The interface between transplantation and oncology has been an in-completely explored one with potential implications ranging from the simple and obvious to the most sophisticated and surprising.

IMMUNOSUPPRESSION

To succeed with transplantation, it is necessary to drastically alter the immune system of the recipient and to reduce thereby one of the natural defenses against malignant tumors. The principal advances in clinical immunosuppression are summarized in Table 1. With each of the relatively small number of regimens, the effectiveness and practicality of therapy have been improved. The introduction of cyclosporine and its combination with steroids about a decade ago were a major event that made practical on a large scale the transplantation of extrarenal organs.

Recently, we have developed and started clinical trials with an even more powerful and considerably less toxic agent called FK 506. FK 506, like cyclosporine, has a relatively specific effect on T-lymphocytes. Both cyclosporine and FK 506 inhibit the synthesis and expression of the cytokine, interleukin.

The combination of any of the immunosuppressive agents with continuously present antigens can induce "graft acceptance" for reasons not adequately explained. In rodents, this is very easy to accomplish with FK 506, the drug which seems destined to dominate all developments in transplantation in the immediate future.

IMMUNOSUPPRESSION AND THE TUMOR ENVIRONMENT

More than two decades ago, we speculated that the development of cancer, or acceleration of its growth might be consequences of immunosuppression. There were two principal lines of evidence for this hypothesis.

The Accidental Transplantation of Malignant Tumors

Because tumors follow the same rules of histocompatibility that determine rejection, malignant tissues which are transplanted from one
Transplantation of Cancer

and oncology has been an important field with implications ranging from the exciting and surprising.

It is necessary to drastically alter the rejection process to reduce thereby one of the principal problems with transplantation of extrarenal organs. The principal advances in the early 1970s included cyclosporine, which was introduced in clinical trials with an even more effective agent called FK 506. Both were developed as immunosuppressive agents with completely different mechanisms of action: cyclosporine inhibits lymphocyte activation and proliferation, whereas FK 506 affects signal transduction and inhibits the proliferation of T-lymphocytes. Both agents are used in combination with other drugs for transplantation of extrarenal organs, the most common combinations being cyclosporine and azathioprine.

Table 1. Immunosuppressive Drug Regimens Used Clinically for Whole Organ Transplantation

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year described and reported</th>
<th>Place</th>
<th>Deficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1962</td>
<td>Boston</td>
<td>Ineffective, dangerous</td>
</tr>
<tr>
<td>2</td>
<td>1963</td>
<td>Denver</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>3</td>
<td>1966</td>
<td>Denver</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>4</td>
<td>1970</td>
<td>Denver</td>
<td>No advantage except for azathioprine toxicity</td>
</tr>
<tr>
<td>5</td>
<td>1978-1979</td>
<td>Cambridge</td>
<td>Suboptimal</td>
</tr>
<tr>
<td>6</td>
<td>1980</td>
<td>Denver</td>
<td>Nephrotoxicity limits dose: rejection not always controlled</td>
</tr>
<tr>
<td>7</td>
<td>1981</td>
<td>Boston</td>
<td>High incidence of infection</td>
</tr>
<tr>
<td>8</td>
<td>1989</td>
<td>Pittsburgh</td>
<td>Being evaluated</td>
</tr>
</tbody>
</table>

* Lymphoid depletion with thoracic duct drainage, anti-lymphocyte globulin (ALG), OKT3, and/or azathioprine.

human to another normally are rejected. About 25 years ago, several patients were given grossly normal kidneys from donors who had died of carcinomas of the lung, hypopharynx, thyroid, breast, or liver (summarized in Ref. 14). Micrometastases were present in these seemingly normal cadaveric organs because the immunosuppressed recipients of the kidneys developed metastases from the donor tumors. In two of the patients, the tumors had become autonomous by the time the diagnosis was made. Although immunosuppression was stopped, these patients died of widespread metastases. However, in two other cases, carcinomas which had diffusely infiltrated the renal graft and surrounding area or even had spread to both lungs disappeared without a trace after azathioprine and prednisone were stopped; at the same time the kidney grafts were rejected.

Even in recent times, tumors have been accidentally transplanted. In April 1986, a liver, heart, and two kidneys were procured from a 36-year-old female donor who had died from a stroke. Later, stored donor sera showed that he had an astronomical level of chorionic gonadotrophin. Metastatic choriocarcinoma developed in the liver recipient and in both kidney recipients. The heart recipient was spared, at least for the first 6 months. Tumor was eradicated in one of the kidney recipients after graft nephrectomy and methotrexate therapy. The other two recipients died within a few months of widespread metastases.

An Increased Incidence of De Novo Tumors

A more subtle demonstration of the liability of depressed immunologic surveillance is the high incidence of de novo tumors in patients.
under chronic immunosuppression. Earlier observations by Dr. Robert
Good and his associates had already identified this risk in patients
with natural immune deficiency states. We reported the same ominous
development in our immunosuppressed kidney recipients at several
meetings in 1968 (summarized in Ref. 14). The unusually high incidence
was emphasized of the lymphoreticular tumors (then called recticulum
cell sarcomas or histiocytic lymphomas), which are now known to be
B-cell lymphomas. 21,22 There was an increase also of epithelial and other
malignancies. Dr. Israel Penn, who joined our faculty at the University
of Colorado in July, 1968, made these cases the nucleus of an inter­
national registry of \textit{de novo} malignancies in transplant recipients24 which
he still maintains. Two decades later, more than 5000 cases have been
contributed.25 The overall profile of the original cameo reports has not
been changed in principle by the accrual of these huge numbers.

\textbf{An infectious etiology.} Because of a high incidence in organ recipients
of the facial and uterine cervical cancers that are associated with in­
fec tions of the Herpes virus family, we suspected at the outset that \textit{de
novo} tumors under immunosuppression might have an infectious etiol­
ogy.24 The B-cell lymphomas which have been linked to Epstein-Barr
virus provide the best example. The characteristics of such tumors were
described by Klein and Portillo in patients with a familial immune de­
ficiency disease,26 and convincing evidence that they were caused by
primary infection or reinfection with Epstein-Barr virus under immu­
nosuppression has been provided from many transplant centers, begin­
n ing with the insightful reports of Simmons and his associates.27 A virus
etiology is suspected but not established for other \textit{de novo} tumors under
immunosuppression.

\textbf{Tumor regression with immune modulation.} A special and reasonably
predictable feature of the Epstein-Barr associated B-cell lymphomas is
their regression in the majority of cases when immunosuppression is
lightened or stopped.22 We recognized long ago the responsiveness of
histiocytic lymphomas to immune modulation,14,28,29 but uncertainty
about the nature and histopathologic classification of these lesions made
interpretation of the dramatic clinical events following discontinuance
of immunosuppression difficult. The instinctive conclusion of skeptics
was that the regression of a mass after stopping or reducing immuno­
suppression implied that the diagnosis of lymphoma must have been
incorrect in the first place. The term "pseudolymphoma" was applied.28
However, with modern methods of lymphoma classification,30 including
those made possible with gene probe techniques,31 the conclusion became
inescapable that the complete involution of true B-cell neoplasms,
including many with monoclonal constituency could be accomplished by
allowing the recipient's immune system to recover. This was the first
clear example in humans of immune surveillance. The prospects of re­
covery from these virus-associated malignancies can be improved further
by treatment with the anti-viral agent, acyclovir.32
We have also seen growth or recession of Kaposi's sarcomas, corresponding perfectly with the institution of discontinuance of cyclosporine-steroid therapy. It is almost certain that the complete disappearance of a malignant dysgerminoma in a kidney transplant recipient was because of restored immune surveillance after discontinuance of immunosuppression. Ironically, the case had been reported originally as a claim that chemotherapy and irradiation were effective in spite of immunosuppression.

AIDS plus immunosuppression. During the first half of the 1980s, when screening for HIV was not available, an accidental experiment was begun which continues to the present. Twenty-five patients were treated with liver, heart, or kidney transplantation without knowing that they already were HIV carriers, or would be infected perioperatively with transfusions or with the donor organs. Twelve of these patients are still alive 1½ to 7 years later, none with tumor. However, one liver recipient died of an intra-abdominal immunoblastic sarcoma 19 months postoperatively. Another (whose original disease was sclerosing cholangitis) developed a carcinoma of the rectum which was resected 2 years ago with no subsequent recurrence. These patients with their natural immune deficiency plus immunosuppression have had organ rejection as vigorous as normal patients. They have not had the overwhelming incidence of de novo tumors that might have been predicted.

SURVEILLANCE REVISITED VIA LIVER REGENERATION

The concept of immunotherapy is based upon two inherent premises in the surveillance hypothesis. The first is that the tumor cell is sufficiently different from normal cells, perhaps by virtue of tumor specific antigens, to be recognized as alien. The second premise is that a malignant tumor cell will be a more sensitive prey to immunologic attack than the healthy cell. The simplistic hypothesis of immune surveillance along with its therapeutic implications was the subject of a complete issue in 1971 (Vol. 7, p. 3-178) of a journal then called Transplantation Reviews and later renamed Immunological Reviews. In a subsequent issue only 5 years later (1976; 28:3-98) were described inconsistencies of the surveillance hypothesis, failure of the hypothesis to explain why tumors never developed in the T-cell deficient nude mice, and reasons why it should be abandoned. Discussion of the reverse stampede away from the surveillance hypothesis is beyond the scope of my assignment today. However, I have brought up the subject in order to ask if some recent work on liver regeneration might permit a new and different look at immune surveillance. Liver regeneration is an example of intense cell renewal rivaling or surpassing that seen in the most rapidly growing malignant tumors. Yet, the process is under perfect biologic control and entirely self-limiting. Why?
We have studied liver regeneration in rats submitted to 40 and 70 per cent partial hepatic resection, with or without immunosuppression with the two most potent immunosuppressive drugs available, namely cyclosporine\(^{10,41}\) and the even more powerful new agent named FK 506.\(^{41}\) Both drugs augment regeneration.\(^{10,41}\) The mechanism of this effect is obscure. Although the two drugs have completely different molecular structure, they have in common the specific depression of the T-cell response.\(^{9,10}\) We have asked if a natural function of the immune system, and particularly its T-cell component might be to "brake" (modulate) hepatocyte replication, but only when this replication is occurring at an increased rate. Thus, cyclosporine and FK 506 markedly augment mitoses if it is already higher than normal in regenerating livers, in livers damaged by Ecks fistulas and in livers stimulated with thyroxin.\(^{42,43}\) This is a phenomenon of the intact animal. Neither drug has any effect on resting or stimulated (with epidermal growth factor) hepatocytes in culture. The mitotic rate is not increased, meaning that the stimulation of cell renewal is not a direct effect on the liver cells.\(^{42}\)

In any discussion of regeneration, a central question is why the regenerating liver knows how to stop its regrowth at the proper size and time. Endogenously produced chemical inhibitory factors or hormones often are candidate control substances.\(^{44,45}\) Perhaps, insufficient attention has been paid to immune modulation as the explanation. Research on immunosuppression for transplantation, combined with investigations of hepatic regeneration, could lead to a better understanding of the relation between growth control and immune function. There could be major implications in oncology and revision of the meaning of surveillance.

TRANSPLANTATION TO INCREASE SURGICAL MARGINS

Total Hepatectomy and Liver Transplantation

In the early trials of orthotopic liver transplantation, the ideal indication for liver replacement was thought to be a malignant tumor which could be removed completely by total hepatectomy, but not by conventional subtotal hepatic resection. Unfortunately, the majority of recipients who survived liver transplantation died later of metastatic disease.\(^{13,46,47}\) Nevertheless, some patients did live for a long time, and, in fact, practically all of those recipients who had small incidental malignancies in livers removed for other reasons (e.g., biliary atresia) were rendered tumor free.\(^{46}\) The longest survivor after liver transplantation in the world (now 20 years) had a 2-cm hepatoma in her cirrhotic liver, and 4 mg\% of \(a\)-fetoprotein in her preoperative serum. Thus, the size and stage of development of the malignancy was important in the tumor prognosis.

The high incidence of tumor recurrence after liver transplantation has prompted speculation,\(^{13,14}\) that immunosuppression itself might fa-
40 and 70 suppression, namely FK 506. The effect is molecular the T-cell system, (modulate) occurring at any augment; livers, in propranolol. Any effect autocytes in stimulation is why the proper size or horizon insufficient plantation. Read with understanding. There meaning of

VORINS

The ideal in-siant tumor but not by majority of metastatic; time, and, dental maresia were implantation haptic liver. Thus, the size in the tumor transplantation of might fa-vor the growth of micrometastases which are outside of the liver or expelled from it during the transplantation. This might be a special problem with bulky tumors. In addition to size, the histopathology of the tumor also influenced prognosis. Patients with the so-called fibrolamellar variant of hepatocellular carcinoma have done well after liver transplantation, even when the lesions were enormous. In contrast, patients with large conventional hepatocellular carcinomas almost always have developed recurrence. In spite of initially optimistic expectations, very small duct cell carcinomas in the hilum of the liver (Klatskin tumors) have had a dismal prognosis (reviewed in Ref. 47). In between these extremes are other tumor types such as hemangioendothelial sarcomas. Even patients with massive liver metastases have had an overall 2 year survival of 50 per cent, the best results being with neuroendocrine tumors (in particular, carcinoids) and sarcomas.

Thus, the concept of using liver transplantation to extend resectability limits has not been completely abandoned. In the major liver transplantation centers around the world, the incidence of recipients with hepatic tumors ranges from 4 to 40 per cent, the low figure being ours. Tumor recurrence in all reported series is responsible for a steady decline in survival beginning at 4 to 6 months. Adjuvant chemotherapy, usually including adriamycin, is being used increasingly in addition to liver replacement, but there is no proof as yet that the outcome will be favorably influenced thereby.

UPPER ABDOMINAL EXENTERATION

It is possible that even the total hepatectomy made possible by transplantation is a fundamentally inadequate resection. Beyond the context of transplantation, an understanding of the embryonal origin of the liver, pancreas, and duodenum can help in understanding why tumor operations on these organs are so ineffectual. In the development of the fetus, the liver and pancreas begin as ventral and dorsal diverticula from that portion of the foregut that later becomes the duodenum (Fig. 1A). The anatomic relationships of these organs becomes more complex during their differentiation and rotation, but their intimacy including the sharing of the terminal hepatic and pancreatic duct drainage into the duodenum is not lost (Fig. 1B). Thus, it is not surprising that malignant tumors developing at or near the original duodenal outpouchings are notoriously refractory to treatment by resection even if these are localized to a portion of a single organ. Tumors that originate in one of the three organs (liver, pancreas, or duodenum) and metastasize to the others or to the transverse mesocolon or colon have been considered to be categorically non-resectable.

During the last 1½ years, we have examined the premise that radical excision of most of the foregut could allow complete removal of certain hepatic duct cell, duodenal, gastric, and pancreatic malignancies that
had already spread to the liver as well as extirpation of primary liver tumors whose spread was downward. Thirty-three patients with these seemingly untreatable malignancies underwent removal of the liver, stomach, spleen, duodenum, proximal jejunum, terminal ileum, and ascending and transverse colon (Fig. 1B).

Replacement with organ clusters. In the first 15 patients, the void in the upper abdomen was filled with cadaveric organ cluster grafts that included the liver, pancreas, duodenum, and variable amounts of proximal jejunum (Fig. 2). The primary tumors were duct cell carcinomas \(n = 7 \), carcinoids \(n = 3 \), cholangiocarcinomas \(n = 2 \), sarcomas \(n = 2 \), and one hepatoma. Their locations are summarized in Table 2. The lesions usually involved multiple organs (Table 2) and were untreatable by any conventional criteria. The operations were performed between July 1988 and March 1989, and for the survivors there are potential follow-ups of 7½ months to almost 1½ years (Table 3). Four of the 15 recipients died within the first 4 months, all of technical or mechanical complications. Of the 11 who survived for definitive observation, 2 developed recurrences which caused death, and a third one who is clinically well has had stable nodules in the lungs for a number of months. Four patients with sarcomas and carcinoid tumors have had no recurrences (Table 3). Other survivors had duct cell cancers \(n = 3 \), a cholangiocarcinoma \(n = 1 \), and a hepatoma \(n = 1 \). Duct cell cancers have given the worst results (Table 4) with the prognosis directly linked to the presence of
absence of lymph node metastases. The experience so far supports further cautious trials with this drastic cancer operation.

With transplantation of the liver alone. It is not clear whether the complete cluster replacement graft is necessary. We have performed the upper abdominal exenteration with transplantation of the liver only.53 The penalty for the limited organ replacement is diabetes mellitus and exocrine pancreatic insufficiency. Eighteen such operations have been carried out, but with follow-ups that are too short to permit definitive
conclusions. Although the simpler procedure imposes diabetes mellitus and exocrine pancreatic insufficiency, it eliminates the technical complications associated with whole pancreas grafts. One potential strategy for the future is to perform this modified operation, but to then carry out free transplantation into the portal vein of the islets prepared from the pancreas of the liver donor. Islet cell transplantation has never been successfully done in humans, but the remarkable potency of FK 506 mentioned earlier is an incentive for such a trial which is planned for later this year.

SUMMARY

Patients under immunosuppression variably have lost their immune tumor surveillance. This has been demonstrated by accidentally transplanting malignant tumors to these patients, and by an increased risk of de novo tumors of which some have a viral etiology (Epstein-Barr virus) and well-mapped oncogenes. When immunosuppression is lightened or stopped in patients with B-cell lymphomas, with Kaposi's sarcomas and possibly other tumor types, the neoplasms may go away. The immune system may be involved as well in growth control of normal cells. FK 506 and cyclosporine, two drugs which are T-cell specific immunosuppressants, greatly augment the liver regeneration that follows
partial hepatectomy and they modulate liver growth in other situations including E ck fistula.

In spite of the handicaps of immunosuppression, liver transplantation has been used to treat patients with primary liver tumors and even metastatic hepatic malignancies. A newer procedure of upper abdominal exenteration has been used recently to remove upper abdominal malignancies which were previously beyond surgical therapy because of their involvement of multiple organs including the liver, pancreas, duodenum, or other structures. Although recurrences have been common, many patients have been rendered tumor free by these seemingly radical operations which are apt to play a slowly increasing role in the therapeutic armamentarium of the future.

ACKNOWLEDGMENT

This research was supported by research grants from the Veterans Administration and Project Grant DK-29961 from the National Institutes of Health, Bethesda, Maryland.

REFERENCES

200 Accomplishments in Cancer Research 1989

41. Francavilla A, Barone M, Todo S et al: Augmentation of rat liver regeneration with...

Discussion

Margaret L. Kripke: Dr. Starzl, in the regeneration of normal liver, as far as I am aware, there is no known difference in the regeneration of normal liver in, say, nude mice than in normal mice. So, if this were really a T-cell immunological phenomena, you would expect to see differences in regeneration of those cases. Would you comment?

Thomas E. Starzl: This is an important point. There are reports of normal hepatic regeneration in nude mice. You can rest assured that we have our own colony of nude mice and are doing our own experiments to confirm or deny these reports. There are other studies that can and are being done, including regeneration studies with monoclonal anti-CD, antibody treatment. Also, in a larger animal model, the dog, we have a proficient way of depleting T-cells with thoracic duct fistula, after which we can study regeneration with a split liver model that has been used to assess other growth control factors such as insulin and a hepatic stimulatory substance that can be found in regenerating livers.

David Skinner: On that same line, your data show that the brake on regeneration is the total mass. It stops as the mass gets larger.

Starzl: It stops, but those experiments were done for somewhat different reasons. The treatment schedule was to pretreat for 3 days and to give the final dose of immunosuppression on the day of liver resection. Thus, active drug therapy had been stopped at the time regeneration was occurring and receded. When we first discovered this augmentation of regeneration with cyclosporine in 1985 and 1986, the experiments were done with the hypothesis that regeneration would be reduced. We were concerned about whether transplanted livers under immunosuppression would be able to accommodate themselves to the appropriate size, and also we feared that if we had to give Adriamycin to liver recipients being treated for cancer, there would be a double indemnity if both agents (cyclosporine and adriamycin) retarded regeneration (as adriamycin was known to do). What will happen to regeneration with continuous therapy or whether the liver mass will be changed with chronic therapy will have to be learned with further experimentation. We are looking into the matter with the canine split liver model which I mentioned a moment ago. After Eck fistula (portacaval shunt), the liver quickly atrophies and has disruption of its hepatocyte ultrastructure. Both cyclosporine and FK 506 prevent this and stimulate reparative changes, not limited to increased replication. They also preserve the integrity of the organelles in the same way as insulin does. Since both cyclosporine and FK 506 are given orally and reach the liver in high first-pass concentration, we believe that these agents might be capable of promoting healing in the event of liver injury, and with a variety of acute or chronic liver diseases. There could be many therapeutic implications having nothing to do with oncology.

Sir James Gowans: In the animals given cyclosporin, where you observed the recent regeneration of the liver, did you look up the cell turnover and other tissues like the gut and the skin, bone marrow, for example, to see how those adjust?
In addition, you hinted you might get an added bonus under cyclosporine and the healing itself might be elsewhere.

Starzl: Well, we do not have the complete answer to that, Jim, but we have done experiments with 50 per cent small bowel resection, and unilateral nephrectomy. The regeneration of the residual bowel and contralateral kidney (respectively) was not increased more than in the controls. So for the moment, we are stuck with the idea that this effect is liver specific.

John D. Minna: That is not hypertrophy. That is not cell division?

Starzl: These were DNA synthesis end points.

Minna: On the marrow?

Starzl: We did nothing other than those two organs (bowel and kidney).

Minna: How about healing?

Starzl: Well, we do not have any precise measurements, but wound healing under cyclosporine and FK 506 is grossly normal.

Minna: It is not always perfect.

Joseph Fortner: What is the effect on regeneration of the cirrhotic liver?

Starzl: We do not have an answer for that question, but what we do have, Joe, is the observation that we just published in Lancet about the effect of FK 506 on chronically rejecting livers. These livers look cirrhotic in that there is lobular collapse and fibrosis. The pathology is so advanced that we never have been able to alter the course. What has happened with FK 506 therapy is that the autoimmunity (here being rejection) has been stopped, followed by healing and repair beyond what you would expect just by discontinuing the insult. That is one of the reasons why we are so fascinated by the so-called hepatotrophic effect that can be so precisely studied in the dog and rat. These drugs might, as you are implying, find application in the treatment of chronic liver diseases, not even necessarily with an autoimmune etiology. If they had a reparative effect on the cirrhotic liver, for example caused by alcoholism, it could become a therapeutic issue. That is, in essence, where we are aiming.