z,d)

∑
k∈K

∑
(i,j)∈As

rijvijk, (4.38)

where

M = {(x,y, z) : Uxi ≥ yi, ∀i ∈ Vs

zi ≤ yi, ∀i ∈ Vs

yi ≤ yub, ∀i ∈ Vs

xi ∈ {0, 1}, yi, zi ∈ Zn
+,∀i ∈ Vs},

(4.39)

R(x,y, z,d) = argmin
v,w

{
∑
k∈K

(
∑

(i,j)∈A

cijvijk +
∑
i∈V

wik) : (v,w) ∈ L(x,y, z,d)}, (4.40)
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and

L(x,y, z,d) = {(v,w) :
∑

j:(i,j)∈A

vijk −
∑

j:(j,i)∈A

vjik = dik, ∀i ∈ V, k ∈ K

vijk ≤ fijwik, ∀(i, j) ∈ A\A, k ∈ K

Uxi ≥
∑
k∈K

vijk, ∀(i, j) ∈ As

Uxj ≥
∑
k∈K

vijk, ∀(i, j) ∈ As∑
k∈K

∑
j:(i,j)∈As

vijk ≤ zi, ∀i ∈ Vs

∑
k∈K

∑
j:(j,i)∈As

vjik ≤ a(yi − zi), ∀i ∈ Vs

wik ≥ 0, ∀i ∈ V, k ∈ K

vijk ≥ 0, ∀(i, j) ∈ A, k ∈ K}.

. (4.41)

In the upper level, the system owner seeks to maximize the profit, which is the difference

between the revenue and the cost, by making decisions on the location (represented by x),

the capacity (represented by y) and the number of vehicles (represented by z) of each vehi-

cle sharing station in a transportation network, subject to capacity upper bound constraints

(represented by U). In the lower level, the customers choose an optimal path to minimize

their traveling cost for an existing VSS configuration, subject to flow conservation con-

straints, waiting time constraints, capacity constraints, and the non-negativity constraints.

We see that RVSSDP considers both exogenous and endogenous uncertainty. In par-

ticular, demand is an exogenous factor of the system with uncertainty, and is assumed to

minimize the revenue. For a fixed vector d, RVSSDP reduces to a deterministic pessimistic

bilevel model, which only has endogenous uncertainty. In this case, if a customer has multiple

optimal paths, i.e. different paths that give the same travelling cost, one would choose the

path that gives the least revenue to the system owner. In practice, customers may choose a

suboptimal path as long as it is not too far from an optimal one. There are two main reasons

for this irrational behavior. First, as customers do not have perfect information, they are not

able to find an optimal path, and thus choose a path according to their subjective judgment.

Second, customers may be insensitive to the difference between a suboptimal path and an
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optimal one as long as their traveling cost does not increase significantly. To deal with such

irrational behaviors, we apply the idea of bounded rationality to RVSSDP.

Let θ∗(x,y, z,d) be the optimal value of the lower level problem for fixed (x,y, z,d),

then we can modify the lower level optimal solution set as

Rϵ(x,y, z,d) = {(v,w) ∈ L(x,y, z,d) :
∑
k∈K

(
∑

(i,j)∈A

cijvijk +
∑
i∈V

wik) ≤ (1 + ϵ) ∗ θ∗(x,y, z,d)},

and modify (4.38) as

RVSSDPϵ : max
(x,y,z)∈M

−(
∑
i∈Vs

Csxi + Cpyi + Cvzi) + min
d∈D,(v,w)∈Rϵ(x,y,z,d)

∑
k∈K

∑
(i,j)∈As

rijvijk,

where ϵ ≥ 0 represents the degree of irrationality of the customers. It is obvious that

R(x,y, z,d) ⊆ Rϵ(x,y, z,d) for any fixed (x,y, z,d), and that Rϵ(x,y, z,d) reduces to

R(x,y, z,d) if ϵ = 0.

Remark 4.6. For fixed upper level decision variables (x,y, z), L(x,y, z,d) ̸= ∅, ∀d ∈ D, i.e.,

the lower level problem has the relatively complete response property. This property indeed

comes from practice. In a real transportation network, customers can always find a path to

their destination without using a VSS. For example, they can drive, walk, or take a bus, but

dot not have to use a VSS. Mathematically, this means that for any fixed (x,y, z,d), there

exists (v,w) such that all the constraints of the lower level problem are satisfied.

In our computational study, the demand is assumed to vary within an uncertainty set

in the form of d = d̄+
∑L

l=1∆dlul as in [24, 19, 134], where d̄ is the nominal value, ∆dl is

the direction of data perturbation, and ul are random variables . We consider a polyhedral

uncertainty set defined as D = {d ∈ R
|V |∗|K|
+ : d = d̄ +

∑L
l=1∆dlul, 0 ≤ ul ≤ 1, l =

1, 2, ..., L,
∑L

l=1 ul ≤ Ω}, where Ω is a parameter reflecting the level of uncertainty. We set

L = 2|K|, and let ∆dl ∈ R
|K|
+ be a vector with all its elements being zero except for the lth

element, which is 0.30∗d̄l, for l = 1, 2, ..., |K|, and is−0.30∗d̄l, for l = |K|+1, |K|+2, ..., 2|K|.

Figure 3 illustrates a typical transportation network with corridor structure, where the

VSS station candidate are represented by the round nodes, and the origin and destination

of customers are represented by the squared nodes. The bold black lines represent the paths
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Figure 3: Transportation Network With Corridor Structure

in a public transportation system such as subway; the red lines represent the walking paths;

and the blue lines represent the paths through which vehicle sharing service is offered.

We solve the test instances based on the transportation network in Figure 3. The time

limit is half an hour, and the optimality gap is 1%. If an instance is not solved to optimality

within the time limit, the best feasible solution is reported. Figure 4 shows the worst case

profit under different level of irrationality (ϵ) for Ω = 0.2 and Ω = 0.4. The blue line

represents the optimistic bilevel model, while the orange line represents the the proposed

two-stage robust bilevel model.
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Figure 4: Worst Case Profit for Ω = 0.2 and Ω = 0.4

It is observed that the profit decreases in demand uncertainty (Ω) and irrationality (ϵ).

In all cases, RVSSDP provides more profit. Moreover, the difference of the profit from the

two models increase in ϵ for fixed Ω and in Ω for fixed ϵ. Such result shows that the robust
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model is better able to hedge against both the exogenous and endogenous uncertainty. By

carefully determining the parameters such as Ω and ϵ, the proposed model can provide strong

decision support under various of uncertainties.

4.4.2 Capacitated Plant Selection Problem Under Uncertainty

In this subsection, we apply the two-stage robust belevel optimization model and the

proposed decomposition algorithm to solve a robust capacitated plant selection problem

(RCPSP), whose deterministic counterpart is originally introduced in [37].

Sets

I the set of the potential plants, indexed by i

J the set of the products, indexed by j

ISi the group of products that can be produced in plant i, and ISi ⊆

J,∀i ∈ I

JSj the set of plants that can produce product j, and JSj ⊆ I,∀j ∈ J

D the uncertainty set of demand, and dj ∈ D, ∀j ∈ J

Parameters

pi opportunity cost for unused production capacity of plant i after it

is opened

dj customer demand of product j

aij capacity consumption ratio for processing product j in plant i

wi cost of use production capacity in plant i

Capi available production capacity in plant i

Rij transportation cost for shipping product j from the principal firm

to plant i

fi opening cost for plant i

Variables
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xi binary variables, xi = 1 if plant i is selected and opened; and xi = 0

otherwise

yij the number of products j produced in plant i

Using the aforementioned notations, RCPSP is as follows, where we keep most of the nota-

tions the same as they are in [37] for consistency purpose.

RCPSP: min
x∈{0,1}|I|

∑
i∈I

fixi +max
d∈D

min
y∈S(x,d)

∑
i∈I

pi(Capixi −
∑
j∈ISi

aijyij), (4.42)

where S(x,d) is the optimal solution set of the following lower level problem

min
y

∑
i∈I

wi
∑
j∈ISi

aijyij +
∑
i∈I

∑
j∈ISi

Rijyij

s.t.
∑
i∈JSj

yij ≥ dj, ∀j ∈ J

∑
j∈ISi

aijyij ≤ Capixi, ∀i ∈ I

yij ≥ 0,∀j ∈ ISi, i ∈ I.

(4.43)

In the upper level, the leader decides plant locations to minimize the total cost, which

includes opening cost and the opportunity cost of the unused capacity, and the ”max−min”

term reflects the worst case consideration. In the lower level, the follower decides the number

of product to be made in each opened plant to minimize the total cost, which includes the

production cost and the transportation cost. The first lower level constraint ensures that

the all the demands are satisfied, the second constraint ensures that the number of products

made in a plant is no more than the capacity of that plant, and the last constraint introduces

the non-negativity requirement. Same as in the original model, the follower is cooperative

with the leader.

In our numerical study, the demand is assumed to be in the form of d = d̄+
∑K

k=1 ∆dkuk,

where d̄ is the nominal value, ∆dk is the direction of data perturbation for k = 1, 2, ..., K, and

uk, k = 1, 2, ..., K are random variables [24, 19, 134]. We consider a polyhedral uncertainty set

defined as D = {d ∈ R
|J |
+ : d = d̄ +

∑K
k=1∆dkuk, 0 ≤ uk ≤ 1, k = 1, 2, ..., K,

∑K
k=1 uk ≤ Ω},

where Ω is a parameter reflecting the level of uncertainty.
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We first demonstrate the impact of uncertainty on the selection of plants using the

original deterministic model as a benchmark. The data is obtained from [37]. In particular,

we set d̄ equal to the demand in [37], set K = 2|J |, and let ∆dk ∈ R
|J |
+ be a vector with all

its elements being zero except for the kth element, which is 0.3 ∗ d̄k, for k = 1, 2, ..., |J |, and

is −0.3 ∗ d̄k, for k = |J |+ 1, |J |+ 2, ..., 2|J |. We set the optimality tolerance ϵ = 0.05%, and

the time limit is 1800 seconds.

Table 9 shows the result for various Ω. Since the original model is solved for the nominal

value of the demand, it may need to purchase products in the market to meet the additional

demand. We set the unit price of a product in the marker to 3, and the worst case cost of

the original model is calculated as the total of the original cost and the purchase cost. As Ω

increases, RCPSP recommends opening more plants to meet potential additional demands,

while the original model incurs additional purchase cost. Thus, the leader can make better

decision if she can have accurate estimation of the demand and the product price in the

market. Such information may be obtained through data mining techniques in practice.

With accurately estimated data, the proposed model is able to better support the leader to

make better decision under uncertainty.

Table 9: Impact of Uncertainty

Ω Model Plants Purchase Worst case cost

0 Original 2,3 0 541.00

RCPSP 2,3 0 541.00

2 Original 2,3 26.00 619.00

RCPSP 1,6 0 589.33

4 Original 2,3 62.00 727.00

RCPSP 2,3,6 0 726.43

6 Original 2,3 88.00 805.00

RCPSP 2,3,5 0 825.40

In addition to solving RCPSP with the original data, we also test the algorithm on

randomly generated instances. In particular, we solve RCPSP instances of different sizes
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over a polyhedral uncertainty set. We set Ω = 3 and solve five instances for each problem

size. Table 10 shows the performance of the decomposition algorithm. ”|I|” and ”|J |” are

the cardinality of I and J , respectively. The time (in seconds) used for solving an instance

and the average are reported. We observe that all the instances are solved in half an hour,

and that some instances are solved in less than one minute. As expected, the solving time

increases as the size of the problem increases. For large size problems, developing advanced

approximation algorithm is a good future research direction.

Table 10: Computational Performance on Randomly Generated Instances

|I| |J | Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Avg

10 10 19.74 0.27 0.43 1.11 0.38 4.39

15 11.96 3.03 11.51 12.53 2.64 8.33

15 10 0.38 1.31 1.93 0.64 0.78 1.01

15 1.01 233.52 65.27 14.4 476.82 158.20

20 10 0.38 0.73 0.44 0.64 0.77 0.59

15 228.37 37.86 473.07 1044.03 130.19 382.70

4.5 Conclusion

In this chapter, we study two-stage robust bilevel optimization problems under uncer-

tainty. Both theoretical and algorithmic results are derived. The numerical study on two

real world applications shows that the proposed algorithm can efficiently solve two-stage

robust bilevel optimization instances, and the optimal solutions are robust even under high

level of uncertainty.
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5.0 Capacity Expansion of Wind Farm in a Market Environment Under

Uncertainty

5.1 Motivation

Wind power generation has become a primary clean and sustainable energy in many

countries, and investment in wind power facilities is one of the most important decisions in

an electricity market as it often involves large amount of capital. In a market environment,

investors build wind power generators and gain revenue from the market, which operates

to best achieve economic efficiency. Such interactions are often captured through bilevel

optimization models [61, 71, 78, 127, 76, 77]. Moreover, there is significant uncertainty

involved in wind power generation. On one hand, wind is random and intermittent and

thus hard to control and predict; on the other hand, the market desires reliable power to

meet the demand. To deal with uncertainty, stochastic bilevel optimization based models are

developed in [15, 16, 125]. Nevertheless, due to the limited solution capacity, large number

of scenarios can only be considered in small systems since problems of large systems with

large number of scenarios are very hard to solve. For example, it takes more than 10 hours

for CPLEX to solve an IEEE 118-Bus instance that only has 18 scenarios in [15], and takes

about 30 minutes to solve a similar instance that only has 4 scenarios in [125].

To overcome such a big challenge, we propose a novel two-stage robust bilevel optimiza-

tion model to support wind power investment in an electricity market. The proposed model

takes wind power uncertainty into consideration and thus is better able to find a reliable

solution. A decomposition algorithm is developed to efficiently solve the two-stage robust

bilevel model to global optimal solutions. Numerical experiments show high efficiency of the

algorithm and significant benefits by considering wind power uncertainty.
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5.2 Bilevel Wind Farm Capacity Expansion Formulation

In an electricity market, the system planner seeks to maximize the profit by investing

in wind farms. Such investment decisions are made before the randomness of wind reveals,

and market operates after the wind generators are built and wind intensity is determined.

Thus, the wind farm capacity expansion problem is indeed a multistage decisions making

process. We formulate this decision making process as a two-stage robust bilevel model.

Table 11 shows the list of notations, where a regular lower case letter represents a scalar and

a bolded letter represents the corresponding vector. A robust wind farm investment problem

(RWFIP) is formulated as

RWFIP: max
(x,u)∈M

−
∑
i∈Ψ

(ciui + hixi) + min
k∈Ω

max
(f,g,q,s,θ)∈R(x,u,k)

αβ
∑
i∈Ψ

qi, (5.1)

where

M = {(x,u) :
∑
i∈Ψ

(Ciui +Hixi) ≤ Ĉ, ui ≤ Ūixi, ∀i ∈ Ψ, xi ∈ {0, 1}, ui ≥ 0,∀i ∈ Ψ}, (5.2)

and

R(x,u,k) = arg min
f,g,q,s,θ

{
∑
j∈J

∑
b∈Bj

pjbgjb +
∑
i∈I

ρisi : (5.3)

∑
j∈Ji

∑
b∈Bj

gjb + qi +
∑
l:d(l)=i

fl + si = di +
∑
l:o(l)=i

fl, ∀i ∈ I (5.4)

fl = Sl(θo(l) − θd(l)), ∀l ∈ L (5.5)

− f̄l ≤ fl ≤ f̄l, ∀l ∈ L (5.6)

0 ≤ gjb ≤ ḡjb, ∀j ∈ J, b ∈ Bj (5.7)

0 ≤ qi ≤ kiui, ∀i ∈ Ψ (5.8)

− θ̄ ≤ θi ≤ θ̄, ∀i ∈ I\{r} (5.9)

θr = 0 (5.10)

qi = 0, ∀i ∈ I\Ψ (5.11)

si ≥ 0, ∀i ∈ I}. (5.12)
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Table 11: Notation in RWFIP Formulation

Sets

Bj set of generator blocks j, j ∈ J

I set of buses, indexed by i

J set of fuel-based generators, indexed by j

Ji set of fuel-based generators at bus i, Ji ⊆ J

L set of lines, indexed by l

Ψ set of buses eligible for wind farms, Ψ ⊆ I

Ω the uncertainty set of wind intensity, k ∈ Ω

d(l) destination bus of transmission line l

o(l) origin bus of transmission line l

r reference bus

Parameters

α hours of the target year

Ĉ overall budget of wind power investment

di demand at bus i

f̄l transmission capacity of line l

hi, ci annualized fixed and variable cost of unit wind power generation capacity at i

Hi, Ci fixed and variable cost of unit wind power generation capacity at i

ki wind intensity at bus i

pjb price offered by generator j in block bj

ḡjb upper bound of fuel-based generation in bjth block

Sl susceptance of line l

Ūi upper bound of wind farm capacity at bus i

β weight coefficient for wind power penetration

ρi load shedding penalty cost at bus i, ρi > 0 for i ∈ I

θ̄ maximum value of phase angle by generator j

Decision Variables

xi binary variables, 1 if wind power is set at bus i; 0 otherwise

ui wind power installation capacity at bus i

fl power flow on line l

gjb power generation in bjth block by fuel-based generator j

qi wind generation at bus i

si load shedding at bus i

θi phase angle at bus i
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In the upper level, the investor seeks to maximize the difference between the wind energy

absorption and the investment costs by making decisions on the installation and the capacity

of wind power generators, subject to capacity constraints and a budget constraint. The lower

level problem represents the market clearing conditions by minimizing the total dispatch

cost and load shedding, subject to the optimal power flow (OPF) based economic dispatch

constraints. In particular, (5.4) and (5.5) are the flow conservation constraints and power

balance constraints, respectively. (5.6) - (5.9) introduce bound constraints for power flow,

power generation, wind generation, and phase angle, respectively. (5.10) - (5.11) help to

set a reference bus, and (5.12) ensures the non-negativity of the load shedding. The wind

intensity parameter k is assumed to be in an uncertainty set Ω. Without loss of generality,

we assume Ω is a non-empty compact set.

Remark 5.1. The lower level problem of RWFIP has an optimal solution for any combina-

tion of (x,u,k). This property is guaranteed by the existence of the load shedding variables.

5.3 Solution Method

In RWFIP, all the upper level decisions are made before k is realized, while all the

lower level decisions are made after the realization of the parameter. Hence, the lower level

decisions are indeed scenario specific decisions. By introducing a set of lower level decision

variables for each scenario, we can have an equivalent reformulation of RWFIP.

Let (fk,gk,qk, sk, θk) denote the lower level decision variables corresponding to k, which
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represents a particular scenario, we can rewrite RWFIP as

max−
∑
i∈Ψ

(ciui + hixi) + t (5.13)

s.t.(x,u) ∈ M (5.14)

t ≤ αβ
∑
i∈Ψ

qki , ∀k ∈ Ω (5.15)

(fk,gk,qk, sk, θk) ∈ argmin{
∑
j∈J

∑
b∈Bj

pjbg
k
jb +

∑
i∈I

ρis
k
i : (5.16)

∑
j∈Ji

∑
b∈Bj

gkjb + qki +
∑
l:d(l)=i

fk
l + ski = di +

∑
l:o(l)=i

fk
l , ∀i ∈ I (5.17)

fk
l = Sl(θ

k
o(l) − θkd(l)), ∀l ∈ L (5.18)

− f̄l ≤ fk
l ≤ f̄l, ∀l ∈ L (5.19)

0 ≤ gkjb ≤ ḡjb, ∀j ∈ J, b ∈ Bj (5.20)

0 ≤ qki ≤ kiui, ∀i ∈ Ψ (5.21)

− θ̄ ≤ θki ≤ θ̄, ∀i ∈ I\{r} (5.22)

θkr = 0 (5.23)

qki = 0, ∀i ∈ I\Ψ (5.24)

ski ≥ 0, ∀i ∈ I}, ∀k ∈ Ω. (5.25)

For Ω̄ ⊆ Ω,

MP:η∗ = max{−
∑
i∈Ψ

(ciui + hixi) + t : (5.14), (5.15)− (5.25),∀k ∈ Ω̄}

is a relaxation of (5.13) - (5.25). We refer this relaxation problem as the master problem

(MP), which provides an upper bound of RWFIP. By expanding Ω̄, the upper bound con-

verges to the optimal value of RWFIP. For fixed (x0,u0), a wind intensity parameter k as

well as an optimal lower level solution can be obtained from the following pessimistic bilevel

optimization problem [94]

SP:ζ(x0,u0) = min
k∈Ω

max{αβ
∑
i∈Ψ

qi : (f ,g,q, s, θ) ∈ R(x0,u0,k)},
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which we refer as the sub-problem (SP), and its optimal solution corresponds to a worst case

scenario. The nature of pessimistic bilevel optimization is better able to identify worst case

scenarios, and thus to effectively characterize the uncertainty set.

Starting from a subset Ω̄ ⊆ Ω, we can approach to the optimality by adding scenarios

identified by SP to Ω̄. Following this idea, we provide the following decomposition algorithm.

Algorithm 5 Decomposition algorithm for solving RWFIP

1: Initialize: LB = 0, UB = +∞, Ω̄ = ∅, and it = 0

2: while UB − LB ≥ ϵ do

3: Solve MP for Ω̄ and obtain an optimal solution (x∗,u∗)

4: Update UB = η∗

5: Solve SP for (x∗,u∗) and obtain an optimal solution (k∗, fk
∗
,gk∗

,qk∗
, sk

∗
, θk

∗
)

6: Update LB = max{LB, ζ(x∗,u∗)−
∑

i∈Ψ(ciu
∗
i + hix

∗
i )}

7: Update Ω̄ = Ω̄ ∪ {k∗}

8: Set it = it+ 1

9: end while

10: Return (x∗,u∗) as an optimal solution.

Remark 5.2. As R(x,u,k) ̸= ∅ for any combination of (x,u,k) and the lower level problem

of RWFIP is an LP problem, the lower level optimal value function is a piecewise linear func-

tion and thus continuous. According to the convergence result in Chapter 4, the continuity of

the lower level optimal value function and the compactness of Ω guarantee that the algorithm

returns an ϵ-optimal solution of RWFIP in finite number of iterations for any given ϵ.

Both MP and SP can be further converted to a solver friendly single level problem. Specif-

ically, MP is an optimistic bilevel optimization problem with multiple lower level problems.

By replacing each lower level problem with its KKT conditions, we can convert MP to a

single level mixed integer programming (MIP) problem, which can be readily solved by com-

mercial solvers. SP is a pessimistic bilevel optimization problem, to which various of solution

methods can be applied, such as those in [2, 126, 136, 51, 132]. For example, we can apply

the level reduction technique introduced in [132] to obtain a tight relaxation of SP. For fixed
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(x0,u0), the resulting problem is

SP’:min{αβ
∑
i∈Ψ

qi : (f̄ , ḡ, q̄, s̄, θ̄) satisfy (5.4)− (5.12),k ∈ Ω, (f ,g,q, s, θ) ∈ Φ(x0,u0)},

where

Φ(x0,u0) = argmax{αβ
∑
i∈Ψ

qi :(f ,g,q, s, θ) satisfy (5.4)− (5.12),

∑
j∈J

∑
b∈Bj

pjbgjb +
∑
i∈I

ρisi ≤
∑
j∈J

∑
b∈Bj

pjbḡjb +
∑
i∈I

ρis̄i}.

Same as for MP, we can also convert SP’ to a single level MIP problem, which can be

efficiently solved by solvers.

5.4 Computational Experiments

The proposed two-stage robust optimization model and the decomposition algorithm

are applied to IEEE reliability test system (RTS). Test cases are adopted from [65, 102]

with some modifications, and we include RTS-96 24-bus, 57-bus, and 118-bus system in our

study. The experiments are implemented using Julia programming language [26], and all the

instances are solved by Gurobi [68] with the help of the Julia package BilevelJuMP [62].

Similar as in [24, 19], we assume the wind intensity parameter k in the form of k =

k̄+
∑|Ψ|

i=1 △kiλi, where k̄ is the nominal value, △k is the largest amount of data perturbation,

and λi are random variables. We take a polyhedral uncertainty set defined by Ω = {k ∈

R|Ψ| : k = k̄ +
∑|Ψ|

i=1△kiλi, 0 ≤ λi ≤ 1, i = 1, 2, ..., |Ψ|,
∑|Ψ|

i=1 λi ≤ K} in our computational

experiments. The parameter K controls the volume of the uncertainty set, and Ω reduces to

a singleton {k̄} for K = 0.

For each system, we solve both RWFIP and its deterministic counterpart, which only

considers the nominal value. We refer the deterministic model as the ”original model”. To

better reflect the reliability requirement in practice, we evaluate the worst case performance

for the two models. In particular, an optimal solution of each model is evaluated through
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SP, whose optimal value along with the cost term
∑

i∈Ψ(ciui + hixi) represents the worst

case performance.

The worst case performance evaluation is reported in Table 12, where ”Original” refers

to the deterministic model. The worst case optimal value of the upper and lower level

problem are denoted by ”U” and ”L” respectively in the table. We first study the upper

level performance evaluation, which is our primary interest. It is observed that RWFIP

always provides better solutions, and the performance gap between the two models increases

as K increases. We see that RWFIP model provide more than 6%, 30%, and 14% profit than

the original model does for the 24-bus, 57-bus, and 118-bus system respectively for K ≥ 3.

Such differences can have huge impact in practice, especially when the wind intensity is

expected to vary considerably, i.e., when K is large.

In addition to the great performance in terms of the upper level optimal value, we also

notice that RWFIP model provides better lower level solutions in 17 out of 18 cases. Our

numerical experiments suggest that considering wind intensity uncertainty not only benefits

the system planner but also benefits the whole market as the total dispatch cost of the

market is reduced.

Table 12: Worst Case Performance Evaluation

K 0 1 2 3 4 5

RTS-24 Robust (U) 79844.09 67129.96 58893.39 54974.50 54835.69 54835.69
Original (U) 79844.09 66724.48 57427.15 51859.18 50890.86 50890.86

RTS-57 Robust (U) 26792.75 20171.78 19481.05 19481.05 19481.05 19481.05
Original (U) 26792.75 15757.27 14881.26 14881.26 14881.26 14881.26

RTS-118 Robust (U) 51239.17 43218.19 35829.13 35829.13 35829.13 35829.13
Original (U) 51239.17 40644.98 31908.79 31421.71 31391.35 31391.35

RTS-24 Robust (L) 957687.30 992782.14 976637.98 966507.24 973602.01 973602.01
Original (L) 957687.30 996627.89 1003588.54 1017494.54 1019974.04 1019974.04

RTS-57 Robust (L) 9092410.68 9187952.49 9210976.83 9210976.83 9210976.83 9210976.83
Original (L) 9092410.68 9454128.34 9473276.54 9473276.54 9473276.54 9473276.54

RTS-118 Robust (L) 5683685.86 5658006.80 5729231.12 5729231.12 5729231.12 5729231.12
Original (L) 5683685.86 5633353.93 5748120.45 5749744.05 5749845.24 5749845.24

We notice that the proposed solution method has very strong capacity in solving RWFIP

instances. From the left part of Figure 5, we see that all the instances are solved in one

minute, and approximate 85% of the instances are solved in just 10 seconds. The right part

of Figure 5 illustrates the convergence of the decomposition algorithm on a typical instance.

It only takes five iterations to find an optimal solution. This implies that the algorithm can
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effectively identify crucial scenarios and thus efficiently characterize an optimal solution.
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Figure 5: Performance Evaluation of the Solution Method

5.5 Conclusion

In this chapter, we develop a novel two-stage robust bilevel optimization model to in-

vestigate the wind farm investment problem in an electricity market under uncertainty.

A decomposition algorithm is applied to solve this challenging robust bilevel model. The

proposed model and solution method are evaluated on IEEE reliability test systems. The

numerical experiments show that both the investors and the electricity market significantly

benefit from taking wind intensity uncertainty into consideration. Also, our computational

method demonstrates strong solution capacity in solving instances of small to moderate size.

We believe it provides a good foundation for future research on more comprehensive large

scale problems.
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6.0 Data Driven Optimal Decision Trees Considering Local Information

6.1 Motivation and Related Work

Machine learning (ML) models have achieved better-than-human performance in many

modern tasks, such as speech recognition, visual object recognition, playing Go [88, 120].

However, most of these techniques are essentially black-box models, i.e., one often has very

limited information about how the model makes predictions [112]. The lack of interpretability

still limits the potential usages of black-box models in critical domains [113]. ML systems

have to be granular in explanation and transparent before trust can be earned [106, 63].

Therefore, there is an urgency in the ML community to develop intrinsic interpretable models

[112, 113].

As one of the most classical machine learning models, decision tree enjoys its popularity

due to its simplicity, good performance, and especially its interpretability. The traditional

decision tree models, e.g., CART [31] and C4.5 [109], generally adopt a greedy and recursive

approach to learning a hierarchical model. Different heuristics including different splitting

criteria have been proposed, such as Gini Index [31], entropy and information gain [108,

109]. However, as the decision tree presents a hard splitting hierarchy, learning the optimal

decision tree is an NP-hard problem in nature [87]. The recursive methods are greedy

algorithms, which may lead to sub-optimal solutions. To improve the solution quality, studies

on learning optimal decision trees have been proposed in recent years, such as [20, 4, 57].

By formulating the optimization problem using mixed-integer programming (MIP), those

methods can solve the optimal classification tree (OCT) problem to optimality, but only for

a very limited size (in terms of the number of features and tree depth) problems. The MIP

based formulations are good at capturing the non-convex nature of decision trees and thus

better able to fit the training data set. However, this advantage of MIP formulations may

laed to an OCT that overfits the training data and thus does not perform well on unseen

data.

In this chapter, we propose a novel and fully interpretable OCT model as well as an
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efficient hyperparameter tuning method. The new model learns from both global and local

information among samples to improve the generalizability and robustness of an OCT. Our

main contributions are summarized as follows.

First, we develop a new mixed-integer programming formulation that takes local infor-

mation into consideration in addition to the global information. In particular, to improve

the robustness of a model, we explicitly consider the local distribution information of each

sample in a training set. Such information is then reflected by the sample weight in the loss

function through a data-driven approach, reducing the effect of outliers and noises in the

training set.

Second, we, for the first time, apply the bilevel optimization framwork to perform hy-

perparameter tuning for OCT. Such a framework enables us to consider the training set and

the validation set simultaneously to maximize the model generalizability.

Third, we propose an efficient decomposition algorithm to solve the resulting bilevel

optimization problem for efficient and automatic hyperparameter tuning. Extensive exper-

iments are performed on widely used benchmark datasets in comparison with both con-

ventional recursive heuristics and modern MIP-based OCT algorithms. The experimental

results demonstrate the outstanding performance of the proposed OCT model on benchmark

datasets.

Learning an optimal decision tree is NP-hard [87]. As a result, this problem has been

primarily approached by heuristic methods such as CART [31]. Those greedy methods are

simple and efficient, but often lead to sub-optimal solutions, without quality guarantees. In

recent years, numerous studies on mathematical programming based decision tree models

have been proposed [20, 122, 74, 121, 47, 124, 48, 139, 92, 67].

In this section, we mainly discuss those MIP based OCT learning methods, which are

closely related to our work. In [20], the authors proposed an MIP based OCT formulation,

which find an optimal branching and labeling decisions in a single formulation rather than

making branching decisions at each level like the recursive methods. This formulation leads to

higher test accuracy than that from CART for small trees. Later in [122], Verwer and Zhang

proposed a binary OCT (BinOCT) formulation, which has fewer variables and constraints

compared with the model in [20]. The proposed BinOCT model is solved by MIP solvers,
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and the numerical results show it runs faster than the one in [20]. In [67], small-size decision

trees with categorical data are studied through the integer programming (IP) framework.

Similar as in [122], the decision variables are defined based on the features not individual

data point. The topology of a tree is an input parameter of the IP formulation. It is selected

from a small size candidate pool through a validation set. In [4], the authors propose a big-M

free network flow-based MIP formulation to provide strong LP relaxation. By introducing

a source node connected to the root node and a sink node connected to all leaf nodes, a

classification tree is converted to a directed acyclic graph. We notice that the classical MIP

techniques such as cutting planes and dynamic programming are applied in OCT formulation

to accelerate the convergence in [92, 47]. Also, hyperplane and soft margin from support

vector machines (SVM) are applied to OCT formulation in [139]. The hyperplanes help to

achieve higher prediction accuracy at the cost of lower interpretability.

While the majority of the MIP based OCT formulations try to find the best possible

classification tree by capturing the global information of a dataset, we propose a novel MIP

model that considers both local and global information. In particular, we consider the

neighborhood of each sample. Such local information help us to differentiate samples and

thus increases the generalizability of the model.

6.2 Problem Formulation

In this section, we present an MIP formulation for OCT. As mentioned previously, an

MIP formulation is good at capturing global information to learn ground truth. However,

such a powerful feature of MIP formulation may lead to overfitting while being applied to

OCT problems. To address this issue, we expand the classical MIP model by taking local

information into account. Our basic idea is to assign weight to each sample by considering

their neighbourhoods. In particular, we assign a very small weight to an outlier, which has

very few or no samples within its neighborhood and thus unlikely to appear in an unseen

data set. On the other hand, we assign a large weight to a sample that has many other

samples around. Such consideration helps us to focus on representative samples and thus
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improve the generalizability and robustness of an OCT.

Through this chapter, we use a boldface letter to represent a vector and a regular letter to

represent a scalar. For a dataset (xi, yi) for i ∈ I with the collection of features denoted by F ,

we assume each feature f ∈ F as well as the class label yi are binary, i.e., (xi, yi) ∈ {0, 1}|F |+1

for i ∈ I. In fact, categorical and numerical features can be easily binarized via discretization

and comparison method [45, 128, 67].

Denote the distance between sample i and sample j by dij, and assume a distance function

g : F → R+ that maps (xi,xj) to dij. For binary valued samples, a typical metric is the

Hamming distance, which takes the number of different feature values between two samples

as its value. We note that, as the Hamming distance treats all features equally, it does not

reflect the reality since some features are more important than others in determining the

label of a sample. Hence, we introduce cf to denote the weight of feature f , with a larger

cf corresponding to a more important feature. For a sample pair (xi,xj), we can consider

dij as a function of cf . For example, we can define dij =
∑

f∈F cf |xif − xjf | as a distance

function, which takes the Hamming distance metric as its special case. It is worth to notice

that the feature weights are not directly observable and thus need to be learned.

With distance dij introduced, we further define a function h(dij) : R → R to represent

the influence of sample j to sample i. To properly reflect the influence, we require the

function h to have the following three properties 1) 0 ≤ h(dij) ≤ 1 for i, j; 2) with h(0) = 1;

3) h is monotonically decreasing in d. For example, h(dij) =
1

dij+1
and h(dij) = 1− dij

|M | with

M = maxi,j∈I{dij} are such a function. We denote the neighborhood of sample i by B(i, R),

with parameter R denoting the radius. Let wi be the weight of sample i in the loss function,

then we have wi =
∑

j∈B(i,R) h(dij) =
∑

j∈B(i,R) h(g(c)). Note that once the functions g and

h are selected, wi is determined by the unknown hyperparameters c and R. We denote the

weight of sample i by wi(c, R) and assume that both c and R are given as hyperparameter

in this section. We will solve the hyperparameter tuning problem by a data-driven approach

in the next section.

A full binary tree of depth K has 2K − 1 branching nodes and 2K leaf nodes. In this

chapter, the nodes are ordered according to the breadth-first search method, and the root

node is denoted by n1. We use NB and NL to denote the set of branching nodes and that
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of leaf nodes, respectively. Note that there is an unique path from n1 to each leaf node, and

we define R(nl) as the set of branching nodes in this unique path to leaf nl. Moreover, we

have parameter aif to indicate if the value of feature f of sample i is 1 and snlnb
∈ {−1, 1}

to indicate if node nl is in the left or the right subtree of node nb. Specifically, snlnb
= 1 if

nl is in the left subtree of nb and −1 otherwise.

For the OCT problem with binary features, the key decision is to configure the structure

of the tree, i,e., to assign each branching node a feature and assign each leaf node a label.

While most of existing work explicitly makes use of these two sets of variables, we take a

slightly different modelling approach.

Specifically, we assign 1 to the leaf node with even number and 0 to those with odd

number rather than introducing variables to determine the label of each leaf node. Moreover,

we allow the branching nodes that are just one level higher than the leaf nodes in the tree to

select features from F̄ = {¬f |f ∈ F} so that all samples can flow to any of the pre-labelled

leaf node. We define binary variables znbf ∈ {0, 1} to indicate if feature f is selected at node

nb for branching. The full list of notations is shown in Table 13.

For a given (c, R), the following MIP formulation derives an OCT on the training dataset

IT ,

L(c, R) :min
∑
i∈IT

wi(c, R)
∑
nl∈NL

unli (6.1)

s.t.K −
∑

nb∈R(nl)

(
1− snlnb

2
+ snlnb

∑
f∈F

aifznbf )

+ unli + yi ≥ 1,∀i ∈ IT , nl ∈ N1
L (6.2)

K −
∑

nb∈R(nl)

(
1− snlnb

2
+ snlnb

∑
f∈F

aifznbf )

+ unli − yi ≥ 0,∀i ∈ IT , nl ∈ N0
L (6.3)∑

f∈F

znbf = 1, ∀nb ∈ NB (6.4)

unli, znbf ∈ {0, 1}, ∀nl ∈ NL, nb ∈ NB,

i ∈ IT , f ∈ F. (6.5)
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Table 13: Notation in the OCT Formulation

Sets

I the index of a dataset, indexed by i

IV the index of the validation dataset

IT the index of the training dataset

F the set of features, indexed by f

NB the set of branching nodes, indexed by nb

NL the set of leaf nodes, indexed by nl

N0
L the set of leaf nodes that are labelled 0

N1
L the set of leaf nodes that are labelled 1

R(nl) branching nodes in the path from the root

node to node nl

Parameters

K the depth of the OCT, K ≥ 0

aif indicating if feature f of sample i is 1,

aif ∈ {0, 1}

snlnb
indicating nl is in the left or right subtree

of nb, snlnb
∈ {−1, 1}

cf the weight of feature f

R the radius of the neighborhood

wi(c, R) the weight of sample i for given c and R

Decision Variables

znbf indicating if feature f is selected at node nb,

znbf ∈ {0, 1}

unli indicating if data point i is correctly classified

at nl, unli ∈ {0, 1}
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The objective function is to minimize the weighted sum of mis-classified samples. Con-

straints (6.2) and (6.3) ensure that sample i is correctly classified if and only if it flows into a

leaf node whose label is the same as yi. Specifically, if sample i flows into nl, then it visits ev-

ery branching node in R(nl), we must have
∑

nb∈P (nl)
(
1−snlnb

2
+ snlnb

∑
f∈F aifznbf ) = K. To

see this, we first consider the case that sample i flows to nl through the left child of nb inR(nl),

i.e., snlnb
= 1. Then there must be at least one feature of sample i with value 1 being selected

at node nb, which implies
∑

f∈F aifznbf = 1. Then we have
1−snlnb

2
+ snlnb

∑
f∈F aifznbf = 1,

which in fact holds for all branching node nb ∈ R(nl) with snlnb
= 1. Similarly, for a branch-

ing node nb with snlnb
= −1, sample i can flow to nl only if no feature with value 1 is selected

at node nb. This implies
∑

f∈F aifznbf = 0, which also indicates
1−snlnb

2
+snlnb

∑
f∈F aifznbf =

1. In other words,
∑

nb∈P (nl)
(
1−snlnb

2
+ snlnb

∑
f∈F aifznbf ) = K if and only if sample i is di-

rected to leaf node nl. Thus, unli = 0 if and only sample i flows into nl and nl is labelled with

yi. Finally, Constraints (6.3) ensures that each branching node can only select one feature.

Remark 6.1. As a special case, if we set wi(c, R) = 1 for all i, then the proposed OCT model

is to minimize the number of mis-classified samples by only considering global information.

If, however, wi(c, R) is determined by the aforementioned approach, which assigns large

weight to representative samples and assigns small weight to outliers, the local information

is then taken into consideration.

6.3 Data-Driven Hyperparameter Tuning

As previously discussed, the hyperparameters (c, R) play a very crucial role since they

provide local information that increases the capacity of the model. In this section, we propose

a data-driven hyperparameter tuning method to effectively discover local information.

6.3.1 Bilevel Formulation

In this work, we take a bilevel optimization approach to tune the hyperparameters. The

bilevel optimization framework enables us to construct a fully interpretable OCT model, and
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fully make use of available data.

A bilevel optimization problem defined by (6.6) - (6.9) is indeed an embedded optimiza-

tion problem. In BiO, (6.6) - (6.8) is the upper level problem with its decision variable x,

and (6.9) is the lower level problem with its decision variable y. The decision making process

in BiO is in a sequential fashion: the upper level decision maker (often called the leader)

determines x first, the the lower level decision maker (often called the follower) solves (6.9)

for a given x. Both the leader and the follower make decision for their own interest. Because

of its strong modeling capacity, bilevel optimization has been applied to various problems,

including hyperparameter tuning [18, 85, 59].

BiO:min
x,y

F (x,y) (6.6)

s.t. G(x) ≤ 0 (6.7)

y ∈ ϕ(x) (6.8)

ϕ(x) = argmin
ŷ

{f(x, ŷ) : g(x, ŷ) ≤ 0} (6.9)

For hyperparameter tuning problems, the upper level decision variable x is the hyperpa-

rameter to be tuned, and the lower level decision variable y is the parameter of a machine

learning model to be learned. As discussed in the last section, the hyperparameter we want

to tune are the feature weights (c) and radius (R), which then turn to be the decision vari-

ables in the upper level problem of the bilevel OCT model. The lower level problem is the

OCT model defined by (6.1) - (6.5). Let IV ⊆ I be a validation dataset and ϕ(c, R) be

the optimal solution set of the lower level problem for given (c, R), then the bilevel OCT
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formulation is given by (6.10) - (6.15).

Bi-OCT:min
∑
i∈IV

∑
nl∈NL

ûnli (6.10)

s.t.
∑
f∈F

cf = 1 (6.11)

K −
∑

nb∈R(nl)

(
1− snlnb

2
+ snlnb

∑
f∈F

aif ẑnbf )

+ ûnli + yi ≥ 1,∀i ∈ IV , nl ∈ N1
L (6.12)

K −
∑

nb∈R(nl)

(
1− snlnb

2
+ snlnb

∑
f∈F

aif ẑnbf )

+ ûnli − yi ≥ 0,∀i ∈ IV , nl ∈ N0
L (6.13)

ẑ ∈ ϕ(c, R) = argmin{
∑
i∈IT

wi(c, R)

∑
nl∈NL

unli : (6.2)− (6.5)} (6.14)

R, cf ≥ 0, ûnli ∈ {0, 1},∀nl ∈ NL, nb ∈ NB

i ∈ IT , f ∈ F. (6.15)

The objective function of Bi-OCT is to minimize the number of misclassified samples in the

validation set. Unlike the objective function in BiO, the samples in the validation set are

unweighted. This setting reflects the goal of hyperparameter tuning, i.e., to help the OCT

correctly classify unseen data.

Compared with grid search methods, the proposed bilevel model has two main advan-

tages. First, bilevel optimization approach is more computationally friendly as it tunes all

parameters at once. As shown in [18], bilevel optimization based hyperparameter tuning

method is more favourable than the grid search methods as the number of candidates in-

creases exponentially. Second, it is easier to incorporate domain specific knowledge into the

bilevel optimization based hyperparameters tuning process. For example, we add (6.11) in

the upper level problem of Bi-OCT. In fact, more sophisticated relationship that may be

hard to model in grid search methods could be formulated as constraints in the upper level

problem. Next, we present a critical relaxation result.
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Proposition 6.1. Let P be the collection of all possible configurations of an OCT, i.e.,

P = {z : (6.2)− (6.5)}, then

min
∑
i∈IV

∑
nl∈NL

ûnli

s.t.(6.2)− (6.5), (6.11)− (6.13), (6.15)∑
i∈IT

wi(c, R)
∑
nl∈NL

unli ≤
∑
i∈IT

wi(c, R)vi(z
k),∀zk ∈ P ′ (6.16)

is a relaxation of Bi-OCT for any P ′ ⊆ P .

Proof. As vi(z
k) =

∑
nl∈NL

ûnli for i ∈ IT , it indicates whether sample i is correctly classified

for a given OCT configuration zk, and we have vi(z
k) ∈ {0, 1} for i ∈ IT . Moreover, vi(z

k)

can be calculated once zk is fixed. Therefore, for given (c, R), the optimal value function

of the lower level problem can be written as Φ(c, R) = minzk∈P{
∑

i∈IT wi(c, R)vi(z
k)} and

then we have

min{
∑
i∈IV

∑
nl∈NL

ûnli :(6.2)− (6.5), (6.11)− (6.13), (6.15),

∑
i∈IT

wi(c, R)
∑
nl∈NL

unli ≤ Φ(c, R)}

= min{
∑
i∈IV

∑
nl∈NL

ûnli :(6.2)− (6.5), (6.11)− (6.13), (6.15),

∑
i∈IT

wi(c, R)
∑
nl∈NL

unli ≤
∑
i∈IT

wi(c, R)vi(z
k),∀zk ∈ P}

≤ min{
∑
i∈IV

∑
nl∈NL

ûnli :(6.2)− (6.5), (6.11)− (6.13), (6.15),

∑
i∈IT

wi(c, R)
∑
nl∈NL

unli ≤
∑
i∈IT

wi(c, R)vi(z
k),∀zk ∈ P ′}.

As the inequality holds for any P ′ ⊆ P , the result follows.

By making use of this relaxation, we develop an iterative decomposition algorithm to

compute Bi-OCT in the following subsection.
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6.3.2 Decomposition Algorithm

Bilevel optimization is NP hard even in the linear case [53]. Conventially, it can be

reformulated as a single level problem through Karush–Kuhn–Tucker (KKT) conditions if

its lower level problem is convex and satisfies some technical conditions. However, this widely

used approach is not applicable to Bi-OCT as its lower level problem is an MIP problem,

which is highly non-convex. In this section, we develop a decomposition algorithm to tackle

this challenge.

According to Proposition 1, for P ′ ⊆ P , we have the following relaxation of Bi-OCT, to

which we refer as the master problem (MP).

MP: η∗ = min{
∑
i∈IV

∑
nl∈NL

ûnli :(6.2)− (6.5), (6.11)− (6.13), (6.15)− (6.16)}

MP provides a lower bound (LB) to Bi-OCT, and we can approach the optimality by grad-

ually tightening the LB. This is achieved by expanding P ′. After obtaining an optimal

solution (c∗, R∗) from MP, we can solve the lower level problem L(c∗, R∗) to get an OCT

configuration and its optimal value Φ(c∗, R∗). To get an upper bound (UB) of Bi-OCT, we

solve the following sub-problem (SP), and denote its optimal value by ζ(c∗, R∗).

SP: min{
∑
i∈IV

∑
nl∈NL

ûnli :(6.2)− (6.5), (6.12)− (6.13), ûnli ∈ {0, 1},

∀nl ∈ NL, i ∈ IT ,
∑
i∈IT

wi(c
∗, R∗)

∑
nl∈NL

unli ≤ Φ(c∗, R∗)}

Let z∗ be an optimal solution to SP, we can add z∗ into P ′ until UB ≤ LB.

Proposition 6.2. Algorithm 6 converges the global optimum of Bi-OCT in a finite number

of iterations.

Proof. We provide the proof in the appendix.

Remark 6.2. For large size datasets, solving Bi-OCT can be very challenging. In this case,

we can tune the hyperparameters on a subset of the training dataset, and then train the OCT

model for the obtained hyperparameters. Numerical experiments show that this data-driven

approach can be efficient and effective.
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Algorithm 6 Decomposition algorithm for solving Bi-OCT

1: Initialize: LB = 0, UB = |IV |, P ′ = ∅, and k = 0

2: while UB > LB do

3: Solve MP for P ′ and obtain an optimal solution (c∗, R∗)

4: Update LB = η∗

5: Solve the lower level problem for (c∗, R∗) and obtain its optimal value Φ(c∗, R∗)

6: Solve SP for (c∗, R∗) and obtain an optimal solution z∗

7: Update UB = min{UB, ζ(c∗, R∗)}

8: Update P ′ = P ′ ∪ {z∗}

9: Set k = k + 1

10: end while

11: Return (c∗, R∗) as an optimal solution

6.4 Experiments

In this section, we benchmark the proposed approach with respect to state-of-the-art

methods on public datasets.

6.4.1 Experiment Setup

All testing datasets are obtained from the UCI repository [54]. They are first binarized

as in [45] and then downsampled so that the number of features is small to moderate. For the

comparison purpose, we take a state-of-the-art mathematical programming based package,

”Interpretable AI” (IAI) [20, 21], the random forest (RF) method [104, 33], as well as the

popular CART approach as our baseline models. Default settings of IAI, RF, and CART

are adopted in our numerical study.

For the proposed method, we practice two implementations: a standard one and a sim-

plified one. In the standard implementation with Bi-OCT, we consider all (i, j) ∈ IT to

determine radius R. In the simplified version (denoted by Bi-OCT(S)), we define an initial

neighborhood for each sample, and only samples in that initial neighborhood are considered

106



in determining R, which helps to reduce the computational burden. Also, we adopt the data

driven approach. In particular, we first take 100 samples from the training set as a dataset

for solving the bilevel model to get an optimal (c, R), and then retrain an OCT on the whole

training set based on this obtained (c, R).

As previously mentioned, all the datasets (except for COMPAS-binary and FICO-binary

that are already binary featured) are first binarized as in [45]. For each categorical feature

xif ∈ {q1, q2, ..., qf}, we create two features for each category. For example, we create

xif1 = q1 and xif1 ̸= q1 for the category q1. Numerical features are binarized via binning.

Note that the number of features may significantly increase after binarization. Hence, we

also apply the downsampling technique to each dataset to reduce the number of features. In

our experiments, we apply CART with maximum depth 5 to select up to 31 features for each

dataset. The data statistics are summarized in Table 14, where #features(O), #features(B),

and #features(D) denote the number of features (excluding the label) in the original dataset,

after binarization, and after downsampling, respectively.

In MP, the numbers of variables and of constraints increase in the order of O(|IT |2).

To overcome this computational challenge, we take a data-driven strategy based on a small

size subset of the training dataset. Specifically, in our experiments, we first compute wi by

setting cf = 1
|F | for f ∈ F and R = 0. Then, we select 100 samples with the largest weight

to form a dataset for hyperparameter tuning, and 25 of them are used as a validation set to

populate Bi-OCT. Last, an optimal (c, R) derived from Bi-OCT is used to solve (6.1) - (6.5)

on the original training dataset to learn the final OCT.

In addition to the data-driven approach, we also define an initial neighborhood for each

sample to reduce both the number of variables and the number of constraints to build the

simplified Bi-OCT(S). The initial neighborhood of sample i is calculated in three steps.

First, we let cf = 1
|F | for f ∈ F and calculate dij for i, j ∈ IT . Then we calculate M =

maxi,j∈IT {dij}. Finally, we identify B(i,M ∗ r) for each sample as its initial neighborhood,

where r is the rate to control the volume of B(i,M ∗ r). It is easy to see that r = 1

corresponds to Bi-OCT(S), and we set r = 0.3 in our experiments.
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6.4.2 Numerical Results

The four methods (including CART(O) that directly handles original features without

binarization) are tested on 13 datasets. The depth of a tree is set to be 3 for all methods

except for RF, whose maximum depth is set to be 50. Tables 15 and 16 report their training

and testing accuracies, as well as standard deviations (in the parentheses), respectively,

across 13 datasets. For each dataset, the accuracy is the average over 4-folds tests, and the

highest accuracy is highlighted. We include RF as a benchmark baseline, but we do not

highlight RF even if it has the highest accuracy since it takes a total different approach.

CART was unable to perform classification on the ”breast-cancer” dataset, so we report

”N/A” in the table. From those numerical results, we have the following observations.

First, both Bi-OCT and Bi-OCT(S) demonstrated strong classification capacities. Bi-

OCT(S) ranks 6 times (out of 13) with the highest accuracy, and Bi-OCT ranks 5 times

(excluding RF).

Second, Bi-OCT, Bi-OCT(S) and CART(O) have consistent performances over both

training and testing stages. In the training stage, both Bi-OCT and Bi-OCT(S) won 5 times

first place, CATR(O) 6 times, while IAI and CART fail to won in any datasets. In the

testing stage, both Bi-OCT and Bi-OCT(S) maintain their strength, CATR(O) degrades

significantly, while IAI and CART actually are not bad if we compare their performances to

those in the training stage. From this observation, we believe that the MIP based Bi-OCT

and Bi-OCT(S) are better able to learn the ground truths of a dataset.

Third, compared with IAI, another mathematical programming based OCT package, our

Bi-OCT and Bi-OCT(S) models are significantly better able to handle challenging datasets.

For 5 datasets where IAI’s accuracy is lower than 70%, we note that Bi-OCT or Bi-OCT(S)

won 4 times. This supports that our Bi-OCT model captures more fundamental structures

such as local distribution information.

Fourth, no significant information loss caused by binarization and downsampling is ob-

served from our numerical results. Comparing the result of CART and CART(O) on 10

datasets (excluding breast-cancer, COMPAS-binary, and FICO-binary), we see that CART

(CART(O)) won 3 (7) out 10 in terms of the training accuracy and that CART (CART(O))
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won 6 (4) out 10 in terms of the test accuracy. This suggests that binarization and down-

sampling method could be considered for large dataset in practice.

For the scalability, from Figure 6, we see that our proposed algorithm can generally solve

more than 50% (around 50% for Bi-OCT and around 60% for Bi-OCT(S)) instances in 500

seconds. About 80% instances can be solved in half an hour. However, similar as other MIP

based OCT models, some cases require much time to solved. While other fast computing

methods such as CART can fit a tree in less than a minute for most cases, our methods

achieve higher accuracy at the cost of more time spending. Developing strong algorithms

that can solve Bi-OCT faster is an important future research direction.

Table 14: Dataset Statistics

Dataset #samples #features (O) #features (B) #features (D)

breast-cancer 286 9 40 13

heart 303 13 59 23

liver 345 6 53 25

ionosphere 351 34 283 10

WDBC 569 30 270 15

transfusion 748 4 32 21

pima 768 8 67 14

banknote 1372 4 36 17

COMPAS-2016 5020 7 15 14

musk 6598 166 1461 25

COMPAS-binary 6907 12 12 12

FICO 10459 23 156 25

FICO-binary 10459 17 17 15

6.5 Conclusion

In this chapter, we propose a new OCT model that considers local information. Such a

task is addressed through a data-driven approach. Specifically, two crucial hyperparameters,
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Table 15: Average Training Accuracy

Dataset Bi-OCT Bi-OCT (S) IAI

breast-cancer 0.8122 (0.0611) 0.8111 (0.0598) 0.7668 (0.0550)

heart 0.8536 (0.0335) 0.8514 (0.0274) 0.8206 (0.0469)

liver 0.7382 (0.0061) 0.7382 (0.0061) 0.7256 (0.0144)

ionosphere 0.9146 (0.0233) 0.9146 (0.0233) 0.9212 (0.0214)

WDBC 0.9151 (0.0063) 0.9156 (0.0064) 0.9098 (0.0094)

transfusion 0.8039 (0.0251) 0.8026 (0.0258) 0.7843 (0.0262)

pima 0.7513 (0.0236) 0.7526 (0.0215) 0.7522 (0.0228)

banknote 0.9570 (0.0176) 0.9730 (0.0017) 0.9691 (0.0064)

COMPAS-2016 0.6708 (0.0035) 0.6708 (0.0035) 0.6687 (0.0040)

musk 0.9201 (0.0494) 0.9177 (0.0518) 0.9206 (0.0475)

COMPAS-binary 0.6710 (0.0044) 0.6710 (0.0044) 0.6699 (0.0045)

FICO 0.7158 (0.0045) 0.7158 (0.0045) 0.7153 (0.0060)

FICO-binary 0.7200 (0.0055) 0.7200 (0.0054) 0.7187 (0.0050)

Dataset CART CART(O) RF

breast-cancer 0.8111 (0.0584) N/A 0.9160 (0.0173)

heart 0.8492 (0.0265) 0.8602 (0.0236) 1.0000 (0)

liver 0.7430 (0.0057) 0.7469 (0.0196) 0.9739 (0.0032)

ionosphere 0.9250 (0.0226) 0.9288 (0.0134) 0.9582 (0.0103)

WDBC 0.8963 (0.0078) 0.9731 (0.0053) 0.9438 (0.0043)

transfusion 0.7928 (0.0223) 0.7972 (0.0228) 0.8373 (0.0226)

pima 0.7435 (0.0181) 0.7669 (0.0092) 0.8477 (0.0084)

banknote 0.9487 (0.0131) 0.9380 (0.0043) 0.9983 (0.0004)

COMPAS-2016 0.6614 (0.0065) 0.6589 (0.0087) 0.6730 (0.0036)

musk 0.9140 (0.0503) 0.9272 (0.0436) 0.9790 (0.0127)

COMPAS-binary 0.6603 (0.0059) 0.6603 (0.0059) 0.6784 (0.0047)

FICO 0.7109 (0.0011) 0.7104 (0.0013) 0.8303 (0.0079)

FICO-binary 0.7080 (0.0084) 0.7080 (0.0084) 0.7854 (0.0058)
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Table 16: Average Test Accuracy

Dataset Bi-OCT Bi-OCT (S) IAI

breast-cancer 0.7543 (0.1536) 0.7437 (0.1663) 0.7610 (0.1826)

heart 0.7255 (0.1075) 0.6766 (0.0792) 0.6567 (0.0705)

liver 0.6725 (0.0378) 0.6725 (0.0378) 0.6783 (0.0207)

ionosphere 0.8778 (0.0663) 0.8749 (0.0686) 0.8721 (0.0715)

WDBC 0.8911 (0.0256) 0.8981 (0.0226) 0.8893 (0.0267)

transfusion 0.7901 (0.0727) 0.7901 (0.0727) 0.7687 (0.1026)

pima 0.6966 (0.0259) 0.6979 (0.0306) 0.7227 (0.0430)

banknote 0.9570 (0.0174) 0.9585 (0.0168) 0.9504 (0.0151)

COMPAS-2016 0.6651 (0.0115) 0.6651(0.0115) 0.6612 (0.0140)

musk 0.6940 (0.2175) 0.6925 (0.2154) 0.7057 (0.2569)

COMPAS-binary 0.6669 (0.0141) 0.6669 (0.0141) 0.6637 (0.0128)

FICO 0.6986 (0.0238) 0.6986 (0.0238) 0.6954 (0.0221)

FICO-binary 0.6998 (0.0253) 0.6998 (0.0253) 0.7026 (0.0244)

Dataset CART CART(O) RF

breast-cancer 0.7716 (0.1720) N/A 0.7402 (0.1551)

heart 0.6393 (0.1789) 0.6627 (0.1228) 0.7058 (0.0866)

liver 0.6841 (0.0258) 0.6463 (0.0349) 0.7188 (0.0425)

ionosphere 0.8721 (0.0715) 0.8833 (0.0386) 0.9232 (0.0491)

WDBC 0.8753 (0.0288) 0.9228 (0.0363) 0.8806 (0.0299)

transfusion 0.7794 (0.0989) 0.7660 (0.1067) 0.7500 (0.0925)

pima 0.7096 (0.0307) 0.7201 (0.0334) 0.7070 (0.0215)

banknote 0.9147 (0.0208) 0.8899 (0.0281) 0.9898 (0.0053)

COMPAS-2016 0.6526 (0.0166) 0.6498 (0.0167) 0.6637 (0.0120)

musk 0.7204 (0.2266) 0.6866 (0.2588) 0.7164 (0.2508)

COMPAS-binary 0.6576 (0.0116) 0.6576 (0.0116) 0.6673 (0.0114)

FICO 0.6910 (0.0209) 0.6879 (0.0210) 0.6643 (0.0260)

FICO-binary 0.6987 (0.0222) 0.6987 (0.0222) 0.6826 (0.0235)
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Figure 6: Percentage of Instances Solved Over Time

namely, the feature weight and the radius are introduced to help discover local information

of each sample. We then propose a bilevel optimization model to tune the hyperparameters

such that the whole model is fully interpretable. A decomposition algorithm is designed to

solve the bilevel hyperparameters tuning model globally. The proposed method is evalu-

ated through a comprehensive computational study on various datasets. The superiority of

our method over the state-of-the-art is observed. The main limitation of this work is the

scalability issue. Hence, a potential future research direction is to develop approximation

algorithms for the bilevel hyperparameters tuning problem. Extending this work to other

types of decision trees such as regression trees could be another interesting topic.
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7.0 Conclusion

In this dissertation, we explore two types of bilevel optimization problems, i.e., bilevel

mixed-integer nonlinear programming problem and robust bilevel optimization problem. In

addition, we apply the proposed model and solution method to two applications, namely,

wind farm capacity expansion problem and optimal decision tree problem.

In Chapter 2, we study general bilevel mixed-integer nonlinear programming problems

and provide optimality conditions based reformulation and decomposition algorithm, which

is able to solve instances of moderate size efficiently.

Chapter 3 studies single-stage robust bilevel optimization problems with different types of

uncertainties. For those with discrete uncertainty set, we provide a strong relaxation, which

helps us to develop a novel cut-and-branch algorithm. Numerical study on bilevel facility

location problem shows the relaxation provides very strong approximation. However, the cut-

and-branch does not work well on large scale instances, and thus more advanced solution

methods are a good future research direction.

Chapter 4 studies two-stage robust bilevel optimization problems. Two basic models

along with their variations are provided to handle different types of uncertainties. Both

theoretical and algorithmic results problems are derived. The numerical study on two real

world applications shows that the efficiency of the proposed algorithm .

In Chapter 5, we study a real world wind farm capacity expansion problem. We model

such a problem as a two-stage bilevel optimization problem and solve it by a proposed

column-and-constraint generation algorithm. The computational study shows that both the

investors and the market significantly benefit by considering wind power uncertainty.

In Chapter 6, we study optimal decision tree problem. In particular, we propose a

novel mixed-integer programming based formulation that considers both global and local

information of a dataset to construct an optimal classification tree. We further take the

advantage of the bilevel optimization framework to develop a data-driven hyperparameter

tuning approach. Numerical study shows that the proposed model has better generalizability

than some state-of-arts method.
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Appendix A Computational Study Detail for BiMINLP Problems

In this appendix, we provide the BiMIQP, BiMISOCP, and BiMIBLP formulation used

in the numerical study in Chapter 2. We first consider the following BiMIQP problem

BiMIQP:min cTx+ dTy + eTz

s.t.Ax ≤ b,x ∈ X

(y, z) ∈ argmin{1
2
yTQ1y +

1

2
zTQ2z :

G1y +G2z ≤ Hx+ f ,y ∈ Y, z ∈ Z},

where G1 and G2 are positive semidefinite matrix. Similarly, the BiMISOCP problem in the

numerical study is

BiMISOCP:min cT1 x+ dT1 y + eT1 z

s.t.Ax ≤ b,x ∈ X

(y, z) ∈ argmin{dT2 y + eT2 z :

||Giy +Hiz+ fi||2 ≤ pTi x+ qi, i = 1, 2, ...,m,y ∈ Y, z ∈ Z}.

By applying Theorem 2.2, we can rewrite BiMIQP and BiMISOCP as a single level problem

and solve them by the proposed algorithm. The BiMIBLP problem is

BiMIBLP:min cTx+ dTy + eT1 z1 + eT2 z2

s.t.Ax ≤ b,x ∈ X

(y, z1, z2) ∈ argmin{yT (z1 + z2) : Gy ≤ Hx+ f ,

Q1z1 +Q2z2 ≤ q,y ∈ Y, z1 ∈ Z1, z2 ∈ Z2},

where Y ⊆ Rn1 , Z1 ⊆ Rn2−m, Z2 ⊆ Zm. Although the lower level problem of BiMIBLP is

not convex in the continuous variables, the fact that z1 is independent of x enables us to apply

the proposed solution method. In particular, for fixed x∗ ∈ Projx(ΩBiMIBLP), there always

exists an optimal solution (y∗, z∗1, z
∗
2) such that z∗1 is an extreme point of the polyhedron

{z1 ∈ Z1 : Q1z1 ≤ q−Q2z
∗
2}. Since |Z2| is finite, the number of such polyhedrons are finite,

Hence, the solution method is able to solve BiMIBLP in finite number of iterations.
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Appendix B Proofs

B.1 Proof of Theorem 4.3

Proof. 1) Using the definition of ψ(x1,u,x2) and ϕ(x1,u,x2), TSRBLOL, TSROBLO,

TSRPBLO, and TSRBLOU can be respectively rewritten as

z∗1 = min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0}

min
{y∈ψ(x1,u,x2)}

F (x1,u,x2,y), (B.1)

z∗2 = min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0}

min
{y∈ϕ(x1,u,x2)}

F (x1,u,x2,y), (B.2)

z∗3 = min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0}

max
{y∈ϕ(x1,u,x2)}

F (x1,u,x2,y), (B.3)

z∗4 = min
{x1∈X1,G(x1)≤0}

max
{u∈U}

min
{x2∈X2,H(x1,u,x2)≤0}

max
{y∈ψ(x1,u,x2)}

F (x1,u,x2,y). (B.4)

Let z∗1(x1,u,x2), z
∗
2(x1,u,x2), z

∗
3(x1,u,x2), and z

∗
4(x1,u,x2) be the optimal value of ( B.1),

( B.2), ( B.3), and ( B.4) respectively for fixed (x1,u,x2), then we have

z∗1(x1,u,x2) = min{F (x1,u,x2,y) : y ∈ ψ(x1,u,x2)}, (B.5)

z∗2(x1,u,x2) = min{F (x1,u,x2,y) : y ∈ ϕ(x1,u,x2)}, (B.6)

z∗3(x1,u,x2) = max{F (x1,u,x2,y) : y ∈ ϕ(x1,u,x2)}, (B.7)

z∗4(x1,u,x2) = max{F (x1,u,x2,y) : y ∈ ψ(x1,u,x2)}. (B.8)

It is obvious that z∗2(x1,u,x2) ≤ z∗3(x1,u,x2) for any fixed (x1,u,x2), and thus we have

z∗2 ≤ z∗3 . Moreover, since ϕ(x1,u,x2) ⊆ ψ(x1,u,x2) for any fixed (x1,u,x2), ( B.5) is a

relaxation of ( B.6), and ( B.8) is a relaxation of ( B.7). Hence, z∗1(x1,u,x2) ≤ z∗2(x1,u,x2)

and z∗3(x1,u,x2) ≤ z∗4(x1,u,x2) for any fixed (x1,u,x2), and we have z∗1 ≤ z∗2 and z∗3 ≤ z∗4 ,

which imply z∗1 ≤ z∗2 ≤ z∗3 ≤ z∗4 .

2) For fixed (x1,u,x2), let P1(x1,u,x2), P2(x1,u,x2), P3(x1,u,x2), and P4(x1,u,x2) be

the optimal solution set of ( B.5), ( B.6), ( B.7), and ( B.8), respectively, then it is sufficient to

show that P1(x1,u,x2) = P2(x1,u,x2) and P3(x1,u,x2) = P4(x1,u,x2), for any (x1,u,x2).
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If α = 0, then ϕ(x1,u,x2) = ψ(x1,u,x2) for any (x1,u,x2), and the result holds naturally.

Therefore, we focus on the case α > 0.

Suppose for a fixed (x0
1,u

0,x0
2), y

∗
1 ∈ P1(x

0
1,u

0,x0
2), then we have F (x0

1,u
0,x0

2,y
∗
1) ≤

F (x0
1,u

0,x0
2,y),∀y ∈ ψ(x0

1,u
0,x0

2). To show y∗
1 ∈ P2(x

0
1,u

0,x0
2), it is sufficient to show

that y∗
1 ∈ ϕ(x0

1,u
0,x0

2) as ( B.5) is a relaxation of ( B.6). If y∗
1 /∈ ϕ(x0

1,u
0,x0

2), then

there exists y∗
2 ∈ ψ(x0

1,u
0,x0

2) such that f(x0
1,u

0,x0
2,y

∗
2) < f(x0

1,u
0,x0

2,y
∗
1). As α > 0, we

have 1
α
f(x0

1,u
0,x0

2,y
∗
2) <

1
α
f(x0

1,u
0,x0

2,y
∗
1), and thus F (x0

1,u
0,x0

2,y
∗
2) < F (x0

1,u
0,x0

2,y
∗
1),

which contradicts the fact y∗
1 ∈ P1(x

0
1,u

0,x0
2). Hence, y∗

1 ∈ ϕ(x0
1,u

0,x0
2), and thus y∗

1 ∈

P2(x
0
1,u

0,x0
2). As (x

0
1,u

0,x0
2) is arbitrary, we have P1(x1,u,x2) ⊆ P2(x1,u,x2).

The converse part can be proved through a similar argument. If y∗
2 ∈ P2(x

0
1,u

0,x0
2)

for a fixed (x0
1,u

0,x0
2), we have F (x0

1,u
0,x0

2,y
∗
2) ≤ F (x0

1,u
0,x0

2,y),∀y ∈ ϕ(x0
1,u

0,x0
2). As

y∗
2 ∈ ϕ(x0

1,u
0,x0

2), we have y∗
2 ∈ ψ(x0

1,u
0,x0

2). If y
∗
2 /∈ P1(x

0
1,u

0,x0
2), then there exists y∗

1 ∈

ψ(x0
1,u

0,x0
2) such that F (x0

1,u
0,x0

2,y
∗
1) < F (x0

1,u
0,x0

2,y
∗
2), which implies αF (x0

1,u
0,x0

2,y
∗
1) <

αF (x0
1,u

0,x0
2,y

∗
2) and f(x0

1,u
0,x0

2,y
∗
1) < f(x0

1,u
0,x0

2,y
∗
2). This contradicts the fact y∗

2 ∈

ϕ(x0
1,u

0,x0
2). Therefore, we have y

∗
2 ∈ P1(x

0
1,u

0,x0
2) and P2(x1,u,x2) ⊆ P1(x1,u,x2). Since

P1(x1,u,x2) = P2(x1,u,x2) for any fixed (x1,u,x2), we have z∗1 = z∗2 . Similarly, we have

z∗3 = z∗4 , and the result follows.

3) The proof of the last statement is simple. In particular, if ϕ(x1,u,x2) is a singleton

for any fixed (x1,u,x2) whenever it is non-empty, then P2(x1,u,x2) = P3(x1,u,x2), and

thus z∗2 = z∗3 .
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B.2 Proof of Theorem 4.5

Proof. 1) If |U| < +∞, let |U| = KU, then TSROBLO can be rewritten as

min η

s.t.G(x1) ≤ 0,x1 ∈ X1

H(x1,uk,x2k) ≤ 0,x2k ∈ X2, k = 1, 2, ..., KU

η ≥ F (x1,uk,x2k ,yk), k = 1, 2, ..., KU

g(x1,uk,x2k ,yk) ≤ 0,yk ∈ Y, k = 1, 2, ..., KU

f(x1,uk,x2k ,yk) ≤ v(x1,uk,x2k), k = 1, 2, ..., KU.

(B.9)

As XU ̸= ∅, ( B.9) is feasible. Since all the variables are bounded and F,G,H, f, g, and v are

continuous, the feasible region of ( B.9) is compact. Therefore, by the Weierstrass theorem,

TSROBLO has an optimal solution. For TSRPBLO, a similar argument can be made. In

particular, TSRPBLO can be rewritten as

min η

s.t.G(x1) ≤ 0,x1 ∈ X1

H(x1,uk,x2k) ≤ 0,x2k ∈ X2, k = 1, 2, ..., KU

η ≥ F (x1,uk,x2k ,yk), k = 1, 2, ..., KU

g(x1,uk,x2k ,yk) ≤ 0,yk ∈ Y, k = 1, 2, ..., KU

f(x1,uk,x2k ,yk) ≤ v(x1,uk,x2k), k = 1, 2, ..., KU

F (x1,uk,x2k ,yk) ≥ w1(x1,uk,x2k), k = 1, 2, ..., KU.

(B.10)

Since w1 is continuous and XU ̸= ∅, the feasible region of ( B.10) is nonempty and compact,

and thus TSRPBLO has an optimal solution. We also indicate that for fixed x1 ∈ XU, by

enumerating all possible value of u ∈ U, a worst case u can be obtained. If the cardinality

of X1 is finite, by enumerating all possible value of x1, an optimal solution can be obtained.

2) As XU ̸= ∅, it is sufficient to show that an optimal xi1 and ui can be obtained from

MP1 and SP1 , respectively. According to 1), we know that an optimal xi1 can be obtained

117



from MP1 of in each iteration. Moreover, as u does not affect x2, we can apply Algorithm

3 to solve SP1 for fixed x1. MP1 in the Kth iteration in this subroutine is

max
u∈U

η

s.t.η ≤ F (x1,u,x2k ,yk), k = 1, 2, ..., K

g(x1,u,x2k ,yk) ≤ 0,yk ∈ Y, k = 1, 2, ..., K

f(x1,u,x2k ,yk) ≤ v(x1,uk,x2k), k = 1, 2, ..., K

F (x1,u,x2k ,yk) ≤ w2(x1,uk,x2k), k = 1, 2, ..., K,

which has an optimal solution due to the compactness of its feasible region and the continuity

of the objective function. The sub-problem in this subroutine is (4.12), which has an optimal

solution by our assumption. Therefore, we can apply Theorem 4.2 to conclude that ui can be

obtained from SP1, and thus complete the proof. For TSRPBLO, a very similar argument

can be made, and thus we just give a simplified proof. In particular, the master problem of

TSRPBLO is a special case of ( B.10), and thus has an optimal solution. Additionally, the

master problem in the subroutine for solving SP2 is

max
u∈U

η

s.t.η ≤ F (x1,u,x2k ,yk), k = 1, 2, ..., K

g(x1,u,x2k ,yk) ≤ 0,yk ∈ Y, k = 1, 2, ..., K

f(x1,u,x2k ,yk) ≤ v(x1,u,x2k), k = 1, 2, ..., K,

which has an optimal solution due to the same reason as for TSROBLO, and the sub-

problem in the subroutine is (4.13), which has an optimal solution by our assumption.

Therefore, ui can be obtained from SP2, and the result follows.

3) Without loss of generality, we assume y ∈ Rnc and y2 ∈ Rm2c . Then same as for

2), it is sufficient to show that an optimal xi1 and ui can be obtained from MP1 and SP1,

respectively. It is easy to verify that the master problem has an optimal xi1 in each iteration

as the it is identical to ( B.9). For the sub-prboem, the lower level problem is a convex

optimization problem with Slater’s condition satisfied, and thus the KKT conditions are
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necessary and sufficient for optimality. Hence, y ∈ ϕ(x1,u,x2) if and only if there exists

(y, z) that satisfies the KKT conditions, i.e. (y, z) ∈M(x1,u,x2), where

M(x1,u,x2) = {(y, z) :∇yf(x1,u,x2,y) +

q∑
i=1

zi∇ygi(x1,u,x2,y) = 0

gi(x1,u,x2,y) ≤ 0, i = 1, 2, ..., q

zigi(x1,u,x2,y) = 0, i = 1, 2, ..., q}.

Then the SP can be rewritten as

max
u∈U

min
x2,ȳ

{F (x1,u,x2, ȳ) : H(x1,u,x2) ≤ 0, g(x1,u,x2, ȳ) ≤ 0,

f(x1,u,x2, ȳ) ≤ f(x1,u,x2,y), (y, z) ∈M(x1,u,x2)}

As f is separable, f(x1,u,x2, ȳ) − f(x1,u,x2,y) is convex in ȳ. Assuming the problem

minx2,ȳ{F (x1,u,x2, ȳ) : H(x1,u,x2) ≤ 0, g(x1,u,x2, ȳ) ≤ 0, f(x1,u,x2, ȳ) ≤ f(x1,u,x2,y)}

satisfies Slater’s condition for any fixed (x1,u,y) and denoting the ith constraint ofH(x1,u,x2) ≤

0 by Hi(x1,u,x2) ≤ 0 and the jth constraint of g(x1,u,x2) ≤ 0 by gj(x1,u,x2) ≤ 0, respec-

tively, we can further rewrite the sub-problem as

max
u∈U

F (x1,u,x2, ȳ)

s.t.∇x2F (x1,u,x2, ȳ) +
∑
i

λi∇x2Hi(x1,u,x2) +
∑
j

πj∇x2gj(x1,u,x2, ȳ)

+ µ(∇x2f(x1,u,x2, ȳ)−∇x2f(x1,u,x2,y)) = 0

∇ȳF (x1,u,x2, ȳ) +
∑
j

πj∇ȳgj(x1,u,x2, ȳ) + µ∇ȳf(x1,u,x2, ȳ) = 0

Hi(x1,u,x2) ≤ 0,∀i

gj(x1,u,x2, ȳ) ≤ 0,∀j

f(x1,u,x2, ȳ) ≤ f(x1,u,x2,y)

λiHi(x1,u,x2) = 0,∀i

πjgj(x1,u,x2, ȳ) = 0,∀j

µ(f(x1,u,x2, ȳ)− f(x1,u,x2,y)) = 0

(y, z) ∈M(x1,u,x2)

λi ≥ 0,∀i, πj ≥ 0,∀j, µ ≥ 0.

(B.11)
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By enumerating all possible combination of the complementary slackness constraints, an

optimal solution of ( B.11) can be obtained since (4.14) has an optimal solution, and we can

apply Theorem 4.2 to complete the proof. In fact, it is easy to verify that a linear TSROBLO

formulation, which is often used in practice, satisfies all the conditions in 3), and thus has

an optimal x1.

B.3 Proof of Proposition 6.2

Proof. Since the cardinality of P is bounded by (2K − 1) ∗ |F |, it is sufficient to show that

a repeated zk obtained from SP leads to UB = LB. Suppose that we get (c∗, R∗), η∗,

Φ(c∗, R∗), z∗, ζ(c∗, R∗), and P k from the respective step in the k-th iteration and that z∗

has been obtained in a previously iteration, then it is easy to verify that P k does not change.

Hence, in the (k + 1)-th iteration, LB does not change either. Therefore, we have

LB =min{
∑
i∈IV

∑
nl∈NL

ûnli : (6.2)− (6.5), (6.12)− (6.13), ûnli ∈ {0, 1},∀nl ∈ NL, i ∈ IT ,

∑
i∈IT

wi(c
k, R∗)

∑
nl∈NL

unli ≤
∑
i∈IT

wi(c
∗, R∗)vi(z

k),∀zk ∈ P k}

≥ min{
∑
i∈IV

∑
nl∈NL

ûnli : (6.2)− (6.5), (6.12)− (6.13), ûnli ∈ {0, 1},∀nl ∈ NL, i ∈ IT

∑
i∈IT

wi(c
∗, R∗)

∑
nl∈NL

unli

∑
i∈IT

wi(c
∗, R∗)vi(z

∗)}

= min{
∑
i∈IV

∑
nl∈NL

ûnli : (6.2)− (6.5), (6.12)− (6.13), ûnli ∈ {0, 1},∀nl ∈ NL, i ∈ IT

∑
i∈IT

wi(c
∗, R∗)

∑
nl∈NL

unli ≤ Φ(c∗, R∗)}

≥ UB.

The first inequality holds since k − 1 constraints are dropped, resulting in a relaxation

problem. The second equality holds due to the fact that z∗ is optimal to SP for (c∗, R∗).

Since LB ≥ UB in the (k+1)-th iteration, the algorithm terminates and returns (c∗, R∗) as

optimal hyperparameters.
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