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An enquiry into dark matter physics

Mudit Rai, PhD

University of Pittsburgh, 2023

This thesis aims to address some of the issues plaguing the Standard Model of particle

physics and cosmology, with a particular focus on new theoretical and phenomenological

approaches to the dark matter puzzle.

First we perform an in-depth phenomenological analysis of the potential observable con-

sequences of the Higgs and neutrino portal dark sector models at the Fermilab DarkQuest

proton beam fixed-target experiment. Our findings show that DarkQuest will have excellent

sensitivity to new weakly coupled scalars and fermions in the GeV-scale mass range. Next, we

construct and investigate renormalizable models of Flavor-Specific Scalar mediators, which

dominantly couple with a certain specific fermion mass eigenstate. This work opens a path-

way for new dark sector theories with novel flavor structures and distinctive phenomenology.

We also investigate the cosmological production of ultra-light scalar dark matter with a fee-

ble coupling to the Higgs field where we analyzed the effects of the SM thermal bath and

the electroweak phase transition on the late time relic abundance. Our results include new

relic density targets which can be compared with experimental and observational tests.

In a complementary direction,we also study several foundational questions in early uni-

verse cosmology, which, in addition to their instrinsic theoretical interest, can also provide

an altogether different framework for understanding dark matter. Firstly, we study the

emergence of entropy in the gravitational production of ultralight dark matter particles.

Thereafter, we investigate the transition rates and cross sections for two-to-two scattering

processes in a spatially flat radiation dominated cosmology. We then focus on the infrared

dressing of bosonic or fermionic heavy particles by a cloud of (nearly) massless particles,

which can lead to a unique production mechanism of ultralight dark matter or dark radi-

ation in a radiation-dominated cosmology. We find that the initial amplitude of the single

particle decays in time with a power law behaviour, instead of the usual exponential decay

of the asymptotic Minkowski spacetime.
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1.0 Introduction

We will begin our journey by taking a historical tour to get a glimpse of where we stand,

how far have we come, and what the future might hold for us. Since the times of antiquity,

humans have been curious to understand the natural phenomena happening around them.

A detailed study of this historical survey merits its own thesis, but we will restrict ourselves

to picking out some of the key milestones which motivated this research work.

As early as around 200 BCE [262], Maharishi Kanada, Diganga and other philosophers

in Ancient India came up with the theory of atom-ism, which basically hypothesise what

constitutes the macroscopic objects around us, with “parmanu” (Atom) being the smallest

particle of matter which cannot be further subdivided. In the coming centuries in ancient

India, debates raged about this theory, giving it a philosophical as well as metaphysical

fervour. Similarly, in the western hemisphere, the early Greek philosophers, embarked on the

journey of understanding about nature in a more systematic form, leading up to “Aristotelian

physics”, where Aristotle makes a herculean effort in understanding the natural phenomena

around us in terms of four basic elements - “earth, water, air, and fire.” Such was the impact,

that it remained a cornerstone of science in Europe for the next millineum to come, until

being replaced by the advent of modern science. There was a period of lull during the Dark

Ages in the West, while some important developments were made in other parts of the world,

notably in the Middle East, India and Far East. The beginning of the 16th century marks a

turnaround, with the Scientific Revolution gripping Europe, with the advent of the Industrial

revolution and kick-starting the modern era. Again, even describing the glories of humankind

in this work would be akin to confining an ocean in a small vessel, and instead we would

pick out some of the fundamental ideas which will help set up the tone. In the late 17th

century, Sir Isaac Newton formulated the famous “three laws of motion”, which together with

the law of gravitation could describe the motion of macroscopic particles at large enough

distances (compared to atomic size) and slow enough (compared to speed of light) speed

quite correctly. It explained not only the motion of small objects like the apple falling on

earth, but could also explain the revolution of Earth around the Sun and so on [291]. The
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other fundamental force governing the physics of charged objects and light, which we now

understand as Electromagnetism, was coherently put together by James Clerk Maxwell, in

the form of “Maxwell Equations” in 1870s. By the late 19th century, it was widely believed

that humans had made enough progress in understanding about our nature in a consistent

manner.1. Yet, by the start of 20th century, a host of recently discovered phenomena such

as photoelectric effect, the blackbody radiation as well as thought experiments challenged

the fundamentals of classical physics. Other major developments such as the discovery of

electron and the X-Rays led to questions regarding whether the atom was indeed the smallest,

indestructible constituent of matter.

In the same epoch, a new era begun with Albert Einstein as its leading light. Einstein

revolutionized our understanding of space and time, beginning with the Special Theory

of Relativity published in 1905, and the General Theory of Relativity, published in 1915,

capping of one of the crowing achievement of human intellect. Amongst a host of key concepts

entailed in these theories, the curvature of space-time took the center stage, describing the

gravitational effect at each point in space, thereby replacing the Newtonian’s gravity. 2 More

than a century later, it stands firm and is in agreement with the experimental tests.

Contemporary to relativity, a new paradigm was shaping up. Quantum Mechanics, the

theory describing physics of subatomic particles, or more generally phenomena at the smallest

of scales, was gradually established by a number of brilliant scientists, namely Max Planck,

Niels Bohr, Erwin Schrodinger, Werner Heisenberg, Max Born, Paul Dirac, Pauli, Louis De

Broglie, Wolfgang Pauli and Einstein. Dirac went on to unite Special Relativity and Quan-

tum Mechanics (for spin half particles) into the Relativistic Quantum Mechanics. It was

further developed to consistently understand the interaction of photons (light) with elec-

trons, under the banner of Quantum Electrodynamics, pioneered independently by Richard

Feynmann, Shin’ichirō Tomonaga and Julian Schwinger towards the mid-20th century. The

subsequent discovery of new particles and their description in terms of field quanta led to

new insights. For example, Hideki Yukawa came up with the idea of “short range” force that

could be mediated by a massive particle inside the nuclei (done prior to the renormalization
1Claims such as “An eminent physicist remarked that the future truths of physical science are to be looked

for in the sixth place of decimals [232]" were made.
2It can be derived from Einstein’s equations in the classical limit.
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of QED was firmly established).

During the later half of the twentieth century, the zeal for having an umbrella theory

which could encapsulate all of the four fundamental forces, viz., the weak, the strong, gravity

and electromagnetic, led to the birth of Standard Model, which successfully explains three

of the four forces (except gravity) on the basis of symmetries structure and will be described

in length in this chapter.

Thus, the inherent desire to understand about our nature, inspired by the phenomena

around us, spelled out in the elegant language of mathematics, is a fundamental aspect of

human intellect, and is ubiquitous in the human history. Physics codifies this zeal of en-

hancing our understanding of the universe in a well structured and mathematically coherent

way.

1.1 The Standard Model of Particle Physics

The Standard Model of particle physics incorporates the fundamentals of physics at the

smallest distances (or highest of energies) in a coherent and elegent way, and encapsulates

within its framework, three of the four fundamental interactions/forces in our universe :

the Electromagnetic, the Strong and the weak interactions. The electroweak theory in the

standard model is due to the great work of Abdus Salam[311], Steven Weinberg [345] and

Sheldon Glashow[202]. Key contributions to the strong interactions come from Gell-Mann

and Gross, Wliczek, and Politzer. The basic structure of Standard Model (SM) consists of

the gauge group SU(3)C ×SU(2)L×U(1)Y , where SU(n) denotes the special unitary group

of n × n unitary matrices with unit determinant, and U(1) corresponds to the group of

complex numbers with unit modulus. The subscripts C, L and Y denote color, weak isospin

and hypercharge, respectively.
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1.1.1 Particle content of Standard Model

The fundamental fields in SM and their quantum numbers are as follows:

QL =

 uL

dL

 ≡ (3, 2)1/6, uR ≡ (3, 1)2/3, dR ≡ (3, 1)−1/3 (1.1.1)

LL =

 νL

eL

 ≡ (1, 2)−1/2, eR ≡ (1, 1)−1 (1.1.2)

W a
µ ≡ (1, 3)0 , a = {1, 2, 3} , Bµ ≡ (1, 1)0 (1.1.3)

Ga
µ ≡ (8, 1)0 , a = {1, 2, 3...8} (1.1.4)

H =

 h+

h0

 ≡ (1, 2)1/2. (1.1.5)

The electromagnetic charge, which emerges after the electroweak symmetry breaking is

given by,

Q = T3 + Y. (1.1.6)

The convention followed for SM charges is (c, d)Y , where c corresponds to the represen-

tation under SU(3), d, being the representation under SU(2) and Y is the hypercharge.

We will try to keep the discussion concise, and to this end, let us write out the Standard

Model Lagrangian, which can be partitioned into four parts, as :

LSM = Lgauge + Lfermions + LY uk + LHiggs, (1.1.7)

where, implies the kinetic terms corresponding to the Gauge sector, fermions corresponds

to the fermionic sector ( comprising of leptons and quarks), Y uk corresponds to the terms

which generate masses for the fermions after symmetry breaking, and Higgs refers to the

Higgs sector which would be responsible for the electroweak symmetry breaking. This is the

Lagrangian at the tree level, and for the sake of keeping the discussion brief, we will not go

in other technicalities which are beyond the scope of this work.
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1.1.2 Gauge Sector

The gauge sector corresponds to the spin-1 fields, which gives rise to the vector particles

known as gauge bosons, acting as the force mediators for the corresponding gauge groups.

In general, for a spin-1 field Aµ, we can define its field strength tensor as:

Xa
µν = ∂µA

a
ν − ∂νA

a
µ + gXf

abcAbµA
c
ν , (1.1.8)

where, µ, ν are the Lorentz group indices, a, b, c corresponds to the indices associated with

the generators of the gauge group, gX corresponds to the gauge coupling constant. fabc is

the structure constant of the gauge group, which satisfies the commutation relations of its

generators ti as,

[ta, tb] = ifabctc. (1.1.9)

Now, for the SM, we have three different gauge groups, viz. SU(3)c which in its fun-

damental representation has 8 generators, which are given via the Gell-Mann matrices,

ta = 1
2
λa. The gluon field tensor will be denoted via Ga

µν , where a = 1, 2, . . . 8 labels to

the 8 generators of SU(3) and gs denotes the strong coupling constant. Explicitly, the Gell

Mann matrices are :

λ1 =


0 1 0

1 0 0

0 0 0

 ; λ2 =


0 −i 0

i 0 0

0 0 0

 ; λ3 =


1 0 0

0 −1 0

0 0 0

 ;

λ4 =


0 0 1

0 0 0

1 0 0

 ; λ5 =


0 0 −i
0 0 0

i 0 0

 ; λ6 =


0 0 0

0 0 1

0 1 0

 ;

λ7 =


0 0 0

0 0 −i
0 i 0

 ; λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

For SU(2)L, we have the Pauli matrices σa in its fundamental representation as its

generators (T a = σa/2), satisfying, [T a, T b] = iϵabcT c. We will use W a
µν as the notation for

5



its field strength tensor, the gauge coupling constant is given as g, and the field being written

as W a
µ , a = 1, 2, 3. The Pauli matrices are given as :

σ1 =

0 1

1 0

 ; σ2

0 −i
i 0

 ; σ3 =

1 0

0 −1

 . (1.1.10)

For the gauge tensor for U(1)Y group, we use the notation Bµν , with the gauge coupling

being g′ and the field being denoted as Bµ. Thus, writing it out explicitly, we have :

Lgauge = −1

4
BµνB

µν − 1

2
TrWµνW

µν − 1

2
TrGµνG

µν . (1.1.11)

where the trace is over the corresponding group generators, i.e TrXµνX
µν = 1

2
Xa
µνXa,µν .

1.1.3 Fermionic Sector

The fermionic sector includes the gauge interactions and the kinetic terms for the fermions

in the Standard Model. Depending on the SM charges, the gauge fields of different groups

will interact with these fermions. One can schematically write it out in terms of covariant

derivatives (where the generators and their corresponding representations are self implied

and thus suppressed here),

Lfermion = iψ̄ /D ψ, (1.1.12)

where,

Dµψ = (∂µ + igs t
aGa

µ + ig T aW a
µ + ig′ Y Bµ)ψ. (1.1.13)

where /X = γµXµ is the standard Feynmann slashed notation.
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1.1.4 Higgs and Yukawa Sector

The Higgs mechanism was proposed in the 1960s [228, 219, 171], in order to explain the

generation of mass for gauge bosons and fermions without spoiling the symmetry structure

in the Standard Model.

In the most minimal scenario, and within the Standard Model, this tantamount to intro-

ducing a complex scalar doublet, charged under SU(2)L×U(1)Y , which through its potential,

leads to a spontaneous symmetry breaking of symmetries SU(2)L×U(1)Y → U(1)EM . This

leads to the generation of masses for SM fields in the new broken vacuum. In the SM, all the

fields acquire their masses through their coupling to Higgs, and the values of the couplings

have been fixed experimentally from the observed particle content. 3

We can explicitly write down the higgs doublet as:

H =
1√
2

h+
h0

 . (1.1.14)

The hypercharge of both components is 1
2
, and the SU(2)L charges (T3) would be ±1

2
for

h+, h0 respectively.

The Lagrangian containing the potential and interaction with gauge bosons is given as :

LHiggs = |DµH|2 + µ2H†H − λ(H†H)2, (1.1.15)

where µ2, λ > 0, giving rise to the "wine-bottle" potential, and upon choosing the Unitary

gauge, one can set h+ = 0, ⟨h0⟩ = v = µ√
λ
. This corresponds to the non-zero vacuum

expectation value (vev) of the Higgs, and one can check that upon expanding the field

around this non-zero minima, we have the spontaneous breaking of the symmetry of the

gauge group from SU(2)L × U(1)Y → U(1)EM . For the gauge bosons, after rotating to the

mass basis, the W and Z boson masses are given as

m2
W =

g2v2

4
, m2

Z =
(g2 + g′2)v2

4
. (1.1.16)

3Neutrinos are massless in the SM paradigm, but experimentally it has been found that they have non-zero
mass( at least two generations are massive).
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The Higgs vev is given by v = 246 GeV, obtained from the Fermi’s constant, GF =

1.16639 × 10−5 GeV−2 from the decay µ → νµ e ν̄e [263], which can be used to calculate the

Higgs mass, mh = 125GeV, using the correct quartic coupling value.

The Yukawa sector encodes the Higgs interaction with the fermions, which leads to the

mass generation of quarks and leptons (apart from neutrinos) in the SM. Schematically, it

is given as,

LY uk = −yu ij Qi H̃uRj − yd ij QiH dRj − ye ij LiH eRj + h.c. (1.1.17)

where H̃ = iσ2H
∗ [315]. Once we diagonalize the Yukawa matrices ye, yd, yu and go to the

mass basis, then the fermionic masses are schematically given via, mf =
yfv√

2
.

We will briefly take a look at the flavour structure, focusing on the quark sector within

the SM, which will also prove useful in understanding the symmetry structures involved in

the chapter three on flavor specific scalars.

In QCD sector, flavor is a global symmetry, which is explicitly broken by the presence of

Yukawa terms in the lagrangian,

U(3)q × U(3)u × U(3)d −→ U(1)B, (1.1.18)

resulting in 26 broken generators, giving rise to 36−26 = 10 physical parameters, which can

be thought of as the 6 quark masses, 3 mixing angles, and one overall CP phase. The Yukawa

couplings of fermions are responsible for generation of their mass, after diagonalizing to its

mass basis. To be more specific, we have, in the flavor basis,

LY uk ⊇ −ūLi(mu)ijuRj − d̄Li(md)ijdRj, mx,ij =
yx,ijv√

2
. (1.1.19)

The diagonalization is carried out by bi-unitary transformations,

mu,diag = VuLmuV
†
uR, md,diag = VdLmdV

†
dR (1.1.20)

This leads to the generation of mixing in the charged current sector (fermion interactions

mediated by W± boson), which implies mixing between different families of quarks, with the

mixing parameters given by the CKM matrix.

g√
2
ūLγ

µW+
µ VCKMdL + h.c (1.1.21)
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where a ∈ {1, 2}, and W±
µ = (W 1

µ ∓ iW 2
µ)/

√
2, and the VCKM is the famous Cabibbo-

Kobayashi-Maskawa(CKM) matrix, given by

VCKM = VuLV
†
dl. (1.1.22)

The experimentally measured values for the magnitudes of the CKM elements are, [357]

VCKM =


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 (1.1.23)

=


0.97370± 0.00014 0.2245± 0.0008 0.00382± 0.00024

0.221± 0.004 0.987± 0.011 0.0410± 0.0014

0.0080± 0.0003 0.0388± 0.0011 1.013± 0.030

 . (1.1.24)

The CKM phase is given by δ13 = 1.20± 0.08 radians.

1.2 Standard Model of Cosmology

In the previous sections, we have primarily focused on the building blocks of the matter

around us, but we haven’t addressed one of the foremost questions pondered over by human-

ity - where did it all began? Trying to answer this question within the purview of science,

we will focus on the standard model of cosmology, which provides the best-fitting picture for

describing the statistical properties of the Universe on large scales [316]. In this framework,

the basic assumptions 4 are [308]

• The universe was created in the Big Bang.

• The energy content of the universe is approximately given by 5% ordinary matter, 27%

dark matter, and 68% dark energy.

• The gravitational interactions between the aforementioned components of universe are

well described by the General Theory of Relativity at the cosmological scales

• The universe is homogeneous and isotropic on sufficiently large (cosmic) scales.
4For a more holistic survey of the assumptions, please refer to Table II [316]
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This model, also known as ΛCDM model, is one of the simplest model which has proven to

agree quite reasonably with a number of observations, such as explaining the structure of

cosmic microwave background, the large scale structure of galaxy distribution, the abundance

of elements in the universe as well as the important experimental observation which led to the

idea that our universe isn’t a static entity but is a dynamic, expanding with an acceleration,

as observed in the recession speed of galaxies.

1.2.1 Brief Review of General Relativity

General Relativity forms the backbone over which we can build our ideas in a coherent

and mathematically elegant way, and try to understand how our universe works, within the

framework of the aforementioned ΛCDM model. General relativity(GR) was the magnum

opus of Einstein, his crowning achievement, in which he showed that the force of gravitation

can be thought in terms of the curvature and geometry of spacetime, generalizing special

relativity and Newton’s law of gravitation in one powerful framework. A systematic exposi-

tion of this wonderful theory is beyond the scope of this work, but we will shed light on the

basic machinery used in cosmological setting.

The metric tensor (which in a naive sense can be thought of a quantity which helps mea-

sure distance), is a symmetric, rank-2 tensor on the space time manifold, which describes the

local geometry of spacetime and captures all the important geometric and causal information

of the spacetime. On a set of local coordinate system, let’s say xµ, where µ = 0, 1, 2, 3 in a

(3 + 1) space-time, we can define the line element with the help of metric tensor gµν as,

ds2 = gµνdx
µdxν . (1.2.1)

For completeness, we will write out the Einstein’s field equation, which explicitly relates

the geometry of spacetime to the energy momentum tensor (the matter content), via

Gµν ≡ Rµν −
1

2
Rgµν = 8πGNTµν , (1.2.2)

where Rµν is the Ricci tensor, R = gµνR
µν is the Ricci scalar and Tµν is the energy-momentum

tensor.
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Using observations from CMB experiments such as Planck [17], it is inferred that the

early universe is almost homogeneous and isotropic over large scales. Thus, we can use a

special metric, known as the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, which

describes a homogeneous, isotropic and expanding universe. More precisely, the line element,

in terms of radial polar coordinates, in (+,−,−,−) convention, is given as

ds2 = dt2 − a2(t)(
dr2

1− kr2
+ r2dΩ2), dΩ2 = dθ2 + sin2 θ dϕ2, (1.2.3)

where a(t) is the scale factor, which contains all the time dependence of the spatial part,

and can be thought of encoding the expansion of universe. k is a constant which represents

the curvature of space, and can take up discrete values amongst {−1, 0, 1} which correspond

to open, flat5 or closed universe respectively.

1.2.2 Expansion of universe

In the FLRW metric, the scale factor a(t) contains the information of the expansion, and

hence we need to calculate its evolution to understand how the energy content of the universe

drives its expansion. By solving the Einstein’s field equations, via assuming a isotropic and

homogeneous energy-momentum tensor (to a good approximation, it is assumed to be a

perfect fluid, which relates its pressure and the energy density via ∇µT
µν = 0), we get the

Friedmann equation, which yields the time evolution of the scale factor in terms of the total

energy density of the universe.

H2 ≡ (
ȧ

a
)2 =

8πGN

3
ρtot. (1.2.4)

where the quantity H is the Hubble parameter.

Now, the total energy density ρtot = ρm+ρrad+ρΛ, consists of three different parts, each

of which have a different equation of state, i.e ρ = p(ρ), which can be solved to get ρ = f(a).

On doing this calculation, one finds,

ρ = ρ0


1 , Vacuum Energy

(a(t)
a0

)−4, Radiation

(a(t)
a0

)−3, Matter

(1.2.5)

5For our purposes, we will set k = 0.
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where, ρ0, a0 is some reference value for energy density at some reference time t0. During

different epochs, different components dominate the energy content of the universe, so that

the one dominating will lead to setting the scaling of the scale factor as a function of time.

During the early universe, the epoch was dominated by vacuum energy (VD)(inflation),

which slowly gave way to Radiation dominated (RD) era, where basically the particles were

highly relativistic, thus behaving as nearly massless. As the universe expanded and slowly

cooled down, the particle content became non-relativistic, leading to the matter dominated

(MD) era. Presently, we are in the cosmological constant (vacuum energy) dominated era.

Hence, upon solving for the scale factor, we get

a = a0


eHt , VD era

t1/2, RD era

t2/3, MD era

(1.2.6)

1.2.3 A glimpse into the cosmic history of our universe

The observation that our universe expands implies that it was hot and dense in the past.

Over the course of time, it underwent various transitions and certain important landmarks

can be identified, as shown in the Figure 1. We will briefly review our understanding of the

cosmic history in a chronological order:

• Inflation : It is widely believed that before the start of cosmological hot era, there was a

period of rapid, exponential expansion of the universe, dominated by “inflaton” field. The

scale factor scaled as a ∝ eHt, with Hubble being nearly constant. This went on till the

inflation gave away to a period of “reheating”, where the potential energy of inflaton was

reinjected into the SM (and non-SM) degrees of freedom, and resulted in a formation of

high temperature thermal bath. The key reason of introducing this paradigm was to solve

some major problems with the hot big bang, viz., explaining the the origin of the large-

scale structure of the universe by seeding primordial in-homogeneity, explaining why the

universe is flat, isotropic and nearly homogeneous (e.g.,cosmic microwave background

radiation exhibiting nearly uniform temperature).
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Figure 1: Cosmic history of universe.

• Reheating - The ending of inflation of is constrained to happen above TRH > 3 MeV

to have succesful Big Bang nucleosynthesis. But it can occur at much higher tempera-

tures, depending on the model of the inflationary sector. The case where the reheating

happens above a few hundered GeV will have phases where the electroweak symmetry

was unbroken till the electroweak phase transition, and at lower temperature of about

T ∼ ΛQCD ∼ 200 MeV, the QCD phase transition, where the free quarks hadronise to

form hadrons.

• Big Bang Nucleosynthesis(BBN, T ∼ 1 MeV)- For temperatures of the scale of

binding energies of nuclei, O(1 − 10) MeV, the universe cooled down enough for the
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capture of neutrons in nuclei, leading to formation of light elements (in the form of ions).

The BBN era marks the time from which we can be confident about our understanding

of the cosmic history.

• Matter-Radiation equality (T ∼ 1eV) - As the universe cools down and the temper-

ature drops below the mass of particles, they become non-relativistic. Thus, by equating

the ρm = ρrad, we get T ∼ 0.8eV which gives the approximate value when matter-

radiation equality is attained. Everything apart from photons and neutrinos is in the

non-relativistic regime, and thus the universe starts to be dominated by matter, which

implies that the scale factor scales like a ∼ t2/3 instead of a ∼ t1/2.

• Recombination (T ∼0.3 eV) - Around the temperatures of around, 0.3− 0.2 eV there

is a transition to states where the free electrons can be captured by the ions, which leads

to the formation of neutral atoms, mostly hydrogen and helium. This also leads to pho-

tons being free streamed since the photon-matter interaction becomes negligible. These

photons can still be detected as the cosmic microwave background (CMB), giving the

oldest direct observation of universe. The temperature of the CMB has been redshifted

to about 2.7 K on average today, but it also encodes the CMB anisotropies ( variations)

across the sky, which provides valuable information like the energy density of baryons

with respect to the dark matter content.

• Vacuum Domination(today)- In recent (at redshift z ∼ 0.5 [309]) times, observations

have shown that the energy density of the universe is being dominated by vacuum energy,

which gives to a regime of an accelerated expansionary epoch.

1.3 Limitations of Standard Model

The Standard Model is a remarkably successful framework, explaining how this universe

works in the best possible manner, and has successfully passed hosts of experimental tests

with unprecedented accuracy. However, despite its tremendous success, there remain some

fundamental open problems: What makes up the energy content of our universe and what

are the mysterious dark Matter and dark Energy? Why do particle masses and coupling
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constants have the values that we measure? Why are there three generations of fermions?

How do neutrinos obtain mass? Why is there a matter-antimatter asymmetry? How can we

systematically pair up gravity with the Standard Model? Here we will briefly go over some

of these important questions, and will try to motivate our research topics which follow in

the subsequent chapters.

1.3.1 Dark Matter

A host of astrophysical and cosmological signatures have revealed the presence of dark

matter (DM) and dark energy, making up the bulk of the energy content in our universe.

Thus it is imperative to understand and study it in depth. DM candidates can range all

the way from fundamental particles as light as 10−22eV to heavy composite objects (e.g.,

primordial black holes) as heavy as 10 solar masses.

We will start historically, collecting up the evidences for DM, which is currently one of

major topics for research and provides a shining light for new physics directions. Towards the

turn of the twentieth century, starting with Lord Kelvin and Poincare, the first indications

for presence of non-luminous matter in the universe started showing up. In the following,

we will discuss some of the pivotal moments in the history of research.

• Galaxy clusters : In 1933 Fritz Zwicky applied the virial theorem to the Coma Cluster

and obtained evidence of unseen mass. Measuring the galactic orbital velocities, he found

that the values were way too high in order for the clusters to be held together only by

luminous mass. Using obsolete values of Hubble, he determined that the mass-to-light

ratio was around 500. Even after correcting the Hubble value, the mass-to-light ratio

would be around 8, implying that there is a lot more matter than what is visible [356].

• Galactic velocity curves : The velocity curve of a galaxy is a plot of the orbital velocities

of stars around the galactic centre vs distance from the centre. For spiral galaxies, this

would mean that the velocity curve will drop off with the increasing distance. In the

1970s, Vera Rubin and other scientists made measurements of luminous galaxies, and

found that all of them showed a flat profile instead of the anticipated tail-off [310]. This

showed the possibility of non-luminous matter in the form of halos around the galaxies.
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• Gravitational lensing : Gravitational mass results in the change in curvature around it,

which results in bending of light passing nearby. Mass can be predicted studying the

amount of deviation measured on earth, and is called gravitational lensing. It has been

found that the observed lensing effect from galaxies cannot be explained if it was only

composed of ordinary, luminous matter. This indicates the existence of DM around the

galaxies, which will explain the lensing [59].

• Bullet Cluster: Bullet cluster consists of the collision of two galaxy clusters. It was found

that the center of mass is far displaced from the baryonic center of mass, which strongly

point towards the existence of DM.[134].

• Structure formation : This corresponds to the formation of all the large scale structures

that we observe, be it galaxies, galaxy clusters etc., starting from small early density

fluctuations. For ordinary matter to explain this, we would need around two orders of

magnitude more density perturbations at the time of recombination than that measured

from the CMB [252].

Observations of the matter power spectrum and CMB imply that the DM has only

gravitational interactions and they also have to be non-relativistic ( corresponding to z <

107). In many models, the physics that sets the DM relic abundance occurs at early times

in order to preserve the physics after BBN, which is observationally well studied. DM

candidates are also constrained to be long lived and should have decay time larger than the

age of universe[269]. If DM decays to certain kinds of SM particles, such as photons, the

lifetime constraint is even more stringent.

While there are a wide variety of proposed DM candidates, in this introduction, we will

focus the discussion on one particular class of models spanning masses below ∼ keVscale, and

are referred as ultralight bosonic dark matter. The relic abundance for such light particles

may be set by the so-called misalignment mechanism, whereby the DM field is offset from

its minimum in the early universe, and begins to oscillate about its minimum as the universe

cools down. For example, consider a scalar field ϕ, with Lagrangian

L =
1

2
gµν∂µϕ∂νϕ− 1

2
m2ϕ2. (1.3.1)
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The equation of motion, for it’s homogeneous part is given by, considering FRW geometry,

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , V ′(ϕ) = m2ϕ. (1.3.2)

In the radiation era, H = 1
2t

, and even without solving the equation exactly 6, one can

easily deduce the behaviour of the field at early times and at the late times, with solution

given as

ϕ(t) ∼

ϕi H ≫ m

2Γ( 5
4
)ϕi√

π (mt)3/4
sin(mt+ c0) H ≪ m

(1.3.3)

This is because at early times, the Hubble friction term dominates over the mass term.

Hence we have ϕ̈+3Hϕ̇ ∼ 0 , which keeps the field fixed at it’s initial value. As the universe

expands and cools down, Hubble parameter becomes smaller than the mass, and the field

slowly starts oscillating around it’s minima. The time at which it starts oscillating is given

by

3H(t) = m =⇒ tosc =
3

2m
. (1.3.4)

The energy density is given as

ρϕ =
ϕ̇2

2
+
m2ϕ2

2
. (1.3.5)

We can use the exact solution to calculate this quantity, and one can show that it scales as

ρϕ(t) ∝
√
mϕ2i
t3/2

, i.e. it is dependent on the inital condition (which can be the value of the field

at the end of inflation) [333].

The late time energy density can also be related to the time at which the oscillation

starts in the following manner: The comoving number density (so called yield) is a conserved

quantity, i.e.,

Y ≡ nϕ
s

=
ρϕ
ms

= constant, (1.3.6)

where s, is the entropy density, given via s = 2π2

45
g∗(T )T

3, where the temperature T and time

is related as T =
(
Mpl

2γ t

)1/2
and g∗ is the effective number of relativistic degrees of freedom

and γ =
√

π2g∗
90

. Now it is straightforward to derive the late time energy density in terms of

time where oscillation starts,

ρ(T0) = ρ(Tosc)
s(T0)

s(Tosc)
= ρ(Tosc)

g0∗
gosc∗

(
T0
Tosc

)3

. (1.3.7)

6The exact solution is given in terms of Bessel functions, ϕ(t) = 21/4Γ( 54 )ϕi(mt)−1/4J1/4(mt).
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The late time relic abundance is given by,

Ω0
ϕ =

ρϕ,0
ρc

∼ 0.3×
√

m

10−12eV

(
ϕi/Mpl

2× 10−4

)2

×
(
gosc∗
10

)−1/4

, (1.3.8)

where, ρc = 3.7× 10−47GeV is the critical density of universe at T = 2.7K.

Although the above discussion show a remarkably simple model for DM, without any

interactions with the Standard Model it is extremely difficult to detect and test. An interest-

ing alternative scenario for DM physics with a rich variety of experimental and observational

signatures is given by the “dark sector” framework. The mediator and the DM can be part

of another family of particles outside the SM particle content, and the dark sector particles

can act as mediators between our SM and the DM. The portals which are relevant for dark

sector-SM interactions can be classified based on the spin of the mediator and are greatly

constrained by the SM gauge group and Lorentz symmetry. At the renormalizable level,

there are just three such portal interactions:

• (µS + λS2)H†H : Scalar portal, where the mediator generally goes by the name of dark

Higgs and has feeble couplings to the SM Higgs.

• −κ
2
BµνV

µν : Vector Portal, where the mediator is also called as dark photon, which can

kinetically mix with the SM photon (or SM hypercharge boson).

• y LHN : Neutrino portal, with the sterile neutrinos acting as potential candidates with

their feeble coupling to active neutrinos, while also explaining the neutrino mass issue.

In the recent times, this has led to a dedicated effort to search for these particles, extend-

ing to looking at complementary signatures at high energy colliders (Energy Frontier), or at

fixed target experiments (Intensity Frontier) . One can also search for such particles using

astrophysical signatures (Cosmic Frontier). This represents an orthogonal way of thinking

to the usual top-down approach motivated by fundamental physics problems where we ex-

plore the new phenomenological directions using experimental signatures, relying more on

expanding the experimental searches and data [269].
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1.3.2 Neutrino Mass

In the SM, neutrinos are charge and color neutral fermions which come in as part of the

leptonic doublet with the corresponding lepton. We have three active neutrinos, each with

electon, muon and tau flavor. Due to the gauge structure of SM, we do not have a mass term

like that for charged leptons which can generate masses for neutrinos and hence neutrinos

are massless within the SM. Thus, any mass generating mechanism for neutrinos needs the

existence of physics beyond the Standard Model.

Neutrino oscillation experiments,including those studying solar and atmospheric neutri-

nos, oscillation data have shown that at least two of the three active neutrinos have to be

massive. Experimentally, neutrinos are labelled under different categories depending on how

they are produced. One of the prominent sources of neutrinos comes from the sun, named as

"Solar Neutrinos". They are generically produced either via a pp chain, in the fusion reaction

of 4p→ He+ 2e+2νe, and in electron capture by isotopes of carbon, and oxygen, termed as

CNOs. In both cases, the dominant flavor predicted by SM would be that of electron neutri-

nos. But as the observations were made at the Homestake, Kamiokande, GALLEX, SAGE,

Super-Kamiokande, and SNO experiments, only about a third of the predicted νe flux was

observed. This posed the so called "solar neutrino problem", the resolution of which was the

concept of neutrino flavor oscillations including the Mikheyev–Smirnov–Wolfenstein (MSW)

matter effect in the sun. This requires neutrinos to be massive. Atmospheric neutrinos are

produced in earth’s atmosphere due to cosmic ray interactions, generally via the decay of

pions and muons via charged current interactions. Atmospheric neutrinos are produced in

the atmosphere, about order 10 km above surface of the earth. However, the atmospheric

neutrinos can travel through and even across the earth to the detector. Also the detector

is typically underground. Super Kamiokande detected the oscillation in atmospheric neutri-

nos, which was again explained using the idea of neutrino oscillation. The observed fluxes

helps put constraints on the mass squared difference, which in turn may provide information

about the new physics which generates the active neutrino masses. Finally, the accelerator

and reactor based neutrinos are the ones produced in the laboratory environment. Experi-

mental facilities are generally grouped as long baseline or short baseline, depending on the
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size of the experimental facilities. The long baseline experiments generally have two detec-

tors, one placed close to the detector (generally less than a km away from source) termed

as near detector, and another placed as far as a thousand km away, termed as far detector.

In general, the experimental setup is chosen so that L
E
∼ 1

∆m2
ij
, where ∆m2

ij corresponds to

the mass squared difference between different mass eigenstates of active neutrinos, L cor-

responds to the distance between the source and detector, and E is the typical energy of

neutrino. Lab based neutrino facilities are quite useful since due to the large achievable neu-

trino fluxes, controllable energy and baseline and detailed knowledge of the neutrino flavor

at the source. As an example, we may consider the upcoming Fermilab neutrino facility

called DUNE (Deep Underground Neutrino Experiment), which has a 120GeV proton beam

impinged on graphite target, a near detector at a distance of O(500m) from the target , and

a far detector 1, 300 km at the Sanford Underground Research Facility in South Dakota.

For the case of 3 active neutrinos scenario, there are 6 parameters which describe the

probability for a neutrino to oscillate between flavors, namely the two mass squared differ-

ences, ∆m2
21,∆m

2
31, the three mixing angles, θ12, θ23, θ13 and the phase, δ. If neutrinos are

Majorana particles there are two additional phases in general. In addition, there are two

possible mass ordering, which refers to the sign of ∆m2
31, with positive being the normal or-

dering (NO)and negative being inverse ordering (IO). Different experiments give best fits for

different parameters, and we will summarize the global fit values [154]. ∆m2
21 has a best fit

value of 7.5× 10−5eV 2, with KamLAND, a long baseline reactor based facility contributing

the most. ∆m2
31 has a best fit value of 2.55 × 10−3eV 2 for NO and 2.45 × 10−3eV 2 for IO,

from a combination of long baseline accelerator based (LBL), atmospheric and reactor based

facilities. For the mixing angles, θ12 has a best fit of 34.4◦ measured at solar detectors, while

θ23 has a best fit value of 49.26◦ for NO and 49.46◦ for IO from a combination of LBL and

atmospheric detectors. θ13 has a best fit value of 8.53◦ for NO and 8.58◦ for IO measured at

short baseline reactor based detectors. Finally, the phase has the best fit values of 1.08π for

NO and 1.58π for IO, dominated by observations at LBL facilities.

There are a number of ways to generate neutrino masses beyond the SM physics, but

we will restrict ourselves to the “Type-1” See-saw model. In this mechanism, one introduces
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two or more singlet fermions, termed as sterile neutrinos, with the Lagrangian given as[357],

L ⊇ −MDN̄νL − MN

2
N̄ N c + h.c. (1.3.9)

where we introduced n sterile neutrinos, Md is a n × 3 complex matrix, MN is a n × n

symmetric matrix. One can consider a larger (3 + n) active + sterile vector space in which

the mass matrices for the different sterile and active neutrinos form blocks, and we can

diagonalize it to get the mass eigenstates. As a simple example, consider a (1 + 1) scenario,

then the mass matrix looks like

M =

 0 MD

MD MN

 (1.3.10)

The eigenvalues become,

λ± =MN ±
√
M2

N + 4M2
D, (1.3.11)

and in the case where the sterile neutrino is several orders of magnitude heavier, the approx-

imate mass of the light active neutrino is,

mν ∼ λ− ∼ −M
2
D

MN

. (1.3.12)

This mechanism not only gives the mass to the active state, but also explains why the

neutrino is so light, which can come from its mixing with massive sterile neutrino state. We

also get a host of signatures for the sterile neutrinos, since a diagonalization to mass basis

lead to the coupling of the sterile neutrinos to the SM in the same way as that of the active

neutrino, suppressed by the mixing angle [97]

Lint =
g√
2
W+
µ N̄

∑
α

U∗
αγ

µPLLα +
g

2 cos θW
ZµN̄

∑
α

U∗
αγ

µPLνα + h.c. (1.3.13)

where the (small) mixing angle is given by,

Uα =
Mα

MN

; α = e, µ, τ. (1.3.14)
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1.3.3 Issues related to flavor physics and CP violation

Flavor physics is arguably beset by a number of puzzles. One of the foremost issues arises

from the hierarchy in the masses/Yukawa couplings of the quarks and leptons in the SM, with

me : mµ : mτ ∼ 10−3 : 10−1 : 1 for the lepton sector. In principle, one might have thought

that the Yukawa couplings of all three leptons should have been of the same order, yet Nature

gives us values which begets an explanation. The same is true in the case of quarks, where

it is even more pronounced. In the up-type family, we have mu : mc : mt ∼ 10−5 : 10−2 : 1,

and in the down-type family, we have, md : ms : mb ∼ 10−3 : 10−2 : 1.

There are various proposals to explain the hierarchy, which generally involve new fields

added to the SM at some high scale. This can induce modifications to flavor physics observ-

ables, and may therefore face tight constraints from experiments. Even in BSM models that

do not address the flavor puzzle, flavor physics often imposes relevant constraints. Among

the most stringent bounds arise from processes involving flavor-changing neutral currents

(FCNCs). .Within the SM there are no flavor-changing neutral current(FCNC) at the tree

level, and even at loop level they are suppressed due to the GIM mechanism[201]. It is based

on the unitarity of the CKM matrix, and helps in explaining the small rate of certain rare

flavor changing processes, such as KL → µ+µ−. In SM, due to loop suppression as well

as small CKM elements, the decay rate is suppressed, hence any new physics will lead to

deviations. Thus, in general, adding new physics in the flavor sector is highly constrained,

e.g., if there’s an addition of a vector-like-quark (VLQ) charged under SM gauge group, then

it will mix with the SM quarks, which modifies the CKM as well as enters loop calculations

like the one in box diagram in Kaon mixing.

Within the SM gauge sector, there exists a gauge invariant term, also known as the θ

term in the gluon sector, given by,

Lθ = θ
g2

32π2
G̃µνG

µν , G̃αβ = ϵαβγδG
γδ. (1.3.15)

This is a total derivative term, i.e. it can be shown that it is equal to ∂µKµ, Kµ being a

function of gluon field. Thus, upon its addition to the action, one would naively expect that
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it will have no effect on the physics. But, for a non-Abelian group like SU(3), but there

exist a non-trivial vacuum configurations which have integral winding numbers, i.e.

g2

32π2

∫
d4x G̃G =

∫
dΣµKµ = n; n ∈ Re . (1.3.16)

The QCD θ term contributes to the neutron electric dipole moment, which has been

measured quite accurately,

dn = θ
e

Λ2
QCD

(
mumd

mu +md

)
< 3× 10−26e cm [53] (1.3.17)

This yields a bound on the theta parameter, with |θ| < 10−10. The question of why θ is so

small is what constitutes the Strong CP problem. In the last 50 years, there have been nu-

merous attempts to counter this issue, with the QCD axion being the most famous one. The

axion is a pseudo-goldstone boson7 of a spontaneously broken U(1)PQ symmetry. The PQ

symmetry was introduced by Peccei and Quinn, but it was quickly pointed out by Weinberg

and Wilczek that there should be an associated Goldstone Boson. The characteristic feature

of the QCD axion is its coupling to gluons, a
fa

g2

32π2GG̃, which dynamically relaxes the theta

term to zero, thus giving a dynamical solution to the Strong CP problem. In addition to

this, it can also serve as an ultralight DM candidate, making up a part or whole of the cold

DM abundance.

1.4 Basics of QFT in curved space-time

We would like to do a brief survey of the effect of gravitational backgrounds on quantum

fields. In order to keep the calculations minimal, we choose to study here a non-interacting

real scalar field in an FLRW background, motivated by the ΛCDM model and aligning with

the subsequent chapters presenting in this thesis. The case of fermions is discussed in the

chapter 5, as well as a scenario of interacting fields in curved backgrounds are discussed in

chapter 6 [289, 226, 305, 306, 297].
7A goldstone boson is a massless boson resulting from the spontaneous breaking of a continuous symmetry.

In the presence of soft explicit symmetry breaking terms, it results in the goldstone boson getting a non-zero
mass, and is called a pseudo-goldstone boson.
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1.4.1 Scalar field in FRW metric

The action for a real scalar field ϕ [289] is given as,

S =

∫ √−g d4x
[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (1.4.1)

where, V = 1
2
m2ϕ2+ 1

2
ξRϕ2, which for minimally coupled field will be ξ = 0 and conformally

coupled field will be ξ = 1/6. We will further restrict ourselves to ξ = 0 case. The equation

of motion is given by

gαβ∂α∂βϕ+
1√−g∂α(g

αβ
√−g)∂βϕ+

∂V

∂ϕ
= 0. (1.4.2)

For the case of FRW metric, we have

ds2 = dt2 − a2(t)dx2. (1.4.3)

In order to see the fact that FRW is conformally flat, we introduce the conformal time

as dη = dt
a(t)

. Thus, the line element becomes,

ds2 = a2(η)(dη2 − dx2). (1.4.4)

This looks exaclty like the Minkoswki metric, with an overall scaling. Thus, the metric tensor

is given as, gµν = a2ηµν ,
√−g = a4 and gµν = ηµν

a2
. The equation of motion then simplifies to

ϕ′′ + 2
a′

a
ϕ′ −∇2ϕ+m2ϕ = 0, (1.4.5)

where ′ ≡ ∂
∂η

. We can define an auxiliary field χ = a ϕ, which simplifies the equation to

χ′′ −∇2χ+m2
effχ = 0, m2

eff = m2a2 − a′′

a
. (1.4.6)

Above equation looks exactly like the Klein Gordon equation in Minkowski spacetime, albeit

with the different m2
eff which now depends on the scale factor. The action also takes the

form of the scalar field in flat spacetime( with the effective mass),

S =

∫
d3x dη

[
χ′2

2
− (∇χ)2

2
−
m2
eff (η)χ

2

2

]
. (1.4.7)
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Even though the equations look quite similar to the usual KG case, the time dependent

action implies that the energy would not be conserved, and there is a possibility of gravi-

tational production of particles, with their energy sourced by the gravitational field in the

background.

The next order of business is to derive equations in terms of their Fourier modes, where

the spatial part of the Fourier transform will be same as Minkowski, and all the time depen-

dence will be in the Fourier coefficient:

χ(x⃗, η) =

∫
d3k

(2π)3/2
χk(η)e

ik⃗.x⃗, (1.4.8)

and the equation of motion is,

χ′′
k + ω2

k(η)χk = 0, ω2
k(η) = k2 +m2a2 − a′′

a
. (1.4.9)

As this is a second order differential equation, any general solution can be expressed in

terms of a combination of two linearly independent solutions. The condition for any two

solutions to be linearly independent is that they have a non-zero Wronskian, i.e., let yk,1, yk,2

be two linearly independent solutions of the same mode equation so that W [yk,1, yk,2] ̸= 0.

Define vk(η) = yk,1 + iyk,2, then vk(η) and v∗k(η) will be two linearly independent solutions

as well, since W [vk, v
∗
k] = v′kv

∗
k − v∗

′

k vk = −2iW [yk,1, yk,2] ̸= 0. We can also choose a normal-

ization via, W [vk, v
∗
k] = 2i, which will prove useful later when we define the commutation

relations. It implies that the general solution, χk can be expanded as a linear combination

of vk(η), v∗k(η), and this can be used to re-express the Fourier transform as

χ(x⃗, η) =

∫
d3k

(2π)3/2
1√
2

[
a−k v

∗
k(η)e

ik⃗.x⃗ + a+k vk(η)e
−ik⃗.x⃗

]
, (1.4.10)

where, a−k =
√
2 W [vk,χk]
W [vk,v

∗
k]

and a+k = a−∗
k , both of which are independent of η.
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1.4.2 Quantization of scalar field

Employing the standard trick of promoting the integration constants ak to operators as

âk, we get

χ̂(x⃗, η) =

∫
d3k

(2π)3/2
1√
2

[
â−k v

∗
k(η)e

ik⃗.x⃗ + â+k vk(η)e
−ik⃗.x⃗

]
, (1.4.11)

where the operators satisfy the usual equal time commutation relations,

[a−k , a
+
q ] = δ3(k⃗ − q⃗), [a−k , a

−
q ] = [a+k , a

+
q ] = 0. (1.4.12)

where the normalization is, W [vk, v
∗
k] = 2i. The quantum Hamiltonian is given as

Ĥ =

∫
d3x

2

(
π̂2 + (∇χ̂)2 +m2

effχ
2
)
, (1.4.13)

where, π̂ = dχ̂
dη

and it satisfies the equal time commutation relation [χ̂(x⃗, η), π̂(y⃗, η)] = i δ3(x⃗−
y⃗). The creation annihilation operators can be thought in terms of the operators â± , with

â−k | 0⟩ = 0 and â+k | 0⟩ =| k⟩.

1.4.3 Bogolyubov transformations

Bogolyubov transformation are a useful set of transformations which help in relating the

mode decomposition of the field in different Hilbert spaces. This is quite useful, since the

idea of particle in curved space is not global, but rather observer-dependent. This implies

we need to specify the basis we are working in, to give meaning to what we mean by particle

density and so on.

Consider, two sets of solutions, uk, vk of the mode equation 1.4.9. Then, because we can

always express a solution in terms of the linear independent basis, thus,

v∗k = αku
∗
k + βkuk, αk, βk ∈ C. (1.4.14)

Using the normalization definition, we get α2
k − β2

k = 1 and for the stability of the

transformations, one can show that βkk3
k→∞−−−→ 0.
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By expanding χ in terms of mode functions uk, schematically as χ ∼ u∗b− + ub+and

then equating it to the one in terms of vk, we can derive relations between the creation

annihilation operators as,

b̂−k = αkâ
−
k + β∗

k â
+
k , b̂

+
k = α∗

kâ
+
k + βkâ

−
k . (1.4.15)

This means we have two sets of vacuum states as well as Hilbert spaces which can be created

by applying the creation annihilation operators. The Bogolyubov coefficients αk, βk are

generally calculated at some value of time, say η0 by equating the different mode functions.

It is given as

αk =
u′kv

∗
k − ukv

∗′
k

2i
|η0 ; β∗

k =
u′kvk − ukv

′

k

2i
|η0 . (1.4.16)

As an example, the work to be discussed in chapter five, we have the transition from

inflation to radiation dominated cosmology, which means that the mode equations will be

different on the both sides of the transition. Thus, if we choose the mode functions to be

continuous at the boundary, then it is useful to use the Bogolyubov transformations to relate

the late time Hilbert spaces in terms of the initial in state (which is in the Bunch-Davies

vacuum).

An important quantity which is calculated using this transformation is the number den-

sity. E.g., consider particles in b-state, N (b)
k = b̂+k b̂

−
k , in terms of the a-state eigensystem,

i.e.,

⟨a0 | N (b)
k |a 0⟩ = ⟨a0 | b̂+k b̂−k |a 0⟩ = β2

kδ
3(0), (1.4.17)

with the δ3(0) factor coming from taking infinite volume limit. Hence the number density is

given by, nk = β2
k , giving the mean density of b-particles with momentum k in χ field.

The idea of vacuum and particles is not global and unambiguous in curved spaces, but

is rather an approximate concept. It depends on the observer, as can be seen in the above

result, where the vacuum in state a had number density of b-particles. What is unambiguous

are the ones which can be defined in terms of field operators, like the expectation value in

some state [309]. Still, one can do analysis by defining instantaneous vacuum via minimizing

the energy, or by defining the vacuum over short distances. Sometimes, it is also possible to

do a WKB like analysis, in terms of small quantities, e.g., ω′/ω2 ≪ 1 in radiation dominated

era.
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1.5 A short introduction to thermal field theory

Our study of the Standard Model was based on the zero temperature QFT, since most

of the particle interactions we study today, and test in the particle colliders occur at zero

temperature, which means that the thermal effects will be highly suppressed. But this is not

true in the early universe, where the thermal effects are quite important, and one needs to use

Finite Temperature Field Theory in order to compute observables, e.g., Higgs/scalar vev in

the presence of a thermal bath, understanding phase transitions, neutron star formation etc.

Another scenario at today’s temperatures, involving the theoretical framework of thermal

field theory is for the heavy ion collision experiments, where quark-gluon plasma is formed

and thermal effects start to play an important role [352, 287, 148, 302].

1.5.1 Preliminaries

We will first review some formulae from statistical mechanics, and then introduce the

imaginary time formalism. There are two important thermal ensemble which are central

to any discussion involving thermal effects : the canonical ensemble, which describes a

system in contact with its surrounding at a fixed temperature, where there is non-zero energy

flow but the particle number and volume remains fixed and the grand canonical ensemble

corresponds to the situation where both energy and particles can interchange between system

and surroundings, keeping the chemical potential and volume fixed. The partition function,

which is a fundamental quantity in statistical mechanics, is defined in terms of the density

operator ρ,

Z = Tr ρ; ρ = exp(−βH), (1.5.1)

where, β = 1/T , T being the temperature of the system and H is the hamiltonian of the

system. The other thermodynamical quantities can be related to the partition function, e.g.,

the number density given as,

N = T
∂ lnZ

∂µ
. (1.5.2)

28



The thermal average of any operator can also expressed in terms of the partition function as

⟨Ô⟩ = Σm⟨m|Ô|m⟩e−βH
Z

=
Tr
(
e−βHÔ

)
Z

=
Tr
(
ρ Ô
)

Tr ρ
. (1.5.3)

An important corollary which can be derived from the above definition is the famous

“Kubo-Martin-Scwinger relation” (KMS relation). In principle, it relates the shift in the

imaginary time by β in the two point correlation functions as [352],

⟨ϕ(x⃗, τ)ϕ(y⃗, 0)⟩ = ⟨ϕ(y⃗, β)ϕ(x⃗, τ)⟩. (1.5.4)

This yields a periodic relation in terms of the imaginary time with β as the period

ϕ(x⃗, 0) = ±ϕ(x⃗, β). (1.5.5)

where the + corresponds to bosons and −corresponds to the fermions. Thus, the Fourier

transform will consist of a series of discretised frequencies, called as “Matsubara frequencies”,

ϕ(x⃗, t) =
∑
l

ϕ(x⃗, ωl)e
iωlτ , (1.5.6)

where the frequencies are given as

ωl =


2πl
β

bosons

2π(l+1)
β

fermions
(1.5.7)

and l ∈ Z. It is often useful to employ the path integral formalism, in which the partition

function can be written as,

Z =

∫
Dϕ⟨ϕ|e−βH |ϕ⟩ =

∫
Dϕ exp

− β∫
0

dτL(τ)

 . (1.5.8)
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1.5.2 Effective potential

One-loop thermal effects can be analysed by employing the framework of effective poten-

tial. We can either use the imaginary time formalism introduced in the previous subsection or

we can follow a simpler approach discussed at length in Ref.[287], which will be summarized

below.

Let’s consider a real scalar field Φ, with self interactions and a mass term,

L =
1

2
∂µΦ∂

µΦ− V (Φ). (1.5.9)

The equation of motion will be,

DµDµΦ +
∂V (Φ)

∂Φ
= 0. (1.5.10)

We can decompose the field in terms of it’s homogeneous and non-homogeneous component,

as

Φ(t, x⃗) = Φ̄(t) + ϕ(t, x⃗); ⟨ϕ(t, x⃗)⟩spatial = 0 (1.5.11)

We can plug this back into the equation, take a spatial average and expand the potential,

to get the resultant equation for Φ̄, which corresponds to the “one-loop approximation”,

DµDµΦ̄ + V ′(Φ̄) +
1

2
V ′′′(Φ̄)⟨ϕ2⟩ = 0. (1.5.12)

Now, we will show that V ′(Φ̄)+ 1
2
V ′′′(Φ̄)⟨ϕ2⟩ ≡ V ′

eff (Φ̄, T ). To begin with, we need the value

of ⟨ϕ2⟩. At the lowest order, we have

DµDµϕ+ V ′′(Φ̄)ϕ = 0. (1.5.13)

The solution is

ϕ(x⃗, t) =

∫
d3k

(2π)3/2
1√
2ωk

(e−iωkt+ik⃗.x⃗a−
k⃗
+ c.c), (1.5.14)

where we defined

ωk =
√
k2 +m2

ϕ, m2
ϕ = V ′′(ϕ̄). (1.5.15)
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Once we quantise this theory, the integration constants a±
k⃗

will become creation annihi-

lation operators satisfying the equal time commutation relations:

[â−k , â
+
q ] = δ3(k⃗ − q⃗), [â−k , â

−
q ] = [â+k , â

+
q ] = 0. (1.5.16)

The total number of particles can be calculated from the number operator, N̂k⃗ = â+k â
−
k acting

on the state vector |nk⃗⟩ =
(a+

k⃗
)n

√
n!

|0⟩, as N̂k⃗|nk⃗⟩ = δ(0)nk⃗|nk⃗⟩ where δ(0) is the infinite volume.

Here, the nk⃗ is the occupation number , and is equal to the number of particles per unit

volume. Using eq. 1.5.14, we can calculate

⟨ϕ2(x⃗)⟩ = 1

2π2

∫
dk

k2√
k2 +m2

ϕ(Φ̄)
(
1

2
+ nk) (1.5.17)

This implies that in our eq.1.5.12, we will have

1

2
V ′′′(Φ̄)⟨ϕ2(x⃗)⟩ = V ′′′(Φ̄)

4π2

∫
dk

k2√
k2 +m2

ϕ(Φ̄)
(
1

2
+ nk). (1.5.18)

The first term, comes purely from the vacuum fluctuations (can be seen by setting nk = 0).

It is clearly divergent as k → ∞, and hence one can use cut-off regularization scheme. Thus,

for the first term, we have

1

2
V ′′′(Φ̄)⟨ϕ2⟩vac =

1

8π2

∂m2
ϕ(Φ̄)

∂Φ̄

∫ Λ

0

dk
k2√

k2 +m2
ϕ(Φ̄)

≡ ∂VCW
∂Φ̄

, (1.5.19)

where the Coleman-Weinberg term [135] is simply the energy density of the vacuum fluctu-

ations, and is given as,

VCW =
1

4π2

∫ Λ

0

k2dk
√
k2 +m2

ϕ(Φ̄) =
I(mϕ(Φ̄))

4π2
, (1.5.20)

where we have expressed it in terms of a standard integral,

I(m) =
Λ4

8

[
(2 +

m2

Λ2
)

√
1 +

m2

Λ2
+ (

m

Λ
)4 ln

(
m/Λ

1 +
√
1 +m2/Λ2

)]
. (1.5.21)

In the limit of Λ → ∞, we get the standard Coleman-Weinberg term,

VCW = Vdiv +
m4(Φ̄)

64π2
ln
m2
ϕ(Φ̄)

µ2
, (1.5.22)
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with the divergent parts of the potential can be reabsorbed into the counter terms for the

bare masses and couplings.

For the thermal contribution, we have

⟨ϕ2(x⃗)⟩T =
1

2π2

∫
dk

k2√
k2 +m2

ϕ(Φ̄)
nk

=
1

2π2

∞∫
0

dk
k2

ωk(e
ωk
T − 1)

=
T 2

4π2
J
(1)
− (

mϕ(Φ̄)

T
),

where nk = 1

(e
ωk
T −1)

for bosons and we have re-expressed the expression in terms of another

integral,

J
(1)
− (κ) =

∞∫
κ

(x2 − κ2)1/2dx

ex − 1
. (1.5.23)

Plugging it back into our eq.1.5.12, we have,

1

2
V ′′′(Φ̄)⟨ϕ2(x⃗)⟩T =

∂m2
ϕ

∂Φ̄

T 2

8π2
J
(1)
− (

mϕ(Φ̄)

T
) =

∂V th
ϕ

∂Φ̄
, (1.5.24)

where the thermal potential is given by

V th
ϕ ≡ T 4

2π2
JB[

m2
ϕ(Φ̄)

T 2
], (1.5.25)

where,

JB(y
2) =

∞∫
0

dx x2 log[1− exp
(
−
√
x2 + y2

)
]. (1.5.26)

We can now collect our results, to get the overall 1-loop thermal and quantum correction

to the potential, given by,

Veff = V +
m4
ϕ(Φ̄)

64π2
ln
m2
ϕ(Φ̄)

µ2
+
T 4

2π2
JB[

m2
ϕ(Φ̄)

T 2
]. (1.5.27)

Although we restricted our derivation to the case of a scalar field, one can generalise

it and do a similar calculation for vectors and fermions. We will quote the results for the

effective potential, with

Vth(mi, T ) = (−1)ηgi
T 4

2π2
JB/F [

m2
i

T 2
], (1.5.28)
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where gi is the number of degree of freedom of the field, B/F corresponds to bosons or

fermions, and the η = ±, with + for bosons and − for fermions. The thermal function for

fermionic field is given as

JF (y
2) =

∞∫
0

dx x2 log[1 + exp
(
−
√
x2 + y2

)
]. (1.5.29)

The thermal functions become less and less important as the argument increases ( or the

temperature decreases), going to zero as T = 0. We can expand in terms of Bessel functions

of the second kind, truncating the series at only two or three terms giving a very good

agreement with the exact function.

J low−TB (y2) = −
l∑

n=1

1

n2
y2K2(yn), |y2| ≫ 1 (1.5.30)

J low−TF (y2) = −
l∑

n=1

(−1)n

n2
y2K2(yn), |y2| ≫ 1. (1.5.31)

On the other hand, the thermal contributions will be very important in the high tem-

perature limit, and we can write approximate expressions for the functions :

Jhigh−TB (y2) ≈ −π
4

45
+
π2

12
y2 − π

6
y3 − y4

32
log

(
y2

cb

)
+ ..., |y2| ≪ 1 (1.5.32)

Jhigh−TF (y2) ≈ 7π4

360
− π2

24
y2 − y4

32
log

(
y2

cf

)
+ ..., |y2| ≪ 1, (1.5.33)

where, cb = π2e(3/2−2γE) and cf = 16 cb.
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1.5.3 Thermal Resummation of the masses

We need to address one caveat in the discussion for the thermal contributions to our tree-

level potential. As the temperature increases( e.g. in early universe), the thermal corrections

become more and more important, ultimately overwhelming the tree-level potential itself. As

an example, during Electroweak phase transition, the wine bottle potential looses its shape

once the temperature dependent contribution changes the sign of the mass term, making

the Higgs vev to be zero. Another way to say it is that the symmetry is restored at high

temperatures. But in principle this should signal a breakdown in our fixed order perturbation

theory, since the 1-loop effects are overpowering the zeroth order terms. This implies the

existence of another scale in the problem, T in addition to the mass scale, m. Generally, for

T/m > 1, one needs to resum the loop corrections, see, e.g., Ref. [148]. In this thesis, we

will concisely portray the picture and give a generic formula, without bothering too much

about technicalities, as they are beyond the scope of our work.

Consider a real massive scalar field with self interaction, with it’s potential given as,

V0 = −m
2ϕ2

2
+

1

4
λϕ4 (1.5.34)

The introduction of the self interaction leads to possibility of loop corrections to the mass

term. There are essentially four different kind of loop diagrams, which gives correction, and

a systematic resummation leads to a controlled inclusion of the loops. In Figure 2, we have

showcased the two dominant set of diagrams, namely:

• 1-loop mass correction : This is the standard diagram which is quadratically dependent

on Temperature, yielding correction to the mass term and scaling as λT 2.

• Daisy diagrams: These become more and more relevant at high temperatures, with

δm2
n−loop daisy ∼ m2λn(

T

m
)2n−1, n ≥ 2. (1.5.35)

Thus, in order to make the expansion reliable, we need to resum the thermal mass by

including a temperature dependent term in the tree level mass, schematically given as

m2(ϕ, T ) = m2
0(ϕ) + Π(ϕ, T ), Π(ϕ, T ) ∼ ∂Vth

∂ϕ
∼ λT 2 + ... (1.5.36)
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Figure 2: Relevant thermal loops, with the left diagram corresponds to the quadratic cor-

rection to the mass term, and the right sided figure corresponds to the daisy diagrams, with

number of bubbles corresponding to the order of the diagram. [148]

The way to implement it is via the resummed masses in the one-loop effective potentials,

which is also called “dressed” effective potential,

Veff = V0(m
2(ϕ)) + VCW (m2(ϕ, T )) + Vth(m

2(ϕ, T )) (1.5.37)

This method, also known as Parwani scheme [298] in the literature, directly takes into

account the daisy contributions to all orders, giving rise to a reliable pertubative expansion,

as long as 8

λ≪ 1,
λT

m
≪ 1. (1.5.38)

This has been a brief introduction of the topics which will be the launching pad for

the forthcoming chapters. This doctoral thesis is a two-pronged effort that seeks a deeper

understanding of nature and aims at trying to resolve some of the important open questions

plaguing the Standard Model, specifically focusing on Dark Matter Physics. One path fol-

lows a phenomenological enquiry including the proposal of new signatures and experimental

strategies, the interpretation of data from frontier experiments, and the construction of new

models and mechanisms (Chapter 2-4). The other explores fundamental conceptual and
8The fermionic masses do not require any thermal resummation, owing to a lack of IR divergences in the

fermionic propagator [173].
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technical aspects of quantum cosmology with applications to dark matter physics, infrared

divergences and dressed states, entanglement entropy and interactions in curved space-time

background (Chapter 5-7).
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2.0 Dark Scalars and Heavy Neutral Leptons at DarkQuest

2.1 Introduction

The hypothesis of a light, weakly coupled ‘dark’ or ‘hidden’ sector has received consider-

able attention in recent years. Though neutral under the Standard Model (SM) gauge group,

dark sectors may exhibit rich dynamics, such as new forms of matter, new dark symmetries

and forces, confinement, or spontaneous symmetry breaking, that could address some of the

deficiencies of the SM. For example, the dark matter may be part of such a sector, commu-

nicating with the visible sector through a weakly coupled mediator, or the neutrino mass

generation could be connected to new gauge singlet fermions within a dark sector.

A vibrant experimental program to search for light weakly coupled particles has emerged

over the last decade and promises to be a fertile area of research for many years to come; for

a recent summary of existing and planned efforts, see the community studies [29, 71, 72, 28].

Among the critical components of this program, particularly in exploring GeV scale dark

states, are proton beam fixed target experiments [207, 68, 174]. In these experiments, an

intense proton beam impinges on a target, producing a torrent of SM particles alongside

a smaller flux of relativistic dark sector particles. Due to their suppressed coupling to the

SM, once produced these dark particles can travel macroscopic distances before decaying

downstream into visible particles. Given a suitable detector apparatus, the visible decay

products can then be identified, characterized, and discriminated from potential background

sources, which provides a promising means to probe and discover new light weakly coupled

states.

One particularly promising experiment is DarkQuest, a mild augmentation of the SeaQuest

and SpinQuest experiments [22]. The proposed DarkQuest upgrade entails the addition

of an electromagnetic calorimeter (ECAL) to the existing SeaQuest muon spectrometer,

which will extend the physics capabilities of the experiment. These new capabilities will

allow for DarkQuest to produce a suite of sensitive searches for dark particles decaying

to a wide variety of SM final states such as electrons, muons, charged hadrons, and pho-

37



tons [193, 79, 80, 125, 159, 338, 152]. The experiment’s high luminosity coupled with its

short baseline would allow for sensitivity to both fairly short-lived particles (cτ ≲ 1m) and

more weakly-coupled particles with fairly low production rates. Although a variety of other

experimental proposals targeting dark sectors exist, DarkQuest is exceptional because most

of the detector and infrastructure currently exists, is one of the few beam dump experiments

with access to a high energy proton beam, would have an impressive range of sensitivity,

and could provide novel results in comparatively short timescale.

In this chapter, we will study the potential sensitivity of DarkQuest to two highly moti-

vated dark sector particles – dark scalars and heavy neutral leptons (HNLs). Dark scalars

that mix through the Higgs portal provide one of the simplest extensions the SM and may

be connected to a variety of puzzles such as dark matter [254], inflation [86], and natural-

ness [211]. Heavy neutral leptons (also called right-handed neutrinos or sterile neutrinos) are

strongly motivated by the observation of neutrino masses [280, 350, 198, 200, 284, 314] and

GeV-scale HNLs may also play a role in the generation of the matter-antimatter asymme-

try [24, 51]. As we will demonstrate, DarkQuest has excellent prospects to explore substantial

new regions of parameter space in these scenarios. Along with previous studies targeting a

variety of dark sector models [193, 79, 80, 125, 159, 338, 152], our results lend further strong

motivation for the DarkQuest ECAL upgrade, which will provide the basis for a rich and

exciting experimental search program in the coming 5-10 years.

2.2 The DarkQuest Experiment

The E906/E1039 SeaQuest/SpinQuest experiment is a proton fixed target beam dump

spectrometer experiment on the neutrino-muon beam line of the Fermilab Accelerator Com-

plex [22]. A schematic layout of the experiment is shown in Figure 3. A high-intensity beam

of 120 GeV protons (center of mass energy
√
s ≃ 15 GeV) is delivered to a thin nuclear

target. The target is situated ∼ 1 m upstream of a 5 m long, closed-aperture, solid iron

dipole focusing magnet (“FMAG"), which magnetically deflects soft SM radiation and also

functions as a beam dump for the large majority of protons that do not interact in the target.
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This effectively allows only high energy muons, neutral kaons, and neutrinos to traverse the

FMAG. The spectrometer consists of a high precision tracking system (St-1/2/3 tracking)

and a muon identification system (absorber and St-4 muon ID). An additional 3 m long

open-aperture magnet (“KMAG”) is positioned at z = (9 − 12) m and delivers a transverse

momentum impulse of ∆pKMAG
T ∼ 0.4 GeV, enabling accurate momentum reconstruction of

charged particles. In addition, in 2017 displaced vertex trigger hodoscopes were installed

on both sides of the KMAG (see Figure 3), allowing for the detection of muons originating

from the decays of exotic light long-lived particles after the dump. The experiment has been

approved to collect ∼ 1018 protons on target in the coming two years, until 2023.

On the horizon, there are plans to install a refurbished electromagnetic calorimeter

(ECAL) from the PHENIX experiment [40] between St-3 and the absorber wall (see brown

region in Figure 3). This will allow the upgraded experiment, DarkQuest, to search for a

much broader set of dark sector displaced signatures, including electrons, charged pions and

kaons, and photons. The DarkQuest experiment has a relatively compact geometry, making

it well-suited to search for dark particles with O(10 cm − 1m) lifetimes that are currently

hidden to previous beam dump experiments with a much longer baseline.

Additional possible upgrades of the experiment (“LongQuest”) have been also proposed

[338]. This includes additional trackers and calorimeters after station 4 of the SeaQuest

spectrometer.

The ultimate detectability of long lived dark particles at DarkQuest depends on several

key factors. These include the production rate and kinematical properties of dark particles,

their decay properties including branching ratios to final states containing charged particles

and lifetime, the detector acceptance, and any potential SM background processes. In the

remainder of this section we provide a brief discussion of these issues, which will motivate us

to define two distinct run scenarios to be used later in our sensitivity projections for HNLs

and dark scalars.
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Figure 3: Layout of the DarkQuest experiment. The SeaQuest experiment has the same

layout, except for the ECAL (dashed brown region located near z ∼ 19 m), figure taken

from [62].

2.2.1 DarkQuest luminosity scenarios, Phase I and Phase II

At DarkQuest both HNLs and dark scalars can be produced in meson decays (e.g., K,

D, and B mesons), while scalars can also be produced in the primary proton interactions

through the proton bremsstrahlung and gluon fusion processes. Assuming every proton

interacts in the dump, an estimate of the effective integrated luminosity at DarkQuest is

given by1

L ≃ Np

σpN
≃ NpA

σpFe
≃ NpAλint

ρNA

A
= 79 ab−1

(
Np

1018

)
, (2.2.1)

where Np is the total number of protons on target, λint = 16.77 cm is the nuclear interaction

length in iron, ρ = 7.87 g cm−3 is the density of iron, and NA is the Avogadro’s number.

In the second equality, we assume the per nucleon cross-section is the total cross-section on

iron times the mass number, A = 56. A related quantity often seen in the literature is the

the total hadronic cross per nucleon, which in iron is given by σpN ≡ (λint ρNA)
−1 ≃ 12.6

mb.

We will consider two benchmark luminosity scenarios in our projections below: a “Phase
1An earlier study [80] used the effective luminosity for proton-proton collision within a single nuclear

collision length of iron, 35ab−1
(

Np

1.44×1018

)
.
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I” corresponding to Np = 1018 (L ∼ 79 ab−1 of integrated luminosity) which can be achieved

on the couple of years time scale, and a “Phase II” scenario corresponding to Np = 1020

(L ∼ 7.9 zb−1 of integrated luminosity) which could potentially be collected over a longer

time frame [318].

2.2.2 Meson production at DarkQuest

Given the considerable energy of the Main Injector protons and the substantial antici-

pated luminosity, mesons such as kaons, D-mesons, and B-mesons, as well as τ -leptons, are

abundantly produced at DarkQuest. Much of hidden sector particle production at Dark-

Quest thus occurs through the decays of these SM states. Here we discuss our approach to

modeling meson production at DarkQuest.

Kaons have an enormous production rate in primary proton collisions at DarkQuest,

with an order one number of kaons produced per proton on target. However, since kaons are

long lived and typically produced with boosts of order 10, their lab frame decay length is

generally much longer than the characteristic hadronic interaction length, causing a signifi-

cant attenuation of the kaon flux as they traverse the dump. Taking this into account, the

number of kaons that decay before the first interaction length can serve as a useful proxy for

the opportunities to produce hidden sector particles,

NKidecay ≈ Np nKi
ΓKi

⟨γ−1
K ⟩λK , (2.2.2)

where λK ≈ 20 cm is the kaon interaction lengthnKi
∼ 0.2 is the number of kaons produced

per proton on target at DarkQuest for each of K+, K−, K0
L, and K0

S, and ⟨γ−1
K ⟩ ∼ 0.1 is the

mean inverse Lorentz boost. Both nKi
and ⟨γ−1

K ⟩ were estimated using PYTHIA 8 [328].

The values for NK± , NK0
L
, and NK0

S
that decay before the first interaction length are shown

in Table 1. As expected, the number of K0
S is much larger than the number of K0

L and K±

due to their much shorter lifetime.

For D-meson production, we follow an approach that is similar to the one used by the

SHiP experiment at CERN [21]. We compute the pp → D0, D̄0 production cross section as

a function of
√
s, using PYTHIA 8 [328] with CTEQ6 LO parton distribution functions
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Table 1: Number of mesons and τs produced for Np = 1018.

K mesons∗ D mesons B mesons Leptons

K± ∼ 1.8× 1015 D± ∼ 6.8× 1014 B± ∼ 5.3× 107 τ± ∼ 4.7× 1010

K0
L ∼ 2.2× 1014 D±

s ∼ 2.0× 1013 Bd, B̄d ∼ 5.3× 107 τ±Ds
∼ 1.1× 1012

K0
S ∼ 1.2× 1017 D0, D̄0 ∼ 1.3× 1014

(PDFs) [301]. We rescale these cross sections to match the cross sections measured in the

interval
√
s = (20− 40) GeV [157, 272]. Using this rescaling, we estimate σ(D0, D̄0) ∼ 1µb

at
√
s = 15 GeV. Using the fragmentation fractions for charm production, we obtain a

charm production cross section σcc = σ(D0, D̄0)/f(c → D0) ∼ 1.6µb. To estimate the

fragmentation fractions, we generate hard cc̄ processes in PYTHIA 8 [328] at the DarkQuest

energy and extract the ratios. As a cross check, we have also used PYTHIA 8 to estimate

the B and D fragmentation fractions at SHiP and LHC energies, finding relatively good

agreement with the values quoted in Ref. [98]. The number of charm mesons produced for

Np = 1018 is shown in Table 1 for D±, D0 and D̄0, and D±
s .

We follow a similar procedure to compute the production rate of B-mesons. In Table 1,

we report the number of mesons produced for Np = 1018. Due to 2mB + 2mp ∼ √
s,

there is substantial uncertainty on σbb at DarkQuest beam energies. In particular, Monte

Carlo estimates with differing PDF choices can result in largely different values for the

projected cross-section. This can be primarily understood from the high uncertainty at

large momentum fraction. Unlike in the case of charm, we do not have empirical data to

extrapolate from in a controlled manner. Through exploring a variety of PDF choices, we

found roughly an order of magnitude discrepancy for the projected cross-sections σ(pp →
bb̄) ∼ 0.5− 5 pb. Given this range, we choose σ(pp→ bb̄) = 1 pb throughout this work.

In addition to meson decays, τ± decays can produce dark sector particles. At DarkQuest,

the primary way of producing a τ lepton is through the decay of a Ds meson with Br(Ds →
τ±ντ ) = (5.55± 0.24)% [332], which provides over an order of magnitude more τs than the
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direct electroweak production (see Table 1, where the first entry represents the number of

τ± directly produced through electroweak processes).

We can compare the numbers in Table 1 to the numbers obtained for higher energy proton

beams as, for example, the 400 GeV SPS proton beam. The number of kaons [206], D-mesons

[98], and taus [118] produced per proton on target is suppressed only by roughly an order

of magnitude at the Fermilab Main Injector. A much larger suppression applies to B-meson

production [98], for which the Main Injector loses roughly three orders of magnitude. For

this reason, we generally expect DarkQuest to achieve a similar reach for dark sector states

produced from light meson or tau decays.

Importantly, with the exception of D-mesons, most of these estimates consider only the

particles produced in the incident protons primary interaction. Secondary interactions of

hard particles and beam remnants within the beam dump can also produce additional kaons

and taus, which could potentially enhance the flux of dark particles. The differential rates

for these secondaries should be carefully evaluated in order for DarkQuest to most precisely

state their sensitivity to a variety of models. In this sense, our estimate of the reach should

be considered conservative.

2.2.3 Detector acceptance of DarkQuest

Next, we turn to the issue of the detector acceptance. Our considerations and approach

to modeling the effect of the KMAG magnetic field and acceptance closely follows Ref. [80].

A Monte Carlo simulation is used to compute the total detection efficiency. In particular,

we will consider signal events to be those in which the dark particle decays to final states

containing two quasi-stable charged particles (i.e., electrons, muons, charged pions, and

charged kaons) within a fiducial decay region at position z ∈ (zmin, zmax), located downstream

of the FMAG. The daughter charged particles are then required to intersect tracking station

3, assumed to be a 2 m × 2 m square centered about the beam line and located approximately

18.5 m downstream of the dump (see Figure 3). We also model the effect of the KMAG

magnetic field on charged particles trajectories by an instantaneous transverse momentum

impulse of ∆pT = 0.4GeV × (∆zK/3m) applied in the x̂ direction halfway through the
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particle’s KMAG traverse, where ∆zK is the distance traveled by the daughter particles

through the KMAG2. The total detection efficiency is then estimated according to [80]

eff = mΓ

∫ zmax

zmin

dz
∑

events ∈ geom.

e−z (m/pz) Γ

NMC pz
, (2.2.3)

where m, Γ, and pz are the mass, width, and ẑ-component of the momentum of the dark

particle, respectively. The sum in (2.2.3) is carried out over those events falling within the

geometric acceptance as described above, and NMC represents the total number of simulated

events.

We will define two fiducial decay regions for our study that will be associated with our

near future and long term run scenarios. As we will discuss in Secs. 2.3.3, 2.4.3, the detection

efficiency for the two fiducial decay regions is relatively sizable, ranging from ∼ few ×10−2

to ∼ 1, depending on the particular production and decay mode of the dark particle.

For our Phase I scenario, we require that the dark particle decays within the 5 m − 6 m

region immediately downstream of the FMAG. The main advantages of this choice are that

the charged daughter particles are tracked in Station I and their trajectories are bent by

the KMAG magnetic field, making accurate momentum reconstruction feasible and greatly

helping with particle identification, vertex reconstruction, and background rejection.

For our Phase II scenario we will consider the longer fiducial decay region of 7 m − 12 m.

Given the higher luminosity in our Phase II scenario, we expect more background events, e.g.,

from K0
L particles which pass through the FMAG and decay semileptonically. As discussed

in Ref. [80], these backgrounds could be further mitigated with additional shielding in the

5 m − 7 m region, partially explaining the motivation of the 7 m − 12 m fiducial region. In

addition, the 7 m − 12 m fiducial region would increase the geometric acceptance. While

this choice allows for an appreciable enhancement of the overall signal rate and for additional

suppression of backgrounds, it is not without additional challenges. For example, momentum

reconstruction will be more challenging since the daughter particles would not pass through

the first tracking station.

Our benchmark scenarios discussed here should be considered as preliminary, and a

dedicated study of the potential backgrounds and signal region optimization is warranted.
2Note that Ref. [80] applied the pT kick at the end of the KMAG.
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The DarkQuest collaboration is currently investigating the several sources of backgrounds,

with a focus on the e+e− signature characteristic of dark photons. While awaiting a definitive

study from the collaboration, a crude estimate suggests that it will be possible to observe

signals over the K0
L decay backgrounds. For the signatures investigated in this paper, the

dominant sources come from the production of K0
L with subsequent semi-leptonic K0

L →
π±e∓ν, K0

L → π±µ∓ν or purely hadronic K0
L → π+π−π0, K0

L → π+π− decays. Roughly 1017

K0
L will be produced in the beam dump during Phase I. Taking the kaon interaction length

in iron to be ∼ 20 cm, we expect approximately ∼ 106 kaons to escape FMAG, and O(104)

of which will decay in 5 m - 6 m. Accounting for branching ratios and geometric acceptance,

we find that, depending on the particular final state, O(100 − 1000) K0
L will decay in the

fiducial region with decay products detected by DarkQuest. Despite the substantial increase

in luminosity, the situation during Phase II can be much improved over Phase I provided

additional shielding is in place between 5 m - 7 m. While approximately ∼ 1019 K0
L will

be produced in Phase II, a similar estimate as given for Phase I suggests that depending

on the specific final state, O(1 − 10) K0
L will traverse 7 m of iron, decay in the 7 m - 12

m fiducial region, and will lead to detectable decay products. Depending on the final state

signature, additional handles can be utilized to further mitigate these backgrounds. In Secs.

2.3.4, 2.4.4, we will estimate how many of these K0
L will result in background events for the

several signatures. When discussing the DarkQuest reach for dark scalars and HNLs, we will

require 10 signal events, but the true requirement against background may be more or less

depending on the expected background population specific to the mass and decay paths.

2.3 Heavy Neutral Leptons

Heavy neutral leptons (HNL), N̂i, can interact with the SM neutrinos through the neu-

trino portal operator

−L ⊃ λijN L̂iHN̂j +H.c. , (2.3.1)

where H is the SM Higgs doublet and L̂i = (νi, ℓi)
T is the SM lepton doublet of flavor i.

Because of these operators, after electroweak symmetry breaking, the HNLs will mix with
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the SM neutrinos. We will refer to the unhatted fields νi and Ni as the corresponding mass

eigenstates of the light SM neutrinos and HNLs, respectively, and the relation between the

flavor and mass bases is described by a mixing matrix, U . The phenomenology of HNLs

largely follows from their induced couplings to electroweak bosons, which in the limit of

small mixing angles are given by

L ⊃ g√
2
UijW

−
µ ℓ

†
i σ

µNj +
g

2cW
Uij Zµ ν

†
i σ

µNj +H.c. (2.3.2)

Additionally, we will assume that N is a Majorana particle throughout this work. Majorana

HNLs are particularly motivated as they arise in the Type-I seesaw mechanism for neutrino

mass generation. While the Type-I seesaw naively leads to mixing angles of parametric size

∼
√
mν/mN , which is extremely small for GeV-scale HNLs, we note that there are schemes

such as the inverse seesaw [282, 283, 81] and linear seesaw [277] where the mixing angles

can be much larger. For the purposes of characterizing the DarkQuest sensitivity, we will

take a phenomenological approach, as is commonly done in the literature, assuming the

existence of a single HNL state, N , in the mass range of interest, which dominantly mixes

with a particular neutrino flavor, i.e., dominant electron-, muon-, or tau- flavor mixing. In

this case, the phenomenology is dictated by the HNL mass, mN , and mixing angle, denoted

by Ue, Uµ, or Uτ , respectively, for the three mixing scenarios. If these assumptions were

relaxed, we expect the phenomenological implications relevant for DarkQuest are typically

only slightly different than in a flavor-aligned case.

2.3.1 HNL production

As a consequence of the interactions in (2.3.2), HNLs can be copiously produced at

DarkQuest through the decays of mesons and τ leptons. Meson and τ production at Dark-

Quest is discussed in Sec. 2.2.1 and summarized in Table 1. For example, HNLs can be

produced in the two body decays of charged pseudoscalar mesons, P → ℓiN . In the regime

mℓ ≪ mN ≪ mP , the branching ratio is given by [97]

Br(P → ℓiN) ≃ τP
G2
F

8π
f 2
P mP m

2
N |Vαβ|2 |Ui|2, (2.3.3)
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Figure 4: Number of µ-aligned (left) and τ -aligned (right) HNLs produced through meson

and lepton decays, using 1018 protons on target and mixing angle equal to 1. The e-aligned

scenario is nearly identical to µ-aligned one. For this reason, we do not show it here. The

most important channels are B± → ℓ±N (blue), D±
s → ℓ±N (green), B mesons decaying

to a charm meson and ℓN (red, denoted as B → Dℓ±N), D mesons decaying to a strange

meson and µN (purple, denoted as D → Kµ±N , left figure only), τ± → νµ±N (yellow, left

figure only), τ± → XN (purple, right figure only), and D±
s → ν(τ± → XN) (brown, right

figure only). , figure taken from [62].
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where τP , fP , and mP are the meson lifetime, decay constant, and mass, respectively, and

the CKM matrix element, Vαβ, is dictated by the valence quark content of P (e.g., Vcd for

D±, etc.). The two body decay rates (2.3.3) scale as m2
N as a consequence of the chirality

flip, and are thus enhanced for heavier HNLs.

Three body decays of mesons to HNLs are also important and can even be the dominant

production mechanism depending on the HNL mass. Although phase space suppressed,

the three body meson decay rates do not suffer from the CKM or chirality flip suppressions

characteristic of the two body decays in (2.3.3). HNLs can furthermore be produced through

τ decays (e.g., two body decays involving hadronic resonances, or three body leptonic decays)

and are subject to similar considerations.

For all meson and τ branching ratios, we use the expressions in Ref. [97]. The total num-

ber of HNLs produced at DarkQuest through different pathways is summarized in Figure 4,

where we utilized a luminosity of 1018 protons on target.

2.3.2 HNL decays

Once produced at DarkQuest, HNLs will decay through the weak interactions (2.3.2) to a

variety of SM final states. Since their decays proceed through an off-shell heavy electroweak

boson, GeV-scale HNLs are generically long lived and can easily traverse the beam dump

at DarkQuest before decaying. There is a rich variety of HNL decay modes, including a

pseudo-scalar meson and a lepton, a vector meson and a lepton, a lepton and two or more

pions, or three leptons (including three neutrinos). We note that there is some disagreement

in the literature about the corresponding rates. We have verified the results of Refs. [97, 55],

and utilize these expressions for the neutrino decays.

In Figure 5 we show the branching ratios of HNLs in the e−aligned, µ−aligned, and

τ−aligned case (left, center, and right panel, respectively). For HNL masses below 1.5

GeV, we determine the total hadronic rate as the sum of exclusive meson decay rates, while

above 1.5 GeV, we switch to using the inclusive N → qq̄′ℓ rate, assuming exclusive rates

are contained within this value. As we can observe from the figure, the branching ratio into

the invisible ννν final state (in blue in the figure) is quite subdominant as long as the HNL
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Figure 5: Branching ratios of the HNLs. The three panels represent HNLs mixed either with

the electron (left panel), muon (middle panel), or tau (right panel) neutrinos. In each figure,

we show the branching ratios into three SM neutrinos ννν (blue), e±π∓ or µ±π∓ (gold), νπ0

(green), one neutrino and two charged leptons of any flavors (red), and one neutrino and

two muons (dotted red). The thick black curve represents the sum of the branching ratios

into two or more charged tracks. Figure taken from [62]
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has a mass above the pion mass. The other channels presented in the figure contain visible

particles that are in principle observable by DarkQuest. The red dotted curve represents the

decay into one neutrino and two muons. The corresponding branching ratio is also relatively

suppressed, especially in the e−aligned, and τ−aligned scenarios. This is the only channel

that can be easily identified now by the SeaQuest experiment, without the ECAL upgrade.

Provided the ECAL upgrade is installed, DarkQuest will have the capability to also

search for a variety of HNL decays containing multiple charged particles in addition to

muons. Among all visible channels, the π0ν channel is likely to be the most difficult one

because of the challenging π0 identification and large sources of backgrounds arising e.g.,

from the SM K0
L → 3π0, K0

S → π0π0 processes, where some of the pions are missed or

misidentified by the detector. For this reason, in the calculation of the DarkQuest reach

on HNLs, we conservatively do not include this channel. The bold black line in Figure 5

shows the observable branching ratio used in this work, which is obtained by summing all

branching ratios resulting in at least two charged particles.

In estimating the sensitivity below we will require 10 signal events, working under the

assumption that backgrounds can be brought down to the level of a few events. The FMAG,

i.e., the 5 m magnetized beam dump, serves to mitigate most of the backgrounds by sweeping

away charged particles and largely blocking the most dangerous neutrals. Several potential

sources remain and the ultimate size of these is the subject of current study. One of the

most relevant backgrounds comes from K0
L particles that penetrate the dump and decay in

the fiducial region. As we discussed in Sec. 2.2.3, we expect O(100 − 1000) of such K0
L

in Phase I and O(1 − 10) in Phase II. The decay K0
L → π±e∓ν will be background to the

N → e+e−ν andN → e±π∓ signatures presented in Figure 5. For the former, a pion rejection

factor of order ∼ 1% will be sufficient to suppress the K0
L → π±e∓ν background to O(10)

(< 1) events for Phase I (Phase II). This level of electron-pion discrimination should be

feasible with the planned ECAL upgrade [40]. For the latter signal, the background could be

suppressed through suitable kinematic cuts such as a cut on themeπ invariant mass. However,

a detailed study of these possibilities requires a careful modeling of K0
L production in the

FMAG, which is beyond our current scope. For signatures involving muons, the existing

SeaQuest spectrometer already has the capability to distinguish muons, which pass through
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the absorber and are detected in the Muon-ID system (see Figure 3), from charged hadrons,

which do not penetrate the absorber. As above, muonic backgrounds to the N → µ±π∓

signature can arise from decays such K0
L → π±µ∓ν, while the N → µ+µ−ν channel should

have very small backgrounds.

2.3.3 Detector acceptance

We follow the procedure outlined in Sec. 2.2.3 to compute the geometric acceptance for

HNLs at DarkQuest. To reduce the complexity for a clear presentation, we show in Figure 6

the normalized geometric efficiency in the large lifetime limit. To compute these curves,

we consider the µ-aligned scenario and the large lifetime regime, i.e., we assume that the

HNL decay length is much larger than the detector size so that the differential probability to

decay is a constant with distance, and normalize to only the particles that decay within the

fiducial region. This limit is relevant for small mixing angles. The different colored curves

in Figure 6 correspond to several representative production and decay modes of the HNL.

The lighter (darker) curves represent the acceptance for Phase I (5 m - 6 m) (Phase II (7

m - 12 m)). Overall, the acceptance is relatively large, ranging from a few % to ∼ 20%

depending on the HNL production/decay mode, and is fairly constant with the HNL mass.

As expected, the acceptance for Phase I is somewhat smaller than that for Phase II, since

for Phase II the HNLs decay typically closer to tracking station 3.

2.3.4 The DarkQuest reach for HNLs

With our estimates for HNL production, decays, and experimental acceptance in hand, we

can compute the total number of signal events in the SM final state i expected at DarkQuest

according to

Nsignal = NN × Bri × effi . (2.3.4)

Here NN is the number of HNLs produced in a given production channel (see Section 2.3.1

and Figure 4), Bri is the branching ratio for N → i (see Section 2.3.2, and Figure 5), and

effi is the experimental efficiency to detect the final state i, computed using (2.2.3).
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Figure 6: Geometric acceptance as a function of the HNL mass normalized to the number

of HNLs decaying within the fiducial decay region in the large lifetime limit (i.e., the HNL

decay length is much larger than the detector size). We show separately the efficiency

for HNLs that are produced and decay through several representative channels, including

K → ℓN,N → eeν (green), D → ℓN , N → eeν (blue), D → KℓN,N → µπ (orange) and

B → DℓN,N → µµν (red), and for two run scenarios: Phase II, 5m - 6m (lighter darker),

Phase II, 7m - 12m, (darker color). Figure taken from [62]
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A summary of the projected reach is shown in Figure 7 for µ- and τ -flavored HNLs de-

caying inclusively to final states containing two or more detected charged tracks. The solid

black (dashed black) contour specifies the HNL mass - squared mixing angle parameters

leading to 10 signal events according to (2.3.4) for the Phase I (Phase II) run scenario. We

note that the projected reach for e-aligned HNLs is very similar to the µ-aligned reach shown

in Figure 7. For this reason, we do not show the e-aligned scenario in the figure. We also

show in the shaded gray regions the existing experimental or observational limits, includ-

ing CHARM [78], PS191 [82], DELPHI [16], NuTeV [339], E949 [47], MicroBooNE [280],

T2K [11], ATLAS [5], Belle [271], and Big Bang Nucleosynthesis (BBN) [107]3 (see e.g.,

Ref. [72] for a thorough discussion of these limits). For comparison, we also display the

projected sensitivities to HNLs from several proposed experiments, including NA62++[164],

FASER [246], CODEX-b [23], MATHUSLA [147] and SHiP [27]. For additional proposals

to probe GeV-scale HNLs see e.g., Refs. [56, 55, 72, 84, 141, 140, 230].

We conclude that DarkQuest Phase I can probe a significant region of currently unex-

plored parameter space for τ -aligned HNLs. For the Phase II scenario, DarkQuest will be

able to extend the sensitivity by more than one order of magnitude in the squared mixing an-

gle compared to Phase I, while also covering new regions of parameter space in the µ-aligned

scenario which are presently unconstrained.

2.4 Dark Scalars

We now consider dark scalars interacting through the Higgs portal. A new singlet scalar

can couple to the SM Higgs through two renormalizable portal couplings,

−L ⊃ (AŜ + λŜ2)Ĥ†Ĥ. (2.4.1)

The dark scalar may acquire a small coupling to SM fermions and gauge bosons through its

mass mixing with the Higgs, which will occur if the A ̸= 0 in (2.4.1) or if the dark scalar ob-

tains a non-zero vacuum expectation value. Then, in the physical basis, the phenomenology
3We cut off the BBN constraints above |U | = 10−5 to match the information presented in Ref. [107], but

naturally expect the limits to extend above this range.
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Figure 7: Projected reach for µ-flavored HNLs (left panel) and τ -flavored HNLs (right panel)

in the mN vs |Uµ,τ |2 plane. DarkQuest Phase I is represented by the black solid line, and

Phase II by the black dashed line. Current limits (gray) and limits from proposed future

experiments (colored dashed) are also displayed for comparison; see the text for a details.

Limits are set requiring 10 signal events. Figure taken from [62].

at DarkQuest is governed by the dark scalar mass, mS, and the scalar-Higgs mixing angle,

θ:

L ⊃ −1

2
m2
SS

2 + θ S

(
2m2

W

v
W+
µ W

µ− +
m2
Z

v
ZµZ

µ −
∑
f

mf

v
f̄f

)
. (2.4.2)

Given the experimental constraints on the mixing angle for dark scalars at the GeV-scale,

we will always be working in the regime θ ≪ 1. We will not study the phenomenological

consequences of additional couplings between the scalar and the Higgs, such as the cubic

interaction hSS. While such a coupling can lead to additional scalar production processes

such as B → KSS, these are typically not as important at DarkQuest as processes involving

singly produced scalars. Such coupling also leads to Higgs exotic decays of the type h→ SS

[146] that can be searched for at the LHC. We do not include the corresponding bounds

in our summary plot in Figure 11, since these bounds depend on the hSS coupling that

is independent from the mixing angle θ. We now discuss in more detail the production of

scalars, their decays, the experimental acceptance, and the DarkQuest reach.
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Figure 8: Number of scalars produced at DarkQuest for K → πS (green), B → KS (blue),

proton bremsstrahlung (red), and gluon fusion (black), assuming 1018 protons on target and

a mixing angle equal to 1. Figure taken from [62].

2.4.1 Scalar production at DarkQuest

At DarkQuest scalars are produced through three main processes: meson decays, proton

bremsstrahlung, and gluon-gluon fusion. The sensitivity of DarkQuest to scalars produced

through B meson decays was already studied in Ref. [80]. In this work we will also exam-

ine the potential additional sensitivity from scalars produced through kaon decays, proton

bremsstrahlung, and gluon-gluon fusion.

Figure 8 shows the number of dark scalars produced through these three production

channels as a function of the scalar mass, assuming 1018 protons on target. Low mass scalars

are dominantly produced in kaon decays. Above the mK −mπ threshold and in the vicinity

of mS ∼ 1 GeV, proton bremsstrahlung dominates, while heavier scalars can be produced

through B-meson decays and gluon fusion.
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2.4.1.1 Meson decays

We first consider scalar production through meson decays. We refer the reader to

Sec. 2.2.1 and Table 1 for a summary of meson production at the DarkQuest. We first

consider scalars produced through kaon decays, K → πS, which is especially relevant for

lighter scalars. The partial decay width for K± → π±S is [347, 266, 86, 240, 349]

Γ(K± → π±S) ≃ θ2

16πmK

∣∣∣∣3GF

√
2V ∗

tdVtsm
2
tms

16π2v

∣∣∣∣2(1

2

m2
K −m2

π

ms −md

fK

)2

λ1/2
(
1,
m2
S

m2
K

,
m2
π

m2
K

)
,

(2.4.3)

with Γ(K0
L → π0S) ≃ Γ(K± → π±S).4 Using these partial widths and (2.2.2), the number

of scalars produced from kaon decays in a thick target can be estimated as [349]

NS = Np nK Γ(K → πS)λK⟨γ−1
K ⟩ ∼ 1013 × θ2

(
Np

1018

)
(kaon decays), (2.4.4)

where nK ∼ 0.6 is the number of K± and K0
L produced per proton on target.

Next, we consider scalars produced through B meson decays, which proceeds through

b − s − S penguin transitions. The inclusive branching ratio for B → XsS can be written

as [176, 203, 215] (see also [69, 349] for exclusive B decays)

Br(B → Xs S)

Br(B → Xc e ν)
≃ θ2

27
√
2GF m

4
t

64π2Φm2
b

∣∣∣∣V ∗
tsVtb
Vcs

∣∣∣∣2(1− m2
S

m2
b

)2

, (2.4.5)

where Φ ≈ 0.5 is a phase space factor. Using the measured inclusive rate for B → Xc e ν [332],

we obtain Br(B → Xs S) ≃ 6.2× θ2(1−m2
S/m

2
b)

2. Since B-mesons decay promptly, we can

estimate the number of scalars produced in their decays as

NS = Np nB Br(B → Xs S) ∼ 109 × θ2
(
Np

1018

)
(B meson decays), (2.4.6)

where nB ∼ 10−10 is the number of B mesons produced per proton on target at DarkQuest.
4Although the branching fractions are different, the partial widths are very similar, and the total width

cancels out of the estimate (2.2.2) as long as λK ≪ ⟨γ−1
K ⟩cτi. In fact, K0

S has λK ∼ ⟨γ−1
K ⟩cτKS

suggesting its
total width could also cancel out of the expression (up to an O(1) factor). However, K0

S is not included in
our analysis since the partial width Γ(K0

S → π0S) ≪ Γ(K0
L → π0S), so it can be neglected for that reason.
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2.4.1.2 Proton bremsstrahlung

Next, we turn to scalars produced through proton bremsstrahlung, p + p → S + X.

The cross section is obtained following the calculation in Ref. [94], which is based on the

generalized Weizsacker-Williams method [244]. Specifically, scalar events are generated by

sampling the differential cross section dσbrem/dz dp
2
T , where z ≡ pS/pp is the fraction of the

proton beam momentum, pp, carried by the emitted scalar, with pS the scalar momentum,

and pT is the scalar transverse momentum. The validity of the Weizsacker-Williams approach

relies on the kinematic conditions pp, pS, pp − pS ≫ mp, |pT |. To satisfy these conditions

for DarkQuest that uses 120 GeV protons, we follow Ref. [80] and restrict the phase space

to the range z ∈ (0.1, 0.9) and pT < 1 GeV. We note that these conditions are slightly more

restrictive than those used in Ref. [94], leading to an integrated cross section that is smaller

by an order one factor.

The total bremsstrahlung cross section is estimated to be

σbrem ∼ σpp ×
(
g2SNNθ

2

8π2
|FS(m2

S)|2
)
, (2.4.7)

where σpp ≈ 40 mb is the total inelastic proton-proton cross section and the factor in paren-

theses gives the approximate integrated probability of scalar emission. The parameter gSNN

is the zero momentum scalar nucleon coupling (for θ = 1) and FS(p
2
S) is a time-like scalar-

nucleon form factor. Including order one factors arising from phase space integration, we

estimate the total number of scalars produced in proton bremsstrahlung to be

NS ∼ 1011 θ2
(
Np

1018

)
(Proton Bremsstrahlung). (2.4.8)

Figure 8 shows the total number of scalars produced at DarkQuest as a function of the scalar

mass. The large resonant enhancement near mS ∼ 1 GeV is a consequence of mixing with

the narrow f0(980) scalar resonance, while the bremsstrahlung cross section drops steeply

for mS ≳ 1 GeV due to the form factor suppression. It is likely that the zoo of heavy f0

resonances would belay this high mass suppression, but we make no attempt to model that

here. The uncertainty band is obtained by varying the lower integration limit for z between

0.05 and 0.2 as well as the scalar resonance masses and widths in the form factor FS(p2S).
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We note that the rates for scalar production from bremsstrahlung have a rather mild

dependence on the proton beam energy, and thus the production rate at higher energy

facilities such as the CERN SPS (400 GeV protons) is very similar to that at DarkQuest.

2.4.1.3 Gluon fusion

The final process we consider is scalar production via gluon fusion. As in the case of

the SM Higgs boson, this process proceeds at one loop through the heavy quark triangle

diagrams. We restrict our analysis to scalar masses above O(1GeV) where the perturbative

QCD computation is valid. In this mass range, the cross section is of order σggS ∼ 30 pb×
θ2 (mS/1GeV)−2, and the number of scalars produced is therefore

NS ∼ 109 × θ2
(
1GeV

mS

)2(
Np

1018

)
(Gluon Fusion). (2.4.9)

As in the case of the SM Higgs boson, we expect higher order corrections to enhance the

rate by an order one factor, although we are not aware of an existing calculation in the

literature that can be applied to such light scalars. While it would be interesting to study

this question further, we will simply apply a K-factor equal to 1.5 in our estimate of the

rate, which is similar to that of the SM Higgs boson. For our simulation, we use the HEFT

model in MadGraph5_amc@nlo [33] to generate scalar events, which are then passed to

PYTHIA 8 [328] for showering. While we find that gluon fusion is generally subdominant to

other production mechanisms (see the black curve in Figure 8), it can give some additional

sensitivity in the 1-2 GeV scalar mass range, particularly for the Phase II scenario. For

comparison, we find that the scalar production via gluon fusion is only about a factor of 2

larger at the higher energy CERN SPS.

2.4.2 Scalar decays

Through its mixing with the Higgs, the scalar will decay to SM final states. For exam-

ple, the dark scalar can decay to charged leptons with a partial decay width, ΓS→ℓ+ℓ− ≃
θ2m2

ℓmS/(8πv
2).
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Figure 9: Left panel: Scalar branching ratios in the e+e− (red), µ+µ− (blue), π+π− (green),

in the K+K− (orange) final state channels. Note that the branching ratios are independent

of sin θ. Right panel: Isocontours of the scalar decay length in units of meter in the mS -

sin θ plane. Figure taken from [62].

Above the two pion threshold the scalar can also decay to hadronic final states. The

theoretical description of such decays is complicated by strong interaction effects, leading to

significant uncertainties in the predictions for masses of order 1 GeV. In our study we will use

the results and prescriptions from the recent study in Ref. [349]. In particular, for relatively

low scalar masses in the few hundred MeV range, the hadronic decays are well described using

Chiral Perturbation Theory [341, 163]. At higher masses, mS ≳ 2 GeV, the perturbative

spectator model can be used to compute the decay rates to quarks and gluons [217]. In

the intermediate regime of mS ∼ 1 − 2 GeV an analysis based on dispersion relations can

be employed to estimate the partial decay widths for scalar decays to pairs of pions and

kaons [303, 337, 163, 285, 349]. Furthermore, Ref. [349] includes an additional contribution

to the scalar decay width to account for other hadronic channels above the 4π threshold.

Despite the formidable calculations involved in estimating the decays in these regimes, these

are uncontrolled approximations and should be viewed with healthy skepticism [87]. The

scalar branching ratios in the e+e−, µ+µ−, π+π−, and K+K− channels, as well as the scalar
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decay length, are shown in Figure 9.

As with our HNL projections presented in Sec. 2.3.4, we will require 10 signal events

in our dark scalar sensitivity estimates. The considerations leading to this assumption are

similar to those outlined in Secs. 2.2.3 and 2.3.2. In particular, for the signatures arising

from scalar decays to leptons, S → ℓ+ℓ−, there can be backgrounds from K0
L that pass

through the FMAG and decay via K0
L → π±ℓ±ν, though we expect that detector level pion-

lepton discrimination can be used to bring these backgrounds at the level of O(10) (< 1)

events for Phase I (Phase II). For the hadronic scalar signatures such as S → π+π−, K+K−,

there are backgrounds from the decays K0
L → π−π+π0 and K0

L → π+π−. The corresponding

background rates, particularly for the two pion decay, are further suppressed by the small

branching ratios (BR(K0
L → π+π−) ∼ 2× 10−3), and we expect that kinematic information

will be helpful in distinguishing the signal, though this remains to be studied in detail.

2.4.3 Detector acceptance

We follow the procedure discussed in Sec. 2.2.3 to account for the geometric acceptance

of the experiment, with the total detector efficiency computed according to Eq. (2.2.3).

In Figure 10 we display the geometric acceptance as a function of scalar mass in the

infinite lifetime limit, normalized to the number of scalars decaying within the fiducial decay

region. This limit is of practical importance for much of the small θ parameter space.

Several notable features can be observed in Figure 10. First, the overall efficiency is higher

for dark scalars produced in proton bremsstrahlung compared to those from B and kaon

decays. This is due to the larger typical Lorentz boosts of scalars originating in the former

process, which inherit an order one fraction of the beam energy. Second, an increase in the

efficiency is typically observed as mS increases beyond the dimuon threshold. Due to phase

space suppression, heavier particles produced through scalar decays will typically be more

collinear with the parent scalar, which leads to a higher overall acceptance. Furthermore,

in the decays to electrons, the emitted particles are highly relativistic in the scalar rest

frame and the fraction emitted towards the negative z direction can have a small lab frame

longitudinal momentum. Such electrons can be swept out of the detector as they pass
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Figure 10: Geometric acceptance as a function of scalar mass normalized to the number

of scalars decaying within the fiducial decay region in the infinite lifetime limit. We show

separately the efficiency for scalars produced via proton bremsstrahlung (red), B decays

(blue), and kaon decays (green), and for three run scenarios: Phase I, 5 m − 6 m (light

shading), Phase II, 7 m − 12 m, (medium shading) and Phase II, 7 m − 12 m, without the

KMAG (dark shading). The acceptance combines the e+e−, µ+µ−, π+π−, and K+K− final

states weighted by their relative decay rates. Figure taken from [62].

61



through the KMAG, explaining in the lower observed efficiency when the KMAG is present.

Furthermore, we see that for heavy scalars produced via bremsstrahlung andB-meson decays,

the efficiency tends to decrease as the the scalar mass increases beyond O(1GeV) since in this

regime the daughter particle pT inherited from the scalar mother increases approximately

in proportion to mS and is generally larger than that imparted by the KMAG. Another

trend observed in all production channels is the increased efficiency in Phase II (medium

shading) over that in Phase I (lighter shading), which stems from the fact that for the Phase

II scenario the scalars decay closer to tracking station 3.

Finally, we have displayed the efficiency for an alternate Phase II scenario in which the

KMAG is removed and the charged daughters are not deflected. In this case, the daughter

particles have a smaller characteristic transverse momentum, leading to a higher geometric

acceptance as seen in Figure 10. However, it should also be emphasized that in this run

scenario particle momenta measurement capability is likely to be significantly degraded. In

fact, the magnetic field strength of the KMAG is tunable and could impart a smaller pT kick

than the 0.4 GeV used in this work. It would be interesting to study in detail its impact on

the geometric acceptance and reconstruction capabilities.

2.4.4 DarkQuest sensitivity to dark scalars

Given the scalar production rates, decay branching ratios, lifetime, and experimental

efficiency, we can now estimate the total number of signal events in the SM final state i

according to the formula

Nsignal = NS × Bri × effi , (2.4.10)

where NS is the number of scalars produced in a given production channel (see Eqs. (2.4.4,

2.4.6, 2.4.8, 2.4.9) for the number of scalars produced via K decay, B decay, bremsstrahlung,

and gluon fusion, respectively). In Figure 11 we show the projected per-production-channel

sensitivity of DarkQuest Phase I for scalars decaying inclusively to pairs of charged particles,

specifically e+e−, µ+µ−, π+π−, and K+K−. Each contour indicates the scalar mass - mixing

angle parameters predicting 10 signal events according to (2.4.10). We show three contours

corresponding to distinct scalar production mechanisms, including kaon decays, B-meson
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Figure 11: DarkQuest Phase I sensitivity to dark scalars corresponding to Np = 1018 and 5

m - 6 m decay region. The contours correspond to 10 signal events as obtained by adding

the e+e−, µ+µ−, π+π−, K+K− channels, for dark scalars produced via K → πS (green),

B → KS (blue), and proton bremsstrahlung (red). The gray shaded regions correspond to

existing limits from past experiments. Figure taken from [62].

decays, and proton bremsstrahlung. No sensitivity is obtained from the gluon fusion process

alone in the Phase I run scenario. The gray shaded regions indicate parameter points that

are excluded by past experiments, which will be discussed in more details below. We observe

from Figure 11 that DarkQuest Phase I (5m - 6m, Np = 1018) will be able to explore a

significant new region of parameter space, in particular for scalars produced through kaon

decays and proton bremsstrahlung.

Next, in Figure 12 we show the full DarkQuest sensitivity to scalars decaying inclusively

to pairs of charged particles, now combining all S production channels, for both Phase I

(solid, black) and Phase II (dashed, black) scenarios. In comparison to Ref. [80], which

studied scalars produced only in B-decays, we find that the additional scalar production

from kaon decays and proton bremsstrahlung can significantly expand the parameter space

that can be probed by DarkQuest. 5 In the figure, we also show the current experimental
5We have compared our projections with Ref. [80] for scalars produced via B decays and find good

63



bounds on dark scalar parameter space, including those from CHARM [77, 349], LSND [185],

E787/E949 [48, 46], LHCb [6, 7], and NA62. In addition, we also display sensitivity projec-

tions from several ongoing or proposed future experiments, including NA62 [96, 72], SBND

and ICARUS [61], Belle II [238] (see also Ref. [181]), FASER [178], CODEX-b [203], MATH-

USLA [147] and SHiP [27]. See also e.g., Refs. [72, 84, 286, 42] for further proposals to

probe Higgs portal scalars in this mass range.6 We observe that DarkQuest Phase I has

the potential to cover a significant region of unexplored parameter space for scalar masses

between about 200 MeV and 2 GeV. Phase II will probe angles as small as θ ≳ 5× 10−6 and

as large as θ ≲ 10−3.
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Figure 12: DarkQuest sensitivity to dark scalars. The contours correspond to 10 signal

events as obtained by adding the e+e−, µ+µ−, π+π−, K+K− channels, for combined dark

scalar production via meson decay, proton bremsstrahlung and gluon fusion. We display both

the DarkQuest Phase I sensitivity (solid, black) corresponding to Np = 1018 and 5 m - 6 m

decay region, as well as the DarkQuest Phase II sensitivity (dashed, black) corresponding

to Np = 1020 and 7 m - 12 m decay region. The gray shaded regions correspond to existing

limits and dashed lines corresponds to upcoming limits. Figure taken from [62].

agreement.
6We also note that a recent excess observed by the KOTO experiment can be explained in this scenario

for scalar masses mS ∼ 150 MeV and mixing angles θ ∼ few × 10−4 [167].
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2.5 Summary

We have investigated the sensitivity of the Fermilab DarkQuest experiment to two simple

and well-motivated dark sector scenarios, heavy neutral leptons and Higgs-mixed scalars.

The proposed DarkQuest ECAL upgrade will allow for sensitive searches to a variety of

displaced final states containing charged particles and photons, which arise in the models

considered here from the decay of long lived HNLs or scalars. We have carefully estimated the

production and decay rates of these dark sector particles as well as the detector acceptance to

derive projections under two benchmark run scenarios. During the Phase I scenario based on

1018 protons on target and a 5m - 6m fiducial decay region, DarkQuest will be able to explore

significant new parameter space for τ -mixed HNLs and dark scalars in the mass range of a few

hundred MeV - 2 GeV. It is conceivable that this could be achieved on the 5 year time scale,

putting DarkQuest on a competitive footing with other proposed experiments. Looking down

the road, a potential Phase II scenario with 1020 protons on target and a 7m-12m fiducial

decay region would allow for improvements by more than one order of magnitude in terms of

the interaction rates with SM particles (proportional to squared mixing angle). Our results

build on past phenomenological studies [193, 79, 80, 125, 159, 338, 152] and provide further

motivation for the DarkQuest ECAL upgrade. This upgrade can be realized with a relatively

modest investment and will leverage the existing experimental infrastructure already in place

to build an exciting dark sector physics program at Fermilab.
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3.0 Renormalizable Models of Flavor-Specific Scalars

3.1 Introduction

Light dark sectors that couple weakly to the Standard Model (SM) may address some

of the key open questions in particle physics today [29, 71, 72]. For instance, dark matter

may reside in a dark sector, possibly along with other states that are SM gauge singlets, and

communicate with the SM through a light mediator particle. One commonly investigated

model employs a singlet scalar as the mediator interacting through the Higgs portal [319,

279, 119, 254]. In this scenario, the singlet scalar inherits its interactions with SM matter via

mixing with the Higgs boson, thereby coupling preferentially to the heavy third generation

fermions and massive electroweak bosons. This leads to a characteristic phenomenology for

a light scalar mediator with masses in the MeV-GeV range, with the best probes typically

coming from penguin-induced rare meson decays and exotic Higgs decays; see, for example,

Ref. [254].

While the Higgs portal provides a well-motivated and popular benchmark, it is of interest

to explore other models with qualitatively distinct patterns of mediator couplings to the SM.

Such investigations are warranted by the prospect of novel phenomena and new experimen-

tal opportunities to probe dark sectors. For scalar mediators in particular, an immediate

obstacle is the specter of new dangerous flavor changing neutral currents (FCNCs). Unlike

the Higgs portal, which automatically respects Minimal Flavor Violation [151], there is no

built-in protection mechanism against large FCNCs for general scalar mediators. From a

bottom-up perspective, one can circumvent this issue by appealing to a flavor hypothesis on

the structure of the scalar mediator couplings, devised so as to suppress FCNCs at tree level.

In this regard, scalar mediators respecting the flavor-specific hypothesis provide an interest-

ing alternative to the Higgs portal [63] (for related work, see Ref. [166, 168]). Under this

hypothesis, the scalar couples to one (or a few) SM fermion mass eigenstate(s) in the physical

basis. Particularly if the singlet couples preferentially to first or second generation states,

this scenario leads to a distinctive phenomenology compared to the Higgs portal model. This
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point has been illustrated in previous studies of light hadrophilic dark matter based on an

up-specific scalar mediator [64] and a possible explanation of the muon anomalous magnetic

moment discrepancy [76, 13] based on a muon-specifc scalar mediator [63].

Open questions in this framework related to the short distance structure of the theory

remain. Unlike the renormalizable Higgs portal, the flavor specific hypothesis is necessarily

formulated in an effective field theory (EFT) setting, where the coupling of interest emerges

from a dimension-five operator. Particularly for sizable scalar mediator couplings to matter,

we anticipate the presence of new SM-charged degrees of freedom near the weak scale. It

is therefore important to study concrete renormalizable completions of flavor-specific EFTs

as they can point to additional constraints and experimental prospects associated with the

new heavy states.

In this work we study renormalizable completions of flavor-specific EFTs, focusing for

concreteness on models realizing up-quark specific couplings. We study two simple comple-

tions of this model, one involving a vector-like quark (VLQ) and another involving a second

scalar doublet in addition to the Higgs. We consider the implications of naturalness on the

couplings of the light scalar mediator and constraints on the models from electroweak pre-

cision observables, flavor- and CP-violation, CKM unitarity, and searches for new particles

at the LHC. We demonstrate that these additional tests, while being model-dependent, can

probe new regions of the low energy EFT scalar mass–coupling parameter space. This study

therefore builds on and is highly complementary to the previous flavor specific-EFT studies

of Refs. [63, 64].

Another important open structural question pertains to the ultraviolet dynamics gener-

ating the flavor-specific coupling structure. In all likelihood, the resolution of this issue must

be tied to the origin of SM flavor, itself a challenging open question. We do not address

this issue in this work, but instead focus on the more tractable problem of realizing the

flavor-specific EFT in simple renormalizable models and studying their phenomenology.
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3.2 Effective field theory of flavor-specific scalar

In this section, we review the EFT framework describing a new light scalar S with flavor-

specific couplings, meaning that the scalar predominantly couples to a particular SM fermion

mass eigenstate [63]. To understand the flavor-specific hypothesis, it is useful to start from

the Yukawa interactions in the SM quark sector:

LSM = iQL /DQL + iuR /DuR + idR /DdR −
(
QLYuuRHc +QLYddRH + h.c.

)
, (3.2.1)

where Q⊤
L = (uL, dL) and H is the Higgs doublet with Hc = iσ2H∗. The Yukawa interactions

in (3.2.1) break the large U(3)Q × U(3)U × U(3)D global flavor symmetry down to baryon

number U(1)B. In many extensions of the SM there are new couplings that also break the

flavor symmetry, leading to the dangerous prospect of new large FCNCs. It is common to

invoke a flavor hypothesis that restricts the form of these new couplings in such a way that

new FCNCs are adequately suppressed. The most common choice is MFV [151], which states

that the Yukawa couplings Yu, Yd are the only flavor-breaking spurions present in the theory,

such that all new couplings that break flavor are constructed out of Yu and Yd.

The flavor-specific hypothesis takes a different route from MFV to ensure the suppression

of new FCNCs. To build up to the flavor-specific hypothesis, one can first understand how the

quark flavor symmetry is broken if only one of the Yukawas (up or down) are nonvanishing.

In the case of Yu ̸= 0 and Yd → 0, the U(3)D symmetry is unbroken, while a general Yu

results in the breaking pattern

U(3)Q × U(3)U → U(1)u × U(1)c × U(1)t (Yu ̸= 0, Yd = 0). (3.2.2)

Similarly, in the case Yu → 0 and Yd ̸= 0, the U(3)U symmetry is respected, while general

Yd breaks the symmetry according to

U(3)Q × U(3)D → U(1)d × U(1)s × U(1)b (Yu = 0, Yd ̸= 0), (3.2.3)

In the case of the SM, both Yu and Yd are non-vanishing and the CKM matrix is nontrivial.

Hence the separate U(1)3 quark flavor symmetries preserved by Yu (in Eq. (3.2.2)) and Yd

(in Eq. (3.2.3)) are different, and only the full U(1)B baryon number symmetry remains.
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With this understanding, we now consider an EFT containing a real SM singlet scalar S

that dominantly interacts with the SM through a dimension-five operator contained in the

Lagrangian

LS =
1

2
∂µS∂

µS − 1

2
m2
SS

2 −
(
cS
M
SQLuRHc + h.c.

)
. (3.2.4)

Under the flavor-specific hypothesis, the coupling cS only involves a single up-type quark

in the mass basis. As an interesting example which we will study throughout this paper,

consider the case of an up-specific hypothesis, so that cS ∝ diag(1, 0, 0) in the mass basis.

The U(3)3 flavor symmetry is then broken by cS according to the pattern

U(3)Q × U(3)U → U(1)u × U(2)ctL × U(2)ctR. (3.2.5)

In particular, simultaneous diagonalization of cS and Yu implies that the U(1)u factor in

Eq. (3.2.5) is the same as the one left unbroken by Yu in Eq. (3.2.2). We note that the

flavor-specific hypothesis can be viewed as a special case of alignment.

The EFT framework provides a good starting point for phenomenological investigations

of light flavor-specific scalars, as illustrated by the studies of Ref. [63, 64]. However, two

basic open questions related to the UV structure of the theory remain. First, Eq. (3.2.4)

should emerge from a renormalizable theory containing new SM-charged states near the

UV scale Λ ∼ M . Importantly, such completions predict a host of additional phenomena

that, while being model-dependent, are not captured by the low-energy EFT. Particularly

for light scalars with sizable effective Yukawa couplings, gu ≡ cSv/(
√
2M), the new states

cannot be too far above the weak scale, leading to additional experimental constraints and

opportunities. The goal of this work is to investigate these issues within the context of two

simple completions, one involving a VLQ and another with a second scalar doublet. For

concreteness we focus on completions of the up quark-specific couplings.

A second, more challenging question concerns the UV origin of the flavor-specific coupling

structure. It should be stressed that the symmetry breaking pattern in Eq. (3.2.5) is a

hypothesis on the form of the low energy EFT. As discussed Ref. [63], this assumption is self-

consistent in that there are no large radiatively generated deviations from the flavor-specific

structure, but its UV origin remains obscure. We do not endeavor here to construct explicit

flavor models that naturally enforce flavor-specific couplings, but leave this important open
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question to future work. See also Refs. [248, 32] for some potential model-building approaches

along this direction.

Flavor-specific scalars may have any number of phenomenological applications, including

as a possible new physics explanation for certain experimental anomalies (e.g., the muon

anomalous magnetic moment discrepancy [63]) or as a mediator between the SM and a dark

sector. The latter application was considered in detail in Ref. [64], which studied a light sub-

GeV “hadrophilic” dark sector consisting of a Dirac fermion dark matter, χ, coupled to an

up quark-specific scalar mediator. Restricting ourselves here to real couplings for simplicity,

the dominant low energy interactions in this scenario are

L ⊃ −guSūu− gχSχχ, (3.2.6)

where the effective scalar-up quark coupling gu originates from the dimension-five operator

in Eq. (3.2.4),

gu ≡
cS v√
2M

, (3.2.7)

with v = 246 GeV being the SM Higgs vacuum expectation value (vev). Through these

couplings, the dark matter can obtain the correct relic abundance via thermal freeze-out

of its annihilation either directly to hadrons or to scalar mediators. This scenario presents

a rich low energy phenomenology, both for the case of visible scalar decays to hadrons (or

photons if mS < 2mπ) and the case of invisible decays of scalars to dark matter particles.

As we will demonstrate below in Secs. 3.3 and 3.4, the additional signatures predicted by

the specific UV completions studied in this work can provide complementary constraints on

this parameter space.

Starting from the EFT (3.2.4) defined at the UV scale M , one can estimate the expected

radiative size of other couplings in the EFT, which has implications for the naturalness of

the light singlet scalar and its phenomenology. Concerning naturalness, for example, the two

loop correction to the scalar mass and the shift to the up quark mass generated by the S

vev are small provided

cS ≲ (16π2)
mS

M
≈ 0.08

( mS

1GeV

)(2TeV

M

)
,

=⇒ gu ≲
16π2

√
2

mSv

M2
≈ 0.007

( mS

1GeV

)(2TeV

M

)2

. (3.2.8)
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As another example, there can be new loop-level contributions to FCNCs in the EFT.

Considering the case of neutral kaon mixing, we find a three loop contribution described by

the effective lagrangian

L ⊃ Cds[dLγ
µsL][dLγ

µsL] + h.c., (3.2.9)

where the Wilson coefficient is estimated to be

Cds ∼ |cS|4(V ∗
udVus)

2

(16π2)3M2
. (3.2.10)

The current bound on this coupling is given by Re[Cds] ≲ (103TeV)−2 [95], leading to a

rather mild constraint

cS ≲ 4

(
M

2TeV

)1/2

=⇒ gu ≲ 0.4

(
M

2TeV

)−1/2

. (3.2.11)

As we will see, corrections to the scalar mass and kaon mixing operators arise already at one

loop in the UV completions we study, which can lead to stronger conditions than shown in

Eqs. (3.2.8,3.2.11). These examples highlight how the UV theory can provide complementary

information on the theoretically favored or experimentally allowed model parameter space.

With this introduction, in the next sections, we will analyze renormalizable models that

lead to the low energy EFT in Eq. (3.2.4), focusing on the case of the up-specific hypothesis

for concreteness. Two simple completions of the dimension-five operator involve a new VLQ

or scalar doublet at the scaleM . For each of these possibilities, we will study the implications

of the new high-scale physics for the radiatively generated corrections to the Lagrangian, as

well as for phenomenology. We will find that naturalness and experimental constraints

on the UV theories are in some cases stronger than in the the effective theory and probe

complementary regions of low energy scalar mass–coupling parameter space. This suggests

that only considering limits in the EFT does not provide a complete picture of the status of

flavor-specific scalar theories.
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3.3 Vector-like Quark Completion

In this section we consider a renormalizable completion of the flavor-specific EFT in

Eq. (3.2.4) involving a VLQ. In what follows, we begin by presenting the model and then

consider the natural expected radiative size of the scalar potential and other couplings in

the theory, which will lead to a set of naturalness criteria. Following this, we discuss the

transition to the physical basis including the interactions and decays of the VLQ. We then

study the phenomenology of the model, including the impact of CKM unitarity, FCNCs,

EWPTs, CP violation, and searches at the LHC. At the end of this section we present a

summary of these constraints and also illustrate how these bounds probe the low-energy

EFT parameter space of a light up-philic scalar.

3.3.1 Model

We add to the SM a real gauge singlet scalar S and a VLQ with the same quantum

numbers as the SM right-handed up quark, U ′
L,R ∼ (3,1, 2

3
). The Lagrangian of the model

is

LVLQ = LSM +
1

2
∂µS∂

µS − 1

2
m2
SS

2 + U
′
iγµDµU

′ −M U
′
U ′ (3.3.1)

− [ yiQ
i

LU
′
RHc + λi U

′
LuR i S + h.c. ]

Here i = 1, 2, 3 is a generation index and M is the VLQ mass. Integrating out the VLQ

leads to an effective Lagrangian, with the leading terms appearing at the dimension 5 level:

L ⊃ yi λ
j

M
SQ

i

L uRj Hc + h.c. (3.3.2)

Comparing this with the Wilson coefficient of the effective operator in Eq. (3.2.4), we thus

identify the VLQ mass M as the new UV physics scale and (cS)
j
i ≡ −yi λj. The up-specific

hypothesis corresponds to yi ∝ δi1 and λi ∝ δi1 in the quark flavor basis in which Yu is

diagonal.
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It is important to note that the new physics couplings in Eq. (3.3.1) are not the most

general ones allowed by the gauge symmetries. To realize the flavor-specific hypothesis in

the low-energy EFT, an extended flavor hypothesis must be made in the renormalizable

completion. This entails specifying the spurion quantum numbers of Yu, Yd, y, λ, and

M under the enlarged quark flavor symmetry and how their background values break this

symmetry. Once this hypothesis is made, the Lagrangian in the basis (3.3.1) is obtained

through suitable quark flavor rotations.

In addition, the symmetries of the model admit additional renormalizable terms beyond

those listed in Eq. (3.3.1), such as a SUU Yukawa couplings, S self-couplings, and interactions

between S and H. For simplicity, we assume that these are small, comparable to their

radiatively induced contributions (see below) which provide a rough lower bound on the

sizes of these couplings in the absence of fine-tuning.

3.3.2 Naturalness considerations

We are interested in the phenomenology of a light singlet scalar, mS ≪ v, with sizable

couplings to the up quark. To achieve this, the UV model couplings y, λ in Eq. (3.3.1) must

not be too small given the expectation that M ∼ O(TeV). However, it is of interest to

know if the required magnitudes of these and other couplings in the theory are technically

natural, i.e., that radiatively induced corrections to the Lagrangian parameters in (3.3.1) are

comparable to or smaller than the physical values of these parameters.

The technical naturalness of y and λ in (3.3.1) can be derived in terms of discrete sym-

metries [63]. Here, we estimate the size of radiative corrections to other couplings in the

theory to obtain order-of-magnitude naturalness “bounds”, using a factor (16π2)−1 for each

loop and counting the relevant coupling and scale factors. For the latter, all mass scales that

are parametrically smaller than M can be neglected (such as all SM masses).

The most important corrections are those to the scalar masses, which arise at one loop

in the renormalizable VLQ completion. In particular, the coupling λ leads to a correction

to the S mass, δm2
S ∼ Tr(λ∗λ)M2/16π2, where we have defined the matrix (λ∗λ)ij = λ∗iλ

j

and its trace Trλ∗λ = λ∗iλ
i. Demanding this is less than the S squared mass leads to the
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condition

λi ≲ 4π
mS

M
≃ (6× 10−3)

( mS

1GeV

)(2TeV

M

)
. (3.3.3)

In addition, there is a correction to the Higgs mass term originating from the y coupling,

δm2
H ∼ Tr(yy∗)M2/16π2. Requiring that this is smaller than the square of the electroweak

vev gives the naturalness condition

yi ≲ 4π
v

M
≃ 2

(
2TeV

M

)
. (3.3.4)

Combining Eqs. (3.3.3) and (3.3.4) we obtain a bound on the Wilson coefficient cS defined

in Eqs. (3.2.4,3.3.2):

(cS)
j
i ≲ 16π2 v mS

M2
≃ 0.01

( mS

1GeV

)(2TeV

M

)2

. (3.3.5)

We note that this condition is stronger than the one obtained in the EFT, Eq. (3.2.8), by a

factor v/M . Eq. (3.3.5) confirms the general expectation that a light scalar with substantial

couplings is in tension with naturalness considerations.

The Higgs portal operator S2|H|2 will also give a correction to the S mass term after

electroweak symmetry breaking. The radiative size of this operator is estimated to be δS2H2 ∼
Tr[(yλ)(yλ)†]/16π2 = Tr(cSc

†
S)/16π

2, and the correction to the scalar mass is thus δm2
S ∼

Tr(cSc
†
S)v

2/16π2. The corresponding naturalness bound is thus (cS)ji ≲ 4πmS/v, which is a

weaker bound than Eq. (3.3.5) so long as M ≳ 2
√
πv ∼ TeV.

Besides the scalar masses, there are other corrections to the scalar potential that must be

taken into account. In particular, there is an S tadpole generated at two loops with size δS ∼
Tr(yλ Y †

u )M
3/(16π2)2 = Tr(cS Y

†
u )M3

(16π2)2
. Provided the naturalness bounds in Eqs. (3.3.3,3.3.4)

are satisfied, it is straightforward to show that the tadpole and mass terms dominate the S po-

tential; for a detailed argument in the EFT context, see Ref. [63]. In the presence of the tad-

pole, the scalar develops a vev of characteristic size vS ≃ δS/m
2
S = Tr(cS Y

†
u )M

3/(16π2)2m2
S,

which in turn gives an effective contribution to the up quark Yukawa through the effective

operator in Eq. (3.3.2) equal to (δYu)
j
i ≃ (cS)

j
i Tr(cS Y

†
u )M

2/(16π2)2m2
S . Specializing to the

flavor-specific hypothesis and demanding this correction is small compared to the SM Yukawa

yields another naturalness condition, cS ≲ 16π2mS/M . This bound is clearly weaker than

the one given in Eq. (3.3.5).
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The other corrections to the scalar potential terms, such as the cubic interactions, S3

and S|H|2, and the quartic interactions S4 and |H|4, can be estimated in a similar manner.

In particular, we note that S|H|2 will induce mass mixing between the Higgs and the singlet

scalars. However, as already mentioned, it can easily be seen that the expected radiative sizes

of these couplings and the resulting Higgs-scalar mixing angle are tiny once the naturalness

conditions (3.3.3,3.3.4) are met, and as such they will not play a role in our phenomenological

considerations below.

Besides the scalar potential, there are other couplings involving the quarks and scalar that

are radiatively generated. The parametric dependence of the radiative sizes of these terms on

the tree-level couplings follows from symmetry considerations [63]. For instance, at one loop

a mass mixing term between the VLQ and SM up quark of the form L ⊃ −mU
′
L uR+h.c. is

generated with an expected radiative size m ∼ y YuM/16π2. This is smaller than 1 MeV for

y = 1, (Yu)11 ∼ 10−5, and M = 2 TeV. Therefore, no large tuning of the physical up quark

mass is caused by this effect. Similarly, at one loop the coupling L ⊃ −λ′ U ′
LU

′
R S + h.c. is

generated with size λ′ ∼ yλYu/16π
2, which is tiny if the naturalness bounds discussed above

hold.

Given the considerations above, the dominant naturalness constraints come from the

conditions on y and λ given in Eq. (3.3.3,3.3.4), which taken together lead to the bound on

cS given in Eq. (3.3.5).

3.3.3 Mixing, mass eigenstates, and interactions

We now discuss the fermion mass diagonalization and the resulting interactions in the

physical basis that will play an important role in our phenomenological considerations below.

We start from the interactions of the VLQ, Eq. (3.3.1), and the SM Yukawa couplings,

Eq. (3.2.1). Without loss of generality we may start from the flavor basis in which Yu is

real and diagonal. Furthermore, invoking the up-specific hypothesis, the couplings y and λ

in Eq. (3.3.1) take the form yi = y δi1, λi = λ δi1 in this basis. After electroweak symmetry
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breaking, there is mass mixing between the u and U ′ quark fields,

−L =
(
uL U

′
L

) yuv√
2

yv√
2

λvS M


 uR

U ′
R

+ h.c. (3.3.6)

where y, λ and M are complex parameters in general, while yu is real and positive in this

basis. Through suitable phase rotations of the quark fields, it can be shown that there is one

new physical phase if all of yu, y, λ, and M are non-vanishing. In the limit that any one of

these couplings is zero, the phase can be rotated away. Here, we instead consider the limit

yuv, λvS ≪ yv < M , which is motivated by the fact that yu ≪ y and the naturalness consid-

erations regarding y, λ, vS discussed in Sec. 3.3.2. In this regime the system is diagonalized

by a rotation of the left handed quarks,

uL → cos θ uL + sin θ U ′
L, U ′

L → cos θ U ′
L − sin θ uL, (3.3.7)

cos θ =
M

mU ′
, sin θ =

yv√
2mU ′

.

where mU ′ =
√
M2 + y2v2/2 is the physical mass of the heavy VLQ.

This mixing plays an important role in VLQ phenomenology due to the modifications of

the SM interactions and the couplings induced between the VLQ and light SM fields. For

example, the W boson couplings involving the SM up quark and VLQ are

L ⊃ g√
2
W+
µ

(
cos θ V1i uLγ

µdLi + sin θ V1i U
′
Lγ

µdLi

)
+ h.c., (3.3.8)

where V is unitary and i = 1, 2, 3 runs over the three SM generations. The first term implies

that the effective SM CKM matrix is no longer unitary, while the second term leads to

the decay U ′ → diW
+. The couplings in Eq. (3.3.8) also give rise to ∆S = 2 transitions.

The dominant contributions to such processes will be computed below in Section 3.3.5.

Furthermore, the Z boson couplings involving the up quark and VLQ include

L ⊃ guLZµ uLγ
µuL +

(
g

2cW
sin θ cos θ Zµ uLγ

µU ′
L + h.c.

)
. (3.3.9)
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The Z coupling to left-handed up quarks guL is shifted from its SM value as a result of u–U ′

mixing, while the right-handed up quark coupling guR is unaffected by this mixing:

guL = gSMuL + δguL, δguL = sin2 θ(gSMuR − gSMuL ) ≈
y2v2

2M2
(gSMuR − gSMuL ) (3.3.10)

gSMuL =
g

cW

(1
2
− 2

3
s2W

)
, gSMuR = −2gs2W

3cW
.

As we will discuss below, such shifts can be probed by electroweak precision tests. Further-

more, the second term in Eq. (3.3.9) above leads to the decay U ′ → uZ. Finally, there are

interactions between the scalars and quarks, the most important of which are

−L ⊃ cos θ
y√
2
huL U

′
R − sin θ λS uL uR + cos θ λS U

′
L uR + h.c. (3.3.11)

The first and third terms above lead to the VLQ decays U ′ → uh and U ′ → uS, respectively.

The second term is the induced coupling of S to up quarks, which in the limit of large M

reproduces the EFT result discussed earlier in Eqs. (3.2.6,3.2.7).

3.3.3.1 VLQ and singlet scalar decays

From the couplings of U ′ to vector and scalar bosons given above, Eqs. (3.3.8,3.3.9,3.3.11),

we obtain the partial decay widths of the VLQ:

Γ(U ′ → uS) = cos2θ
λ2mU ′

32 π

(
1− m2

S

m2
U ′

)2

≃ λ2M

32 π
, (3.3.12)

Γ(U ′ → uh) = sin2θ cos2θ
GF m

3
U ′

16
√
2π

(
1− m2

h

m2
U ′

)2

≃ y2M

64π
, (3.3.13)

Γ(U ′ → uZ) = sin2θ cos2θ
GF m

3
U ′

16
√
2π

(
1− m2

Z

m2
U ′

)2(
1 +

2m2
Z

m2
U ′

)
≃ y2M

64 π
, (3.3.14)

Γ(U ′ → dW ) = sin2θ
GF m

3
U ′

8
√
2π

(
1− m2

W

m2
U ′

)2(
1 +

2m2
W

m2
U ′

)
≃ y2M

32 π
, (3.3.15)

where the u–U ′ mixing angle θ is defined in Eq. (3.3.7). We have also provided approximate

expressions for the decay widths in the limit M ≫ v, from which is it is evident that the

U ′ decays to electroweak bosons respect the Goldstone Equivalence Theorem. Given the

naturalness considerations discussed earlier, which suggest λ ≪ y, we typically expect the

U ′ decays to electroweak bosons to dominate. As we will discuss in detail below, this suggests
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that LHC searches for VLQs with couplings to the first generation are a promising way to

test this completion.

However, it is also possible in principle that U ′ could dominantly decay to a scalar S and

an up quark, provided y ≲ λ. In such a situation, the VLQ signature will depend in detail

on how S decays. If there are no additional light states present in the theory, S will decay

to pairs of up quarks [or to exclusive hadronic modes for mS ∼ O(1 GeV)]. This decay width

is controlled by the effective scalar-up quark coupling gu defined in Eqs. (3.2.6,3.2.7). If S

is even lighter, with mass below the two-pion threshold, it will decay to a pair of photons at

one loop, and is naturally long-lived. Alternatively, if there are additional light degrees of

freedom with sizable couplings to S, the scalar may dominantly decay to such states. For

example, in the case of a coupling to light dark matter as in Eq. (3.2.6), the scalar can decay

invisibly via S → χχ.

We now turn to the phenomenology of the model.

3.3.4 CKM constraints

Due to the mixing of the up quark with the VLQ, the effective 3 × 3 CKM matrix

describing the mixing of the SM quarks is no longer unitary. This is clearly seen in Eq. (3.3.8),

where the elements of the unitary matrix V1i are multiplied by the prefactor cos θ. This

model therefore predicts that the top-row CKM unitarity triangle relation is modified and

no longer equal to unity. The current experimental determination of the top-row CKM

unitarity relation is [357][
|Ṽud|2 + |Ṽus|2 + |Ṽub|2

]∣∣∣
exp

= 0.9985(3)Vud(4)Vus , (3.3.16)

where the dominant uncertainties from Vud and Vus are indicated. Here Ṽij are the apparent

CKM matrix elements when assuming the SM. Interestingly, the current determination

(3.3.16) displays a 3σ deviation from unitarity. Such a deviation is a natural consequence of

our model, which gives the prediction

|Ṽud|2 + |Ṽus|2 + |Ṽub|2 = cos2θ
[
|Vud|2 + |Vus|2 + |Vub|2

]
= cos2 θ, (3.3.17)
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where we have used the unitarity of V in the second step. This is to be compared with

Eq. (3.3.16). The model can therefore provide an explanation of this discrepancy provided

the mixing angle is in the range

0.032 < | sin θ | < 0.045, (3.3.18)

which brings the theory prediction and experimental determination into agreement at the 1σ

level. Explaining this discrepancy with VLQ was also recently studied in Refs. [73, 74, 109].

Beyond a possible explanation of this discrepancy, Eq. (3.3.16) can be used to place a

conservative bound on the mixing angle. Requiring that the theory prediction is within 3σ of

the experimental determination, we find the constraint sin θ ≲ 0.055, which can be phrased

as the following bound on the model parameters using Eq. (3.3.7):

y ≲ 0.6

(
M

2TeV

)
. (3.3.19)

3.3.5 FCNCs

Although the flavor-specific hypothesis generally provides strong protection against FC-

NCs, there can still be important effects if the VLQ is light enough and its couplings are

relatively large. Here we consider the contributions to neutral kaon mixing, which generally

provides the strongest FCNC constraints. In particular, working in the unbroken electroweak

theory there is a one loop box diagram resulting from U ′ and Higgs doublet exchange, which

leads to an effective operator with four QL fields. The resulting effective Lagrangian reads

L ⊃ −yiy
†jyky

†ℓ

128π2M2
[Q

i
γµPLQj][Q

k
γµPLQℓ]. (3.3.20)

Going to the physical basis, dL → V dL, and specializing to the up-specific hypothesis, we

find a contribution that mediates neutral kaon mixing, described by the effective Lagrangian

(3.2.9) with the Wilson coefficient

Cds = −y
4|V ∗

udVus|2
128π2M2

. (3.3.21)
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(a) (b)

Figure 13: Loop diagrams contributing to the hadronic Z width in the VLQ completion,

figure taken from Ref.[65].

Current limits restrict Re[Cds] ≲ (103TeV)−2 [95], leading to the constraint

y ≲ 0.6

(
M

2TeV

)1/2

. (3.3.22)

We emphasize that it is the exchange of the charged Higgs Goldstone bosons and U ′ that

generate FCNCs in the neutral kaon system.

3.3.6 Electroweak precision bounds

The heavy VLQ modifies the partial width of Z to hadrons in two ways: through u–U ′

mixing and through the loop diagrams in Figure 13 (a,b). Additional diagrams suppressed by

both a loop factor and the mixing angle θ exist but will be neglected. The main observable

to constrain modifications of the hadronic Z width is the hadron-to-lepton branching ratio,

Rℓ ≡ Γ[Z→had.]
Γ[Z→ℓ+ℓ−]

. The current experimental data and SM theory prediction give Rexp
ℓ −RSM

ℓ =

0.034 ± 0.025 [332]. For general shifts in the Z boson coupling to up and down quarks,

δguL,R, δgdL,R, the modification to this observable is given by

δRℓ ≃
2NcRe(g

SM
uL δguL + gSMuR δguR + gSMdL δgdL + gSMdR δgdR)

(gSMℓL )2 + (gSMℓR )2
, (3.3.23)

where Nc = 3 and gSMfL = g
cW

(T 3
f −Qfs

2
W ), gSMfR = g

cW
(−Qfs

2
W ) are the Z boson couplings to

fermions f in the SM.
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The largest effect comes from the mixing in (3.3.7), which leads to a tree-level shift of the

ZūLuL coupling, given above in Eqs. (3.3.9,3.3.10). Plugging these shifts into Eq. (3.3.23)

we obtain

δRℓ ≃ − 3(1
2
− 2

3
s2W )

(−1
2
+ s2W )2 + (s2W )2

sin2 θ ≃ −8.3 sin2 θ (3.3.24)

This leads to the bound

| sin θ | ≲ 0.044. (3.3.25)

For v ≪M , the bound can also be stated as |yv/M | < 0.063.

This bound could be improved at a future high-luminosity e+e− collider running on the Z-

pole, such as CEPC [162] or FCC-ee [8]. With the expected FCC-ee precision, δRexp.
ℓ = 0.001

[92], one would be able to constrain |yv/M | < 0.022.

At the one-loop level, the diagrams Figure 13 (a,b) generate a correction to the ZūRuR

coupling. In the limit M ≫ v ≫ mS, it is given by

δguR ≈ gSMuR
7λ2

576π2

m2
Z

M2
(3.3.26)

For M = 1 TeV and λ ∼
√
4π near its perturbative limit, the shift in Rℓ from (3.3.26) is less

than 10−3 and thus phenomenologically irrelevant.

3.3.7 CP violation

If the couplings M , y, λ are complex we may expect new CP-violating phenomena

including a potentially large neutron electric dipole moment. Separate rephasings of uL,R

and U ′
L,R leave invariant

ϕCP ≡ arg [yuM (yλ)∗] , (3.3.27)

and all CP-violating effects are proportional to sinϕCP. The dominant contribution in the

VLQ model arises due to an effective CP-violating four up quark operator mediated by the

exchange of the scalar S,

L ⊃ C ′
u uiγ

5uuu, (3.3.28)

where the Wilson coefficient is

C ′
u =

Re(YSūu)Im(YSūu)

m2
S

≃ − y2λ2v2

4M2m2
S

sin 2ϕCP. (3.3.29)
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The final expression in Eq. (3.3.29) holds provided yuM ≫ yλvS, which is always satisfied in

the natural region of parameter space. The effective operator, Eq. (3.3.28), is then matched

to CP-violating interactions in the chiral Lagrangian, from which the relevant hadronic

matrix elements can be estimated. For this we use the results of Ref. [36], which derives a

prediction for the neutron EDM in terms of the Wilson coefficient,

dn = 0.182 eC ′
uGeV ≃ 3.6× 10−15 e cmC ′

uGeV2. (3.3.30)

The current leading upper limit on the neutron EDM is |dn| < 1.8× 10−26e cm (90% C.L.)

from Ref. [12]. Using Eqs. (3.3.29,3.3.30) we can express this as a limit on the effective

coupling of the scalar to up quarks (gu ≃ yλv/
√
2M),

|gu|
√
sin 2ϕCP < 3× 10−6

( mS

1GeV

)
(3.3.31)

A one-loop contribution to the neutron EDM also arises due to pion-scalar mixing which

leads to a CP-violating pion-nucleon coupling. The bound that results from this process

is [317]

|gu|
√

sin 2ϕCP < 1× 10−5
( mS

1GeV

)
, (3.3.32)

which is quantitatively similar to that in Eq. (3.3.31).1

Other contributions to the neutron EDM are subdominant to the four up-quark CP odd

operator (3.3.28). For example, a one-loop penguin-type diagram with the scalar S entering

in the loop, gives a contribution to the up quark EDM of

du ≃
3eQu

32π2
|gu|2 sin 2ϕCP

mu

m2
S

[
1 +

4

3
log

(
ΛIR

mS

)]
, (3.3.33)

where we have taken the large M limit and ΛIR ≃ 300 MeV is an IR cutoff on the loop. The

neutron EDM induced by the up-quark EDM is dn = 0.784(28)du [218]. We thus obtain a

bound,

|gu|
√

sin 2ϕCP < 3.2× 10−4
( mS

1GeV

)
(3.3.34)

1Note that Ref. [63] also included an estimate of the one-loop contribution to the neutron EDM in the
presence of pion-scalar mixing (see Eq. (35) in that reference) by matching to the chiral Lagrangian and
cutting the loop off at the neutron mass. The resulting contribution to dn from this process in [63] is larger

by a factor
(
2
m2

π

m2
N
log

m2
N

m2
π

)−1

≃ 6 than that in Ref. [317] which involves a detailed treatment of heavy baryon
chiral perturbation theory.
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which is significantly weaker than the one given in Eq. (3.3.31). A similar diagram leads to

an up quark chromo-EDM, leading to a comparable limit to that in Eq. (3.3.34) from the

mercury EDM limit of |dHg| < 7.4× 10−30 e cm [213].

In Figure 16, we show the leading limit on gu from Eq. (3.3.31) fixing ϕCP = π/4. Since

the estimates in this section all assume that mS is larger than the hadronic scale, we only

display this limit for mS > 1 GeV.

3.3.8 Collider phenomenology

We now discuss the collider phenomenology of the VLQ completion. Pair production

of U ′ at hadron colliders proceeds through the strong interaction, while single electroweak

production is also possible through mixing. Unlike top partners, the U ′ decays only to light

flavor quarks, so typical VLQ searches requiring b-tagged jets in the final state do not apply.

Instead, we consider collider searches for VLQs decaying to light quarks. Motivated by the

naturalness constraints on λ, Eq. (3.3.3), we will initially focus on the small λ limit, where

the U ′ → Su decay can be neglected and VLQ decays to a first generation quark and an

electroweak boson dominates, see Eqs. (3.3.12-3.3.15). The ATLAS and CMS collaborations

performed light-flavor VLQ searches only with 8 TeV data to date. ATLAS considered

pair production of U ′ followed by the decay U ′ → Wd in the single-lepton final state [3].

CMS considered both pair production and single production, including the decay modes

U ′ → Wd,Zu, hu in final states involving one or more leptons [320]. We will follow CMS,

performing an analysis similar to their search for pair production of VLQs decaying to two

leptons, jets and missing energy.

Before turning to our recast analysis, we briefly mention the other channels studied by

CMS in Ref. [320]. First, in principle both pair production and single production of the

U ′ is possible. However, single production requires mixing between the U ′ and the SM

quarks, which is strongly constrained. CMS searched for single production of down-type

VLQ decaying to W−u or Zd. The latter decay mode is relevant to the present case of up-

type VLQ, and in this channel the effective limit on the mixing angle is O(1) across the mass

range considered. Since the single production cross-section goes as the square of the mixing
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angle and constraints from CKM and EW precision observables limit sin2 θ ≲ 10−3, single

production is not competitive with pair production in the allowed regions of parameter space.

Turning to pair production, CMS performed searches for U ′Ū ′ in single lepton, dilepton, and

multilepton (3 or 4) final states. In the Goldstone equivalence limit where the ratio of the

U ′ decays to W , Z, and h is 2:1:1 (see Eqs. (3.3.13,3.3.14,3.3.15)), the single lepton analysis

is the strongest of these searches owing to the high W branching fraction. However, this

channel involves a kinematic fit of each event to the hypothesis that it contains twoW bosons,

one W and one Z, or one W and one h. Events are considered under each hypothesis based

on the χ2 of this fit, which is difficult to estimate. We thus choose to focus on the next

most constraining channel, the dilepton final state. The multilepton search has much lower

statistics.

For the signal, we simulate pair production of the U ′ with MadGraph [33], Pythia [327]

and Delphes [153], using the UFO [31, 155] model for a singlet VLQ [114]. We also simulate

the dominant backgrounds in the CMS search, which are top pair production and Z + jets.

We stay close to the cuts of the signal region aimed at the WqWq final state, which enjoys

the highest statistics due to the large U ′ → Wd branching fraction. Specifically, we require:

• Exactly two opposite-sign leptons with pT > 30, 20 GeV respectively and |η| < 2.5

• At least two jets with pT > 200, 100 GeV and |η| < 2.4 that do not pass a b-tag with

efficiency 84% and fake rate 10%

• No same-flavor lepton pair within 7.5 GeV of the Z mass

• Missing transverse energy (MET) > 60 GeV

• ST > 1000 GeV, where ST is the scalar sum of the lepton pT , jet pT and MET

Most of these cuts are very similar to those of CMS, except that while they set limits using

the full ST distribution, we simply perform a cut-and-count analysis with a minimum ST

requirement. Prior to this cut, our signal and background event counts are in agreement

with CMS. We then estimate 2σ limits on the production cross-section as a function of mU ′ ,

considering statistical uncertainties only.

We perform this search with 20 fb−1 of integrated luminosity at 8 TeV as a check of our

analysis, and then repeat it assuming 3000 fb−1 at 14 TeV. Our results are shown in Figure 14.

84



400 500 600 700 800 900 1000

10 2

10 1

100

8 TeV
Production cross section
Limit, dileptonic WqWq

400 600 800 1000 1200 1400

10 2

10 1

100

101

14 TeV
Production cross section
Limit, dileptonic WqWq

mQ, GeV

, p
b

Figure 14: Estimated limits on the U ′ pair production cross-section from a search for a final

state with two leptons, jets and missing energy, figure taken from Ref.[65].
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The expected 8 TeV limit on mU ′ is approximately 575 GeV. For comparison, CMS combines

several dilepton and multilepton search channels to obtain a limit of 585 GeV when the

branching fractions of U ′ to Wd, Zu, and Hu are 50%, 20%, and 30%, respectively. At 14

TeV with the full HL-LHC dataset, we estimate that the limit from the dilepton channel alone

could approach 1150 GeV. This represents a significant increase over the limit of 685 GeV

reported by CMS in Ref. [320] for a U ′ which decays with the branching ratios expected by

Goldstone equivalence, when combining searches in multiple pair production final states. It

would be of interest, then, to see updated light-flavor VLQ searches with the latest LHC

dataset. While we have considered only the dilepton final state, it is quite possible that a

combination of searches, including the high statistics single-lepton channel, could do even

better than our projection.

Next, we consider the case where the U ′ → Su decay is important. The relevant coupling

λ is limited by Eq. (3.3.3) if it is natural, which for light scalars S is typically much smaller

than the effective Q̄U ′Hc coupling allowed by the indirect constraints from CKM unitarity,

FCNCs and EWPT in Eqs. (3.3.19), (3.3.22) and (3.3.25) respectively. However, if y is even

smaller than required by these indirect constraints, the U ′ → Su decay could dominate.

For visibly decaying S, the pions produced in the S decay would be highly collimated if

S were light. Consequently, strong production of U ′ could be probed by searches for pair

production of dijet resonances. A reinterpretation [165] of a 13 TeV ATLAS paired dijet

resonance search [2] found that for light S, the limit on the VLQ mass is approximately

700 GeV. For invisibly decaying S, searches for jets plus missing energy would apply, which

tend to give considerably stronger limits [325, 5].

Finally, the light scalar can also be directly produced in hadron collisions, but the bounds

on the effective scalar-up quark coupling gu are generally quite weak. For visible S decays

there are constraints from di-jet+photon searches in the mass range 10 GeV ≲ ms ≲ 100 GeV,

which lead to a bound gu ≲ 0.3 [322]. For invisible decays of S, one can look for a mono-jet

signature. A bound gu ≲ 0.1 was derived previously in Ref. [64].
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Figure 15: Constraints on the VLQ model in the M − y plane. Shown are current bounds

from neutral kaon mixing (red solid line), CKM unitarity (green solid line), the Z boson

hadronic-to-leptonic branching ratio Rℓ (blue solid line), and a direct VLQ search from CMS

(brown shaded region). Regions above the lines are excluded. We also indicate the parameter

space where the model can explain the ∼ 3σ discrepancy in CKM top row unitarity triangle

determination (green shaded band). The expected future reach from precision measurements

of Rℓ at FCC-ee (blue dashed line) and a direct VLQ search at the HL-LHC (brown dashed

line) are also indicated. Large couplings and VLQ masses do not satisfy the naturalness

condition (3.3.4) (orange solid line). This plot assumes λ≪ y, which is typically the case in

this plane for light scalars, mS ≲ GeV, and natural values of λ, as suggested by Eq. (3.3.3),

figure taken from Ref.[65].
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Figure 16: The up-specific scalar EFT parameter space shown in the mS − gu plane. The

left panels assume the scalar decays visibly to hadrons, while the right panels assume the

scalar decays invisibly to dark matter with gχ = 1 and mS = 3mχ. In the top panels,

y is varied while the VLQ mass is fixed to M = 2 TeV and λ is chosen to saturate the

naturalness condition (3.3.3). In the bottom panels, M is varied while both λ and y are

chosen to saturate their naturalness bounds (3.3.3,3.3.4). In all panels we show several

model-independent constraints from Ref. [64] on the EFT parameter space, which depend

only on gu and mS. In addition, constraints from the VLQ model are shown under the stated

assumptions for each plot, figure taken from Ref.[65]
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3.3.9 Summary

Here we summarize the current bounds and future expected sensitivities in the VLQ

completion of the light up-specfic scalar. As argued above in Sec. 3.3.2, for a light scalar

satisfying naturalness conditions (3.3.3,3.3.4), we typically expect λ ≪ y. In this situation,

the strongest constraints on the UV completion pertain to the coupling y and the VLQ mass

mU ′ ≃ M . These limits are summarized in Figure 15, where we show the constraints from

FCNCs in the neutral kaon system, CKM-top row unitarity, Z boson hadronic width, and

direct searches at the LHC. The LHC constraint relies on QCD production and thus is not

sensitive to the precise value of the coupling y, again provided that λ ≪ y. The indirect

bounds from FCNCs, CKM unitarity, and EWPT all probe similar regions of parameter

space and are generally more stringent for lighter VLQs. As discussed in Sec. 3.3.4, the

model can explain the ∼ 3σ discrepancy in the CKM top row unitarity determination for

couplings y ∼ 0.1 − 1 in the mass range 600 GeV ≲ M ≲ 5 TeV, as indicated by the green

band in Figure 15. This region can be probed further at the HL-LHC and definitively tested

by a future FCC-ee measurement of Rℓ.

The bounds on the UV completion shown in Figure 15 can also be interpreted within

the up-specific scalar EFT mass – coupling parameter space. Several such interpretations

are presented in Figure 16, which shows a variety of constraints in the mS − gu plane.

In particular, we show both the model-independent constraints relying only on gu and mS

derived previously in Ref. [64] (see the next paragraph for details), along with the constraints

depending on the VLQ UV completion. The left panels assume the scalar decays visibly to

hadrons, while the right panels assume the scalar decays invisibly to dark matter with gχ = 1

and mS = 3mχ. In the top panels, y is varied while the VLQ mass is fixed to M = 2 TeV and

λ is chosen to saturate the naturalness condition (3.3.3). Therefore, the top panels always

satisfy the direct constraints from the LHC on VLQs, but can only satisfy the naturalness

conditions if the scalar is sufficiently weakly coupled. In contrast, in the bottom panels M

is varied while both y and λ are chosen to saturate their naturalness bounds (3.3.3,3.3.4).

With these assumptions, all parameters shown in the the bottom panels are natural, but

LHC VLQ searches rule out low mass, strongly coupled scalars. Regions shown in black
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correspond to nonpertubative values of the coupling, y > 4π. One observes that bounds

from the VLQ completion uniquely probe certain regions of the light scalar parameter space.

These bounds are therefore highly complementary to those obtained in the EFT analysis

[64].

Finally, we provide a brief summary of the constraints on the low energy scalar EFT

appearing in Figure 16; see Ref. [64] for more details. We first discuss the case of visible

scalar decays (left panels). Scalars lighter than the di-pion threshold will decay radiatively to

a pair of photons and tend to be long-lived for natural values of the coupling. This low mass

region is tightly constrained by fixed target experiments (CHARM [77]), rare pion decays

(MAMI [290]), Big Bang nucleosynthesis, and supernova data. For masses mS > 2mπ, there

are constraints from rare η (KLOE [37]) and η′ (BESII [14]) decay searches, while future

η decay searches at REDTOP [197, 192] will test a currently viable and natural region of

parameter space. In addition, searches for long-lived scalars at FASER/FASER2 [247, 177]

and the proposed SHiP experiment [27] can probe very feeble couplings. Finally, if there

is a new O(1) CP-violating phase in the theory, the neutron EDM constraint discussed in

Section 3.3.7 provides the strongest bound today for mS > 2mπ.

For the case of invisible scalar decays to dark matter particles (right panels), searches for

the rare kaon decay, K → πS, S → invisible, at NA62 [144, 143] provide the best constraint

at low masses, while substantial improvements are anticipated in the near future with the full

NA62 dataset. The MiniBooNE beam dump dark matter search and a future beam dump

run at SBND can provide powerful tests in the several hundred MeV mass range [19, 20, 340].

At larger masses of order GeV and above, direct detection experiments such as CRESST-

III [10], DAMIC [18], XENON1T [41], PandaX [145], and in the future NEWS-G [45, 71], will

provide the leading constraints in this simple hadrophilic dark matter model. Also shown in

the right panels of Figure 16 are the parameters leading to the correct dark matter thermal

relic abundance through freezeout of dark matter annihilation to hadrons. We observe that

low-energy EFT probes as well as a number of measurements unique to the VLQ completion

can provide complementary tests of the cosmologically motivated region of parameter space.
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3.4 Scalar Doublet Completion

In this section we investigate a second renormalizable completion of the flavor-specific

EFT involving an additional scalar electroweak doublet. After presenting the model, we

discuss the expected radiative contributions to the couplings and the ensuing naturalness

criteria. We then study the minimization of the potential, the passage to the physical

basis, and the decays of the new scalar doublet states. A study of the phenomenology

follows, including the predictions and constraints from electroweak precision tests, FCNCs,

CP violation, and searches for the the new scalars at the LHC. Finally, we conclude this

section with a summary of these bounds along with several interpretations in the low-energy

scalar EFT parameter space.

3.4.1 Model

We consider a model with a singlet scalar S and a heavy scalar mediator with the same

quantum numbers as the Higgs, H ′ ∼ (1,2, 1
2
). The minimal Lagrangian is given by

Lsd = LSM +
1

2
∂µS∂

µS − 1

2
m2
SS

2 + (DµH
′)†DµH ′ −M2H ′†H ′

−
[
y′
j
i Q

i

L uRj H
′
c + κM S H†H

′
+ h.c.

]
+ quartic scalar couplings, (3.4.1)

where i = 1, 2, 3 is a generation index and M is the mass of the scalar doublet. To render

κ dimensionless, the scalar triple coupling has been re-scaled with M . Integrating out the

scalar doublet at tree-level, we obtain the leading effective interactions at dimension 4 and

5:

L ⊃ |κ|2S2|H|2 + κ y′ji
M

SQ
i

L uRj Hc + h.c. (3.4.2)

The first term in (3.4.2) is the Higgs portal operator, which we will return to in the next

subsection when we discuss the scalar potential. The second term in (3.4.2) gives rise to

the scalar-quark coupling of interest. Thus, we can identify M with the new scale and

(cS)
j
i = −κ y′ji , respectively, in the effective operator (3.2.4). In the flavor basis in which

the SM up quark Yukawa couplings are diagonal, the up-specific hypothesis corresponds to

y′ji ∝ δi1δ
j1.
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Similar to the VLQ model in Eq. (3.3.1), the Lagrangian in Eq. (3.4.1) could be extended

by additional renormalizable scalar potential terms involving S, H and/or H ′. In the absence

of fine-tuning, small but non-zero coefficients of these terms are induced radiatively, as will be

discussed below. However, we will assume that they do not receive any tree-level contribution

that is parametrically larger than these loop effects. We note that the technical naturalness

of the couplings in (3.4.1) can be established with discrete symmetries, e.g. y′ is a spurion

that breaks a Z2 under which S is odd.

3.4.2 Naturalness considerations

We now consider the implications of naturalness on the scalar potential, following the

same philosophy and approach used for the VLQ model; see Sec. 3.3.2. Our aim is to estimate

the expected radiative sizes of the various scalar interactions generated by the couplings of

S and H to the heavy scalar doublet H ′ in (3.4.1). As in Sec. 3.3.2, the size of the loop

corrections are estimated by including factors of (16π2)−1 for each loop and counting the

pertinent coupling and scale factors, the latter of which are taken to be M .

For interactions of even or odd numbers of the scalar S one thus finds

δS2k ∼ |κ|2k
16π2

M4−2k, δS2k+1 ∼ |κ|2k Re{κTr
(
y′y†u

)
}

(16π2)2
M3−2k, (3.4.3)

from the one- and two-loop diagrams in Figure 17 (a) and (b), respectively. The case k = 1

corresponds to a correction to the mass parameter, m2
S, given by δm2

S ∼ |κ|2M2/16π2.

Requiring δm2
S to be less than the physical mass m2

S leads to the bound

|κ| ≲ 4π
mS

M
≃ (6× 10−3)

( mS

1GeV

)(2TeV

M

)
. (3.4.4)

This can be compared to the tree-level contribution from the Higgs portal operator, which

arises from integrating out the heavy scalar doublet, Eq. (3.4.2). After electroweak symmetry

breaking, this gives a correction to the scalar mass, δm2
S ∼ |κ|2v2, leading to the naturalness

condition

|κ| ≲ mS

v
≃ (4× 10−3)

( mS

1GeV

)
. (3.4.5)
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Figure 17: Loop-induced contributions to scalar self-couplings in the scalar doublet UV

completion, figure taken from Ref.[65]

This condition is stronger than (3.4.4) unless M ≳ 4πv. We note that there is no analogous

one-loop naturalness condition on the coupling y′. However, at two loops there is a contribu-

tion to the S mass depending on both κ and y′, which precisely corresponds to the two-loop

correction in the EFT that was mentioned in Eq. (3.2.8).

Similarly to the singlet scalar, the one-loop diagrams in Figure 17 (c) and (d) lead to

corrections to the SM Higgs mass and self-coupling,

δµ2 ∼ |κ|2
16π2

M2, δλ ∼ |κ|4
16π2

. (3.4.6)

Demanding that δµ2 ≲ µ2 = m2
h/2 leads to the bound κ ≲ 23/2πmh/M , which is a weaker

bound than (3.4.4) for mS ∼ O(GeV).

In addition, (3.4.3) generates a number of scalar self-interaction terms that were not

present in the original Lagrangian (3.4.1):

L ⊃ −δSS − a3S
3 − a4S

4, (3.4.7)

δS ∼ Re{κTr
(
y′y†u

)
}

(16π2)2
M3, (3.4.8)

a3 =
|κ|2 Re{κTr

(
y′y†u

)
}

(16π2)2
M, a4 =

|κ|4
16π2

. (3.4.9)

The presence of the tadpole term δS causes S to develop a vev, vS. The couplings a3 and a4

also have an influence on the value of vS, but it is subdominant given the radiative estimates

in Eq. (3.4.9) for values of κ that satisfy the naturalness bound in Eqs. (3.4.4,3.4.5).
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In a similar fashion, there are radiatively generated S|H|2, S2|H|2, S|H ′|2, S2|H ′|2 and

|H ′|4 terms, which can be neglected to first approximation in phenomenological applications.

More relevant is the loop-induced mixing mass term

L ⊃ δµ′2H ′†H + h.c., δµ′2 ∼ Tr
(
y′y†u

)
16π2

M2. (3.4.10)

3.4.3 Mixing and mass eigenstates

3.4.3.1 Scalar potential

Including the leading radiatively induced tadpole and mass terms from the previous

subsection, but neglecting the loop corrections to 3- and 4-point interactions, the scalar

potential takes the form

V ⊃ −µ2(H†H)+λ(H†H)2+δSS+
m2
S

2
S2+M2(H ′†H ′)+

[
−δµ′2H ′†H + κM(H ′†H)S + h.c.

]
(3.4.11)

In general, the neutral components of all three scalar fields produce vevs, for which we intro-

duce the following notation: ⟨S⟩ = vS, ⟨H⟩ = (0, v0/
√
2)⊤, ⟨H ′⟩ = (0, v′/

√
2)⊤. Minimizing

the scalar potential, we can solve for the vevs for S and H ′ to get

v′ =
v0 (δS κM +m2

S δµ
′ 2)

M2 (m2
S − κ2v20)

, vS = −δSM + κ δµ′ 2v20
M (m2

S − κ2v20)
. (3.4.12)

One can reduce the number of independent parameters by using the radiative estimates

κ ≲ 4πmS/M , δS ∼ M3κ
(16π2)2

Tr(y′yu), δµ′2 ∼ M2

16π2 Tr(y
′yu) from section 3.4.2. The outcome

depends on the relative sign between δS and δµ′2 (which in general is unknown since both

terms can receive additional tree-level contributions). However, in the limit of large M the

expressions simplify to∣∣∣∣ v′v0
∣∣∣∣ ∼ y′ yu

16π2
∼ 10−7,

∣∣∣∣vSv0
∣∣∣∣ ∼ y′ yuM

2

64π3mSv0
∼ 10−4 (3.4.13)

where we have specialized to the up-specific scenario and assumed y′ ∼ O(1), mS ∼ O(GeV)

and M > 1 TeV for the numerical estimates.
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Similar to the 2HDM, it is useful to rotate the doublets to the “Higgs basis”, where only

one of the doublets develops a vev, while the singlet remains unchanged, viz. :Ĥ
Ĥ ′

 =

 cos β sin β

− sin β cos β

H
H ′

 , (3.4.14)

where tan β ≡ v′/v0. The fields can be decomposed according to

Ĥ =

 G+

1√
2
(v + ϕ1 + iG0)

 , Ĥ ′ =

 H+

1√
2
(ϕ2 + iA0)

 , S = vS + ϕ3, (3.4.15)

where v = 246 GeV. The CP-even scalar fields ϕ1, ϕ2, ϕ3 will mix with each other. Diagonal-

izing their 3× 3 mass matrix M2
ϕ leads to three mass eigenstates h, h′, s,

RTM2
ϕR = diag{m2

h,m
2
h′ ,m

2
s}, (3.4.16)

where h corresponds to the SM-like Higgs boson discovered at the LHC. For tan β ≪ 1, we

can approximately write

M2
ϕ ≃


2λv2 −2λv2 tan β 2κMv tan β

−2λv2 tan β M2 κMv

2κMv tan β κMv m2
S

 (3.4.17)

Since the off diagonal terms are small, the rotation matrix takes the approximate form

R ≃


1 θ12 θ13

−θ12 1 θ23

−θ13 −θ23 1

 , with

θ12 ≃ −2λv2 tan β/M2,

θ13 ≃ κM tan β/λv,

θ23 ≃ −κv/M,

(3.4.18)

where we have kept the leading contributions to the mixing angles in the limit m2
S ≪ λv2 ≪

M2 and tan β ≪ 1. Similarly, one finds that the CP-even scalar masses are approximately

given by

m2
h ≃ 2λv2, m2

h′ ≃M2, m2
s ≃ m2

S − κ2v2. (3.4.19)

Note that the second contribution to the light singlet squared mass eigenstate comes from

the Higgs portal operator in Eq. (3.4.2). We will always impose |κ| < mS/v such that m2
s > 0

in what follows. The masses of A0 and H± are given by

m2
A0,H± =

M2

cos2 β
≈M2. (3.4.20)
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3.4.3.2 Scalar decays

It is straightforward to work out the interaction Lagrangian in the mass basis. However,

since the expectation is that the mixing between the scalar doublets is small, i.e., tan β ≪ 1,

many of the phenomenological consequences can be extracted directly from our starting

Lagrangian, Eq. (3.4.1). Here we consider the decays of the heavy scalar. While in general

2HDMs gauge interactions often mediate decays of a heavy scalar doublet component into

a lighter doublet component and an electroweak boson (W,Z, h), such two-body decays are

typically kinematically forbidden in our scenario due to the approximate mass degeneracy of

the doublet components (see Eqs. (3.4.19,3.4.20)). The leading decays of the scalar doublet

then arise from the new couplings y′ and κ in Eq. (3.4.1). These lead to the partial widths

Γ(h′ → uū) = Γ(A0 → uū) = Γ(H+ → ud̄) ≃ 3y′2M

16π
, (3.4.21)

Γ(h′ → sh) = Γ(A0 → sZ) = Γ(H+ → sW+) ≃ κ2M

16π
. (3.4.22)

These expressions are valid in the limit tan β ≪ 1 and M ≫ v. In natural regions of

parameter space, we expect that κ satisfies the conditions (3.4.4,3.4.5) and is typically much

smaller than y′, which is not subject to any analogous naturalness condition. In this case,

the decays of the doublet to first-generation quarks will dominate. This will lead to a dijet

resonance signature at the LHC, which we will discuss in more detail below.

For completeness, it should be noted that other decays are possible due to mixing of

the scalar doublets. In particular, there can be decays of heavy scalar doublet components

into pairs of lighter electroweak, Higgs, and singlet bosons. The corresponding partial widths

scale as tan2 β and are thus expected to be highly suppressed in natural regions of parameter

space. As for the light singlet scalar s, it will predominantly decay visibly to pairs of up

quarks if there are no lighter hidden sector states. Alternatively, if the scalar couples strongly

to light dark matter, it may decay via s→ χχ. See also the discussion in Sec. 3.3.3.
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Figure 18: Loop diagrams contributing to the hadronic Z width in the scalar doublet UV

completion, figure taken from Ref.[65].

3.4.4 Electroweak precision bounds

Similar to the VLQ model, the scalar doublet model modifies the partial width of the Z

boson to hadrons. The leading correction is given by the loop diagrams in Figure 18. In the

limit M ≡MH′ ≫ v ≫ mS, these yield the following shifts to the Z couplings:

δguR ≈ gSMuR

{
y′2m2

Z

48π2M2

[
5

6
− ln

(
−m

2
Z + iϵ

M2

)]
+

y′2κ2v2

128π2M2

[
−1

2
− 9

8s2W
+
(
1− 3

4s2W

)
ln
(
−m

2
Z + iϵ

M2

)
+ ln

M2

m2
S

]}
,

(3.4.23)

δguL ≈ gSMuL

{
y′2m2

Z

(18− 24s2W )π2M2

[
1

8
− s2W

3
+ s2W ln

(
−m

2
Z + iϵ

M2

)]
+

y′2κ2v2

128π2M2

[
−6− 2s2W
3− 4s2W

− 4s2W
3− 4s2W

ln
(
−m

2
Z + iϵ

M2

)
+ ln

M2

m2
S

]}
,

(3.4.24)

δgdL ≈ gSMdL
y′2m2

Z

(18− 12s2W )π2M2

[
1

8
+
s2W
12

− s2W ln
(
−m

2
Z + iϵ

M2

)]
. (3.4.25)

The second lines in (3.4.23) and (3.4.24) are additionally suppressed by κ2 but they are

enhanced by the logarithm lnM2/m2
S.

Plugging Eqs. (3.4.23,3.4.24,3.4.25) into Eq. (3.3.23), we obtain the correction to the Z

boson hadronic-to-leptonic branching ratio Rℓ. For M = 1TeV, mS = 1GeV and y′ = κ =
√
4π one finds that Rℓ is shifted by 0.83, which is excluded by current data, Rexp

ℓ − RSM
ℓ =

0.034 ± 0.025 [332]. For y′ = κ = 1, the shift is instead 5.5 × 10−3, which is currently not

excluded and can be probed only marginally by FCC-ee, with an expected 1σ precision of

δRexp.
ℓ = 0.001 [92].
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3.4.5 FCNCs

Similar to the FCNC we discussed in the VLQ section, there is a one loop box diagram

resulting from H ′ and up quark exchange, which leads to an effective operator with four QL

fields given by

L ⊃ −(y′y′†)ji (y
′y′†)lk

128π2M2
[Q

i
γµPLQ j][Q

k
γµPLQ l]. (3.4.26)

With the up-specfic hypothesis and moving to the physical basis, we obtain a contribution

to neutral Kaon mixing, described by the operator in Eq. (3.2.9) with Wilson coefficient

Cds = −(y′)4|V ∗
udVus|2/(128π2M2). Applying the bound Re[Cds] ≲ (103TeV)−2 [95], we

obtain the constraint

y′ ≲ 0.6

(
M

2TeV

)1/2

, (3.4.27)

similar to Eq. (3.3.22) for the VLQ model.

3.4.6 CP violation

In the scalar doublet completion, the basis independent CP-violating phase is

ϕCP = arg
(
yuy

′∗κ
)

(3.4.28)

Separate rephasings of uL,R and H ′ leave this quantity invariant. If ϕCP is nonvanishing,

a nonzero neutron EDM will develop. This occurs in much the same way as in the VLQ

completion, namely through a CP-violating four up quark operator mediated by S exchange.

This operator is defined in Eq. (3.3.28). In this model, the corresponding Wilson coefficient

is

C ′
u ≃ − y′2κ2v2

4M2m2
S

sin 2ϕCP. (3.4.29)

Using Eqs. (3.3.30,3.4.29) we can express this as a limit on the effective coupling of the scalar

to up quarks (gu ≃ y′κv/
√
2M). We obtain the same bound as in the VLQ model given in

Eq. (3.3.31).
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3.4.7 Collider phenomenology

We next discuss signatures of the heavy scalar doublet at the LHC. Motivated by the

naturalness conditions (3.4.4,3.4.5), we typically expect κ ≪ y, in which case the scalar

doublet will decay to first-generation quarks through the y′ coupling; see Eqs. (3.4.21) for

the partial decay widths. This makes it challenging to probe the scalar doublet through its

electroweak pair production process at the LHC, given the low production rate and large

QCD backgrounds. On the other hand, if y′ is large enough the heavy scalar doublet can be

produced singly in quark-antiquark annihilation and decays into a di-jet final state. Since

all physical eigenstates of the heavy doublet have masses that are very close to each other,

mh′ ≈ mA0,H± ≈ M , and they all decay dominantly into quarks, they would manifest as a

single narrow2 di-jet resonance. The influence of the mixing angle β is very small and can

be safely neglected in this context.

Both ATLAS and CMS have conducted searches for di-jet resonances at
√
s = 13 TeV

and presented bounds in terms of several representative models [4, 321, 324]. We use the

published bounds for hadro-philic Z ′ models to derive corresponding limits for the heavy

scalar doublet. For this purpose, we have computed fiducial cross-sections for both the Z ′

model and the scalar doublet model with CalcHEP 3.4.6 [75], for a grid of different resonance

masses ranging from 100 GeV to 7 TeV. Since both cases are qq̄ initiated, one may expect that

the K-factor from QCD corrections is similar for both models and cancels when taking the

ratio of the cross-sections. We then used these cross-section ratios to re-scale the coupling

limits for the Z ′ model reported in Refs. [4, 321, 324]. For the low-mass region, below

500 GeV, a boosted di-jet search by CMS can be utilized [323]. Furthermore, the HL-LHC

will be able to extend the reach to di-jet resonances, particularly in the high mass region. We

have translated one such HL-LHC projection from ATLAS to the scalar doublet model [1].

This translation depends on the K-factor for pp → H ′, which is currently unknown. For

simplicity, we have used K = 1, which is supported by the fact that the closely related Drell-

Yan (see e.g. Ref. [99]) and scalar diquark production [221] processes have small K-factors

of about 1.2. The resulting limits and projections on the Yukawa coupling y′, as a function
2Here “narrow” means that the physical decay width of all heavy scalars is smaller than the experimental

resolution.
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of the mass M , are shown in Figure 19.

Let us also make a few comments about the scenario that y′ < κ. In this case the scalar

doublet decays predominantly to an electroweak or Higgs boson and s, see Eq. (3.4.22).

Furthermore, the condition y′ < κ combined with the naturalness constraints on κ suggest

that y′ is relatively small in this scenario, such that the single production process qq̄ → H ′

is suppressed. In this case heavy scalar pair production, mediated by electroweak gauge

interactions, may be more promising. H±h′ and H±A0 production, followed by the decays

H± → sW±, h′ → sh and A0 → sZ, leads to final states with several leptons and/or a

bb̄ pair. If s decays into light dark matter particles, these signatures are very similar to

gaugino pair production processes in the MSSM. Thus we expect that heavy scalar masses

M ≲ O(TeV) are excluded by χ̃±
1 χ̃

0
2 searches at ATLAS and CMS [?, 136, 326], but the

details of this bound depend on the different production cross-sections in the MSSM and

our scalar doublet model. If instead s decays visibly into hadrons, the signature is very

similar to the VLQ searches discussed in section 3.3.8, with the main difference that the

heavy scalar pair production is an electroweak rather than a strong process. As a result, we

expect somewhat weaker limits than those reported for VLQs in section 3.3.8.

Finally, as in the VLQ model, the singlet scalar s can be produced directly at the LHC

and show up as either a di-jet resonance if it decays visibly or as a mono-jet if it decays

invisibly. In both cases the limit on the effective coupling gu is rather weak. For further

details, see the earlier discussion in Sec. 3.3.8.

3.4.8 Summary

Here we summarize the experimental constraints and prospects in the scalar doublet

completion of the light up-specfic scalar. As discussed earlier in Sec. 3.3.2, for a light scalar

satisfying naturalness conditions (3.4.4,3.4.5), we typically expect κ ≪ y′. In this case, the

strongest bounds on the UV completion are on the coupling y′ and the scalar doublet mass

M . These limits are compiled in Figure 19, where we show the constraints from FCNCs in

the neutral kaon system and direct searches for dijet resonances at the LHC. We also display

the projected reach of precision measurments of the Z boson hadronic width at FCC-ee and
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Figure 19: Constraints on scalar doublet completion in the M−y′ plane. Shown are current

bounds from neutral kaon mixing (red solid line) and dijet searches search at the LHC (brown

solid lines), including high mass dijet searches ("ATLAS" and "CMS-High") [4, 321, 324]

and a low mass boosted dijet search ("CMS-Low") [323]. The expected future reach from

precision measurements of Rℓ at FCC-ee (blue dashed line) and high mass dijet searches at

the HL-LHC [1] (brown dashed line) are also indicated. The trilinear scalar coupling κ is

chosen to saturate its naturalness condition, which is the minimum of either Eqs. (3.4.4) and

(3.4.5), while the physical singlet scalar mass is set ms = 1 GeV, figure taken from Ref.[65]

101



high-mass dijet searches at the HL-LHC.

As was done for the VLQ completion, we interpret the bounds on the scalar doublet

completion within the up-specific scalar EFT mass–coupling parameter space. Two interpre-

tations are presented in Figure 20, where a number of bounds and projections are displayed

in the mS–gu plane. In particular, we show the model-independent constraints relying only

on gu and mS derived previously in Ref. [64]; we refer the reader to Sec. 3.3.9 for further

details. Furthermore, we display the additional constraints that arise in the scalar doublet

completion. The left panel assumes the scalar decays visibly to hadrons, while the right

panel assumes the scalar decays invisibly to dark matter with gχ = 1 and mS = 3mχ. In

both plots, y′ is varied while the scalar doublet mass is fixed to M = 3 TeV and κ is cho-

sen to saturate the naturalness condition (3.4.5). We see that the bounds from the scalar

doublet completion cover interesting regions of the light scalar parameter space and as such

complement those obtained by only considering up-specific EFT [64].

3.5 Conclusions

In this work we have studied two simple renormalizable completions of flavor-specific

scalar mediators. While for concreteness we have focused on the up quark-specific coupling,

similar models can straightforwardly be constructed for other flavor-specific couplings. In

the first completion, a new VLQ mediates interactions between the light quarks, Higgs, and

scalar singlet. In the second model, the interactions occur via a second scalar electroweak

doublet. In both models we have studied the implications of naturalness on the size of the

scalar potential and other couplings in the theory. A sizeable effective singlet–Higgs–quark

coupling implies that the mediators (VLQ or scalar doublet) cannot be arbitrarily heavy,

which opens new opportunities for experimental tests. We have derived bounds from the

hadronic decay width of the Z boson, FCNCs in the neutral kaon system, the neutron EDM,

deviations in CKM unitarity, and direct searches for the new SM-charged states at the LHC.

These models can be further tested at the HL-LHC and at future colliders. The bounds

we derived can also be interpreted within the low energy flavor-specific EFT and are found
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Figure 20: The up-specific scalar EFT parameter space shown in the ms−gu plane. The left

panel assumes the scalar decays visibly to hadrons, while the right panels assume the scalar

decays invisibly to dark matter with gχ = 1 and ms = 3mχ. In both panels the coupling y′

is varied while the scalar doublet mass is fixed to M = 3 TeV and κ is chosen to saturate the

naturalness condition (3.4.5). In both panels we show several model-independent constraints

from Ref. [64] on the EFT parameter space, which depend only on gu and ms. In addition,

constraints from the scalar doublet completion are shown under the stated assumptions for

each plot, figure taken from Ref.[65]
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to probe new regions in the scalar mass – effective coupling plane. This underscores the

general expectation that renormalizable completions can provide complementary constraints

and new experimental opportunities to probe flavor-specific scalars.

Looking ahead, there is significant scope for further phenomenological exploration within

the flavor-specific framework. Investigations of other flavor-specifc couplings beyond the up

quark-specific one studied here and in [64] and the muon-specific one studied in [63] would be

valuable and are likely to present new opportunities for model building (e.g., as a mediator

to dark matter) and novel experimental prospects. In addition, it would be interesting to

consider the UV origin of the flavor specific hypothesis, which may ultimately be tied to the

dynamics underlying the SM flavor structure.
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4.0 Dynamics of Dark Matter Misalignment Through the Higgs Portal

4.1 Introduction

Understanding the nature of the cosmic dark matter (DM), which constitutes roughly a

quarter of the energy density in the universe [17], is among the most pressing problems in

particle physics and cosmology today. Despite its clear influence on a host of astrophysical

and cosmological phenomena, the most basic properties of DM remain mysterious, including

it fundamental dynamics (spin, mass, interactions, etc.) as well as its origin during the

earliest epochs of the universe.

One particularly compelling idea is that DM is an ultra-light, feebly-coupled scalar field

ϕ [39]. As is well-known, such scalar field DM is generically created in the early universe

through the misalignment mechanism [300, 9, 158]. The scalar field starts from some initial

field value at the end of inflation that is misaligned with respect to its eventual potential

minimum (i.e., its vacuum expectation value (VEV)). In the early stages of the radiation-

dominated era, the scalar field is held up by Hubble friction and, notably, does not experience

any additional dynamical misalignment during this epoch. As the universe expands, the

scalar field eventually begins oscillating once the Hubble expansion rate drops below its

mass. The oscillating scalar field subsequently forms a pressureless, non-relativistic fluid

and thus has the desired bulk properties of cold DM. Thus, in this standard misalignment

scenario, the DM density today is controlled by the initial value ϕi and does not depend at

all on the coupling of ϕ to the Standard Model (SM).

A simple model realization of ultra-light bosonic DM consists of a real singlet scalar

field coupled to the SM through the super-renormalizable Higgs portal, AϕH†H, as first

proposed more than a decade ago by Piazza and Pospelov [299]. This model is attractive

from several perspectives. First, it is among the most minimal, UV-complete extensions of

the SM, with the cosmology (up to initial conditions) and phenomenology determined by

two parameters, namely, the mass of the scalar, mϕ and its Higgs portal coupling A. Second,

the feebleness of this coupling allows the light scalar mass (and scalar potential) to be stable
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against radiative corrections. Furthermore, the model has a distinctive phenomenology, with

a variety of existing probes from both terrestrial experiments and astrophysical observations,

and has served as a well-motivated benchmark model for several proposed ultralight scalar

DM detection concepts; see, e.g., Refs. [210, 49, 39].

On the other hand, the cosmology of this simple model remains relatively underexplored,

and it is the primary aim of this work to fill that gap. As our study will make clear, the

cosmology of the scalar field in the Higgs portal model is not generally encapsulated by the

standard misalignment scenario discussed above. In contrast to the standard misalignment

scenario, the scalar field undergoes a nontrivial evolution during the radiation era by which

new sources of misalignment are dynamically generated, impacting the scalar relic abundance

in an essential way. In particular, we will investigate two distinct dynamical misalignment

mechanisms that are inherent in the Higgs portal model: (i) thermal misalignment, and (ii)

VEV misalignment.

The thermal misalignment mechanism was recently explored in detail in Ref. [66] (see

also Refs. [126, 113] for related work) in the context of simple Yukawa-type theory, but the

essential aspects of the mechanism carry over to the Higgs portal model. In the earliest

stages of the radiation era, the scalar field responds to a finite-temperature correction to its

effective potential, associated with the free energy density of the Higgs degrees of freedom

in the thermal bath to which the scalar is feebly coupled. This tends to drive the scalar field

toward its high-temperature minimum at large field values, thus generating misalignment.

As we will demonstrate below, thermal misalignment dominates for scalar masses larger than

a few meV. Furthermore, provided the initial field value ϕi at the end of inflation is small

(in magnitude) in comparison to the displacement generated by thermal misalignment, the

late-time scalar oscillation amplitude and associated relic density are insensitive to initial

conditions, instead being tightly controlled by the DM mass and Higgs portal coupling. Thus,

a sharp prediction can be made for the model parameters (scalar mass and Higgs portal

coupling) yielding the observed relic abundance through thermal misalignment, providing a

cosmologically motivated target that can be compared with experimental tests.

VEV misalignment is a second source of dynamical misalignment which is built in to the

Higgs portal model. It arises as a consequence of the electroweak phase transition (EWPT),
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during which the Higgs field quickly turns on as electroweak symmetry is broken and induces

a rapid shift in the ϕ potential minimum towards its zero-temperature VEV. As we will see,

VEV misalignment dominates for scalar masses below about 10−5 eV. For this region of

parameter space, we will find that the scalar oscillation amplitude and corresponding relic

abundance sensitively depends on the initial field value ϕi, in particular, whether the scalar

field is initially close to its zero temperature VEV or far away from it.

In the intermediate scalar mass range, an intricate interplay between thermal misalign-

ment and VEV misalignment leads to a novel forced resonance effect, with the scalar oscil-

lation amplitude experiencing either an enhancement or suppression following the EWPT

depending on the ϕ mass. This manifests as a striking series of peaks and valleys in the relic

density target line as the scalar mass is varied.

Our main results are presented in Figure 21 as contours in the mass-coupling parameter

space yielding the observed DM relic abundance, providing cosmologically motivated targets

for experiments searching for ultralight scalar DM. In view of this, we also compile the

existing bounds and sensitivity projections for a variety of experimental and astrophysical

probes of the model, including equivalence principle and inverse square law tests, stellar

cooling, resonant molecular absorption, and observations of extra-galactic background light

and diffuse X-ray backgrounds. Still, much of the parameter space remains unexplored, and

we hope our results will stimulate new innovative experimental concepts for ultra-light DM

searches.

It is important to note that the potential impact of the finite-temperature effects and the

EWPT on the scalar field evolution and relic abundance were discussed in the original study

of Ref. [299]. The effect of the EWPT on scalar field misalignment in Higgs portal models

was also investigated in Ref. [44], though thermal effects were not considered in that work.

We believe our study elucidates the dynamics of the scalar field during the radiation era

by including both the thermal misalignment and VEV misalignment effects, discerning the

regions of parameter space where each is relevant, and exploring the role of and sensitivity

to initial conditions. In particular, we have carefully derived estimates of the scalar relic

density, both by numerically solving its equation of motion during the radiation era through

the EWPT and by developing various approximate solutions as appropriate for the region of
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Figure 21: DM relic abundance predictions along with constraints and projections dis-

played in the mϕ−A (mass-coupling) plane. Parameter choices leading to the observed relic

abundance, Ωϕ,0 = ΩDM = 0.26, computed by numerically evolving Eq. (4.3.14) and using

Eq. (4.3.15), are shown for two choices of initial conditions: ϕi = ϕ0 (blue solid) and ϕi = 0

(red solid). Colored regions show a variety of current constraints, while the black region is

theoretically unviable. Figure taken from [67].

parameter space, cosmological epoch, and initial conditions under consideration. Both our

numerical and analytical results are shown in Figure 21 and are in good agreement.

4.2 Super-Renormalizable Higgs Portal Model

We consider the model of Ref. [299] which contains a real singlet scalar field ϕ that

couples to the SM via the super-renormalizable Higgs portal. The scalar potential to be
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considered is

V = −µ2H†H + λ (H†H)2 +
1

2
m2
ϕ ϕ

2 + AϕH†H , (4.2.1)

where the first two terms constitute the usual SM Higgs potential, mϕ is the scalar mass

parameter, and A is a dimensionful coupling of the scalar to the Higgs. Note that we have

omitted a potential linear term in ϕ, which can always be achieved by performing a field

redefinition.

We will mainly be interested in feeble couplings such that A≪ mϕ. This implies that the

light scalar mass is technically natural, with loops generating δm2
ϕ ∼ A2/(16π2) log ΛUV ≪

mϕ. This is one of the attractive features of the super-renormalizable portal. Furthermore,

radiatively generated nonlinear potential terms such as ϕ3 and ϕ4 are also small and will be

neglected for the remainder of this work.

4.2.1 Zero temperature vacuum and spectrum

We first consider the theory at zero temperature. The background Higgs field is param-

eterized as HT = (0, 1√
2
h). The potential then reads

V0(ϕ, h) = −1

2
µ2 h2 +

1

4
λh4 +

1

2
m2
ϕϕ

2 +
1

2
Aϕh2 . (4.2.2)

Minimizing the potential, we obtain the vacuum expectation values (VEVs) for the scalar

fields ⟨h⟩ = v and ⟨ϕ⟩ = ϕ0, given by

v2 =
µ2

λ− A2/2m2
ϕ

, ϕ0 = −Av2

2m2
ϕ

, (4.2.3)

with v = 246 GeV. It can be seen from Eq. (4.2.3) that a viable electroweak vacuum is

obtained only for

A2

2λm2
ϕ

< 1 . (4.2.4)

To study the spectrum at zero temperature, we replace h → v + h̃ and ϕ → ϕ0 + ϕ̃

in the potential, Eq. (4.2.2), where h̃ and ϕ̃ represent the fluctuations about the vacuum.
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Expanding the potential to quadratic order, we find that there is mass mixing between the

scalars,

V ⊃ 1

2
(2λv2)h̃2 +

1

2
m2
ϕ ϕ̃

2 + Av h̃ ϕ̃ . (4.2.5)

We move to the physical basis by performing a rotation, h̃

ϕ̃

 =

 cos θ sin θ

− sin θ cos θ

 h

ϕ

 , (4.2.6)

where, in an abuse of notation, h and ϕ represent the physical scalar fluctuations in the mass

basis. The mixing angle θ in (4.2.6) is given by

tan 2θ =
2Av

2λv2 −m2
ϕ

. (4.2.7)

The mass eigenvalues are

M2
h,ϕ =

1

2

[
2λv2 +m2

ϕ ±
√

(2λv2 −m2
ϕ)

2 + 4A2v2
]
. (4.2.8)

As we will always be working in the regime A2 ≤ 2λm2
ϕ ≪ λv2, the approximate expressions

for the mixing angle and mass eigenvalues are

θ ∼ A

2λv
≃ Av

M2
h

, M2
h ≃ 2λv2 +

A2

2λ
, M2

ϕ ≃ m2
ϕ −

A2

2λ
. (4.2.9)

Note that the correction to the Higgs mass is always negligible and thus M2
h ≃ 2λv2 ≡

m2
h = (125 GeV)2 as in the SM. Furthermore, we will find that in most of the cosmologically

interesting parameter space, A ≪ mϕ, such that M2
ϕ ≃ m2

ϕ. Note that very close to the

boundary where the electroweak vacuum is viable (see Eq. (4.2.4)), A2/(2λm2
ϕ) ≲ 1, and

only in this very small region of parameter space is the physical scalar mass is substantially

modified from m2
ϕ.

The electroweak vacuum condition, Eq. (4.2.4) (gray shaded region in Figure 21), could

be relaxed in a scenario with additional scalar potential terms. However, in this case the

light scalar mass Mϕ would require fine-tuning, as can be seen from Eq. (4.2.9) above. In

this work, we will restrict our investigation of the scalar cosmology to parameters satisfying

Eq. (4.2.4).
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4.3 Cosmology

In this section, we describe the cosmological evolution of the scalar ϕ before and through

the EWPT until it oscillates about its late time potential minimum and behaves as DM. We

will assume that the universe reheats to a temperature much larger than the electroweak

scale (TRH ≫ v). We begin by describing the contribution to the scalar potential from

the thermal bath. We will then describe the EWPT experienced by the Higgs, which can

significantly impact the dynamics of ϕ in certain regions of parameter space. We describe the

sources of misalignment and detail the initial conditions assumed for the scalar at the end of

inflation. We then describe the final equation of motion that governs the scalar evolution and

numerically estimate the relic ϕ abundance. We also derive approximate analytic estimates

of the relic density and compare them with our numerical results.

4.3.1 Effective Potential

Our analysis begins in the radiation-dominated era during which the Hubble parameter

is given by H = 1/2t = γT 2/Mpl, where t is the cosmic time, T is the temperature of the SM

thermal bath, Mpl = 2.43× 1018 GeV is the reduced Planck mass, and γ(T ) ≡
√
π2g∗(T )/90

with g∗(S) the effective number of relativistic (entropy) degrees of freedom. During this

epoch, the effective potential of the scalar fields is given by

Veff(ϕ, h, T ) = V0(ϕ, h) + VCW(ϕ, h) + VT (ϕ, h, T ) . (4.3.1)

The first piece is the tree-level potential given in Eq. (4.2.1). The second term represents

the zero-temperature correction to the effective potential, i.e., the Coleman-Weinberg po-

tential [135], which we will comment on shortly. The final term in (4.3.1) is the finite-

temperature correction associated with the thermal free energy density of the SM particles

in the plasma [161, 346]. The expression for the finite-temperature potential in Landau
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gauge is [302]

VT (ϕ, h, T ) ⊃
1

2π2
T 4JB

[
m2
h(ϕ, h, T )

T 2

]
+

3

2π2
T 4JB

[
m2
χ(ϕ, h, T )

T 2

]
+

4

2π2
T 4JB

[
m2
WT

(h)

T 2

]
+

2

2π2
T 4JB

[
m2
ZT

(h)

T 2

]
+

2

2π2
T 4JB

[
m2
WL

(h, T )

T 2

]
+

1

2π2
T 4JB

[
m2
ZL
(h, T )

T 2

]
+

1

2π2
T 4JB

[
m2
AL

(h, T )

T 2

]
− 12

2π2
T 4JF

[
m2
t (h)

T 2

]
, (4.3.2)

where the JB,F functions are defined as

JB,F (w
2) =

∫ ∞

0

dx x2 log

[
1∓ exp

(
−
√
x2 + w2

)]
. (4.3.3)

The thermal squared masses, m2
i (ϕ, h, T ), entering in the arguments of these functions de-

pend in general on both the background field fields ϕ and h and the temperature. To obtain

a reliable perturbative expansion near the EWPT, we follow the prescription for daisy re-

summation of Ref. [298], writing the thermal squared mass as sum of a tree-level term

field-dependent term, m2
0,i(ϕ, h), and a temperature-dependent self-energy term Πi(T ),

m2
i (ϕ, h, T ) = m2

0,i(ϕ, h) + Πi(T ) . (4.3.4)

In particular, for the self-energies we retain the leading contributions in the high temperature

expansion. The subscripts (h, χ,WT , ZT ,WL, ZL, AL, t) in these functions refer to the Higgs,

Nambu-Goldstones, transverse and longitudinal gauge bosons, and top quark. The prefactors

in front of the JB,F functions account for the degrees of freedom of the corresponding field.

It is important to emphasize that ϕ itself is not in thermal equilibrium for the feeble

values of Higgs portal coupling A considered in this work, and as such there is no term

associated with ϕ in the finite temperature potential (4.3.2). Rather, the finite temperature

potential is due to the SM degrees of freedom in thermal equilibrium. It is a function of the

background value for ϕ via the dependence of the squared mass parameters on ϕ.

For simplicity, we will neglect the Coleman-Weinberg (CW) contribution VCW(ϕ, h) to the

effective potential (4.3.1) in our numerical analysis below. The correction to the ϕ potential

from VCW is negligible in the viable region of parameter space (Eq. (4.2.4)) due to the feeble

coupling A, as already alluded to at the beginning of Sec. 6.2. Furthermore, as we will see

below, for large scalar masses the misalignment is generated at high temperatures (thermal
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misalignment) where VT (ϕ, h, T ) dominates and VCW is negligible. For lower scalar masses,

the misalignment is a result of the induced scalar VEV triggered by the EWPT. Even in this

case, VCW does not qualitatively alter the behavior of the scalar potential and the nature of

the EWPT, and will only lead to relatively small numerical differences in our results.

Note that Eq. (4.3.2) is appropriate for temperatures above the QCD phase transition.

For lower temperatures, an alternative description in terms of light hadronic states would

be required. However, we will see the onset of scalar oscillations in the parameter space we

consider occurs at temperatures well above the QCD scale, so that a description at lower

temperatures is not required to calculate the relic abundance. For similar reasons, the quarks

lighter than the top quark as well as leptons will not influence our results.

We will find it convenient to work with the following set of dimensionless parameters:

y ≡ T

µ
, ϕ̂ ≡ ϕ

Mpl

, ĥ ≡ h

µ
, κ ≡ mϕMpl

µ2
, β ≡ AMpl

µ2
. (4.3.5)

In particular, the parameter y is a proxy for the temperature, with y ∼ O(1) for temperatures

near the electroweak scale. Furthermore, ϕ̂ and ĥ are simply the ratios of the field variables to

their respective characteristic scales. Finally, the scalar mass mϕ and Higgs portal coupling

A are expressed in terms of the dimensionless variables κ and β, respectively.

Combining the V0 and V T
1 in Eqs. (4.2.1,4.3.2) and writing the effective potential in terms

of dimensionless quantities (V̂eff = Veff/µ
4), we obtain

V̂eff = −1

2
ĥ2(1− βϕ̂) +

1

4
λĥ4 +

1

2
κ2ϕ̂2 +

y4

2π2

{
JB[ηh(ϕ̂, ĥ, ŷ)] + 3JB[ηχ(ϕ̂, ĥ, ŷ)] + 4JB[ηWT

(ĥ)]

+ 2JB[ηZT
(ĥ)] + 2JB[ηWL

(ĥ, ŷ)] + JB[ηZL
(ĥ, ŷ)] + JB[ηAL

(ĥ, ŷ)]− 12JF [ηt(ĥ, ŷ)]

}
,

(4.3.6)

where we have defined the dimensionless arguments of the JB,F functions, ηi(ϕ̂, ĥ, y) ≡
m2
i (ϕ, h, T )/T

2.
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4.3.2 Higgs field and Electroweak Phase Transition

We first discuss the evolution of the Higgs field h, which serves as the order parameter

for the EWPT. In the SM, the EWPT is a smooth crossover [239] characterized by the

critical temperature Tc ∼ O(v) (yc ≡ Tc/µ ∼ O(1)). The feeble portal coupling between

ϕ and h will not alter the nature of the phase transition, at least in the βϕ̂ ≪ 1 regime of

primary relevance for this work. The Higgs field is assumed to track the potential minimum

throughout the phase transition, starting at h = 0 at high temperatures (y ≫ yc), then

taking nonzero values for y < yc, and finally settling at h = v at low temperatures (y ≪ 1).

Thus, for temperatures below yc, the evolution of ĥ(ϕ̂, y) is determined by the minimiza-

tion condition ∂V̂eff/∂ĥ = 0, with V̂eff given in Eq. (4.3.6):

0 = λĥ2 − (1− βϕ̂) +
y2

2π2

{
6λ(J ′

B[ηh] + J ′
B[ηχ]) + g2 (2J ′

B[ηWT
] + J ′

B[ηWL
])

+ (g2 + g′2)J ′
B[ηZT

] + 2y2
∂ηZL

∂ĥ2
J ′
B[ηZL

] + 2y2
∂ηAL

∂ĥ2
J ′
B[ηAL

]− 12y2t J
′
F [ηt]

}
. (4.3.7)

Here g, g′, and yt are the SU(2)L gauge coupling, U(1)Y gauge coupling, and top Yukawa

coupling, respectively. Note that the ηi are functions of (ϕ̂, ĥ, y). Our procedure is to

solve Eq. (4.3.7) for ĥ(ϕ̂, y) and then use this solution in equation of motion of ϕ̂, to be

discussed below in Sec. 4.3.4. In principle, Eq. (4.3.7) can be solved numerically. However,

since βϕ̂ ≪ 1 for essentially all of our parameter space, in practice we will treat βϕ̂ as a

perturbation. We therefore define ĥ0(y) as the solution to Eq. (4.3.7) with βϕ̂ = 0. Including

the βϕ̂ dependence will change the evolution and yc slightly (∝ O(βϕ̂)). The evolution of

ĥ0(y) is shown in Figure 22.

4.3.3 Sources of Misalignment and Initial Conditions

Before we study the evolution of the scalar field ϕ in detail, it is worth discussing the

various sources of misalignment that contribute to the late-time ϕ oscillation amplitude and

associated relic density. To gain insight, it is helpful to examine the minimum of the effective
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Figure 22: Dimensionless Higgs profile ĥ0 = ĥ(ϕ̂ = 0, y) as a function of y = T/µ. The

critical temperature corresponding to the EWPT can be seen at yc ≃ 1.6, figure taken from

[67].
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potential with respect to ϕ̂ as a function of temperature, ϕ̂min(y), which can be obtained from

Eq. (4.3.6) by setting ∂V̂eff/∂ϕ̂ = 0. The solution can be written as

ϕ̂min = − β

2κ2

[
ĥ2 +

y2

π2
(J ′
B[ηh] + 3J ′

B[ηχ])

]
. (4.3.8)

Since βϕ̂ ≪ 1 for the bulk of our parameter space, it is typically a good approximation to

neglect this dependence in ηh,χ and ĥ which enter in the r.h.s. of Eq. (4.3.8). In Figure 23

we show the variation of ϕ̂min(y) with y = T/µ for a representative benchmark model. We

see that at high temperatures, y ≫ yc, the minimum is located at large (negative) scalar

field values, reflecting the dominance of the second term in Eq. (4.3.8). As the temperature

drops, the minimum decreases as |ϕ̂min| ∝ y2 until the EWPT at yc. At this point, the Higgs

field turns on and the ϕ̂ potential minimum rapidly transitions to its zero temperature value,

Eq. (4.2.3), or in terms of the dimensionless variables,

ϕ̂0 = − β

2λκ2 − β2
≃ − β

2λκ2
. (4.3.9)

The qualitative behavior of ϕ̂min is similar to that in Figure 23 for other parameter choices.

As we now discuss, there are three qualitatively distinct contributions to the misalignment

of ϕ̂:

• Misalignment due to initial conditions - This contribution is given by the value ϕ̂i

the scalar field takes at the end of inflation.

• Thermal misalignment - At temperatures much larger than the temperature of EWPT,

y ≫ yc , the scalar experiences a finite-temperature contribution to the effective poten-

tial due to its feeble coupling to the thermalized Higgs degrees of freedom given by

Eq. (4.3.2). This causes the scalar to roll towards the high-temperature minimum set by

Eq. (4.3.8) and illustrated in Figure 23, dynamically generating misalignment. We refer

to this contribution as thermal misalignment, ϕ̂T , and we will show below in Sec. 4.3.5.1

that

ϕ̂T ∝ β

κ
. (4.3.10)
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Figure 23: Evolution of the temperature-dependent scalar field minimum |ϕ̂min(y)| as a

function of y = T/µ for the benchmark κ = 103, β = 1. The ϕ minimum is controlled by

the finite-temperature contribution to the effective potential for y > yc, while instead for

y < yc it transitions quickly towards its zero temperature value induced by the the Higgs

VEV, Eq. (4.2.3). We have used ĥ0 = ĥ(ϕ̂ = 0, y) as a function of y = T/µ, figure taken

from [67].
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• VEV misalignment - Below the temperature of the EWPT, y < yc , the Higgs field

switches on and induces a rapid shift in the minimum of the scalar field ϕ̂ (see Figure 23)

to its zero temperature VEV (4.3.9). This dynamically generates and additional source

of misalignment, ϕ̂V , which we refer to as VEV misalignment.

The final misalignment is in general influenced by all of the above contributions. Note

that both thermal misalignment and VEV misalignment are dynamical processes occurring

during the radiation era. As we will see, these sources of misalignment depend on the DM

model parameters, i.e., the mass mϕ (or equivalently κ) and the coupling A (or equivalently

β). On the other hand, the initial value ϕ̂i after reheating depends on the detailed dy-

namics during inflation and can in principle be arbitrary. An important question then is

to what extent the relic abundance prediction depends on the assumed initial condition. If

the relic density prediction is insensitive to the initial conditions and only depends on the

DM model parameters, this opens up the exciting prospect of confronting the cosmological

production mechanism with experiments, since the signatures and predictions for the latter

are determined by the same model parameters (mass and coupling).

As we will show in detail in Sec. 4.3.5.1, for larger scalar masses, mϕ ≳ few meV (κ ≳

103), thermal misalignment dominates over VEV misalignment, ϕ̂T ≫ ϕ̂V . Then provided

ϕ̂i ≪ ϕ̂T , which can be satisfied for a broad range of conceivable initial field values given

Eq. (4.3.10), the thermal misalignment generated during the radiation era will overwhelm

(or “erase”) the contribution from the initial field value. If this condition holds, the late-time

oscillation amplitude and resulting scalar relic abundance is controlled entirely by the DM

model parameters. We can then define a relic density target corresponding to a line in the

mϕ−A plane yielding a DM abundance in accord with the measured value, ΩDM ≃ 0.26 [17].

Modulo fine tuning of initial conditions, parameters above the relic density target line will

lead to even larger scalar oscillation amplitudes generated by thermal misalignment and

would thus overclose the universe. These features, such as correlations between DM relic

density and its mass and coupling, as well as insensitivity to initial conditions and UV physics,

are reminiscent of similar attractive aspects found in models of weakly-interacting-massive

particle (WIMP) DM.

For lower masses, mϕ ≲ 10−5 eV (κ ≲ 1), VEV misalignment dominates over thermal
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misalignment, ϕV ≫ ϕT . As will be clearly shown in Sec. 4.3.5, the insensitivity of the scalar

relic density to the initial field value ϕ̂i does not carry over to this lower mass regime.

Below we will detail two choices of initial conditions that will be used in our numerical and

analytic estimates in the coming sections. These two choices will allow us to demonstrate

the insensitivity of the relic density to initial conditions for scalars with relatively large

masses where thermal misalignment dominates, as well as study the impact of different initial

conditions for scalars with relatively low masses where VEV misalignment is important.

• ϕi = ϕ0:

In this case, the scalar is initially at its zero-temperature VEV, ϕ0, given by Eq. (4.2.3).

This initial condition is naturally realized through a sufficiently long enough period

of inflation with a low enough inflationary Hubble parameter, HI ≪ v. In this case,

electroweak symmetry is broken during inflation, the Higgs is close to its VEV v, and

the ϕ potential minimum is approximately at ϕ0. Given a long enough period of inflation

the distribution of ϕ will relax to the average ⟨ϕ⟩|HI
= ϕi = ϕ0. This relaxation will take

order N ∼ H2
I /m

2
ϕ e-folds, and the variance of ϕ will be given by σϕi = 3H4

I /(8πm
2
ϕ).

Note that HI cannot be arbitrarily low if thermal misalignment is to be important,

which requires the reheat temperature to satisfy TRH ≫ v, though this condition can

easily be met. We also require σϕi ≪ ϕT , (ϕV ) for the thermal (VEV) misalignment

to be important. We note that a low inflationary Hubble scale naturally suppresses

scalar fluctuations (see, e.g., Refs. [212, 331, 333]), thus easing otherwise stringent CMB

constraints on isocurvature perturbations [25].

As emphasized above, for heavier scalars the displacement generated by thermal mis-

alignment overwhelms the initial field value assumed here. On the other hand, for lighter

scalars thermal misalignment is negligible and VEV misalignment operates, though we

must carefully consider the impact of the assumed initial condition. The scalar is held

fixed by Hubble friction for some time near its initial value, ϕ̂i ∼ ϕ̂0. Then at temper-

atures just above the EWPT, the ϕ̂ potential minimum adjusts to field values that are

much smaller than its initial value ϕ̂0, as can be seen in in Figure 23. At this stage, the

scalar field slow-rolls away from its initial position, generating misalignment. After the

EWPT, the location of the ϕ̂ minimum quickly transitions to its zero-temperature VEV
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ϕ̂0, and eventually oscillations commence after the expansion rate drops below the scalar

mass. It will be shown that the parametric dependence of the VEV misalignment for

this inital condition is

ϕ̂V ∝ β, (ϕ̂i = ϕ̂0) . (4.3.11)

A more thorough treatment of this dynamics will be presented in Sec. 4.3.5.3.

• ϕi = 0:

This initial condition is chosen as a representative example of the general situation where

|ϕi| is vastly different than |ϕ0|. For larger scalar masses, thermal misalignment again

dominates the evolution and the scalar relic abundance is insensitive to the assumed

initial field value. In contrast, for smaller scalar masses, VEV misalignment dominates

over thermal misalignment, although we must again understand the role of the initial

condition. In fact, the evolution of the scalar field in this case is quite simple. Initially,

the scalar is held at its initial location at the origin by Hubble friction. The EWPT

triggers a shift in the ϕ potential minimum to its zero-temperature value ϕ0, generating

VEV misalignment of parametric size (see Sec. 4.3.5.3):

ϕ̂V ≃ − β2

2κ2λ
(ϕ̂i = 0) . (4.3.12)

At some later time the Hubble rate falls below the scalar mass and oscillations begin.

It can be seen in Figure 21 that the relic density lines in the lower scalar mass region

are strongly sensitive to the initial field value, while instead those in the higher scalar mass

range are the same for both assumed initial conditions.
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4.3.4 Scalar field dynamics

We are now ready to discuss the evolution of the scalar field ϕ, which is governed by the

following equation of motion during the radiation-dominated era

ϕ̈+ 3Hϕ̇+
∂Veff
∂ϕ

= 0 , (4.3.13)

where again Veff = µ4 V̂eff is given in Eqs. (4.3.1,4.3.6) and the Hubble parameter H has been

defined at the beginning of Sec. 4.3.1.

For simplicity, we will ignore the small time variation of g∗ during the initial phase of

the ϕ evolution until ϕ oscillations begin, fixing it to the high temperature SM value of

gSM∗ = 106.75 (γ =
√
π2g∗/90 ≃ 3.4). For large scalar masses, oscillations begin well before

the EWPT, and as such g∗ = gSM∗ is exactly correct. Instead, for smaller masses, oscillations

begin below the EWPT and g∗ starts to decreases as t,W,Z, h fall out of thermal equilibrium,

giving for example g∗ ∼ 80 at y ∼ 0.01. Thus for smaller masses our constant g∗ = gSM∗

approximation will result in a O(10%) error in the relic abundance prediction.

Let us also briefly discuss a potential additional source of scalar field damping. As the

scalar field evolves, the effective mass of the Higgs particles in the bath changes though

their momenta does not, causing a small deviation in the Higgs phase space distribution

from its equilibrium value. This can manifest as an additional effective friction term in the

scalar equation of motion; see e.g., Ref. [354]. However, the Higgs quickly relaxes toward

equilibrium through fast number changing processes, such that this source of damping is

much smaller than the other terms in Eq. (4.3.13). See also Ref. [93] for discussion.

We can re-express the ϕ equation of motion (4.3.13) in terms of the dimensionless vari-

ables defined in Eq. (4.3.5), with independent variable of time t traded for y = T/µ. We

obtain

ϕ̂′′ +
1

γ2y6

[
κ2ϕ̂+

βĥ2

2
+
βy2

2π2
(J ′
B[ηh] + 3J ′

B[ηχ])

]
= 0 . (4.3.14)

Here, ĥ = ĥ(ϕ̂, y) is the solution to Eq. (4.3.7), as discussed in detail in Sec. 4.3.2. We then

solve the ϕ̂ equation of motion (4.3.14) subject to the initial conditions as described in the

previous section. These are defined at yi = Ti/µ, where yi ≫ 1 corresponds to some suitably
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early time well before the scalar starts to oscillate. The scalar field is evolved until yf = Tf/µ

corresponding to some suitable time after it begins oscillating and redshifts as matter. From

this time on, the ϕ comoving energy density, ρϕ/s, where ρϕ is the ϕ energy density and

s(T ) = (2π2/45)g∗S(T )T
3 is the total entropy density of the plasma, is conserved. Using this

fact, we then arrive at our estimate for the ϕ energy density in the present epoch,

ρϕ,0 =
g∗S(y0)

g∗S(yf )

(
y0
yf

)3

ρϕ(yf ) , (4.3.15)

where y0 = T0/µ with T0 ≃ 2.7 K. We use g∗S(yf ) = 106.75 and g∗S(y0) ≃ 3.91 in our

estimate. Expressing the relic density in terms of the density parameter Ωϕ,0 = ρϕ,0/ρc,0,

with ρc,0 = 3M2
plH

2
0 the critical density today, we show the parameters leading to the observed

DM relic abundance, Ωϕ,0 = ΩDM ≃ 0.26 [17] in Figure 21.

Before discussing these results and comparing with the various experimental probes of

the model, it is valuable to gain analytical insight into the ϕ evolution and resulting relic

density estimate, which we explore in the next section.

4.3.5 Relic Density Estimation

As the universe expands, the Hubble parameter decreases until it eventually falls below

the effective ϕ mass, marking the onset of scalar oscillations. This can be quantified by the

condition [3H(yosc)]
2 = m2

ϕ(yosc) ≃ m2
ϕ, which gives the oscillation temperature as

yosc =
Tosc
µ

=

√
κ

3γ
. (4.3.16)

Here we have used the fact that the effective squared scalar mass is dominated by the tree-

level contribution m2
ϕ over the entire parameter space we consider and for all temperatures.

Several epochs after the oscillations begin, we can safely calculate the energy density stored

in the scalar field and then redshift it to present times, which will yield the ϕ relic density

given by Eq. (4.3.15). Typically, once the scalar starts to oscillate, it behaves like DM with

an oscillation amplitude set by

ϕosc ≡ ϕ(yosc) , (4.3.17)
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i.e., the scalar amplitude at the beginning of oscillations. To determine ϕosc we must study

the evolution of the scalar field during the radiation era up until the onset of oscillations.

As discussed at length in Sec. 4.3.3, there are additional dynamical sources of misalignment

present in the Higgs portal model and contribute to the oscillation amplitude. For large scalar

masses, thermal misalignment provides the main contribution, while for small scalar masses

VEV misalignment (along with initial conditions) is dominant. In the intermediate mass

range, both effects are important. In the following, we will therefore divide the parameter

space into distinct regions characterized by which sources of misalignment dominate and then

develop a suitable analytic estimate for the ϕ evolution and relic abundance. These estimates

will be compared with our relic density prediction obtained from the exact numerical solution

of the ϕ equation of motion (4.3.13), as described in the previous section.

4.3.5.1 Region I (κ ≳ 103, mϕ ≳ 3× 10−3 eV)

Region I is defined to be the region of large scalar masses mϕ (large κ). In this region,

the the amplitude of oscillations at yc due to thermal misalignment dominates over the “kick”

imparted to the scalar resulting from the EWPT (VEV misalignmnet). To understand this

point, we first need to estimate the thermal misalignment generated at high temperatures

by considering Eq. (4.3.14). For y ≫ yosc ≫ yc, ĥ(ϕ̂, y) = 0 and we can ignore the κ2ϕ̂ term

since it is subdominant to the finite-temperature contribution to the equation of motion.

Hence, in this regime, Eq. (4.3.14) takes the approximate form

ϕ̂′′(y) +
β

2π2γ2y4
(J ′
B[ηh] + 3(J ′

B[ηχ]) = 0,

=⇒ ϕ̂′′(y) +
β

π2γ2y4
= 0 , (4.3.18)

where in the second line we have used the fact that J ′
B[ηh] + 3J ′

B[ηχ] ≈ 2 for y ≫ yc. (The

solution to Eq. (4.3.18), assuming negligible initial field velocity, is

ϕ̂(y) = − β

6π2γ2y2
+ ϕ̂i , (4.3.19)

where the first term represents the thermal misalignment, ϕ̂T (y) = −β/(6π2γ2y2), while the

second is the initial condition ϕ̂i. As the temperature drops below yosc =
√
κ/3γ, the mass
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term (κ2ϕ̂) in Eq. (4.3.14) begins to dominate over the thermal contribution and the scalar

starts to oscillate and redshift like DM. Plugging y = yosc into Eq. (4.3.19), we find the scalar

amplitude at the onset of oscillations is given by

ϕ̂osc = ϕ̂(yosc) = − β

2π2γκ
+ ϕ̂i . (4.3.20)

For the first initial condition ϕ̂i = ϕ̂0 ≃ −β/(2λκ2) motivated in Sec. 4.3.3, we observe that

thermal misalignment ϕ̂T dominates over ϕ̂i = ϕ̂0 for κ ≳ π2γ/λ ≈ 300. Thus, our definition

of Region I, κ > 103, satisfies this criterion.

In Figure 24 we display the numerical evolution of ϕ̂(y) relative to its temperature-

dependent Higgs-induced minimum, δϕ(y) ≡ ϕ̂(y) − [−βĥ20(y)/(2κ2)], for two benchmark

models in Region I and the initial conditions ϕ̂i = ϕ̂0 and ϕ̂i = 0 discussed in Sec. 4.3.3. This

quantity provides a convenient visualization of both the thermal misalignment generated at

high temperatures as well as the negligible impact of VEV misalignment for y < yc. The

temperature-dependent Higgs-induced minimum, [−βĥ20(y)/(2κ2)], is simply the first term in

the full temperature-dependent minimum ϕ̂min in Eq. (4.3.8), which dominates the expression

at low temperatures, i.e.,

ϕ̂min(y) ≃ −βĥ
2
0(y)

2κ2
(y ≲ yc). (4.3.21)

This is also clear from Figure 23. The dominance of thermal misalignment and the indepen-

dence of the the oscillation amplitude on the initial conditions are clearly seen in Figure 24.

We will now justify the condition κ ≳ 103 used to define Region I. For κ ≳ 103, oscillations

of the scalar field around its high temperature minimum begin at yosc ≫ yc. The amplitude

of the oscillations then decreases with temperature as y3/2 (i.e., ϕ redshifts like matter)

until y = yc. At yc the Higgs field transitions nearly instantaneously, causing a shift in the

minimum of ϕ̂ from the its minimum at y > yc to ϕ̂0. If the change in the ϕ̂ minimum

near y = yc within one oscillation time period is larger than the oscillation amplitude,

then the relic density is controlled by VEV misalignment. Conversely, if the oscillation

amplitude at y = yc is much larger than the shift in the ϕ̂ minimum due to the EWPT,

then thermal misalignment dominates. For large κ (large mϕ), the latter scenario of thermal
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Figure 24: Scalar field evolution ϕ̂(y) relative to its temperature-dependent Higgs-induced

minimum, δϕ(y) ≡ ϕ̂(y) − [−βĥ20(y)/(2κ2)] for two benchmark models in Region I: β =

10−2, κ = 104 (blue) and β = 10−3, κ = 104 (orange). The black dotted lines show the

corresponding approximate initial thermal misalignment trajectories of Eq. (4.3.20). The β2

scaling due to thermal misalignment is clearly observed. The evolution is shown for the two

choices of initial conditions discussed in Sec. 4.3.3: ϕ̂i = ϕ̂0 (solid) and ϕ̂ = 0 (dashed). It is

evident that the late time ϕ̂ evolution is independent of the initial value of the scalar field

for these choices, figure taken from [67].
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misalignment applies. In what follows, we will derive a lower bound on κ above which the

thermal misalignment dominates (defined to be Region I) and then develop an analytical

approximation for the ϕ relic density.

At yc, the minimum of ϕ̂ transitions from being governed by the thermal contribution

to the potential to being controlled by the Higgs VEV ĥ (see Figure 23). In this region, the

ϕ̂ minimum swiftly changes according ϕ̂min given in Eq. (4.3.21). This rapid shift in ϕ̂min

provides a “kick” by effectively changing the amplitude of the oscillation. The magnitude

of this kick is the variation of ϕ̂min within one half oscillation of the scalar field i.e. within

∆t = π/mϕ. It can be shown that this time period corresponds to ∆y = −y3cγπ/κ. The

change in the ϕ̂ minimum is then given by

∆ϕ̂min ≃ ∂ϕ̂min

∂y
∆y = − β

2κ2
∂ĥ2

∂y
∆y

≃ −πγy
4
cβ

2λκ3
, (4.3.22)

where in the last line we have used ∂ĥ2/∂y ≃ −yc/λ (this can be seen from the evolution

equation for ĥ2 in Eq. (4.3.7)). This is to be compared to the oscillation amplitude near yc

due to thermal misalignment, which is given by

ϕ̂osc(yc) = ϕ̂(yosc)

(
yc
yosc

)3/2

= − (
√
3yc)

3/2β

2π2γ1/4κ7/4
, (4.3.23)

where we have used Eq. (4.3.20) and redshifted it to yc. For Region I, we require thermal

misalignment to dominate over the “kick”, taking as our criterion ϕ̂osc(yc) > 3∆ϕ̂min. Using

Eqs. (4.3.22,4.3.23) we find that this is satisfied for

κ > γy2c

(
3π12

λ4

)1/5

≃ 103 . (4.3.24)

In practice we find that numerically we agree well with the estimates of Region I for κ > 103.

We thus take κ = 103 as the boundary for Region I.

Having established that thermal misalignment dominates in Region I, κ ≥ 103, we are

now ready to provide an analytic estimate of the ϕ relic abundance. We use Eq. (4.3.15) to

estimate ρϕ,0, the ϕ energy density today. As input to this equation, we take yf = yosc as

the temperature at which oscillations begins, with yosc given by Eq. (4.3.16). We also use
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ρ(yf ) = ρ(yosc) ≃ 1
2
m2
ϕϕ(yosc)

2, with ϕ(yosc) given by the first term in Eq. (4.3.20). Other

inputs needed are described below Eq. (4.3.15). Putting everything together, we arrive at

the following estimate for the DM density parameter,

Ωϕ,0 ≃
g0∗S
gosc∗S

y30 µ
4

ρc,0

33/2

8π4

β2

γ1/2κ3/2

≃ 0.26

(
β

0.05

)2(
1000

κ

)3/2

. (4.3.25)

Parameters leading to the observed DM abundance according to the approximate analytic

estimate, Eq. (4.3.25), are displayed as a dashed line in the mϕ − A plane in Figure 21 for

mϕ ≳ 10−3 eV, agreeing well with the calculation using the exact numerical solution to the ϕ

equation of motion (4.3.13) in Region I. Eq. (4.3.25) (and the associated numerical estimate)

represents one of the most important results of this work, providing a prediction for the

observed DM relic density in terms of only the DM model parameters (mϕ and A) which is

insensitive to initial conditions provided |ϕi| ≪ |ϕT |, as discussed in Sec. 4.3.3. In particular,

note that for parameters above the relic density line in Figure 21, initial conditions with

|ϕi| ≫ |ϕT | will overclose the universe. Since thermal misalignment is unavoidable given a

standard radiation dominated cosmology and a high enough reheating temperature TRH ≫ v,

this gives a cosmologically motivated target in the parameter space for experiments to pursue.

In fact, requiring DM not to overclose the universe currently provides the best constraint

on the model (with the caveats mentioned above) over the vast majority of the parameter

space.

4.3.5.2 Region II (10 ≲ κ ≲ 103, 3× 10−5 ≲ mϕ ≲ 3× 10−3eV)

We now move to Region II, corresponding to the intermediate mass range (10 ≲ κ ≲

103, 3 × 10−5 ≲ mϕ ≲ 3 × 10−3eV). In this region, the final misalignment amplitude is

influenced in an important way by the change in the minimum of ϕ triggered by the EWPT

at y = yc.

Notably, for masses near the upper end of Region II, mϕ ∼ O(10−3eV), a competition

between thermal misalignment and VEV misalignment leads to a novel forced resonance

phenomena which impacts the relic abundance in a rather dramatic fashion. At the EWPT,
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the Higgs field rapidly moves from the origin towards h = v, simultaneously inducing a shift

the ϕ potential minimum towards its zero-temperature value ϕ0. The acts as a step-like

forcing term in the ϕ equation of motion (4.3.14), causing a suppression or enhancement in

the oscillation amplitude depending on the relative phase between the oscillations and Higgs

source term, which in turn depends on the the scalar mass. For instance, if the scalar is near

its oscillation maximum as this shift happens, the effective oscillation amplitude is reduced,

thus requiring a larger coupling β to produce the observed DM abundance. This behavior

is shown in Figure 25 for one example benchmark point. A striking series of recurring peaks

and valleys in the coupling β yielding the correct DM abundance is observed as the scalar

mass is varied, as shown the inset of Figure 21.

For masses near the lower end of Region II, VEV misalignment dominates and the pre-

dicted DM abundance starts to be sensitive to initial conditions, which is also evident from

Figure 21. The impact of VEV misalignment and the role of the initial conditions for the

low mass scalars will be clarified in the next through our analysis of Region III.

4.3.5.3 Region III (κ ≲ 1,mϕ ≲ 3× 10−6 eV)

Finally, we come to Region III, which may roughly be defined by the condition that

oscillations begin below the EWPT, yosc ≲ 1 =⇒ κ ≲ 3γ. We will simply take κ ≲ 1

(mϕ ≲ 3 × 10−6 eV) for concreteness. In this low mass regime, VEV misalignment caused

by the EWPT dominates over thermal misalignment. However, the final ϕ misalignment

and number density depends sensitively on the initial conditions (see Figure 21). In the

following, we will examine two distinct choices for the initial condition, ϕ̂i = ϕ̂0 and ϕ̂i = 0,

as discussed in Sec. 4.3.3.

(i) ϕ̂i = ϕ̂0: Let us first consider the initial condition ϕ̂i = ϕ̂0 ≃ −β/(2λκ2).
Examining the ϕ̂ equation of motion (4.3.14) for ϕ̂ ≈ ϕ̂0, we observe that the mass term

κ2ϕ̂ dominates over the thermal term for y2

2π2β (J
′
B[ηh] + 3J ′

B[ηχ]) for y2 ≲ π2/(2λ). Thus,

the scalar field first experiences thermal misalignment ϕ̂T ∼ −λβ/(3π4γ2), where we have

used Eq. (4.3.20) and y2 ∼ π2/(2λ). However, we note that the displacement of the scalar

from ϕ̂0 generated by thermal misalignment is minuscule, |ϕ̂T | ≪ ϕ̂0, since κ ≲ 1 in this
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Figure 25: Left panel: The evolution of ϕ (blue) along with the progression of the

temperature-dependent minimum of ϕ (black dashed) during the EWPT. The true mini-

mum jumps quickly after the transition, reducing the effective oscillation amplitude. Right

panel: This amplitude reduction is clearly seen in ∆ϕ(y) ≡ ϕ(y)−ϕmin(y), which shows the

oscillations relative to the temperature dependent ϕ minimum, Eq. (4.3.21). In both plots

we have chosen the benchmark parameters κ = 102.985, β = 10−1, figure taken from [67].
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region. For yc < y ≲
√
π2/(2λ) ≃ 7 the mass term dominates and the equation of motion

becomes

ϕ̂′′(y) +
1

γ2y6

(
κ2ϕ̂
)
= 0 ,

=⇒ ϕ̂′′(y)− β

2γ2λ

1

y6
= 0 , (4.3.26)

where in the second line we have assumed ϕ̂ ≃ ϕ̂0. The solution to this equation is given by

ϕ̂(y) =
1

y4
β

40γ2λ
+ ϕ̂0 . (4.3.27)

The trajectory of ϕ̂ follows Eq. (4.3.27) until y ∼ 1 at which point the contribution from

βĥ2/2 in Eq. (4.3.14) turns on and, to a good approximation, cancels the κ2ϕ̂ term. At

this point, all source terms in Eq. (4.3.27) are negligible and the evolution is dictated by

ϕ̂′′(y) = 0. This has the solution

ϕ̂(y) = ϕ̂′(1)(y − 1) + ϕ̂(1) , (4.3.28)

where the initial conditions for the field and its velocity are obtained by matching the solution

in Eq. (4.3.27) at y = 1. We find ϕ̂′(1) = −β/(10γ2λ) and ϕ̂(1) = β/(40γ2λ) + ϕ̂0. Then

for small y, before beginning of oscillations, we obtain the asymptotic value of ϕ̂(y ≪ 1) =

5β/(40γ2λ) + ϕ̂0, where the first term is the amplitude of oscillations. The evolution of the

scalar field for ϕ̂i = ϕ̂0 is displayed for a representative benchmark model in the left panel

of Figure 26.

With an estimate for the oscillation amplitude, ϕ̂(yosc) ≃ 5β/(40γ2λ), we are now in a

position to compute the ϕ relic abundance, following similar steps to those used earlier in

Region I. In particular, we employ Eq. (4.3.15) to estimate ρϕ,0 , taking yf = yosc =
√
κ/(3γ),

Eq. (4.3.16), as the temperature corresponding to the onset of oscillations. Furthermore, we

use ρ(yf ) = ρ(yosc) ≃ 1
2
m2
ϕϕ(yosc)

2. Collecting the other inputs described around Eq. (4.3.15),

we obtain

Ωϕ,0 ≃
g0∗S
gosc∗S

y30 µ
4

ρc,0

33/2

128

β2 κ1/2

γ5/2 λ2

≃ 0.26

(
β

10−4

)2(
κ

4× 10−2

)1/2

. (4.3.29)
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Figure 26: Scalar field evolution in Region III, where VEV misalignment is important, for

two choices of initial conditions. Left panel: The initial condition is chosen to be ϕi = ϕ0.

The evolution ∆ϕ(y) ≡ ϕ(y)− ϕ0 is shown for two benchmark models: κ = 10−2, β = 10−4

(blue curves), and κ = 10−2, β = 10−5 (orange curves). Right panel: The initial condition

is chosen to be ϕi = 0. The evolution ϕ(y) is shown for two benchmark models: κ = 10−2,

β = 10−6 (blue curves), and κ = 10−2, β = 10−7 (orange curves). The dotted lines show the

corresponding zero temperature minima ϕ0. Figure taken from [67].
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It should be noted that since the amplitude of oscillations is comparatively small for ϕi = ϕ0,

a much larger value of β is needed to obtain the correct relic density. This initial condition

is representative of an optimistic scenario for experimental detection of low mass scalars.

(ii) ϕ̂i = 0: Next, we consider the initial condition ϕ̂i = 0. It is far more straightforward

to estimate the scalar relic density in this case. Thermal misalignment is again negligible,

and in the earliest stages of its evolution the scalar is held near at its initial value by

Hubble friction until the EWPT at yc. At this point, the ϕ̂ VEV rapidly evolves to its zero

temperature value ϕ̂0, triggering VEV misalignment of the scalar, until eventually oscillations

begin (see Figure 26 right panel). The oscillation amplitude is therefore given by ϕ̂(yosc) ≃
ϕ̂0 ≃ −β/(2λκ2). Thus the ϕ density parameter today is given by

Ωϕ,0 ≃
g0∗S
gosc∗S

y30 µ
4

ρc,0

33/2

8

γ3/2β2

λ2 κ7/2

≃ 0.26

(
β

3× 10−10

)2(
10−2

κ

)7/2

. (4.3.30)

For this initial condition, we note the drastically lower values of β required to get the

correct relic density. Thus the initial condition ϕi = 0 is representative of low mass scalar

scenario that is challenging to probe experimentally.

4.3.6 Summary of Results

A summary of our results is presented in Figure 21, which shows contours leading to the

observed relic abundance in the mϕ−A plane for the two choices of initial conditions, ϕi = ϕ0

and ϕi = 0. Both the numerical results from solving Eq. (4.3.14) and using Eq. (4.3.15)

(solid lines), as well as the analytic estimates, Eqs. (4.3.25,4.3.29,4.3.30) (dashed lines) are

presented and agree well.

4.4 Constraints

We now discuss the existing experimental constraints and future prospects for the ultra-

light Higgs portal DM model. These bounds are shown in the mϕ − A plane and can be
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compared with our numerical and analytic predictions for the relic abundance lines (Ωϕ,0 =

ΩDM = 0.26) in Figure 21. We now provide a brief overview for each of these bounds.

4.4.1 Equivalence Principle and Inverse Square Law Tests

The light scalar mixes with the Higgs and thus couples to ordinary matter, leading to an

additional Yukawa-like potential between nucleons. This additional force can be constrained

by experiments searching for violations of the gravitational inverse square law (ISL) or tests

of the equivalence principle (EP).

For the ISL bounds, we follow the approach of Ref. [299]. The potential between two

test bodies (labeled 1 and 2) is given by

V (r) = −Gm1m2

r

(
1 + α1α2 e

−mϕr
)
. (4.4.1)

We will assume that the scalar has the same coupling to protons and neutrons, with the

scalar-nucleon coupling given by

gϕNN = ghNN
Av

m2
h

≃ 10−3 Av

m2
h

, (4.4.2)

where ghNN ≃ 10−3 is known with order one uncertainty [210]. The scalar coupling to the

test body i is given by

αi√
2Mpl

=
d lnmN(ϕ)

dϕ
=
gϕNN
mN

. (4.4.3)

We can then translate constraints reported on ISL tests. The constraints are typically

reported on the product α̃ = α1α2, which in terms of our model parameters is given by

α̃ = α1α2 = 10−6
2M2

pl

m2
N

(
Av

m2
h

)2

=

(
A

1.7× 10−5 eV

)2

. (4.4.4)

The constraints from ISL tests from Refs. [233, 351] are shown in Figure 21. As can be seen

in the inset, the ISL tests are already beginning to probe interesting regions of the parameter

space due to the resonance effects discussed in Sec. 4.3.5.2.

Constraints from violation of EP are more involved. We follow Ref. [210] in the following.

EP constraints involve measurements of differential accelerations in test bodies which have
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different charge-to-mass ratios, i.e., the ratio of the scalar coupling strength to the mass of a

given atom (∆ϕH2). The EP violation constraints on a mediator coupled to a B − L charge

obtained by measuring the differential acceleration between Beryllium (Be) and Aluminium

(Al) were derived in Ref. [342]. Translating these bounds to our model, we can write

A = 4.4× 1013eV gB−L

√
∆B−L

∆Φh2
, (4.4.5)

where gB−L is the the coupling strength of the scalar to B − L charge and ∆B−L is the

differential charge-to-mass ratio between Be and Al. We use ∆B−L = 0.037 and ∆ϕH2 =

4× 10−4 [210]. The EP constraints on the Higgs portal model are shown in Figure 21.

4.4.2 Stellar Cooling Bounds

For the Higgs portal, the stellar cooling bounds primarily arise from the effective coupling

of ϕ to electrons [224]. The dominant constraints on the model come from red giant (RG)

and horizontal branch (HB) stars. In red giant cores, the dominant energy loss mechanism

is neutrino production. Any additional stronger energy loss mechanism will delay the onset

of helium fusion in cores of RG stars. Since this is not observed, it implies a constraint on

the Higgs-scalar mixing angle sin θ ≃ Av/m2
h ≤ 3 × 10−10 for mϕ < 2 keV [224]. For HB

stars, any additional strong energy loss mechanism causes the cores to contract and heat up,

increasing the rate of helium fusion and shortening the lifetime of the stars, which is not

observed. The combined constraints from RG and HB stars are shown in Figure 21.

4.4.3 Resonant Absorption in Molecules

Resonant absorption of ϕ by polyatomic molecules has been proposed as a DM detection

concept in Ref. [49]. The basic idea is to search for DM absorption via the subsequent tran-

sition of these molecules from the excited to ground state through the emission of photons.

Concerning the Higgs portal model, this technique is most sensitive to the effective coupling

of ϕ to electrons, which in terms of the coupling A is given by

gϕee =
Av

m2
h

ye =
Ame

m2
h

. (4.4.6)
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The approach has the potential to probe scalar DM coupled to electrons in the mass range

0.2 eV ≲ mϕ ≲ 20 eV. In the parameterization employed in [49], the constraint is given by

dme ≲ 105 where dme =
√
2gϕeeMpl/me ≃ 2.2× 105 × (A/eV).

We show projections corresponding to a phase II ‘bulk’ (BII) and ‘stack’ (SII) experi-

mental configurations in Figure 21; for more details we refer the reader to Ref. [49].

4.4.4 Extragalactic Background Light and Reionization Constraints

For larger masses and couplings, the scalar ϕ can decay into photons on cosmological

time scales. The decay rate of the scalar to photons is given by [186]

Γϕγγ =
θ2α2

256π2

m3
ϕ

v2
|C|2 (4.4.7)

where θ ≃ Av/m2
h and the factor C ≃ 50/27 accounts for the charged particles running in

the loop. Decay of scalars would contribute to the extragalactic background light (EBL).

EBL constraints have been calculated in [121, 43] and recast for a Higgs portal in [183]. Note

that these constrains are calculated assuming a given present day DM density Yϕ = nϕ/sγ,

where sγ,0 is the entropy density of photons today. The actual parameter constrained is

mϕnϕΓϕ as a function of mϕ. We rescale our constraints assuming Ωϕ = ΩDM ≃ 0.26 i.e.

Yϕ = 0.26 ρc
sγ,0

mϕ, where ρc is the critical energy density of universe today.

4.4.5 X-ray Constraints

For mϕ ≳ few keV, the scalar decay to photons on cosmological time scales is constrained

by the HEAO [216] and INTEGRAL [100] satellites. The data from these satellites was

translated into lifetime of scalar decaying into photons in [175] and we use translate these

constraints on the lifetime of our scalar τϕ = Γ−1
ϕγγ given by Eq. (4.4.7).
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4.4.6 Other Probes

There are other constraints that we have not shown because they lie outside the shown

mass range, or lie in the forbidden region A >
√
2λmϕ. These include atomic and nuclear

clocks, atomic interferometers, mechanical resonators, superradiance etc. A comprehensive

summary of all constraints can be found in [39].

4.5 Conclusions

In this work we have revisited the cosmology of a light scalar feebly coupled to the

SM through the super-renormalizable Higgs portal. This is among the most minimal UV

complete extensions of the SM and is described by only two additional parameters, the scalar

mass mϕ and its dimensionful coupling to the Higgs A. The scalar field in this model can

naturally be light due to its feeble super-renormalizable coupling. Despite being minimal, the

model presents a rich cosmology, with the scalar field experiencing a non-trivial dynamical

evolution during the radiation era before and/or during scalar oscillations. This generates

two additional dynamical sources of misalignment, which we have referred to as thermal

misalignment and VEV misalignment, beyond that from its initial field value at the end of

inflation. We have studied the evolution of the scalar field both numerically and analytically

over a broad range of scalar masses and couplings, delineating the parameters in the mϕ−A

plane that are consistent with the observed DM relic density. We have also investigated two

qualitatively distinct choices of initial scalar field values in order to discern the role played

by initial conditions. Our main results are presented in Figure 21.

For large masses, the scalar field evolution is mainly governed by thermal misalignment.

The finite-temperature contribution to the effective potential drives the scalar towards large

field values at high temperatures, dynamically generating misalignment. Provided the initial

scalar field value is smaller in magnitude than its displacement caused by thermal misalign-

ment, the scalar relic density in this higher mass range is insensitive to the initial conditions.

The scalar abundance today is then tightly controlled by the model parameters mϕ and A.
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Therefore, parameters in the mass-coupling plane yielding the observed relic abundance then

provide a robust target that can be compared against experimental searches for ultra-light

scalar DM. Furthermore, the relic density line in this mass range can be viewed as an up-

per bound on the scalar-Higgs coupling assuming a standard cosmology with a high enough

reheat temperature, as any larger coupling would overclose the universe. These features are

quite similar in character to those of the popular WIMP DM scenario, in which the relic

abundance is insensitive to initial conditions and UV dynamics, instead being set by the

WIMP mass and its couplings to SM particles through the mechanism of thermal freeze-out.

The insensitivity to initial conditions in the high scalar mass range is evident from Figure 21.

For lower scalar masses, the impact of the EWPT on the scalar field evolution is impor-

tant. The phase transition leads to a rapid shift in the scalar field potential minimum towards

its zero-temperature VEV, generating VEV misalignment. However, in this regime the os-

cillation amplitude and corresponding relic density is also sensitive to the initial conditions

and depends on whether the scalar field is initially in close proximity to its zero temperature

minimum or not. In the former case, which can be naturally realized for a long period of

inflation with a low inflationary Hubble parameter (smaller than the electroweak scale v),

relatively large couplings are needed to significantly displace the field from its minimum

and produce the observed DM abundance, thus offering more promising detection prospects.

Instead, if the field is initially distant from its zero temperature VEV, the required coupling

can be extremely small while still leading to a consistent DM cosmology.

In the intermediate mass range we have discovered a novel forced resonance phenomena

resulting from a competition between thermal misalignment and VEV misalignment. This

causes enhancements or suppressions in the oscillation amplitude depending on the scalar

mass, thus requiring smaller or larger couplings, respectively, to achieve the correct DM

abundance. This is reflected by a series of peaks and valleys in the DM relic density contours

as the scalar mass varies; see Figure 21.

We have also compared our relic density predictions with constraints and projections

from a variety of terrestrial and astrophysical probes, including the equivalence principle

and inverse square law tests, stellar cooling, resonant molecular absorption, and observations

of extra-galactic background light and diffuse X-ray backgrounds. While some parts of the
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parameter space are starting to be explored, new experimental ideas are needed to probe the

cosmologically motivated regions of parameter space. We hope our results will provide the

impetus for new creative approaches to ultralight scalar DM detection.
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5.0 On the origin of entropy of gravitationally produced dark matter: the

entanglement entropy.

5.1 Introduction

The convergence of evidence for dark matter (DM) from cosmic microwave background

(CMB) anisotropies, galactic rotation curves, gravitational lensing, Bullet cluster, large scale

surveys and numerical evolution of galaxy formation is very compelling. It is also evident

from its properties that a particle physics candidate must be sought in extensions beyond

the Standard Model (SM). However, a multi decade effort for its direct detection has not

yet led to an unambiguous identification of a (DM) particle[85, 137]. A suitable particle

physics candidate must feature a production mechanism yielding the correct abundance and

equation of state, and satisfy the cosmological and astrophysical constraints with a lifetime

of at least the age of the Universe. So far, all of the available evidence is consistent with

dark matter interacting solely with gravity.

Among the various production mechanisms, particle production as a consequence of cos-

mological expansion is a remarkable phenomenon that has been studied in pioneering work

in refs.[294, 184, 214, 89, 189, 297, 288]. An important aspect of this mechanism is that if

the particle interacts only with gravity and no other degrees of freedom, its abundance is

determined solely by the particle mass, its coupling to gravity, and the expansion history,

independently of hypothetical couplings beyond the (SM). As such, production via cosmo-

logical expansion provides a baseline for the abundance and clustering properties of dark

matter candidates.

Gravitational production has been studied for various candidates and different cosmolog-

ical settings: heavy particles produced adiabatically during inflation[130, 127, 129, 256, 257,

128, 170, 169, 281], or via inflaton oscillations[312], during reheating[225, 259, 30, 242, 34],

or via cosmological expansion during an era with a particular equation of state[260]. More

recently the non-adiabatic cosmological production of ultralight bosonic particles[226] and

heavy fermionic particles [103] were studied during inflation followed by a radiation domi-
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nated era. This chapter is based on Ref. [304].

Motivations, main objectives and brief summary of results.

Non-adiabatic gravitational production of both ultra light bosonic dark matter and a

heavier fermionic dark matter species were studied in references[226, 103] with initial “in”

conditions during inflation with the respective fields in their Bunch-Davies vacuum state,

evolving to asymptotic “out” particle states in the radiation dominated (RD) era. The

asymptotic “out” particle states feature pair correlations and the distribution function is

obtained from the Bogoliubov coefficients relating the “in” to the “out” states which were

obtained in these references. Well after the transition from inflation to (RD) and well before

matter radiation equality, when the scale factor aeq ≃ 10−4 ≫ a(t) ≫ 10−17/
√
m/(eV) there

ensues an adiabatic regime during which the Hubble expansion rate H(t) is much smaller

than the mass m of the dark matter particle. It is shown in these references that during

the adiabatic regime, and after averaging rapid oscillations in interference terms, the energy

momentum tensor of these dark matter particles feature the kinetic-fluid form. Furthermore,

in the case of fermionic dark matter, ref.[103] found that the distribution function features

an unexpected near thermality.

These results motivate the main questions addressed in this chapter: a kinetic-fluid

description in terms of a distribution function typically also includes the entropy[83], which

along with the energy density and pressure provide an effective statistical description of the

“fluid”, as in thermodynamics. In this study we address the origin of entropy associated with

this kinetic fluid description.

At prima facie the question of entropy within the context of gravitational production

seems surprising because the “in” state of dark matter is the vacuum state during inflation,

therefore the density matrix describes a pure state with vanishing entropy. While this is

true, the study in refs.[226, 103] revealed that during the adiabatic regime and in the basis

of asymptotic “out” particles, the energy momentum tensor features contributions that evolve

on widely different time scales: a slow time scale associated with the cosmological expansion

≃ 1/H(t) and a fast time scale ≃ 1/m associated with the dynamics of the “out” particle

states. The latter one is manifest in specific interference terms in pair correlations which

dephase on the rapid time scale ≃ 1/m. As shown explicitly in refs.[226, 103], the kinetic-fluid
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form emerges upon averaging these rapidly varying correlations on the longer time scales.

The wide separation of these two time scales is precisely the hallmark of the adiabatic regime

that sets in well before matter radiation equality. In this chapter we study whether and how

this rapid dephasing phenomena stemming from interference in the asymptotic “out” state

heralds a decoherence mechanism, and how such mechanism entails loss of information and

a non-vanishing entropy.

Brief summary of results: Following up on the study of refs.[226, 103], we consider

the non-adiabatic gravitational production of an ultra light complex scalar field minimally

coupled to gravity and a heavier fermionic Dirac field under the same set of minimal assump-

tions considered in these references. The cosmological expansion results in the production of

entangled correlated asymptotic “out” particle-antiparticle pairs of vanishing total momen-

tum.

During the adiabatic regime, we introduce an effective Schroedinger picture that imple-

ments a separation of the widely different time scales, the rapid time scale is included in

the time evolution of the density matrix, whereas the slow time scale is associated with op-

erators. The Bogoliubov transformation that relates the “in” to the “out” states relates the

Schroedinger picture density matrix in the “in” basis to the “out” basis. Off-diagonal density

matrix elements in the “out” basis feature fast dephasing on short time scales ≃ 1/m, leading

to decoherence and information loss, effectively reducing the density matrix to a diagonal

form in this basis, and consequently to a non-vanishing von Neumann entropy. This rapid

dephasing and decoherence in the density matrix is a direct manifestation of the interference

terms in the energy momentum tensor in the out basis and the emergence of its kinetic fluid

form.

We show that because gravitational production results in correlated particle-antiparticle

pairs, the von Neumann entropy resulting from dephasing and decoherence is precisely the

entanglement entropy obtained by tracing the density matrix over one member of the pairs.

Remarkably, the entanglement entropy is similar to the quantum kinetic expression in terms

of the distribution function with noteworthy differences arising from the intrinsic pair cor-

relations in the out states. We find that the comoving entropy density in terms of the
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distribution function of produced particles, Nk, is given by

S = ± 1

2π2

∫ ∞

0

k2
{
(1±Nk) ln(1±Nk)∓Nk lnNk

}
dk ,

where (+) is for real or complex bosons and (−) is for each spin/helicity of Dirac or Majo-

rana fermions. If the “out” states were independent particles and/or antiparticles, complex

bosons and Dirac fermions would have twice the number of degrees of freedom of real bosons

and Majorana fermions and the entropy would feature an extra factor 2 when particles are

different from antiparticles. The fact that the entropy is the same regardless of whether

particles are the same as antiparticles or not is a consequence of the pair correlations of the

“out” state. These pairs are entangled in momentum (and spin/helicity for fermions), trac-

ing out any member of the pair yields the same entanglement entropy regardless of whether

the member is a particle or an antiparticle. Therefore, the von Neumann-entanglement-

entropy and the kinetic fluid form of the energy momentum are all a direct consequence of

decoherence of the density matrix in the out basis by dephasing.

We discuss the role of the “out” particle basis as a privileged or “pointer” basis, to describe

the statistical aspects of dark matter, it is preferred by the measurement of the properties

of dark matter “particles”.

For a minimally coupled ultra light scalar field gravitational production yields a distri-

bution function that is strongly peaked in the infrared[226]. In this case we find that the

specific entropy (entropy per particle) is vanishingly small, this is a hallmark of a condensed

phase albeit with a vanishing expectation value of the field. For fermionic dark matter, the

distribution function is nearly thermal[103] and the specific entropy is O(1) in agreement

with a nearly thermal (but cold) dark matter candidate.

Although we have studied the origin of entropy within these two specific examples, we

argue that the emergence of entropy in the production of dark matter from the time evolution

of an initial pure state is more generally valid and the mechanism of decoherence by dephasing

is common to several alternative proposed mechanisms of particle production in cosmology.

We note that cosmological particle production and entanglement entropy have previously

been considered for inflationary perturbations[195, 194, 196, 111, 110, 108, 265, 101], in

cosmological particle production[268], and as scenarios of quantum information concepts
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applied to model cosmologies[278, 54, 188, 275]. However, to the best of our knowledge the

origin of entropy has not yet been addressed for non-adiabatic gravitational production of

dark matter during inflation followed by a post inflation radiation dominated cosmology,

which is the focus of our study.

For self-consistency, completeness and continuity of presentation, sections (5.3) and (5.4)

include some of the most relevant technical aspects that are discussed in greater detail in

refs.([226, 103]).

5.2 Preliminaries:

We consider a similar cosmological setting as in refs.[226, 103], namely a spatially flat

Friedmann-Robertson-Walker cosmology in conformal time η with metric

gµν(η) = a2(η) diag(1,−1,−1,−1) . (5.2.1)

The assumptions adopted from these references are: i:) the dark matter particle only inter-

acts with gravity but no other degrees of freedom and the dark matter field does not develop

an expectation value, ii:) instantaneous transition from inflation to a post-inflation radiation

dominated era, motivated by the consideration of modes that are super-Hubble at the end

of inflation, iii:) we take the cosmological dynamics as a background : during inflation it is

determined by the inflaton field, and during radiation domination (RD) by the more than

≃ 100 degrees of freedom of the (SM) (and beyond), iv:) we take all dark matter fields to

be in their (Bunch-Davies) vacuum state during inflation.

The inflationary stage is described by a de Sitter space time (thereby neglecting slow roll

corrections) with a scale factor

a(η) = − 1

HdS(η − 2ηR)
, (5.2.2)

where HdS is the Hubble constant during de Sitter and ηR is the (conformal) time at which

the de Sitter stage transitions to the (RD) stage.
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During the (RD) stage

H(η) =
1

a2(η)

da(η)

dη
= 1.66

√
geff

T 2
0

MPl a2(η)
, (5.2.3)

where geff is the effective number of ultrarelativistic degrees of freedom, which varies in time

as different particles become non-relativistic. We take geff = 2 corresponding to radiation

today. As discussed in references [226, 103] by taking geff = 2 for a fixed dark matter particle

mass, one obtains a lower bound on the (DM) abundance and equation of state, differing by

a factor of O(1) from the abundance if the (RD) era is dominated only by (SM) degrees of

freedom. This discrepancy is not relevant for our study on the origin of entropy.

With this approximation the scale factor during radiation domination is given by

a(η) = HR η , (5.2.4)

with

HR = H0

√
ΩR ≃ 10−35 eV , (5.2.5)

and matter radiation equality occurs at

aeq =
ΩR

ΩM

≃ 1.66 × 10−4 . (5.2.6)

The result (5.2.5) corresponds to the value of the fraction density ΩR today, thereby

neglecting the change in the number of degrees of freedom contributing to the radiation

density fraction. For geff effective ultrarelativistic degrees of freedom, eqn. (5.2.5) must

be multiplied by
√
geff/2. However, as discussed in references[226, 103] accounting for

ultrarelativistic degrees of freedom of the (SM) at the time of the transition between inflation

and (RD) modifies the final abundance by a factor of O(1) and affects the entropy only at

a quantitative level by factors of O(1).

We require that the scale factor and the Hubble rate be continuous across the transition

from inflation to (RD) at conformal time ηR, and assume (self-consistently) that the tran-

sition occurs deep in the (RD) era so that a(ηR) = HR ηR ≪ aeq. Continuity of the scale

factor and Hubble rate at the instantaneous reheating time results in that the energy density

is continuous at the transition[226, 103].
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Using H(η) = a′(η)/a2(η), continuity of the scale factor and Hubble rate at ηR imply

that

adS(ηR) =
1

HdS ηR
= HR ηR ; HdS =

1

HR η2R
, (5.2.7)

yielding

ηR =
1√

HdS HR

. (5.2.8)

Constraints from Planck[26] on the tensor-to-scalar ratio yield the following upper bound

on the scale of inflation HdS,

HdS/MPl < 2.5× 10−5 (95%)CL . (5.2.9)

We take as a representative value HdS = 1013GeV, from which it follows that

adS(ηR) = HR ηR =

√
HR

HdS

≃ 10−28 ≪ aeq , (5.2.10)

consistently with our assumption that the transition from inflation occurs deep in the (RD)

era.

With HdS ≃ 1013GeV, HR ≃ 10−35 eV it follows that ηR ≃ 106/(eV). In our analysis

we will consider solely modes that are super-Hubble at the end of inflation, namely with

comoving wavevectors k such that

k ηR ≪ 1 , (5.2.11)

corresponding to comoving wavelengths λ ≫ fewmts. Therefore, all scales of cosmological

relevance today correspond to super-Hubble wavelengths at the end of inflation.

The consideration of solely super-Hubble modes provides an a priori justification for the

assumption of an instantaneous transition from inflation to (RD). These modes feature very

slow dynamics and in principle are causally disconnected from microphysical processes, such

as collisional thermalization, occurring on sub-Hubble scales. These considerations suggest

that these cosmologically relevant modes are insensitive to the reheating dynamics post-

inflation, thereby bypassing the model dependence of reheating mechanisms[30, 34] and the

rather uncertain dynamics of thermalization of (SM) degrees of freedom, which depends on

couplings and non-equilibrium aspects.
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5.3 Complex Scalar Fields

We begin by considering an ultra light complex scalar field ϕminimally coupled to gravity,

generalizing the study in ref.[226]. The action in comoving coordinates is given by

S =

∫
d3xdt

√−g
{
∂ ϕ†

∂t

∂ ϕ

∂t
− 1

a2
∇ϕ†∇ϕ−m2 ϕ† ϕ

}
. (5.3.1)

Changing coordinates to conformal time η with metric (5.2.1), conformally rescaling the

scalar field

ϕ(x⃗, η) =
χ(x⃗, η)

a(η)
, (5.3.2)

and after discarding a total surface term the action becomes

S =

∫
d3xdη

{
χ† ′

χ′ −∇χ†∇χ−M2(η)χ†χ

}
(5.3.3)

where ′ ≡ d
dη

, and

M2(η) = m2a2(η)− a′′(η)

a(η)
. (5.3.4)

Quantization of the complex scalar field in a comoving volume V is achieved by writing

χ(x⃗, η) =
1√
V

∑
k⃗

[
ak⃗ gk(η) e

−ik⃗·x⃗ + b†
k⃗
g∗k(η) e

ik⃗·x⃗
]
, (5.3.5)

where the mode functions gk(η) obey the equations of motion

g
′′

k (η) +
[
k2 +m2 a2(η)− a′′(η)

a(η)

]
gk(η) = 0 , (5.3.6)

and satisfy the Wronskian conditions

g
′

k(η) g
∗
k(η)− gk(η) g

′∗
k(η) = −i , (5.3.7)

which imply canonical commutation relations for the annihilation and creation operators in

the expansion (5.3.5).
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5.3.1 “In-out” states, adiabatic mode functions and particle states.

The mode equation (5.3.6) can be written in the more familiar form as

− d2

dη2
gk(η) + V (η)gk(η) = k2gk(η) ; V (η) = −m2a2(η) +

a′′(η)

a(η)
, (5.3.8)

namely a Schroedinger equation for a wave function gk with a potential V (η) and “energy”

k2. The potential V (η) and/or its derivative are discontinuous at the transition ηR; however

gk(η) and g′k(η) are continuous at ηR. Defining

gk(η) =

{
g<k (η) ; for ; η < ηR

g>k (η) ; for ; η > ηR
, (5.3.9)

the matching conditions are

g<k (ηR) = g>k (ηR)

d

dη
g<k (η)

∣∣∣
ηR

=
d

dη
g>k (η)

∣∣∣
ηR
. (5.3.10)

As discussed in ref.[226] these continuity conditions on the mode functions, along with

the continuity of the scale factor and Hubble rate ensure that the energy density is continuous

at the transition from inflation to (RD).
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5.3.1.1 Inflationary stage:

We consider that the (DM) scalar field is in the Bunch-Davies vacuum state during the

inflationary stage, which corresponds to the mode functions gk(η) fulfilling the boundary

condition

gk(η) −−−−−→
η→−∞

e−ikη√
2k

, (5.3.11)

and the Bunch-Davies vacuum state |0I⟩ is such that

ak⃗ |0I⟩ = 0 ; bk⃗ |0I⟩ = 0 ∀k⃗ . (5.3.12)

We refer to this vacuum state as the in vacuum.

During the de Sitter stage (η < ηR), with the scale factor given by eqn. (5.2.2), the mode

equation becomes
d2

dτ 2
g<k (τ) +

[
k2 − ν2 − 1/4

τ 2

]
g<k (τ) = 0 , (5.3.13)

where

τ = η − 2ηR ; ν2 =
9

4
− m2

H2
dS

. (5.3.14)

The solution with the boundary condition (5.3.11) fulfilling the Wronskian condition (5.3.7)

is given by

g<k (τ) =
1

2

√
−πτ eiπ2 (ν+1/2)H(1)

ν (−kτ) (5.3.15)

where H(1)
ν is a Hankel function. For ultra light dark matter with the correct abundance,

the result of ref.[226] yields m ≃ 10−5 (eV), therefore, with HdS ≃ 1013GeV it follows that

m/HdS ≪ 1, hence we can take ν = 3/2, yielding

g<k (τ) =
e−ikτ√
2k

[
1− i

kτ

]
. (5.3.16)

As mentioned in the previous section, we consider only comoving wavelengths that are

well outside the Hubble radius at the end of inflation, namely fulfilling the condition (5.2.11),

these describe all the relevant astrophysical scales today.

In summary, the “in” state is the Bunch-Davies vacuum defined by equation (5.3.12) and

the mode functions (5.3.16) during the de Sitter inflationary stage.
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5.3.1.2 Radiation dominated era:

During the radiation era for η > ηR, with a(η) = HRη we set a′′ = 0, and the mode

equation (5.3.6) becomes

d2

dη2
g>k (η) +

[
k2 +m2H2

R η
2
]
g>k (η) = 0 , (5.3.17)

the general solutions of which are linear combinations of parabolic cylinder functions[226,

209, 15, 293, 70, 276]. As “out” boundary conditions, we consider particular solutions that

describe asymptotically positive frequency “particle” states, their complex conjugate describe

antiparticles. This identification relies on a Wentzel-Kramers-Brillouin (WKB) form of the

asymptotic mode functions.

Let us consider a particular solution of (5.3.17) of the WKB form[89]

fk(η) =
e
−i

∫ η
ηR

Wk(η
′) dη′√

2Wk(η)
. (5.3.18)

Upon inserting this ansatze in the mode equation (5.3.17) one finds that Wk(η) obeys

W 2
k (η) = ω2

k(η)−
1

2

[
W

′′

k (η)

Wk(η)
− 3

2

(
W

′

k(η)

Wk(η)

)2]
, (5.3.19)

where

ω2
k(η) = k2 +m2H2

R η
2 . (5.3.20)

When ωk(η) is a slowly-varying function of time the WKB eqn. (6.2.24) may be solved

in a consistent adiabatic expansion in terms of derivatives of ωk(η) with respect to η divided

by appropriate powers of the frequency, namely

W 2
k (η) = ω2

k(η)

[
1− 1

2

ω
′′

k (η)

ω3
k(η)

+
3

4

(
ω

′

k(η)

ω2
k(η)

)2

+ · · ·
]
. (5.3.21)

We refer to terms that feature n-derivatives of ωk(η) as of n-th adiabatic order. During the

time interval of rapid variations of the frequencies the concept of particle is ambiguous, but

at long time the frequencies evolve slowly and the concept of particle becomes clear[226].

We want to identify “particles” (dark matter “particles”) near the time of matter radiation

equality, so that entering in the matter dominated era when a(η) ≃ aeq ≃ 10−4, we can

extract the energy momentum tensor associated with these particles.
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The condition of adiabatic expansion relies on the ratio

ω
′

k(η)

ω2
k(η)

≪ 1 . (5.3.22)

An upper bound on this ratio is obtained in the very long wavelength (superhorizon) limit,

taking ωk(η) = ma(η), in a (RD) cosmology the adiabaticity condition (5.3.22) leads to

a′(η)

ma2(η)
=

HR

ma2(η)
≪ 1 =⇒ a(η) ≫ 10−17√

m/(eV )
. (5.3.23)

Therefore, for m ≃ 10−5 eV corresponding to a(η) ≃ 10−14 there is a long period of non-

adiabatic evolution since the end of inflation a(ηR) ≃ 10−29 ≪ 10−14, during which the ωk(η)

varies rapidly. However, even for an ultra-light particle with m ≃ 10−5 (eV) the adiabaticity

condition is fulfilled well before matter-radiation equality.

The adiabaticity condition (5.3.23) has an important physical interpretation. Since

a′/a2 = H(t) = 1/dH(t) is the Hubble expansion rate with dH the Hubble radius (both

in comoving time) it follows that the condition (5.3.23) implies that

H(t)

m
≪ 1 or

λc
dH(t)

≪ 1 , (5.3.24)

where λc is the Compton wavelength of the particle. During radiation or matter domination

dH(t) is proportional to the physical particle horizon, therefore the adiabaticity condition

is the statement that the Compton wavelength of the particle is much smaller than the

physical particle horizon. The adiabaticity condition becomes less stringent for k ≫ ma(η),

in which case it implies that the comoving de Broglie wavelength is much smaller than the

particle horizon. The evolution of the mode functions is non-adiabatic during inflation and

for a period after the transition to (RD)[226, 103], but becomes adiabatic well before matter

radiation equality.

During the adiabatic regime the WKB mode function (6.2.23) asymptotically becomes

fk(η) →
e−i

∫ η ωk(η
′) dη′√

2ωk(η)
. (5.3.25)

We refer to the mode functions with this asymptotic boundary condition that fulfill the

Wronskian condition
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f
′

k(η) f
∗
k (η)− fk(η) f

′∗
k (η) = −i , (5.3.26)

as “out” particle states. As discussed in refs.[226, 103] this criterion is the closest to the

particle characterization in Minkowski space-time.

The general solution of equation (5.3.17) is a linear combination

g>k (η) = Ak fk(η) +Bk f
∗
k (η) , (5.3.27)

where fk(η) are the solutions of the mode equation (5.3.17) with the asymptotic bound-

ary conditions (6.2.21) and Ak and Bk are Bogoliubov coefficients. Since g>k (η) obeys the

Wronskian condition (5.3.7) and so does fk(η), it follows that the Bogoliubov coefficients

obey

|Ak|2 − |Bk|2 = 1 . (5.3.28)

Using the Wronskian condition (5.3.26) and the matching condition (5.3.10), the Bogoli-

ubov coefficients are determined from the following relations,

Ak = i
[
g

′<
k (ηR) f

∗
k (ηR)− g<k (ηR) f

′ ∗
k (ηR)

]
Bk = −i

[
g

′<
k (ηR) fk(ηR)− g<k (ηR) f

′

k(ηR)
]
. (5.3.29)

Since the mode functions g<k (η) also fulfill the Wronskian condition (5.3.7), it is straightfor-

ward to confirm the identity (5.3.28).

For η > ηR the field expansion (5.3.5) yields

χ(x⃗, η) =
1√
V

∑
k⃗

[
ak⃗ g

>
k (η) e

ik⃗·x⃗+b†
k⃗
g∗>k (η) e−ik⃗·x⃗

]
=

1√
V

∑
k⃗

[
ck⃗ fk(η) e

ik⃗·x⃗+d†
k⃗
f ∗
k (η) e

−ik⃗·x⃗
]
,

(5.3.30)

where

ck⃗ = ak Ak + b†
−k⃗
B∗
k ; d†

k⃗
= b†

k⃗
A∗
k + a−k⃗ Bk . (5.3.31)

We refer to ck⃗, dk⃗ and c†
k⃗
, d†

k⃗
as the annihilation and creation operators of out particle and

antiparticle states respectively and the mode functions fk(η) as defining the out basis. These

operators obey canonical quantization conditions as a consequence of the relation (5.3.28) and
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are time independent because the mode functions fk(η) are exact solutions of the equations

of motion. The expectation values of bilinears in c, d in the Bunch-Davies vacuum state |0I⟩
(5.3.12) are obtained from the relations (5.3.31), we find

⟨0I | c†k⃗ ck⃗′ |0I⟩ = |Bk|2 δk⃗,⃗k′ ; ⟨0I | d†k⃗ dk⃗′ |0I⟩ = |Bk|2 δk⃗,⃗k′ ; ⟨0I | c†k⃗ d
†
−k⃗′

|0I⟩ = Bk A
∗
k δk⃗,⃗k′

(5.3.32)

with all others vanishing. In particular the number of out-particles and anti-particles are

given by

Nk = ⟨0I | c†k⃗ ck⃗ |0I⟩ = |Bk|2 = Nk = ⟨0I | d†k⃗ dk⃗ |0I⟩ . (5.3.33)

We identify Nk = Nk with the number of dark matter particles and antiparticles produced

asymptotically from cosmic expansion. Gravitational production yields the same number of

particles as antiparticles. Only in the asymptotic adiabatic regime can Nk be associated

with the number of particles (for a more detailed discussion on this point see ref.[226]).

It remains to obtain the solutions fk(η) of the mode equations (5.3.17) with asymptotic

“out” boundary condition (6.2.21) describing asymptotic particle states.

It is convenient to introduce the dimensionless variables

x =
√

2mHR η ; α = − k2

2mHR

, (5.3.34)

in terms of which the equation (5.3.17) becomes Weber’s equation[15, 293, 70, 276]

d2

dx2
f(x) +

[x2
4

− α
]
f(x) = 0 . (5.3.35)

The solution that satisfies the Wronskian condition (5.3.26) and features the asymptotic

“out-state” behavior (6.2.21) with ω2
k(η) =

x2

4
− α, has been obtained in ref.([226]) in terms

of Weber’s function W [α;x][209, 15, 293]. It is given by

fk(η) =
1

(8mHR)1/4

[ 1√
κ
W [α;x]− i

√
κW [α;−x]

]
; κ =

√
1 + e−2π|α| − e−π|α| . (5.3.36)

The Bogoliubov coefficients are obtained from eqns. (5.3.29), where the mode functions

during the de Sitter era, g<k (η), are given by eqn. (5.3.16) (with τ = η − 2ηR). Here we just

quote the result for |Bk|2 referring the reader to [226] for details. In terms of the variable

z =
k

[2mHR]1/2
, (5.3.37)
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it is given by

Nk = |Bk|2 ≃
1

16
√
2

(
HdS

m

)2
D(z)

z3
. (5.3.38)

where

D(z) =
√

1 + e−2πz2

∣∣∣∣∣Γ
(

1
4
− i z

2

2

)
Γ
(

3
4
− i z

2

2

)∣∣∣∣∣ . (5.3.39)

This function is analyzed in ref.[226] but the only properties that are relevant for our dis-

cussion are that D(0) ≃ 4.2 and that D(z) →
√
2/z for z ≫ 1. The infrared enhancement

of Nk ∝ 1/k3 and the prefactor HdS/m ≫ 1 are both consequences of a minimally coupled

light scalar field during inflation[226] and results in a distribution function that is strongly

peaked with Nk ≫ 1 for z ≪
√
HdS/m.

5.3.2 Heisenberg vs. adiabatic Schrodinger pictures

In the adiabatic regime the mode functions fk(η) with “out” boundary conditions can be

written as

fk(η) =
e−i

∫ η ωk(η
′)dη′√

2ωk(η)
Fk(η) ; f ′

k(η) = −iωk(η)
e−i

∫ η ωk(η
′)dη′√

2ωk(η)
Gk(η) , (5.3.40)

where

Fk(η) = e−i (ξ
(1)(η)+ξ(2)(η)+··· )

[
1 + F (1)

k (η) + F (2)
k (η) + · · ·

]
, (5.3.41)

Gk(η) = e−i (ξ
(1)(η)+ξ(2)(η)+··· )

[
1 + G(1)

k (η) + G(2)
k (η) + · · ·

]
. (5.3.42)

The functions ξ(n) are real, and ξ(n) ; F (n)
k ; G(n) are of n-th adiabatic order and vanish in

the asymptotic long time limit. During the adiabatic regime ξ(n) ; F(η) ; G(η) are slowly

varying functions of η, whereas the phase e−i
∫ η ωk(η

′)dη′ varies rapidly during a Hubble time.

To appreciate this latter point more clearly, consider the k = 0 case for which the phase

is given in comoving time by mt ≃ m/H(η) = ma2/a′ ≫ 1, were the last equality follows

from the adiabaticity condition (5.3.23) during (RD). The important point is that during the

adiabatic regime there is a wide separation of time scales: the expansion time scale 1/H(t)

is much longer than the microscopic time scale 1/m, namely H(t)/m≪ 1 which is precisely

the adiabaticity condition.
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This important point is at the heart of decoherence of the density matrix by dephasing

discussed below.

With the slow-fast expansion of the out basis modes (5.3.40) the expansion of the complex

field (5.3.30) in this basis in the Heisenberg representation is given by

χ(x⃗, η) =
∑
k⃗

1√
2ωk(η)V

[
ck⃗ Fk(η) e

−i
∫ η
ηi
ωk(η

′)dη′
eik⃗·x⃗ + d†

k⃗
F∗
k (η) e

i
∫ η
ηi
ωk(η

′)dη′
e−ik⃗·x⃗

]
,

(5.3.43)

where ηi is some (arbitrary) early scale but well within the adiabatic regime. We note that

a change of ηi may be absorbed into a canonical transformation of ck⃗, dk⃗. Let us introduce

the zeroth order adiabatic Hamiltonian in the out basis

H0(η) =
∑
k⃗

[
c†
k⃗
ck⃗ + d†

k⃗
dk⃗

]
ωk(η) . (5.3.44)

It follows that

[H0(η), ck⃗] = −ωk(η) ck⃗ ; [H0(η), dk⃗] = −ωk(η) dk⃗ . (5.3.45)

Although H0(η) depends explicitly on time, it fulfills

[H0(η), H0(η
′)] = 0 ∀η, η′ . (5.3.46)

Therefore, associated with H0 we introduce the unitary time evolution operator

U0(η, ηi) = e
−i

∫ η
ηi
H0(η′) dη′ , (5.3.47)

and from the commutation relations (5.3.45) it follows that

U−1
0 (η, ηi) ck⃗ U0(η, ηi) = ck⃗ e

−i
∫ η
ηi
ωk(η

′)dη′
; U−1

0 (η, ηi) dk⃗ U0(η, ηi) = dk⃗ e
−i

∫ η
ηi
ωk(η

′)dη′
.

(5.3.48)

We can now write the Heisenberg picture field operator in the out basis (5.3.43) as

χ(x⃗, η) = U−1
0 (η, ηi) χS(x⃗, η) U0(η, ηi) , (5.3.49)

with the adiabatic Schroedinger picture field

χS(x⃗, η) =
∑
k⃗

1√
2ωk(η)V

[
ck⃗ Fk(η) e

ik⃗·x⃗ + d†
k⃗
F∗
k (η) e

−ik⃗·x⃗
]
. (5.3.50)

154



Similarly with the expansion (5.3.40) we find

χ′(x⃗, η) = U−1
0 (η, ηi) ΠS(x⃗, η) U0(η, ηi) , (5.3.51)

where

ΠS(x⃗, η) =
∑
k⃗

−i ωk(η)√
2ωk(η)V

[
ck⃗ Gk(η) eik⃗·x⃗ − d†

k⃗
G∗
k(η) e

−ik⃗·x⃗
]
. (5.3.52)

This is the Schroedinger picture version of the adiabatic expansion, χS(x⃗, η) ; ΠS(x⃗, η)

evolve slowly, on time scales ≃ 1/H(t) in the adiabatic regime, whereas the exponential

phases evolve fast, on time scales 1/m.

In the Heisenberg picture operators depend on time but states and the density matrix

do not. Consider a Heisenberg picture operator O(x⃗, η) and its expectation value in the

Bunch-Davis “in” state |0I⟩,

⟨0I | O(x⃗, η) |0I⟩ = ⟨0I |U−1
0 (η, ηi) OS(x⃗, η) U0(η, ηi) |0I⟩ ≡ Tr

[
ρS(η) OS(x⃗, η)

]
, (5.3.53)

where we have introduced the adiabatic Schroedinger picture density matrix

ρS(η) = U0(η, ηi) |0I⟩ ⟨0I |U−1
0 (η, ηi) . (5.3.54)

Obviously this density matrix describes a pure state since ρ2S(η) = ρS(η). This adiabatic

Schroedinger picture effectively separates the fast time evolution, now encoded in the density

matrix, from the slow time evolution of the field operators OS(x⃗, η).

In Minkowski space time the Schroedinger picture operators OS(x⃗, η) do not evolve in

time whereas the states and the density matrix evolves in time with the usual time evolution

operator e−iHt. During the adiabatic regime in (RD) cosmology the equivalent Schroedinger

picture operators feature a slow residual adiabatic time evolution on the time scales of

cosmological expansion.
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5.3.3 Energy Momentum Tensor

For a minimally coupled complex scalar field, the energy momentum tensor is given by

Tµν = ∂µϕ
†∂νϕ+ ∂νϕ

†∂µϕ− gµν
[
gαβ∂αϕ

†∂βϕ−m2|ϕ|2
]
. (5.3.55)

In conformal time and after the conformal rescaling of the field (5.3.2) we find ( space-

time arguments are implicit)

T 0
0 =

1

a4

[
(χ′ − a′

a
χ)†(χ′ − a′

a
χ) +∇χ† · ∇χ+m2a2|χ|2

]
, (5.3.56)

along with

T µµ =
2

a4

[
2m2a2|χ|2 − (χ′ − a′

a
χ)†(χ′ − a′

a
χ) +∇χ† · ∇χ

]
. (5.3.57)

The Bunch-Davies “in” vacuum state is homogeneous and isotropic therefore the expectation

value of the energy momentum tensor in this state features the ideal fluid form ⟨0I |T µν |0I⟩ =
diag

(
ρ(η),−P (η),−P (η),−P (η)

)
. It proves convenient to extract the homogeneous and

isotropic components of the energy momentum tensor as an operator, this is achieved by its

averaging over the comoving volume V , namely

1

V

∫
d3xT 0

0 (x⃗, η) = ρ̂(η) ;
1

V

∫
d3xT µµ (x⃗, η) = ρ̂(η)− 3 P̂ (η) , (5.3.58)

where the hat refers to the operator. Since we are interested in the energy momentum tensor

near matter radiation equality well within the adiabatic regime, we obtain these volume

averages by implementing two steps: i:) the field χ is written in the “out” basis, namely in

terms of the mode functions fk(η) as in eqn. (5.3.30), ii:) these mode functions are written

by separating the slow and fast parts as in eqns. (5.3.40,5.3.43), we find
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ρ̂(η) =
1

2V a4(η)

∑
k⃗

{[
1 + c†

k⃗
ck⃗ + d†

k⃗
dk⃗

][(
|F|2 + |G|2

)
ωk(η)

− i
(a′
a

)(
G∗F − G F∗

)
+
(a′
a

)2 |F|2
ωk(η)

]

+ c†
k⃗
d†
−k⃗
e
2i

∫ η
ηi
ωk(η

′) dη′

[
ωk(η)

(
F∗2 − G∗2

)
− 2i

(a′
a

)(
F G

)∗
+
(a′
a

)2 F∗2

ωk(η)

]

+ ck⃗ d−k⃗ e
−2i

∫ η
ηi
ωk(η

′) dη′

[
ωk(η)

(
F2 − G2

)
+ 2i

(a′
a

)(
F G

)
+
(a′
a

)2 F2

ωk(η)

]}
,

(5.3.59)

and

ρ̂(η)− 3 P̂ (η) =
1

V a4(η)

∑
k⃗

{(
1 + c†

k⃗
ck⃗ + d†

k⃗
dk⃗

)[m2a2(η)

ωk(η)
|F|2

+ ωk(η)
(
|F|2 − |G|2

)
+ i
(a′
a

)(
G∗F − G F∗

)
−
(a′
a

)2 |F|2
ωk(η)

]

+ c†
k⃗
d†
−k⃗
e
2i

∫ η
ηi
ωk(η

′) dη′

[
F∗2

ωk

(
m2a2 + ω2

k

)
− 1

ωk

(
iω G∗ − a′

a
F∗
)2]

+ ck⃗ d−k⃗ e
−2i

∫ η
ηi
ωk(η

′) dη′

[
F2

ωk

(
m2a2 + ω2

k

)
− 1

ωk

(
− iω G − a′

a
F
)2]}

.

(5.3.60)

The expectation values of these operators in the “in” vacuum state are readily obtained

from equations (5.3.32).

These expressions show explicitly that the contributions that are diagonal in the “out”

basis, namely, c†c ; d†d are slowly varying, whereas the off-diagonal terms c d ; , c†d† exhibit

the fast varying phases. These rapidly varying terms are a consequence of the interference

between particle and antiparticle “out” states, similar to the phenomenon of zitterbewegung,

and average out over time scales ≳ 1/m leaving only the diagonal contributions to the energy
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density and pressure[226]. The energy momentum tensor, as an operator, can also be written

passing to the adiabatic Schroedinger picture as

T µν(x⃗, η) = U−1
0 (η, ηi)T

µν
S (x⃗, η)U0(η, ηi) , (5.3.61)

where U0(η, ηi) is the time evolution operator (5.3.47) removing the fast varying phases in

(5.3.59,5.3.60), and T µνS (x⃗, η) is the adiabatic Schroedinger picture operator with slow time

evolution in the adiabatic regime. In terms of the adiabatic Schroedinger picture density

matrix (5.3.54), it follows that

⟨0I |T µν(x⃗, η) |0I⟩ = Tr
[
ρS(η)T

µν
S (x⃗, η)

]
. (5.3.62)

The rapidly varying phases in the particle-antiparticle interference terms in the “out” basis in

(5.3.59,5.3.60) suggest that the off diagonal elements of the density matrix ρS(η) in the “out”

basis will also feature these rapidly varying phases from particle-antiparticle interference,

which average out on time scales ≳ 1/m. This averaging suggests a process of decoherence

by dephasing, which is analyzed in detail in the next section.

5.3.4 Decoherence of the density matrix: von Neumann and entanglement en-

tropy

The ‘in” Bunch-Davies vacuum state can be written in terms of the Fock states of the

“out” basis as

|0I⟩ = Πk⃗

∞∑
n
k⃗
=0

Cn
k⃗
(k)

∣∣nk⃗;nk⃗〉 ; Cn
k⃗
(k) =

(
e2iφ−(k) tanh(θk)

)n
k⃗

cosh(θk)
, (5.3.63)

with

|Bk|2 = sinh2(θk) = Nk ; |Ak|2 = cosh2(θk) ; tanh2(θk) =
Nk

1 +Nk

, (5.3.64)

and

e2iφ−(k) tanh(θk) =
B∗
k

A∗
k

, (5.3.65)
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and the correlated Fock pair states

∣∣nk⃗;n−k⃗
〉
=

(
c†
k⃗

)n
k⃗√

nk⃗ !

(
d†
−k⃗

)n
k⃗√

nk⃗ !
|0O⟩ ; nk⃗ = 0, 1, 2 · · · , (5.3.66)

where the “out” vacuum state |0O⟩ is such that

ck⃗ |0O⟩ = dk⃗ |0O⟩ = 0 . (5.3.67)

We note that the Fock pair states (5.3.66) are eigenstates of the pair number operator

N̂k⃗ =
∞∑

m
k⃗
=0

mk⃗

∣∣mk⃗;m−k⃗
〉 〈
mk⃗;m−k⃗

∣∣ , (5.3.68)

with

N̂k⃗

∣∣nk⃗;n−k⃗
〉
= nk⃗

∣∣nk⃗;n−k⃗
〉

; nk⃗ = 0, 1, 2 · · · . (5.3.69)

In this “out” basis and in the adiabatic regime prior to matter-radiation equality, the

density matrix in the Schroedinger picture (5.3.54) becomes

ρS(η) = Πk⃗Πp⃗

∞∑
n
k⃗
=0

∞∑
mp⃗=0

C∗
mp⃗

(p) Cn
k⃗
(k)

∣∣nk⃗;n−k⃗
〉
⟨mp⃗;m−p⃗| e

2i
∫ η
ηi

[
mp⃗ ωp(η′)−nk⃗

ωk(η
′)

]
dη′

.

(5.3.70)

The diagonal density matrix elements both in momentum and number of particles, namely

k⃗ = p⃗ ; mp⃗ = nk⃗ are time independent, these describe the “populations”, whereas the off-

diagonal elements describe the coherences. These latter matrix elements vary rapidly in time

and average out over time scales ≫ 1/m. To see this aspect more clearly, and recognizing

that ∫ η

ωk(η
′)dη′ =

∫ t

Ek(t
′)dt′ ; Ek(t) =

√
k2

a2(t)
+m2 (5.3.71)

let us consider the average

1

(tf − ti)

∫ tf

ti

e
2i

∫ t

[
mp⃗ Ep(t′)−nk⃗

Ek(t
′)

]
dt′

dt ; m(tf − ti) ≫ 1 . (5.3.72)

For example for p⃗ = k⃗ = 0 and m(tf − ti) ≫ 1 the integral yields δm0⃗,n0⃗
. Taking the interval

tf − ti of the order of the Hubble time ≃ 1/H(t), in the adiabatic regime with H(t)/m≪ 1

the integral yields ≃ H/m ≪ 1 for m0⃗ ̸= n0⃗ and O(1) for m0⃗ = n0⃗. Therefore, the rapidly
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varying phases effectively average out the coherences over time scales ≃ 1/m ≪ 1/H(t)

projecting the density matrix to the diagonal elements in the “out” basis.

In summary: the rapid dephasing of the off-diagonal matrix elements in the out basis

in the adiabatic regime average these contributions on time scales of order 1/m which are

much shorter than the expansion time scale (Hubble scale) in the adiabatic regime. The

rapid dephasing leads to decoherence in the “out” basis, the time averaging is tantamount to

a coarse graining over short time scales leaving effectively a diagonal density matrix in this

basis, describing a mixed state that evolves slowly on the long time scale,

ρ
(d)
S = Πk⃗

[
1− tanh2(θk)

] ∞∑
n
k⃗
=0

(
tanh2(θk)

)n
k⃗ ∣∣nk⃗;n−k⃗

〉 〈
nk⃗;n−k⃗

∣∣ . (5.3.73)

This density matrix is diagonal in the Fock “out” basis of correlated –entangled– particle-

antiparticle pairs, and in k⃗ space, with the diagonal matrix elements representing the prob-

abilities. We note that Tr ρ
(d)
S = 1. The entropy associated with this mixed state can

be calculated simply by establishing contact between the density matrix ρ
(d)
S and that of

quantum statistical mechanics in equilibrium described by a fiducial Hamiltonian

Ĥ =
∑
k⃗

Ek N̂k⃗ , (5.3.74)

with N̂k⃗ the pair number operator (5.3.68) with eigenvalues nk⃗ = 0, 1, 2 · · · , and the fiducial

energy

Ek = − ln
[
tanh2(θk)

]
. (5.3.75)

This fiducial Hamiltonian is diagonal in the correlated basis of particle-antiparticle pairs,

therefore we identify

ρ
(d)
S =

e−Ĥ

Z ; Z = Tr e−Ĥ ≡ e−F , (5.3.76)

with F the fiducial free energy, and

Z = Πk⃗Zk⃗ ; Zk⃗ =
1[

1− e−Ek
] =

1[
1− tanh2(θk)

] . (5.3.77)

Obviously the matrix elements of (5.3.76) in the pair basis are identical to those of (5.3.73).
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The von Neumann entropy associated with this mixed state is

S(d) = −Tr ρ
(d)
S ln ρ

(d)
S . (5.3.78)

Since Ĥ is diagonal in the basis of the pair Fock states (5.3.66), so is ρ(d)S . The eigenvalues

of ρ(d)S are the probability for each state of nk⃗ pairs of momenta (k⃗;−k⃗), namely

Pk⃗;n
k⃗
=
e−Ek nk⃗

Zk⃗

;
∞∑

n
k⃗
=0

Pk⃗;n
k⃗
= 1 , (5.3.79)

therefore the von Neumann entropy is given by

S(d) = −
∑
k⃗

∞∑
n
k⃗
=0

Pk⃗;n
k⃗
lnPk⃗;n

k⃗
. (5.3.80)

This is equivalent to a simple quantum statistical mechanics problem. The relation

F = − lnZ = U − S(d) ; U = Trρ
(d)
S Ĥ , (5.3.81)

is a direct consequence of the expression (5.3.80) for S(d) and the normalized probabilities

Pk⃗;n
k⃗

given by (5.3.79). The entropy S(d) is obtained once the fiducial internal energy U is

found. It is easily shown to be given by the equivalent form in quantum statistical mechanics

U =
∑
k⃗

Ek
eEk − 1

. (5.3.82)

Using the identity (5.3.64) and recognizing the following relations

Ek = ln
[1 +Nk

Nk

]
;

1

eEk − 1
= Nk (5.3.83)

we find the von Neumann entropy

S(d) =
∑
k⃗

{
(1 +Nk) ln(1 +Nk)−Nk lnNk

}
. (5.3.84)
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5.3.5 Interpretation of S(d) entanglement entropy.

Consider the full density matrix ρS(η) eqn. (5.3.70). Although it describes a pure state,

in the out basis this state is a highly correlated, entangled state of pairs, because in this basis

the state |0I⟩ is not a simple product state. Because the members of the particle-anti-particle

pairs are correlated, projecting onto a state with nk⃗ antiparticles of momentum −k⃗ effectively

projects onto the state with nk⃗ particles with momentum k⃗. Therefore, consider obtaining

a reduced density matrix by tracing ρS(η) over the anti-particle states p. Because the states∣∣nk⃗;n−k⃗
〉
=
∣∣nk⃗〉 ∣∣n−k⃗

〉
such trace involves terms of the form (

∣∣nk⃗〉 ⟨mp⃗|) (⟨n−k⃗|m−p⃗⟩) =

(
∣∣nk⃗〉 ⟨mp⃗|) δk⃗,p⃗ δnk⃗

,mp⃗
thereby projecting on particle states diagonal both in number and

momentum. Therefore the rapidly varying phases in (5.3.70) vanish identically, yielding

ρ
(r)
S (η) = Trp ρS(η) = Πk⃗

[
1− tanh2(θk)

] ∞∑
n
k⃗
=0

(
tanh2(θk)

)n
k⃗ ∣∣nk⃗〉 〈nk⃗∣∣ . (5.3.85)

Note that because the density matrix (5.3.73) is diagonal in the basis of correlated pairs,

tracing over one member of the correlated pair, either the particle or the antiparticle keeps

the density matrix diagonal with the same probabilities. For example, tracing over the

antiparticles reduces (5.3.73) directly to (5.3.85) with the same eigenvalues, i.e. probabilities.

This observation is yet another manner to interpret the equivalence with the fiducial quantum

statistical mechanical example, now with the fiducial Hamiltonian

Ĥ(r) =
∑
k⃗

Ek N̂ (r)

k⃗
, (5.3.86)

with the reduced number operator

N̂ (r)

k⃗
=

∞∑
m

k⃗
=0

mk⃗

∣∣mk⃗

〉 〈
mk⃗

∣∣ , (5.3.87)

namely,

ρ
(r)
S =

e−Ĥ(r)

Z ; Z = Tr e−Ĥ(r) ≡ e−F , (5.3.88)

with the same Z and fiducial free energy F as for ρ(d)S eqn. (5.3.73). Hence ρ(r)S and ρ
(d)
S

feature the same eigenvalues and yield the same entropy.
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The von Neumann entropy associated with the reduced density matrix ρ(r)S (η), i.e.

S(r) = −Tr ρ
(r)
S ln ρ

(r)
S , (5.3.89)

is the entanglement entropy [292]. Therefore, we conclude that decoherence from rapid de-

phasing of the off diagonal density matrix elements results in a reduction of the density

matrix which is diagonal in the correlated pair basis. This reduction is identical to tracing

over one member of the correlated pair leading to the entanglement entropy. The equivalence

between the entropy resulting from dephasing and decoherence and the entanglement entropy

is no accident: it is a direct consequence of the entangled– correlated– particle-antiparticle

pairs in the out state and that after decoherence the density matrix is diagonal in this basis

of correlated pairs. Therefore the diagonal matrix elements, in other words the probabilities,

are exactly the same as when one of the members of the pairs is traced over, which yields

the entanglement entropy. The result (5.3.84) is remarkably similar to the quantum kinetic

form of the entropy in terms of the distribution function[83]. However, there is an important

difference: a complex scalar field has two degrees of freedom, corresponding to particles and

antiparticles, therefore if the out state were a superposition independent single particles and

antiparticles we would expect an extra overall factor 2 multiplying the von Neumann entropy

(5.3.84) because of the two independent degrees of freedom. The reason for this discrepancy

is that the density matrix is diagonal in the basis of particle-antiparticle correlated pairs,

not independent particles and antiparticles. Because of the pairing, for each pair there is

effectively only one degree of freedom, not two as would be the case for independent particles

and antiparticles. This is more evident in the identification of the von Neumann entropy

with the entanglement entropy which is obtained by tracing over one member of the pairs

either particle or antiparticle.

5.3.6 Energy density, pressure and entropy.

During the adiabatic regime and well before matter radiation equality, the decoherence

process via dephasing renders the time dependent density matrix in the Schroedinger picture
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diagonal in the “out” basis, namely ρ(d)S . With this density matrix we find

Tr c†
k⃗
ck⃗ ρ

(d)
S = Tr d†

k⃗
dk⃗ ρ

(d)
S = sinh2(θk) = Nk ,

Tr c†
k⃗
d†
−k⃗
ρ
(d)
S = Tr d−k⃗ ck⃗ ρ

(d)
S = 0 , (5.3.90)

from which we can now obtain the expectation value of the energy momentum tensor, given

by eqn. (5.3.62) with ρS(η) ≡ ρ
(d)
S . The non-vanishing contributions to the expectation

values of the expressions (5.3.59,5.3.60) are those with terms c†c, d†d, since the off-diagonal

terms of the density matrix ρ(d)S vanish.

Near matter radiation equality when the dark matter contribution begins to dominate,

the adiabatic approximation is very reliable, therefore we keep the leading order terms in

the adiabatic expansions (5.3.41,5.3.42), namely |F| = |G| = 1, yielding

ρ(η) = Tr ρ̂(η) ρ
(d)
S =

1

2π2 a4(η)

∫ ∞

0

k2
[
1 + 2Nk

]
ωk(η) dk , (5.3.91)

P (η) = Tr P̂ (η) ρ
(d)
S =

1

6π2 a4(η)

∫ ∞

0

k2
[
1 + 2Nk

] k2

ωk(η)
dk . (5.3.92)

These are precisely the kinetic fluid expressions obtained in ref.[226] after averaging over the

rapid phases in the interference terms. Therefore, this averaging in the energy momentum

tensor and the emergence of the kinetic fluid form in the adiabatic regime is a direct man-

ifestation of decoherence by dephasing in the density matrix, hence also directly related to

the emergence of entropy.

The “1” inside the brackets in (5.3.91,5.3.92) correspond to the zero point energy density

and pressure. As explained in detail in refs.[226], these zero point contributions are sub-

tracted by renormalization of the energy momentum tensor[117, 295, 190, 234, 38, 88, 220].

Therefore the contribution from gravitational particle-antiparticle production to the energy
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density, pressure and comoving entropy density S = S/V (V is comoving volume) of dark

matter are given by the kinetic-fluid forms

Npp =
1

π2

∫ ∞

0

k2Nk dk (5.3.93)

ρpp(η) =
1

π2 a4(η)

∫ ∞

0

k2Nk ωk(η) dk (5.3.94)

P pp(η) =
1

3π2 a4(η)

∫ ∞

0

k4

ωk(η)
Nk dk (5.3.95)

Spp =
1

2π2

∫ ∞

0

k2
[
(1 +Nk) ln[1 +Nk]−Nk lnNk

]
dk , (5.3.96)

where Npp is the total (particles plus antiparticles ) comoving number density . It is straight-

forward to confirm covariant conservation

ρ̇pp(t) + 3
ȧ

a

(
ρpp(t) + P pp(t)

)
= 0 , (5.3.97)

along with the conservation of the comoving entropy density

Ṡpp = 0 , (5.3.98)

where the dot stands for derivative with respect to comoving time. Although the comoving

entropy density is proportional (up to a factor 2) to the quantum kinetic expression, it is

not to be identified with a thermodynamic entropy, as shown above it is the entanglement

entropy resulting from the loss of information as a consequence of dephasing and decoherence

from the interference between particle and antiparticle out states. The equivalence with the

entanglement entropy is a consequence of the correlations in the particle-antiparticle pairs,

tracing over one member is equivalent to neglecting the off-diagonal matrix elements.

The result (5.3.96) is similar to the expression for the entanglement entropy obtained

in ref.[268] for bosonic particle production after tracing one member of the produced pairs

from the Wigner distribution function. While in this reference the tracing over one member

of the pairs was carried out to obtain the entanglement entropy, we emphasize that in

our case, the main origin of entropy is the decoherence via dephasing during the adiabatic

regime. The fact that this entropy is exactly the same as the entanglement entropy is an a

posteriori conclusion on the equivalence between the entropy emerging from the decoherence

via dephasing and the entanglement entropy.
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5.3.7 Entropy for ultra light dark matter:

In ref.[226] the case of gravitationally produced ultra light dark matter has been studied

under the same conditions assumed in this chapter. In this reference it was established that

a scalar field minimally coupled to gravity and with mass m ≃ 10−5 eV yields the correct

dark matter abundance and is a cold dark matter candidate with a very small free streaming

length. The distribution function is given by equation (5.3.38). It features an infrared

enhancement ∝ 1/k3 and the large factor HdS/m ≫ 1, both consequences of a light scalar

minimally coupled to gravity during inflation. Since D(z) ≃ 1/z for z ≫ 1 the occupation

number Nk ≫ 1 in the region 0 ≤ z ≪
√
HdS/m.

The comoving number density of gravitationally produced cold dark matter scalar par-

ticles has been obtained in ref.[226], it is given by

Npp ≃
(
HdS

4πm

)2 (
2mHR

)3/2
D(0) ln

[√2mHR

H0

]
. (5.3.99)

The leading contribution to the comoving entropy density (5.3.96) can be extracted by

implementing the following steps: a) changing integration variable to z given by (5.3.37) b)

taking the limit Nk ≫ 1 in the region of integration dominated by the infrared 0 ≤ z ≤ zc

where 1 ≪ zc ≪
√
HdS/m, yielding

Spp ≃
(
2mHR

)3/2
2π2

∫ zc

0

z2
[
ln(Nk) + · · ·

]
dz , (5.3.100)

where the dots stand for subleading terms of order 1/Nk for Nk ≫ 1. It is more instructive

to obtain the dimensionless specific entropy, namely the entropy per particle Spp/Npp. To

leading order in HdS/m≫ 1 we find

Spp
Npp

≃ 16

3D(0)

ln
(
HdS/m

)
z3c(

HdS

m

)2
ln
[√

2mHR

H0

]{1− 1

2 ln
(
HdS/m

) [ ln(8√2
)
− (4/3−4 ln zc)−

0.17

z3c

]}
.

(5.3.101)

For ultra light dark matter with H0 ≪ m ≪ HdS (for example with HdS = 1013GeV,m ≃
10−5 eV) it follows that the specific entropy

Spp
Npp

≪ 1 . (5.3.102)
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A large occupation number in an narrow momentum region and with a very small specific

entropy are all hallmarks of a condensed state, these are precisely the conditions of a Bose

Einstein Condensate. However, in this case of gravitationally produced particles, this is not a

condensate in the usual manner because the expectation value of the field vanishes, therefore

it is not described by a coherent state. Instead this a condensed state of correlated pairs

entangled in momentum but of total zero momentum in a two-mode squeezed state[58].

For a value of the mass that yields the correct dark matter abundance, m ≃ 10−5 eV[226],

the ratio of the comoving dark matter entropy Spp to that of the (CMB)

Scmb ≃ T 3
0 ; T0 ≃ 10−4 eV (5.3.103)

yields,
Spp
Scmb

≃ 10−45 , (5.3.104)

therefore, if ultra light dark matter is gravitationally produced, the entropy of the Universe

today is dominated by the (CMB).

5.4 Fermionic Dark Matter

The results obtained above for a complex scalar are, in fact, much more general and apply

with few modifications primarily due to the different statistics, to the case of gravitationally

produced fermionic dark matter. We analyze this case by briefly summarizing the results of

ref.[103] to which we refer the reader for a more comprehensive treatment.

In comoving coordinates, the action for a Dirac field is given by

S =

∫
d3x dt

√−gΨ
[
i γµ Dµ −m

]
Ψ . (5.4.1)

Introducing the vierbein field eµa(x) defined as

gµ ν(x) = eµa(x) e
ν
b (x) η

ab ,
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where ηab = diag(1,−1,−1,−1) is the Minkowski space-time metric, the curved space time

Dirac gamma- matrices γµ(x) are given by

γµ(x) = γaeµa(x) , {γµ(x), γν(x)} = 2 gµν(x) , (5.4.2)

where the γa are the Minkowski space time Dirac matrices.

The fermion covariant derivative Dµ is given in terms of the spin connection by[344, 123,

297, 89]

Dµ = ∂µ +
1

8
[γc, γd] eνc

(
∂µedν − Γλµν edλ

)
, (5.4.3)

where Γλµν are the usual Christoffel symbols.

For a spatially flat Friedmann-Robertson-Walker cosmology in conformal time with met-

ric is given by eqn. (5.2.1) the vierbeins can be obtained easily. Introducing the conformally

rescaled fields

a
3
2 (η)Ψ(x⃗, t) = ψ(x⃗, η) , (5.4.4)

the action becomes

S =

∫
d3x dη ψ

[
i ̸∂ −M(η)

]
ψ , (5.4.5)

with

M(η) = ma(η) , (5.4.6)

and the γa matrices are the usual Minkowski space time ones taken to be in the standard

Dirac representation. We consider the fermion mass m much smaller than the Hubble scale

during inflation, namely m/HdS ≪ 1 but otherwise arbitrary.

The Dirac equation for the conformally rescaled fermi field becomes[
i ̸∂ −M(η)

]
ψ = 0 , (5.4.7)

and expand ψ(x⃗, η) in a comoving volume V as

ψ(x⃗, η) =
1√
V

∑
k⃗,s

[
bk⃗,s Us(k⃗, η) + d†

−k⃗,s
Vs(−k⃗, η)

]
eik⃗·x⃗ , (5.4.8)
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and the spinor mode functions U, V obey the Dirac equations[
i γ0 ∂η − γ⃗ · k⃗ −M(η)

]
Us(k⃗, η) = 0 (5.4.9)[

i γ0 ∂η − γ⃗ · k⃗ −M(η)

]
Vs(−k⃗, η) = 0 . (5.4.10)

Finally, the spinor solutions are given by[103]

Us(k⃗, η) = N

 Fk(η) ξs

k fk(η) s ξs

 , (5.4.11)

Vs(−k⃗, η) = N

 −k f ∗
k (η) s ξs

F∗
k (η) ξs

 , (5.4.12)

where

Fk(η) = if ′
k(η) +M(η)fk(η) , (5.4.13)

and the functions fk(η) are solutions of[103][
d2

dη2
+ k2 +M2(η)− i M ′(η)

]
fk(η) = 0 , (5.4.14)

with “in” boundary conditions

fk(η) → e−ikη , (5.4.15)

as η → −∞ during inflation[103]. The two component spinors ξs are helicity eigenstates,

namely

σ⃗ · k⃗ ξs = s k ξs ; s = ±1 , (5.4.16)

and N is a (constant) normalization factor.

The spinor solutions are normalized as follows

U †
s (k⃗, η)Us′(k⃗, η) = δs,s′ ; V †

s (−k⃗, η)Vs′(−k⃗, η) = δs,s′ , (5.4.17)

yielding

|N |2
[
F∗
k (η)Fk(η) + k2f ∗

k (η) fk(η)
]
= 1 . (5.4.18)
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With these normalization conditions the operators bk⃗,s, dk⃗,s in the field expansion (5.4.8)

obey the usual canonical anticommutation relations.

Furthermore, it is straightforward to confirm that

U †
s (k⃗, η)Vs′(−k⃗, η) = 0 ∀s, s′ . (5.4.19)

The spinors Us, Vs furnish a complete set of four independent solutions of the Dirac

equation.

During the inflationary stage, considered as an spatially flat de Sitter space-time, the

functions fk obey[
d2

dτ 2
+ k2 − ν2 − 1/4

τ 2

]
fk(τ) = 0 ; τ = η − 2ηR ; ν =

1

2
+ i

m

HdS

. (5.4.20)

The solution with “in” boundary conditions (5.4.15) is given by

fk(τ) =

√
−πkτ

2
eiπ(ν+1/2)/2 H(1)

ν (−kτ) , (5.4.21)

where H(1)
ν is a Hankel function. The operators bk⃗,s, dk⃗,s in the field expansion (5.4.8) are

chosen to annihilate the “in” vacuum state |0I⟩, namely

bk⃗,s |0I⟩ = 0 ; dk⃗,s |0I⟩ = 0 , (5.4.22)

with the mode functions fk given by (5.4.21), the state |0I⟩ corresponds to the Bunch-Davies

vacuum.

Since we are considering an instantaneous transition between inflation and radiation

domination, and because the Dirac equation is first order in time, the matching conditions

correspond to the continuity of the spinor wave functions across the transition.

Defining ψ<(x⃗, η) and ψ>(x⃗, η) the fermion field for η < ηR (inflation) and η > ηR (RD)

respectively, the matching condition is

ψ<(x⃗, ηR) = ψ>(x⃗, ηR) . (5.4.23)

This continuity condition along with the continuity of the scale factor and Hubble rate at

ηR results in that the energy density is continuous at the transition[103].
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Introducing the Dirac spinors during the inflationary (η < ηR) and (RD) (η > ηR) stages

as U< , V < and U> , V > respectively, it follows from the matching condition (5.4.23) that

U<
s (k⃗, ηR) = U>

s (k⃗, ηR) , (5.4.24)

V <
s (−k⃗, ηR) = V >

s (−k⃗, ηR) . (5.4.25)

We define the mode functions during (RD) as hk(η) to distinguish them from the solutions

(5.4.21) during inflation. These obey the mode equations[
d2

dη2
+ ω2

k(η)− imHR

]
hk(η) = 0 ; ω2

k(η) = k2 +m2H2
Rη

2 . (5.4.26)

Similarly to the spinor solutions (5.4.11,5.4.12) we now find

Us(k⃗, η) = Ñ

 Hk(η) ξs

k hk(η) s ξs

 , (5.4.27)

Vs(−k⃗, η) = Ñ

 −k h∗k(η) s ξs
H∗
k(η) ξs

 , (5.4.28)

where we have introduced

Hk(η) = ih′k(η) +M(η)hk(η) , (5.4.29)

and Ñ is a (constant) normalization factor chosen so that

U †
s (k⃗, η)Us′(k⃗, η) = δs,s′ ; V†

s(−k⃗, η)Vs′(−k⃗, η) = δs,s′ , (5.4.30)

yielding

|Ñ |2
[
H∗
k(η)Hk(η) + k2h∗k(η)hk(η)

]
= 1 . (5.4.31)

Again, it is straightforward to confirm that

U †
s (k⃗, η)Vs′(−k⃗, η) = 0 . (5.4.32)

The mode equation (5.4.26) admits a solution of the form[103]

hk(η) = e−i
∫ η Ωk(η

′)dη′ , (5.4.33)
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where Ωk(η) obeys a differential equation that can be systematically solved in the adiabatic

expansion. It relies on the ratio H(η)/m ≪ 1 which during the (RD) era implies that

a(η) ≫ 10−17/
√
m(eV), for the value m ≃ 108GeV which saturates the dark matter bound

as found in ref.[103], its range of validity begins well before matter radiation equality at

aeq ≃ 10−4. We choose the solution of (5.4.26) to feature the asymptotic “out” boundary

condition

hk(η) → e−i
∫ η ωk(η

′) dη′ . (5.4.34)

With this boundary condition, the spinor solutions during the (RD) era (5.4.27,5.4.28)

satisfy the asymptotic “out” boundary conditions

Us(k⃗, η) →∝ e−i
∫ η ωk(η

′) dη′ ; Vs(k⃗, η) →∝ ei
∫ η ωk(η

′) dη′ . (5.4.35)

therefore describing “out” particle and anti-particle solutions with helicities ±1, defining a

complete set of four solutions of the Dirac equation during (RD).

It is convenient to introduce the following dimensionless combinations,

z =
√
mHR η ; q =

k√
mHR

; λ = q2 − i (5.4.36)

in terms of which eqn. (5.4.26) becomes

d2

dz2
hk(z) + (z2 + λ)hk(z) = 0 , (5.4.37)

the solutions of which are the parabolic cylinder functions[209, 15, 293, 70, 276]

Dα[
√
2eiπ/4z] ; Dα[

√
2e3iπ/4z] ; α = −1

2
− i

λ

2
= −1− i

q2

2
. (5.4.38)

The solution that fulfills the “out” boundary condition (5.4.34) (see appendix A in ref.[103])

is given by

hk(η) = Dα[
√
2eiπ/4z] . (5.4.39)

The general solution for the spinor wave functions U>, V > during the (RD) era are linear

combinations of the four independent solutions (5.4.27,5.4.28). In principle, with four in-

dependent solutions during inflation matching onto four independent solutions during (RD)
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there would be a 4 × 4 matrix of Bogoliubov coefficients, however, because helicity is con-

served, the linear combinations are given by

U>
s (k⃗, η) = Ak,s Us(k⃗, η) +Bk,s Vs(−k⃗, η) (5.4.40)

V >
s (−k⃗, η) = Ck,s Vs(−k⃗, η) +Dk,s Us(k⃗, η) . (5.4.41)

The Bogoliubov coefficients Ak,s · · ·Dk,s are obtained from the matching conditions and the

relations (5.4.30,5.4.32). These obey the relations[103]

Dk,s = −B∗
k,s ; Ck,s = A∗

k,s , (5.4.42)

and

|Ak,s|2 + |Bk,s|2 = 1 . (5.4.43)

During the (RD) era, with Us ≡ U>
s ;Vs ≡ V >

s with U>, V > given by (5.4.40,5.4.41) the

field expansion (5.4.8) in terms of the spinor solutions with out boundary conditions (5.4.35)

becomes

ψ(x⃗, η) =
1√
V

∑
k⃗,s

[
b̃k⃗,s Us(k⃗, η) + d̃ †

−k⃗,s
Vs(−k⃗, η)

]
eik⃗·x⃗ , (5.4.44)

where

b̃k⃗,s = bk⃗,sAk + d†
−k⃗,s

Dk,s (5.4.45)

d̃ †
−k⃗,s

= d†
−k⃗,s

Ck,s + bk⃗,sBk,s . (5.4.46)

The relations (5.4.42,5.4.43) imply that the new operators b̃, d̃ obey canonical anti-

commutation relations. The operators b̃† and d̃† create asymptotic particle and antiparticle

states respectively. In particular we find that the number of asymptotic “out” particle and

antiparticle states in the Bunch-Davies vacuum state (5.4.22) are the same and given by

⟨0I |̃b†k⃗,sb̃k⃗,s|0I⟩ = |Dk,s|2 = ⟨0I |d̃†−k⃗,sd̃−k⃗,s|0I⟩ = |Bk,s|2 . (5.4.47)

We identify the number of “out” particles, equal the number of “out” anti-particles as

⟨0I |̃b†k⃗,sb̃k⃗,s|0I⟩ = ⟨0I |d̃†−k⃗,sd̃−k⃗,s|0I⟩ = |Bk,s|2 ≡ Nk (5.4.48)
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with Nk = |Bk,s|2 being the distribution function of produced particles and antiparticles. The

relation (5.4.43) implies that

|Bk,s|2 ≤ 1 , (5.4.49)

for each helicity s, consistent with Pauli exclusion. For m ≪ HdS it is found in ref.([103])

that

Nk = |Bk,s|2 =
1

2

[
1−

(
1− e

− k2

2mTH

)1/2]
, (5.4.50)

in terms of the emergent temperature[103]

TH =
HR

2π
≃ 10−36 eV . (5.4.51)

Us(k⃗, η) = e
−i

∫ η
ηi
ωk(η

′) dη′ Ũs(k⃗, η) ; Vs(−k⃗, η) = e
i
∫ η
ηi
ωk(η

′) dη′ Ṽs(−k⃗, η) , (5.4.52)

where Ũs(k⃗, η) ; Ṽs(−k⃗, η) are slowly varying functions of time during this regime, and again

ηi is some early time in the adiabatic regime. To leading (zeroth) order in the adiabatic

expansion these are given by

Ũs(k⃗, η) =
1[

2ωk(η)(ωk(η) +M(η))
]1/2

 (ωk(η) +M(η)) ξs

k s ξs

 , (5.4.53)

Ṽs(−k⃗, η) =
1[

2ωk(η)(ωk(η) +M(η))
]1/2

 −k s ξs
(ωk(η) +M(η)) ξs

 . (5.4.54)
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5.4.1 Energy density, pressure and entropy:

The energy momentum tensor for Dirac fields is given by [297, 156, 57, 258]

T µν =
i

2

(
Ψγµ

↔
Dν Ψ

)
+ µ↔ ν (5.4.55)

In terms of conformal time and the conformally rescaled fields (5.4.4) the energy density

ρ and pressure P as operators are given by

ρ̂(x⃗, η) = T 0
0 (x⃗, η) =

i

2a4(η)

(
ψ†(x⃗, η)

d

dη
ψ(x⃗, η)− d

dη
ψ†(x⃗, η)ψ(x⃗, η)

)
, (5.4.56)

P̂ (x⃗, η) = −1

3

∑
j

T jj (x⃗, η) =
−i

6a4(η)

(
ψ†(x⃗, η) α⃗ ·∇⃗ψ(x⃗, η)−∇⃗ψ†(x⃗, η) · α⃗ ψ(x⃗, η)

)
, (5.4.57)

The expectation value of the energy momentum tensor in the Bunch-Davies vacuum state

is given by

⟨0I |T µν |0I⟩ = diag
(
ρ(η),−P (η),−P (η),−P (η)

)
, (5.4.58)

only the homogeneous and isotropic component of the energy momentum tensor contributes

to the expectation value. Because we want to extract the rapid time dependence during the

adiabatic era, we obtain this homogeneous component by averaging the above operators in

the comoving volume V , just as in the bosonic case we obtain

1

V

∫
d3xT 0

0 (x⃗, η) = ρ̂(η) ; − 1

3V

∫
d3x

∑
j

T jj (x⃗, η) = P̂ (η) . (5.4.59)

During the (RD) era and near matter radiation equality when the adiabatic approximation

becomes very reliable, we obtain these operators by expanding the fermionic field in the

“out” basis as in eqn. (5.4.44), and writing the spinors as in eqn. (5.4.53,5.4.54) separating

the fast phases from the slowly varying spinors Ũ , Ṽ . We find

ρ̂(η) = ρvac(η) + ρ̂int(η) + ρ̂pp(η) (5.4.60)

P̂ (η) = P vac(η) + P̂ int(η) + P̂ pp(η) , (5.4.61)
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ρvac;P vac
1 are the zero point (“out” vacuum) contributions to the energy density and

pressure. The terms ρ̂int; P̂ int feature the fast oscillations associated with the interference

between particle and antiparticles similar to the complex bosonic case studied above. As

discussed in the previous section, these oscillations average out on comoving time scales

equal to or shorter than ≃ 1/m ≪ 1/H(t) leaving only the slowly varying contributions

ρvac, ρpp ; P vac, P pp. Following the same strategy as in the bosonic case, we introduce the

zeroth-order adiabatic Hamiltonian,

H0(η) =
∑
k⃗;s

[
b̃†
k⃗,s
b̃k⃗,s + d̃†

k⃗,s
d̃k⃗,s

]
ωk(η) ;

[
H0(η), H0(η

′)
]
= 0 ∀η, η′ , (5.4.62)

and the time evolution operator

U0(η, ηi) = e
−i

∫ η
ηi
H0(η′) dη′ , (5.4.63)

from which it follows that

U−1
0 (η, ηi) b̃k⃗,s U0(η, ηi) = b̃k⃗,s e

−i
∫ η
ηi
ωk(η

′)dη′
; U−1

0 (η, ηi) d̃k⃗,s U0(η, ηi) = d̃k⃗,s e
−i

∫ η
ηi
ωk(η

′)dη′
.

(5.4.64)

It is clear that the fermionic case is very similar to that of the complex scalar case studied

in the previous section with the important difference in the statistics. Following the steps

described for the scalar case, we define the Schroedinger picture fermion operator during the

adiabatic regime in the (RD) era

ψ(x⃗, η) = U0(η, ηi)ψS(x⃗, η)U
−1
0 (η, ηi) , (5.4.65)

with

ψS(x⃗, η) =
1√
V

∑
k⃗,s

[
b̃k⃗,s Ũs(k⃗, η) + d̃ †

−k⃗,s
Ṽs(−k⃗, η)

]
eik⃗·x⃗ , (5.4.66)

this field evolves slowly in time in the adiabatic regime. A similar definition of Schroedinger

picture operators is carried out for the energy momentum tensor just as in the complex scalar

case. The density matrix evolved in time in the Schroedinger picture is given by equation
1For explicit expressions, one can refer to our work [305].
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(5.3.54).The fermionic “in” Bunch-Davies vacuum state |0I⟩ is now given in terms of the out

states by

|0I⟩ = Πk⃗,s

{[
cos(θk)

] 1∑
n
k⃗,s

=0

(
− e2iφ−(k) tan(θk)

)n
k⃗,s
∣∣∣nk⃗,s;n−k⃗,s

〉}
, (5.4.67)

the fermionic “out” particle-antiparticle pair states are given by

∣∣∣nk⃗,s;n−k⃗,s

〉
=

(
b̃†
k⃗,s

)n
k⃗,s√

nk⃗,s!

(
d̃†
−k⃗,s

)n
k⃗,s√

nk⃗,s!
|0O⟩ ; nk⃗,s = 0, 1 . (5.4.68)

where the “out” vacuum state |0O⟩ is such that

b̃k⃗,s |0O⟩ = 0 ; d̃k⃗,s |0O⟩ = 0 ∀k⃗ , (5.4.69)

and from eqn. (5.4.48)

|Bk,s|2 = sin2(θk) = Nk . (5.4.70)

The Schroedinger picture density matrix ρS(η) = U0(η, ηi) |0I⟩ ⟨0I |U−1
0 (η, ηi) is now given by

ρS(η) = Πk⃗,sΠp⃗,s′

1∑
n
k⃗,s

=0

1∑
mp⃗,s′=0

C∗
mp⃗,s′

(p) Cn
k⃗,s
(k)

∣∣∣nk⃗,s;n−k⃗,s

〉
⟨mp⃗,s′ ;m−p⃗,s′ | A , (5.4.71)

where

A = e
2i

∫ η
ηi

[
mp⃗,s′ ωp(η′)−nk⃗,s

ωk(η
′)

]
dη′

, (5.4.72)

and in the fermion case

Cn
k⃗,s
(k) = cos(θk)

(
− e2iφ−(k) tan(θk)

)n
k⃗,s

; nk⃗,s = 0, 1 . (5.4.73)

Just as in the scalar case, the rapid oscillatory phases in the terms that are off-diagonal in

pair number m ̸= n, momenta and helicity average out on time scales ≃ 1/m ≪ 1/H(t)

leading to the decoherence of the density matrix in this basis. Proceeding as in the scalar

case we average these terms over time scales intermediate between 1/m and the Hubble

time scale 1/H(t). This averaging, a coarse graining on the short time scale, is a direct

consequence of the separation of time scales during the adiabatic regime, with H(t)/m≪ 1

and yields a density matrix that is diagonal in the basis of particle-antiparticle pairs (5.4.68).
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The loss of coherence in the averaging of correlations implies a loss of information (from these

correlations). The calculation of the entropy associated with this loss of information follows

the same route as in the scalar case with few modifications consequence of the different

statistics. Upon averaging the rapidly varying phases, the density matrix becomes diagonal

in the basis of particle antiparticle pairs, and is given by

ρ
(d)
S = Πk⃗,s

[
cos2(θk)

] 1∑
n
k⃗,s

=0

(
tan2(θk)

)n
k⃗,s
∣∣∣nk⃗,s;n−k⃗,s

〉〈
nk⃗,s;n−k⃗,s

∣∣∣ . (5.4.74)

We can compare this density matrix with the reduced one obtained by tracing over the

antiparticle states,

ρ
(r)
S (η) = Trp ρS(η) = Πk⃗,s

[
cos2(θk)

] 1∑
n
k⃗,s

=0

(
tan2(θk)

)n
k⃗,s
∣∣∣nk⃗,s〉〈nk⃗,s∣∣∣ , (5.4.75)

exhibiting the equivalence of the diagonal matrix elements, namely the probabilities. The

density matrices ρ(d)S ; ρ
(r)
S feature the same eigenvalues, hence the same entropy. Again, this

is the statement that the entropy arising from the loss of information in the time averaging or

coarse graining, is identical to the entanglement entropy obtained from the reduced density

matrix.

The diagonal density matrix (5.4.74) can be written in a familiar quantum statistical

mechanics form by introducing a fiducial Hamiltonian

Ĥ =
∑
k⃗,s

Ek N̂k⃗,s , (5.4.76)

with

Ek = − ln[tan2(θk)] ; N̂k⃗,s =
1∑

n
k⃗,s

=0

nk⃗,s

∣∣∣nk⃗,s;n−k⃗,s

〉〈
nk⃗,s;n−k⃗,s

∣∣∣ , (5.4.77)

and the partition function is given by

Z = Πk⃗,s[cos
2(θk)]

−1 = Πk⃗,s[1 + tan2(θk)] , (5.4.78)

so that

ρ
(d)
S =

e−Ĥ

Z ; Z = Tr e−Ĥ ≡ e−F , (5.4.79)
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with F the fiducial free energy. We note that in the fermionic case N̂ 2
k⃗,s

= N̂k⃗,s therefore for

fixed k⃗, s its eigenvalues are 0, 1 and from the relations (5.4.48, 5.4.70) it follows that

tan2(θk) =
Nk

1−Nk

. (5.4.80)

The entropy is now obtained from (5.3.81) but now with

U = Tr ρ(d) H =
∑
k⃗,s

Ek
eEk + 1

=
∑
k⃗,s

Nk ln
[1−Nk

Nk

]
. (5.4.81)

The entropy is now given by

S(d) = −2
∑
k⃗

{
(1−Nk) ln(1−Nk) +Nk lnNk

}
. (5.4.82)

This is a remarkable result, the entanglement entropy is proportional to the quantum kinetic

entropy for fermions in terms of the distribution function[83]. The factor 2 accounts for

two helicity eigenstates, since the distribution function is the same for both helicities. We

highlight that although the number of particles and of antiparticles are the same, the entropy

does not feature a factor 4 (particle, anti-particle with two helicities) but a factor 2. The

reason behind this is the same as in the complex scalar case: particle and antiparticles are

produced in correlated pairs not independently. This important aspect is also at the heart

of the equivalence between the entropy arising from dephasing and decoherence and the

entanglement entropy: tracing over one member of the particle-anti-particle pairs in (5.4.71)

(either particle or anti-particle) reduces the full density matrix (5.4.71) to (for example

tracing over anti-particles)

ρ(r)(η) = Πk⃗,s

[
cos2(θk)

] 1∑
n
k⃗,s

=0

(
tan2(θk)

)n
k⃗,s
∣∣∣nk⃗,s〉〈nk⃗,s∣∣∣ , (5.4.83)

yielding an entanglement entropy equivalent to (5.4.82). We also find

Tr b̃†
k⃗,s
b̃k⃗,s ρ

(d)
S = Tr d̃†

k⃗,s
d̃k⃗,s ρ

(d)
S = |Bk,s|2 = Nk

Tr b̃†
k⃗,s
d̃†
−k⃗,s

ρ
(d)
S = Tr d̃−k⃗,sb̃k⃗,s ρ

(d)
S = 0 . (5.4.84)
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Therefore, the energy density and pressure near matter radiation equality when the adiabatic

approximation is very reliable and the density matrix has undergone complete decoherence

via dephasing, are given by

ρ(η) = Trρ̂(η) ρ
(d)
S ; P (η) = TrP̂ (η) ρ

(d)
S , (5.4.85)

these are obtained to leading (zeroth) order in the adiabatic approximation by using the

spinors (5.4.53,5.4.54). As a consequence of decoherence yielding the identities (5.4.84),

the particle-antiparticle interference terms vanish. Because the spinors (5.4.53,5.4.54) are

eigenstates of the instantaneous conformal Hamiltonian (??) with eigenvalues ±ωk(η), we

find to leading order in the adiabatic expansion2

ρ(η) = − 1

π2a4(η)

∫ ∞

0

k2dk ωk(η)︸ ︷︷ ︸
ρ0(η)

+
2

π2a4(η)

∫ ∞

0

k2dk Nk ωk(η)︸ ︷︷ ︸
ρpp(η)

, (5.4.86)

P (η) = − 1

3π2a4(η)

∫ ∞

0

k2dk
k2

ωk(η)︸ ︷︷ ︸
P 0(η)

+
2

3π2a4(η)

∫ ∞

0

k2dk Nk
k2

ωk(η)︸ ︷︷ ︸
P pp(η)

, (5.4.87)

where ρ0(η), P 0(η) are the zero point energy density and pressure and ρpp(η), P pp(η) are the

contributions from gravitational particle production. The zero point and particle produc-

tion contributions independently obey covariant conservation. As explained in ref.[103] the

zero point contribution is absorbed into a renormalization[156, 179, 57, 199, 258], therefore

the kinetic-fluid description of gravitationally produced fermionic dark matter near matter

radiation equality can now be summarized as

Npp =
2

π2

∫ ∞

0

k2Nk dk , (5.4.88)

ρpp(η) =
2

π2a4(η)

∫ ∞

0

k2Nk ωk(η) dk , (5.4.89)

P pp(η) =
2

3π2a4(η)

∫ ∞

0

k2Nk
k2

ωk(η)
dk , (5.4.90)

2For higher order contributions see ref.[103].
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Spp = − 2

2π2

∫ ∞

0

k2
{
(1−Nk) ln(1−Nk) +Nk lnNk

}
dk , (5.4.91)

where Npp is the total comoving number density of particles plus antiparticles produced,

Spp is the time independent comoving entropy density, and the distribution function Nk is

given by eqn. (5.4.50). The kinetic fluid forms of the energy density (5.4.89) and pressure

(5.4.90) are exactly the same as obtained in ref.[103] by averaging over the fast phases in the

particle-antiparticle interference terms. Therefore, just as in the bosonic case this averaging

in the energy momentum tensor and the emergence of the kinetic fluid form in the adiabatic

regime is a direct manifestation of decoherence by dephasing in the density matrix, hence

also directly related to the emergence of entropy in this case.

With the distribution function (5.4.50), we find

Npp =
2

π2

(
2mTH

)3/2
× 0.126 , (5.4.92)

and

Spp =
1

π2

(
2mTH

)3/2
× 0.451 , (5.4.93)

with a specific entropy
Spp
Npp

≃ 1.8 . (5.4.94)

We note that a specific entropy O(1) is typical of a thermal species. However, with m ≃
108GeV for a heavy fermion with the correct dark matter abundance[103], the ratio of its

comoving entropy to that of the (CMB) today given by (5.3.103) which also features a specific

entropy O(1), is
Spp
Scmb

≃ 10−15 , (5.4.95)

therefore even for a heavy fermionic dark matter species that is gravitationally produced, its

entropy is negligible compared to that of the (CMB) today.
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5.5 Discussion

Real scalars, Majorana fermions: We have studied complex scalars and Dirac

fermions for which particles are different from antiparticles. However, the results apply

just as well to real scalars and Majorana fermions, in which cases particles are the same

as antiparticles and the correlated pair states are now of the form
∣∣nk⃗, n−k⃗

〉
. The entangle-

ment entropy is exactly the same as for complex scalars or Dirac fermions respectively, since

for each value of k⃗ (and helicity s for fermions), tracing over one member of the pair (say

that with −k⃗ ) yields exactly the same probabilities, regardless of whether it is a particle

or an antiparticle. This is also explicit in the entanglement entropies obtained above since

there is no factor 2 for particle and antiparticle, because of the correlated nature of the pair

state, independently of whether the members of the pairs are particle and antiparticle or

particle-particle with opposite momenta.

The origin of entropy: the “out” basis is a pointer basis. In the language of

quantum information, the “out” basis of particles is the “measured” basis and constitutes a

pointer basis [231]. This is indeed a privileged basis, since the energy momentum tensor in this

out particle basis describes the abundance, equation of state and entropy of particles (and

antiparticles). These are the observable macroscopic variables that describe the properties

of dark matter. It is precisely in this basis that the rapid dephasing and coarse graining

as a consequence of time averaging over the short time scales leads to decoherence and

information loss, with the concomitant emergence of a non-vanishing entropy.

One could take expectation values of the energy momentum tensor (or any other observ-

able related to dark matter) in the “in” vacuum state |0I⟩ or the density matrix |0I⟩ ⟨0I | as is

the case in refs.[226, 103]. This expectation value features the rapidly oscillating interference

terms between “out” particles and antiparticles, which were averaged out on the short time

scales in these references. This averaging in the expectation values in the “in” state |0I⟩ are a

manifestation of the loss of correlations by dephasing, yet do not make explicit the entropic

content of this decoherence process.

These are precisely the coherences and correlations that are averaged out in the density

matrix in the Schroedinger picture in the out basis. Hence, particle “observables” or mea-
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surements in the out particle basis in general will undergo this process of decoherence via

dephasing even when the matrix elements are obtained in the “in” basis. The coarse graining

of the density matrix in the Schroedinger picture in the out basis exhibits directly this deco-

herence mechanism by dephasing and the emergence of entropy. It also makes explicit that

the decoherence time scale is ≃ 1/m. Therefore, the origin of entropy is deeply associated

with this natural selection of basis of “out particles” to describe the density matrix and the

statistical properties of dark matter.

More general arguments for entropy: Although we focused on the entropy in grav-

itational particle production, the main concepts elaborated here are more general. For

example they apply also to the case when particles are produced from inflaton oscillations

at the end of inflation[312], or by parametric resonance during reheating[30, 34]. In these

cases, a homogeneous scalar field (generically the inflaton) couples non-linearly to the mat-

ter bosonic or fermionic fields. If the expectation value of this scalar field depends on time,

acting as a time dependent mass term, such coupling leads to production of particle or

particle-antiparticle pairs entangled in momentum (and any other conserved quantum num-

ber). The “in” basis is generically a superposition of the out particle basis states, therefore

the interference effects will also be manifest in a similar manner as studied here, although

the occupation number of “out” states will be different for different mechanisms. Because

dark matter particles are defined as asymptotic out states in the adiabatic era, a separation

of time scales as in the adiabatic Schroedinger picture in which the density matrix evolves

in time will feature a structure very similar to that unveiled in the study above, but with

different probabilities determined by the different processes. Nevertheless dephasing and

decoherence will play a similar role leading to an entropy of the very same form as obtained

above but with different Nk.

Entanglement entropy vs. entropy (isocurvature) perturbations: The entan-

glement entropy discussed above should not be identified with linear entropy or isocurvature

perturbations. The latter are generically associated with multiple fields with non-vanishing

expectation values during inflation[208, 120, 60]. Entropy perturbations in the case when

scalar fields do not acquire expectation values[131], or for fermionic fields (which cannot

acquire expectation values) [132] were analyzed within the context of zero point contribu-
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tions to the energy momentum tensor in refs.[131, 132]. However, in refs.[226, 103] it was

argued that the renormalization fully subtracting the zero point contribution as is implicitly

or explicitly done in the literature, prevents a consistent interpretation of entropy pertur-

bations from the zero point contribution of the energy momentum tensor as advocated in

refs.[131, 132]. In our study here the scalar field does not acquire an expectation value and

we implemented the same renormalization scheme subtracting completely the zero point con-

tribution to the energy momentum tensor as in refs. [226, 103] both for scalar and fermion

fields. Therefore the analysis and conclusions of refs.[131, 132] do not apply to our study.

Curvature perturbations and inhomogeneous gravitational potentials will modify the en-

tropies (5.3.96,5.4.82) by modifying the distribution functions Nk → Nk + δNk(x⃗, t) thereby

inducing a perturbation in the entanglement entropy. Such perturbation is completely de-

termined by the change in the distribution function which obeys a linearized collisionless

Boltzmann equation in presence of the metric perturbations. This equation along with a

proper assessment of initial conditions must be studied in detail for a definite understanding

of entropy perturbations, a task that is well beyond the scope and objective of our study.

5.6 Conclusions and further questions:

While the evidence for dark matter is overwhelming, direct detection of a particle physics

candidate with interactions with (SM) degrees of freedom, necessary for detection, has proven

elusive. Therefore dark matter particles featuring only gravitational interaction are logically

a suitable alternative. Such candidates are produced gravitationally via cosmological expan-

sion, a phenomenon that received substantial attention in the last few years. In this chapter

we studied the emergence of entropy in gravitational production of dark matter particles,

focusing on the cases of a complex scalar and a Dirac fermion under a minimal set of as-

sumptions as in refs.[226, 103]. We considered a rapid transition from inflation to radiation

domination and focused on comoving super-Hubble wavelengths at the end of inflation, with

dark matter fields being in their Bunch-Davies vacua during inflation. The “out” states are

correlated particle-antiparticle pairs and the distribution function of gravitationally produced

184



particles is obtained exactly both for ultra-light scalars and heavier fermions.

Well after the transition and before matter radiation equality there ensues a period of

adiabatic evolution when the scale factor aeq ≫ a(t) ≫ 10−17/
√
m(eV ) characterized by the

adiabatic ratio H(t)/m≪ 1 with H(t) the Hubble expansion rate and m the particle’s mass.

During this regime there is a wide separation of time scales with 1/H(t) a long time scale

of cosmological evolution and 1/m a short time scale associated with particle dynamics.

As shown in refs.[226, 103], during this regime the energy momentum tensor written in

the “out” particle basis (dark matter particles) feature rapidly varying particle-antiparticle

interference terms. Averaging these contributions on intermediate time scales renders the

energy momentum tensor of the usual kinetic fluid form. We show that these rapidly varying

interference terms are manifest in the density matrix in the adiabatic Schroedinger picture

in the out particle basis as off diagonal density matrix elements that feature rapid dephasing

on short decoherence time scales ≃ 1/m. Decoherence by dephasing effectively reduces

the density matrix to a diagonal form in the out basis with a non-vanishing von Neumann

entropy. In turn, the von Neumann entropy is exactly the same as the entanglement entropy

obtained by tracing over one member of the correlated particle-antiparticle pair.

Remarkably, we find that the comoving von-Neumann-entanglement entropy density is

almost of the kinetic fluid form in terms of the distribution function Nk

Spp = ± 1

2π2

∫ ∞

0

k2
{
(1±Nk) ln(1±Nk)∓Nk lnNk

}
dk , (5.6.1)

where (+) is for real or complex bosons and (−) is for each spin/helicity of Dirac or Majorana

fermions. If the “out” states were described by independent particles and/or antiparticles,

complex bosons and Dirac fermions would have twice the number of degrees of freedom of real

bosons and Majorana fermions and the entropy would feature an extra factor 2 when particles

are different from antiparticles. The fact that the entanglement entropies are the same

regardless of whether particles are different from antiparticles is a consequence of the pair

correlations of the “out” state, explaining the qualifier “almost”. These particle-antiparticle

or particle-particle pairs are entangled in momentum (and helicity in the case of fermions)

and the entanglement entropy, obtained by tracing over one member of the pair is the same

in both cases regardless of whether particles are the same or different from antiparticles.
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An important conclusion of our study is that the von Neumann-entanglement- entropy and

the kinetic fluid form of the energy momentum are all a consequence of decoherence of the

density matrix in the out basis.

We argue that the origin of entropy is deeply related to the natural physical basis of “out”

particles that determine the statistical properties of dark matter, such as energy density,

pressure and entropy. Furthermore, we also argue that our results are more general and

apply also to several other production mechanisms such as parametric amplification and

production from inflaton oscillations at the end of inflation.

For an ultra-light bosonic dark matter candidate minimally coupled to gravity we find

that while the occupation number is very large in the infrared region, the specific entropy,

or entropy per particle, is negligibly small, indicating that this dark matter candidate is

produced in a condensed state, albeit with vanishing expectation value. For fermionic dark

matter the distribution function is nearly thermal[103] and the specific entropy is O(1)

consistent with a thermal species.
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Further questions:

a) Observational consequences?: While the energy density and pressure (or equation

of state) both have clear observational consequences and directly yield information on cluster-

ing properties such as the free streaming length or cut-off in the matter power spectrum[226],

we have not yet identified an observational consequence directly associated with entropy. As

discussed above, for both cases, ultra light or heavier fermionic gravitationally produced

dark matter, their comoving entropy is many orders of magnitude smaller than that for the

(CMB) today.

The similarity with the fluid kinetic form suggests that perhaps the entropy may play

a role in the dynamics of galaxy formation. Pioneering work in refs.[273, 335] studied the

non-equilibrium process of violent relaxation in collisionless galactic dynamics in terms of

an H-function that is similar to the statistical entropy of a classical dilute gas. It is argued

in these references that such H-function increases during this process of relaxation towards

an equilibrium state. It is an intriguing possibility that the entanglement entropy that we

find could play a similar role in understanding the evolution of clustering during the matter

dominated era.

Another important question is the role of metric perturbations on the entropy, as men-

tioned above this would entail a study of the linearized boltzmann equation and further

understanding on initial conditions.

b) Interactions:

Although we did not consider the possibility of dark matter self-interactions or inter-

actions with (SM) degrees of freedom, the study of how the entanglement entropy evolves

in time as a consequence of such interactions would be of fundamental interest and a wor-

thy endeavor. In principle the evolution of the entropy could be obtained by setting up

a quantum kinetic Boltzmann equation for the distribution function Nk. However, a new

framework must be developed to implement this program, because typically the Boltzmann

equation is obtained by calculating transition amplitudes in S-matrix theory, however the

mode functions even during the adiabatic regime are not the same as in Minkowski space

time. Furthermore, the usual approach takes the infinite time limit to obtain the transi-

tion probabilities, which in principle is not warranted in presence of cosmological expansion,
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instead a framework similar to that implemented in refs.[227, 106] must be adapted to a

quantum kinetic approach.

The first law of thermodyamics when combined with covariant conservation of the energy

entails that the total thermodynamic entropy is constant, namely the cosmological expansion

is adiabatic in the thermodynamic sense in agreement with the Universe being a closed

system. However, the entanglement entropy is not a thermodynamic entropy, therefore if

interactions are included, it is by no means clear that that the entanglement entropy remains

constant. Ref.[235] advocated a possible statistical framework to include interactions akin to

the Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY) hierarchy of equations that yields

the usual Boltzmann equation. While this suggestion is compelling, the applicability of such

framework to study the time evolution of the entanglement entropy merits further study

beyond the scope of this chapter.
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6.0 Interaction rates in cosmology: heavy particle production and scattering

6.1 Introduction

Processes such as scattering and decay play a fundamental role in early Universe cos-

mology, from post-inflationary reheating[251, 270] to Big Bang Nucleosynthesis (BBN)[251,

83, 160, 149, 180, 329, 313, 274], and possibly in a successful description of the origin of

matter-antimatter asymmetry[336, 250, 116, 115] . The main approach to studying such

phenomena relies on the S-matrix formulation of quantum field theory in Minkowski space

time. Within this formulation a scattering cross section is obtained from the transition

probability per unit time from an initial multiparticle state prepared in the infinite past,

to another multiparticle state detected in the infinite future normalized to a unit incoming

flux. The cross sections and transition rates obtained in this framework are some of the

main ingredients in the kinetic Boltzmann equation that describe the production, evolu-

tion and freeze-out of different particle species[251, 83, 160]. In the S-matrix formulation

of transition rates, taking the infinite time limit yields exact energy conservation, and con-

sequently reaction thresholds. This approach, when applied to early universe cosmology

is at best an approximation, cosmological expansion introduces a distinct time evolution

and the different stages, inflation, radiation, matter domination are characterized by differ-

ent expansion time scales and dynamics. Obviously taking the infinite time limit glosses

over the different stages of cosmological expansion and is in general unwarranted. We note

that recently, reference[139] has revisited the S-matrix formulation in Minkowski space time

analyzing processes in a finite time interval and discussing in detail the subtleties of ap-

proaching the asymptotic infinite time limit. Quantum field theory in curved space-time

reveals a wealth of unexpected novel phenomena, such as particle production from cosmo-

logical expansion [294, 184, 355, 90, 117, 89, 189, 288, 297, 296] along with processes that

are forbidden in Minkowski space time as a consequence of energy/momentum conservation.

Pioneering investigations of interacting quantum fields in expanding cosmologies generalized

the S-matrix formulation for in-out states in Minkowski space-times for model expansion
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histories. Self-interacting quantized fields were studied with a focus on renormalization as-

pects and contributions from pair production to the energy momentum tensor [90, 117]. The

decay of a massive particle into two massless particles conformally coupled to gravity was

studied in Ref. [52] within a modified formulation of the S-matrix for simple cosmological

space times.

Particle decay in de Sitter space-time was studied in Refs. [104, 112], revealing surprising

phenomena, such as a quantum of a massive field decaying into two (or more) quanta of the

same field. These phenomena are a direct consequence of the lack of a global time-like Killing

vector, and the concomitant absence of energy conservation. Single particle decay in an post

inflationary cosmology has been studied in refs.[236, 227, 103] and more recently reheating

during a post-inflation period has been studied implementing a Boltzmann equation that

inputs cosmological decay rates[260]. The results on particle decay of refs.[227, 103] revealed

noteworthy consequences of the cosmological expansion and lack of energy conservation.

An important result for very weakly coupled long lived particles is that the Minkowski

space-time decay rate underestimates the lifetime of the particle, with potentially important

consequences for weakly coupled dark matter.

Motivation and objectives: Particle interactions are ubiquitous in cosmology during

all the epochs with fundamental and phenomenological implications in the description of

particle physics processes during the expansion history. While there have been previous

studies of single particle decay in inflationary and post inflationary cosmology[52, 236, 227,

103], to the best of our knowledge, there has not yet been a systematic study of cross sections

and interaction rates including consistently the dynamics of cosmological expansion. Hence,

motivated by their importance to describe particle physics processes in the early universe,

our objectives in this chapter are the following: i:) to address the fundamental question on

the validity of the S-matrix formulation as applied to cosmology, ii:) to provide an ab initio

study of interaction rates and cross sections in a spatially flat radiation dominated (RD)

cosmology from a full quantum field theoretical analysis in curved space time, providing a

consistent formulation that explicitly includes the cosmological expansion. iii:) To identify

under which circumstances the S-matrix formulation is (approximately) reliable, and when

it is not, to establish its limitations. iv:) To identify potentially new phenomena that is
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not captured by the S-matrix formulation and that may lead to novel phenomenological

consequences.

In this chapter we begin this program by studying the case of scalar fields with a contact

interaction as a first step towards a deeper understanding of fermionic and gauge degrees of

freedom of the standard model or beyond and perhaps of possible dark matter candidates.

The lessons learned in this study will provide a stepping stone to approaching more general

interactions: if they confirm the validity of an S-matrix approximation to cross sections

in cosmology, then our study provides a first principles analysis that lends credibility to

this framework, and establishes its limitations. If, on the other hand, our study reveals

new phenomena that is not captured by the S-matrix formulation, it may lead to novel

phenomenological consequences and will further motivate the study of other interactions

relevant to cosmological processes.

Brief summary of results: After discussing field quantization in a (RD) cosmology,

and recognizing the daunting conceptual and technical challenges of obtaining transition

matrix elements with the exact field modes even at tree level, we introduce an adiabatic

expansion that relies on the ratio H/E ≪ 1 where H is the expansion rate and E the

energy of a particle measured by a locally inertial observer. This expansion is valid for all

wavelengths well inside the particle horizon at any given time and its reliability improves

upon cosmological expansion. At heart it hinges on a wide separation between cosmological

and microscopic time scales. In this chapter we consider two bosonic degrees of freedom

with a local contact interaction to leading order in this adiabatic expansion. We obtain the

interaction rate and cross section during the finite time interval determined by the particle

horizon. We show that the leading adiabatic order yields the dominant contribution. As

a consequence of the cosmological expansion and a finite particle horizon we find several

general noteworthy features of the cross section: i): violation of local Lorentz invariance:

the cross section for a finite particle horizon features a dependence on the local energy and

momenta that explicitly breaks the invariance under local Lorentz transformations. ii): the

cross section for heavy particle production features two different phenomena a) a freeze-out,

whereby the physical momentum falls below the production threshold and the expansion

shuts-off the production, b) a time regime during which there is subthreshold production of
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a heavier species: the finite particle horizon introduces an energy uncertainty which leads to

the relaxation of the threshold condition and opens a window of width ∝ H for production of

heavier particles for local energy and momenta that are smaller than the threshold value in

Minkowski space-time. This is a manifestation of the antizeno effect [249, 105, 182]. In other

words the energy uncertainty as a consequence of the finite particle horizon allows processes

that would be otherwise forbidden by strict energy conservation. A possible implication

of this phenomenon may be relevant to dark matter: if heavy dark matter particles are

produced via pair annihilation of a much lighter species, sub-threshold production leads to

an enhancement of their abundance.

6.2 The model:

In the standard cosmological model, most particle physics processes occur during the

radiation dominated (RD) era, therefore we focus on the post-inflationary (RD) universe,

described by a spatially flat Friedmann-Robertson-Walker (FRW) cosmology with the metric

in comoving coordinates given by

gµν = diag(1,−a2,−a2,−a2) , (6.2.1)

where a is the scale factor. It is convenient to pass to conformal time η with dη = dt/a(t),

in terms of which the metric becomes (a(t) ≡ a(η))

gµν = a2(η) ηµν . (6.2.2)

where ηµν is the Minkowski space-time metric.

During the (RD) stage, the Hubble expansion rate H(η) is given by

H(η) =
1

a2(η)

da(η)

dη
= 1.66

√
geff

T 2
0

MPl a2(η)
, (6.2.3)

where geff is the effective number of ultrarelativistic degrees of freedom, which varies in

time as different particles become non-relativistic, and T0 is the temperature of the cosmic

microwave background today. We take geff = 2 corresponding to radiation today, which
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yields a lower bound on the Hubble scale, in order to estimate order of magnitudes. The

scale factor during (RD) is

a(η) = HR η ; HR = H0

√
ΩR = 10−44GeV ⇒ H(η) =

HR

a2(η)
, (6.2.4)

(H(η) ≡ H(t)) where quantities with a subscript 0 refer to the values today, and ΩR is the

ratio of energy density in radiation today to the critical density. The numerical value for

HR follows from taking geff = 2. During this stage the relation between conformal and

comoving time is given by

η =
( 2 t

HR

) 1
2 ⇒ a(t) =

[
2 tHR

] 1
2

; H(t) =
1

2 t
. (6.2.5)

If particles interact directly with the thermal bath that constitutes the environment

during the (RD) era, high temperature and density induce thermal corrections to masses

and interaction vertices. In this chapter we do not consider these effects, focusing solely

on the conceptual aspects of obtaining interaction rates and cross sections directly in real

time accounting for the cosmological expansion. Therefore, the results obtained are general

and independent of the thermal aspects of populations, and apply directly, for example

to two dark matter particle species that interact weakly with each other via a local contact

interaction but not with the standard model degrees of freedom. Including finite temperature

and density corrections to these quantities in the case of direct interaction and thermalization

with the environmental plasma remains a longer term goal outside the scope of this chapter.

We consider a complex (Ψ) and a real (Φ) scalar field with a local quartic interaction

with action given by

A =

∫
d4x
√
|g|
{
gµν ∂µΨ

†∂νΨ−M2Ψ†Ψ+
1

2
gµν ∂µΦ∂νΦ− 1

2
m2Φ2 − λΨ†ΨΦ2

}
(6.2.6)

noting that the Ricci scalar vanishes identically in a spatially flat (RD)- (FRW) cosmology.

In comoving spatial coordinates and conformal time and upon conformally rescaling the

fields as

Ψ(x⃗, t) =
ϕ(x⃗, η)

a(η)
; Φ(x⃗, t) =

χ(x⃗, η)

a(η)
; a(η) = a(t(η)) , (6.2.7)
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the action (6.2.6) becomes

A =

∫
d3x dη

{
1
2

(dχ
dη

)2
− 1

2

(
∇χ
)2 − 1

2
χ2m2 a2(η) (6.2.8)

+
(dϕ†

dη

)(dϕ
dη

)
−
(
∇ϕ†) (∇ϕ)− |ϕ|2M2 a2(η)− λϕ†(x⃗, η)ϕ(x⃗, η)χ2(x⃗, η)

}
. (6.2.9)

Although this simple model cannot capture all of the important aspects of standard

model physics and/or dark matter candidates, it allows us to study ubiquitous phenomena

such as scattering and particle production, illuminating the interplay between the dynamics

of expansion and threshold kinematics. Furthermore, its analysis leads us to draw general

lessons on the technical and conceptual aspects that will pave the way towards understanding

interactions more relevant to particle physics models.

6.2.1 Quantization and adiabatic expansion:

We begin with the quantization of free fields [294, 184, 355, 89, 189, 297, 288, 90, 117] as

a prelude to the interacting theory. The Heisenberg equations of motion for the conformally

rescaled fields ϕ, χ in conformal time are

d2

dη2
ϕ(x⃗, η)−∇2ϕ(x⃗, η) +M2 a2(η)ϕ(x⃗, η) = 0 , (6.2.10)

d2

dη2
χ(x⃗, η)−∇2χ(x⃗, η) +m2 a2(η)χ(x⃗, η) = 0 . (6.2.11)

It is convenient to quantize the fields in a comoving volume V , namely,

ϕ(x⃗, η) =
1√
V

∑
k⃗

[
ak⃗ gk(η) e

ik⃗·x⃗ + b†
k⃗
g∗k(η) e

−ik⃗·x⃗
]
. (6.2.12)

χ(x⃗, η) =
1√
V

∑
k⃗

[
ck⃗ fk(η) e

ik⃗·x⃗ + c†
k⃗
f ∗
k (η) e

−ik⃗·x⃗
]
, (6.2.13)

where the mode functions gk(η); fk(η) are solutions of the following equations[ d2
dη2

+ Ω2
k(η)

]
gk(η) = 0 ; Ω2

k(η) = k2 +M2 a2(η) (6.2.14)[ d2
dη2

+ ω2
k(η)

]
fk(η) = 0 ; ω2

k(η) = k2 +m2a2(η) , (6.2.15)
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and satisfy the Wronskian condition

g
′

k(η)g
∗
k(η)− g∗

′

k (η)gk(η) = −i (6.2.16)

f
′

k (η)f
∗
k (η)− f ∗ ′

k (η)fk(η) = −i , (6.2.17)

so that the annihilation and creation operators are time independent and obey the canonical

commutation relations [ak⃗, a
†
k⃗′
] = δk⃗,⃗k′ ; [ck⃗, c

†
k⃗′
] = δk⃗,⃗k′ etc., and the vacuum state |0⟩ is defined

as

ak⃗ |0⟩ = 0 ; bk⃗ |0⟩ = 0 ; ck⃗ |0⟩ = 0 . (6.2.18)

Since the mode equations for fk(η), gk(η) obey similar equations of motion, we focus on

fk(η) from which we can obtain gk(η) by the replacement m → M . Let us introduce the

dimensionless variables

x =
√
2mHR η ; α = − k2

2mHR

, (6.2.19)

in terms of which the equation (6.2.15) is identified with Weber’s equation[209, 15, 293, 70,

276]
d2

dx2
f(x) +

[x2
4

− α
]
f(x) = 0 . (6.2.20)

The general solutions are linear combinations of Weber’s parabolic cylinder functions

W [α;±x] [209, 15, 293, 70, 276]. We seek solutions that can be identified with particle

states obeying the condition

fk(η) →
e−i

∫ η
η∗ ωk(η

′) dη′√
2ωk(η)

, (6.2.21)

for wavevectors well inside the particle horizon (Hubble radius) which is discussed below in

more detail, along with the Wronskian condition (6.2.17). The lower limit η∗ corresponds to

a conformal time at which the condition of adiabaticity ω′
k(η)/ω

2
k(η) ≪ 1, described in detail

below (see eqns. (6.2.26,6.2.32)) is fulfilled. These were found in ref.[226], and are given by

fk(η) =
1

(8mHR)1/4

[ 1√
κ
W [α;x]− i

√
DW [α;−x]

]
; D =

√
1 + e−2π|α| − e−π|α| . (6.2.22)

It is shown in ref.[226] that the asymptotic behavior of fk(η) is indeed given by (6.2.21) for

wavelengths much smaller than the particle horizon as well as in the long time limit. The

mode functions gk(η) are obtained from these by the replacement m→M .
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A perturbative approach to obtaining a cross section begins by defining the interaction

picture wherein fields feature the free field time evolution (6.2.12,6.2.13) with the mode

functions obeying the free field equations of motion (6.2.14,6.2.15). The transition matrix

elements between initial and final states are obtained in a perturbative expansion in terms of

time ordered integrals of products of the interaction Hamiltonian in the interaction picture.

Even to lowest order in such perturbative expansion, the transition matrix elements would

feature time and momentum integrals of products of the mode functions fk, gk given by

eqn. (6.2.22) and similarly for gk. Obviously this is very different from the situation in

Minkowski space-time where the mode functions are simple plane wave solutions both in

space and time, and integrals over the space-time coordinates lead to energy momentum

conservation at each vertex. In a spatially flat (FRW) cosmology there are three space-like

Killing vectors associated with spatial translational invariance, therefore the spatial part of

the mode functions are the usual plane waves, as manifest in the expansions (6.2.12,6.2.13).

Hence, the spatial integrals yield spatial momentum conservation, however, the time integrals

involve products of parabolic Weber functions, obviously presenting a formidable technical

obstacle. Above and beyond these technical difficulties, it is clear that unlike Minkowski

space-time, there is no energy conservation, this is consequence of the lack of a time-like

Killing vector in an expanding cosmology. Most particle physics processes in the early

Universe are deemed to involve energetic particles, which motivates us to invoke an adiabatic

approximation for the mode functions based on the well studied Wentzel-Kramers-Brillouin

(WKB) approximation to the solution of the equations for the mode functions[89, 189, 288,

297, 90, 117].

Since both mode functions satisfy the same differential equations, albeit with a different

mass term, we will carry out the WKB analysis for fk(η). Writing the solution of the mode

equations in the WKB form[89, 189, 288, 297, 90, 117, 150, 348]

fk(η) =
e
−i

∫ η
ηi
Wk(η

′) dη′√
2Wk(η)

, (6.2.23)

and inserting this ansatz into (6.2.15) it follows that Wk(η) must be a solution of the

equation[89]

W 2
k (η) = ω2

k(η)−
1

2

[
W

′′

k (η)

Wk(η)
− 3

2

(
W

′

k(η)

Wk(η)

)2]
. (6.2.24)
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This equation can be solved in an adiabatic expansion

W 2
k (η) = ω2

k(η)

[
1− 1

2

ω
′′

k (η)

ω3
k(η)

+
3

4

(
ω

′

k(η)

ω2
k(η)

)2

+ · · ·
]

; ωk(η) =
√
k2 +m2a2(η) . (6.2.25)

We refer to terms that feature n-derivatives of ωk(η) as of n-th adiabatic order. The nature

and reliability of the adiabatic expansion is revealed by considering the term of first adiabatic

order for generic mass m:
ω

′

k(η)

ω2
k(η)

=
m2 a(η)a

′
(η)[

k2 +m2 a2(η)
]3/2 , (6.2.26)

this is most easily recognized in comoving time t, introducing the local energy Ek(t) and

Lorentz factor γk(t) measured by a comoving observer in terms of the physical momentum

kp(t) = k/a(t)

Ek(t) =
√
k2p(t) +m2 =

ωk(η)

a(η)
(6.2.27)

γk(t) =
Ek(t)

m
, (6.2.28)

and the Hubble expansion rate H(t) = ȧ(t)
a(t)

= a
′
/a2. In terms of these variables, the first

order adiabatic ratio (6.2.26) becomes

ω
′

k(η)

ω2
k(η)

=
H(t)

γ2k(t)Ek(t)
. (6.2.29)

In similar fashion the higher order terms in the adiabatic expansion for a (RD) cosmology

(vanishing Ricci scalar) can be obtained,

ω
′′

k (η)

ω3
k(η)

=
1

γ2k(t)

H2(t)

E2
k(t)

[
1− 1

γ2k(t)

]
ω

′′′

k (η)

ω4
k(η)

= − 3

γ3k(t)

H3

E3
k

[
1− 1

γ2k(t)

]
. (6.2.30)

Consequently, (6.2.25) takes the form:

W 2
k (t) = a2(t)E2

k(t)
[
1− 1

2γ2k(t)

H2(t)

E2
k(t)

[
1− 5

2γ2k(t)

]
+ · · ·

]
. (6.2.31)

Since the Ricci scalar (R ∝ a′′(η)/a3(η)) vanishes in a (RD) cosmology, it follows that

for m = 0 (γk = ∞) the mode functions are the same as in Minkowski space-time and the
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WKB approximation becomes exact, furthermore, for k = 0 (γk = 1) only ω′
k/ω

2
k remains

since higher order derivatives of the frequency (ωk=0(η) = ma(η)) vanish.

These two limits and the expansion terms featured above lead us to identify the ratio

H(t)

γk(t)Ek(t)
≪ 1 , (6.2.32)

as the small, dimensionless adiabatic expansion parameter. We will instead adopt a more

stringent condition for the adiabatic approximation, namely

H(t)

Ek(t)
≪ 1 ⇒ Ek(t) t≫ 1 , (6.2.33)

where we used the relation (6.2.5) in the second inequality.

The physical interpretation of the ratio H(t)/Ek(t) is clear: typical particle physics de-

grees of freedom feature either physical de Broglie or Compton wavelengths that are much

smaller than the (physical) particle horizon ∝ 1/H(t) at any given time during (RD). In

a standard (RD) cosmology the particle horizon always grows faster than a physical wave-

length, therefore the reliability of the adiabatic expansion improves with the cosmological

expansion. The condition (6.2.33) is also equivalent to a “long time limit” in the sense that

there are many oscillations of the microscopic degrees of freedom during a Hubble time scale

≃ 1/H(t).

As an example, let us consider processes occurring early in the (RD) stage, for example

at the Grand Unification (GUT) scale ≃ 1015GeV, assuming that particles feature physical

momenta at this scale kph(η) = k/a(η) ≃ 1015GeV with k being the comoving momentum

and a mass ≃ 100GeV, hence a local Lorentz factor γk ≃ 1013. If the environmental temper-

ature of the plasma is T ≃ TGUT ≃ 1015GeV and taking as an example the standard model

result geff ≃ 100, it follows that H ≃ 1012GeV and approximating TGUT ≃ TCMB/a(ηi)

implying that the scale factor at the GUT scale a(ηi) ≃ 10−28 and a comoving wavevector

k ≃ 10−13GeV. This situation yields a ratio H/E ≃ 10−3, which becomes smaller with

the cosmological expansion and the adiabatic ratio is even much smaller on account of the

Lorentz factor.

Although the value chosen for the scale factor a ≃ 10−28 is probably near the end

of inflation, the main point is that even for these values the adiabatic ratio H/E is small
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enough that the adiabatic approximation is reliable. As the cosmological expansion proceeds

this ratio becomes even smaller, making the adiabatic approximation even more reliable. In

conclusion, the assumption of the validity of the adiabatic approximation for wavelengths

smaller than the Hubble radius is reliable all throughout the (RD). Hence, our analysis,

based on this approximation, is valid during this era of cosmological expansion.

Underlying this analysis of energy scales, the adiabatic approximation entails a wide

separation of time scales : the expansion time scale 1/H is much longer than the microscopic

time scales of oscillations associated with particle states ≃ 1/E as implied by the inequal-

ity(6.2.33). It is this separation of time scales that warrants the adiabatic approximation

and will undergird our analysis below.

This analysis clarifies that the adiabatic approximation breaks down for non-relativistic

particles γk ≃ 1 with masses m ≤ H. This situation corresponds to kph ≪ m ≪ H,

hence the breakdown of the adiabaticity condition is associated with wavelengths that are

larger than the particle horizon at a given time. However, since in a (RD) cosmology the

particle horizon grows ∝ a2(η) whereas physical wavelengths grow ∝ a(η) and the Compton

wavelengths remain constant, eventually a superhorizon mode enters the particle horizon

and the adiabatic approximation eventually becomes reliable. This analysis delineates the

regime of applicability of the adiabatic approximation and its implementation must always

be accompanied with an analysis of the relevant scales.

In this chapter we focus our study on obtaining the cross section to leading orders in the

coupling and the adiabatic expansion, the latter implies the zeroth-adiabatic order for mode

functions, namely

fk(η) =
e
−i

∫ η
ηi
ωk(η

′) dη′√
2ωk(η)

; gk(η) =
e
−i

∫ η
ηi

Ωk(η
′) dη′√

2Ωk(η)
. (6.2.34)

It is shown explicitly in ref.[226] that the exact mode functions given by eqn. (6.2.22)

coincide with zeroth adiabatic order fk(η) given by eqn. (6.2.34) to leading order in the

adiabatic expansion ω′(η)/ω2(η) ≪ 1 considered in this study.

We will show explicitly that higher order adiabatic corrections provide small contributions

to the processes considered here which are further suppressed by the coupling. The phase of
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the mode function has an immediate interpretation in terms of comoving time and the local

comoving energy (6.2.27), namely

e
−i

∫ η
ηi
ωk(η

′) dη′
= e

−i
∫ t
ti
Ek(t

′) dt′
. (6.2.35)

where we used the relations ωk = a(η)Ek ; a(η)dη = dt. A similar analysis holds for the

phases involving Ωk(η). This is a natural and straightforward generalization of the phase of

positive frequency particle states in Minkowski space-time which is precisely the rational for

the boundary conditions (6.2.21) on the mode functions[226].

Since as shown in ref.[226] to leading order in the adiabatic expansion the mode func-

tions fk(η), gk(η) in (6.2.12,6.2.13) are given by (6.2.34), the expansion of the ϕ, χ fields

(6.2.12,6.2.13) to leading adiabatic order become

ϕ(x⃗, η) =
∑
k⃗

1√
2V Ωk(η)

[
ak⃗ e

−i
∫ η
ηi

Ωk(η
′) dη′

eik⃗·x⃗ + b†
k⃗
e
i
∫ η
ηi

Ωk(η
′) dη′

e−ik⃗·x⃗
]
, (6.2.36)

χ(x⃗, η) =
∑
k⃗

1√
2V ωk(η)

[
ck⃗ e

−i
∫ η
ηi
ωk(η

′) dη′
eik⃗·x⃗ + c†

k⃗
e
i
∫ η
ηi
ωk(η

′) dη′
e−ik⃗·x⃗

]
, (6.2.37)

with the vacuum state |0⟩ obeying the condition (6.2.18).

We will refer to the Fock states created out of the vacuum for the fields ϕ† ; ϕ as φ±

particle-antiparticle respectively and χ particles for the χ fields, where the particle inter-

pretation is warranted by the form of the zeroth-order adiabatic solutions (6.2.34). The

Minkowski space-time limit is obtained by setting a(η) = 1 and η → t, so that the frequen-

cies become time independent, and absorbing the dependence on the initial time ti into a

(phase) redefinition of the creation and annihilation operators.

In order to establish a clear identification of the zeroth order adiabatic modes with

particles we analyze the free-field Hamiltonian, which in terms of the conformally rescaled

field operators and focusing on the χ field is given by

Hχ(η) =
1

2

∫
d3x {π2 + (∇χ)2 +m2a2(η)χ2} ; π ≡ χ′ . (6.2.38)
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Using the canonical commutation relations, and the Wronskian conditions (6.2.17) it is

straightforward to find that the Heisenberg equations of motion obtained with this Hamil-

tonian are precisely eqn. (6.2.14) for the mode functions fk, hence for the quantum field χ.

Using the expansion (6.2.13) for the χ field and integrating in d3x we find

Hχ(η) =
1

2

∑
k⃗

{
c†
k⃗
ck⃗

[
|f ′
k|2 + ω2

k(η) |fk|2
]
+
(
ck⃗c−k⃗

[
(f ′
k)

2 + ω2
k(η)(fk)

2
]
+ h.c.

)}
. (6.2.39)

Writing fk(η) in the WKB form (6.2.23) and keeping the zeroth adiabatic order, we find

Hχ(η) =
∑
k⃗

c†
k⃗
ck⃗ ωk(η) . (6.2.40)

A similar analysis for the ϕ field to zeroth order in the adiabatic expansion yields

Hϕ(η) =
∑
k

(
a†
k⃗
ak⃗ + b†

k⃗
bk⃗

)
Ωk(η) . (6.2.41)

It is straightforward to confirm that the terms ck⃗c−k⃗ in (6.2.39) (and similar for the ϕ field)

are of second and higher adiabatic order[227].

6.2.2 Amplitudes and rates:

Since we will study transition rates in a finite time interval it is important to address

their proper definition. In S-matrix theory a rate is simply defined by taking the transition

probability from t = −∞ to t = +∞ and dividing by the total time interval. In this infinite

time limit the total transition probability grows linearly in time, therefore dividing by the

total time elapsed yields a time independent transition rate. However, during a finite time

interval the transition probability features a more subtle time dependence and a consistent

definition of the transition rate must be carefully reassessed. Reference[227] introduced a

formulation of the time evolution of states in cosmology which leads to an identification of

transition probabilities and rates. Such a formulation was also implemented in ref.[105] to

study the dynamics of decay directly in real time in Minkowski space-time. For consistency

of presentation we summarize the main aspects of this formulation here in order to clarify
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the definition of transition rates which are the main focus of this study. We refer the reader

to these references for more details. In the interaction picture states evolve as

|Ψ(η)⟩I = UI(η, η0) |Ψ(η0)⟩I , (6.2.42)

where the time evolution operator in the interaction picture obeys

i
d

dη
UI(η, η0) = HI(η)UI(η, η0) ; UI(η0, η0) = 1 . (6.2.43)

whose perturbative solution yields

UI(η; ηi) = 1− i

∫ η

ηi

HI(η
′) dη′ + · · · (6.2.44)

where

HI(η) = λ

∫
d3xϕ†(x⃗, η)ϕ(x⃗, η)χ2(x⃗, η) , (6.2.45)

is the interaction Hamiltonian in the interaction picture. Expanding |Ψ(η)⟩I in the adiabatic

Fock states eigenstates of Hχ, Hϕ generically labeled as |n⟩, as |Ψ(η)⟩I =
∑

nCn(η) |n⟩ the

expansion coefficients (amplitudes) obey

i
d

dη
Cn(η) =

∑
m

Cm(η) ⟨n|HI(η) |m⟩ . (6.2.46)

In principle this is an infinite hierarchy of integro-differential equations for the coefficients

Cn(η); progress can be made, however, by considering states connected by the interaction

Hamiltonian to a given order in the interaction. Consider that initially the state is |A⟩ so that

CA(ηi) = 1 ; Cκ(ηi) = 0 for |κ⟩ ̸= |A⟩, and consider a first order transition process |A⟩ →
|κ⟩ to intermediate multiparticle states |κ⟩ with transition matrix elements ⟨κ|HI(η)|A⟩.
Obviously the state |κ⟩ will be connected to other multiparticle states |κ′⟩ different from |A⟩
via HI(η). Hence for example up to second order in the interaction, the state |A⟩ → |κ⟩ →
|κ′⟩. Restricting the hierarchy to first order transitions from the initial state |A⟩ ↔ |κ⟩
results in a coupled set of equations

i
d

dη
CA(η) =

∑
κ

Cκ(η) ⟨A|HI(η) |κ⟩ ; CA(ηi) = 1 , (6.2.47)

i
d

dη
Cκ(η) = CA(η) ⟨κ|HI(η) |A⟩ ; Cκ(ηi) = 0 . (6.2.48)
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The hermiticity of HI leads to the result

d

dη

{
|CA(η)|2 +

∑
κ

|Cκ(η)|2
}

= 0 ⇒ |CA(η)|2 +
∑
κ

|Cκ(η)|2 = 1 , (6.2.49)

this is the statement of unitarity and we have used the initial conditions on the amplitude.

For the cases under consideration, for example that of pair annihilation φ+φ− → χχ studied

below, the initial state |A⟩ is the two particle state |A⟩ =
∣∣∣1+
k⃗1
; 1−

k⃗2

〉
namely with a particle-

antiparticle pair of momenta k⃗1; k⃗2 respectively and the states |κ⟩ being a final state of two

χ particles, namely |κ⟩ = |1p⃗3 ; 1p⃗4⟩.
Following ref.[227] we solve the system of equations (6.2.47,6.2.48) to leading order in the

interaction consistently with our tree level calculation of the transition amplitude, yielding

d

dη
CA(η) = −

∫ η

ηi

dη′ ΣA(η, η
′) CA(η) ; CA(ηi) = 1 , (6.2.50)

Cκ(η) = −i
∫ η

ηi

⟨κ|HI(η
′) |A⟩ CA(η′) dη′ , (6.2.51)

where the self-energy

ΣA(η; η
′) =

∑
κ

⟨A|HI(η) |κ⟩ ⟨κ|HI(η
′) |A⟩ . (6.2.52)

The solution of eqn. (6.2.50) yields the probability of remaining in the initial state |A⟩ as

PA(η) = |CA(η)|2 = e
−

∫ η
ηi

ΓA(η′)dη′
; ΓA(η) = 2

∫ η

ηi

dη1Re [ΣA(η, η1)] , (6.2.53)

and the transition rate
1

PA(η)
d

dη
PA(η) = −ΓA(η) . (6.2.54)

To leading order in the interaction, using the unitarity condition (6.2.49) we find that the

total probability of final states is given by

Ptot(η) =
∑
κ

|Cκ(η)|2 =
∫ η

ηi

ΓA(η
′) dη′ = 2

∫ η

ηi

dη2

∫ η2

ηi

dη1ReΣA[η2; η1] , (6.2.55)

hence
d

dη
Ptot(η) = ΓA(η) . (6.2.56)
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This is a manifestation of the optical theorem in real time which licenses us to define the

comoving transition rate as

Γi→f (η) =
d

dη
Ptot(η) = ΓA(η) = 2

∫ η

ηi

dη1ReΣA[η; η1] . (6.2.57)

In Minkowski space-time in the long time limit t→ ∞ the rate ΓA becomes independent

of time and at long time PA = e−ΓAt while the total probability to final states Ptot = ΓA t.

Therefore, in this case defining the rate as Ptot/t yields the same result as dPtot/dt. In

cosmology where the background is time dependent and momenta are redshifted by the

expansion, or during a finite time interval during which the linear growth in time of the final

total probability is not yet established, the two different definitions obviously yield different

results. This indicates the subtleties associated with definitions of transition rates in a finite

time interval.

The total number of “events” is given by Ptot(η) namely the (conformal) time integral of

the transition rate, which is manifestly positive. Therefore, motivated by the above analysis

based on unitarity and the optical theorem we define the transition rate as in eqn. (6.2.57).

Some subtleties associated with this definition, and an analysis of an alternative definition

closer to that in Minkowski space- time and its caveats will be discussed in section (6.5).

6.2.3 Pair annihilation: φ+φ− → χχ

For this process

|i⟩ =
∣∣∣1+
k⃗1
; 1−

k⃗2

〉
; |f⟩ = |1p⃗3 ; 1p⃗4⟩ , (6.2.58)

these are eigenstates of the zeroth order adiabatic Hamiltonians (6.2.40,6.2.41), and the

transition matrix element ⟨f |HI(η)|i⟩ is given by

⟨f |HI(η)|i⟩ =
−i λ
2V

δk⃗1+k⃗2−p⃗3−p⃗4
e
−i

∫ η
ηi

(
Ωk1

(η′)+Ωk2
(η′)−ωp3 (η

′)−ωp4 (η
′)
)
dη′[

Ωk1(η1)Ωk2(η1)ωp3(η1)ωp4(η1)
]1/2 , (6.2.59)

therefore, accounting for a symmetry factor 1/2! for indistinguishable final states, the self

energy (6.2.52) is given by

Σ[η2; η1] =
λ2

8V

∫
d3p3
(2π)3

e
i
∫ η2
η1

(
Ωk1

(η′)+Ωk2
(η′)−ωp3 (η

′)−ωp4 (η
′)
)
dη′[

W(η1)W(η2)
]1/2 , (6.2.60)
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with

W(η1) = Ωk1(η1)Ωk2(η1)ωp3(η1)ωp4(η1) , (6.2.61)

and p4 = |p⃗3 − k⃗1 − k⃗2|. Therefore the transition rate (6.2.57) is given by

Γi→f (η) = 2

∫ η

ηi

dη1ReΣ[η; η1] . (6.2.62)

It is illuminating to relate the above results to the usual formulation of transition rates

from an initial state |i⟩ at the initial time ηi to a final state |f⟩ at time η. The transition

amplitude is given by

Ai→f (η) = ⟨f |UI(η, ηi) |i⟩ (6.2.63)

and the transition probability by

Pi→f (η) = | ⟨f |UI(η, ηi) |i⟩ |2 . (6.2.64)

To leading order in the coupling we find

Ai→f (η) =
−i λ
2V 2

∫
d3x ei

(
k⃗1+k⃗2−p⃗3−p⃗4

)
·x⃗
∫ η

ηi

e
−i

∫ η1
ηi

(
Ωk1

(η′)+Ωk2
(η′)−ωp3 (η

′)−ωp4 (η
′)
)
dη′[

Ωk1(η1)Ωk2(η1)ωp3(η1)ωp4(η1)
]1/2 dη1

=
−i λ
2V

δk⃗1+k⃗2−p⃗3−p⃗4

∫ η

ηi

e
−i

∫ η1
ηi

(
Ωk1

(η′)+Ωk2
(η′)−ωp3 (η

′)−ωp4 (η
′)
)
dη′[

Ωk1(η1)Ωk2(η1)ωp3(η1)ωp4(η1)
]1/2 dη1 . (6.2.65)

The total transition probability to the final states is given by

Pi→f (η) =
1

2!

∑
p⃗3

∑
p⃗4

|Ai→f (η)|2 , (6.2.66)

which can be written compactly as

Pi→f (η) =

∫ η

ηi

dη2

∫ η

ηi

dη1Σ[η2; η1] , (6.2.67)

where Σ[η2; η1] is given by (6.2.60). Introducing Θ(η2 − η1) + Θ(η1 − η2) = 1, in (6.2.67),

where Θ is the Heaviside step function, relabelling η1 ↔ η2 in the term with Θ(η1 − η2) and

using that Σ[η1; η2] = Σ∗[η2; η1] we find

Pi→f (η) = 2

∫ η

ηi

dη2

∫ η2

ηi

dη1ReΣ[η2; η1] , (6.2.68)
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which coincides with Ptot given by eqn. (6.2.55). Thus defining the comoving transition rate

as

Γi→f (η) =
d

dη
Pi→f (η) (6.2.69)

one finds the result (6.2.57) obtained from unitarity and the optical theorem. Consistently

with the definition (6.2.57) of the transition rate we define the comoving cross section as the

transition rate per unit comoving flux for one incoming particle, namely,

σ(η) =
Γi→f (η)(
vrel(η)
V

) , (6.2.70)

with vrel(η) being the comoving relative velocity, for collinear pair annihilation it is given by

vrel(η) =
|⃗k1|

Ωk1(η)
+

|⃗k2|
Ωk2(η)

. (6.2.71)

We note that
|⃗k|

Ωk(η)
=

|⃗kph(η)|
Eϕ
k (η)

. (6.2.72)

where

k⃗ph(η) =
k⃗

a(η)
; Eϕ

k (η) =
√
k2ph(η) +M2 =

Ωk(η)

a(η)
, (6.2.73)

are the physical momenta and energy measured by a locally inertial observer. The time

dependence of the relative velocity is a simple consequence of the cosmological redshift.

In section (6.5) we discuss subtleties and caveats emerging from the treatment during a

finite time interval as is necessary within the cosmological setting.
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6.3 Massless χarticles:

The integral over η1 yielding Γi→f cannot be done analytically, even a numerical attempt

is a daunting challenge because of the large range of a(η) and momenta that must be explored

numerically. Instead, our strategy is to leverage the adiabatic approximation and the wide

separation of time scales that it entails. We first study the case of massless χ- particles in

the final state, the lessons of which will prove useful in the more general case of massive

particles. For massless χ particles we find

2Σ[η; η1] =
λ2

4V

e
i
∫ η
η1

(
Ωk1

(η′)+Ωk2
(η′)
)
dη′[

Ωk1(η)Ωk2(η)Ωk1(η1)Ωk2(η1)
]1/2 I[η; η1] , (6.3.1)

where we introduced the time kernel

I[η; η1] =

∫
d3p

(2π)3
e−i
(
p+

∣∣K⃗−p⃗
∣∣) (η−η1)

p
∣∣K⃗ − p⃗

∣∣ ; K⃗ = k⃗1 + k⃗2 . (6.3.2)

The momentum integral can be done by introducing a convergence factor η−η1 → η−η1−iϵ
with ϵ→ 0+, yielding

I[η; η1] = − i

4π2

e−i|K⃗|(η−η1−iϵ)

η − η1 − iϵ
=
e−i|K⃗|(η−η1−iϵ)

4π2

{
− iP

( 1

η − η1

)
+ π δ(η − η1)

}
, (6.3.3)

where P stands for the principal part. The “short distance” singularity as η → η1 is the same

as in Minkowski space-time and stems from the large momentum behavior of the integral in

p, namely linear in p. This linear divergence is manifest as the ≃ 1/(η− η1) as η → η1. Such

“short-distance” singularity remains even when the particles in the final state are massive

Introducing this result into equations (6.2.62,6.2.70) and gathering terms we obtain

σ(η) =
λ2

16 πΩk1(η)Ωk2(η)vrel(η)

1

2

[
1 +

2

π

∫ η

ηi

R12[η; η1]
sin[J(η; η1)]

η − η1
dη1

]
, (6.3.4)

where

R12[η; η1] =

[
Ωk1(η)Ωk2(η)

Ωk1(η1)Ωk2(η1)

]1/2
, (6.3.5)

and

J(η; η1) =

∫ η

η1

(
Ωk1(η

′) + Ωk2(η
′)−

∣∣K⃗∣∣) dη′ . (6.3.6)
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The flux factor can be written in an illuminating manner, namely

Ωk1(η)Ωk2(η)vrel(η) = a2(η)
[(
P1(η) · P2(η)

)2 −M4
]1/2

, (6.3.7)

and

P1(η) · P2(η) = ηabPa
1 (η)Pb

2(η) (6.3.8)

in terms of the Minkowski metric ηab = diag(1,−1,−1,−1) and the four vectors in the local

inertial frame

Pa(η) =
(
Eϕ
k (η), k⃗ph(η)

)
, (6.3.9)

where k⃗ph(η), Ek(η) are given by eqn. (6.2.73) for the respective particles. Therefore, up to

the prefactor a2(η) the flux factor is the same as in Minkowski space-time but in terms of

the local energies and momenta featuring the cosmological redshift, yielding

σ(η) =
λ2

16π a2(η)
[(
P1(η) · P2(η)

)2 −M4
]1/2 1

2

[
1 +

2

π

∫ η

ηi

R12[η; η1]
sin[J(η; η1)]

η − η1
dη1

]
.

(6.3.10)

The remaining time integral in (6.3.10) cannot be done in closed form, nor is it useful to

attempt a numerical study because of the large range of scales involved both in time and

momenta. Instead, we implement the adiabatic approximation to extract its behavior and

to be able to generalize to other processes. Using that during (RD) a(η) = HR η, we write:

Ω2
k(η1) = k2 +M2a2(η1) = k2 +M2a2(η) +M2a2(η)

[(η − η1
η

)2
− 2

(η − η1
η

)]
, (6.3.11)

we now introduce

ΩT (η) = Ωk1(η) + Ωk2(η) , (6.3.12)

as the total comoving energy scale of the process, and define:

τ = ΩT (η)(η − η1) ; z(η) = ΩT (η) η , (6.3.13)

In terms of these variables we obtain the relation

Ωk(η1) = Ωk(η) fk(τ) ; fk(τ) =

[
1− 2 τ

γ2k(η) z(η)

[
1− τ

2 z(η)

]]1/2
, (6.3.14)
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where

γk(η) =
Ωk(η)

M a(η)
=
Ek(η)

M
, (6.3.15)

is the local Lorentz factor. We note that

z(η) =
Etot(η)

H(η)
, (6.3.16)

therefore, the adiabaticity condition (6.2.33) implies that

z(η) ≫ 1 . (6.3.17)

The integral defining J(η, η1), eqn. (6.3.6), can be done explicitly by implementing the

following steps: introducing

ΩT (η)
(
η − η′

)
≡ x , (6.3.18)

it follows that

Ωk(η
′) = Ωk(η) fk(x) (6.3.19)

where fk(x) is given by eqn. (6.3.14) with τ replaced by x. The integral (6.3.6) is now

carried out in terms of the variable x with the result

J(η, η1) = J0(τ ; η) + J1(τ ; η) , (6.3.20)

where

J0(τ ; η) = τ

[
1− |K⃗|

ΩT (η)

]
; J1(τ ; η) =

Ωk1(η)

ΩT (η)
∆k1(τ) +

Ωk2(η)

ΩT (η)
∆k2(τ) , (6.3.21)

where for each frequency (1, 2)

∆(τ) =
γz

2

{(1
γ
−2

τ

γ z

)
−
(1
γ
− τ

γ z

)
fk(τ)−

γ2 − 1

γ2
ln

[(
1
γ
− τ

γ z

)
+ fk(τ)

1
γ
+ 1

]}
≃ − τ 2

2 γ2 z
+ · · ·

(6.3.22)

with fk(τ) given by eqn. (6.3.14) and we have suppressed the arguments k; η in γ; z. For

τ/γz ≪ 1 it follows that

∆(τ) ≃ − τ 2

2 γ2 z
+ · · · (6.3.23)
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The important aspect is that J0(τ ; η) is zeroth order adiabatic, whereas J1(τ ; η) is of

first and higher adiabatic order, because 1/z = H(η)/Etot(η) ≪ 1. The integral term in eqn.

(6.3.10) can now be written as

2

π

∫ η

ηi

R12[η; η1]
sin[J(η; η1)]

η − η1
dη1 = S0(η) + S1(η) (6.3.24)

where

S0(η) =
2

π

∫ z(η)

0

[
1

fk1(τ) fk2(τ)

]1/2
sin[J0(τ ; η)] cos[J1(τ ; η)]

τ
dτ , (6.3.25)

S1(η) =
2

π

∫ z(η)

0

[
1

fk1(τ) fk2(τ)

]1/2
sin[J1(τ ; η)] cos[J0(τ ; η)]

τ
dτ , (6.3.26)

and we introduced

z(η) = z(η)
(
1− ηi

η

)
;
ηi
η

≪ 1 . (6.3.27)

Since in the integrals 0 ≤ τ ≤ z, for local Lorentz factors γ ≫ 1 it is clear from eqn.

(6.3.23) that J1 ≪ 1 in the whole integration domain, therefore the contribution from S0

dominates and S1 can be safely neglected, furthermore in eqn. (6.3.25) we can replace the

term cos[J1] ≃ 1. The case of non-relativistic particles with γ ≃ 1 but consistently with the

adiabatic expansion z ≫ 1 requires further analysis since near the upper limit τ ≃ z and, in

principle, the higher order adiabatic corrections may yield contributions comparable to the

zeroth order adiabatic.

The contributions (6.3.25,6.3.26) feature drastically different behavior: the integrand of

S0 peaks at τ ≃ 0 with an amplitude that is of O(1) and falls off very fast, whereas S1

vanishes ∝ τ/γ z at small τ , is always of higher adiabatic order as it features powers of 1/z,

and oscillates rapidly, averaging out on long time scales. Furthermore, since the integrand

of S0 is localized within the region 0 ≤ τ ≤ π, it follows that in this region of integration

cos[J1(τ ; η)] ≃ 1 and fk(τ) ≃ 1 for z ≫ 1. For τ ≃ z the integrands are of O(1/z) ≪ 1,

therefore the integrand of S0 can be replaced by sin[J0(τ ; η)] and the contribution from S1 can

be safely neglected for z ≫ 1. This analysis is verified numerically, figures (27) and (28) show

the integrands of S0 and S1 respectively for k⃗1 = −k⃗2 (center of mass) and z = 100, γ = 2

with similar features for the full range of parameters with z ≫ 1.
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Figure 27: Integrand of S0 for z = 100 , γ = 2. The difference between the expressions is

visible only at large τ . Figure taken from [306].

The total integrals for S0(η) and S1(η) vs. z(η) = ΩT (η)η are shown in figures (29) and

(30) for pair annihilation in the center of mass for γ = 2.

Asymptotically for z(η) = ΩT (η)η ≫ 1 the contributions S0(η) → 1 and S1(η) → 0.

Since for large z(η) = ΩT (η)η the terms fk(η) → 1 ; cos(∆(η)) → 1 and the integrand of

S0(η) is dominated by the region τ ≃ 0, for ΩT (η)η ≫ 1 the contribution S0(η) can be well

approximated by setting fk = 1 ; cos(∆) = 1, in which case, for pair annihilation in the

center of mass, we can replace

S0(η) =
2

π
Si[ΩT (η)η] (6.3.28)

where Si[x] is the sine-integral function. Figure (31) displays S0(η)− 2
π
Si[ΩT (η)η] vs ΩT (η)η

for γ = 2 and annihilation in the center of mass showing that this difference becomes

negligibly small for ΩT (η)η ≫ 1.

A main conclusion of this analysis, confirmed by the numerical study, is that the con-
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Figure 28: Integrand of S1(τ) vs τ for z = 100; γ = 2. Figure taken from [306].

tribution from the two-body phase space integral yields a time kernel proportional to 1/τ .

It is the rapid fall off of this kernel that ensures that the contributions of the adiabatic

corrections ∝ τ/z are suppressed by O(1/z) as compared to the zeroth order terms. At the

time scale τ ≃ z when the terms of higher adiabatic order begin to be of the same order as

the leading terms, the time kernel has been suppressed by ≃ 1/z thereby suppressing their

contributions. This is an important corollary of the simpler, massless case, it is the rapid

fall-off of the time kernel that ensures the reliability of the adiabatic expansion in the time

integrals, a result that is not obvious a priori.

As we will see below, this result holds generally for any mass of the outgoing particles

with a time kernel that falls off faster than 1/τ for massive particles in the out state, thereby

improving the reliability of the adiabatic expansion in the time integrals for the cross section.

This analysis also shows that in the limit z(η) = ΩT (η) η ≫ 1 the contribution from

S1(η) can be safely neglected. Similar results and conclusions are obtained for k⃗1 + k⃗2 ̸= 0
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Figure 29: S0(η) vs ΩT (η)η for γ = 2 and annihilation in the center of mass. For ΩT (η)η ≫ 1

asymptotes to 1. Figure taken from [306].

in which case, taking ηi → 0

S0(η) =
2

π
Si[(ΩT (η)−K)η] ; K = |⃗k1 + k⃗2| . (6.3.29)

Gathering all these results, we find the final form of the pair annihilation cross section

valid for ΩT (η)η = ET (t)/H(t) ≫ 1, where ΩT (η) is defined in eqn. (6.3.12) and ET (t) =

ΩT (η)/a(η),

σ(η) =
λ2

16π a2(η)
[(
P1(η) · P2(η)

)2 −M4
]1/2 1

2

[
1 +

2

π
Si
[(
ΩT (η)−K

)
η
]]
. (6.3.30)

Up to the scale factor dependence in the denominator, this result is remarkably similar to

the cross section during a finite time interval in Minkowski space-time.
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Figure 30: S1(η) vs ΩT (η)η for γ = 2 and annihilation in the center of mass. For ΩT (η)η ≫ 1

asymptotes to 0. Compare the vertical scale to that in Figure (29). Figure taken from [306].

The 1/a2(η) dependence of the cross section has a simple interpretation: we have obtained

a comoving cross section, by obtaining the comoving transition rate and dividing by the

comoving flux. Since the cross section has dimensions of area, upon cosmological expansion

all physical lengths scale with a(η) therefore, a physical cross section should be identified

with

σph(η) = a2(η)σ(η) , (6.3.31)

which in terms of the physical (local) four momenta and comoving time agrees with the cross

section in Minkowski space-time during a finite time interval

The bracket in (6.3.30) has an important interpretation that paves the way towards un-

derstanding the general case of massive particles in the final state. This interpretation begins

with writing the time kernel I[η; η1] in eqn. (6.3.2) in terms of a spectral representation,
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Figure 31: S0(η) − Sa(η) with Sa(η) =
2
π
Si[ΩT (η)η] vs ΩT (η)η for γ = 2 and annihilation

in the center of mass. Figure taken from [306].

namely

I[η; η1] =

∫ ∞

−∞
ρ(K0, K) e−iK0(η−η1) dK0 , (6.3.32)

with

ρ(K0, K) =

∫
d3p

(2π)3
δ
(
K0 − p−

∣∣K⃗ − p⃗
∣∣)

p
∣∣K⃗ − p⃗

∣∣ =
1

4π2
Θ(K2

0 −K2)Θ(K0) . (6.3.33)

The spectral density ρ(K0, K) is identified as the Lorentz invariant phase space for two

massless particles in Minkowski space-time.

The result (6.3.3) and analysis above showed that the time kernel is dominated by the

region 0 ≤ τ ≃ π and its rapid fall-off ∝ 1/τ suppresses the integration region for τ ≃ z(η) ≫
1. Therefore the integral J(τ ; η) (eqn. (6.3.6)) can be safely replaced by the zeroth-adiabatic

order result J0(τ ; η) in eqn. (6.3.21), effectively replacing

e
i
∫ η
η1

(
Ωk1

(η′)+Ωk2
(η′)
)
dη′ → ei

[
Ωk1

(η)+Ωk2
(η)
]
(η−η1) , (6.3.34)
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hence neglecting the higher adiabatic order contribution J1(τ ; η), and the factor R12[η; η1]

in eqn. (6.3.4) can be set to R12[η; η1] = 1 to leading adiabatic order. Therefore, to leading

(zeroth) adiabatic order, and now taking ηi → 0, we find the comoving transition rate Γi→f

given by eqn. (6.2.62) as

Γi→f (η) =
λ2

4V

1

Ωk1(η)Ωk2(η)

∫ ∞

−∞
ρ(K0, K)

sin
[(
K0 − ΩT (η)

)
η
]

(
K0 − ΩT (η)

) dK0 . (6.3.35)

Although the transition rate features oscillations, under the same approximations keeping

the leading (zeroth) adiabatic order, we find the integral over a short time interval during

which the time dependent frequencies do not change much

∫ η

0

Γi→f (η
′) dη′ =

λ2

2V

1

Ωk1(η)Ωk2(η)

∫ ∞

−∞
ρ(K0, K)

[
sin
[(
K0 − ΩT (η)

)
η/2)

]
(
K0 − ΩT (η)

) ]2
dK0 .

(6.3.36)

This result is manifestly positive as anticipated by the relation (6.2.55), and is reminiscent of

Fermi’s Golden rule: formally, the limit η → ∞ inside the bracket in the integral in (6.3.36)

yields π η δ(K0−ΩT (η)), leading to the usual result as in Minkowski space-time.However, tak-

ing the infinite time limit is clearly inconsistent with the time dependence of the (conformal)

energies and the redshift of physical momenta.

Using the result (6.3.33) for the spectral density, changing variables to (K0−ΩT (η))(η−
ηi) ≡ X and taking ηi → 0, the integral in (6.3.35) becomes

∫ ∞

−∞
ρ(K0, K)

sin
[(
K0 − ΩT (η)

)
η
]

(
K0 − ΩT (η)

) dK0 =
1

4π2

∫ ∞

−(ΩT (η)−K)η

sin
[
X
]

X
dX

=
1

8π

[
1 +

2

π
Si
[(

ΩT (η)−K
)
η
]]
,(6.3.37)

yielding exactly the cross section (6.3.30). This analysis will prove useful to study the general

case with massive particles in the initial and final states in the next section.

In the limit
(
ΩT (η)−K

)
η → ∞ the cross section (6.3.30) becomes

σ(η) =
λ2

16π a2(η)
[(
P1(η) · P2(η)

)2 −M4
]1/2 , (6.3.38)
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which is invariant under local Lorentz transformations at a fixed conformal time, namely

Pa(η) → ΛabPb(η) (6.3.39)

where Λab are the Lorentz transformation matrices at a fixed (conformal) time η. However, for

finite η, the Si function and consequently the cross section (6.3.30) is not invariant under the

local Lorentz transformation. A similar behavior is found for the cross section during finite

time in Minkowski space-time during a finite time interval the cross section is not Lorentz

invariant (as expected) but Lorentz invariance is restored in the infinite time limit. Since

η is the particle horizon (for ηi → 0), it follows that the finiteness of the particle horizon

entails a violation of local Lorentz invariance. This important aspect is general as discussed

in the next section.

Ultrarelativistic limit: In the ultrarelativistic limit Ωk1,2 ≃ k1,2

σ(η) =
λ2

32 π k1 k2

1

2

[
1 +

2

π
Si
[(
k1 + k2 −K

)
η
]]
, (6.3.40)

which is the same as for Minkowski space-time with the replacement η → t. This behavior

is expected since in the ultrarelativistic limit in conformal time in a (RD) cosmology the

mode functions are exactly the same as in Minkowski space-time since the frequencies do

not depend on time. This is a manifestation of the equivalence principle.

Non-relativistic limit: in this limit Ωk ≃M a(η) and we find

σ(η) =
λ2

16πM a(η)(k1 + k2)

1

2

[
1 +

2

π
Si
[(
2M a(η)−K

)
η
]]
. (6.3.41)

Taking the asymptotic limit so that Si
[(
2M a(η)−K

)
η
]
→ π/2 it follows that the physical

cross section a2(η)σ(η) features the same form as in Minkowski space-time but in terms of

the physical, redshifted momenta.
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6.4 General case: massive particles.

For the general case with massive particles in the final state, the time kernel introduced

in eqns. (6.3.1,6.3.2) now becomes

I[η; η1] =

∫
d3p

(2π)3
e
−i

∫ η
η1

(
ω
(3)
p (η′)+ω

(4)
q (η′)

)
dη′[

ω
(3)
p (η)ω

(4)
q (η)

]1/2[
ω
(3)
p (η1)ω

(4)
q (η1)

]1/2 ; q⃗ = p⃗− K⃗ , (6.4.1)

with

ω
(i)
k (η) =

√
k2 +m2

i a
2(η) ; i = 3, 4 (6.4.2)

allowing the final state to be that of two particles of different masses as a general case.

Unlike the case of massless particles in the final state, we cannot perform the momentum

integral in eqn. (6.4.1), neither the time integral in eqn. (6.2.62) in closed form.

The study of the massless case in the previous section showed that the time kernel is

localized at τ = ΩT (η− η1) ≲ 1 and its rapid fall off ∝ 1/τ for large τ suppresses the higher

order adiabatic corrections ∝ τ/z. The behavior 1/τ as τ → 0 is a consequence of the large

momentum dominance of the integral in the time kernel. This is manifest in the spectral

representation, eqn. (6.3.32) where the spectral density ρ(K0, K) → constant as K0 → ∞.

The short time behavior is the same for massive or massless final states. Following the same

steps leading up to eqn. (6.3.14) for the frequencies of the incoming states, and in terms of

x = ΩT (η)(η − η′) (see eqn. (6.3.18)) and z = ΩT (η)η we find

ω
(i)
k (η′) = ω

(i)
k (η) f

(i)
k (x) ; i = 3, 4 (6.4.3)

where

f
(i)
k (x) =

[
1− g

(i)
k

[x
z

]]1/2
; g

(i)
k

[
w
]
=

2w

(γ
(i)
k (η))2

(
1− w

2

)
; 0 ≤ w < 1 , (6.4.4)

and γ(i)k (η) = ω
(i)
k (η)/m(i) a(η) for each species. The function g(i)k [x/z] encodes the corrections

to the leading adiabatic order as is explicit in the 1/z factor. It attains its maximum for

γ
(i)
k = 1, which yields the largest deviation from the adiabatic zeroth order, and in this case,

f
(i)
k (x) = 1− x , (6.4.5)
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yielding an upper bound on the corrections to the leading adiabatic order. We now replace

this upper bound into (6.4.1) obtaining

I(ub)[η, η1] =
1

(1− τ
z
)

∫
d3p

(2π)3
e−i(ω

(3)
p (η)+ω

(4)
q (η))T

ω
(3)
p (η) ω

(4)
q (η)

; q⃗ = p⃗− K⃗ , (6.4.6)

where we defined

T = (η − η1)
[
1− τ

2z

]
. (6.4.7)

The superscript (ub) in (6.4.6) refers to the fact that this time kernel gives an upper bound to

the corrections beyond the leading adiabatic order. Under this upper-bound approximation

we can now cast the momentum integral as a spectral representation just as in the case of

Minkowski space-time, namely∫
d3p

(2π)3
e−i(ω

(3)
p (η)+ω

(4)
q (η))T

ω
(3)
p (η) ω

(4)
q (η)

=

∫ ∞

−∞
ρ(K0, K)e−iK0 T dK0 , (6.4.8)

with

ρ(K0, K) =

∫
d3p

(2π)3

δ
(
K0 − ω

(3)
p (η)− ω

(4)
p (η)

)
ω
(3)
p (η) ω

(4)
q (η)

, (6.4.9)

being exactly the spectral density in Minkowski space-time but depending parametrically on

η and given by,

ρ(K0, K) =
1

4π2

[
1− (m3 −m4)

2 a2(η)

K2
0 −K2

]1/2 [
1− (m3 +m4)

2 a2(η)

K2
0 −K2

]1/2
Θ
(
K0 −KT (η)

)
,

(6.4.10)

where the threshold KT (η) is

KT (η) =
√
K2 + (m3 +m4)2 a2(η) ; K⃗ = k⃗1 + k⃗2 . (6.4.11)

We can now use the results to extract the short and long time behavior of the upper bound

time kernel given by eqn. (6.4.6).

i:) Short time regime. This region corresponds to KT T ≪ 1, in this case η1 ≃ η,

therefore τ/z ≪ 1. The short time behavior is the same for massless or massive particles in

the final state and yields

I(ub) ≃ − i

4π2

e−iKT (η−η1)

(η − η1)− iϵ
+ finite . (6.4.12)
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where finite stands for a finite constant as η → η1, the short time behavior (6.4.12) is similar

to the result (6.3.3). In this short time region, the corrections ∝ τ/z to the leading adiabatic

order can be neglected, as analyzed in detail in the previous section for massless particles in

the final state.

ii:) Long time regime: KT T ≫ 1. We find that if the spectral density vanishes at

threshold as ρ(K0, K) ∝ (K0−KT )
α as K0 → KT , the long time behavior of the time kernel

(7.3.13) is ∝ 1/Kα
TT

α+1. For both massless particles in the final state α = 0 yielding the

behavior 1/T , for one massless and one massive particle in the final state α = 1 and the

long time behavior is ∝ 1/T 2 and for both massive particles α = 1/2 yielding the long time

behavior 1/T 3/2. In order to analyze the contribution from the corrections to the zeroth

adiabatic order terms, it is convenient to analyze the short and long time behavior in terms

of the variables z = ΩT (η)η and τ = ΩT (η)(η − η1) introduced in the previous section. In

these variables the time integrals restrict τ to the interval 0 ≤ τ ≤ z with z given by eqn.

(6.3.27) and ηi/η ≪ 1, as in the massless case of the previous section. The short time region

corresponds to τ ≪ z during which the corrections to the zeroth order adiabatic ∝ τ/z are

negligible, as discussed in the massless case. For the case of massive particles in the final

state, the long time behavior of the upper bound approximation to the time kernel I(ub)

(6.4.6) yields for α = 1/2, 1

I(ub)[τ, z] ∝ 1

τα
(
1− τ

2z

)1+α
[
1

τ
+

1

z − τ

]
. (6.4.13)

Near the end point of the time integrals τ ≃ z the second term in the bracket in (6.4.13)

dominates. From the definition of z, eqn. (6.3.27) it follows that

z − z = z
ηi
η

= ΩT (η)ηi =
ΩT (η)

ΩT (ηi)
zi , (6.4.14)

where

zi = ΩT (ηi)ηi ≫ 1 , (6.4.15)

because for consistency the adiabatic approximation must hold at the initial time. Further-

more, since ΩT (η)/ΩT (ηi) ≥ 1 it follows that near the upper limit of integration

I(ub)[τ ≃ z, z] ≲
1

zi zα
≪ 1 . (6.4.16)
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Hence, the integration region where the corrections to the zeroth adiabatic order become

important, namely τ ≃ z is strongly suppressed by the rapid fall-off of the time kernel by

a factor 1/(ziz
α) ≪ 1. Furthermore, since I(ub) is an upper bound, the contribution of this

region of integration is even smaller than the bound from eqn. (6.4.16). This analysis is valid

for any masses of final state particles and confirms that the time kernel strongly suppresses

the region of integration τ ≃ z in which the higher order adiabatic corrections could compete

with the zeroth order. This result is in agreement with the case of massless final states

studied in the previous section, and shows that the case of massive particles in the final state

is even more suppressed than the massless one. This analysis demonstrates that we can safely

neglect the higher order adiabatic corrections encoded in the contributions ∝ τ/z, τ 2/z2 · · · ,
keeping solely the zeroth order contributions. This is tantamount to replacing f (i)

k (x) → 1 in

all frequencies associated with the final states (see eqns. (6.4.3,6.4.4)), as well as fk(τ) → 1

in all frequencies of the initial states (see eqn. (6.3.14)). These replacements yield the time

kernel (6.4.1)

I[η; η1] =

∫
d3p

(2π)3
e−i
(
ω
(3)
p (η)+ω

(4)
q (η)

)
(η−η1)

ω
(3)
p (η)ω

(4)
q (η)

=

∫ ∞

−∞
ρ(K0, K)e−iK0(η−η1) dK0 , (6.4.17)

where the spectral density ρ(K0, k) is given by (6.4.10). Incorporating these replacements in

eqn. (6.3.1) yields

2Σ[η; η1] =
λ2

4V

eiΩT (η)(η−η1)

Ωk1(η)Ωk2(η)
I[η; η1] , (6.4.18)

with ΩT (η) = Ωk1(η) + Ωk2(η). We now obtain the transition rate Γi→f , eqn. (6.2.62) by

carrying out the time integral in η1, and from eqn. (6.2.70) the cross section to leading order

in the adiabatic approximation for particles in the initial state with arbitrary masses M1,2 is

given by

σ(η) =
λ2

4 a2(η)
[(
P1(η) · P2(η)

)2 −M2
1 M

2
2

]1/2 ∫ ∞

−∞
ρ(K0;K)

sin
[(
K0 − ΩT (η)

)
(η − ηi)

]
(
K0 − ΩT (η)

) dK0 ,

(6.4.19)

where we have used the relation to the flux given by (6.3.7). For massive particles with

masses m3,m4 in the final state the spectral density is given by eqns. (6.4.10,6.4.11).
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This is our main result for the general case of massive particles both in the initial and

final state with masses M1,2 and m3,4 respectively. It is now straightforward to confirm that

for the case of massless particles in the final state, the spectral density is given by (6.3.33)

and using the result given by eqn. (6.3.37) the (pair annihilation) cross section is given

precisely by eqn. (6.3.30).

6.4.1 Pair annihilation: ϕϕ→ χχ

In this case the initial state particles are of equal mass M1 = M2 = M and final state

particles are also of equal mass m3 = m4 = m ̸= 0. We take ηi → 0 and changing variables

to K0 = ΩT (η) +X/η we find

σ(η) =
λ2

16 π2 a2(η)
[(
P1(η) · P2(η)

)2 −M4
]1/2 ∫ ∞

−X(η)

ρ̃(X; η)
sin
[
X
]

X
dX , (6.4.20)

where

X(η) =
ET (η)−KTp(η)

H(η)
; ET (η) =

ΩT (η)

a(η)
; KTp(η) =

[
K2
ph(η)+4m2

]1/2
; Kph(η) =

K

a(η)
,

(6.4.21)

with H(η) = a′(η)/a2(η) = 1/(a(η)η) the Hubble expansion rate in (RD), and

ρ̃(X; η) =

[
1− 4m2

S(η) +X2H2(η) + 2XET (η)H(η)

] 1
2

, (6.4.22)

where

S(η) =
(
P1(η) + P2(η)

)2
= E2

T (η)−K2
ph(η) , (6.4.23)

is the local Mandelstam variable depending adiabatically on time through the local four

momenta (6.3.9) with the Minkowski scalar product (6.3.8 ), therefore S(η) is invariant

under the local Lorentz transformations (6.3.39). However, for H(η) ̸= 0 the cross section

(6.4.20) is not invariant under local Lorentz transformations: both the spectral density which

depends explicitly on ET and the lower limit X which depends both on ET and KTp violate

explicitly the invariance under local Lorentz transformations. We note that the physical

cross section σph(η) = a2(η)σ(η) with σ(η) given by (6.4.20) is strikingly similar to the cross

section in Minkowski space-time but during a finite time interval.
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The infinite time limit corresponds to η → ∞, namely H(η) → 0. In this limit the X

integral in eqn. (6.4.20) yields

∫ ∞

−X(η)

ρ̃(X; η)
sin
[
X
]

X
dX −−−→η→∞ π

[
1− 4m2

S(η)

] 1
2

Θ
(
S(η)− 4m2

)
. (6.4.24)

In this “infinite time limit” the cross section becomes

σ(η) −−−→η→∞

λ2
[
1− 4m2

S(η)

] 1
2

16 π a2(η)
[(
P1(η) · P2(η)

)2 −M4
]1/2 Θ(S(η)− 4m2

)
, (6.4.25)

where the Θ
(
S(η)− 4m2

)
function reflects the kinematic threshold depending adiabatically

on time through the red-shifted momenta. Up to the explicit dependence on the scale factor

in the denominator, at a fixed η this is the annihilation cross section in Minkowski space-

time, the infinite time limit leads to local Lorentz invariance. The threshold Θ function in

(6.4.25) has the following origin: first we note that X(η) given by eqn. (6.4.21) can also be

written as X(η) = (S(η) − 4m2)/[(ET (η) +KTp(η))H(η)] where the denominator is always

positive. Therefore, for S > 4m2 as H(η) → 0 it follows that X(η) → ∞ and the X integral

in eqn. (6.4.20) yields a non-vanishing result, whereas for S < 4m2 and H → 0 the lower

limit X(η) → −∞ and this integral vanishes in the “long time limit”. Hence, the emergence

of the sharp kinematic threshold is a consequence of taking the infinite time limit. However,

the particle horizon η− ηi is finite, consequently the cross section must be considered during

a finite time interval, thereby allowing several novel processes.

6.4.1.1 Freeze-out of the cross section:

Consider the specific case of pair annihilation in the center of mass (CoM), namely

with K = 0 and with M ≪ m, and in a time regime during which the incoming particles

feature a physical momentum kph(η) >
√
m2 −M2 corresponding to the (CoM) total local

energy above the (physical) production threshold 2m. As time evolves the scale factor

grows and the physical wavevector is redshifted below the threshold value for production of

the heavier species, when this happens the total local energy falls below threshold and the

integral in (6.4.20) begins to diminish, vanishing fast because H(η) is becoming smaller with
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cosmological expansion. We refer to this phenomenon as a freeze-out of the production cross

section.

We emphasize that this freeze-out is different from the usual freeze-out of species as a

consequence of the dilution of the particle density in a Boltzmann equation. Instead the

freeze-out of the cross section is solely a consequence of considering the cross section during

a finite time including explicitly the time dependence of the kinematic threshold, local

energy in terms of the redshifted momentum, and the Hubble radius. This phenomenon can

be understood in the simpler case of K = 0, (CoM) from the integral in (6.4.20) which in

this case can be written solely in terms of the ratios KT/ET = 2m/ET and ET/H,

Int(KT/ET ) =

∫ ∞

−X(η)

ρ̃(KT/ET ;X H/ET )
sin
[
X
]

X
dX . (6.4.26)

Figure (32) displays Int(KT/ET ) vs. KT/ET for ET/H = 20;K = 0, for KT/ET ≪ 1

the integral approaches π ρ̃(KT/ET ; 0) and vanishes for KT/ET ≫ 1, confirming the above

analysis.

Although Figure (32) shows this phenomenon for a fixed ratio ET/H, this ratio actually

grows during cosmological expansion, the main conclusion is confirmed by this numerical

example. As H diminishes under cosmological expansion the contribution from KT/ET > 1

diminishes, and in the strict limit H → 0 the step function determining the kinematic

threshold in eqn. (6.4.24) emerges.

It is clear that taking the infinite time limit (H = 0) too early will not capture this

dynamics: if kph is larger than the threshold value, the cross section grows rather than

remaining constant as the step function in (6.4.24) would suggest, as the redshifted kph falls

below threshold it begins to diminish, vanishing rapidly but smoothly as H → 0 rather than

the abrupt vanishing suggested by the step function in (6.4.24).

6.4.1.2 Anti-Zeno effect: production below threshold.

The analysis above and the results displayed in Figure(32) also suggest another phe-

nomenon consequence of the finite time, the possibility of pair production when the total

(local) energy is below threshold, which is evident in Figure(32) in the tail for KT/ET > 1.
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Figure 32: The function Int(KT/ET ) vs KT/ET for KT = 2m ; ET/H = 20. Figure taken

from [306].

To understand the origin of this phenomenon it is convenient to re-write the integral in

(6.4.19) in terms of the local energy and the Hubble rate, setting ηi → 0,

∫ ∞

−∞
ρ(K0;K)

sin
[(
K0 − ΩT (η)

)
η
]

(
K0 − ΩT (η)

) dK0 =

∫ ∞

−∞
ρ
[
K0p(η);Kp(η)

]
sinc[K0p;ET ;H] dK0p(η) ,

(6.4.27)

where

sinc[K0p;ET ;H] =
sin
[(
K0p(η)− ET (η)

)
/H(η)

]
(
K0p(η)− ET (η)

) , (6.4.28)

and for two equal masses in the final state m3 = m4 = m

ρ
[
K0p(η);Kp(η)

]
=

[
1− 4m2

K2
0p(η)−K2

p(η)

]1/2
Θ
(
K0p(η)−KTp(η)

)
, (6.4.29)

with

K0p(η) =
K0

a(η)
; Kp(η) =

Kp

a(η)
; KTp(η) =

KT (η)

a(η)
. (6.4.30)
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The sinc function (6.4.28) is strongly peaked at K0 = E with height 1/H and width

≃ 2πH.

If ET is below threshold, but within a distance ≃ πH from threshold, the “wings” of

this function still overlap with the spectral density yielding a non-vanishing overlap integral.

This is a manifestation of the phenomenon of threshold relaxation found within a different

context in ref.[227] and of the antizeno effect which refers to the enhanced production as a

consequence of uncertainty[249]. Such an effect has been studied in quantum field theory

in ref.[105]. Figure(33) shows both functions for K = 0 in the case when ET is below the

production threshold. The width of the oscillatory function is ≃ 2πH, the figure clearly

shows that the “wings” of the sinc (6.4.28) function have a non-vanishing overlap with the

spectral density.
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Figure 33: ρ(K0, 0) and H sin[(K0 − E)/H]/(K0 − E) vs K0 in units of m (m = 1, KT =

2, K = 0) for ET ≡ E = 1.8, E/H = 20. Figure taken from [306].

The overlap between the sinc function (6.4.28) and ρ(K0, K) is a consequence of uncer-

tainty, the Hubble scale H introduces a (physical) energy uncertainty associated with the

time scale 1/H. It is this energy uncertainty, a consequence of the finite time scale 1/H,
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which is reflected in the broadening of the sinc function that allows the overlap with the

spectral density even when it is peaked below threshold thus allowing the production of more

energetic states. This is the origin of the non-vanishing result for the integral (6.4.26) for

KT/E > 1 displayed in Figure (32). This phenomenon has been recognized as the antizeno

effect in the quantum optics literature[249] and has been observed in trapped cold sodium

atoms[182] where the time uncertainty is introduced through the measurement process. In

this case it is the inverse of the particle horizon (η in comoving or a(η)η = 1/H = 2 t

in physical coordinates), namely the age of the Universe, which introduces the uncertainty.

Under cosmological expansion the particle horizon increases, therefore the uncertainty dimin-

ishes, the sinc function becomes narrower and the overlap with the spectral density becomes

smaller and eventually vanishes, therefore closing the uncertainty window for sub-threshold

production.

The condition for the resulting integral to have a non-vanishing contribution and for

significant below-threshold production is

KT − ET ≃ πH ⇒ 4m2 − S = 2π ET H , (6.4.31)

where we have considered m3 = m4 = m in the final state and we kept the leading order in

the adiabatic expansion for ET ≫ H. In Minkowski space-time the threshold condition is

SM = 4m2 therefore writing S = SM − δS the finite particle horizon relaxes the threshold

condition for production with

δS = 2πETH . (6.4.32)

It is noteworthy that the right hand side of the condition (6.4.32) breaks local Lorentz

invariance.

Since the integral in (6.4.20) vanishes for KT − ET ≫ H and reaches the asymptotic

infinite time limit for ET − KT ≫ H only a small window of width ≃ H in energy and

momentum yields sub-threshold production. Writing the condition (6.4.31) as

KT = ET

(
1 + π

H

ET

)
, (6.4.33)
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the long time limit ET/H ≫ 1 (ΩT (η)η ≫ 1) invoked in the derivation of the cross sec-

tion (6.4.20), implies that KT ≃ ET ≫ H yielding the general condition for subthreshold

production

2m2 −M2 − kph1kph2 − E1E2 ≃ πH ET . (6.4.34)

As a simple example, consider annihilation of the incoming particles in their (CoM) with

threshold KT = 2m, subthreshold production of daughter particles would occur with

kph =
[
m2 −M2 − πmH

]1/2
, (6.4.35)

for example with m = 105GeV,M = 102GeV, H ≃ 102GeV production of the heavier

particle still occurs with a value of kph which is ≃ 102GeV below the corresponding threshold

value in Minkowski space-time. This value of the Hubble rate during (RD) corresponds to

an ambient temperature T ≃ 1010GeV and H/ET ≃ 10−3. Consider a more general example

with m ≫ M,H and kph1 ≫ kph2 ≫ M , writing kph2 = α kph1 with α ≪ 1, the inequality

(6.4.34) is fulfilled for

kph1 ≃ kM − πH

4α
; kM =

[2m2 −M2

2α

]1/2
, (6.4.36)

therefore for α ≪ 1 below threshold production occurs for values of kph1 which are smaller

than that in Minkowski space-time (kM) by πH/4α ≫ H. For the masses chosen above,

and taking as an example α ≃ 10−2, sub-threshold production consistent with H/E ≪ 1

occurs for H ≲ 103GeV ⇒ a(η) ≲ 10−24, again corresponding to an ambient temperature

T ≲ 1010GeV. An important consequence of this phenomenon is that if heavy dark matter

is produced via pair annihilation of a much lighter species, sub-threshold production implies

an enhancement of the dark matter abundance.

As cosmological expansion proceeds, H diminishes and the window for sub-threshold

production closes. The important aspect of this analysis is that the finite value of H, namely

a finite particle horizon ∝ 1/H provides an uncertainty allowing processes that would be

forbidden by strict energy conservation.

In this case with only the “wings” of the sinc function overlapping with the spectral

density, it is possible (but not certain) that the transition rate becomes negative during

a brief transient period. Whether the transition rate becomes negative during a transient
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depends on momenta and the behavior of the spectral density near threshold. This important

aspect is discussed in more detail in section (6.5). However, as in the previous section, we

can integrate the transition rate within a finite and short time interval during which the

conformal energies do not vary much, to leading (zeroth) order in the adiabatic expansion

we obtain∫ η

0

Γi→f (η
′) dη′ =

λ2

2V

1

Ωk1(η)Ωk2(η)

∫ ∞

−∞
ρ
[
K0p(η);Kp(η)

] [
sinc[K0p;ET ;H/2]

]2
dK0p(η) .

(6.4.37)

This result is manifestly positive in agreement with (6.2.55), and again similar to Fermi’s

Golden rule, however, now taking (formally) the limit H → ∞ the bracket inside the integral

in (6.4.37) yields πH(η) δ(K0p − ET (η)) which would lead to a vanishing result since the

spectral density vanishes for K0p = ET (η) but multiplies H → ∞. The total integral yields

a finite and positive result, which however does not grow secularly with conformal time.

6.4.2 Scattering:

The results obtained above apply directly to the scattering process φχ → φχ with

minor modifications, a combinatoric and symmetry factor for the final state resulting in

λ2 → λ2/2, different masses in the initial state m,M and in the flux factor, and a different

spectral density reflecting the two different masses of the particles in the initial and final

states. Following the same steps leading up to (6.4.20) we now find

σ(η) =
λ2

16π2 a2(η)
[(
P1(η) · P2(η)

)2 −M4
]1/2 ∫ ∞

−X(η)

ρ̃+(X; η) ρ̃−(X; η)
sin
[
X
]

X
dX ,

(6.4.38)

where

ρ̃±(X; η) =

[
1− (M ±m)2

S(η) +X2H2(η) + 2XET (η)H(η)

] 1
2

; ET (η) = (Ωk1(η) +ωk2(η))/a((η)) ,

(6.4.39)

and in this case

X(η) =
ET (η)−KTp(η)

H(η)
; KTp(η) =

[
K2
ph(η) + (M +m)2

]1/2
. (6.4.40)
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It is straightforward to confirm that, for collinear scattering

KTp(η) =
[
E2
T (η)− 2(kph1kph2 + E1E2 −mM)

]1/2
≤ ET . (6.4.41)

We note that for H ̸= 0 the cross section is not invariant under the local Lorentz transfor-

mation, again as a consequence of the finite particle horizon, or equivalently finite time.

In the long time limit H → 0 we find

σph(η → ∞) =
λ2 ρ̃+(0; η) ρ̃−(0; η)

32π
[(
P1(η) · P2(η)

)2 −M4
]1/2 . (6.4.42)

This is the result in Minkowski space-time, manifestly invariant under local Lorentz trans-

formations but with the kinematic variables depending adiabatically on time. We emphasize

that this is an approximation that formally corresponds to taking the scale factor a(η) → ∞,

therefore leading to an infinite redshift of the physical momenta that enter in the flux pref-

actor.

6.5 Discussion

Subtleties of the transition rate: In a finite time interval, the transition rate and

cross section feature oscillations as a consequence of time-energy uncertainty. It is possible

that within some range of (local) energy and momenta the transition rate may be negative

in some circumstances. This is more explicit in the case of sub-threshold production ana-

lyzed in section (6.4.1). For this situation since the transition rate at large time vanishes,

transient phenomena consistent with time-energy uncertainty yields the oscillatory behavior

that probes the subthreshold region during a time interval and may lead to negative values.

Whereas the total number of events (6.2.55) is manifestly positive, the event rate may be-

come negative during these transients. This subtle behavior can be traced to the definition of

the transition rate (6.2.57), which may indeed become negative during a finite time interval

in some circumstances. This is not a feature of the cosmological setting as it is also the case

in Minkowski space-time which coincides in the infinite time limit with the usual definition
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as the total transition probability, (which grows linearly in time at long time), divided by

the total time elapsed. There are at least two arguments in favor of the definition (6.2.57):

a:) the total number of detected events is generally obtained as

N = σ L ; L =

∫
L(t)dt , (6.5.1)

where L is the integrated luminosity and the luminosity L(t) has units of cm−2 s−1. Obviously

such definition of the number of events at a detector assumes a time independent cross

section, and from this definition σ = N/L is manifestly positive. Allowing the cross section

to depend on time, the total number of events should, consequently, be defined as

N =

∫
L(t)σ(t)dt⇒ dN

dt
= σ(t)L(t) . (6.5.2)

This definition is consistent with eqn. (6.2.57). b:) consider a process 1 + 2 → 3 + 4, the

gain term in the Boltzmann equation for the distribution function of particle 3 is

df3(t)

dt
=

∫
d[1]

∫
d[2]f1(t) f2(t)(σ(t)v12) (6.5.3)

with v12 the relative velocity. Therefore the definition of σ(t) in terms of the transition rate

given eqn. (6.2.57) is consistent with the usual Boltzmann equation.

Although it remains to be shown that the transition rate in the appropriate Boltzmann

equation in cosmology is determined by σ v12 (however this is the usual formulation), the main

point of eqn. (6.5.3) is that it explicitly implies that the rate of change of the population is

defined as its time derivative namely df/dt, consistently with our definition for the transition

rate (6.2.55).

One may propose an alternative definition of the transition rate which is manifestly

positive as the time average (now in conformal time) (taking ηi → 0)

Γ(η) ≡ 1

η

∫ η

0

Γ(η′) dη′ , (6.5.4)

where the integral is given by (6.4.37), and define a time-averaged cross section by dividing

by an instantaneous unit flux at time η in a long time limit. In cosmology such a defi-

nition would not be consistent: the integral in (6.5.4) depends on the expansion history,

and multiplying by the flux at a late time when the physical momenta and relative velocity
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had undergone a large redshift would not describe the cosmological evolution consistently.

Therefore, we conclude that despite the subtleties and the counterintuitive possibility of a

negative transition rate mainly in the case of subthreshold phenomena, the definition of

the rate (6.2.57) is consistent with unitarity, the optical theorem, a manifestly positive to-

tal number of events, the usual relation between the total number of events at a detector

in terms of the integrated luminosity, and the Boltzmann equation. The time integral of

the transition rate (6.2.57) yields the total transition probability that is manifestly posi-

tive. The cross section per se is an ingredient whose time integral in combination with flux

factors or distribution functions yields the total number of events which is positive (eqn.

(6.2.55)). Furthermore, the phenomena discussed above such as local Lorentz violation and

sub-threshold production yielding contributions to events that would be forbidden by strict

energy conservation will remain features of the time integrated quantities.

General lessons and possible cosmological consequences:

• Threshold relaxation and energy uncertainty: Although our study above has fo-

cused on a model local interaction, there are many general lessons that we can draw

from it. To begin with, the lack of strict energy conservation quantified by the uncer-

tainty H in local physical energy variable is a direct result of the finite particle horizon

or, equivalently, finite time. Comparison with the analysis in Minkowski space-time but

during a finite time interval highlights that this feature is indeed quite generic. The

S-matrix approach is always formulated with in-states prepared in the infinite past and

out states measured in the infinite future, clearly warranted in typical experimental sit-

uations. However, is unwarranted during the early stages of cosmological history with a

finite particle horizon. A direct consequence of the (local physical) energy uncertainty

≃ H is that kinematic thresholds that reflect strict energy momentum conservation are

relaxed within a window of order H thereby allowing processes that would be otherwise

forbidden by strict energy conservation. This is the case for sub-threshold production

studied above. This is a fundamental and generic feature of processes in cosmology and

are independent of the particular interaction between the various fields.

As an example of potential cosmological importance of this phenomenon, let us consider
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that post-inflation reheating occurs at a high energy/temperature scale, for example

intermediate between the GUT and the Standard Model scales, T ≃ 109GeV. This

temperature corresponds to a scale factor a(t) ≃ 10−20 and a Hubble expansion rate H ≃
GeV, which determines the energy uncertainty that characterizes threshold relaxation.

This uncertainty window would allow scattering or production processes that would be

forbidden by strict energy conservation to produce degrees of freedom near the scale

of this uncertainty. Reheating at a higher energy/temperature scale would widen this

uncertainty window.

Consequences of energy uncertainty within a finite time interval have been recently dis-

cussed also within different contexts[172, 50].

• Violations of local Lorentz invariance: We recognized a violation of Lorentz in-

variance as a consequence of the finite time analysis, both with cosmological expansion

as well as Minkowski space-time during a finite time interval. In Minkowski space-time

such violation of Lorentz invariance is expected, a finite time interval is not a Lorentz

invariant concept. Within the context of an expanding cosmology, a finite time analysis

of interaction rates and cross sections is a necessity: an infinite time limit as implied in

the S-matrix formulation, ignores both formally and conceptually the different stages in

the expansion history, the cosmological redshift of physical wavevectors and the finite-

ness of the particle horizon. It is this necessity to consider processes directly in real and

finite time that leads unequivocally to violation of local Lorentz invariance. At heart, a

finite time analysis is simply a recognition of a finite particle horizon ∝ 1/H in physical

coordinates, which introduces an energy uncertainty ∝ H. The cross section for pair

annihilation during a finite time interval in Minkowski space-time, which also displays

a similar violation of Lorentz invariance. However, in a “terrestrial” experiment the en-

ergy and time scales justify taking the infinite time limit: with typical time scales of

10−4 secs (a beam travelling few km until detection) the typical energy uncertainty is

≃ 10−10 eV and typical detector momentum resolutions ≃ KeV − MeV the finite time

corrections are experimentally completely negligible, justifying the infinite time limit

with the concomitant Lorentz invariant cross section.

Possible sources of Lorentz violations have been advocated within the context of quantum
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gravity and Planck scale physics[267, 237, 138, 253] with possible consequences for CP

and CPT violation. Our study here shows that Lorentz violations emerge naturally as a

consequence of considering fundamental processes in an expanding cosmology directly in

real time and accounting for the finite particle horizon. The example of pair annihilation

displays the consequences of the finite time in the form of the freeze-out and antizeno

effects that lead to small but non-vanishing sub-threshold production of heavy particles

as analyzed in the previous section. The freeze-out of a production cross section as a con-

sequence of the redshift of wavevectors below the threshold, is, similarly, an inescapable

consequence of the cosmological expansion, hence it is a generic feature associated with

the finite time evolution. These phenomena are directly correlated with the violation of

local Lorentz invariance. To be sure, within the adiabatic approximation these effects are

small and the window for their impact closes with the cosmological expansion. However,

during the time that this window remains open, the Lorentz violating processes may be

of importance for CP violation and perhaps baryogenesis. The possible impact of these

Lorentz violating aspects deserve further scrutiny.

• Impact on quantum kinetics: An important cosmological application of the transition

rate (6.2.57) and cross section, is to input these into a quantum kinetic Boltzmann

equation for the distribution function of particles. A kinetic equation for the distribution

function of a φ particle Fφ(k⃗, η) for example, is of the form dFφ(k⃗1, η)/dη = gain −
loss where the “loss” term inputs the transition rate (6.2.57) and the gain term inputs

the rate for the reverse process χχ → φφ. An important feature of quantum kinetic

equations is detailed balance which leads to local thermodynamic equilibrium as a fixed

point of the kinetic equation. However, detailed balance depends crucially on energy-

momentum conservation both in the gain and loss terms[251, 83, 160]. The results of

the previous section indicate that there may be possible important modifications arising

from the energy uncertainty ∝ H and lack of energy conservation. These could lead

to modifications of detailed balance and consequently introduce novel non-equilibrium

effects, which along with the violation of local Lorentz invariance could, potentially, be

important for baryogenesis and leptogenesis, even when such effects are small, of O(H) as

compared to temperature or energy scales. These intriguing possibilities deserve further
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and deeper study.

• Resonant cross sections smoothed by a finite particle horizon: The energy

uncertainty introduced by H brings an interesting possibility for the case of resonant

cross sections, where the resonance is a consequence of a massive particle exchange as an

intermediate state. In S-matrix theory in a resonant reaction the intermediate state goes

on-shell and the enhancement of the cross section is a consequence of this intermediate

state propagating over long time scales, a pole in the cross section is actually smoothed

out by the lifetime of the intermediate state that has gone “on-shell”. The (Breit-Wigner)

width of the cross section is a manifestation of the lifetime of the intermediate state. We

conjecture that a similar case of an intermediate stage “going on its mass shell” in an

expanding cosmology only propagates during the particle horizon. Therefore for a very

long-lived intermediate state during the regime when the particle horizon is smaller than

the lifetime, we expect a resonant cross section will feature a width ∝ H rather than

the natural width of the decaying state. As H diminishes, the width of the intermediate

state will replace H in the broadening of the cross section. This possibility would have

potentially interesting consequences in dark sectors that are connected to the Standard

Model via mediators, when such mediators could lead to resonant cross sections. We are

currently studying this scenario.

• No corrections to Big Bang Nucleosynthesis: Although our study has focused on

a quartic contact interaction among bosonic fields and does not apply directly to the

case of (BBN), one of the general lessons drawn from this study is the dependence on the

various energy and time scales. The effects of finite time such as local Lorentz violation

and threshold relaxation in production cross sections are phenomena associated with the

ratio (KT − E)/H. (BBN) occurs during the (RD) era at a time scale t ≃ few minutes

and temperatures T ≃ few MeV corresponding to H ≃ 10−24GeV with nucleon energies

≃ GeV and binding energies ≃ few MeV therefore the relevant ratio is E/H ≃ 1027

which leads to the energy conserving limit of the cross section. Therefore, without a

doubt the interesting phenomena associated with finite time do not modify the standard

results of (BBN).

• When is the S-matrix approximately reliable?, and when is it not? The study
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of the previous sections along with the main results invites the above questions. The

adiabatic approximation described in this study and the comparison with the results of a

finite time analysis in Minkowski space-time, all suggest that, as expected, for a Hubble

rate H(t) much smaller than the typical local energies, the uncertainty ∝ 1/H can be

safely neglected. Taking the infinite time limit in the transition amplitudes, but allowing

the redshift of momenta in the local energies of the external particles and in reaction

thresholds, which lead to the freeze-out of the cross sections, yields a reasonably reliable

approximation. Such is the case for (BBN). However, there are at least two scenarios

wherein the S-matrix approach will ultimately be unreliable: very early during (RD)

when H is large, comparable with the mass scales of particles, or whenever the adiabatic

approximation breaks down. The first instance would be relevant for a description of

thermalization during reheating if it occurs at a high energy scale. The second scenario

applies in the case of super-Hubble wavelengths for particles with masses smaller than

the Hubble rate. Under these circumstances, quantization with the full mode functions

such as the parabolic Weber functions in the (RD) case is required, and even the program

described in this study which relies on the validity of the adiabatic approximation would

need a reassessment.

On wave packets:

As discussed in elementary textbooks, a (more) correct description of scattering and or

production should invoke a treatment of initial states in terms of wave packets localized

in space-time. While formally correct, practically all calculations describe initial states as

Fock eigenstates of momentum, namely plane waves, disregarding the fact that these are not

localized. Invoking wave packets, while addressing the issue of locality of the initial state

presents several conceptual and technical challenges even in Minkowski space-time: wave

packets spread through dispersion since each wave vector evolves differently in time, this, by

itself prevents a formal infinite time limit. The localization in space and in momentum com-

ponents must be assumed to be such that the incoming “beams” are localized in space-time

but yet be nearly monochromatic so the momenta of the initial and final states which are the

labels of the S-matrix elements, are fairly well defined. Last, but by no means least, wave
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packets do not transform as irreducible representations of the Lorentz group, thereby break-

ing Lorentz invariance. These are well known shortcomings of a wave packet description. A

thorough analysis of many of these issues within the context of the asymptotic formulation

of the S-matrix has been discussed recently in ref.[139]. In a cosmological space-time these

conceptual and technical subtleties of the wave packet formulation are compounded by two

important aspects: i) each Fock momentum state in the wave packet components evolves

with a non-local phase in time, ii) the cosmological redshift of the momenta. The width

in momentum (or localization length in space) also determines an uncertainty. All these

aspects introduce yet several more layers of technical complications which ultimately need

to be addressed. These notwithstanding, the general lessons and novel phenomena described

above are overarching and robust and qualitatively not affected by a wave packet treatment.

6.6 Conclusions and further questions

Motivated by the importance of transition rates and cross sections in a wide range of

processes in the early Universe, this chapter is devoted to obtaining these fundamental

ingredients from first principles in a spatially flat, radiation dominated cosmology. The main

objectives are to re-assess the usual S-matrix approach, which takes the infinite time limit,

as applied to the cosmological setting, to highlight its shortcomings and provide a systematic

framework that includes consistently the cosmological expansion, the finite particle horizon

and to explore their consequences. We begin this program by focusing on bosonic fields

interacting via a quartic local contact interaction, a simpler setting which, however, allows

us to study various important processes such as production of a heavier species and scattering,

and yields important and more general lessons. Field quantization in the cosmological curved

space-time explicitly shows the conceptual and daunting technical obstacles to implementing

the usual approach to transition rates and cross sections. To overcome these obstacles we

introduce a physically motivated adiabatic approximation that relies on a separation of time

scales encoded in a small ratio H(t)/E(t) with H(t) the Hubble expansion rate and E(t) a

typical particle energy measured by a local observer. The smallness of this ratio corresponds
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to typical wavelengths (either de Broglie or Compton) much smaller than the particle horizon

at a given time and also to a wide separation between the (shorter) microscopic time scale

of oscillations ∝ 1/E and the (longer) time scale of expansion ∝ 1/H. We show that the

leading (zeroth) adiabatic order dominates the transition rates and obtain the cross section

for various processes during a finite time interval consistently with a finite particle horizon.

We compare these cross sections to those in Minkowski space-time within a finite time

interval. We find several novel effects associated with the finite particle horizon in the case

of production of a heavier species from the annihilation of a lighter species: i) Freeze-in

of the production cross section: the cosmological redshift of physical momenta eventually

diminishes it below the production threshold, keeping a finite time in the cross section reveals

that it vanishes fast but continuously when this happens and production shuts off. ii) A

finite particle horizon (1/H in physical coordinates) determines an uncertainty in the (local)

energy of order H allowing processes that would be forbidden by strict energy conservation.

In particular this uncertainty allows sub-threshold production of heavier particles within a

window of width ≃ H in (local) energy, during a small interval of time. If a heavy dark

matter particle is produced via the pair annihilation of a much lighter species, sub-threshold

production may lead to a larger dark matter abundance after the cross section freezes-out.

We also find the important result that allowing for the finite particle horizon leads to a

violation of local Lorentz invariance, this is a general result for all processes and is a direct

consequence of explicitly keeping the cosmological time evolution in the transition rates.

An important corollary of our study is the limitation of the adiabatic approximation:

processes that involve wavelengths that are larger than the particle horizon and masses

m ≪ H at a given time must be studied non-perturbatively with the full mode functions,

for bosonic particles these are linear combinations of Weber’s parabolic cylinder functions

given by (6.2.22).

We comment on possible implications of these results, for example their impact on CP and

CPT violation, quantum kinetics, baryogenesis and/or leptogenesis as well as possible new

phenomena associated with resonant cross sections. The adiabatic approximation advocated

in this chapter should pave the way towards a deeper understanding of interactions of the

Standard Model in the regime of validity of such approximation.
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Caveats with the definition of a transition rate during finite time intervals have been

identified and discussed. We explored alternative definitions, which, however are inconsistent

with the time dependence of energy and cosmological redshift of physical momenta. These

aspects should motivate a further exploration of the concept of transition rates including

transient phenomena in early Universe cosmology.

Furthermore, we have discussed under what circumstances a modified S-matrix approach

is approximately reliable, and when it is not, and in the latter case we have identified the

proper quantization procedure.

In summary, this study has revealed hitherto unexplored consequences of considering

these fundamental processes in the early Universe with proper account of the finite particle

horizon i.e, finite time, in their description. The results open new avenues of inquiry that

will be the subject of forthcoming studies.
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7.0 Infrared dressing in real time: emergence of anomalous dimensions

7.1 Introduction

The infrared behavior of interacting quantum field theories featuring massless fields has

been of longstanding interest within the context of scattering amplitudes and the S-matrix

in gauge theories[91, 264, 133, 245, 243, 353, 343, 255]. Infrared singularities associated with

the emission and/or absorption of soft massless quanta by charged fields has continued to

be studied within the context of gauge theories in high energy physics[261, 142, 191, 229],

quantum coherence and infrared phenomena[122, 205, 334], as well as precision calculation

of physical observables motivated by collider experiments[222, 223, 187], but also of infrared

aspects of gravity[330, 241].

Our main interest in the subject is motivated by the possibility that soft bremsstrahlung

could yield an important mechanism for production of ultralight dark matter particles in

an expanding cosmology. Motivated by this possibility, in this chapter we explore the con-

sequences of infrared divergences associated with emission and absorption of soft massless

quanta directly in real time in non-gauge theories thereby bypassing the subtle aspects as-

sociated with gauge invariance, but addressing the main physics of the infrared behavior

and the dynamics of dressing in real time. As for example in QED the infrared singularities

associated with charged single particle states are a consequence of the single particle mass

shell coinciding with the multiparticle threshold.

The focus of this chapter is restricted to the study of infrared divergences associated

with the dressing of charged single particle states arising from absorption and emission of

massless neutral quanta in non-gauge theories, not on the more overarching infrared aspects

of the S-matrix in gauge theories explored in refs.[91]-[187].

Our main objective is to study the dynamics of dressing in real time, namely the time

evolution of an initial state and the nature of the asymptotic many-particle state that emerges

from the dressing of the charged single particle state by soft massless quanta of the neutral

field in the asymptotic long time limit.
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While we are ultimately interested in the cosmological applications, for which an S-

matrix approach that relies on the infinite time limit is not the most useful framework to

study time dependent phenomena, initiating this study of real time dressing dynamics in

Minkowski space time may prove relevant for further understanding of infrared phenomena

in gauge theories and gravity. Recently[139] a re-evaluation of the Lehmann, Symanzik and

Zimmermann reduction formula for asymptotic states beginning with a finite time analysis

and proceeding to the infinite time limit has exhibited the subleties of this limit.

Brief summary of main results:

In this chapter we introduce a dynamical resummation method(DRM)[105], based on

a generalization of the dynamical renormalization group[124, 204, 102] to study the time

evolution of initial states and the physics of soft dressing directly in real time. In this

chapter we focus on various non-gauge theories that feature infrared singularities akin to

those found in QED, hence it is possible that the results found in this study may prove a

useful guide in gauge theories, and perhaps, in gravity[330, 241]. Our main results are the

following:

Models with infrared divergences: We consider both a super renormalizable model

and a renormalizable model of a charged field coupled to a massless field which while featuring

very different ultraviolet behavior exhibit the same infrared threshold singularities. We

establish a parallel between the infrared singularities of these models and those associated

with a theory at a critical point[35, 204]. We do so by mapping the behavior of the single

particle propagator near threshold to that of a critical Euclidean field theory at a fixed point.

We then implement a renormalization group (RG) resummation of the infrared behavior that

leads to scaling with anomalous dimension. Performing a Fourier transform in time of the

(RG) resummed propagator reveals that the survival probability of a single particle state

decays in time asymptotically as a power law with an anomalous dimension ∝ t−∆. A

dynamical resummation method (DRM) is introduced that provides a resummation of self-

energy corrections directly in real time[105]. This method is manifestly unitary and directly

related to the dynamical renormalization group[124, 204, 102] but extends it in significant

ways: not only it reproduces the power law decay in time with anomalous dimension ∆

which is shown to be determined by the derivative of the spectral density at threshold, but
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also yields a physical description of the dynamics of dressing of the charged particle by a

soft cloud of massless quanta.

Universality: We find that the infrared divergence is a consequence of a linearly van-

ishing spectral density at threshold with a finite slope ∆. Implementing the (DRM) leads to

the survival probability of the single particle state decaying at asymptotically long time as

∝ t−∆, reproducing the result from the (RG) improved propagator. The anomalous dimen-

sion ∆ is completely determined by the slope of the spectral density at threshold. Therefore

we interpret this behavior as a manifestation of universality, in the sense that models that

feature very different ultraviolet behavior but similar infrared threshold behavior with spec-

tral densities vanishing linearly at threshold, yield similar asymptotic dynamics. Obviously

different models yield different values of the anomalous dimension ∆, however, whatever

the value of ∆ all of these models feature an asymptotic survival probability ∝ t−∆ with

scaling behavior. This is similar to universality in critical phenomena where scaling behavior

near a critical point is described in terms of critical exponents which are insensitive to the

ultraviolet behavior of the theory.

Massless axion-like particles: Motivated by their possible relevance in cosmology,

we studied the case of effective field theories of a massless axion-like pseudoscalar particle

coupled to fermionic degrees of freedom. We considered both pseudoscalar and pseudovector

couplings. In both cases we find that the emission and absorption of the massless quanta

results in spectral densities that vanish faster than linear at threshold, thus preventing

infrared divergences. These theories do not feature decay with anomalous dimensions (∆ =

0). We provide a criterion for the determination of infrared divergences in general non-gauge

effective field theories valid up to one loop level.

The entangled dressing cloud and its entropy: The (DRM) describes unitary

time evolution and yields the asymptotic multiparticle state that results from the evolution

of the initial single particle state. We show explicitly how unitarity is manifest in the

asymptotic long time limit when the initial state has completely decayed (with a power

law). This asymptotic pure state is an entangled state between the charged particle and

the soft cloud with amplitudes that exhibit the infrared enhancement and the anomalous

dimension. If a detector only measures the charge of the asymptotic state, but is insensitive
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to the massless quanta, tracing the asymptotic state over the unobserved degrees of freedom

yields a mixed state. The probabilities display the infrared enhancement, which is, however,

compensated by contributions vanishing with the anomalous dimension. The entanglement

entropy is obtained directly in real time, its time evolution is completely determined by the

(DRM) equations, it describes the information flow from an initial single particle state to

the asymptotic entangled multiparticle state and is infrared finite as a consequence of the

anomalous dimension.

7.2 Super renormalizable, and renormalizable models:

We study the dynamics of infrared dressing in two models that feature different ultraviolet

behavior but share similar infrared behavior near the multiparticle threshold, and effective

field theory models of a charged fermion field coupled to a massless axion-like particle.

7.2.1 Super renormalizable case:

Let us consider the case of a massive complex, charged scalar field ϕ coupled to a massless

real scalar field χ.

L = ∂µϕ†∂µϕ−M2ϕ†ϕ+
1

2
∂µχ∂µχ− λϕ†ϕχ (7.2.1)

Including the one-loop self energy, the Dyson-resummed ϕ propagator is

Gϕ(P ) =
1

P 2 −M2 − Σ(P 2)
(7.2.2)

where

Σ(P 2) = − λ̃2

(4π)2
L+

λ̃2

(4π)2
I(P 2/M2) (7.2.3)

where in dimensional regularization in dimension D = 4− ε

λ̃ = λµ−ε/2 ; L =
2

ε
− γE + ln(4π)− ln

[M2

µ2

]
(7.2.4)

and

I(α) =

∫ 1

0

ln
[
x− αx (1− x)− iϵ̃

]
dx ; ϵ̃→ 0+ . (7.2.5)
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Subtracting the self-energy at P 2 = M2
p , the renormalized mass, at which the inverse prop-

agator vanishes, namely

Σ(P 2) = Σ(M2
p ) + Σ(P 2) , (7.2.6)

where

M2
p =M2 + Σ(P 2 =M2

p ) (7.2.7)

it follows that

G(P 2) =
1

P 2 −M2
p − Σ(P 2)

, (7.2.8)

with

Σ(P 2) =
λ2R

(4π)2
P 2 −M2

p

P 2
ln
[M2

p − P 2 − iϵ̃

M2
p

]
. (7.2.9)

To leading order we have replaced bare by renormalized quantities in Σ. Although the inverse

propagator vanishes at P 2 =M2
p , dΣ/dP 2 features an infrared singularity at P 2 =M2

p which

is the beginning of the multiparticle cut and the threshold for emission of soft quanta, since

ImΣ(P 2) = −π λ2p
(4π)2

P 2 −M2
p

P 2
Θ(P 2 −M2

p ) . (7.2.10)

Near P 2 =M2
p the propagator becomes

G(P 2) =
1

(P 2 −M2
p )
[
1− g2 ln

(
M2

p−P 2

M2
p

)] ; g =
λR

4πMp

, (7.2.11)

where in the argument of the logarithm P 2 → P 2 + iϵ̃. This behavior for P 2 ≃ M2
p is

reminiscent of critical phenomena[35] which suggests the implementation of a renormalization

group resummation, The result is the renormalization group improved propagator

GRG(P 2) =
1

(P 2 −M2
p )
[
M2

p−P 2

M2
p

]−g2 . (7.2.12)

The forward time evolution is obtained from the inverse Fourier transform in frequency:

G̃(t) =

∫
dp0
2π

e−ip0tGRG(P 2) , (7.2.13)
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and the long time limit is determined by the behavior of GRG(P 2) for P 2 ≃ M2
p . Writing

P 2 = (p0 −Ep)(p0 +Ep) with E2
p = p⃗2 +M2

p , and changing variables to (p0 −Ep) = x/t the

integral becomes (with x→ x+ iϵ̃)

G̃(t) = e−iEpt

∫
dx

2π

e−ix

x

i

2Ep +
x
t

1[
− x

Mp t

(
2Ep+x/t

Mp

)]−g2 , (7.2.14)

which in the long time limit becomes

G̃(t) ∝ e−iEpt

2Ep

[Mp

2Ep

]−2g2
[
Ep t

]−g2
. (7.2.15)

Therefore a renormalization group improvement of the branch cut singularity beginning at

P 2 = M2
p yields long time power law decay with anomalous dimension g2 = (λR/4πMp)

2.

This asymptotic scaling behavior is a consequence of the infrared singularity at threshold

of the propagator. The propagator (7.2.14) describes the asymptotic time evolution of the

amplitude, therefore, the survival probability of the initial state is

|G̃(t)|2 ∝
[
Ep t

]−2 g2

. (7.2.16)

For a typical decaying state this survival probability would be of the form e−Γt with Γ being

the total decay width.
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7.2.2 Renormalizable case:

As an example of a renormalizable case we consider a Dirac fermion Yukawa coupled to

a massless real scalar field Φ, namely

L =
1

2
∂µΦ∂

µΦ +Ψ
(
i̸ ∂ −M

)
Ψ− Y ΨΦΨ . (7.2.17)

The fermion propagator is given by

S(P ) =
i

̸P −M − Σ(/P )
. (7.2.18)

The one loop self energy is given by

Σ(/P ) = − Ỹ 2

(4π)2

{( ̸P
2
+M

)
L−

∫ 1

0

[
̸P (1− x) +M

]
ln
[
x− αx(1− x)− iϵ̃

]
dx

}
, (7.2.19)

where in dimensional regularization with D = 4− ε

Ỹ 2 = Y 2 µ−ε ; L =
{2
ε
− γE + ln(4π)− ln

[M2

µ2

]}
; α =

P 2

M2
. (7.2.20)

First, we renormalize the mass by requesting that the inverse propagator vanishes at ̸P =Mp

from which it follows that

Mp =M + Σ( ̸P =Mp) , (7.2.21)

secondly, we introduce the off-shell wave function renormalization constant Z and renormal-

ized coupling yR as

Z−1 = 1− Ỹ 2 L

2 (4π)2
; y2R =

Z Ỹ 2

(4π)2
(7.2.22)

yielding

S(/P ) =
i Z

̸P −Mp − Σ̃(/P )
, (7.2.23)

where to leading order in the Yukawa coupling,

Σ̃(/P ) = y2R

[
̸P
(α2 − 1

2α2

)
+Mp

(α− 1

α

)]
ln
[
1− α

]
; α ≡ P 2

M2
p

+ iϵ̃ . (7.2.24)

Near the mass shell ̸P ≃Mp we find the behavior

S(/P ) =
i Z
(
̸P +Mp

)
(
P 2 −M2

p

) [
1− 4 y2R ln

[
M2

p−P 2

M2
p

]] . (7.2.25)
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Up to the overall (ultraviolet divergent) constant Z this propagator features the same type

of infrared singularity as in the super renormalizable case and we invoke a similar renormal-

ization group resummation leading to the renormalization group improved propagator

SRG(P ) =
i Z
(
̸P +Mp

)
(
P 2 −M2

p

) [
M2

p−P 2

M2
p

]−4y2R
; P 2 → P 2 + iϵ̃ . (7.2.26)

We note that the behavior near P 2 ≃ M2
P is very similar to the super renormalizable case,

given by eqn. (7.2.12).

As in the super renormalizable case, the forward time evolution is obtained by the inverse

Fourier transform, the long time limit is determined by the threshold region P 2 ≃ M2
P .

Projecting onto a positive energy spinor (for forward time evolution) and proceeding as in

the previous case, with p0 − Ep = x/t, we find in the long time limit

S̃(t) ∝ Z e−iEpt
[MR

2Ep

]1−8y2R
[
Ep t

]−4y2R
, (7.2.27)

Again the scaling behavior at long time is a manifestation of the infrared singularity at

threshold.

We note that in the form of the propagators (7.2.11,7.2.25) the discontinuity of the

propagator across the two particle cut vanishes linearly in p0 − Ep, this feature will prove

to be important in the emergence of power law decay in time as explicitly shown by the

dynamical resummation method of next section.

7.2.3 Massless axion-like particles:

We consider massless axion-like particles as pseudoscalar real massless fields, and two

different couplings to a fermion field: a:) pseudoscalar Yukawa coupling igϕΨγ5Ψ, b:)

pseudovector coupling g∂µϕΨγµγ5Ψ.

a:) This is also a renormalizable case. The propagator is given by eqn. (7.2.19), and in

this case, it is straightforward to conclude that the self-energy Σ(/P ) is obtained from that of

the scalar case (7.2.17) by simply replacing M → −M . Following the same renormalization
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procedure as in the scalar case, after mass and (off-shell) wave function renormalization the

propagator in this, pseudoscalar case (ps), reads

Sps(/P ) =
i Zps

̸P −Mp − Σ̃ps(/P )
, (7.2.28)

with

Σ̃ps(/P ) = g2R

[
̸P
(α2 − 1

2α2

)
−Mp

(α− 1

α

)]
ln
[
1− α

]
; α ≡ P 2

M2
p

+ iϵ̃ ; g2R = Zps
g2

(4π)2
.

(7.2.29)

In this case, we now find that near the mass shell at /P ≃Mp the propagator is

Sps(/P ) =
i Zps

(
̸P +Mp

)
(
P 2 −M2

p

) [
1− g2R

(P 2−M2
p )

M2
p

ln
[
M2

p−P 2−iϵ̃
M2

p

]] . (7.2.30)

The logarithm associated with the two-particle cut yields a contribution to the self-energy

of the form

Σcut(P
2) ∝ (P 2 −M2

p )
2

M2
p

ln
[M2

p − P 2 − iϵ̃

M2
p

]
, (7.2.31)

yielding

ImΣcut(P
2) ∝ (P 2 −M2

p )
2

M2
p

Θ(P 2 −M2
p ) , (7.2.32)

therefore the pseudoscalar axion coupling does not lead to infrared divergences.

b:) This is a non-renormalizable coupling, with g featuring mass dimension (−1) in

4-space-time dimensions. The one loop self energy is given by (D = 4− ε)

Σ(/P ) = −ig2
∫

dDk

(2π)D
/kγ5(/P + /k +M)/kγ5

k2((k + P )2 −M2)
(7.2.33)

= −ig2
∫

dDk

(2π)D
k2/k −Mk2 + 2/kk · P − k2 /P

k2((k + P )2 −M2)
. (7.2.34)

which can be written as

Σ(/P ) = /P ΣV (P
2) +M ΣS(P

2) . (7.2.35)

248



with

ΣV (P
2) = g2

(P 2 +M2)A0 − (P 2 −M2)2B0(P
2)

32π2P 2
(7.2.36)

ΣS(P
2) = g2

A0

16π2
(7.2.37)

and

A0 =M2
[
1 + L

]
; B0(P

2) = 2 + L+
M2 − P 2

p2
ln
[M2 − P 2 − iϵ

M2

]
, (7.2.38)

where L is given by eqn. (7.2.20). Although the divergence proportional to /P cannot be

renormalized, it is clear however, that near the mass-shell P 2 ≃M2
p the logarithm describing

the two particle cut yields a term of the form

Σcut(/P ≃Mp) ∝ (P 2 −M2
p )

3 ln
[M2

p − P 2 − iϵ

M2
p

]
, (7.2.39)

yielding

ImΣcut(/P ≃Mp) ∝ (P 2 −M2
p )

3Θ(P 2 −M2
p ) , (7.2.40)

therefore, also in this case there is no infrared divergence at the position of the mass-shell.

Perhaps in this case this is an expected consequence of the derivative coupling, which brings

two extra powers of momenta in the loop that relieves the infrared divergence.

We conclude that in both cases, either in the pseudoscalar or pseudovector axion coupling,

there is no infrared divergence associated with the beginning of the multiparticle cut, at least

up to one-loop order studied here.
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7.3 Dynamical resummation method (DRM):

We now introduce a method that implements a dynamical resummation directly in

time[105] that is intimately related to the dynamical renormalization group[124, 204, 102].

We first describe the resummation method in generality, relate it to the dynamical renor-

malization group, and apply the results to the cases studied in the previous section.

Consider a system whose Hamiltonian H = H0 +HI with HI a perturbation. The time

evolution of states in the interaction picture of H0 is given by

i
d

dt
|ΨI(t)⟩ = HI(t) |ΨI(t)⟩ , (7.3.1)

where the interaction Hamiltonian in the interaction picture is

HI(t) = eiH0 tHIe
−iH0 t (7.3.2)

This has the formal solution

|ΨI(t)⟩ = U(t, t0)|ΨI(t0)⟩ (7.3.3)

where the time evolution operator in the interaction picture U(t, t0) obeys

i
d

dt
U(t, t0) = HI(t)U(t, t0) . (7.3.4)

Now we can expand

|ΨI(t)⟩ =
∑
n

Cn(t)|n⟩ , (7.3.5)

where |n⟩ are eigenstates of the unperturbed Hamiltonian, H0 |n⟩ = En |n⟩, and form a

complete set of orthonormal states. In the quantum field theory case these are many-particle

Fock states. From eq.(7.3.1) one finds the exact equation of motion for the coefficients Cn(t),

namely

Ċn(t) = −i
∑
m

Cm(t)⟨n|HI(t)|m⟩ . (7.3.6)

Although this equation is exact, it generates an infinite hierarchy of simultaneous equa-

tions when the Hilbert space of states spanned by {|n⟩} is infinite dimensional. However,
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this hierarchy can be truncated by considering the transition between states connected by

the interaction Hamiltonian at a given order in HI . Thus consider the situation depicted in

figure 34 where one state, |A⟩, couples to a set of states {|κ⟩}, which couple back to |A⟩ via

HI .

|A〉
|κ〉 |κ〉

|A〉

〈κ|HI |A〉 〈A|HI |κ〉

Figure 34: Transitions |A⟩ ↔ |κ⟩ in first order in HI . Figure taken from [307].

Under these circumstances, we have

ĊA(t) = −i
∑
κ

⟨A|HI(t)|κ⟩Cκ(t) (7.3.7)

Ċκ(t) = −i CA(t)⟨κ|HI(t)|A⟩ (7.3.8)

where the sum over κ is over all the intermediate states coupled to |A⟩ via HI .

Consider the initial value problem in which at time t0 = 0 the state of the system

|Ψ(t = 0)⟩ = |A⟩ i.e.

CA(0) = 1, Cκ(0) = 0. (7.3.9)

We can solve eq.(7.3.8) and then use the solution in eq.(7.3.7) to find

Cκ(t) = −i
∫ t

0

⟨κ|HI(t
′)|A⟩CA(t′) dt′ (7.3.10)

ĊA(t) = −
∫ t

0

Σ(t, t′)CA(t
′) dt′ (7.3.11)

where

Σ(t, t′) =
∑
κ

⟨A|HI(t)|κ⟩⟨κ|HI(t
′)|A⟩ =

∑
κ

ei(EA−Eκ)(t−t′) | ⟨A|HI(0) |κ⟩ |2 (7.3.12)

where we used (7.3.2). It is convenient to write Σ(t, t′) in a spectral representation, namely

Σ(t, t′) =

∫ ∞

−∞
ρ(p0) e

−i(p0−EA)(t−t′) dp0 , (7.3.13)
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where we have introduced the spectral density

ρ(p0) =
∑
κ

| ⟨A|HI(0) |κ⟩ |2 δ(p0 − Eκ) . (7.3.14)

The integro-differential equation with memory (7.3.11) yields a non-perturbative solu-

tion for the time evolution of the amplitudes and probabilities. Inserting the solution for

CA(t) into eq.(7.3.10) one obtains the time evolution of amplitudes Cκ(t) from which we can

compute the time dependent probability to populate the state |κ⟩, namely |Cκ(t)|2.
The hermiticity of the interaction Hamiltonian HI , and the equations (7.3.7,7.3.8) yield

d

dt

[
|CA(t)|2 +

∑
κ

|Cκ(t)|2
]
= 0 (7.3.15)

which together with the initial conditions in eqs.(7.3.9) yields the unitarity relation

|CA(t)|2 +
∑
κ

|Cκ(t)|2 = 1 , (7.3.16)

which is the statement that the time evolution operator U(t, 0) is unitary, namely

⟨ΨI(t)|ΨI(t)⟩ = |CA(t)|2 +
∑
κ

|Cκ(t)|2

= ⟨Ψ(0)U †(t, 0)U(t, 0)Ψ(0)⟩ = ⟨Ψ(0)|Ψ(0)⟩ = |CA(0)|2 = 1 . (7.3.17)

In general it is quite difficult to solve eq.(7.3.11) exactly, so that an approximation scheme

must be invoked.

The time evolution of CA(t) determined by eq.(7.3.11) is slow in the sense that the time

scale is determined by a weak coupling kernel Σ which is second order in the coupling. This

allows us to use an approximation in terms of a consistent expansion in time derivatives of

CA. Define

W0(t, t
′) =

∫ t′

0

Σ(t, t′′)dt′′ (7.3.18)

so that

Σ(t, t′) =
d

dt′
W0(t, t

′), W0(t, 0) = 0. (7.3.19)

Integrating by parts in eq.(7.3.11) we obtain∫ t

0

Σ(t, t′)CA(t
′) dt′ = W0(t, t)CA(t)−

∫ t

0

W0(t, t
′)
d

dt′
CA(t

′) dt′. (7.3.20)
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The second term on the right hand side is formally of fourth order in HI suggesting how a

systematic approximation scheme can be developed. Setting

W1(t, t
′) =

∫ t′

0

W0(t, t
′′)dt′′,⇒ d

dt′
W1(t, t

′) = W0(t, t
′); W1(t, 0) = 0 (7.3.21)

and integrating by parts again, we find∫ t

0

W0(t, t
′)
d

dt′
CA(t

′) dt′ = W1(t, t) ĊA(t) + · · · (7.3.22)

leading to ∫ t

0

Σ(t, t′)CA(t
′) dt′ = W0(t, t)CA(t)−W1(t, t) ĊA(t) + · · · (7.3.23)

This process can be implemented systematically resulting in higher order differential

equations. Since W1 ≃ H2
I ; ĊA ≃ H2

I the second term in (7.3.23) is ≃ H4
I . We consistently

neglect this term because to this order the states |κ⟩ may also have non-vanishing matrix

elements with states |κ′⟩ other than |A⟩ and the hierarchy would have to include these other

states, therefore yielding contributions of O(H4
I ). Hence up to leading order ≃ H2

I the

equation eq.(7.3.11) becomes

ĊA(t) = −W0(t, t)CA(t) (7.3.24)

where

W0(t, t) =

∫ ∞

−∞
ρ(p0)

[
1− e−i(p0−EA)t

i(p0 − EA)

]
dp0 , (7.3.25)

yielding

CA(t) = e−it δE(t) e−
γ(t)
2 , (7.3.26)

where we used that CA(0) = 1, with

δE(t) =

∫ ∞

−∞

ρ(p0)

(EA − p0)

[
1−

sin
((
EA − p0

)
t
)

(EA − p0)
)
t

]
dp0 , (7.3.27)

and

γ(t) = 2

∫ ∞

−∞
ρ(p0)

[
1− cos

((
EA − p0

)
t
)]

(
EA − p0

)2 dp0 . (7.3.28)

The survival probatility of the initial state is given by

|⟨A|Ψ(t)⟩|2 = |CA(t)|2 = e−γ(t) . (7.3.29)
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In the long time limit

δE(t) −−−−→
t−→∞ δE∞ =

∫ ∞

−∞
P ρ(p0)

(EA − p0)
dp0 , (7.3.30)

where P stands for the principal part, yielding a renormalization of the bare frequency of

the state A, namely EA + δE∞ = EAR, whereas the long time limit of γ(t) yields the decay

law of the initial state.

The spectral density is only non-vanishing for p0 ≥ ET where ET is the beginning of the

multiparticle threshold. The long time limit of (7.3.28) is dominated by the region of the

spectral density p0 ≃ EA, therefore it depends on whether EA < ET or EA ≥ ET .

i) EA < ET : in this case the oscillatory function averages out in the long time limit since

the region p0 ≃ EA is not within the region of support of the spectral density, therefore

γ(t) −−−−→
t−→∞ zA = 2

∫ ∞

ET

ρ(p0)

(EA − p0)2
dp0 , (7.3.31)

yielding

|CA(t)|2 −−−−→
t−→∞ ZA = e−zA , (7.3.32)

where ZA is the wave function renormalization. Since ρ(p0) ≥ 0 (see eqn. (7.3.14)) zA > 0

and ZA < 1 consistently with the unitarity condition (7.3.16). This case describes a stable

particle, with its mass shell described by an isolated pole below the multiparticle threshold.

ii) EA > ET : in this case, ρ(EA) ̸= 0, and the long time limit is dominated by the

neighborhood of EA, subtracting ρ(EA) from the spectral density, we find in the long time

limit

γ(t) −−−−→
t−→∞ ΓA t+ zA +O(1/t) + · · · , (7.3.33)

where

ΓA = 2πρ(EA) ; zA = 2

∫ ∞

−∞
P ρ(p0)

(EA − p0)2
dp0 , (7.3.34)

yielding

|CA(t)|2 −−−−→
t−→∞ ZA e

−ΓAt ; ZA = e−zA . (7.3.35)

Therefore this case describes an unstable, decaying state, namely a resonance.
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iii) EA = ET : in this case the multiparticle threshold coincides with the position of

the mass and the spectral density vanishes at p0 = EA. The long time dynamics is now

determined by how the spectral density vanishes at threshold. In the case that the spec-

tral density vanishes linearly at threshold, the p0 integral in γ(t) (eqn. (7.3.28)) features a

logarithmic divergence at long time. This is the case for the super-renormalizable and renor-

malizable cases (eqns. (7.2.11,7.2.25) respectively) studied in the previous section, where the

discontinuity of the propagator across the two-particle cut vanishes linearly at threshold in

the variably p0 − EP , namely

ρ(p0) −−−−−−→
p0−→EA

∆(p0 − EA) ; ∆ =
[
dρ(p0)/dp0

]
p0=EA

. (7.3.36)

To understand this case more clearly, and to extract the infrared divergence, it proves

convenient to change variables to (p0−EA) = sEA with ρ(p0) ≡ ρ(s) and τ = EA t, yielding

γ(t) =
2

EA

∫ ∞

0

ρ(s)
1− cos(sτ)

s2
ds

=
2

EA

∫ 1

0

ρ(s)
1− cos(sτ)

s2
ds+

2

EA

∫ ∞

1

ρ(s)
1− cos(sτ)

s2
ds .

(7.3.37)

The first integral features an infrared divergence, whereas the second is infrared finite and

the cosine term averages out in the long time limit. With the threshold behavior (7.3.36),

let us write for the first integral

ρ(s) = ∆EA s+ ρ̃(s) ; ρ̃(s) −−−→
s−→0

∝ sn ; n ≥ 2 , (7.3.38)

leading to

γ(t) = 2∆

∫ 1

0

1− cos(sτ)

s
ds+ F(τ) −−−−→

t−→∞ 2∆ ln
[
EA t

]
+ zA , (7.3.39)

where the remaining function F(τ) −−−−→τ−→∞ F∞ a time-independent asymptotic long time

limit. This case leads to the relaxation of the amplitude with an anomalous dimension,

namely

|CA(t)|2 −−−−→
t−→∞

[
EAt

]−2∆

ZA ; ZA = e−zA , (7.3.40)

in agreement with the results (7.2.15,7.2.27) obtained by the inverse Fourier transform of a

renormalization group improved propagator. Therefore this dynamical resummation method
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provides a real time implementation of the renormalization group. The wave function renor-

malization constant ZA is infrared finite, however it is ultraviolet divergent in a renormal-

izable (or non-renormalizable) theory.

If ∆ = 0 and the spectral density vanishes faster than linear near threshold it follows

from the above result that γ(t) → zA in the long time limit.

7.3.1 Equivalence with the dynamical renormalization group

In the interaction picture, the time evolution of a state is given by

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ , (7.3.41)

where

U(t, t0) = 1− i

∫ t

t0

HI(t
′) dt′ −

∫ t

t0

∫ t′

t0

HI(t
′) HI(t

′′) dt′ dt′′ +O(H3
I ) , U(t0, t0) = 1 .

(7.3.42)

If at t0 = 0 the initial state is |ψ(t0)⟩ = CA(0) |A⟩ the survival amplitude at time t is

given by

CA(t) = CA(0)⟨A|U(t, 0) |A⟩ = CA(0)

[
1− i t ⟨A|HI(0)|A⟩

−
∫ t

0

∫ t′

0

∑
κ

|⟨A|HI(0)|κ⟩|2 ei(EA−Eκ)(t′−t′′) dt′ dt′′ +O(H3
I )

]
, (7.3.43)

where we have introduced
∑

κ |κ⟩ ⟨κ| = 1 in the second order term, and introduced the

initial amplitude CA(0) to clarify the nature of the dynamical renormalization group. We

will be mainly concerned with the examples discussed in the previous sections, for which

⟨A|HI(0) |A⟩ = 0. In terms of the spectral density (7.3.14) we find

CA(t) = CA(0)
{
1 + S(2)

A (t) +O(H3
I )
}
, (7.3.44)

where

S(2)
A (t) = −i t δE(t)− 1

2
γ(t) , (7.3.45)

where the superscript in S refers to the order in perturbation theory and δE(t); γ(t) are given

by eqns. (7.3.27,7.3.28) respectively. From the results (7.3.30,7.3.33,7.3.39) it follows that
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S(2)
A (t) features secular growth in time, namely it grows in time invalidating the reliability of

the perturbative expansion at long time. The dynamical renormalization group[124, 204, 102]

provides a resummation framework that improves the convergence at long time. It begins

by evolving in time up to a time τ long enough to establish the secular growth, but short

enough so that perturbation theory is still reliable and absorbing the time evolution into a

renormalization of the amplitude. This program is implemented as follows, writing

CA(0) = CA(τ) RA(τ) , RA(τ) = 1 + r
(2)
A (τ) +O(H3

I ) , (7.3.46)

where r(2)A (τ) ≃ O(H2
I ), etc. Up to second order in the interaction we obtain

CA(t) = CA(τ)
[
1 +

(
r
(2)
A (τ) + S(2)

A (t)
)
+ · · ·

]
, (7.3.47)

the counterterm r
(2)
A (τ) is chosen to cancel S(2)

A (t) at the renormalization time scale t = τ ,

namely

r
(2)
A (τ) = −S(2)

A (τ) . (7.3.48)

The time dependent amplitude CA(t) does not depend on the arbitrary renormalization scale

τ , hence
d

dτ
CA(t) = 0 , (7.3.49)

this is the dynamical renormalization group equation. Consistently keeping up to terms of

O(H2
I ) this equation leads to

ĊA(τ)

CA(τ)
= −ṙ(2)A (τ) +O(H4

I ) + · · · (7.3.50)

where the dots stand for d/dτ . Using the renormalization condition (7.3.48) the solution is

given by

CA(τ) = CA(τ0) e

(
S(2)
A (τ)−S(2)

A (τ0)
)
, (7.3.51)

now we can choose τ = t ; τ0 = 0 and CA(0) = 1 with the result

CA(t) = e−it δE(t) e−
γ(t)
2 , (7.3.52)

which is precisely the result given by eqn. (7.3.26). This solution provides a resummation

of the perturbative series up to second order in the coupling. In the case in which the mass
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shell is embedded in the particle continuum, the long time behavior of the amplitude is

CA(t) = ZA e
−i∆E∞t e−Γt/2 yielding the usual exponential decay law in agreement with eqn.

(7.3.35). Therefore, the dynamical resummation method described in the previous section is

equivalent to the dynamical renormalization group resummation of secular terms. However,

a bonus of the dynamical resummation method is that it also yields the coefficients Cκ(t)

given by eqn. (7.3.8), and a direct connection with unitarity (see eqn. (7.3.16)).

Armed with these general results, we now address the cases studied in the previous

section.

7.3.2 Super-renormalizable case:

The interaction Hamiltonian in the interaction picture for the model described by eqn.

(7.2.1) is

HI(t) = λ

∫
d3xϕ†(x⃗, t)ϕ(x⃗, t)χ(x⃗, t) , (7.3.53)

where the time evolution is that of free fields. In this case the state |A⟩ =
∣∣∣1ϕp⃗〉 i.e. a single

particle state of the field ϕ and the states |κ⟩ =
∣∣∣1ϕ
k⃗
; 1χq⃗

〉
, a two particle intermediate state.

We quantize the fields in a volume V with a discrete momentum representation, eventually

V is taken to infinity. The matrix element〈
1ϕp⃗

∣∣∣HI(0)
∣∣∣1ϕ
k⃗
; 1χq⃗

〉
=

λV δp⃗,⃗k+q⃗[
2V Ep2V Ek2V ωq

]1/2 , (7.3.54)

where Ep =
√
p2 +M2, ωq = |q⃗| are the energies of the ϕ, χ particle respectively, and the

total energy of this intermediate state is Eκ = Ek + ωq. With
∑

κ =
∑

p⃗

∑
q⃗ the spectral

density (7.3.14) is given by

ρ(p0; p) =
λ2

8Ep

∫
d3k

(2π)3
δ(p0 − Ek − |p⃗− k⃗|)

Ek |p⃗− k⃗|
. (7.3.55)

For p0 = Ep this is identified with the Lorentz invariant phase space for two body decay,

which must vanish by kinematics because a massive particle cannot emit or absorb a massless

particle on shell. Therefore the spectral density must vanish as p0 −→ Ep.
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We find

ρ(p0; p) =
λ2

32 π2Ep
(p0 − Ep)

(
p0 + Ep
p20 − p2

)
Θ(p0 − Ep) , (7.3.56)

vanishing linearly as ∆(p0−Ep) at threshold with ∆ = (λ/4πM)2. Introducing the variables

s = (p0 −Ep)/Ep ; T = Ep t ; R =M/Ep we find that the function γ(t) in eqn. (7.3.28)

can be written as

γ(t) = I1(T ) + I2(T ) , (7.3.57)

with

I1(T ) = ∆R2

∫ 1

0

[ 2 + s

R2 + 2s+ s2

][1− cos(s T )

s

]
ds (7.3.58)

I2(T ) = ∆R2

∫ ∞

1

[ 2 + s

R2 + 2s+ s2

][1− cos(s T )

s

]
ds . (7.3.59)

The integral I1(T ) features an infrared divergence at s = 0, which can be isolated by sub-

tracting the first bracket inside the integral in (7.3.58) at s = 0, yielding

I1(T ) = 2∆

∫ 1

0

[1− cos(s T )

s

]
ds+∆

∫ 1

0

[ R2 − 4− 2s

R2 + 2s+ s2

]
(1− cos(s T )) ds . (7.3.60)

In the long time limit the cos(sT ) terms in I2 and the second term in (7.3.60) average out,

yielding

γ(t) −−−−→
t−→∞ 2∆ ln

[
Ept
]
+ zϕ , (7.3.61)

where

zϕ = ∆

{
2γE +

∫ 1

0

[ R2 − 4− 2s

R2 + 2s+ s2

]
ds+R2

∫ ∞

1

[ 2 + s

R2 + 2s+ s2

] ds
s

}
, (7.3.62)

with γE the Euler-Mascheroni constant. Therefore the long time behavior of the survival

probability is given by

|Cϕ(t)|2 =
[
Ep t

]−2∆

Zϕ ; Zϕ = e−zϕ , (7.3.63)

displaying the power law decay of the probability with anomalous dimension 2∆ in complete

agreement with the result from the renormalization group improved propagator eqn. (7.2.16).

We note that the wave function renormalization Zϕ is infrared finite and also ultraviolet finite

as befits a super renormalizable theory.
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7.3.3 Renormalizable case:

For the renormalizable case described by the Lagrangian density (7.2.17) the interaction

Hamiltonian in the interaction picture of free fields is

HI(t) = Y

∫
d3xΨ(x⃗, t)Φ(x⃗, t)Ψ(x⃗, t) , (7.3.64)

with the state |A⟩ =
∣∣∣1ψp⃗,α〉 and the intermediate states |κ⟩ =

∣∣∣1ψ
k⃗,β

; 1ϕq⃗

〉
. The matrix elements

are given by

〈
1ψ
k⃗,β

; 1ϕq⃗

∣∣∣HI(0)
∣∣∣1ψp⃗,α〉 = V Y δp⃗,⃗k+q⃗

U k⃗,β,a Up⃗,α,a[
2V Ep2V Ek2V |q⃗|

]1/2 (7.3.65)

〈
1ψp⃗,α

∣∣∣HI(0)
∣∣∣1ψ
k⃗,β

; 1ϕq⃗

〉
= V Y δp⃗,⃗k+q⃗

U p⃗,α,b Uk⃗,β,b[
2V Ep2V Ek2V |q⃗|

]1/2 . (7.3.66)

With
∑

κ =
∑

k⃗

∑
q⃗

∑
β and averaging over the initial polarizations α, the spectral density

(7.3.14) becomes

ρ(p0; p) =
Y 2

4Ep

∫
d3k

(2π)3
δ(p0 − Ek − |p⃗− k⃗|)

Ek |p⃗− k⃗|

[
k · p+M2

]
, (7.3.67)

which is found to be

ρ(p0; p) =
Y 2

32π2Ep
(p0−Ep)

[p0 + Ep
p20 − p2

]{
p0

[Ep − p0
p20 − p2

]
(p20−p2+M2)+p20−p2+3M2

}
Θ(p0−Ep) .

(7.3.68)

We note that for p0 ≃ EP , ρ(p0, p) ≃ ∆(p0 − Ep) + · · · where ∆ = Y 2/(4π2) and the dots

stand for terms that vanish as (p0 − Ep)
n , n ≥ 2 near threshold. To separate the infrared

contribution, we change variables to p0 − Ep = sEp ; ρ(p0) ≡ ρ(s) and T = Ep t and write

ρ(s) = ∆Ep s+ ρ̃(s) ; ∆ =
Y 2

4π2
, (7.3.69)

with ρ̃(s) −−−→
s−→0

∝ sn ; n ≥ 2 , yielding

γ(t) = J1(T ) + J2(T ) (7.3.70)
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with

J1(T ) = 2∆

∫ 1

0

1− cos(sT )

s
ds = 2∆

{
ln[Ept] + γE − Ci[Ept]

}
, (7.3.71)

J2(T ) = 2

∫ 1

0

ρ̃(s)
1− cos(sT )

s2
ds+ 2

∫ ∞

1

ρ(s)
1− cos(sT )

s2
ds . (7.3.72)

In J2(T ) the cosine term averages out in the long time limit and this conribution ap-

proaches a time independent asymptotic value, which however is ultraviolet divergent because

ρ(s) ≃ s as s→ ∞. Therefore in the long time limit we find

γ(t) −−−−→
t−→∞ 2∆ ln

[
Ep t

]
+ z̃ψ , (7.3.73)

yielding the survival probability

|Cψ(t)|2 = Zψ

[
Ep t

]−2∆ (7.3.74)

which agrees with the power law decay of the amplitude with anomalous dimension in eqn.

(7.2.27). In this case the wave function renormalization Zψ is infrared finite but ultraviolet

divergent since this is a renormalizable theory.

7.3.4 Axion couplings:

In the case of the pseudoscalar coupling igΨ̄γ5ϕΨ the matrix elements are given by〈
1ψ
k⃗,β

; 1ϕq⃗

∣∣∣HI(0)
∣∣∣1ψp⃗,α〉 = ig V δp⃗,⃗k+q⃗

U k⃗,β,a γ
5 Up⃗,α,a[

2V Ep2V Ek2V |q⃗|
]1/2 (7.3.75)

〈
1ψp⃗,α

∣∣∣HI(0)
∣∣∣1ψ
k⃗,β

; 1ϕq⃗

〉
= ig V δp⃗,⃗k+q⃗

U p⃗,α,b γ
5 Uk⃗,β,b[

2V Ep2V Ek2V |q⃗|
]1/2 . (7.3.76)

With
∑

κ =
∑

k⃗

∑
q⃗

∑
β and averaging over the initial polarizations α, the spectral density

(7.3.14) now becomes

ρ(p0; p) =
g2

4Ep

∫
d3k

(2π)3
δ(p0 − Ek − |p⃗− k⃗|)

Ek |p⃗− k⃗|
[
k · p−M2

]
. (7.3.77)

Following the same steps as in the scalar Yukawa coupling case we find

ρ(p0; p) =
g2

32π2Ep
(p0−Ep)2

[p0 + Ep
p20 − p2

]{
p0+Ep−p0

[p20 − p2 +M2

p20 − p2

]}
Θ(p0−Ep) . (7.3.78)
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In this case the (p0 − Ep)
2 completely cancels the denominator in γ(t) eqn. (7.3.28)

therefore there are no infrared singularities and the asymptotic long time limit γ(t) → zψ

which, however, is ultraviolet divergent. The behavior ∝ (p0 − EP )
2 near threshold is, as

expected, in complete agreement with the result (7.2.32) of the self energy.

For the pseudovector coupling g∂µϕΨ̄γµγ5Ψ we now find

ρ(p0; p) =
g2

4Ep

∫
d3k

(2π)3
δ(p0 − Ek − |p⃗− k⃗|)

Ek |p⃗− k⃗|
[
(k ·q) (p ·q)

]
; qµ = (|p⃗− k⃗|; p⃗− k⃗) , (7.3.79)

with the result

ρ(p0, p) =
g2

32π2
(p0 − Ep)

3
[(p0 + Ep)

2

p20 − p2

] [
1 +

M2

p20 − p2

]
Θ(p0 − Ep) . (7.3.80)

The behavior ≃ (p0 − Ep)
3 near threshold is consistent with the results (7.2.39,7.2.40), and

implies that in this case there is no infrared singularity, and furthermore γ(t) −−−−→
t−→∞ zψ

with zψ being ultraviolet divergent. Therefore, we conclude that either pseudoscalar or

pseudovector axion couplings do not yield infrared divergences.

Criterion for infrared divergences: The study of the previous sections allows us to

provide a general criterion to determine which type of (non-gauge) interactions even from

effective field theories yield infrared divergences at one loop level and which ones do not.

The typical form of the spectral density at one loop level can be written as

ρ(p0) ∝
∫

d3k

(2π)3
δ(p0 − Ek − ωq)

Ek ωq
F [(k · p); (k · q); (q · p)] , (7.3.81)

where F is a Lorentz invariant function of the scalar products of the on-shell four vectors

pµ = (Ep, p⃗) ; kµ = (Ek, k⃗) ; qµ = (ωq; p⃗ − k⃗) ; ωq = |p⃗ − k⃗|. The most general form of

F [(k · p); (k · q); (q · p)] is a combination of polynomials, namely

F [(k · p); (k · q); (q · p)] =
∑
m.n,l

amnl (k · p)m (k · q)m (q · p)l ; (m,n, l) = 0, 1, 2 · · · , (7.3.82)

with amnl coefficients that depend on the particular effective field theory interaction. As it

will become clear below, it suffices to consider only monomials in these products.

The angular integration in (7.3.81) is performed yielding

ρ(p0) ∝
1

4π2 p

∫ E+

E−

F [(k · p); (k · q); (q · p)]
∣∣
ωq=p0−Ek

dEk , (7.3.83)
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where

E± =
(p0 ± p)2 +M2

2(p0 ± p)
⇒ E+ − E− = (p0 − Ep)

p (p0 + Ep)

p20 − p2
. (7.3.84)

The vanishing of the integral as p0 → Ep reflects the vanishing of the phase space for on-

shell emission of the massless quanta. As discussed above, the infrared divergence arises from

the contribution to the spectral density that vanishes linearly at threshold. Since E+ − E−

vanishes linearly as p0 → Ep, only terms in F [(k · p); (k · q); (q · p)] that remain finite in this

limit yield infrared divergences. Therefore it is now a matter of analyzing the behavior of

the various scalar products to reveal which contributions do yield infrared divergences. We

find (using the delta function constraint in (7.3.83))

p · k =
1

2
(p0 − Ep)

[
p0 + Ep − 2Ek

]
+M2 −−−−−→

p0→Ep
M2 ⇒ IR div (7.3.85)

p · q =
1

2
(p0 − Ep)

[
− p0 + Ep + 2Ek

]
−−−−−→
p0→Ep

∝ (p0 − Ep) ⇒ NO IR (7.3.86)

k · q =
1

2
(p0 − Ep)

[
p0 + Ep

]
−−−−−→
p0→Ep

∝ (p0 − Ep) ⇒ NO IR div . (7.3.87)

This analysis explains why the scalar Yukawa coupling with F = p · k +M2 yields an

infrared divergence whereas the pseudoscalar axion Yukawa coupling with F = p · k −M2

does not. It also reveals that effective field theories with derivative couplings that necessarily

yield F ∝ p · q ; k · q do not yield infrared divergences at one loop order. It is important

to highlight that these arguments are only valid at one loop level in non-gauge theories, we

were not able to extend them generically beyond this order in perturbation theory.

7.4 Unitarity and dressing cloud

In the cases in which the infrared divergences at threshold lead to the decay of the single

particle amplitude with a power law with anomalous dimension, at long time this amplitude

vanishes. Unitarity must be fulfilled by “populating” the intermediate states with amplitudes

Cκ(∞) such that
∑

κ |Cκ(∞)|2 = 1. The fulfillment of unitarity when the amplitude of the

initial state vanishes altogether, and the coefficients |Cκ|2 being formally of O(∆) implies

that the sum over the intermediate states must be proportional to 1/∆. This integral must
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be singular in the limit ∆ → 0 bringing about a non-perturbative cancellation of the ∆ from

the coefficients. We now study how this result from unitarity emerges in the long time limit.

From eqn. (7.3.10) we find

Cκ(t) = −i ⟨κ|HI(0) |A⟩
∫ t

0

eiΩt
′
CA(t

′) dt′ ; Ω = Eκ − EA , (7.4.1)

and

|Cκ(t)|2 = | ⟨A|HI(0) |κ⟩ |2
∫ t

0

∫ t

0

eiΩt1 CA(t1) e
−iΩt2 C∗

A(t2) dt1 dt2 . (7.4.2)

Inside the integrals we replace the amplitudes CA(t) by eqn. (7.3.26). Since at early time

the amplitude departs from CA(0) = 1 by a perturbatively small amount, we will replace

them by the long time limit (7.3.39)

CA(t) = e−iδE∞ t e−
γ(t)
2 ; γ(t) = 2∆ ln

[
EAt

]
+ zA , (7.4.3)

(see eqn. (7.3.40)) and absorb δE∞ into a renormalization of EA (mass renormalization).

The integrand in the double time integral in (7.4.2) is now given by (EA in Ω now stands for

the renormalized energy)

J(t1, t2) = eiΩ(t1−t2) e−
1
2
(γ(t1)+γ(t2)) , (7.4.4)

writing the double time integral in (7.4.2) as∫ t

0

∫ t

0

J(t1, t2)
(
Θ(t1−t2)+Θ(t2−t1)

)
dt1 dt2 = 2

∫ t

0

dt1e
− γ(t1)

2

∫ t1

0

cos[Ω(t1−t2)] e−
γ(t2)

2 dt2 ,

(7.4.5)

where in the term with Θ(t2 − t1) on the left hand side of (7.4.5) we relabelled t1 ↔ t2 and

used that J(t2, t1) = J∗(t1, t2) with γ(t) being real. Now writing

cos[Ω(t1 − t2)] =
d

dt2
G[t1; t2] ; G[t1; t2] =

∫ t2

0

cos[Ω(t1 − t′)] dt′ ; G[t1; 0] = 0 , (7.4.6)

in the t2 integral in (7.4.5), integrating by parts using (7.4.6) and neglecting the term pro-

portional to the time derivative of γ(t2) because it is of O(H2
I ), hence consistently neglecting

terms of O(H4
I ) in (7.4.2) we find that the double integral in (7.4.2) becomes∫ t

0

∫ t

0

e−iΩt1 CA(t1) e
iΩt2 C∗

A(t2) dt1 dt2 =
2ZA

Ω

∫ t

0

sin
[
Ω t1

] [
EAt1

]−2∆
dt1 . (7.4.7)
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In the limit t → ∞ in (7.4.7) we can rescale Ωt1 ≡ u and using a representation of the

gamma function we find

|Cκ(∞)|2 = 2ZA

[
| ⟨A|HI(0) |κ⟩ |2
(Eκ − EA)2

] [Eκ − EA
EA

]2∆
Γ[1− 2∆] sin

[π
2
(1− 2∆)

]
. (7.4.8)

In terms of the spectral density (7.3.14) and introducing ZA = ZA Γ[1− 2∆] sin
[
π
2
(1− 2∆)

]
we obtain ∑

κ

|Cκ(∞)|2 = 2ZA

∫ ∞

−∞

ρ(p0)

(p0 − EA)2

[p0 − EA
EA

]2∆
dp0 , (7.4.9)

This is the general result for the cases with infrared divergences at threshold. We now apply

this result to the super renormalizable case as an example, of which the renormalizable case

is a simple extension. In this case (see section (7.3.2)) the state |A⟩ =
∣∣∣1ϕp⃗〉 and the states

|κ⟩ =
∣∣∣1ϕ
k⃗
; 1χq⃗

〉
with energy Eκ = Ek + ωq ; q⃗ = p⃗ − k⃗ and ρ(p0) is given by eqn. (7.3.56)

and ∆ = (λ/4πM)2. In terms of s = (p0 − Ep)/Ep ; R =M/Ep we find

∑
κ

|Cκ(∞)|2 = ∆R2 Zϕ

∫ ∞

0

[
2 + s

R2 + 2s+ s2

]
s2∆−1 ds , (7.4.10)

notice that naively setting ∆ = 0 in s2∆−1 in the integrand in (7.4.10) leads to an infrared

divergence. It is precisely this anomalous dimension that renders the integral finite and

∝ 1/∆ thereby cancelling the ∆ in the prefactor. This is seen as follows: writing
∫∞
0

· · · ds =∫ 1

0
· · · ds+

∫∞
1

· · · ds and in the first integral replace[
2 + s

R2 + 2s+ s2

]
=

2

R2
+

s

R2

[
R2 − 4− 2s

R2 + 2s+ s2

]
, (7.4.11)

the first term on the right hand side of (7.4.11) when input in the first integral (
∫ 1

0
· · · ds)

yields 1/(R2∆), finally yielding∑
κ

|Cκ(∞)|2 = Zϕ

[
1 + ∆ I[R; ∆]

]
, (7.4.12)

where

I[R; ∆] =

∫ 1

0

[
R2 − 4− 2s

R2 + 2s+ s2

]
s2∆ ds+R2

∫ ∞

1

[
2 + s

R2 + 2s+ s2

]
s2∆−1ds . (7.4.13)
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With Γ[1 − 2∆] sin
[
π
2
(1 − 2∆)

]
= 1 + 2∆ γE + O(∆2) and from eqn. (7.3.62,7.3.63) Zϕ =

1− 2∆γE −∆ I[R; 0] +O(∆2) it follows that Zϕ = 1−∆ I[R; 0] +O(∆2). Since I[R; ∆] is

infrared finite, to lowest order we can replace I[R; ∆] ≃ I[R; 0] + O(∆) inside the bracket

in eqn. (7.4.12), hence, neglecting consistently terms of O(∆2) ≃ H4
I and higher, we find∑

κ

|Cκ(∞)|2 = 1 +O(∆2 ≃ H4
I ) . (7.4.14)

therefore unitarity is fulfilled consistently up order O(H4
I ) that we have considered. It

now becomes clear that the non-perturbative dynamical renormalization group resummation

yielding the anomalous dimension is precisely the mechanism by which unitarity is fulfilled.

The extension to the renormalizable case with scalar Yukawa coupling is straightforward

with a similar result up to order O(H4
I ) that we considered.

No infrared divergences: In the cases where there are no infrared divergences, such

as that of axion like particle couplings, the asymptotic long time dynamics follows from eqn.

(7.4.3) with ∆ = 0, namely

CA(t) = Z1/2
A e−iδE∞ t ; ZA = e−zA , (7.4.15)

with (see eqns. (7.3.31,7.3.32))

zA = 2

∫ ∞

−∞

ρ(p0)

(EA − p0)2
dp0 . (7.4.16)

Inserting these expressions into eqn. (7.4.2), absorbing the phase ∆E∞ into a renormalization

of the single particle frequencies and carrying out the time integrals, we now find

|Cκ(t)|2 = ZA | ⟨A|HI(0) |κ⟩ |2
[
1− cos[(Eκ − EA)t]

(Eκ − EA)2

]
, (7.4.17)

yielding ∑
κ

|Cκ(t)|2 = 2ZA

∫
ρ(p0)

[
1− cos[(p0 − EA)t]

(p0 − EA)2

]
dp0 . (7.4.18)

Since in the cases in which there are no infrared divergences, as p0 → EA

ρ(p0) ≃ (p0 − EA)
n ; n ≥ 2 , (7.4.19)
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the oscillatory contribution in (7.4.18) averages out in the long time limit yielding the asymp-

totic behavior as t→ ∞ ∑
κ

|Cκ(∞)|2 = 2ZA

∫
ρ(p0)

(p0 − EA)2
dp0 . (7.4.20)

The unitarity relation (7.3.16) at asymptotically long time becomes,

ZA

[
1 + 2

∫
ρ(p0)

(p0 − EA)2
dp0

]
= 1 . (7.4.21)

with

ZA = e−zA ≃ 1− zA + · · · = 1− 2

∫
ρ(p0)

(p0 − EA)2
dp0 +O(H4

I ) , (7.4.22)

it is clear that the unitarity relation (7.4.21) is fulfilled up to O(H4
I ) which is consistent with

the order that we have considered.

7.4.1 The entangled dressing cloud:

Focusing on the super renormalizable case, with an obvious extension to the renormal-

izable case, the states |A⟩ =
∣∣∣1ϕp⃗〉 and |κ⟩ =

∣∣∣1ϕ
k⃗
; 1χq⃗

〉
with Eκ = Ek + q. Denoting the

coefficients CA(t) ≡ Cp(t) ; Cκ(t) ≡ Ck⃗,q⃗(t), the time evolved state (in the interaction pic-

ture) is

|Ψ(t)⟩ = Cp(t)
∣∣∣1ϕp⃗〉+

∑
q⃗,⃗k

Ck⃗,q⃗(t)
∣∣∣1ϕ
k⃗
; 1χq⃗

〉
, (7.4.23)

where

Cp(t) = e−iδE∞ t
[
Ep t

]−∆

Z1/2
ϕ , (7.4.24)

and the coefficients Ck⃗,q⃗(t) obtained from eqn.(7.3.10). The asymptotic state after the prob-

ability to remain in the initial state has vanished is given by (in the interaction picture)

|Ψ(∞)⟩ =
∑
k⃗,q⃗

Ck⃗;q⃗(∞)
∣∣∣1ϕ
k⃗
; 1χ

p⃗−k⃗

〉
, (7.4.25)

with (see eqn. (7.4.8), and q⃗ = p⃗− k⃗ )

|Ck⃗;q⃗(∞)|2 = 2Zϕ

[ |〈1ϕp⃗ ∣∣∣HI(0)
∣∣∣1ϕ
k⃗
; 1χq⃗

〉
|2

(Ek + q − Ep)2

] [Ek + q − Ep
Ep

]2∆
Γ[1− 2∆] sin

[π
2
(1− 2∆)

]
,

(7.4.26)

267



where the corresponding matrix elements are given by eqn. (7.3.54), and from eqn. (7.4.14)∑
k⃗,q⃗

|Ck⃗;q⃗(∞)|2 = 1 +O(H4
I ) . (7.4.27)

It is important to compare the time evolved state (7.4.23) with previous studies. In

ref.[223] the state dressed by soft massless quanta was obtained up to first order in time-

ordered perturbation theory (see eqn. (5) in ref.[223]), whereas the state |Ψ(t)⟩ (7.4.23)

describes a non-perturbative resummation of the perturbative series, as is evident in the

anomalous dimension.

Furthermore, the dressed states considered in references[133, 243, 255, 205, 334] are built

from a coherent state of photons, which are very different from the state |Ψ(t)⟩ which in the

long time limit is a superposition of single charged and a single massless particle states, and

the probabilities include wave function renormalization constants.

This is an entangled state of the charged particle ϕ and the cloud of massless quanta

χ. At asymptotically long time, the probability of finding a ϕk⃗, χq⃗ pair is |Ck⃗,q⃗(∞)|2 and by

unitarity
∑

q⃗,⃗k |Ck⃗,q⃗(∞)|2 = 1 as explicitly shown in eqn. (7.4.14). The density matrix

℘ = |Ψ(∞)⟩ ⟨Ψ(∞)| (7.4.28)

describes a pure state with Tr℘ = 1.

However, consider that this asymptotic state is measured by a detector that is only

sensitive to the charge of the ϕ field, but insensitive to the charge neutral massless quanta of

the χ field. Such measurement amounts to tracing the density matrix over the unobserved

χ field yielding the mixed state described by the reduced density matrix

Trχ℘ =
∑
k⃗

|Cp⃗;⃗k(∞)|2
∣∣∣1ϕ
k⃗

〉〈
1ϕ
k⃗

∣∣∣ , (7.4.29)

from which we interpret |Cp⃗,⃗k(∞)|2 as the distribution function of the charged fields in the

asymptotic state.
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Although this discussion has focused on the asymptotic state, it can be extended to

include the full time evolution of the state |Ψ(t)⟩. Tracing over the unobserved χ states the

reduced density matrix at any given time is

Trχ℘(t) = |Cp(t)|2
∣∣∣1ϕp⃗〉〈1ϕp⃗ ∣∣∣+∑

k⃗

|Cp⃗;⃗k(t)|2
∣∣∣1ϕ
k⃗

〉〈
1ϕ
k⃗

∣∣∣ . (7.4.30)

This mixed state features a von Neumann entropy

Sϕ(t) = −|Cp(t)|2 ln
(
|Cp(t)|2

)
−
∑
k⃗

|Cp⃗;⃗k(t)|2 ln
(
|Cp⃗;⃗k(t)|2

)
, (7.4.31)

since Cp(0) = 1 ; Cp⃗;⃗k(0) = 0, it follows that Sϕ(0) = 0. The time evolution of the entropy is

completely determined by the (DRM) equations (7.3.10,7.3.11) and in the cases with infrared

divergences Cp(∞) = 0 ; Cp⃗;⃗k(∞) ̸= 0, asymptotically at long time

Sϕ(∞) = −
∑
k⃗

|Cp⃗;⃗k(∞)|2 ln
(
|Cp⃗;⃗k(∞)|2

)
> 0 , (7.4.32)

with the probabilities |Cp⃗;⃗k(∞)|2 obeying the unitarity condition (7.4.27). Unitary time

evolution entails a flow of information from the initial single particle state to the asymptotic

entangled two particle state with a concomitant growth of the entanglement entropy whose

time evolution is completely determined by the (DRM) equations (7.3.10,7.3.11).

The entanglement entropy resulting from the correlations between hard charged particles

and soft photons in QED was studied in ref.[334] within the context of the coherent dressed

states proposed in ref.[255]. As mentioned above these states are very different from the

dressed state obtained from the unitary time evolution of the initial single particle state by

the (DRM), thus preventing a meaningful comparison.

The entanglement entropy (7.4.32) is infrared finite, although the coefficients |Cp⃗;⃗k(∞)|2

feature the infrared enhancement near threshold Ek+q → Ep exhibited by their denominators

in (7.4.26), it is compensated by the power law with anomalous dimension in the numerator.

An integral within a small region in which the denominator vanishes is rendered finite by

the anomalous dimension. Indeed, as discussed in the previous section, it is the numerator

with the anomalous dimension in the coefficients (7.4.8) that ultimately leads to an infrared

finite integral of |Cp⃗;⃗k(∞)|2 and the fulfillment of unitarity, eqn. (7.4.14).
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The calculation of the entanglement entropy either (7.4.31) or its asymptotic form

(7.4.32) is complicated by the logarithms and does not seem a priori to yield a useful quan-

tity since it depends non only on the anomalous dimension but also on the couplings, the

volume1 and the ultraviolet aspects of the theory through the wave function renormalization

constant Z. While the growth of entropy and information flow from the initial state to the

asymptotic multiparticle state as a consequence of unitary time evolution and its dependence

on the anomalous dimension are interesting conceptually, it remains to be understood if it

provides any observational consequence.

7.5 Discussion:

Scaling behavior and renormalization group invariance: In the cases in which

there is an infrared divergence at threshold the survival probability at long time is given by

|CA(t)|2 = ZA

[
EAt

]−2∆

. (7.5.1)

This scaling behavior can be written in a manifestly renormalization group invariant form

as

|CA(t)|2 = ZA[µ]
[
µt
]−2∆

; ZA[µ] = ZA

[EA
µ

]−2∆

, (7.5.2)

so that |CA(t)| is independent of the renormalization scale µ, namely

∂|CA(t)|2
∂ ln[µ]

= 0 ⇒ ∂ lnZA[µ]

∂ ln[µ]
= 2∆ ; ZA[EA] = ZA . (7.5.3)

The renormalization group invariance of the above result can also be made explicit by

noting that we can also write the integral in the first term in I1(T ) (7.3.60) as
∫ s0
0

+
∫ 1

s0
with

s0 = µ/Ep, and µ an arbitrary renormalization scale. Obviously the result is independent of

the scale µ and the long time limit (7.3.61) would become

γ(t) −−−−→
t−→∞ 2∆ ln

[
µt
]
+ zϕ[µ] . (7.5.4)

1A similar volume dependence has been discussed in ref.[334].
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Since γ(t) is independent of the arbitrary scale µ it obeys the renormalization group equation

µ
d γ(t)

dµ
= 0 , (7.5.5)

the solution (7.3.63) corresponds to µ = Ep.

Exponential vs. power law decay: Instead of the model described by the Lagrangian

density (7.2.1) with two fields, let us consider, for example the case of three fields ϕ1, ϕ2, χ

with χ a massless field and both ϕ1, ϕ2 are charged and massive with M1 > M2 and a

cubic interaction among all fields, L = λϕ†
1 ϕ2 χ+ h.c.. In this case the heavier field ϕ1 can

decay into the ϕ2, χ, hence the ϕ1 single particle pole is now embedded in the two-particle

continuum with threshold at M2 < M1. The survival probability for a single ϕ1 particle state

of momentum p⃗ decays in time in the long time limit as e−Γp t with Γp = 2π ρ(p0 = E
(1)
p ) . As

M2 →M1 from below, the decay rate Γp → 0 as now the threshold coincides with the position

of the mass shell of ϕ1 and the spectral density vanishes at threshold by kinematics. This

is the case in which infrared singularities emerge when the spectral density vanishes linearly

at threshold. In this case the asymptotic long time limit is determined by the subleading

secular terms that do not grow linearly in time, but as described above, only logarithmically,

and as M2 becomes larger than M1 the single particle ϕ1 pole moves below the multiparticle

threshold, it is now an isolated pole below the continuum describing a stable particle.

Infrared dressing and the S-matrix: In this chapter we focused on studying the

dynamics of dressing by soft quanta directly in real time in model quantum field theories

that feature infrared divergences akin to those in gauge theories. This is undoubtedly only

a first step, and of much more limited scope than addressing infrared aspects in S-matrix

elements between asymptotic states in gauge theories. While a direct extrapolation of our

results to the understanding or resolution of these divergences in S-matrix elements must

await a deeper study, we can comment on some possible implications. To begin with, the

S-matrix considers the time evolution of states prepared in the infinite past towards the

infinite future, hence it is an infinite time limit of the finite time analysis presented here.

As we have shown, the amplitude of the single particle state vanishes as a power law with

anomalous dimension in this limit, this is in agreement with the vanishing of the on-shell
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wave function renormalization as a consequence of infrared divergences, namely the van-

ishing of the amplitude of the single particle “pole”. Therefore, even when an initial single

particle state is “prepared” in the infinite past, it dresses itself with soft quanta becoming the

asymptotic entangled state given for example by (7.4.25) with the coefficients obeying the

unitarity condition (7.4.27) a result of unitary time evolution as expressed by the sum rule

(7.3.17). It is then this entangled, multiparticle state that should be considered as the “in”

state and also describes the asymptotic “out” states in the S-matrix calculation of a cross

section or transition rate. Therefore, an assessment of the infrared finiteness of S-matrix ele-

ments between asymptotic states entails a calculation of the scattering processes not in terms

of single particles, but in terms of the entangled multiparticle states of the form (7.4.25). An

analysis along these lines was originally presented in refs.[133, 243] but with dressed states

as coherent states, which are very different from the states (7.4.25) as discussed above. Scat-

tering of “Kulish-Faddeev”[255] dressed states has been considered in ref.[330], again, such

states are strikingly different from the multiparticle state (7.4.25) which has been obtained

directly from the real time evolution and whose amplitude satisfies the sum rule (7.4.27),

a direct consequence of unitary time evolution. A challenging open question is how to in-

corporate the non-perturbative resummation that evolves the single particle state into the

dressed entangled state (7.4.25) consistently with Feynman calculus ubiquitous in S-matrix

calculations.

Therefore, the infrared finiteness of the S-matrix based on the dressed states whose

spectral properties feature the anomalous dimensions associated with the non-perturbative

resummation of infrared emission and absorption, remains an open question which undoubt-

edly merits further and deeper study well beyond the limited scope of this chapter.

Loop corrections to the mass of the light field: In this chapter we focused on the

infrared aspects associated with the emission and absorption of a massless scalar particle

which are akin to those in gauge theories. One of our motivations is to learn how to de-

scribe these processes in real time with a view towards a cosmological setting as a potential

mechanism of production of ultra light dark matter. In a non-gauge theory the masslessness

of the scalar field must be protected by some symmetry, for example the scalar field in our

examples could be a Goldstone boson associated with a spontaneously broken symmetry
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beyond the standard model or an axion-like scalar pseudo-Goldstone boson. In absence of

protecting symmetries radiative corrections may induce a non-vanishing (and perhaps large)

mass and such symmetry should be responsible for the near masslessness of such an ultra

light dark matter candidate. While our results describe the dynamics of dressing and is of

fundamental character, their applicability must be carefully considered in particular cases by

assessing whether radiative corrections (higher order loop corrections) induce a large mass

invalidating the results based on the masslessness of the scalar particle.

7.6 Conclusions and further questions:

In this chapter we studied the infrared aspects of the dressing dynamics of charged states

by the emission and absorption of massless neutral quanta directly in time, specifically in

non-gauge theories. While motivated by possible cosmological implications for production

of ultra-light axion-like particles, and focused on the time evolution of initial single particle

states, our study provides a complementary exploration of infrared phenomena ubiquitous in

the S-matrix formulation of gauge theories, and possibly of infrared phenomena in gravity.

We have considered super renormalizable and renormalizable theories that while featuring

very different ultraviolet behavior, nonetheless share similar infrared behavior. Infrared

singularities in these theories arise as a consequence of the charged particle mass shell merging

with the beginning of a multiparticle branch cut in the charged particle self-energy and are,

therefore, akin to infrared divergences in gauge theories. We map this infrared divergence into

similar divergences of an Euclidean critical theory and implement a renormalization group

resummation of the propagator yielding scaling behavior near threshold. This translates into

a survival probability of the charged single particle state that decays as a power law in time

with an anomalous dimension, namely t−∆. We introduced a dynamical resummation method

that extends the dynamical renormalization group and obtain the time dependent amplitudes

of the single charged particle state, and the excited multiparticle states. This method is

manifestly unitary and yields the survival probability directly in time. It clearly reveals

that infrared dynamics arises when the spectral density vanishes linearly at threshold and
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yields the power law decay of the survival probability t−∆ explicitly relating the anomalous

dimension ∆ to the slope of the spectral density at threshold. This behavior points to a

certain universality in the sense that theories with very different ultraviolet behavior but

with similar behavior of the spectral density near threshold feature similar power law decay

with anomalous dimensions.

The dynamical resummation method yields the unitary time evolution of the single

charged particle state and explicitly shows that the dressed state is an entangled state of the

charged field and massless quanta.

Tracing over the massless neutral quanta yields a reduced density matrix from which we

extract the entanglement entropy at all time. Unitary time evolution entails an information

flow from the initial single particle state with vanishing entropy to the asymptotic dressed

state with an infrared finite entropy as a consequence of the anomalous dimension.

We find that effective field theories of massless axion-like particles coupled to charged

fermions do not feature infrared divergences and provide a criterion generally valid for non-

gauge theories up to one loop to determine if and when infrared divergences arise.

These results lead to several questions that merit further study: i) how to extend the

(DRM) to gauge theories consistently with gauge invariance, ii) how to combine the (DRM)

that describes the time evolution of initial states with the S-matrix, which describes transition

amplitudes from in-states prepared in the infinite past, to out states in the infinite future.

iii) aspects of coherence of dressed states have been addressed recently in refs.[122, 205, 334],

the (DRM) yields the dressed state as a function of time, it is very different from that in

these references. While the entanglement entropy is infrared finite, it depends not only on

the anomalous dimension ∆ but also on the ultraviolet behavior of the theory with no a

priori direct relationship to observables.

Perhaps the results of our study could lead to further understanding of infrared effects in

gauge theories and gravity and may provide a useful framework to study similar phenomena

directly in time in cosmology.
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