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Yaotian Wang, PhD
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The brain is the most complex organ in the human body. Studying the functional or-

ganization of such a complex organ is fascinating. As statisticians, we study the human

brain’s functional organization by developing statistical modeling methods for brain data.

Recent technological development brings opportunities and challenges: On one hand, enor-

mous quantities of brain data in various modalities are produced in many fields, including

biology, neurology, neuroscience, psychology, and psychiatry. On the other hand, human

brain data bring new challenges to data analysts because their unique properties differ from

conventional big data. This dissertation proposes novel statistical modeling methods to

address these challenges and understand the brain’s functional organization.

The human brain is a high-dimensional directed network system consisting of many re-

gions as network nodes that exert influence on each other. The directed influence from one

region to another is called directed connectivity and corresponds to one directed edge in

the directed brain network. We understand the brain’s functional organization by inves-

tigating how brain regions interact and form different network patterns when performing

different brain functions. This dissertation illustrates two of our methods for revealing high-

dimensional directed brain networks.

Chapter 2 explains a new Bayesian model for studying directed brain networks of patients

with epilepsy using their intracranial electroencephalography (EEG) data. Epilepsy is a

directed network disorder, as epileptic activity spreads from a seizure onset zone (SOZ) to

many other regions after seizure onset. Intracranial EEG data are multivariate time series

recordings of many brain regions. Using our model, we revealed the evolution of brain

networks during seizure development and uncovered unique directed connectivity properties

of the SOZ.

Chapter 3 presents a new Bayesian model for characterizing whole-brain directed net-

works of the healthy human population based on functional magnetic resonance imaging

iv



(fMRI) data. We also propose a computationally efficient algorithm to address the chal-

lenge of analyzing thousands of subjects’ fMRI data. Using our new model and algorithm,

we analyzed the resting-state fMRI data of around one thousand subjects from the Hu-

man Connectome Project (HCP) and revealed both population-mean and subject-specific

whole-brain directed networks of them.

Keywords: Brain network, directed connectivity, epileptic network, multi-subject fMRI,

variational Bayes.
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1.0 Introduction

The brain is the most complex organ in the human body. It is truly fascinating to

study the functional organization of such a complex organ. We want to understand how

the brain’s functional organization brings about different brain functions and how it differs

in psychiatric and neurological illnesses. As statisticians, we study the human brain by

developing statistical modeling methods for brain data. Recent technological development

brings opportunities and challenges: On one hand, enormous quantities of human brain

data in various modalities have been produced in many fields, including biology, neurology,

neuroscience, psychology, and psychiatry. On the other hand, as one of the most commonly

cited forms of big data, human brain data bring new challenges to data analysts because of

brain data’s unique properties that are different from conventional data. We develop new

statistical modeling methods for brain data in various modalities to address these challenges

and understand the human brain.

The human brain is a high-dimensional directed network system (Van Den Heuvel and

Pol, 2010) consisting of many brain regions as network nodes that exert influence on each

other. The directed influence from one region to another is called directed connectivity (also

called directed functional connectivity or effective connectivity (Friston, 1994; Mill et al.,

2017)) and corresponds to one directed edge in the directed brain network. To understand

how brain regions interact with each other and form different brain network patterns when

performing different brain functions, we develop statistical modeling methods to reveal high-

dimensional directed brain networks using brain data.

At the beginning of the dissertation research, we wanted to start by analyzing high-

quality brain data and studying a clear network phenomenon. The intracranial electroen-

cephalography (EEG) data from patients with epilepsy satisfy these two requirements, as

explained below. Epilepsy is the fourth most common neurological disorder, affecting ap-

proximately 3 million people in the United States. In the epilepsy setting, the propagation

of seizures from a seizure onset zone (SOZ) to other healthy brain regions is a clinically

important example of pathological directed brain networks (Bernhardt et al., 2015; Englot
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et al., 2016). Patients with epilepsy typically take medications to control their symptoms.

Unfortunately, about 40% of patients develop drug-resistant epilepsy (Burns et al., 2014).

The best chance for these patients to achieve seizure control is surgically resecting the SOZ.

Therefore, localization of the SOZ is critical to the success of the surgery. To localize the

SOZ, intracranial EEG data are recorded using cortical or depth electrodes (typically, >

30 regions). Given that intracranial EEG is an invasive method, its recordings have high

temporal and spatial resolution and a strong signal-to-noise ratio (SNR) (Cervenka et al.,

2013). Overall, seizures are a clear pathological network phenomenon, and intracranial EEG

data from patients with epilepsy are of high quality. As a result, our initial study focused on

investigating the epileptic high-dimensional directed brain network using intracranial EEG

data.

Existing directed brain network results of epilepsy were mostly about low-dimensional

directed networks between the SOZ and a few contiguous regions (Korzeniewska et al., 2014).

Results of high-dimensional directed networks between the SOZ, its adjacent regions, and

many other non-SOZ regions are lacking. To address this knowledge gap, We develop a

new statistical model to characterize the SOZ, its adjacent regions, and many other non-

SOZ regions as one integrated high-dimensional directed network system. We develop a

Bayesian method to produce efficient estimates of the model parameters by incorporating the

prior information that high-dimensional brain networks tend to have a modular organization

(Meunier et al., 2009; Newman, 2006; Park and Friston, 2013; Sporns and Betzel, 2016).

The modular organization (also called modularity) is a network pattern in which network

nodes within the same module interact more strongly and densely with each other than with

nodes in different modules. Overall, one crucial novelty of the proposed Bayesian method

is to develop a unified Bayesian framework to simultaneously identify modules and directed

connections among a large number of brain regions.

We applied the proposed Bayesian method to intracranial EEG recordings from six pa-

tients with medically intractable focal epilepsy. We revealed the evolution of brain networks

from normal to abnormal epileptic states and uncovered unique directed connectivity proper-

ties of the SOZ during seizure development. To demonstrate the effectiveness of our method

in uncovering different directed connectivity properties of different brain regions, we de-

2



veloped a new SOZ localization method based on the network results and compared our

identified SOZ candidate regions against patients’ clinically localized SOZ (used as the given

truth). Our method achieved high accuracies in localizing the SOZ (100% true positive rates

and less than 3% false positive rates) for all six patients.

Despite the success in revealing the brain network evolution and uncovering directed

connectivity properties, our network results based on intracranial EEG data have several

limitations. First, since intracranial EEG is an invasive method, intracranial EEG data are

generally collected from patients with epilepsy or brain tumors and cannot be collected from

healthy subjects. Second, intracranial EEG records the activity of only a small portion of

the brain. Therefore, we cannot investigate whole-brain directed networks using intracranial

EEG data. Third, intracranial EEG electrode placement varies across different patients. As

a result, our analysis of intracranial EEG data can only be performed subject by subject

and cannot be generalized to the population of subjects. As our understanding of the hu-

man brain deepened, we wanted to scale up our study for whole-brain directed networks of

the healthy human population. Therefore, we started to study many subjects’ functional

magnetic resonance imaging (fMRI) data, as they provide non-invasive measurements of the

activity of the entire human brain with a high spatial resolution (Lindquist, 2008).

Given that whole-brain directed networks also have modular organization because of

functional specialization and integration (Friston, 1994), we extend the previous Bayesian

model to analyze resting-state functional magnetic resonance imaging (fMRI) data from

thousands of subjects and characterize their whole-brain directed networks. To accommodate

the variation of brain networks across subjects, we build a Bayesian framework allowing

each region to be in different modules and to have different directed connections in different

subjects’ brain networks. We also develop a novel variational Bayesian method for fMRI

data analysis to address the computational challenges that arise. As far as we know, this is

the first method that can simultaneously identify modules and directed connections in the

whole-brain directed networks of many subjects.

Using our new method, we analyzed the resting-state fMRI data of around one thousand

subjects from the Human Connectome Project (Van Essen et al., 2013, HCP). We revealed

both population-mean and subject-specific whole-brain directed networks. We identified

3



modules in accord with functional brain systems specialized for various functions (Power

et al., 2011), revealed directed connections between modules with different specialized func-

tions, and uncovered several regions that could be involved in more than one brain function.

We also assessed our method’s reproducibility by comparing independent analysis results of

different fMRI runs of the same subjects.

The rest of the dissertation is organized as follows. Chapter 2 illustrates the study

on directed brain networks of patients with epilepsy using intracranial EEG Data. The

methodology has been previously published in (Li et al., 2021). The real intracranial EEG

data analysis has been previously published in (Wang et al., 2022). Chapter 3 explains the

study on whole-brain directed networks of many subjects using fMRI data. Wang et al.

(2023) is the published version. Chapter 4 describes the future research.

4



2.0 Study on Directed Brain Networks of Patients with Epilepsy Using

Intracranial EEG Data

The majority of this chapter has been previously published in (Li et al., 2021; Wang

et al., 2022).

2.1 Introduction

Brain activities form a directed network, where network nodes are brain regions and each

network edge represents a directed influence exerted by one region on another. Such directed

information flow from one region to another is referred to as directed connectivity also called

directed functional connectivity or effective connectivity (Friston, 1994; Mill et al., 2017).

The purposes of this chapter are to present a new statistical approach for the analysis of

intracranial electroencephalographic (intracranial EEG) data and to use our approach to

uncover the normal and abnormal directed brain networks of patients with epilepsy over the

course of seizure development.

Seizures are a directed network phenomenon (Rosenow and Lüders, 2001), as abnormal,

excessive, and synchronous neuronal activities start from the seizure onset zone (SOZ) and

propagate to otherwise healthy brain regions. Brain surgery to remove the SOZ is a common

treatment consideration for patients with drug-resistant epilepsy. Pre-surgical evaluation

includes localization of the SOZ using intracranial EEG, which is absolutely critical to the

success of the surgery. Clinicians place intracranial EEG electrodes on the exposed brain

(inside the skull) of patients with epilepsy to record their neuronal activities in many regions.

The recorded data are high-dimensional multivariate time series of voltage waveforms, which

often exceed 50 channels (with each channel corresponding to one region). Figure 2.4b shows

the electrode placement of a patient who underwent intracranial EEG recordings in epilepsy

evaluation. Figure 2.4a illustrates a segment of intracranial EEG recordings of this patient.

To localize the SOZ, trained EEG experts visually examine intracranial EEG waveforms
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and designate the region that first shows abnormal epileptic activity to be the SOZ (Jacobs

et al., 2012). However, despite careful planning, sometimes visual analysis of intracranial

EEG fails to localize the SOZ clearly (Harroud et al., 2012). One crucial reason is that

sometimes seizure onsets consist of low amplitude, very fast activity. This activity may not

generate appropriate power that can be visually detected until the seizure is well underway.

Activity with greater power that can be identified may occur later, by which time seizure

activity has spread beyond the actual SOZ and involves brain regions that are involved in

seizure occurrence but do not serve as the electrical source. Given that seizures are a directed

network phenomenon, our method for mapping directed brain networks (i.e., identifying

directed connections) using intracranial EEG data is expected to improve understanding of

the brain system and localization of the SOZ.

Intracranial EEG data are high-dimensional multivariate time series recordings of many

small regions’ neuronal activities at a high temporal resolution (millisecond scale) and spatial

resolution (about 10 mm in diameter) and with a strong signal-to-noise ratio (SNR) (Cer-

venka et al., 2013), in contrast to popular functional magnetic resonance imaging (fMRI) with

a low temporal resolution and scalp EEG with a low spatial resolution. As such, intracranial

EEG data provide valuable information about directed brain networks.

Mapping directed brain networks based on high-dimensional multivariate time series,

however, faces multiple challenges. First, it is difficult to construct a model that can ac-

curately characterize the complex mechanism of a high-dimensional brain system, i.e., how

each region’s activity depends on many others’ activities. Second, the estimation of a high-

dimensional model has a large variance. With many regions being studied and enormous

possibilities in directed connections among the regions, it is challenging to identify only a few

strong connections among enormous candidate ones. Though incorporating anatomic con-

nectivity (AC) information into the directed connectivity model can improve the estimation

of directed connections (Hahn et al., 2019), AC information is not always available. Here, we

consider mapping directed brain networks without relying on AC information. Simple spar-

sity regularization does not address the challenge because high-dimensional sparse networks

have many different forms, most of which do not accurately reflect the brain’s functional

organization. For example, standard L1-regularized estimates (Basu and Michailidis, 2015;
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Nicholson et al., 2017) lead to a sparse network in which every region has only a few con-

nections with other regions. However, this sparse network is inconsistent with known brain

networks in which regions with similar functions tend to be closely connected (Petersen and

Sporns, 2015). Third, the computation for analyzing high-dimensional multivariate time se-

ries data can be intensive. Existing approaches to mapping directed networks usually address

only a part of these challenges, as explained below.

Network mapping approaches fall into two major categories: information-theoretic-measure-

based methods and model-based methods. The former includes correlations, cross-correlations

(Kramer et al., 2008; Schiff et al., 2005), cross-coherence (Schröder and Ombao, 2019), trans-

fer entropy (Vicente et al., 2011), directed transinformation (Hinrichs et al., 2006), directed

information (Liu and Aviyente, 2012), and many others (Van Mierlo et al., 2013; Wilke et al.,

2011). Although these measures are fast to compute, they are mainly for quantifying the

pairwise relationship between regions and ignore system features of the brain in which each

region’s activity depends on many other regions’ activities. Thus, information-theoretic-

measure-based approaches lack the ability to delineate the entire signal pathway of directed

connections from regions to regions.

Model-based methods have been developed to describe simultaneous directed connec-

tivity among all the recorded regions. The most popular models include dynamic causal

modeling (DCM, Friston et al., 2003) and neural mass models (NMM, David and Friston,

2003), which use ordinary differential equations (ODE) to characterize directed connectivity.

Because of their complex mathematical formulation, the DCM and NNM are typically used

for low-dimensional brain networks (consisting of only a few brain regions being studied).

To address this limitation, Zhang et al. (2020, 2015, 2017) proposed to use linear ODEs to

approximate high-dimensional brain systems (consisting of many regions). However, param-

eter estimation of deterministic ODE models is sensitive to model specification, data noise,

and data-sampling frequency.

We propose to use a multivariate autoregressive state-space (MARSS) model for in-

tracranial EEG data to address the limitation of existing methods. First, the state-space

framework allows for separating the model error due to the inherent model inadequacy for a

complex system and the data measurement error. The MARSS with the two errors is flex-
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ible to approximate different systems and is robust to various deviations from the assumed

model. Equally importantly, the formulation of MARSS is much simpler than ODE models,

which thus, enables fast computation for high-dimensional data.

Different from standard MAR (Goebel et al., 2003; Harrison et al., 2003; Korzeniewska

et al., 2008) and MARSS (Cheung et al., 2010; Riera et al., 2004), our MARSS is uniquely

constructed for analyzing intracranial EEG data to map directed brain networks. It has been

widely documented (Newman, 2006; Sporns, 2010) that brain networks have the modular

organization (or modularity), in which regions are more densely connected with regions in

the same module than with regions otherwise. Our approach incorporates the modular

organization to greatly improve the model estimation. Specifically, we propose a stochastic

blockmodel (SBM)-motivated prior for the MARSS parameters, restricting the estimated

network to have the modular organization. The SBM (Airoldi et al., 2008; Durante and

Dunson, 2014; Geng et al., 2019; Nowicki and Snijders, 2001) is a generative model for

networks that have the modular organization. However, existing applications of the SBM

(Arroyo-Relión et al., 2017; Paul and Chen, 2018) and most module identification methods

(also called community detection, a terminology often used in social network literature)

(Goldenberg et al., 2010; Zhao et al., 2012) are for observed networks with known edges.

The proposed method addresses a more challenging problem of inferring unobserved networks

based on multivariate time series measurements of network nodes’ activities.

Using the SBM-motivated prior for MARSS parameters, we develop a Bayesian frame-

work to make inferences about the underlying network. The proposed Bayesian approach has

three major advantages. First, our method improves the efficiency in identifying connected

brain regions (i.e., a high true positive) and produces scientifically interpretable network

results by incorporating the modular organization into the model. Second, the proposed

Bayesian framework accounts for the model error due to the model inadequacy for the com-

plex system as well as the statistical uncertainty in identifying connected regions. Third,

the simple MARSS formulation brings the flexibility to approximate various brain systems

and enables fast computation for high-dimensional multivariate time series data. As such,

our approach effectively addresses the three major challenges in mapping high-dimensional

brain networks.
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We apply the new MARSS model to multi-channel intracranial EEG recordings from six

patients with epilepsy. We show the evolution of these patients’ high-dimensional directed

networks from interictal to ictal phases. Changes in directed connections and modules are

uncovered not only for the SOZ and adjacent regions but also for many more distant non-

SOZ regions. We also use these network results to localize the SOZ independently from

traditional visual analysis in clinical practice to demonstrate the effectiveness of our method

in uncovering different directed connectivity properties of different regions. We compare

identified candidate SOZ regions against patients’ clinically localized SOZ (used as the given

truth). We show that our method achieved high accuracies in localizing the SOZ (100% true

positive rates and less than 3% false positive rates) for all six patients.

The rest of this chapter is organized as follows. In Section 2.2, we introduce the new

MMSAR model for directed brain networks with the modular organization. We build a

Bayesian hierarchical model with an SBM-motivated prior to make inferences of MARSS pa-

rameters and develop an efficient Markov chain Monte Carlo (MCMC) simulation algorithm

for the ensuing posterior inference. In Section 2.3, we apply the developed Bayesian model

to data simulated under two different model settings and network patterns and compare the

ensuing results with those of existing network mapping methods. We show that the proposed

method is robust to various deviations from the assumed model and outperforms existing

methods by achieving much higher accuracy in identifying connected brain regions. Section

2.4 illustrates the analysis of intracranial EEG recordings of six patients with epilepsy using

our new MMSAR model. Section 2.5 concludes with a discussion.

2.2 Dynamic System Models and Bayesian Inference

2.2.1 The Multivariate Autoregressive State-Space Model

Let y(t) = (y1(t), . . . , yd(t))
′ be observed intracranial EEG measurements of d brain

regions (equivalently d network nodes of the brain network under study) at time t and

x(t) = (x1(t), . . . , xd(t))
′ be the underlying neuronal state functions of the d brain regions
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at time t for t = 1, . . . , T . Since each intracranial EEG electrode directly records one brain

region’s neuronal activity with high spatial and temporal resolutions, we propose a simple

space model that links yi(t) to xi(t):

yi(t) = ci · xi(t) + ϵi(t), i = 1, . . . , d, (2.1)

where ci is a unknown constant, and ϵi(t) is a data measurement error with mean zero.

For the state model that describes directed connectivity among the d regions at the

neuronal level, we propose to use the simplest dynamic system model, i.e., the first-order

multivariate-autoregression (MAR), for x(t):

xi(t) =
d∑

j=1

Aij · xj(t− 1) + ηi(t), i = 1, . . . , d, t = 1, . . . , T,

where ηi(t) is the model error due to the model inadequacy in characterizing the dynamics

of region i.

Our goal is to develop a parsimonious model to detect the existence of temporal de-

pendence among neuronal activities of regions rather than building a comprehensive model

that can explain all the neuronal activities. Due to the high-dimensionality and the current

limited understanding of the brain system, it is extremely difficult to build such a com-

prehensive dynamic system model. Even though more complex models, such as high-order

MARs, may fit the observed data better, they still suffer from the model inadequacy. More

seriously, high-order MARs have large estimation errors because they have at least d2 more

parameters than first-order MARs. Consequently, the first-order MAR is more efficient for

detecting connected regions and addresses our needs.

Under the MARSS, identifying connected regions and mapping the brain network are

equivalent to selecting statistically significant nonzero Aijs. To distinguish nonzero directed

connections from zero ones, we introduce indicators for Aijs:

xi(t) =
d∑

j=1

γij · Aij · xj(t− 1) + ηi(t), i = 1, . . . , d, t = 1, . . . , T, (2.2)

where γij is an indicator, taking values of either 0 or 1. We use γijs to stand for the set

of indicators {γij, i, j = 1, . . . , d}. The use of indicators is similar to the “spike and slab”
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prior (Ishwaran and Rao, 2005; Miller, 2002; Theo and Mike, 2004) in the Bayesian variable

selection framework (Brown et al., 1998; George and McCulloch, 1993, 1997; Yi et al., 2003).

Under (2.2), identifying connected brain regions, i.e., selecting directed network edges, is

equivalent to selecting nonzero γijs, which is the focus of our model estimation.

The observation model (2.1) and the state model (2.2) together are the proposed MARSS

for the brain’s directed connectivity. Note that the first-order MARSS is different from the

first-order MAR: The former is robust to violations of model assumptions, but the latter is

not. This is because the MARSS uses two error terms, ηi(t) and ϵi(t), to accommodate the

model inadequacy and measurement error separately.

We let ηi(t)
i.i.d∼ N(0, 1) for several reasons. First, ci in (1) and the variance of ηi(t) are

not uniquely defined. Since we treat the former as unknown, we fix the latter at 1 to avoid

the identifiability issue. Second, letting ηi(t) be independent between regions enables γij

and Aij to capture the dependence between regions more efficiently than otherwise. Third,

letting ηi(t) be independent over time brings parsimony to the model. Again, our purpose

is to detect the existence of temporal dependence between regions’ intracranial EEG rather

than capturing all possible temporal dependence. Similarly, for the latter two reasons, we

let ϵi(t)
i.i.d∼ N(0, τi). We show through simulation studies (Section 2.3) that our approach

is robust to violations of model assumptions.

2.2.2 Bayesian Hierarchical Model for MARSS

Since nonzero γijs define the brain’s directed network, we impose the modular organi-

zation on the estimated brain network by using a stochastic blockmodel (SBM)-motivated

(Airoldi et al., 2008; Durante and Dunson, 2014; Fienberg et al., 1985; Nowicki and Snijders,

2001) prior for γijs. The modular organization means that regions within the same module

connect more closely with each other than with regions in a different module. The modu-

lar organization fits the brain’s functional organization reported in the literature (Newman,

2006; Sporns, 2010) and is also useful in epilepsy diagnosis. For example, regions in the

SOZ’s module are those affected by the SOZ’s activities most. Information about the SOZ’s

module and its changes during seizure development can help neurologists assess the effect of
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seizures on brain functions. In summary, developing the SBM-motivated prior for MARSS

parameters to impose the modular organization on estimated networks is another important

novelty of our approach.

Let K be the pre-specified number of modules. Let mi = (mi1, . . . ,miK)
′ be a K-

dimensional vector with only one element being 1 and the rest being 0; mi labels the module

of region i, i.e., mik = 1 indicates region i in the kth module. Let Bk1k2 , k1, k2 = 1, . . . , K,

denote the prior probability of a nonzero directed connection from a region in module k2 to

another region in module k1. LetB be aK×K matrix with entriesBk1k2 for k1, k2 = 1, . . . , K.

2.2.2.1 Prior Specification for the Modular Organization

The prior for the brain network with the modular organization is a joint distribution for

indicators γijs, the module labels mis, and the probability matrix B as follows:

γij|mi,mj,B
ind∼ Bernoulli(m′

i B mj); (2.3)

mi
i.i.d∼ Multinomial(1; p1, . . . , pK) for i = 1, . . . , d, and (p1, . . . , pK) ∼ Dirichlet(α);(2.4)

Bkk
i.i.d∼ Uniform(l0, 1) and Bk1k2

i.i.d∼ Uniform(0, u0), k, k1, k2 = 1, . . . , K, k1 ̸= k2;(2.5)

where l0 and u0 are given constants between 0 and 1, and α = (1, . . . , 1), assigning uniform

weights to different modules. The distribution (2.3) specifies the probabilities of both within-

module and between-module connections. For example, if mik1 = 1 and mjk2 = 1, then

m′
i B mj = Bk1k2 , which is the probability of existing a directed connection from module

k2 to module k1; if mik = 1 and mjk = 1, m′
i B mj = Bkk, which is the prior probability

of existing a directed connection between two regions in the same module k. Since within-

module connections are dense and strong, while between-module connections are sparse

(Park and Friston, 2013), we let u0 = 0.1 and l0 = 0.9. The large difference between u0

and l0 facilitates differentiating within-module connections from between-module ones and

identifying modules.

The distributions (2.3), (2.4), and (2.5) together define the SBM-motivated prior for γijs.

Our goal is to identify modules and select significant edges by estimating the module labels

for regions, mis, and the indicators for edges, γijs.
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2.2.2.2 Prior Specification for Aijs

We assign a normal prior to Aij:

Aij
i.i.d∼ N(0, ξ20), (2.6)

where ξ0 is a positive constant so that the density of Aij is almost flat within its domain.

2.2.2.3 Priors for Other Parameters

Let x(0) = (x1(0), . . . , xd(0), c = (c1, . . . , cd), µ = (µ1, . . . , µd), and τ = (τ1, . . . , τd). We

assign the following priors to the rest parameters:

xi(0)
ind∼ N(µi, 1), µi

i.i.d∼ N(0, ξ21), ci
i.i.d∼ N(0, ξ21), p(τi) ∝

1

τ 1+ρ0
i

exp{−ρ0
τi
}, i = 1, . . . , d,(2.7)

where ρ0 is a pre-specified small positive constant to give an almost flat prior for τ and ξ1

is a large positive constant to give almost flat priors for ci and µi.

2.2.2.4 Joint Posterior Distribution

All the parameters to be estimated in the proposed Bayesian framework are Θ =

{Γ,B,M,A, c, τ ,µ,p}, where Γ is a d × d matrix with entries γij for i, j = 1, . . . , d, M

is a K × d matrix with the ith column being mi, A is a d × d matrix with entries Aij for

i, j = 1, . . . , d, and p = {p1, . . . , pK}.

LetX = {x(0), . . . ,x(T )} andY = {y(1), . . . ,x(T )}. The MARSS model (2.1) and (2.2)

with prior distributions (2.3), (2.4), (2.5), (2.6), and (2.7) lead to the posterior distribution:

p(X,Θ|Y) ∝ p(Y|X,Θ) · p(X|Θ) · p(Θ). The detailed formulation of the joint posterior

distribution is provided in the Appendix A.1.

2.2.3 EM Algorithm for Setting Initial Values and Hyperparameter

We simulate from p(X,Θ|Y) with a partially collapsed Gibbs Sampler (Van Dyk and

Park, 2008), whose Markov Chain Monte Carlo (MCMC) simulation steps are provided in

the Appendix A.2.
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The MCMC simulation can take many iterations to converge especially for large d. To

address this issue, following the practice suggested in (Chapter 13.1, Gelman et al., 2013),

we use an expectation-maximization (EM) algorithm to find the starting values for the

MCMC simulation. Specifically, we optimize p(Y|Θ̂) =
∫
p(Y|Θ̂,X) · p(X|Θ)dX by the

EM algorithm, in which the state functions X are treated as missing values. The output

of the EM algorithm, Θ̂ in the final step, is used as the initial value for the following

MCMC iterations. For all our simulation and real data analysis, we verified that the MCMC

algorithm converged upon evaluating the Gelman-Rubin statistic (Gelman and Rubin, 1992).

We need to determine the value of K, the number of modules, for the proposed Bayesian

model. Standard approaches to selecting hyperparameters for Bayesian methods include

information criteria and cross-validation. However, these methods are time-consuming for

large d, because they all require running the posterior simulation for each candidate K. We

propose to select the value for K by the EM algorithm. Specifically, we let K = d in our

EM algorithm. We set the initial values of mii to 1 for i = 1, . . . , d, that is, we let each

region form one independent module at the start of the EM algorithm. As the algorithm

iterates, several regions fall into the same module, and the number of distinct modules of

the d regions becomes stable. Since the EM algorithm can find the number of modules that

leads to a locally optimal posterior, we let the K in the Bayesian model be the number of

distinct modules in the final step of the algorithm.

2.2.4 Posterior Inference

We use two posterior probabilities to map the brain network: P̂m
ij = 1

S

∑S
s=1 δ(m

(s)
i ,m

(s)
j )

and P̂ γ
ij = 1

S

∑S
s=1 γ

(s)
ij , where S is the total number of MCMC samples after burn-in. The

former is the posterior probability of two regions i and j in the same module, and the latter

is the posterior probability of nonzero directed connectivity from region j to i. We use P̂m
ij ,

i, j = 1, . . . , d, to identify modules. Given a threshold h̄m, if P̂m
ij > h̄m, regions i and j are

put in the same module; if additionally, P̂m
jk > h̄m, then the three regions i, j, and k are

put in the same module regardless of the value of P̂m
ik . We use P̂ γ

ij to select directed network

edges. Given a threshold h̄γ, if P̂ γ
ij > h̄γ, we deem the directed connection from region j to
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i nonzero and select the directed network edge from j to i.

2.2.4.1 Choice of Thresholds.

The total numbers of potential network edges and possible network patterns are enor-

mous for high-dimensional networks. Because of the uncertainty resulted from the high

dimensionality, posterior probabilities P̂m
ij and P̂ γ

ij are all small. To address this issue, many

Bayesian methods select variables based on the ranks of their posterior probabilities (Li

et al., 2015; Zhang et al., 2017). We here propose to determine the thresholds for P̂m
ij and

P̂ γ
ij based on their significance/p-values under the null hypothesis that all the regions are

independent from each other. For simulated data, we generate a null data set, as explained

in detail below.

We first generate a null data set Y0 that satisfies the null hypothesis. Specifically, given

the long simulated time series before the time of our interest, we randomly sample a short

segment Y 0
i = {yi(t), t = ti + 1, . . . , ti + T} of each region i and let the pairwise distance

between any two regions’ segments, |ti − tj|, no smaller than 2T . All the regions’ segments

Y 0
i , i = 1, . . . , d, formY0, in which the temporal dependence of each region’s time-series data

points remains while the dependence between regions’ time series is almost none. Applying

our Bayesian method to Y0, we obtain the ensuing posterior probabilities, which form the

empirical null distributions for P̂m
ij ’s and P̂ γ

ij’s, respectively. We evaluate the p-values of

P̂m
ij ’s and P̂ γ

ij’s based on the null distributions and determine the thresholds for P̂m
ij ’s and

P̂ γ
ij’s corresponding to the chosen p-value. We here use the p-value of 1% to ensure a low

false positive rate.

For real intracranial EEG data, we propose to use the baseline period, a period way

before seizure onset time, as the null data set. The details are described in Section 2.4.2.
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2.3 Simulation Studies

2.3.1 Example 1: Simulation from A Third-Order MARSS

We simulated multivariate time-series data from the following third-order MARSS.

xi(t) =
d∑

j=1

A1,ij xj(t− 1) +
d∑

j=1

A2,ij xj(t− 2) +
d∑

j=1

A3,ij xj(t− 3) + ηi(t) and

yi(t) = ci · xi(t) + ϵi(t).

The above system has three modules of sizes 15, 15, and 20. We consider region j has a

directed influence over i, if at least one of A1,ij, A2,ij, and A3,ij is nonzero. Figure 2.1a shows

the simulated network pattern, where the presence of a directed connection is indicated by

an edge (grey edges for within-module connections and purple edges for between-module

connections).

We simulated ηi(t) from the model

η(t) = 0.5η(t− 1) + δ(t) and δ(t)
i.i.d∼ MNV(0,Σ1), (2.8)

where Σ1 is a block diagonal matrix with each block corresponding to one module. The

diagonal entries of Σ1 all equal 1 and off-diagonal entries in diagonal submatrices follow

Uniform(0,0.5). The upper bound of off-diagonal entries is chosen such that Σ1 is strictly

positive definite.

We generated the observation errors ϵ(t) = (ϵ1(t), . . . , ϵd(t))
′ from the model

ϵ(t) = 0.5ϵ(t− 1) + ζ(t) and ζ(t)
i.i.d∼ MVN(0,D

1
2Σ2D

1
2 ), (2.9)

where Σ2 is created in the same way as Σ1, and D is a d-by-d diagonal matrix with the

diagonal entries chosen such that the SNRs of all the time series equal 10. The median SNR

of real intracranial EEG data is much higher than 10 (Zhang et al., 2015). As such, the

simulated model errors and data errors are all spatially and temporally correlated, which

violates the model assumptions of the proposed MARSS.

Using the simulated edges as the true values, we calculated false positive rates (FPR) and

true positive rates (TPR) of network edge selection based on different thresholds for P̂ γ
ijs.
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(a) Simulated Brain Network (b) ROC Curves (c) Estimated Brain Network

Figure 2.1: Simulation Study of Data Generated from a Third-Order MARSS. (a) The true simulated
network structure. (b) The ROC curves of the proposed Bayesian method with the SBM-motivated prior
(BSBM) and competing methods including MAR(L1), PDC, the spectrum synchronicity, and Glasso. (c)
The estimated network corresponds to 1% p-value.

For comparison, we examined the FPRs and TPRs of popular competing methods, including

the third-order MAR with L1 regularization (implemented by using the R package BigVAR

(Nicholson et al., 2017)), denoted by MAR(L1), partial directed coherence (PDC) (Baccalá

and Sameshima, 2001), the spectrum synchronicity (Euán et al., 2018), and graphical lasso

(Glasso) (Friedman et al., 2014; Witten et al., 2011). Figure 2.1b shows the ROC curves of

TPRs vs. FPRs for these methods. The proposed Bayesian method with the SBM-motivated

prior (BSBM) outperformed the other methods as evidenced by its much greater TPRs given

the same FPRs.

Figure 2.1c shows the estimated network pattern using the thresholds corresponding to

1% p-value for P̂m
ij and P̂ γ

ij. The proposed method was able to identify three modules. For

detecting the directed connections among the 50 regions, the overall TPR and FPR are 0.84

and 0.02. More specifically, the TPR and FPR are 0.95 and 0 for within-module connections

and 0.45 and 0.02 for between-module connections. The comparably low TPR for selecting

between-module connections is due to several reasons. First, since the module identification

(similar to clustering) is subjective, our selection of directed network edges based on P γ
ij does

not account for the identified modules. As within-module connections (accounting for 32.6%

of all candidate connections) are much denser than between-module connections (9.0% of

all candidate connections), network edge selection is more towards selecting within-module
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connections, so the overall network edge selection accuracy is high. Second, the number of

candidate between-module connections is enormous and even more than the total number

of true network edges. As such, the true between-module connections are highly sparse and

more difficult to identify than within-module connections. Third, since the number of null

connections is large, we used a high threshold for P γ
ij to avoid many false selections, which

also leads to a low TPR for selecting between-module connections. Overall, the proposed

method outperformed existing methods by achieving a higher TPR and almost zero FPR.

In summary, this simulation demonstrates the robustness of our MARSS to violations of

model assumptions and its efficiency in identifying connected regions and modules.

2.3.2 Example 2: Simulations from DCMs

We simulated time series from the dynamic causal modeling (DCM) (Friston et al. (2003);

Kiebel et al. (2008)), the most popular ODE-based model for the brain’s directed connectiv-

ity. We used the simulation studies in this section to assess the robustness and efficiency of

our proposed Bayesian method in identifying directed connections for data generated from

models highly distinct from our MARSS.

We first used the neuronal state equations (which consist of many ordinary differential

equations) in the DCM for EEG data (DCM-EEG) (Kiebel et al. (2008)) to generate the state

functions x(t), because both EEG and intracranial EEG signals are mainly from pyramidal

neurons. The state equations characterized a directed network among 50 regions with 3

modules. Figure 2.2a shows the simulated network, where an edge indicates the presence of

a directed connection between a pair of regions. Based on the generated x(t), we used the

observation model (2.1) to simulate y(t), and (2.9) to generate observational errors ϵi(t)’s.

As such, the data-generating model was distinct from the assumed MARSS. We applied

our Bayesian method to the simulated data and obtained posterior probabilities for all the

directed connections.

Given the simulated directed connections (directed edges) as the true values, we calcu-

lated FPR and TPR of network edge selection based on different thresholds for P̂ γ
ijs. For

comparison, we also examined FPRs and TPRs of other competing methods. In addition to
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the ones mentioned in Section 2.3.1, we apply transfer entropy (TE) (Vicente et al. (2011))

to our simulated data. Note that the DCM (Kiebel et al. (2008)) could not produce the net-

work estimate because its estimation for 50 regions is computationally infeasible. The ROC

curves of TPRs vs. FPRs for these methods are shown in Figure 2.2b. BSBM outperformed

other methods by achieving a much larger area under the curve.

Secondly, we compared our BSBM with competing methods using fMRI data simulated

from a whole-brain directed network model (DCM-fMRI) (Frässle et al. (2018)). Figure

2.2c shows the simulated network, which had the small world architecture of the human

brain. Though the proposed MARSS is distinct from the DCM-fMRI, our BSBM achieved

the largest area under the ROC curve, as shown in Figure 2.2d. Note that our method also

outperformed the sparse regression DCM (srDCM) (Frässle et al. (2018)), which is a recent

extension of the DCM-fMRI to high-dimensional directed networks.

In summary, these simulations demonstrate that the proposed BSBM is still efficient even

though the underlying models for the data generation are highly distinct from the proposed

MARSS.

2.4 Real Intracranial EEG Data Analysis

2.4.1 Subjects and Intracranial EEG Recordings

We analyzed intracranial EEG recordings of six patients with medically intractable focal

seizures who underwent evaluation for epilepsy surgery. Intracranial EEG implantation was

customized for each patient. Each patient had at least three clinical and electrographic

seizures with clear SOZs. A board-certified EEG expert examined intracranial EEG data

and determined SOZs and seizure onset times. Table 2.1 presents information about six

patients with drug-resistant epilepsy in this study. The information includes the number

of seizures analyzed, the age of the patient at the recording, epilepsy types, etiology, and

surgical outcome for each patient.

For each patient, we analyzed his/her intracranial EEG recordings from 300 seconds
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(a) Simulated network DCM-EEG (b) ROC curves for DCM-EEG

(c) Simulated network DCM-fMRI (d) ROC curves for DCM-fMRI

Figure 2.2: Simulation Studies of Data Generated from DCMs. (a) The simulated network from the DCM
for EEG data. (b) ROC curves for directed connections identified by six methods for the data generated
in (a). (c) The simulated network from the DCM for fMRI data. (d) ROC curves for directed connections
identified by six methods for the data generated in (c).
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Table 2.1: Patient Information.

Patient Number of Age Gender Epilepsy Etiology Surgical

Seizures

Analyzed Type Outcome

1 3 23 M left lateral dysplasia EC2 (No

frontal surgery, but

RNS installed)

2 7 57 M right gliosis EC1B

temporal

3 4 28 F left inferior dysplasia EC1B

frontal

4 4 30 M left temporal dysplasia EC1A

parietal

5 5 44 M left lateral dysplasia EC1A

frontal

6 3 45 M right unk EC3

subtemporal
Age indicates the patient’s age at recording.
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before to 300 seconds after electrographic seizure onset. The recordings were down-sampled

to 1,024 Hz (collected at a 4,096 Hz [Natus, Middleton, WI USA]), filtered with a 60 Hz

notch filter, and underwent removal of the first principal component to minimize artifacts.

The analysis was blinded to the location of clinically determined SOZ but not the seizure

onset time so as to provide a common reference time point with respect to the starting time

of electrographic ictal activity. Identified directed brain networks (averaged across seizures)

were presented for every 25-second window.

2.4.2 Methods: Identification of Directed Brain Networks

For each patient, we identified his/her directed brain network in any 25-second window

by simultaneously identifying directed connections and modules in the network, using P̂m
ij s

and P̂ γ
ijs defined in Section 2.2.4, as explained in detail below.

We first used the proposed BSBM to analyze the patient’s 1-second intracranial EEG

segments independently and obtained the above two posterior probabilities for every 1-

second segment. For every pair of regions i and j, we evaluated the evidence for the directed

connection from region j to i being present in the window from t to t + 25 seconds (the

[t, t + 25] window) by averaging P̂ γ
ij (the posterior probabilities of γij = 1) from all non-

overlapping 1-second segments in the window across all seizures, where t = 0 is the seizure

onset time, and t = −300,−299, . . . , 275. We denoted the ensuing average probability by

P̂ t,γ
ij and referred to it as the network edge probability. The network edge probability, P̂ t,γ

ij ,

quantifies how likely, on average, the directed connection from region j to i was present

in the 25-second window. Similarly, we obtained the average posterior probability of two

regions, i and j, in the same module in the window. This average probability is denoted

by P̂ t,m
ij and referred to as the module probability. The module probability, P̂ t,m

ij , quantifies

how likely, on average, regions j and i were in the same module in the [t, t+ 25] window.

For each 25-second window [t, t + 25], we identified its directed brain network by using

network edge probabilities, P̂ t,γ
ij s, to identify directed connections and by using module prob-

abilities, P̂ t,m
ij s, to identify modules. For every pair of regions, i and j, if P̂ t,γ

ij was greater

than a threshold, the directed connection from region j to i was deemed to be present in
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that window. Similarly, if P̂ t,m
ij was greater than a threshold, regions j and i were deemed

to be in the same module in that window. To determine the thresholds, we used the earliest

25-second window (275-300 seconds before seizure onset time in our study) as the baseline

window. The top 1% percentile of all the P̂−300,γ
ij s in the baseline window was used as the

threshold for network edge probabilities (in all windows), and the top 1% percentile of all

the P̂−300,m
ij s in the baseline window was used as the threshold for module probabilities. We

used the top 1% percentiles as the thresholds to select the most significant connections and

to keep a low false discovery rate. In addition, top 1% percentiles have been commonly used

as thresholds in Bayesian variable selection problems (Li et al., 2015; McCann and Welsch,

2007).

2.4.3 Methods: Quantification of the Extent of Directed Connectivity

For each region j, we quantified its extent of directed connectivity in the window from t

to t+ 25 seconds by averaging region j’s all the network edge probabilities in the window:

Dt
j =

d∑
i=1

(P̂ t,d
ij + P̂ t,d

ji )/2d,

where d is the total number of regions.

We then examined the change in the extent of directed connectivity for region j at time

t by

DCt
j = Dt

j −Dt−25
j .

That is, DCt
j is the difference between the average directed connectivity in the two windows

that overlap at the time point t only. We evaluated DCt
j at every one second t. We refer to

DCt
j as the directed connectivity change of region j at time t.

2.4.4 Methods: SOZ Localization

To assess the effectiveness of our method in revealing different regions’ directed connec-

tivity properties, we proposed to localize the SOZ based on DCt
j . Let t = 0 denote the

seizure onset time. Let Mj = max{DCt
j , t ≤ 0}, the maximum directed connectivity change
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of region j over time no later than the seizure onset time. Let C0 be the top 10% percentile

of {DC0
j , j = 1, . . . , d}, the directed connectivity changes of all the regions at t = 0. A

region l was selected to be a candidate for the SOZ if DC0
l , its directed connectivity change

at t = 0, was greater than both 0.9Ml and C0.

2.4.5 Results: Increase in the Number of Directed Connections of SOZ after

Seizure Onset

For all patients analyzed, we found that their interictal directed brain networks were

stable up to the seizure onset time. Moreover, directed connections were sparse in these

interictal brain networks. Specifically, before seizure onset (Figures 2.3b and 2.3c), the (clin-

ically determined) SOZ was connected to just a few regions, most of which were immediately

adjacent to the SOZ. However, immediately after seizure onset (in the window of 0-25 sec-

onds after seizure onset), the number of directed connections significantly increased (Figure

2.3d) with P-values ≤0.03 for all patients (see details of hypothesis testing procedures in

Appendix A.3). The majority of these new directed connections occurred in the area of the

SOZ and its adjacent regions. The number of directed connections continued to grow as

seizure progressed (Figure 2.3e). The cessation of seizure activity was marked by a return

to the number of directed connections in interictal phases (Figure 2.3f). Overall, the pro-

posed BSBM revealed the evolution of the directed brain network from a normal to abnormal

epileptic state and then back to the normal state.

2.4.5.1 Comparison with Other Connectivity Approaches

We compared directed connections identified by BSBM with those identified by three

common connectivity methods, including: i) short-time direct directed transfer function

(SdDTF) (Korzeniewska et al., 2014), ii) partial directed coherence (PDC) (Baccalá and

Sameshima, 2001), and iii) cross-coherence (CC) (Varela et al., 2001). SdDTF and PDC

measure directed connectivity. CC measures function connectivity without directionality

information. To assess the performance of BSBM and these three methods in detecting

brain network changes at the seizure onset time, we compared the number of identified
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(a) Electrode Placement (b) 275-300 seconds before onset (c) 0-25 seconds before onset

(d) 0-25 seconds after onset (e) 75-100 seconds after onset (f) 200-225 seconds after onset

Figure 2.3: Patient 1’s Directed Brain Networks Identified by the Proposed BSBM. (a) The intracranial
EEG electrode placement on the left hemisphere of Patient 1. (b)-(f) The identified directed brain networks
from 300 seconds before to 225 seconds after seizure onset. The diamond at electrode G37 is the SOZ
identified by expert interpretation of EEG data. Nodes in light blue are the regions that did not belong to
any modules. Nodes in the same other colors (either dark blue, green, pink, red, purple, brown, or yellow)
denote different identified modules of regions. All nodes in red color belong to the SOZ module. Grey arrows
indicate the identified directed connections between regions. Anteroinferior electrodes preceded by an “X”
were resected in a previous epilepsy surgery. The evolution of the brain network from 300 seconds before to
300 seconds after seizure onset is shown as a video, which can be downloaded via the link in Appendix A.4.
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connections (with or without direction) of the SOZ across three 25-second windows: 275-

300 seconds before seizure onset (baseline), 0-25 seconds before seizure onset (immediate

preictal), and 0-25 seconds after seizure onset (immediate postictal).

As shown in Table 2.2, BSBM consistently detected increases in the number of directed

connections of the SOZ in the immediate postictal window, compared to the preictal win-

dows, for all six patients analyzed. In contrast, none of the three competing methods (Sd-

DTF, PDC, or CC) consistently detected such increases. SdDTF detected increases in the

number of directed connections in the immediate postictal window, compared to the base-

line and immediate preictal windows, for Patients 1, 3, 5, and 6, but failed to show similar

increases in the directed network for Patients 2 and 4. PDC failed to detect more directed

connections in the immediate postictal window versus the other two interictal windows for

Patients 4 and 6. CC detected zero connections in all the three windows for Patients 1,

3, and 4. Overall, BSBM outperformed the other three methods by consistently detecting

changes in the directed brain networks around the SOZs at seizure onset.

2.4.6 Results: Increase in the Number of Regions in the SOZ Module

Our BSBM enables identifying modules of a large number of regions. In this study, the

SOZ module is of particular interest because it is a group of regions that are most affected

by the activity in the SOZ. With BSBM, we identified the SOZ module and revealed its

changes from interictal to ictal phases to demonstrate the effect of seizure propagation on

changing the brain network structure.

For all patients analyzed, their SOZ module sizes (the number of regions contained in the

identified SOZ module) remained stable over time in interictal phases. As shown in Figures

2.3b and 2.3c, the SOZ module often included only the SOZ and a few immediately adjacent

regions, indicating that very few regions were affected by activity in the SOZ before seizure

onset. However, immediately after seizure onset, the SOZ module expanded significantly

(P-values ≤0.02 for all patients) to include more nearby regions (Figures 2.3d). The SOZ

module size continued to increase as the seizure progressed (Figure 2.3e). With seizure

cessation, similar to the changes in the number of directed connections, the size of the SOZ
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Table 2.2: Comparison of Different Connectivity Methods

Methods Windows Patients

1 2 3 4 5 6

BSBM

Baseline 2 10 3 0 8 16

Immediate

Preictal 7 9 0 0 14 45

Immediate

Postictal 11 15 7 6 63 220

PDC

Baseline 6 0 3 1 15 29

Immediate

Preictal 6 0 4 0 10 18

Immediate

Postictal 8 1 7 1 29 23

SdDTF

Baseline 15 0 0 2 20 75

Immediate

Preictal 7 2 1 1 35 12

Immediate

Postictal 19 2 6 1 53 87

CC

Baseline 0 4 0 0 14 11

Immediate

Preictal 0 6 0 0 30 23

Immediate

Postictal 0 9 0 0 152 49

The numbers of directed connections of the SOZ identified by BSBM versus three other methods, including:
i) short-time direct directed transfer function (SdDTF), ii) partial directed coherence (PDC), and iii) cross-
coherence (CC) for six patients in the baseline (275-300 seconds before seizure onset), immediate preictal
(0-25 seconds before seizure onset), and immediate postictal (0-25 seconds after seizure onset) windows.
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module returned to the level in interictal phases.

2.4.7 Results: Changes in Directed Connections of Non-SOZ Regions

Most previous studies focused on the changes in the directed brain network around the

SOZ only (Jirsa et al., 2014). With BSBM, we distinguished among the SOZ, non-SOZ

regions in the SOZ module, and other non-SOZ regions outside the SOZ module. We found

that the latter two types of non-SOZ regions experienced different changes in directed con-

nections during the transition from interictal to ictal phases. Regions in the SOZ module

(regardless of time window) all had substantial increases in the number of directed connec-

tions in ictal phases compared to interictal phases. For example, for Patient 1 (electrode

placement is shown in Figure 2.3a), all the regions in the SOZ module (electrodes in red)

had significant increases in the number of directed connections during 75-100 seconds after

seizure onset (Figure 2.3e), compared to their numbers of directed connections in interictal

windows.

On the other hand, many regions outside the SOZ module did not exhibit increases in

directed connections though these regions displayed ictal activity based on visual interpre-

tation of EEG. For example, for Patient 2 (electrode placement is shown in Figure 2.4b),

regions outside the SOZ module, such as TMA3-TMA5 and TMP3-TMP6, had no direct

connections with the SOZ in both interictal and ictal phases. These regions had no changes

in directed connections from interictal to ictal phases (Figures 2.4b-2.4e), despite that their

intracranial EEG data signaled ictal activity during seizure propagation (Figure 2.4a). This

result indicates that not all regions showing epileptic activity are actually involved in seizure

propagation or directly influenced by the activity in the SOZ during seizure propagation.

2.4.8 Results: Directed Connectivity Analysis for SOZ Localization

The above results show the identified changes with respect to the overall directed network

structure from interictal to ictal phases. We next show the change in directed connectivity

for individual regions. Figure 2.5b presents directed connectivity changes (DCt
j defined in

Section 2.4.4) of all individual regions for Patient 3 from 275 seconds before to 275 seconds
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(a) Intracranial EEG of Patient 2

(b) 25-50 seconds before onset (c) 0-25 seconds before onset

(d) 0-25 seconds after onset (e) 25-50 seconds after onset

Figure 2.4: Patient 2’s Directed Brain Networks Identified by the Proposed BSBM. (a) A segment of
intracranial EEG recordings of Patient 2. (b)-(e) The identified directed brain networks from 50 seconds
before to 50 seconds after seizure onset. The diamonds are the SOZ identified by expert interpretation of
EEG data. Nodes in light blue are the regions that did not belong to any modules. Nodes in the same other
colors denote different identified modules of regions. Arrows indicate the identified directed connections
between regions. The evolution of the brain network is shown as a video, which can be downloaded via the
link in Appendix A.4.
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(a) Electrode Placement (b) Connectivity Changes
t ∈ (−275, 275)

(c) Connectivity Changes
t ∈ (−50, 50)

Figure 2.5: The Directed Connectivity Changes over Time of All Regions for Patient 3. (a) Electrode
placement of Patient 3. (b) The time series of directed connectivity changes, DCt

j , of all regions from 275
seconds before to 275 seconds after seizure onset. t = 0 is the seizure onset time. (c) The time series of
directed connectivity changes of all regions from 50 seconds before to 50 seconds after seizure onset. The
red curve is the directed connectivity changes of the SOZ.

after seizure onset, with Figure 2.5c focused on the shorter time interval around the seizure

onset time (±50 seconds around seizure onset). We found that at t = 0 when seizures

started, the SOZ and its a few adjacent regions experienced the greatest directed connectivity

changes. Based on this unique directed connectivity property of the SOZ, we developed a

SOZ localization method (see Section 2.4.4). Using this method, we selected G30 and its

three adjacent regions (G22-G24) to be candidate regions for the SOZ. Since G30 is the true

SOZ, we regard this selection as accurately identifying the same region as verified by expert

visual interpretation of EEG for Patient 3.

We assessed the effectiveness of our method in detecting the unique directed connectivity

property of the SOZ by evaluating the accuracy of our method in localizing SOZs for all six

patients. We used clinically localized SOZs as the given truth. We deemed our method

to successfully detect one SOZ location (i.e., a true positive) if at least one of the regions

selected by the method was within one electrode of the SOZ location. A false positive was

scored when a region selected by the method was beyond one electrode of any SOZ location.

Our localization method achieved 100% true positive rates (TPR) for all six patients (Table

2.3) despite their different SOZ locations and different numbers of regions inside the SOZ
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areas. The false positive rates (FPR) were zero for three patients and 2-3% for the other three

patients. Note that Patient 6 had multiple SOZ locations, which are difficult to accurately

localize by using existing quantitative methods. In contrast, our method successfully detected

all the SOZ locations for this patient.

2.5 Discussion

This chapter develops a new high-dimensional dynamic system model for mapping di-

rected brain networks using intracranial EEG data. The proposed approach has three nov-

elties. First, the proposed first-order MARSS for the brain network is effective for approxi-

mating various high-dimensional brain systems. The model is robust to violations of model

assumptions. Second, in contrast to standard MARSS and MAR models, the proposed

Bayesian framework incorporates the prior knowledge of the modular organization into the

model estimation, which addresses the challenge of detecting connected brain regions among

many possible ones. Our method produces scientifically meaningful network results. Third,

we develop a stochastic blockmodel (SBM)-motivated prior to impose the modular organi-

zation on the MARSS parameters that denote directed edges. This is novel from standard

SBMs for observed networks where network edges are directly known.

The proposed method can robustly detect directed connections with high accuracy, even

if the underlying model for the brain network is nonlinear and highly distinct from the pro-

posed MARSS for three reasons. First, we apply the MARSS to short intracranial EEG

time segments so that the linear model can effectively approximate the underlying network

system. Second, we use the proposed model to identify the directed connections by detect-

ing the existence of temporal dependence among neuronal activities of regions rather than

estimating the nonlinear interactions among regions. The first-order MARSS focuses only

on the primary temporal dependence (rather than the exact order or nonlinearity of the de-

pendence) among multivariate time series. Thus, the model is parsimonious in terms of the

number of model parameters and enables efficient detection of directed connections among

many regions. Third, the SBM-motivated prior can effectively capture potential brain net-
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Table 2.3: SOZ Localization

Patient Clinically Other Number of Selected TPR FPR

Number Diagnosed Resected Analyzed Regions

SOZ Regions Regions

1 G37 N/A 50 G28, G38, 100% 2%

G30, G37,

G52

2 TAS2-4, HC1⋆ TAS1, TAS5 67 TAS2, TAS5 100% 0%

3 G30 N/A 95 G30, G23, 100% 2%

G22, G24

4 G17 G16, G19 20 G16, G17 100% 0%

5 AS3-6, MM3-6 38 MM3, MM4, 100% 0%

MS4-6 MS5, AS5

6 RTM2-4, N/A 128 RTP1, RTM4, 100% 3%

ROD1-2, RTM5, RTP2

RTA1-3 RTM6, ROD2,

RTM8, RTA1

The true positive rates (TPR) and false positive rates (FPR) of the proposed SOZ localization method in
comparison to the SOZ locations determined by the clinical practice. The correctly identified SOZ regions
are marked in bold. ⋆ For Patient 2, HC1 and TAS2 were spatially close to each other and deemed to be in

one SOZ location.
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work patterns. Using the SBM-motivated prior increases the efficiency in detecting directed

connections. In summary, the proposed integration of a conventional MARSS and the mod-

ular organization yields robustness, flexibility, efficiency, and computational feasibility in

modeling and estimating brain network systems.

Epilepsy is a directed network disorder (Englot et al., 2016; Kramer and Cash, 2012).

Existing studies of epileptic networks have mainly focused on functional connectivity without

directionality information (Khambhati et al., 2015; Stacey et al., 2019) or on low-dimensional

directed networks of only a few brain regions around the SOZ (Korzeniewska et al., 2014).

In our study, we used BSBM to characterize the SOZ, its adjacent regions, and many more

distant non-SOZ regions as one integrated high-dimensional directed network system. With

BSBM, we identified not only local changes of the directed brain network in the SOZ’s

neighboring area from interictal to ictal phases but also changes in the directed brain network

at many non-SOZ regions that were spatially distant from the SOZ. Specifically, BSBM

identified increases in the number of directed connections of the SOZ after seizure onset,

along with the expansion of the SOZ module. These network results with respect to the

SOZ were consistent with known properties of seizure propagation (Alarcón and Valent́ın,

2012; Englot et al., 2016). More importantly, our approach uncovered two types of regions

that differed in their changes in directed connections during the transition from interictal to

ictal phases: 1) Regions within SOZ modules demonstrated substantial increases in directed

connections after seizure onset, while 2) many regions outside SOZ modules demonstrated

no changes in directed connections during seizure propagation despite visual evidence of

these regions’ ictal activity. Earlier studies also suggested that connectivity properties of

non-SOZ regions vary by their distances to the SOZ (Englot et al., 2015; Zaveri et al., 2009).

However, these studies focused on functional connectivity. The high-dimensional directed

network results by BSBM better displayed the difference between regions that showed visual

ictal activity of “bystander” regions versus those involved in ictal propagation and thus, shed

new light on the brain’s normal and abnormal network mechanisms.

An important and unique feature of BSBM is to simultaneously identify modules and

directed connections. Both identifying connections (Friston, 2011) and identifying mod-

ules (Sporns and Betzel, 2016; Sporns et al., 2007) in brain networks are of great interest
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in computational neuroscience, as they are critical to understanding the brain mechanism.

However, identifying modules and identifying connections are usually performed separately

with different approaches, resulting in two errors in the ensuing estimated networks. The

proposed BSBM fills this gap by providing a unified tool for simultaneously identifying mod-

ules and directed connections. As demonstrated in the results, BSBM, as an integration of

the MARSS and the feature of the modular organization, is able to more accurately and

robustly identify high-dimensional directed brain networks, compared to those approaches

that identify connections only without the feature of the modular organization. More im-

portantly, despite patients’ heterogeneous electrode arrays and underlying anatomic seizure

foci, BSBM identified consistent network properties, including increases in the number of

directed connections and the expansion of SOZ modules after seizure onset. Future work

will attempt to confirm our method’s utility across larger samples.

We posit that the identification of modules as well as directed connections of regions bet-

ter reveals the interactions between regions that underlay seizure propagation. For example,

BSBM accurately reflected the clinical history of Patient 1 (electrode placement shown in

Figure 2.3a), who tended to experience secondarily generalized seizures arising from a SOZ

in the frontal lobe, as his SOZ module encompassed his entire EEG array (Figure 2.3e).

In contrast, the other 5 patients, whose electrographic seizures tended to remain focal, had

complex partial seizures without secondary generalization. Accordingly, these 5 patients’

SOZ modules remained confined to focal electrodes (Figures 2.4d and 2.4e). Such results

suggest an association between the clinical symptoms of patients and the size of their SOZ

modules during seizure propagation. This association promises to be a key pursuit in future

research, which will improve understanding of the relationship between patients’ epileptic

brain networks and their medical impairments.

The SOZ and adjacent regions had the highest directed connectivity changes at seizure

onset. However, at other times (before seizure onset and several seconds after seizure onset),

the directed connectivity changes of the SOZ did not differ from other regions (Figure 2.5b).

Though existing network studies of interictal intracranial EEG data suggested that the SOZ

had different connectivity properties as compared to other regions (Wilke et al., 2008) during

interictal phases, these studies were generally based on special interictal periods containing
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spikes or high-frequency oscillations (Korzeniewska et al., 2014). In contrast, our analysis

was not based on these short interictal events that required selection using the appearance

of epileptiform phenomena. Our result suggested that the directed connectivity properties

of the SOZ on average were no different from other regions most of the time. Future work

will evaluate directed connectivity during those short high-frequency interictal periods.

Although we believe BSBM provides unique insights into the pathophysiology of epileptic

networks, the clinical importance of the new method lies in its ability–albeit preliminarily—

to localize SOZs independently from the traditional interpretation of EEG for patients with

focal epilepsy. Many methods were developed to localize the SOZ, usually by comparing re-

gions’ connectivity strengths (Korzeniewska et al., 2014; Van Mierlo et al., 2013). In contrast,

the proposed SOZ localization method is a novel method of using the high-dimensional di-

rected network results generated from BSBM, yielding great efficiency in detecting the unique

directed connectivity property of the SOZ among many regions. More importantly, our SOZ

localization method focuses on comparing regions’ changes in directed connectivity at the

seizure onset time. Thus, it is more sensitive to detect the network change due to seizure

propagation (Englot et al., 2016; Fisher et al., 2005).

Although the directed connectivity change of the SOZ at seizure onset was consistently

among the highest across all recorded regions for all six patients, selecting the region with the

highest directed connectivity change at seizure onset alone does not always lead to accurate

localization of the SOZ. This is because such SOZ localization depends on the accuracy of

estimating the timing of seizure onset. Another potential problem is that a patient can

have more than one region in the SOZ area. Our method addressed these limitations by

examining directed connectivity changes both spatially and temporally for each region. In

addition to selecting regions whose directed connectivity changes at the seizure onset time

were among the top 10% (spatially) across all the regions, we also excluded the regions whose

maximum directed connectivity change (temporally) in interictal phases was 10% larger than

the region’s directed connectivity change at the seizure onset time. The second step reduced

false selections for SOZ localization. These two criteria for directed connectivity changes in

the proposed SOZ-localization method ensured a high TPR and a low FPR for localizing the

SOZ. Overall, our initial results show high concordance between the proposed method with
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the clinical “gold standard” for patients with different epilepsy types and SOZ locations.

Despite the flexibility and robustness of BSBM in identifying directed connections, the ef-

fectiveness of the proposed SOZ-localization method relies on clinical limitations of electrode

coverage of the SOZ. In addition, since the proposed MARSS contains many parameters for

a high-dimensional directed network, its high accuracies in SOZ localization also rely on

sufficient data information, including recordings of at least three seizures per patient. Sub-

sequent work will focus on generalizing our findings with a larger sample of patients with a

range of surgical outcomes to determine the accuracy and prognostic values.

While epilepsy surgery for the right patient can be transformative, epilepsy surgery

remains underutilized because identification of the SOZ remains difficult and expensive, es-

pecially for patients without a clear clinical target (Jacobs et al., 2012; Rosenow and Lüders,

2001; Surges and Elger, 2013). Our statistical network analysis can be transformative in

medical practice by providing an independent tool to localize the SOZ for patients with

drug-resistant epilepsy, which can be used with clinical information to improve patient out-

comes.
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3.0 Study on Whole-Brain Directed Networks of Many Subjects Using FMRI

Data

The majority of this chapter has been previously published in (Wang et al., 2023).

3.1 Introduction

The brain is a high-dimensional directed network system as it consists of many regions as

network nodes that exert influence on each other. We refer to the directed influence exerted

by one region on another as directed connectivity (also called directed functional connectiv-

ity or effective connectivity (Friston, 2011; Mill et al., 2017)). Identifying directed connec-

tions between all the regions and revealing the whole-brain directed network are essential

to understanding the functional organization of the brain. However, it is both statistically

and computationally challenging to produce brain network estimates that are scientifically

meaningful because of the enormous numbers of potential directed connections and possible

patterns of the directed network between many network nodes. To address this challenge,

we propose a new directed network model that incorporates the principles of the functional

organization of the brain.

The functional organization of the brain is governed by two principles: functional spe-

cialization and functional integration (Friston, 1994). The former indicates that different

brain areas are specialized for different brain functions, while the latter suggests different

brain areas interact with each other to process information and perform various functions.

Enormous brain networks studies (Meunier et al., 2009; Park and Friston, 2013; Sporns and

Betzel, 2016) have suggested that the modular organization (also called modularity) of net-

works gives rise to functional specialization and integration. Specifically, the brain network

comprises modules of brain regions, whose connections with regions in the same module are

stronger and denser than connections with regions in different modules. Brain regions in the

same module tend to be specialized for the same or similar functions. Directed connections
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within and between modules ensure integration among different functionally specialized brain

areas. Because modular networks have been widely reported in the literature to reflect the

brain’s functional organization (Fodor, 1983; Sporns, 2013), we assume whole-brain directed

networks to have a modular organization. The goal is to identify modules as well as directed

connections in whole-brain directed networks using resting-state functional magnetic reso-

nance imaging (fMRI) data of a large number of subjects. We use fMRI data because they

provide non-invasive measurements of the activity of the entire human brain with a high

spatial resolution (Lindquist, 2008).

We recognize multiple challenges in simultaneously identifying directed connections and

modules in whole-brain directed networks based on fMRI data of a large number of sub-

jects. First, it is difficult to find a “perfect” model that can accurately characterize the

complex interactive relationship between many regions for many subjects due to the limited

understanding of the brain’s functional organization. Therefore, a model for the whole-brain

directed network inevitably has a model error, that is, the deviation of the assumed model

from the true network. Second, brain network structures vary across subjects (Mennes et al.,

2010; Moussa et al., 2012). Third, fMRI data have a high degree of noise (Lindquist, 2008),

bringing an additional difficulty to the network analysis. Fourth, the analysis of massive

fMRI data and simultaneous identification of brain modules and directed connections for

many subjects can be computationally intensive. Existing approaches address part of these

challenges, as explained in detail below.

Most information theoretic measures, such as cross-correlations (Kramer et al., 2008;

Schiff et al., 2005), cross-coherence (Schröder and Ombao, 2019), transfer entropy (Vicente

et al., 2011), directed transinformation (Hinrichs et al., 2006), and directed information (Liu

and Aviyente, 2012), and many others (Van Mierlo et al., 2013; Wilke et al., 2011), quantify

pairwise connectivity between regions and cannot be directly used to identify modules. Popu-

lar models such as dynamic causal modeling (DCM, Frässle et al., 2018; Friston et al., 2003)

and neural mass models (David and Friston, 2003) characterize directed connectivity but

not modules. Methods such as independent component analysis (Calhoun and Adali, 2012;

Mejia et al., 2020; van de Ven et al., 2004) and spectral clustering (Craddock et al., 2012) are

effective in identifying modules or functional systems in the brain. However, because these
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methods are based on functional connectivity (i.e., statistical associations between activity

in different regions (Friston, 2011)), they cannot provide information about the direction

of connectivity between regions or the existence of directed connectivity between modules.

Overall, existing brain network studies identify modules (Sporns and Betzel, 2016; Sporns

et al., 2007) and directed connections (Chiang et al., 2017; Friston, 2011; Kook et al., 2021)

separately with different approaches, resulting in two different and hard-to-track errors in

the estimated directed network. Despite the recent development of models (Li et al., 2021;

Zhang et al., 2020, 2015, 2017) to characterize both directed connectivity and modules in

the human brain, these models are for single-subject analysis, and the estimation of these

models based on fMRI data of many subjects is computationally infeasible.

To address limitations in existing directed network analysis, we develop a new Bayesian

model for whole-brain directed networks of many subjects. At the subject level, we use

a multivariate autoregressive state-space (MARSS) model for fMRI data of each subject,

because the MARSS has the properties of robustness and flexibility in approximating various

network systems (see Chapter 2 or Li et al. (2021)). At the population level, we assign a

mixed-membership stochastic blockmodel (MMSB) as a prior to all the subjects’ MARSS

parameters that denote directed connections. The use of the MMSB prior enables brain

network estimates to have the modular organization. That is, connections between regions

in the same modules are much denser than connections between regions in different modules.

The use of the MMSB prior also allows for each region to be in different modules and to

have different directed connections in different subjects’ brain networks, and accommodates

the variation of directed brain networks across subjects. Overall, the proposed Bayesian

model provides a flexible and robust framework for combining fMRI data of many subjects

to characterize brain networks in modular organizations. Thus, the Bayesian model enables

us to address the first three challenges in directed network analysis of many subjects’ fMRI

data.

We address the computational challenge in analyzing fMRI data of many subjects by

developing a variational Bayesian method to estimate the proposed Bayesian model. Through

both simulation and real data analysis, we show that our new variational method is able to

identify the whole-brain directed network with both computational efficiency and estimation
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accuracy. As far as we know, this is the first method that can identify brain modules

and directed connections simultaneously and reveal whole-brain directed networks for many

subjects.

We applied our method to all four resting-state fMRI runs of all subjects (995 subjects)

from the Human Connectome Project (HCP Van Essen et al., 2013). Specifically, we di-

vided the entire resting-state fMRI data into two sets, each consisting of two fMRI runs

collected on two separate days for each of the 995 subjects. We analyzed the two fMRI

data sets independently. Modules identified by our method are consistent with known brain

functional systems with different specialized functions, such as visual, default mode, audi-

tory, cingulo-opercular task-control systems, and many others. Our method also identified

directed connections between the somatosensory-motor and auditory modules and between

the cingulo-opercular task control and salience modules. Moreover, we evaluated the re-

producibility of our method by taking advantage of multiple fMRI runs for each subject.

We showed that brain network results from independent analysis of two fMRI data sets are

highly similar with overlap coefficients above 80%.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the MARSS

model for multiple resting-state fMRI runs of multiple subjects. We then propose a new

Bayesian hierarchical model that uses the MMSB as a prior for MARSS parameters. In

Section 3.3, we develop a variational Bayesian approach to estimate the new Bayesian model.

In Section 3.4, we examine the robustness and effectiveness of the proposed method compared

to existing network methods through simulation studies. Section 3.5 presents the analysis

results of resting-state fMRI data of many subjects. Section 3.7 concludes with a discussion.

3.2 The Directed Brain Network Model

We propose a directed network model for fMRI data from L runs in d regions of S

subjects. In the real data analysis, we used the functional atlas in the literature (Power

et al., 2011) to divide the entire brain into d = 264 non-overlapping functional regions.

These regions span the cerebral cortex, the cerebellum, and subcortical structures.
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3.2.1 The Multivariate Autoregressive State-Space Model

Let ys,l(t) = (ys,l1 (t), . . . , ys,ld (t))′ be fMRI measurements in d brain regions (i.e., d network

nodes of the whole-brain directed network) at time t from the lth fMRI run of subject s for

s = 1, . . . , S, t = 1, . . . , T , and l = 1, . . . , L. Each data point, ys,lj (t), is an average of

fMRI data of all voxels in region j at time t in the lth run for subject s. Each time series,

{ys,lj (1), . . . , ys,lj (T )}, is standardized to have mean zero and variance one. Let xs,l(t) =

(xs,l1 (t), . . . , xs,ld (t))′ be the state functions of the d brain regions at time t in the lth fMRI

run of subject s. The state function, xs,l(t), represents the brain activity in d regions at time

t in the lth fMRI run for subject s. We model directed connections between the d regions of

each subject s using a multivariate autoregressive state-space model (MARSS):

ys,li (t) = cs,li · xs,li (t) + ϵs,li (t), i = 1, . . . , d, s = 1, . . . , S, l = 1, . . . , L, (3.1)

xs,li (t) =
d∑

j=1

γsij · A
s,l
ij · xs,lj (t− 1) + ηs,li (t), t = 1, . . . , Tl, (3.2)

where csi is an unknown parameter for standardizing activity of different regions; γsij is an

indicator with 1 indicating the presence of the directed connection from region j to region i

in the directed brain network of subject s and 0 for the absence; As,l
ij s are coefficients; and

ηsi (t) and ϵ
s
i (t) are error terms with mean zero.

We use the first-order MARSS to model directed connectivity among many brain regions

because it is robust to the model error and data error and also is parsimonious in terms of

the number of free parameters for characterizing directed connectivity between many regions

(see Chapter 2 or Li et al. (2021)).

We use indicators, γsijs, to distinguish nonzero directed connections from zero ones. Mod-

els (3.1) and (3.2) distinguish two connections in different directions between every pair of

regions i and j by using two different indicators, γsij and γsji, to represent the two connec-

tions in two different directions between the two regions. For example, suppose only γsij is

identified to be nonzero, and γsji is identified to be zero. We deem that a directed connection

exists only from region j to region i in subject s’s brain network and not otherwise.

Following standard practice in connectivity studies (Hayden et al., 2016; Sato et al.,

2010), we fix γsii = 0 for i = 1, . . . , d, s = 1, . . . , S. We let indicators for directed connections,
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γsij, be shared in common across different fMRI runs for each subject. This is because fMRI

data in separate runs for each subject were collected under the same condition, and it is

intuitive to assume that the subject’s brain networks are identical in these runs. Moreover,

this assumption enables combining data information across multiple fMRI runs to estimate

directed networks more efficiently than otherwise.

Under the MARSS, (3.1) and (3.2), we focus on identifying nonzero γsijs for all pairs

of regions i and j and for every subject s. That is, we identify directed connections by

using the MARSS as a working model to detect the existence of temporal dependencies

between activity of different regions. Detecting the existence of temporal dependencies is

robust to the model error and data noise, as demonstrated in Chapter 2 and the simulation

study (see Section 3.4). For mathematical simplicity and computational efficiency, we let

ηs,li (t)
i.i.d∼ N(0, 1) and ϵs,li (t)

i.i.d∼ N(0, τ 2i ).

3.2.2 Bayesian Hierarchical Model for Modular Networks

Given that the modular brain network is tied with functional specialization and integra-

tion of the brain (Newman, 2006; Sporns, 2010), we impose modularity on γsijs by using a

mixed membership stochastic blockmodel (MMSB) (Airoldi et al., 2008; Durante and Dun-

son, 2014; Fienberg et al., 1985; Nowicki and Snijders, 2001) prior for γsijs. The details of

the prior specification are given below.

Let K be the pre-specified number of modules. Let ms
i = (ms

i1, . . . ,m
s
iK)

′ label the

module of region i in the directed brain network of subject s. Only one element of ms
i

equals 1 and the rest elements equal 0. For example, ms
ik = 1 indicates that region i is in

module k in the brain network of subject s. Let Bk1k2 , k1, k2 = 1, . . . , K, denote the prior

probability of a nonzero directed connection from a region in module k2 to another region

in module k1. Let B be a K ×K matrix with entries Bk1k2 for k1, k2 = 1, . . . , K.
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3.2.2.1 Prior Specification for Modularity

The prior for whole-brain directed networks with modularity is a joint distribution for

γsijs (indicators), m
s
i s (module labels), and B (the probability matrix) as follows:

γsij|ms
i ,m

s
j ,B

ind∼ Bernoulli((ms
i )

′ B ms
j), i, j = 1, . . . , d; (3.3)

ms
i
i.i.d∼ Multinomial(1; pi1, . . . , piK) and (pi1, . . . , piK) ∼ Dirichlet(

1

K
1K); (3.4)

Bkk
i.i.d∼ Uniform(l0, 1) and Bk1k2

i.i.d∼ Uniform(0, u0), k1, k2 = 1, . . . , K, k1 ̸= k2, (3.5)

where l0 and u0 are pre-specified constants between 0 and 1, and 1K is a K-dimensional

vector with all entries equal to 1.

The distribution (3.3) specifies prior probabilities for nonzero directed connections be-

tween regions either in the same module (referred to as within-module directed connections)

or in different modules (referred to as between-module directed connections) in the directed

brain network of subject s. For example, if ms
ik1

= 1 and ms
jk2

= 1, the prior probability of

the nonzero directed connection from region j to regions i equals (ms
i )

′ B ms
j = Bk1k2 .

We let l0 = 0.9 and u0 = 0.1 to reflect the prior belief that within-module connections

are dense while between-module connections are much sparser (Park and Friston, 2013). We

make the difference between the lower bound, l0, and the upper bound, u0, large to facilitate

module identification. The practice of module identification rests on the difference between

the densities of within-module and between-module connections. The closer are the densities

of within-module and between-module connections, the more difficult it is to identify modules

correctly. We choose a high lower bound (i.e., l0 = 0.9) for prior distributions of within-

module connections to identify the most closely connected regions. More importantly, we

found that if we lower the upper bound l0 from 0.9 to 0.8, many modules would be merged

together because a lower l0 allows for regions with fewer connections to form one module. On

the other hand, the upper bound u0 = 0.1 is chosen because it is the upper bound threshold

used by Power et al. (2011) to detect connections. Through both simulation and real data

analysis, we found that the combination of l0 = 0.9 and u0 = 0.1 leads to the most accurate

module identification: the regions identified to be in the same module have the same brain

functions according to the functional atlas provided by Power et al. (2011).
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The MMSB prior, (3.3)-(3.5), allows for each region to be in different modules and have

different directed connections in different subjects’ brain networks and thus accommodates

the variation of brain networks across subjects. Under the MARSS, (3.1) and (3.2), with

the MMSB prior (3.3)-(3.5) (BMMSB), our goal is to identify modules and directed con-

nections by estimating the population-mean probabilities of region i in different modules,

pi = (pi1, . . . , piK), posterior probabilities of m
s
i s, and posterior probabilities of γsijs, for all

regions i, j = 1, . . . d and subjects s = 1, . . . , S.

3.3 Variational Bayesian Inference

The standard Bayesian approach that uses Markov chain Monte Carlo simulations is

computationally infeasible to estimate the above Bayesian model for the massive fMRI data

under study (the number of regions, d, is in hundreds, the number of subjects, S, is almost one

hundred, and the number of time series points, Tl, is in thousands). We develop a variational

Bayesian approach to estimate the above Bayesian model and address the computational

challenge, as explained below.

We first estimate xs,l(t) through a standard MARSS (Holmes et al., 2012) (where γsijs in

(3.2) are all fixed at 1) instead of using a fully Bayesian Approach. State functions, xs,l(t),

are not of interest in our study, but their estimation through a fully Bayesian approach

is computationally time-consuming. In addition, we found that estimated xs,l(t) under

the standard MARSS (Holmes et al., 2012) are similar to those under the fully Bayesian

approach.

Let As,l be a d × d matrix whose (i, j)th entry is As,l
ij , i, j = 1, . . . , d and l = 1, . . . , L,

Xs,l = {xs,l(0), . . . ,xs,l(Tl)}, and X = {Xs,l, l = 1, . . . , L s = 1, . . . , S}. Let Θ denote all

unknown parameters,

Θ =
{
γsij, A

s,l, ms
i , pi, B, i, j = 1, . . . , d, l = 1, . . . , L s = 1, . . . , S

}
.
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. We treat X as given data, and the posterior of Θ, given X, is

p(Θ|X) ∝
S∏

s=1

L∏
l=1

{ Tl∏
t=1

p
(
xs,l(t)

∣∣∣xs,l(t− 1),Θ
)}

· p(Θ). (3.6)

where p
(
xs,l(t)

∣∣∣xs,l(t− 1),Θ
)
is derived using the state model (3.2). The prior distribution

for the parameters γsij, m
s
i , and B is the MMSB prior, (3.3), (3.4), and (3.5). We assign

normal priors to As,l
ij ,

As,l
ij

i.i.d∼ N(0, ξ20), (3.7)

where ξ0 is a pre-specified positive constant. Explicit formulas of the posterior distribution,

p(Θ|X), are provided in Appendix B.1.

We use a variational method to approximate the posterior distribution p(Θ|X) in (3.6).

Variational methods (Blei et al., 2017) have received enormous popularity in estimating

graphical models and network models (Airoldi et al., 2008; Durante and Dunson, 2014;

Fienberg et al., 1985; Nowicki and Snijders, 2001; Wainwright and Jordan, 2008). However,

existing variational methods are mainly for observed networks whose network edges are

known. We here address a more complicated problem: simultaneously identifying directed

network edges (i.e., directed connections) and modules based on multivariate time series

measurements of activity of many networks nodes. Our new variational method is based on

a new factorized approximation to p(Θ|X). The factorized distribution is given as follows:

q(Θ|V) =
S∏

s=1

d∏
i,j=1,i ̸=j

q1(A
s,1
ij , . . . ,A

s,L
ij , γ

s
ij|Φs

ij) ·
S∏

s=1

d∏
i=1

q2(m
s
i |Φms

i ) ·
d∏

i=1

q3(pi|Φpi)

·
K∏

k1,k2=1

q4(Bk1k2|ΦBk1k2 ),

(3.8)

where V = {Φs
ij,Φ

ms
i ,Φpi ,ΦBk1k2 , s = 1, . . . , S, i, j = 1, . . . , d, i ̸= j, k1, k2 = 1, . . . , K} is

the set of free variational parameters.

The variational distribution factors in the factorized distribution (3.8) are given below,

q1(γ
s
ij|Φs

ij) = Bernoulli(γsij|αs
ij);

q1(A
s,1
ij , . . . ,A

s,L
ij |γsij,Φs

ij) =
L∏
l=1

q1(A
s,l
ij |γsij, u

s,l
ij , w

s,l
ij ),

45



where q1(A
s,l
ij |γsij, u

s,l
ij , w

s,l
ij ) =

Normal(As,l
ij |u

s,l
ij , w

s,l
ij ) if γsij = 1,

Normal(As,l
ij |0, ξ20) if γsij = 0;

q2(m
s
i |Φms

i ) = Multinomial(ms
i |1,Φms

i );

q3(pi|Φpi) = Dirichlet(pi|Φpi);

q4(Bk1k2|ΦBk1k2 ) =

 Beta(Bk1k2|β1,k1 , β2,k1) · 1{l0<Bk1k2
<1}(Bk1k2) if k1 = k2,

Beta(Bk1k2|β1,k1k2 , β2,k1k2) · 1{0<Bk1k2
<u0}(Bk1k2) if k1 ̸= k2,

where Φs
ij = {αs

ij, u
s,l
ij , w

s,l
ij , l = 1, . . . , L}, Φms

i = {Φms
i

1 , . . . ,Φ
ms

i
K }, Φpi = {Φpi

1 , . . . ,Φ
pi

K},

ΦBk1k2 = {β1,k1 , β2,k1} for k1 = k2, Φ
Bk1k2 = {β1,k1k2 , β2,k1k2} for k1 ̸= k2, , and 1ℵ(x) is an

indicator function that equals 1 if x falls into the set ℵ and 0 otherwise.

A crucial novelty of our variational Bayesian method is to let γsij and A
s,l
ij be dependent

on each other in our approximating distribution (3.8). Although using a fully factorized

approximating distribution is more common in practice, it is not effective in approximating

our target distribution, p(Θ|X). A fully factorized approximating distribution is based on

the mean field theory (Chaikin et al., 1995). The theory suggests that a joint distribution

of many random variables that are dependent on each other can be effectively approximated

by a product of independent distributions of these variables. However, the mean field ap-

proximation is usually effective when each random variable depends on many other variables

and pairwise dependencies between variables are weak. In the posterior distribution (3.6),

each As,l
ij mostly depends on γsij, and a full factorization of the posterior distributions of

As,l
ij and γsij leads to a large bias. Therefore, we keep the dependence structure between As,l

ij

and γsij in the approximating distribution (3.8). A similar idea is implemented in structured

variational inference (Hoffman and Blei, 2015).

We determine the values of V through iteratively minimizing the KL-divergence between

the approximating distribution q(Θ|V) and the posterior distribution p(Θ|X),

KL (q(Θ|V)||p(Θ|X)) = −Eq

(
log

p(Θ|X)

q(Θ|V)

)
.

To provide a flexible Bayesian model, we letK = d and the initial values of the variational

parameters for module labels, Φ
ms

i
i = 1 and Φ

ms
i

k = 0 for k ̸= i, i = 1, . . . , d, and s = 1, . . . , S.
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Algorithm 1 Pseudocode for the Variational Bayesian Method

Let t = 0 and set initial values V0

Let V = V0.

while t = 0 or KLt −KLt−1 > 0.01×MKL do

Let t = t+ 1.

1. For s = 1, . . . , S and i = 1, . . . , d:

Update Φms
i in V based on the rest parameters in V.

2. For s = 1, . . . , S and i, j = 1, . . . , d: :

Update Φs
ij in V based on the rest parameters in V.

3. For i = 1, . . . , d:

Update Φpi in V based on the rest parameters in V.

4. For k1, k2 = 1, . . . , K:

Update ΦBk1k2 in V based on the rest parameters in V.

5. Let Vt = V.

6. If t = 1 :

Let MKL = KLt −KLt−1.

7. Else if t > 1 and MKL < KLt −KLt−1:

Let MKL = KLt −KLt−1.

end while

The initial values of the other variational parameters and detailed steps in the iterative

optimization algorithm for evaluating variational parameters are provided in Appendix B.2.

Algorithm 1 provides the pseudocode of the iterative optimization algorithm. Let KLt

denote the KL-divergence value calculated (up to an arbitrary additive constant) at the t

iteration and MKL = max{KLt −KLt−1, t = 1, ...}, where MKL can be estimated based on

the algorithm outputs in the first a few iterations.

We employ parallel computing (Kontoghiorghes, 2005; Rosenthal, 2000) to implement

the above iterative algorithm. The use of parallel computing with a 16-core node can reduce

the computation time by 90%. The analysis of two runs of fMRI data of 1000 subjects by

our method takes no more than 20 hours.
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3.3.1 Posterior Inference

Posterior inference of directed brain networks is equivalent to identifying directed con-

nections and modules in these networks. In the following we elaborate the procedures to

identifying modules and directed connections using the variational parameters output from

the above variational Bayesian method.

3.3.1.1 Identification of Modules in Subject-Specific Brain Networks

Intuitively, given an appropriate number of modules K, one can use the variational

parameters Φms
i output from the variational Bayesian method to determine the module for

region i in the directed brain network of subject s. However, we let K = d instead of using

a carefully chosen K. This is because, even though we can identify the correct number of

modules, it is difficult to correctly specify initial module assignments for many regions under

study with K much smaller than d. As pointed out by Blei et al. (2017), the KL-divergence,

KL (q(Θ|V)||p(Θ|X)), is a nonconvex optimization function, and its optimization is sensitive

to initial values. If K is assigned a value much smaller than d, many regions would be

incorrectly assigned to the same module in the initial step, resulting in the algorithm being

stuck at a local mode that can be far from the truth. In contrast, in our initialization with

K = d, we let each region be in one unique module and separate from each other. This

initialization lets the algorithm automatically group regions and find the right module for

every region. We found that this approach is more reliable than using the initial values where

many regions could be incorrectly grouped together. Moreover, this initialization avoids the

issues of identifying the correct number of modules and rerunning the algorithm.

On the other hand, because K = d is much larger than the true number of modules,

bringing uncertainty in determining the module of each region i, the probabilities, Φms
i , of

each region i in different modules are small. More importantly, allowing for each region to

be in different modules in different subjects’ networks in the Bayesian model can lead to

an identifiability issue because the same module can be given different labels in different

subjects’ networks.

We propose the following computationally fast steps to determine an appropriate num-

48



ber of modules and reevaluate posterior probabilities of each region i in different modules.

We first identify the regions that are in the same module inmost subjects’ directed brain

networks. We use these regions to determine modules and the number of modules, based on

which, we reevaluate the probabilities of module assignments for the other regions. In the

following, Φ denotes the variational parameter output of the variational Bayesian method,

and a notation θ̂ denotes a quantity evaluated based on the output:

1. Evaluate the probability of two regions, i and j, in the same module in the directed brain

network of each subject s by Ω̂s
ij =

∑d
k=1Φ

ms
i

k · Φms
j

k .

2. Two regions i and j are deemed to be in the same module in the directed brain network

of subject s if Ω̂s
ij >

1
d
.

3. Identify sets of regions, Ck, k = 1, . . . , K̂, that satisfy three conditions: (1) Each Ck

contains at least two regions; (2) for any two regions ik1 , ik2 ∈ Ck, either ik1 and ik2 are in

the same module in more than 50% of subjects’ directed brain networks or there exists a

third region jk ∈ Ck such that ik1 with jk and jk with ik2 are in the same module in more

than 50% of subjects’ directed brain networks; (3) for any two regions in two different

sets, i ∈ Ck, j ∈ Ck̃, and k ̸= k̃, i and j are different regions, and i and j are in the same

module in fewer than 50% of subjects’ brain networks.

4. For all regions ik ∈ Ck, let m̂
s
ik,k

= 1 and p̂ik,k = 1. That is, we deem all the regions in

Ck to be in the same module k in directed brain networks of all subjects.

In Step 1, we calculate Ω̂s
ij, based on the factorized distribution (3.8), in which the

distributions of module labels for regions i and j are independent. In Step 2, the value

1/d is calculated based on the worst scenario where the probabilities of module labels of

either region i or region j are identical for K = d modules (i.e., Φ
ms

i
k or Φ

ms
j

k = 1/d for

all k = 1, . . . , d). Step 3 identifies groups of regions that are in the same module in most

subjects’ brain networks. Step 4 lets the K̂ sets of regions, identified in Step 3, define K̂

modules.

Given the K̂ region sets, Ck, k = 1, . . . , K̂, we reevaluate the variational parameters of
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module labels for each region i ̸∈ {Ck, k = 1, . . . , K̂} and subject s. Specifically, we let

Φ̂
ms

i
k =

d∑
h=1

Φ
ms

i
h ·max{Φ

ms
ik

h , ik ∈ Ck} for k = 1, . . . , K̂,

and Φ̂
ms

i
k = 0 for k = K̂ + 1, . . . , d. The above calculates the probability of region i in the

same module as any one of the regions in Ck. Then we standardize Φ̂
ms

i
k , k = 1, . . . , K̂ such

that their sum equals 1 for every region i and subject s.

We use Φ̂ms
i = {Φ̂ms

i
1 , . . . , Φ̂

ms
i

K̂
} to identify the module of region i in the directed brain

network of subject s. If region i’s largest module probability, Φ̂
ms

i
k(1)

, is larger than 50%, we

deem that region i falls into module k(1) in the directed brain network of subject s; otherwise,

region i does not fall into any module.

3.3.1.2 Identification of Modules in the Population-Mean Brain Network

Given modules identified in S subjects’ directed brain networks, we reevaluate the

population-mean probability of region i in module k, p̂ik, by the percentage of the S subjects’

networks in which region i is in module k:

p̂ik =
1

S

S∑
s=1

1
Φ̂

ms
i

k >50%
.

After normalizing p̂i = {p̂i1, . . . , p̂iK̂} to have a sum one, we use it to determine the

module(s) of each region i in the population-mean directed brain network. The module

assignment of each region i falls into 4 scenarios. (1) If the largest module probability of

region i, p̂ik(1) , is larger than 50%, we deem that region i falls into module k(1) only; (2) if

p̂ik(1) ≤ 50% and p̂ik(1) + p̂ik(2) > 50%, we deem that region i falls into modules k(1) and k(2);

(3) if p̂ik(1) + p̂ik(2) ≤ 50% and p̂ik(1) + p̂ik(2) + p̂ik(3) > 50%, we deem that region i falls into

three modules, k(1), k(2), and k(3); (4) if p̂ik(1)+ p̂ik(2)+ p̂ik(3) ≤ 50%, we deem that the modules

of region i are unidentifiable in the population-mean brain network. We consider each region

to be in no more than three different modules (corresponding to three different specialized

functions) for easy scientific interpretation and to detect the most significant modules for

each region. We also found that very few regions can fall into more than three different

50



modules.

3.3.2 The Choice of Hyperparameter

The hyperparameter ξ20 can affect modules identified in each subject’s network. Specifi-

cally, if ξ20 is too small, the values of As,l
ij s would be tiny which will result in small differences

between the posterior probabilities of including (γsij = 1) and excluding (γsij = 0) directed

connections as well as small differences between the posterior probabilities of each region

being in different modules. On the other hand, if ξ20 is too large, As,l
ij s tend to be large, and

indicators, γsijs, tend to be 0 regardless of regions’ module assignments. The probabilities of

each region being in different modules are also similar. Overall, either too large or too small

ξ20 makes it difficult to identify correct modules for each region.

Considering that modules identified affect the number of free parameters in the state

model (3.2), we propose a Bayesian information criterion (BIC) to choose ξ20 .

For easy calculation of BIC, we treat all regions in the same module to be pairwisely

connected and regions in different modules are disconnected. Given ξ20 , let Cs
i,ξ20

be the set

of regions (excluding region i) in the same module as region i in the directed brain network

of subject s. If region i does not fall into any modules in the directed brain network of

subject s (i.e., Φ̂
ms

i
k(1)

≤ 50%), Cs
i,ξ20

= Ø. Given X, let L̂s,l

i,ξ20
denote the maximized value of the

likelihood function of the state model (also a linear regression model), xs,li (t) =
∑

j∈Cs
i,ξ20

As,l
ij ·

xs,lj (t− 1) + ηs,li (t) for t = 1, . . . , Tl. Let κξ20 be the total number of free parameters in these

S · d · L regression models. Our BIC is

BIC(ξ20) = κξ20 · log(
L∑
l=1

S · d · Tl)− 2
S∑

s=1

L∑
l=1

d∑
i=1

log(L̂s,l

i,ξ20
).

We select ξ20 that leads to the smallest BIC(ξ20) and and more than 90% of regions having

identifiable modules.

Note that the above procedure allows us to analyze the massive fMRI data just once

for each candidate hyperparameter ξ20 and thus, requires much less computational time to

determine the appropriate number of modules.
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3.3.3 Directed Connection Identification

We use αs
ij to identify directed connections in the subject-specific directed network for

each subject s and use average posterior probabilities ᾱij =
∑S

s=1 α
s
ij/S, i, j = 1, . . . , d to

identify directed connections in the population-mean directed network.

Because it is hard to know the density of true between-module connections versus within-

module connections, we followed the approach by Power et al. (2011) and selected directed

connections with top posterior probabilities ranging from top 1% to top 10%. We present

directed connections with the highest possible posterior probabilities for easy visualization

and minimal false selections while ensuring the number of selected between-module directed

connections is no smaller than 1% of the number of selected within-module connections. The

connections selected by this approach are easy to visualize and scientifically interpretable.

3.4 Simulation Studies

We used SPM software (Penny et al., 2011) to simulate fMRI data from the DCM (Friston

et al., 2003) because it is the most popular model for directed connectivity. The DCM uses

many complex ordinary differential equations (ODEs) in the state model to characterize

interactions between neuronal activity in different regions and uses ODEs in the observation

model to link regions’ neuronal activity to their blood oxygen level dependent signals. We

first used the ODEs in the state model of the DCM to generate state functions, xs,l(t), of

d = 264 egions in each of two (l = 1, 2) 15-minute runs for each subject s. The state functions

xs,1(t) and xs,2(t) in two different runs were generated using the same ODEs but different

initial values so that xs,1(t) ̸= xs,2(t) which is consistent with real data from different fMRI

runs of each subject. Then, we used the ODEs in the observation model of the DCM to

generate fMRI data ys,1(t) in which the observation noise ϵs,lj (t) of each region j is chosen

such that the signal-to-noise ratio var(xs,lj (t))/var(ϵs,lj (t)) = 1 for j = 1, . . . , d = 264, , s =

1, . . . , S = 1000, and l = 1, 2. The chosen signal-to-noise ratio is considered low in the

literature (Frässle et al., 2018). Note that simulation from the ODE model, DCM, generates
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continuous data. We kept T = 1200 equally distanced data points with repetition time (TR)

of 0.72 s as our simulated data, the same as the TR of real fMRI data under study.

Figure 3.1a shows simulated network patterns. We used the BrainNet Viewer (Xia et al.,

2013) to visualize networks. The number of modules and the sizes of modules were chosen

to be close to those of functional systems determined by Power et al. (2011). Network nodes

in the same color are in the same module in all subjects’ networks. Network nodes witt two

colors are in one module (in one color) in 50% of subjects’ networks and in the other module

(in the other color) in the other 50% of subjects’ networks. All network nodes in the same

module are pairwise connected. We show only between-module connections in figures for

easy visualization. Edges in dark red indicate between-module directed connections from an

upper module to a lower module. Edges in green indicate between-module connections from

a lower module to an upper module. The between-module connections are chosen to make

easy visualization of the network. The number of between-module connections is around 5%

of that of within-module connections.

Using simulated directed connections (i.e., directed network edges) of all the subjects

as the truth, we calculated the false positive rate (FPRs) and true positive rate (TPRs) of

selecting directed network edges for all the subjects based on different thresholds for αs
ijs. For

comparison, we examined the FPRs and TPRs of popular competing methods, including the

third-order MAR with L1 regularization (implemented by the R package BigVAR (Nicholson

et al., 2017)), denoted by MAR(L1), transfer entropy (TE) (Sabesan et al., 2009; Schreiber,

2000; Vicente et al., 2011), partial directed coherence (PDC) (Baccalá and Sameshima, 2001),

short-time direct transfer function (SdDTF) (Korzeniewska et al., 2014), and graphical lasso

(Glasso) (Friedman et al., 2014; Witten et al., 2011). Figure 3.1b shows the ROC curves of

TPRs vs. FPRs for these methods. We also tried the sparse regression DCM (Frässle et al.,

2018), but it is computationally infeasible for identifying 1000 subjects’ whole-brain directed

networks. We also performed the simulation study 100 times independently and found that

the accuracy of directed connection selection is stable across different simulations. The lowest

value of the area under the curve (AUC) is 0.82, and the highest one is 0.89. In summary,

the proposed variational Bayesian method with the MMSB prior (BMMSB) outperformed

the other methods by achieving the largest area under the ROC curve.
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(a) Simulated Network (b) ROC Curves T = 1200

(c) Estimated Mean Network for T = 1200 (d) ROC Curves T = 600

Figure 3.1: The Simulation Study of Data Generated from the DCM. (a) The simulated network patterns.
Nodes in the same color are in the same module in all subjects’ brain networks. Nodes with two colors
are in different modules in different subjects’ brain networks. Edges in dark red indicate between-module
directed connections from an upper module to a lower module. Edges in green indicate between-module
connections from a lower module to an upper module. (b) ROC curves for directed connections identified by
six competing methods. (c) The estimated population-mean directed network. (d) ROC curves for directed
connections identified by six competing methods based on data with T = 600 time points.
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Figure 3.1c shows the estimated population-mean directed network. Our method success-

fully identified nine modules and the existence of two groups of regions with mixed module

memberships. The TPR and FPR of selecting within-module directed connections are 66.3%

and 0, respectively. The TPR and FPR of selecting between-module connections are 40.3%

and 2.6%, respectively.

The TPR of selecting within-module connections is much higher than that of between-

module connections for several reasons. First, module identification, similar to clustering,

is subjective, so our selection of directed connections does not take into account identi-

fied modules and is purely based on posterior probabilities of directed connections (i.e.,

αs
ijs). Since the number of true within-module connections is much larger than that of true

between-module connections, and the number of candidate between-module connections is

much greater than the total number of true directed connections, within-module connections

are much easier to detect and their posterior probabilities tend to be much higher than those

of between-module connections. Second, since the number of within-module connections is

much larger than between-module connections, connection selection is more toward select-

ing within-module connections so that the overall accuracy of connection selection is high.

Third, since the number of void connections is large, a slightly lower threshold for directed

connections can lead to many selections. These selections not only could contain many

false selections but also lead to a network result that is difficult to interpret scientifically.

Consequently, we used a high threshold for αs
ijs to avoid many false selections which also

rendered only a few between-module connections selected. Overall, the proposed method

outperformed existing methods by achieving a higher TPR and a low FPR.

We also analyzed the first half of the simulated fMRI data with T = 600 to assess the

effect of the data length on the accuracy of connection selection. Figure 3.1d shows ROC

curves of six competing methods. The proposed variational method has a slightly smaller

AUC (0.85 compared to the AUC of 0.88 with T = 1200) in identifying directed connections

with fewer data points and still outperformed other methods.

We performed another simulation study to compare the proposed variational Bayesian

method and a fully Bayesian approach based on simulated fMRI data in d = 62 regions of

a single subject. The ROC curve of the variational method is only slightly lower than that
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of the fully Bayesian approach: The AUC of the former method is 0.82, and the AUC of

the latter method is 0.87. This result suggests that the variational method can effectively

approximate the target posterior distribution. More details of this simulation study can be

found in Appendix B.3.

3.5 Real FMRI Data Analysis

We analyzed resting-state fMRI data of S = 995 healthy subjects in total from the Human

Connectome Project (HCP) (Van Essen et al., 2013). All subjects went through one-hour

(in total) resting-state fMRI scanning at 3T (Smith et al., 2013) in two pairs of 15-minute

runs on each of two separate days. The data of each subject per run consist of functional

images at 1200 time points with a repetition time (TR) of 0.72s and a 2-mm isotropic spatial

resolution. The resting-state fMRI data downloaded from the HCP had been preprocessed

according to the HCP minimal preprocessing pipeline. More detailed descriptions of the

preprocessing steps, including optimized spatial preprocessing and temporal preprocessing,

can be found in the papers by Glasser et al. (2013); Smith et al. (2013). Following the

practice by Power et al. (2011), we extracted fMRI time series from the 10-mm diameter

sphere of each of 264 regions of interest using the DPABI toolbox (Yan et al., 2016). We

averaged fMRI time series of all voxels in each region j from each run l for each subject s

and standardized the average time series to have mean zero and variance one. The ensuing

time series was {ys,lj (1), . . . , ys,lj (Tl)} in our analysis.

We applied the proposed variational method to analyze subjects’ fMRI data in L = 2

runs collected on separate days. Therefore, we analyzed two sets of fMRI data independently.

The first set contains S = 995 subjects’ resting-state fMRI data in the two runs with phase

encoding in the left-to-right direction, and the second set contains the same subjects’ resting-

state fMRI data in the two runs with phase encoding in the right-to-left direction.

We present four major results of our directed network analysis of the fMRI data. First,

modules identified by our method are accordant with functional brain systems specialized for

various functions. The accordance between the identified modules and functional brain sys-
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tems provides validation of module identification by our directed network method. Second,

we revealed directed connections between brain modules with different specialized functions.

These identified between-module directed connections are consistent with those discovered

in low-dimensional directed network analysis of task-based fMRI data in just a few regions

of interest. Third, we uncovered several regions that can be in different modules in dif-

ferent subjects’ networks. This result suggests that these regions can be involved in more

than one brain function. Fourth, we evaluated reproducibility by comparing the results of

the independent analysis of the two fMRI data sets. We found both modules and directed

connections identified are similar across different data sets. We elaborate on these results

below.

3.5.1 Identification of Modules

Our method identified modules specialized for different functions, though the method

did not use spatial information of regions. Figure 3.2 shows the identified population-mean

whole-brain directed network in axial and sagittal views using the first fMRI data set. The

identified modules are specialized for functions including visual (several blue colors), hand

somatosensory-motor (green), face somatosensory-motor (light green), cingulo-opercular task

control (patriarch), auditory (fuchsia), default mode (dark red, red, light red, and pink),

fronto-parietal task control (yellow), salience (purple), memory retrieval (gray), ventral at-

tention (blue green), and dorsal attention (navy) functions. These results are consistent with

the functional brain systems reported in the literature (Power et al., 2011). Note that the

modules with “unknown” labels correspond to several subsystems identified by Power et al.

(2011) to have fewer than four regions. The functional identities of these subsystems are

unknown in the literature. Our method not only successfully separated these regions from

other modules but also identified them to share similar functions.

Note that the above modules with different specialized functions are also called networks

in the literature, for example, the default model network, cingulo-opercular task control

network, and salience network. To keep terminology consistent in this chapter, we use

modules instead of networks.
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(a) Axial View (b) Sagittal View

Figure 3.2: The Identified Population-Mean Whole-Brain Directed Networks in Axial (a) and Sagittal (b)
Views based on the First FMRI Data Set. The nodes in the same color are identified to be in the same
module. The nodes with more than one color are identified to be in more than one module. Black edges
represent directed connections between modules that have distinct functions. The directed connections
selected have top 1% posterior probabilities.

Our method revealed several smaller modules in large functional brain systems, such as

the visual and the default mode functional systems. These results align with the literature

that the visual system (Zeki et al., 1991) and the default mode system (Buckner et al.,

2008) consist of several functionally and anatomically different brain areas. Moreover, the

identified small visual modules overlap with several known subdivisions in the visual system,

including medial visual area (visual module A), occipital pole (visual module B), and lateral

visual areas (visual modules C and D) (Ikeda et al., 2022). Our method is also able to

identify modules of posterior cingulate and retrosplenial cortices (PCC & RSC), anterior

cingulate and medial prefrontal cortices (ACC & mPFC), inferior parietal lobe and lateral

temporal cortex (IPL & LTC), and other regions in the default mode system (Davey et al.,

2016; Raichle, 2015). The correspondence between identified modules with known functional

brain systems and the high overlap between identified small modules in the large visual and

default mode systems with known subdivisions of these two systems all provide evidence

that our method can successfully detect subtle functional differences between subdivisions

in a large functional system and reveal the hierarchical modular organization of the brain.
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3.5.2 Identification of Directed Connections

Most of the identified directed connections are between regions in the same module or

between modules with similar brain functions (e.g., between the four visual modules). These

connections are dense, as expected. For easy visualization of directed connections between

different functionally specialized modules, we show only directed connections between mod-

ules with different specialized functions in Figure 3.2.

We discovered that the strongest between-module directed connections are between the

auditory module and somatosensory-motor modules. Although existing studies have already

reported strong functional connectivity between motor and auditory brain areas (De Luca

et al., 2006; He et al., 2009; Mesulam, 1998), our results further suggest directed connec-

tions are between the face somatosensory-motor module and the auditory module. We also

observed additional connections between the cingulo-opercular task control module and the

salience module. This result is in accordance with the finding that the salience module en-

gages the cingulo-opercular task-control regions (Seeley, 2019). In summary, our method can

reliably detect directed connections between functionally specialized brain modules based on

whole-brain resting-state fMRI data. In contrast, existing studies typically rely on tasked-

based fMRI data to evaluate directed connections between only a few regions of interest with

different specialized functions.

Another interesting finding, regarding directed connections between modules, is that the

default mode module has no connection with other modules. This result is consistent with

the abundant literature (Smith et al., 2009) that the default-mode network tends to be

nonactive when the brain is during the performance of various goal-directed tasks (Gusnard

and Raichle, 2001; Raichle et al., 2001).

3.5.3 Variation of Directed Brain Networks across Subjects

We examined the variation of directed brain networks across subjects. Figure 3.3 shows

the whole-brain directed network of one subject. Identified modules in subject-specific di-

rected brain networks are generally similar to those in the population-mean directed net-

works, although small modules in large functional brain systems, such as the default mode

59



(a) Axial View (b) Sagittal View

Figure 3.3: The Identified Whole-Brain Directed Networks of One Subject in Axial (a) and Sagittal (b)
Views based on the First FMRI Data Set. The nodes in the same color are identified to be in the same
module. Black edges represent directed connections between modules that have distinct functions. The
directed connections selected have top 1% posterior probabilities.

and somatosensory-motor modules, have moderate variations across subjects. We also found

that regions in auditory, visual, somatosensory-motor, cingulo-opercular task control, and

salience modules can fall into different modules in different subjects’ networks, as demon-

strated by nodes with more than one color in Figure 3.2. These results are consistent with

the findings in the literature (Bushara et al., 2001; Deshpande et al., 2008; Power et al.,

2011; Riedl et al., 2016; Seeley et al., 2007) that these modules have strong functional con-

nectivity between them. Our results additionally suggest that regions in these modules can

be involved in different brain functions.

The most considerable variation in directed brain networks across subjects lies in between-

module directed connections. As shown in Figure 3.3, subject-specific directed brain net-

works have more between-module connections than the population-mean directed network.We

consider several potential reasons for these results. First, the specialized functions of brain

regions tend to be consistent across healthy subjects, while connectivity between regions vary

dramatically across subjects during resting state. Second, fMRI data of each subject have

a weak signal-to-noise ratio, leading to large variances of estimated subject-specific directed
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(a) Axial View (b) Sagittal View

Figure 3.4: The Identified Population-Mean Whole-Brain Directed Networks in Axial (a) and Sagittal (b)
Views based on the Second FMRI Data Set. The nodes in the same color are identified to be in the same
module. The nodes with more than one color are identified to be in more than one module. Black edges
represent directed connections between modules that have distinct functions. The directed connections
selected have top 1% posterior probabilities.

brain networks. Third, estimating directed connectivity between many regions is susceptible

to multicollinearity, while identifying modules, similar to clustering, is much less affected

by multicollinearity. Therefore, identified functionally specialized modules tend to be stable

across subjects, while identified connections between modules have much greater variations

across subjects.

3.6 Reproducibility

We applied the variational Bayesian method to the same subjects’ second resting-state

fMRI data set and obtained the second estimated population-mean directed brain network

shown in Figure 3.4. The network is similar to the first population-mean brain network

(shown in Figure 3.2) obtained by analyzing the same subjects’ first fMRI data set.

We calculated overlap coefficients of identified modules in the two networks to assess the
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reproducibility of our method. The overlap coefficient is defined as

overlap(S1, S2) =
|S1 ∩ S2|

min(|S1|, |S2|)
,

where S1 and S2 are two sets, for example, modules of regions. Let S1 and S2 be the

collection of all the modules identified in the first and second population-mean directed brain

networks, respectively. For each module S2 ∈ S2, its overlap coefficient with S1 is defined as

maxS1∈S1 overlap(S1, S2). Similarly, we define the overlap coefficient of each module S1 ∈ S1

with S2 as maxS2∈S2 overlap(S1, S2). The mean of the overlap coefficients of modules in S2

with S1 is 80%, and the mean of the overlap coefficients of modules in S1 with S2 is 82%. The

overlap coefficient of identified directed connections in the two population-mean networks is

92

We also examined the similarity between two estimated whole-brain directed networks for

each subject. The average overlap coefficient of identified modules in subject-specific brain

networks is 81%, and the average overlap coefficient of identified directed connections is 76%.

Again, directed connections have more variations than modules across runs for reasons given

above.

3.7 Discussion

We propose a new high-dimensional directed network method for analyzing resting-state

fMRI data of many subjects. The advantages of our new method lie in three aspects. First,

our model building exploits the principles of the brain’s functional organization by charac-

terizing both modules and directed connections in brain networks. Second, the new Bayesian

model accommodates the variation of brain networks across subjects while enabling integra-

tion of many subjects’ data to estimate whole-brain directed networks. Third, the developed

new variational Bayesian method can simultaneously identify modules and directed connec-

tions with both computational efficiency and estimation accuracy.

Setting the lower bound, l0, for prior probabilities of within-module connections at a high

value of 0.9 is necessary for several reasons. First, it is documented in the literature that
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regions in the same subnetwork (called modules in our analysis) are coactive (Cole et al.,

2010). This coactivation leads to very strong correlations (at values of almost 1) between

these regions’ fMRI data. Second, fMRI preprocessing steps can increase correlations of

fMRI data in different regions (Gargouri et al., 2018). Third, the large number of regions’

fMRI data under study brings the multicollinearity issue when using a model to identify

connections. Then, setting a high value for l0 can enable us to reduce the false selections due

to the high correlations caused by the second and third issues and identify truly strongly

connected regions. Fourth, we found that using a smaller value of l0 can render regions

specialized for different functions incorrectly merged together because of the second and

third issues. Fifth, our choice of l0 has been implemented in Chapter 2.

We used the first-order MARSS, instead of higher-order ones, to identify directed con-

nections for several reasons. First, the purpose of this study is to identify directed connec-

tions by detecting the existence of temporal dependence between regions’ temporal activities

rather than explaining fMRI data variation, fitting the data perfectly, or examining the ex-

tent of temporal dependence between regional activity. The first-order MARSS is efficient

in capturing the presence of temporal dependence. Second, though a high-order MARSS

may fit the data better, it contains many more free parameters. Estimating these more

parameters brings significantly more variances and uncertainty in identifying directed con-

nections. Third, simulations performed in Section 2.3 have demonstrated that the first-order

MARSS can detect directed connections with high accuracy for data generated from high-

order MARSS. We did similar simulations and obtained the same results. However, since

the DCM is more distinct from the MARSS and, arguably, a generative model for fMRI,

we presented simulation results based on the DCM. On the other hand, since our method is

focused on detecting temporal dependence using a parsimonious model, the method does not

differentiate between negative inhibitory relationships and positive excitatory relationships

between regions. This analysis requires using more detailed models.

Evaluation of directed connections between functionally distinct areas is mainly through

low-dimensional directed network analysis of task-based fMRI data in only a few regions

of interest. Thus, these directed connectivity results are restricted to fMRI studies with

specifically designed tasks. In contrast, our method can reliably detect directed connections
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between modules with different functions based on whole-brain resting-state fMRI data. Our

network results enhance our understanding of the brain’s functional organization.

In future research we will extend our method to model dynamic connectivity by allowing

indicators for directed connectivity to vary over time or assuming transition probabilities

for directed connectivity. We will also develop the model for task-based fMRI data, com-

pare resting-state and task-based whole-brain directed networks, and further investigate the

variation of directed brain networks across different tasks and conditions.
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4.0 Future Research

Due to recent technological advances, brain data collected from large populations at dif-

ferent time stages in various modalities are available. For example, the Adolescent Brain

Cognitive Development (ABCD) study (Casey et al., 2018) follows more than 10, 000 chil-

dren aged 9 − 10 years old and tracks their biological and behavioral development through

adolescence into young adulthood. The ABCD study collects these children’s multimodal

neuroimaging data (Hagler Jr et al., 2019). With our experience in analyzing massive neu-

roimaging data, we aim to develop new statistical models for these new data to address new

statistical and scientific questions.

In the future, we will develop statistical models to infer the relationships between different

brain networks by utilizing these new datasets. “Inferring the relationships between differ-

ent brain networks” falls into several real scenarios. First, we will develop new methods to

infer the relationships between brain networks of different connectivity types estimated from

multimodal brain data. For example, the relationships between brain networks of structural

connectivity inferred from diffusion tensor imaging (DTI) data and brain networks of func-

tional connectivity estimated from fMRI data, or the relationships between brain networks

estimated from structural MRI data and positron emission tomography (PET) data. Un-

derstanding the relationship between brain networks estimated from multimodal brain data

will facilitate borrowing information across different data types (Zhu et al., 2017). Second,

we will infer the relationships between the brain networks of different human populations.

For example, the young adults in HCP and the adolescents in the ABCD study. Third,

we will model the longitudinal brain networks estimated from longitudinal brain data. For

the ABCD data, we aim to reveal normal and abnormal brain network changes and identify

biological, social, and environmental factors that affect the development of healthy brain

functions. For aging data (Bookheimer et al., 2019; Mueller et al., 2005), we aim to reveal

normal brain network changes due to aging and abnormal brain network changes due to

Alzheimer’s disease progression.
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Appendix A Appendix of Chapter 2

A.1 Joint Distribution

All the parameters to be estimated in the proposed Bayesian framework are

Θ = {Γ,B,M,A, c, τ ,µ,p}.

Let X = {x(0), . . . ,x(T )} and Y = {y(1), . . . ,x(T )}. The joint posterior distribution

of X and Θ is:

p(X,Θ|Y) ∝ p(Y|X,Θ) · p(X|Θ) · p(Θ)

∝
T∏
t=1

1

|R| 12
exp

{
−1

2
[y(t)−Cx(t)]′R−1 [y(t)−Cx(t)]

}
· exp

{
−1

2
[x(0)− µ]′ [x(0)− µ]

}

·
T∏
t=1

exp

{
−1

2
[x(t)− (Γ ◦A)x(t− 1)]′ [x(t)− (Γ ◦A)x(t− 1)]

}

·
d∏

i,j=1

(m′
iBmj)

γij(1−m′
iBmj)

1−γij ·
K∏

k1,k2=1,k1 ̸=k2

1{0 < Bk1k2 < u0}
K∏
k=1

1{l0 < Bkk < 1}

·
d∏

i=1

K∏
k=1

pmik
k ·

K∏
k=1

1{pk < 1} · 1{
K∑
k=1

pk = 1}

·
d∏

i=1

ϕ(
ci
ξ1
) · ϕ(µi

ξ1
) · 1

τ 1+ρ0
i

exp{−ρ0
τi
} ·

d∏
i,j=1

ϕ(
Aij

ξ0
),

where ◦ denotes the Hadamard product, C is a d×d diagonal matrix with diagonal elements

as c, and R is a d× d diagonal matrix with diagonal entries as τ .

A.2 Partially Collapsed Gibbs Sampler

In each MCMC step, the parameters are simulated in the same order as their posterior

conditional distributions presented below.

Unless specified, all the Is in the following refer to identity matrices.
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A.2.1 Update Γ

We first integrate out A and simulate Γ from its ensuing posterior conditional distribu-

tion. Denote the ith row of Γ by Γi and define

Ui =
T∑
t=1

[Γ
′

i ◦ x(t− 1)][Γi ◦ x(t− 1)
′
] +

1

ξ20
I and Vi =

T∑
t=1

xi(t) · (Γi ◦ x(t− 1)
′
).

LetΘ−A represent all parameters excludingA. The joint posterior probability p(X,Θ|Y)

can be formulated as

f(Y,X,Θ−A)·
T∏
t=1

exp
{
− 1

2
[x(t)− (Γ ◦A)x(t− 1)]

′
[x(t)− (Γ ◦A)x(t− 1)]

}
·

d∏
i,j=1

ϕ(
Aij

ξ0
),

where f(Y,X,Θ−A) is the part of p(X,Θ|Y) without A.

Denoting the ith row of A by Ai, we have∫
f(Y,X,Θ−A) ·

T∏
t=1

exp
{
− 1

2
[x(t)− (Γ ◦A)x(t− 1)]

′
[x(t)− (Γ ◦A)x(t− 1)]

}
·

d∏
i,j=1

ϕ(
Aij

ξ0
)dA

∝ f(Y,X,Θ−A) ·
∫ d∏

i=1

1

|(Ui)−1| 12
· exp

{
− 1

2
[A

′

i − (Ui)−1(Vi)
′
]
′
Ui[A

′

i − (Ui)−1(Vi)
′
]
}

·
d∏

i=1

|(Ui)−1|
1
2 ·

d∏
i=1

exp
{ 1

2
(Vi)(Ui)−1(Vi)

′
}
dA

∝ f(Y,X,Θ−A) ·
d∏

i=1

|(Ui)−1|
1
2 ·

d∏
i=1

exp
{1

2
(Vi)(Ui)−1(Vi)

′
}
.

We update one γij a time for i, j = 1, . . . , d. At the step for updating γij, let Γ−ij =

Γ\{γij}, the values of all γijs excluding γij. Let Γ
(ij)=1
i and Γ

(ij)=0
i be the vectors the same

as Γi except that the jth entry in the two vectors equals 1 and 0, respectively.

Replace the vector Γi in the matrices Ui and Vi with Γ
(ij)=1
i or Γ

(ij)=0
i , and define the

ensuing matrices to be Ui
1,V

i
1, U

i
0, and Vi

0, respectively.

After calculating logw1
ij =

1
2
log |(Ui

1)
−1|+1

2
(Vi

1)(U
i
1)

−1(Vi
1)

′
+log (m

′
iBmj), and logw0

ij =
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1
2
log |(Ui

0)
−1|+1

2
(Vi

0)(U
i
0)

−1(Vi
0)

′
+ log (1−m

′
iBmj), we sample γij from

p(γij = 1|Γ−ij,X,B,m) =
[
1 + exp {logw0

ij − logw1
ij}

]−1
.

A.2.2 Update A

We update one Ai a time for i = 1, . . . , d. Sample Ai for i = 1, . . . , d from

Ai|X,Γi ∼ MVN((Ui)−1(Vi)
′
, (Ui)−1).

A.2.3 Update X

We update x(0), x(1), . . . ,x(T ) one by one.

• For x(0) : p(x(0)|x(1),Γ,A,µ) is proportional to

exp
{
− 1

2
[x(0)− µ]

′
[x(0)− µ]

}
· exp

{
− 1

2
[x(1)− (Γ ◦A)x(0)]

′
[x(1)− (Γ ◦A)x(0)]

}
∝ exp

{
−1

2

[
x(0)

′
((Γ ◦A)

′
(Γ ◦A) + I)x(0)− 2(x(1)

′
(Γ ◦A) + µ

′
)x(0)

]}
.

Let U0 = (Γ ◦A)
′
(Γ ◦A) + I, and V0 = x(1)

′
(Γ ◦A) + µ

′
. We sample x(0) from

x(0)|x(1),Γ,A,µ ∼ MVN((U0)
−1(V0)

′
, (U0)

−1).

• For x(t), t = 1, . . . , T − 1 : p(x(t)|x(t− 1),x(t+ 1),y(t),Γ,A,C,R) is proportional to

exp
{
− 1

2
[x(t)− (Γ ◦A)x(t− 1)]

′
[x(t)− (Γ ◦A)x(t− 1)]

}
· exp

{
− 1

2
[x(t+ 1)− (Γ ◦A)x(t)]

′
[x(t+ 1)− (Γ ◦A)x(t)]

}
· exp

{
− 1

2
[y(t)−Cx(t)]

′
R−1[y(t)−Cx(t)]

}
∝ exp

{
− 1

2

[
x(t)

′
((Γ ◦A)

′
(Γ ◦A) + I+C

′
R−1C)x(t)

− 2(x(t− 1)
′
(Γ ◦A)

′
+ x(t+ 1)

′
(Γ ◦A) + y(t)

′
R−1C)x(t)

]}
.

Let Ut = (Γ ◦A)
′
(Γ ◦A) + I+C

′
R−1C and Vt = x(t− 1)

′
(Γ ◦A)

′
+x(t+1)

′
(Γ ◦A) +
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y(t)
′
R−1C. We sample x(t) from

x(t)|x(t− 1),x(t+ 1),y(t),Γ,A,C,R ∼ MVN((Ut)
−1(Vt)

′
, (Ut)

−1).

• For x(T ) : p(x(T )|x(T − 1),y(T ),Γ,A,C,R) is proportional to

exp
{
− 1

2
[x(T )− (Γ ◦A)x(T − 1)]

′
[x(T )− (Γ ◦A)x(T − 1)]

}
·exp

{
− 1

2
[y(T )−Cx(T )]

′
R−1[y(T )−Cx(T )]

}
∝ exp

{
−1

2

[
x(T )

′
(I+C

′
R−1C)x(T )− 2(x(T − 1)

′
(Γ ◦A)

′
+ y(T )

′
R−1C)x(T )

]}
Let UT = I+C

′
R−1C and VT = x(T −1)

′
(Γ◦A)

′
+y(T )

′
R−1C. We sample x(T ) from

x(T )|x(T − 1),y(T ),Γ,A,C,R ∼ MVN((UT )
−1(VT )

′
, (UT )

−1).

A.2.4 Update c

For each ci, i = 1, . . . , d : p(ci|X,Y,R) is proportional to

exp
{
− 1

2

∑T
t=1[yi(t)− cixi(t)]

2

τi

}
· ϕ( ci

ξ1
)

·exp
{
− 1

2

[
(

T∑
t=1

xi(t)
2

τi
+

1

ξ21
)c2i − 2

T∑
t=1

xi(t)yi(t)

τi
ci

]}
.

Let ui =
∑T

t=1
xi(t)

2

τi
+ 1

ξ21
, vi =

∑T
t=1

xi(t)yi(t)
τi

. We sample ci from ci|X,Y,R ∼ N( vi
ui
, 1
ui
).

A.2.5 Update R

For each τi, i = 1, . . . , d :

p(τi|X,Y,C) ∝ (τi)
−T

2
−ρ0−1exp

{
− 1

2τi

T∑
t=1

[yi(t)− cixi(t)]
2 − ρ0

τi

}
.

We sample τi from

τi|X,Y,C ∼ Inv-Gamma (
T

2
+ ρ0,

1

2

T∑
t=1

[yi(t)− cixi(t)]
2 + ρ0).
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A.2.6 Update µ

Let Uµ = (1 + 1
ξ21
)I, Vµ = x(0)

′
. We sample µ from

µ|x(0) ∼ MVN((Uµ)
−1(Vµ)

′
, (Uµ)

−1).

A.2.7 Update p

Define a K-dimensional vector ι: the kth entry of ι is ιk =
∑d

i=1mik for k = 1, . . . , K.

We sample p from

p|M ∼ Dirichlet (ι+ 1K),

where 1K is a K-dimensional vector with all entries equal to 1.

A.2.8 Update mi

We update m1, . . . ,md in sequence.

Formi, i = 1, . . . , d, let Jk =
∏d

j=1(m
′
iBmj)

γij(1−m
′
iBmj)

1−γij ·
∏d

j=1
j ̸=i

(m
′
jBmi)

γji(1−

m
′
jBmi)

1−γji · pl|mi=ek , where ek is a K-dimensional vector with its kth entry equals to 1

and the rest equal to 0.

We sample mi from

p(mi = ek|M−i,B,Γ,p) =
Jk∑K
k=1 Jk

,

where M−i denotes all the columns of M excluding mi.

A.2.9 Update B

• For k = 1, . . . , K, we sample Bkk from

Bkk|m,Γ ∼ Beta
(
1 +

∑
{i,j:mi=ek,mj=ek}

γij, 1 +
∑

{i,j:mi=ek,mj=ek}

(1− γij)
)
· 1{Bkk ∈ (l0, 1)}
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• For k1, k2 = 1, . . . , K, k1 ̸= k2, we sample Bk1k2 from

Bk1k2|m,Γ ∼ Beta
(
1 +

∑
{i,j:mi=ek1 ,mj=ek2}

γij, 1 +
∑

{i,j:mi=ek1 ,mj=ek2}

(1− γij)
)
· 1{Bk1k2 ∈ (0, u0)}

A.3 Hypothesis Testing on Network Changes at Seizure Onset

This section explains how we evaluated the statistical significance of the increase in the

number of directed connections after seizure onset for the SOZ. We performed a hypothesis

test for comparing the number of directed connections of the SOZ in the immediate postictal

window (0-25 seconds after seizure onset) versus those in the interictal windows. For each

patient, we first calculated the numbers of directed connections of the SOZ in all the interictal

windows (25-second length, 1-second overlap) before seizure onset and used these numbers

to create the null distribution for the number of directed connections of the SOZ. Against

this null distribution, we obtained the p-value of the number of directed connections of the

SOZ in the immediate postictal window. Similarly, we obtained the p-value of comparing

the size of the SOZ module in the immediate postictal window versus those in the interictal

windows. Our analysis showed that for all six patients, both increases in the number of

directed connections and the size of the SOZ right after seizure onset were statistically

significant (p-values ≤3%).

A.4 Videos for the Brain Network Evolution

In the following link, we provide videos for brain network changes of Patient 1 and 2

from 300 seconds before to 300 seconds after seizure onset: https://github.com/Yaotian-

Wang/High-Dimensional-Directional-Brain-Network-Analysis-for-Focal-Epileptic-Seizures.
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Appendix B Appendix of Chapter 3

B.1 Posterior Distribution with Given X

We provide explicit formulas of the posterior distribution, p(Θ|X), below.

p(Θ|X) ∝
S∏

s=1

L∏
l=1

{ Tl∏
t=1

p
(
xs,l(t)

∣∣∣xs,l(t− 1),Θ
)}

· p(Θ)

∝
S∏

s=1

L∏
l=1

{ Tl∏
t=1

exp
{
− 1

2
[xs,l(t)− (Γs ◦As,l)xs,l(t− 1)]

′
[xs,l(t)− (Γs ◦As,l)xs,l(t− 1)]

}}

·
S∏

s=1

{ d∏
i,j=1,i ̸=j

(
(ms

i )
′ B ms

j

)γs
ij
(
1− (ms

i )
′ B ms

j

)1−γs
ij

}
·

S∏
s=1

{ d∏
i=1

K∏
k=1

p
ms

ik
ik

}

·
d∏

i=1

{ K∏
k=1

p
1
K
−1

ik · 1{0<pik<1} · 1{∑K
k=1 pik=1}

}

·
K∏
k=1

1{l0<Bkk<1} ·
K∏

k1,k2=1,k1 ̸=k2

1{0<Bk1k2
<u0} ·

S∏
s=1

d∏
i,j=1,i ̸=j

L∏
l=1

exp
{
− 1

2ξ20
(As,l

ij )
2
}}

.

B.2 Variational Bayesian Algorithm

We explain detailed steps in the optimization algorithm for minimizing the KL-divergence

KL (q(Θ|V)||p(Θ|X)) below.

We let K = d. In the initial step, we set the initial values of Φ
ms

i
k to be one if k = i,

and to be zero if k ̸= i. We set the initial values of Φpi

k to be (S + 1)/K. In the initial step,

we let αs
ij, u

s,1
ij , . . . , u

s,L
ij equal 0 and ws,1

ij , . . . , w
s,L
ij equal ξ20 for i, j = 1, . . . , d, i ̸= j. We

also let Eq4(Bk1k2
)[logBk1k2 ] = log l0 for k1 = k2 and Eq4(Bk1k2

)[logBk1k2 ] = log u0 for k1 ̸= k2;

Eq4(Bk1k2
)[log(1−Bk1k2)] = log(1− l0) for k1 = k2 and Eq4(Bk1k2

)[log(1−Bk1k2)] = log(1− u0)

for k1 ̸= k2.

In the following, for each parameter θ, we use E−θ to denote the integration operation that

integrates out all the parameters except for θ under the parameters’ variational distributions.
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B.2.1 Update Φms
i s

For each subject s, we update Φms
i , i = 1, . . . , d in sequence. For arbitrary k = 1, . . . , K,

we define

gi(k, s) =
d∑

j=1,j ̸=i

{
αs
ij

K∑
h=1

Φ
ms

j

h · Eq4(Bkh)[log(Bkh)] + (1− αs
ij)

K∑
h=1

Φ
ms

j

h · Eq4(Bkh)[log(1−Bkh)]

+αs
ji

K∑
h=1

Φ
ms

j

h · Eq4(Bhk)[log(Bhk)] + (1− αs
ji)

K∑
h=1

Φ
ms

j

h · Eq4(Bhk)[log(1−Bhk)]

}
+ ψ(Φpi

k ),

where ψ(·) is the digamma function.

We update Φ
ms

i
k to be

exp
{
gi(k,s)

}
∑K

h=1 exp
{
gi(h,s)

} .

B.2.2 Update Φs
ijs

For each subject s, we update Φs
ij, i, j = 1, . . . , d. i ̸= j in sequence. We define

L =−
∫
q1(A

s,1
ij , . . . , A

s,L
ij , γ

s
ij|Φs

ij)
(
E−(As,1

ij ,...,As,L
ij ,γs

ij)
[ log p(Θ,X)]

)
dAs,1

ij · · · dAs,L
ij dγsij

+

∫
q1(A

s,1
ij , . . . , A

s,L
ij , γ

s
ij|Φs

ij) log q1(A
s,1
ij , . . . , A

s,L
ij , γ

s
ij|Φs

ij)dA
s,1
ij · · · dAs,L

ij dγsij.

(B.1)

We look for the optimal values of Φs
ijs which minimize L. We start from calculating the

quantity in the brackets of the first term of (B.1).

E−(As,1
ij ,...,As,L

ij ,γs
ij)
[ log p(Θ,X)]

= − 1

2
γsij

L∑
l=1

{
(As,l

ij )
2

Tl∑
t=1

xs,lj (t− 1)2
}
− γsij

L∑
l=1

{
As,l

ij

d∑
k=1,k ̸=i,j

αs
iku

s,l
ik

( Tl∑
t=1

xs,lj (t− 1)xs,lk (t− 1)
)}

+ γsij

L∑
l=1

{
As,l

ij

Tl∑
t=1

xs,li (t)xs,lj (t− 1)

}
+ γsij · fi(j, s)−

1

2ξ20

L∑
l=1

(As,l
ij )

2 + Constant.

(B.2)

fi(j, s) in (B.2) takes the following form:
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fi(j, s) =
K∑

k1=1

K∑
k2=1

Φ
ms

i
k1

Φ
ms

j

k2

(
Eq4(Bk1k2

)[logBk1k2 ]− Eq4(Bk1k2
)[log(1−Bk1k2)]

)
. (B.3)

Substitute (B.2), (B.3) to (B.1), we have

L =αs
ij ·

{
1

2

L∑
l=1

{(
(us,lij )

2 + ws,l
ij

)( Tl∑
t=1

xs,lj (t− 1)2
)}

+
L∑
l=1

{
us,lij

d∑
k=1,k ̸=i,j

αs
iku

s,l
ik

( Tl∑
t=1

xs,lj (t− 1)xs,lk (t− 1)
)}

−
L∑
l=1

{
us,lij

( Tl∑
t=1

xs,li (t)xs,lj (t− 1)
)}

− fi(j, s) +
1

2ξ20

L∑
l=1

(
(us,lij )

2 + ws,l
ij

)}
+
L

2
(1− αs

ij)

+ αs
ij ·

(
log(αs

ij)−
1

2

L∑
l=1

log(ws,l
ij )

)
+ (1− αs

ij) ·
(
log(1− αs

ij)−
1

2

L∑
l=1

log(ξ20)
)
+ Constant.

(B.4)

Let the partial derivatives of L with respect to αs
ij, u

s,l
ij , w

s,l
ij be 0. We update Φs

ij to be

ws,l
ij =

1∑Tl

t=1 x
s,l
j (t− 1)2 + 1/ξ20

;

us,lij = ws,l
ij ·

{ Tl∑
t=1

xs,li (t)xs,lj (t− 1)−
d∑

k=1,k ̸=i,j

αs
iku

s,l
ik

( Tl∑
t=1

xs,lj (t− 1)xs,lk (t− 1)
)}

;

αs
ij

1− αs
ij

=
L∏
l=1

(
ws,l

ij

ξ20

) 1
2

· exp
{ L∑

l=1

(us,lij )
2

2ws,l
ij

+ fi(j, s)

}
.

(B.5)

From (B.5), ws,l
ij is a constant. Therefore, we only update us,lij and αs

ij in our iterative

algorithm.

B.2.3 Update Φpis

We update Φpi , i = 1, . . . , d in sequence.

E−pi

[ S∑
s=1

(ms
i )

′ log(pi) + (
1

K
− 1)(1K)

′ log(pi)
]
=

( S∑
s=1

Φms
i + (

1

K
− 1)1K

)′
· log(pi).

We update Φpi to be 1
K
1K +

∑S
s=1 Φ

ms
i , where 1K is a K-dimensional all-ones vector.
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B.2.4 Update ΦBk1k2s

We update ΦBk1k2 , k1, k2 = 1, . . . , K in sequence.

• k1 = k2:

β1,k1 = 1 +
S∑

s=1

d∑
i,j=1,i ̸=j

αs
ijΦ

ms
i

k1
Φ

ms
j

k1
;

β2,k1 = 1 +
S∑

s=1

d∑
i,j=1,i ̸=j

(1− αs
ij)Φ

ms
i

k1
Φ

ms
j

k1
.

• k1 ̸= k2:

β1,k1k2 = 1 +
S∑

s=1

d∑
i,j=1,i ̸=j

αs
ijΦ

ms
i

k1
Φ

ms
j

k2
;

β2,k1k2 = 1 +
S∑

s=1

d∑
i,j=1,i ̸=j

(1− αs
ij)Φ

ms
i

k1
Φ

ms
j

k2
.

After updating allΦBk1k2 s, we first calculate {Eq4(Bk1k2
)[logBk1k2 ],Eq4(Bk1k2

)[log(1−Bk1k2)]}Kk1,k2=1

right before updating Φms
i s and Φs

ijs in the next iteration of our variational Bayesian algo-

rithm, which are illustrated in Appendix B.2.1, B.2.2.

B.3 Comparison with MCMC Simulations

We performed a simulation study to compare the proposed variational Bayesian method

with a fully Bayesian approach and examined the efficacy and efficiency of the proposed

method in identifying directed connections.

Since an MCMC algorithm is extremely slow even for analyzing a single subject’s single

fMRI run in more than 50 regions, we compare the proposed variational Bayesian method

with a fully Bayesian approach (where the state functions xs(t) are also unknown) based on

a single fMRI run of a single subject. We use BSBM proposed in Chapter 2 to implement

the fully Bayesian approach.

Figure B.1a shows simulated network patterns with d = 62. Network nodes with the
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(a) Simulated Network (b) ROC Curves

Figure B.1: Comparison of MCMC and Variational Bayesian Algorithms based on One Subject’s Data
Generated from the DCM. (a) The simulated network pattern. Nodes in the same color are in the same
module in the subject’s brain network. (b) ROC curves for directed connections identified by using the fully
Bayesian method (MCMC) and the proposed variational method (BMMSB).

same color are in the same module in the subject’s network. All network nodes in the same

module are pairwise connected. We show only between-module connections in the figure for

easy visualization.

Figure B.1b shows that the ROC curve of directed connection selection by our proposed

variational Bayesian approach (BMMSB) is almost identical to that of a fully Bayesian

approach (MCMC). The AUC of the former method is 0.82, and the AUC of the latter

method is 0.87. This result suggests that the variational method can effectively approximate

the target posterior distribution.
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Frässle, S., Lomakina, E. I., Kasper, L., Manjaly, Z. M., Leff, A., Pruessmann, K. P.,
Buhmann, J. M. and Stephan, K. E. (2018), ‘A generative model of whole-brain effective
connectivity’, Neuroimage 179, 505–529.

Friedman, J., Hastie, T. and Tibshirani, R. (2014), ‘glasso: Graphical lasso-estimation of
gaussian graphical models’, R package version 1(8).

Friston, K. J. (1994), ‘Functional and effective connectivity in neuroimaging: a synthesis’,
Human brain mapping 2(1-2), 56–78.

Friston, K. J. (2011), ‘Functional and effective connectivity: a review’, Brain connectivity
1(1), 13–36.

Friston, K. J., Harrison, L. and Penny, W. (2003), ‘Dynamic causal modelling’, Neuroimage
19(4), 1273–1302.

Gargouri, F., Kallel, F., Delphine, S., Ben Hamida, A., Lehéricy, S. and Valabregue, R.
(2018), ‘The influence of preprocessing steps on graph theory measures derived from resting
state fmri’, Frontiers in computational neuroscience 12, 8.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2013), Bayesian data analysis,
Chapman and Hall/CRC.

Gelman, A. and Rubin, D. (1992), ‘Inference from iterative simulation using multiple se-
quences’, Statistical Science 7, 457–511.

Geng, J., Bhattacharya, A. and Pati, D. (2019), ‘Probabilistic community detection
with unknown number of communities’, Journal of the American Statistical Association
114(526), 893–905.

79



George, E. and McCulloch, R. (1993), ‘Variable selection via gibbs sampling’, Journal of the
American Statistical Association 88, 881–889.

George, E. and McCulloch, R. (1997), ‘Approaches for bayesian variable selection’, Statistica
Sinica 7, 339–373.

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L.,
Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R. et al. (2013), ‘The minimal preprocessing
pipelines for the human connectome project’, Neuroimage 80, 105–124.

Goebel, R., Roebroeck, A., Kim, D.-S. and Formisano, E. (2003), ‘Investigating directed
cortical interactions in time-resolved fmri data using vector autoregressive modeling and
granger causality mapping’, Magnetic resonance imaging 21(10), 1251–1261.

Goldenberg, A., Zheng, A. X., Fienberg, S. E. and Airoldi, E. M. (2010), ‘A survey of
statistical network models’.

Gusnard, D. A. and Raichle, M. E. (2001), ‘Searching for a baseline: functional imaging and
the resting human brain’, Nature reviews neuroscience 2(10), 685–694.

Hagler Jr, D. J., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., Suther-
land, M. T., Casey, B., Barch, D. M., Harms, M. P. et al. (2019), ‘Image processing
and analysis methods for the adolescent brain cognitive development study’, Neuroimage
202, 116091.

Hahn, G., Skeide, M. A., Mantini, D., Ganzetti, M., Destexhe, A., Friederici, A. D. and Deco,
G. (2019), ‘A new computational approach to estimate whole-brain effective connectivity
from functional and structural mri, applied to language development’, Scientific reports 9.

Harrison, L., Penny, W. D. and Friston, K. (2003), ‘Multivariate autoregressive modeling of
fmri time series’, Neuroimage 19(4), 1477–1491.

Harroud, A., Bouthillier, A., Weil, A. and Nguyen, D. (2012), ‘Temporal lobe epilepsy
surgery failures: A review’, Epilepsy Research and Treatment 2012, 201651.

Hayden, D., Chang, Y. H., Goncalves, J. and Tomlin, C. J. (2016), ‘Sparse network identi-
fiability via compressed sensing’, Automatica 68, 9–17.

He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q.,
Zang, Y. et al. (2009), ‘Uncovering intrinsic modular organization of spontaneous brain
activity in humans’, PloS one 4(4), e5226.

Hinrichs, H., Heinze, H.-J. and Schoenfeld, M. A. (2006), ‘Causal visual interactions as
revealed by an information theoretic measure and fmri’, NeuroImage 31(3), 1051–1060.

Hoffman, M. and Blei, D. (2015), Stochastic structured variational inference, in ‘Artificial
Intelligence and Statistics’, PMLR, pp. 361–369.

80



Holmes, E. E., Ward, E. J. and Wills, K. (2012), ‘Marss: multivariate autoregressive state-
space models for analyzing time-series data.’, R journal 4(1).

Ikeda, S., Kawano, K., Watanabe, S., Yamashita, O. and Kawahara, Y. (2022), ‘Predicting
behavior through dynamic modes in resting-state fmri data’, NeuroImage 247, 118801.

Ishwaran, H. and Rao, J. S. (2005), ‘Spike and slab variable selection: frequentist and
bayesian strategies’, The Annals of Statistics 33(2), 730–773.

Jacobs, J., Staba, R., Asano, E., Otsubo, H., Wu, J., Zijlmans, M., Mohamed, I., Kahane,
P., Dubeau, F., Navarro, V. and Gotman, J. (2012), ‘High-frequency oscillations (hfos) in
clinical epilepsy’, Progress in Neurobiology 98, 302–315.

Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. and Bernard, C. (2014), ‘On the
nature of seizure dynamics’, Brain 137(8), 2210–2230.

Khambhati, A. N., Davis, K. A., Oommen, B. S., Chen, S. H., Lucas, T. H., Litt, B. and
Bassett, D. S. (2015), ‘Dynamic network drivers of seizure generation, propagation and
termination in human neocortical epilepsy’, PLoS computational biology 11(12), e1004608.

Kiebel, S. J., Garrido, M. I., Moran, R. J. and Friston, K. J. (2008), ‘Dynamic causal
modelling for eeg and meg’, Cognitive neurodynamics 2(2), 121–136.

Kontoghiorghes, E. J. (2005), Handbook of parallel computing and statistics, CRC Press.

Kook, J. H., Vaughn, K. A., DeMaster, D. M., Ewing-Cobbs, L. and Vannucci, M. (2021),
‘Bvar-connect: A variational bayes approach to multi-subject vector autoregressive models
for inference on brain connectivity networks’, Neuroinformatics 19, 39–56.

Korzeniewska, A., Cervenka, M. C., Jouny, C. C., Perilla, J. R., Harezlak, J., Bergey, G. K.,
Franaszczuk, P. J. and Crone, N. E. (2014), ‘Ictal propagation of high frequency activity
is recapitulated in interictal recordings: effective connectivity of epileptogenic networks
recorded with intracranial eeg’, Neuroimage 101, 96–113.
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Rosenow, F. and Lüders, H. (2001), ‘Presurgical evaluation of epilepsy’, Brain 124(9), 1683–
1700.

Rosenthal, J. S. (2000), ‘Parallel computing and monte carlo algorithms’, Far east journal
of theoretical statistics 4(2), 207–236.

Sabesan, S., Good, L. B., Tsakalis, K. S., Spanias, A., Treiman, D. M. and Iasemidis, L. D.
(2009), ‘Information flow and application to epileptogenic focus localization from intracra-
nial eeg’, IEEE transactions on neural systems and rehabilitation engineering 17(3), 244–
253.

83



Sato, J. R., Fujita, A., Cardoso, E. F., Thomaz, C. E., Brammer, M. J. and Amaro Jr,
E. (2010), ‘Analyzing the connectivity between regions of interest: an approach based on
cluster granger causality for fmri data analysis’, Neuroimage 52(4), 1444–1455.

Schiff, S. J., Sauer, T., Kumar, R. and Weinstein, S. L. (2005), ‘Neuronal spatiotemporal
pattern discrimination: the dynamical evolution of seizures’, Neuroimage 28(4), 1043–
1055.

Schreiber, T. (2000), ‘Measuring information transfer’, Physical review letters 85(2), 461.
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