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Abstract 
Title Page 

Predicting Properties of a Material Utilizing a Highly Nonlinear Solitary Wave (HNSW) 

Transducer 

 

Madison Hodgson, MS 

 

University of Pittsburgh, 2023 

 

 

The use of highly nonlinear solitary waves (HNSWs) to nondestructively evaluate 

materials has recently emerged as a promising method with several key advantages over 

conventional stress wave-based inspection technologies. The technique is based on the actuation 

and detection of solitary waves which propagate along an array of spheres (arranged much like a 

Newton’s cradle) and bounce off the specimen to be inspected. HNSW measurement devices 

require an array of spheres, an electromagnet, and a sensor. This assembly can be called a HNSW 

transducer. For this thesis, a portable, low-power, wireless transducer was designed, assembled, 

and tested. The novel transducer design of this work allows HNSW measurements to be taken 

without wired connections or bulky electronic test equipment and in settings not previously 

possible. The reliability of the device’s measurements was determined by carrying out comparative 

tests whereby a conventional HNSW transducer and the novel design of this work were used to 

evaluate a variety of hard and soft materials. The first set of experiments characterized 45 

measurements of both steel and low-density Sawbones. The results of the experiments show that 

the instrument can accurately operate without the support of electronic equipment and with enough 

accuracy to be useful in real-world settings. In addition to the hard materials, HNSWs were 

collected from PDMS, and goat corneas to mimic evaluation of the human eye. The PDMS and 

cornea samples pressurized from 10mmHg to 30mmHg at 5mmHg increments, simulating 

intraocular pressure (IOP) variations that occur normally in the eye. The data was analyzed using 

a variety of machine learning algorithms and features to automatically extract IOP values from 
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HSNW signals captured by the device were determined. The results show that the device can 

successfully distinguish clinically relevant IOP levels in eyes.   
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1.0 Introduction 

Non-destructive evaluation (NDE) is the testing of a structure's properties to detect damage 

or to characterize mechanical or geometric properties. One of the most novel NDE techniques is 

based around the usage of highly nonlinear solitary waves (HNSWs) which are mechanical stress 

waves that can travel through a one-dimensional array of spheres in hertzian contact (Figure 1). 

 

Figure 1 Particles of a one-dimensional array stacked in jerzian contact.  

 An unexplored application for HNSWs is their use in biomedical applications. If these 

waves can sense differences in biological materials, it could be applied in ophthalmology to 

determine damage in an eye to help diagnose and manage diseases such as glaucoma. One major 

challenge in this application is that previous HNSW transducers are too large to be used with a 

soft material for the eye. Figure 2 demonstrates the difference between previously used particles 

and the current design [1]. 
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Figure 2 Previously utilized HNSW transdcuer with 19.05mm Ø particles compared to current transducer 

with 2.38mm Ø particles.  

 The properties of HNSWs are unique in that the more force contained in the HNSW, the 

faster the wave moves. This is helpful for specifically identifying the properties of a material where 

the stiffer the material results in a faster traveling wave. The transducer’s one-dimensional array 

of particles is stacked vertically over the material under inspection where the last particle is in 

contact with said material. All particles are nonferromagnetic except for two exceptions: the 

particle that starts the HNSW, the “striker”, and the particles involved in measuring the HNSW. 

The initiation of the HNSW is controlled by the release of the striker particle. After it is picked up 

with a solenoid, the user controls when the particle is released. Once it contacts the proceeding 

particle in the chain, the HNSW is formed.  
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It is possible to track the wave as it travels through the array with a magnetic sensor. The 

sensor is composed of a coil and permanent magnet positioned around the second grouping of 

ferromagnetic particles. As the HNSW passes through these particles, it causes a change in the 

magnetic field which induces a current in the coil and therefore an induced voltage. This voltage 

is measured, recorded, and stored via a wireless transducer. The exact mechanics of the HNSW 

and design of the transducer are discussed in more detail later in this paper.  

One important aspect of the proposed wireless transducer is that it needs to produce the 

same results as the previously used wired systems to measure HNSWs, such as an oscilloscope. 

To test the functionality of the transducer, the HNSW produced by wireless and wired 

measurements will be compared side-by-side. One feature explored in depth is the time of flight 

(ToF) defined as the time between when the wave passes through the magnetic sensor after its 

initiation to when the wave passes back through the sensor after reflecting off the material under 

inspection. Using steel and low-density Sawbones, referred to as Sawbones for the rest of the 

paper, the average and standard deviation of the signals produced by the transducer and 

oscilloscope can be compared with a t-test.  

Once it is verified that the transducer can produce comparable results, the next step is 

utilizing the ToF and other features to gauge if a miniaturized transducer is sensitive enough to 

detect changes in the HNSW. Comparing the ToFs in steel, Sawbones, PDMS provide a large 

enough range to test if the transducer works in previously characterized materials as well as 

biologically similar materials.  

The transducer can be used to identify the material under inspection and different properties 

in the same material. One example is the classification of pressurized polydimethylsiloxane 

(PDMS) membranes. Further evaluating HNSWs, a medium tree, linear SVM, subspace 
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discriminant, a narrow neural network, and convolutional neural network (CNN) machine learning 

algorithms can determine if the features manually extracted, the raw signal, or a spectrogram of 

the HNSW is the most accurate in classifying the material or pressure. The two classification tests 

are as follows: (1) steel, Sawbones, PDMS at 20mmHg, (2) PDMS at 10mmHg, 15mmHg, 

20mmHg, 25mmHg, 30mmHg. Lastly, HNSWs sampled from a goat cornea at the same pressures 

as PDMS will be evaluated by the best performing algorithms.  

1.1 Statement of Work 

The scientific discoveries that will be explored in this paper are as follows: 

1. Can a wireless transducer function the same as a fully connected way of sampling? 

2. Are there noticeable feature differences when looking at one material to the next?  

3. What is the best way of representing a HNSW signal that will lead to accurate assessments 

of the material?  

4. In conjunction with 3, what machine learning algorithm is best suited for the classification 

of materials?  

 

1.2  Research Contributions 

In this research, a wireless transducer with full capabilities at collecting HNSWs will allow 

for remote material testing throughout all disciplines. The transducer has increased sensitivity 
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allowing for accurate inspection of a HNSW due to its decrease in size making it the smallest 

HNSW transducer created. From the collected HNSWs, there are several features identified which 

are considered “new” in the NDE field for HNSWs. One of these features is the duration of 

oscillation of a solitary wave. The culmination of all identified differences between HNSWs does 

identify that there is change between the resulting wave and material. Completely new to HNSWs, 

utilizing a spectrogram for the representation of HNSWs combines the frequency and time domain 

and proves the most useful in all material identification and looking at differences between the 

same material. It is used to sense internal pressure changes in an inflated goat cornea, but this 

method for classifying HNSWs would also be beneficial in damage detection where the damaged 

and new materials would have different resulting spectrograms. In evaluating new methods for 

representing HNSWs, this research identifies the current best machine learning classification 

algorithm for HNSWs produced by soft materials: a convolutional neural network (CNN).  
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2.0 Background and Motivation 

2.1  Intraocular Pressure 

The ability to identify and track trends in a patient’s IOP is beneficial in gauging overall 

eye health. The most common issue when monitoring eye health is that a measurement taken once 

a day struggles to track the fluctuations in IOP that naturally happen in accordance with the 

circadian rhythm [2]. Additionally, one patient’s eyes can have an extensive range of mechanical 

properties that differ from other patients making it difficult to predict the exact IOP. Consequently, 

it is more beneficial to track how IOP changes throughout the day rather than identifying its exact 

properties. Aloy et al. demonstrated the predictive capabilities of vibrations, and how they can help 

predict the mechanical properties of an eye [3].  

By performing constant testing of IOP, it can be beneficial for the identification and 

monitoring of progression in diseases like glaucoma, uveitis, and retinal detachment [4]. To help 

the projected 4 million people suffering from glaucoma in 2030 in the United States, our focus of 

this research is on glaucoma patients and their diagnoses [5]. Glaucoma is an eye disease caused 

by a high IOP which applies pressure on the optic nerve in the back of the eye. With prolonged 

high pressure, the patient will start to notice vision loss and eventually go blind if the IOP is not 

brought under control.  

  

A normal IOP reading can be anywhere between 11mmHg to 21mmHg where everyone 

has a different baseline. The point at which damage occurs in one eye will not necessarily cause 
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damage to a different eye, so it is important to note that IOPs higher than 17mmHg are generally 

when ophthalmologists will start to be concerned. With no cure for glaucoma, the best solution is 

identifying a lower target IOP for management of the disease. There is no steadfast IOP that is 

“written in stone” for different progressions of the disease as thoroughly discussed in Sihota et al. 

[6]. Therefore, it is important to have patients checked often to stop further vision loss. One way 

to do this is to employ SHM found in NDE applications to track the IOP without causing additional 

structural damage to the eye.   

 

2.2 Highly Nonlinear Solitary Waves 

Non-destructive evaluation (NDE) or non-destructive testing (NDT) is periodically testing 

and analyzing a structure to identify the properties of the material under inspection or to detect 

damage. Specifically HNSWs have been utilized extensively in civil engineering and aerospace 

applications including but not limited to axial stress measurement [7], subsurface void 

detection[8], concrete hydration monitoring [9], adhesive joints assessment [10], internal pressure 

measurement [11, 12], delamination detection in laminated composites [13, 14, 15, 16], and 

characterization of rock materials [17,18]. However, in recent years, HNSWs are now being 

applied in biomedical applications such as bone assessment [19,20,21] and experimental and 

numerical analysis on polyurethane foam [22].   
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Several forms of NDE exist, the most popular being ultrasonic, radiographic, visual, eddy-

current, and magnetic-particle testing. A newer method, highly nonlinear solitary waves (NHSWs), 

gained popularity over the last decade and were proposed as a new SHM technique [23 – 30]. 

Highly nonlinear solitary waves (HNSWs) are compact stress waves that can propagate under 

special materials arrangements such as a one-dimensional array made of spheres [31-35]. HNSWs 

are different than waves typically encountered in ultrasound. Those waves are linear and are 

characterized by having a return force linearly dependent on the displacement. HNSWs are instead 

characterized by the fact that the return force F is nonlinearly proportional to the displacement 

from equilibrium according to Hertz’s law [33-36] F=kδ 3/2. Here δ is the indentation between 

two adjacent identical interacting beads, k is the stiffness equal to (E /2R) [3(1−ν 2)] where R, ν 

and E are the particles’ radius, Poisson ratio, and modulus, respectively. Another distinctive feature 

is that wave amplitude and speed are proportional, i.e., a stronger pulse propagates faster than a 

weak pulse. An advantage of HNSWs with respect to conventional waves is tunability: a solitary 

pulse can be tuned by changing the properties and/or the geometry of the grains to attain the desired 

wavelength, amplitude, and speed. For example, the speed and amplitude of the traveling pulse 

can be increased by reducing the diameter of the beads.  

  

The technique relies on the dynamic interaction between the HNSWs propagating along 

the chain and the material to be inspected/monitored, which is in dry point-contact with the last 

particle of the chain. The key advantage is the simplicity of the overall setup. A solitary wave, 

hereinafter referred to as the incident solitary wave (ISW), mechanically triggered at one end of 

the chain propagates through the chain and reaches the opposite end of the array. Here, the ISW 

reflects giving rise to one or two solitary waves, the primary and the secondary reflected waves 
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(PSW and SSW). Several studies proved that the amplitude and time of flight (ToF) of these 

reflected pulses depend also on the mechanical and geometric characteristics of the element to be 

evaluated. Other advantages of the HNSW-based technique with respect to existing NDE methods 

are related to the specific applications. For example, HNSWs were applied in cementitious 

materials [37] and compared against the ultrasonic pulse velocity method (UPV). With respect to 

the latter, it was demonstrated that HNSW-based approach is cost effective, exploits more 

parameters (ToF, speed, and amplitude of the reflected pulses) instead of the ultrasonic speed 

alone, and does not require access to any back-wall. Monitoring these waves with a transducer can 

help sense minute differences in IOP within an eye and can be tested on PDMS, a known material 

that can replace the vitreous humor in an eye.   

2.3 Features of a HNSW 

In addition to ToF, which was mentioned in the previous section, there are other features 

found in a HNSW that can be indicative to what material is under inspection. The primary features 

include the ToF, ratio between peaks, solitary wave oscillation, and frequency content of a solitary 

wave. A full list of features with the full name, abbreviation, and description is found in the 

appendix. Figure 3 contains depictions of the features found in a HNSW which will be discussed 

further in this section.  
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Figure 3 Features, ToF, Oscillation duration, and the ratio of the peak-to-peak are important identifying 

factors of a HNSW. This wave is taken from PDMS at 10mmHg.  

 

The ToF not only refers to the distance between the start of an ISW and the start of a PSW, 

but also the time distance between the PSW and SSW (given that the SSW exists). In specific, the 

start of a solitary wave is identified by a rate of change of ~.26 V/µS after amplification and 

filtering. This rate was identified through numerous HNSW samples and was found to accurately 

capture the start of a solitary wave while ignoring noise.  

One of the other features previously utilized for material detection is the ratio of the peak-

to-peak amplitude of the PSW to the ISW [38]. In addition, the ratio of the SSW to ISW is also 

used. It is thought that the higher the ratio, the stiffer a material is. When the HNSW reaches the 

end of the array of particles, stiffer materials absorb less of the energy from the wave and transfer 

more of the ISW back up to the chain forming the PSW.  
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Solitary wave oscillation is a new feature observed in HNSWs measured by the duration 

of oscillation in a SW. There are two reasons why a material would produce a higher oscillation. 

One is caused by the produced vibrations of the particle after the HNSW reflects off the material 

under inspection: most common in softer materials. The second reason is due to the combined 

arrival of the PSW and SSW. The shorter the ToF between the two peaks correlates to an increased 

stiffness in the material.  

Lastly, the frequency content of the ISW, PSW and SSW, offer insight into those 

vibrations. The peak frequency in Hertz and the magnitude of that frequency response are 

additional features that may help classify the material under inspection.  

2.4 IOP Measuring Techniques 

There are many techniques to measure the IOP. The most reliable measurements for IOP 

are Goldmann applanation tonometry (GAT) seen in Figure 4 [39]. Invented in 1948, this 

tonometer uses a cone to push on the center of an anaesthetized cornea. By applying force, the 

cone flattens the top of the cornea and using Fick’s law P = F/S, where P is pressure, S is surface 

area, and F is the force, the IOP of an eye can be determined. One of the main drawbacks in this 

tonometer technique is the invasiveness for the patient who needs to go under localized anesthesia 

to perform the test. Additionally, the IOP measurement is dependent on other properties of the 

cornea such as thickness and curvature [40, 41].   
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Figure 4 Goldmann applanation tonometer used to measure the internal eye pressure. The component 

highlighted in the red circle is the tip that would come in contact with the cornea.  

Given the nature of GAT, a non-contact tonometer was created and named air-puff 

tonometry. This tonometer uses a puff of air to flatten the cornea and requires no topical anesthetic 

applied to the patient. However, in a comparative study between GAT and air-puff tonometry, it 

was found the air-puff tonometer had a much higher standard deviation in its predicted IOP than 

the applanation tonometer [42].   

  

A hand-held device to measure IOP, the Tono-pen, requires the administrator to touch the 

end of the pen to the patient’s eye. In a study comparing the Tono-pen to the applanation 

tonometer, the Tono-pen performed similarly to an applanation tonometer but was not able to 

reproduce results in multiple trials [43]. It was also found that the Tono-pen breaks down in higher 
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pressures where 100% of scleral measurements at these higher pressures had a high standard 

deviation [44].  

  

A way to create a better tonometer than the GAT and the Tono-pen would be to perform 

IOP measurements over the eyelid. This eliminates the need for general anesthesia in GAT and 

avoids sterilization issues found in corneal contact with the Tono-pen. While air-puff tonometry 

does not have direct contact with the cornea, it is known to be inaccurate in IOP measurements 

with the results often giving a range of possible IOP values rather than a single predicted IOP. An 

ideal device would have the accuracy of the GAT, the non-corneal contact in the air-puff 

tonometer, and hand held abilities of the Tono-pen 
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3.0 Device to Measure HNSW 

3.1 Transducer Design 

A close-up view of our new transducer is presented in Figure 5B. The array is formed by 

24 particles, and it is surmounted by a commercial solenoid. The gap between the solenoid and the 

topmost ball, hereinafter referred to as the striker, is 4 mm. ISWs are generated mechanically by 

lifting and releasing the striker. The waves are measured with a 10 mm wide coil made of 36 AWG 

electromagnetic wire using the inverse magnetostrictive effect, which states that a pulse 

propagating through a ferromagnetic material modulates a strain in the material which in turn 

modulates an existing magnetic field, which creates current in the coil. The resistance of the coil 

is 85.4 Ω. The array is housed in a 3D printed frame made of a clear resin [45]. The striker and the 

four particles wrapped by the coil are made of ferromagnetic materials whereas the remaining 

particles are made of stainless steel. An example of the time-waveform is presented in Figure 5B. 
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Figure 5 HNSW taken from PDMS inflated to 10mmHg (A) and the HNSW transducer with all labled 

components (B).  

 The difference in time between the arrival of the ISW and the PSW represents the ToF. 

The time waveforms show both positive and negative voltage. When the solitary wave travels 

through the constant magnetic field induced by the permanent magnet, it increases the compression 

between two adjacent particles, and it creates a positive gradient of the magnetic flux, which in 

turn induces the positive voltage. When the pulse moves away, the dynamic compression 

disappears, a negative gradient of the magnetic flux is induced, and the output voltage has a 

negative gradient. The integral of the waveforms is proportional to the dynamic contact force 

between particles [37].  
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3.2 Circuit Design 

3.2.1 Electronic Design 

A custom printed circuit board (PCB) was designed and assembled to replace the 

conventional data acquisition system used in typical wired configurations. Figure 6 shows the 

block diagram of the circuit and how all the components interact with each other. The size of the 

PCB is nearly half the first PCB [16] developed by our group. To accomplish high speed data 

acquisition, the PCB includes a solenoid driver and flyback diode, input operational amplifiers and 

a low pass filter, an analog to digital converter (ADC), a microcontroller (MCU) and a Bluetooth 

module.   

 

Figure 6 Block diagam of circuit used to control start of the HNSW and store the results.  

 The MCU is mounted on a Teensy 4.0 breakout board and is the brains of the transducer. 

This chip has an ARM Cortex-M7 that operates at 600MHz. In addition, the MCU has 512K of 

usable RAM which is utilized as temporary storage for the incoming HNSW before it is transferred 

to the output.   

The device supports two modes for data transfer. The first is utilizing a 16 MHz UART 

connection to the Bluetooth module which subsequently streams data to a mobile application. The 
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second is a serial connection to a laptop that saves data at 480MHz. The serial connection also 

allows for off-board programming and custom clock frequencies in addition to faster data 

acquisition.  

  The microcontroller breakout board is powered by a 3.7V 2000mAh LiPo battery 

connected when operated wirelessly.   

To collect a single HNSW waveform, the MCU must initiate current flow through the 

solenoid which in turn creates a magnetic field. This field, when strong enough, can lift and drop 

the striker particle. This action is the catalyst for the HNSW. Next, the MCU collects the incoming 

signal from the ADC after it passes through two operational amplifiers and a low pass filter. The 

first amplifier is a differential amplifier whose main purpose is to keep the sensitive coil input 

isolated and change the output current into a readable voltage. The second amplifier’s purpose is 

for filtering and amplification of the signal. The sampling frequency of the signal is 875 kHz, a 

frequency capable of capturing signals of 4ms or less with sufficient detail. Finally, the MCU saves 

the received signal within its own RAM before sending it over UART to the Bluetooth chip where 

the signal can be collected by an app. A photo of the final assembly is presented in Figure 7. 
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Figure 7 PCB circuit controlling the transducer and HNSW. The solenoid actuation unit is yellow, signal amplification 

unit is pink, data conversion unit is white, and wireless communication is blue. 

3.2.2 Solenoid Actuation and Power Considerations 

The power supply requirements are constrained by the amount of current needed to lift and 

release the striker, and this is proportional to the surface area, the weight of the particle, and the 

lift-off distance. With the striker particle having a 2.38 mm diameter, it is lighter for the solenoid; 

however, the decreased surface area works against the electromagnet and makes it more difficult 

to lift. In this application, the surface area of the particle is the determining step for the power 

required to lift the striker. After a few trial-and-errors tests, it was determined that a solenoid with 

~25 N of suction is sufficient to lift the striker.   

Leveraging previous studies [47], the striker is held for 125 mS before being released. The 

power consumption of the solenoid was evaluated in [48]. During lift and release of the striker, 

90mA of current at 10V is consumed by the solenoid. The current is supplied by two 23A 12V 
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batteries in parallel with each other. They are connected to the PCB by battery holders which 

allows for the 12V batteries to be replaced as need be much like a household portable device would 

need to replace its batteries. 12V is chosen due to typical battery degradation during use. In early 

battery use, there is a 10-15% voltage drop followed by little voltage change until the end of the 

battery’s life. Assuming the higher end of 15%, it assures that there will be at minimum 10.2V 

available to the solenoid during most the battery’s life. In addition, it was found that the total 

current utilized for one strike is .01125As. Each 12V battery provides 60mAHr which would allow 

for at a maximum 38,400 strikes (120mAhr * 3600s/hr * 1 impact/.01125A).  This is the assumed 

number of signals that can be collected during the batteries' lifetime which minimizes the cost 

associated with switching out the batteries.   

Using a solenoid driver, it is possible to change the pulse-width modulated (PWM) output 

to the solenoid via its frequency and duty cycle. A single pulse is sent from the MCU to the driver 

to produce the output which lasts the pulse's duration.  By selecting resistors of 200KΩ and 

120KΩ, the PWM has a frequency of 25KHz and duty cycle around 35%. Normally when the 

driver is in standby mode, meaning no pulse was sent from the microcontroller, the output load is 

connected to the battery on one side and floating on the other. This prevents any current from 

entering the solenoid and flyback diode that compose the load. The flyback diode is 1N4001 which 

can handle up to 50V and 1A. When the pulse is sent, the floating end connects to ground and the 

current flows through the solenoid portion of the load which causes it to turn on and lifts the striker. 

The pulse returning to zero induces standby mode and the excess current spike caused by the 

solenoid turning off loops through the diode and solenoid until it dissipates through heat to the 

environment. By utilizing the driver, it saves space on the PCB in addition to allowing additional 

tuning parameters that can be modified in the future to allow for a more power-friendly board.   
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3.2.3 Signal Amplification and Filtering 

To visualize the signal, two operational amplifiers (op amps) work in conjunction. One is 

an isolated differential op amp that works by comparing the voltage difference at both input 

terminals and creating an amplified version of that difference and its inversion. The input voltage 

needs to be between ±250 mV. The isolated op amp is powered by 3.3V from the MCU which 

centers both outputs at 1.29V. Using an isolated op amp is a deliberate choice that stems from the 

amplitude of the original HNSW before it enters the circuit. The peak-to-peak of the ISW is only 

a maximum of 120 mV. The isolated op amp has the benefit of a built-in gain of 8.    

The two output signals from the isolated op amp need to be summed. This is accomplished 

with the second op amp with full rail-to-rail output capability. By utilizing a differential topology 

and choosing resistors of 1 KΩ and 510 kΩ, it is possible to achieve an additional gain of ~1.96. 

Next, to prevent the summed signals from having negative voltages, a DC offset is employed to 

center the signal around 1.8V. This offset is formed from voltage regulator which regulates 3.3V 

from the MCU to 1.8V. The final signal is then between .8V and 2.8V which safety leaves enough 

of a buffer on both ends.   

The frequency of the Incident, Primary, and Secondary waves is present before 80KHz 

with peaks at or less than 40KHz seen in Figure 8. This trend in frequency content is the same 

throughout all material analyzed with this transducer. To help filter out excess noise, an 80 kHz 

low pass filter is the final bridge before the signal can be sent to the ADC.   
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Figure 8 HNSW taken from PDMS and its cooresponding FFT. The peak frequency is seen around 40KHz.  

  

 

3.2.4 Data Conversion 

Passing through the final preprocessing stage, the signal now enters the ADC to be 

converted into a 16-bit number with a resolution of 65,536. The ADC has a compatible 16-bit 

resolution and 1Msps sampling rate. The internal components that create the digital output are 

powered by 3.3V provided by the MCU whereas the analog circuitry is powered by 1.8V which is 

provided by the same voltage regulator in the operation amplifier circuit.  

The ADC is controlled by the MCU through SPI communication. Shortly after the 

command is given to end the pulse to the solenoid driver, the MCU begins communicating with 

the ADC. Pulling the conversion start line (equivalent to chip select) high tells the ADC to sample 
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the input signal. After a minimum of 700 nS, the MCU pulls the start line low signaling the ADC 

to send the bit value of the input signal at that time through its serial data out (SDO). Sending the 

data to the MCU takes a minimum of 250 nS. Pulling the conversion line high starts this cycle over 

until sufficient samples have been collected. The ADC is current cautious with standby and data 

conversion mode only using a maximum of 0.8uA and 1.6 mA, respectively.   

Once the striker is lifted and released, the striker takes a variable amount of time to drop 

and start the HNSW. To avoid any hardcoding of this variable, the code utilizes a buffer within 

the RAM. The buffer is 200 samples long (N to N + 199) which equates to 400 bytes in RAM 

storage. Additionally, there is an option to change the length of the signal to be collected. This, 

much like the buffer, is assigned a location in the RAM of 2 bytes * size of the sample. To populate 

their buffer in Figure 9, the first sample is taken and placed at the N sample location in the RAM 

which has a size of 2 bytes to store the entirety of the 16-bit data point. Before moving onto the 

next sample, the MCU checks whether this sample’s voltage is above a threshold of 2.4V. The 

threshold checks to see when the Incident wave begins by looking for the start of any wave that 

has a peak of at least 40mV (40mV * 8V/V * 1.96V/V + 1.8V = 2.42V). If the point is below the 

threshold, the ADC takes another sample, and it is stored in the next location N + 1. This continues 

until it reaches N + 199. Once a sample is assigned to this last storage location, the cycle restarts 

and the next point is placed back in data location N, overriding the previous sample that resided 

there. Once there is a sample above 2.4V, the MCU moves onto the next part of data collection.   
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Figure 9 Schematics of the process used to digitize and store the waveforms. 

 

The ADC continually takes samples until it reaches the predetermined sample size. The 

MCU stores each of these new samples in a secondary RAM location. Once the entire signal is 

saved in RAM, it is exported through the serial port or over Bluetooth. This is accomplished by 

finding the sample in the buffer where the threshold was crossed: let us refer to it as “P”. Sample 

P + 1 to Sample N + 199 is the beginning of the signal, preceding Sample N to Sample P. The final 

signal is created by combining these two buffer segments and the remainder of the data. Doing 

data collection this way minimizes the RAM taken up through sampling as well as assures the 

Incident wave is lined up in every HSNW collected.   

 

3.2.5 Wireless Communication 

Bluetooth communication is commonplace among most modern computers and phones 

making it an ideal candidate for wireless transmission. The Bluefruit LE UART is a breakout board 

fit with a Bluetooth low energy module and a 9600 baud rate UART [49]. If Bluetooth output is 
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enabled, each data point will be sent by the MCU through the TX line to the Bluetooth chip. Since 

the MCU is running at an internal clock frequency of 600MHz, there needs to be considerable 

delay between each sent point, otherwise data would be misrepresented or lost completely. A 1ms 

delay between each sent data point is used to prevent data loss. This delay also guarantees enough 

time for the Bluetooth module to send the data to any connected device before receiving the next 

point.   

Looking at power considerations, once the module pairs with a Bluetooth friendly device, 

it enters connected mode which draws an average of 1.86mA. The app used to read the Bluetooth 

signal was created by the company that makes the Bluetooth module [51]. Powering the chip with 

3.3 V from the MCU totals 6.1mW. With each digital output pin capable of up to 13.2 mW, the 

power consumption is less than half the maximum available power from digital output pin.   
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4.0 Testing Methods and Results  

4.1  How to Collect the Data for Experimentation 

There are two different experiments run to collect all the data presented in this thesis. The 

first test collected 45 HNSW samples of both steel and Sawbones. These HNSWs were taken with 

the transducer and an oscilloscope simultaneously to test the device's reliability and data collection 

methods. The second test collected an additional 100 HNSW signals collected for each material: 

Steel, Sawbones, PDMS and a goat cornea. PDMS and the goat cornea will be pressurized at 

10mmHg, 15mmHg, 20mmHg, 25mmHg, 30mmHg. Dimensions, density, Young’s modulus, and 

Poisson’s ratio are all found in Table 1 for each discussed material.  

 

Table 1 Geometric and mechanical properties of the samples tested in this study.  

Material Dimensions Density (kg/m3) Young’s Modulus (GPa) Poisson’s ratio 

Steel  35mm x 20mm x 28mm           7800        200          0.3 

Low-Density 

Sawbones 
  35mm x 39mm x 28mm              320 [37]         0.21          0.3 

PDMS Ø = 14 mm × .6 mm                0.965 g/cm3            .360-.870 x 10-3           0.5 

 

 

To collect the HNSW signals from each material. The transducer is placed over top the 

material with the last particle of the one-dimensional chain in contact with the material’s surface. 
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Figure 10 includes images of the transducer placement on steel, Sawbones, goat cornea, and 

PDMS.  

 

 

Figure 10 Transducer and its positioning over each material tested. From left to right, steel, Sawbones, goat 

cornea, and PDMS.  

An automatic testing setup is utilized for the PDMS and goat cornea samples. The setup is 

typically used to mimic human (or animal) corneas and to study the biomechanics of corneas [52]. 

A chamber is typically used to hold cornea grafts ranging between 14 mm and 18 mm in diameter. 

It has two ports that allow for irrigation or aspiration of tissue while it is waiting to be implanted 

into a recipient’s eye. For PDMS to achieve a rounded surface much like the eye, the PDMS must 

be fixed in place and have inward pressure pushing it into the shape. PDMS is an excellent material 

to replace a damaged vitreous humor through vitreoretinal surgery [52]. The testing started at 

10mmHg was increased 5mmHg after 100 samples were collected until it reached 30mmHg. These 

values are compatible to the pressure seen in human eyes and have been represented previously in 

research [46, 52]. The device and a secondary microcontroller communicated to signal when the 
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wireless transducer was finished collecting a sample. After a predetermined number of samples 

was taken, the secondary microcontroller utilizes a fluid motor to fill a graduated water column 

until it reaches the appropriate pressure. To verify that the correct amount of water was pumped 

into the column, the microcontroller works in conjunction with a water pressure sensor placed on 

the other port of the anterior chamber holding the material. Through a feedback loop, the 

microcontroller polls the pressure sensor three times to assure that the system has stabilized before 

the next pressure value’s measurements are taken. An image of the setup can be found in Figure 

11.  

 

Figure 11 Setup of anterior artificial cornea chamber. The graduated cylinder is connected to one input valve 

and the sensor is connected to the other (not pictured).  
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4.2 Comparison Test of Steel and Sawbones 

4.2.1 Comparison Test Methods 

The purpose of this first test is to validate the hypothesis that the new wireless transducer 

can replace the functionality of an oscilloscope, or any other data acquisition system, that in the 

past was needed to collect HNSWs. The oscilloscope was set to sample the signal at 10Msps with 

the assumption that at this sampling rate, the entirety of the signal will be captured and can be used 

as a ground truth.  

For data collection, the transducer was placed over either steel or Sawbones. The transducer 

was then connected to the device and simultaneously connected to an oscilloscope sampling at 

10Msps. The oscilloscope was connected in between after the signal amplification and data 

conversion nodes on the device. The mean and variance of steel and Sawbones for both the device 

and oscilloscope are compared. A two-tailed t-test will verify whether the oscilloscope’s collected 

HNSWs and the transducer’s collected HNSW are from the same population. If they are, it verifies 

that the transducer and device have the functionality to adequately capture the HNSW.  

In addition to the t-test, there will be a qualitative examination of overlaid signals collected 

from the transducer and oscilloscope to ensure that the HNSW is not excluding any other features 

of the wave.  

4.2.2 Comparison Test Results 
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In each side-by-side comparison of HNSWs, the waveforms are nearly identical both in 

amplitude and time of arrival. The difference in ToF between the steel and the Sawbones samples 

are caused by the different material properties and represents one of the reasons HNSW can be 

used for material characterization. This is due to experimentational observation that amplitude and 

the ToF of the reflected wave are both functions of the stiffness of the contact material. Since the 

Sawbones is much softer than steel, the arrival of the reflected wave is delayed with respect to the 

steel sample. The results are quantified in Table 2, in terms of the ToF average and corresponding 

standard deviation σ, associated with the forty-five measurements.  

 

 

 

Table 2 Results of comparative test between steel and Sawbones 

Group Count Mean (μsec) σ (μsec) 

Steel 

Wireless Transducer 45 127 3.26 

Oscilloscope 45 128 6.26 

Sawbones 

Wireless Transducer 45 269 17.9 

Oscilloscope 45 265 18.6 

 

The average relative to the foam test is twice the ToF average associated with the steel 

sample. The standard deviation () is slightly different in the oscilloscope compared to the PCB. 
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Likely, this is attributed to the difference in the sampling rate, which is more than 10x higher in 

the oscilloscope. Nonetheless, the table confirms that the wireless node is equivalent to the 

oscilloscope as the average values are nearly identical. The standard deviation relative to the softer 

material is larger. When softer materials are probed, the dynamic interaction between the solitary 

wave and the material gives rise to secondary effects such as material deformation and secondary 

pulses.

 

Next, the experimental mean and standard deviation values of the ToF were subjected to a 

two-tailed t-test to prove the ability of our device to represent the signal based on one feature and 

a significance of α = .05. The compared sets have homogeneous variance, and the distribution is 

approximately normal. The null hypothesis was that the 90 measurements collected with the PCB 

and the oscilloscope on the steel sample belong to the same population and that the difference in 

the groups means are zero. The same hypothesis was tested for Sawbones. Both null hypotheses 

were rejected. The p value is 0.6835 for steel and .2789 for Sawbones, clearly indicating that all 

samples taken on the same material come from the same population. To further examine 

variabilities, the ToF associated with each measurement was placed into a 10sec bin (Figure 12). 

The graph shows that the time-waveforms associated with the steel sample were more repeatable 

than those associated with the Sawbones, and the oscilloscope-based and PCB-signals provided 

remarkably similar results. For the Sawbones sample, the ToF fell in a larger range regardless of 

the way the signals were collected.  
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Figure 12 The ToF of steel are shown in blue and red. The ToF of Sawbone are shown in yellow and purple. 

 

To qualitatively gauge the variability in ToFs, Figure 13 shows one waveform collected 

with the oscilloscope and one waveform collected with the wireless module when the transducer 

rested atop the steel (Figure 13A) and the polyurethane (Figure 13B) samples.  
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Figure 13 Typical waveforms stored with the oscilloscope and the PCB device when the array stood above (A) the steel 

sample and (B) the Sawbone sample. 

Figure 13 presents exempliarly results where there is almost an exact overlap from the 

oscilloscope to the device. In another example, the formation of secondary pulses is evident in 

Figure 14 where the primary reflected wave is clearly tailed by at least another pulse, the SSW. It 

is also noted here that the  ToF difference between the oscilloscope- and the PCB-based time 

waveform is eqaul to 13.08 sec. In this case, the device’s primary wave arrived earlier than that 

of the oscilloscope. 



33 

 

 

Figure 14 A case of largest differences recorded between the signals recorded with the PCB and the oscilloscope. The 

ToF difference is 13.08 sec. 

 

4.3 HNSW evaluation of all materials 

One hundred measurements of HNSWs were collected for steel, Sawbones, and PDMS to 

gain a better understanding of their trends across materials. There are three different methods for 

observing the data: inspect the raw signal, pull out features unique to different materials, create a 

spectrogram to represent the time frequency response of the HNSW.  

4.3.1 Raw HNSW Signal 

One benefit to utilizing the raw signal is that there is no need for any post signal 

processing necessary before observing the results. This would be beneficial in realizing the final 

product to detect glaucoma in the eye and cut down post processing complexity. For this method, 
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each data point would be a separate feature totaling 2000 samples (around 2 mS) of captured data 

for one HNSW. The raw signals can be found in Figure 15.  

 

Figure 15 Raw Signals for Steel, Sawbones, and PDMS inflated between  10mmHg and 30mmHg. Only 15 

samples of each HNSW are shown for simplicity.  
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4.3.2 HNSW Feature Vector 

To cut back on the processing power needed to process the raw signal, there are 17 features 

extracted from each HNSW. The individual features are detailed in Features of a HNSW. All 17 

features that represent a HNSW is considered a HNSW’s feature vector. The most notable for steel, 

Sawbones, and PDMS—ToF for the ISW and PSW—are seen in Table 3. An error bar comparison 

in Figure 16 better demonstrates the ToF and its variability.  

 

Table 3 Average and standard deviation of steel, Sawbones, and PDMS.  

 Mean (μsec) σ (μsec) 

Steel 106.5 3.4 

Sawbones 272.8 24.3 

PDMS @ 10mmHg 680.4 108.9 

PDMS @ 15mmHg 615.6 81.4 

PDMS @ 20mmHg 464.9 59.3 

PDMS @ 25mmHg 308.9 48.3 

PDMS @ 30mmHg 275.0 20.2 
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Figure 16 Error bar diagram of Steel, Sawbones, and PDMS inflated from 10-30mmHg at 5mmHg 

increments. 

From the figure, it is evident that there is significant ToF decrease in PDMS as the pressure 

increase as well as a decrease in variation. Interestingly, Sawbones’ ToF is similar to PDMS at 

25mmHg and 30mmHg. The change in ToF is a perfect example of the difficulties when only 

using ToF to determine material properties. When extending to other features such as the time the 

PSW oscillates, it becomes more obvious of some of the differences. Sawbones has a PSW that 

oscillates for 269µS where PDMS at 20mmHg and 25mmHg has a PSW oscillation at 179µS and 

194µS, respectively. It is believed that the higher oscillation in PDMS is due to the vibrations after 

contact; whereas the oscillation in Sawbones is caused by the vicinity of the PSW and SSW.  
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4.3.3 HNSW Spectrogram 

Due to the possible issues of feature extraction overlap and raw signal noise, other methods 

were explored to express the HNSW. Commonly found in acoustics, spectrograms provide both 

valuable time and frequency components of the signal. An example of the spectrograms for PDMS 

can be found in Figure 17 for inflated pressures 10mmHg to 30mmHg at 5mmHg intervals. The 

spectrograms are created by dividing the signal into 256 sampled segments with a 220-sample 

overlap. A Kaiser window is used over the divided signals where β = 5.  

 

Figure 17 Spectrogram of HNSWs collected on PDMS - (A) 10mmHg, (B) 15mmHg, (C) 20mmHg , (D) 

25mmHg, (E) 30mmHg. 
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4.4 Machine Learning Material Classification 

4.4.1 Machine Learning Methods 

100 HNSWs were collected for Steel, Sawbones, and PDMS to have sufficient inputs for 

machine learning. These inputs, the raw signal, a feature vector of the HNSW, and a spectrogram 

of the HNSW, will be tested for their ability to represent the material under investigation on a 

medium tree, SVM, subspace discriminant, narrow neural network, and CNN algorithms. Two 

different classification tests are run. First steel, Sawbones, and PDMS at 20mmHg followed by 

PDMS at 10mmHg, 15mmHg, 20mmHg, 25mmHg, and 30mmHg. The first test proves whether 

the HNSWs from differing materials are divergent enough to be classified with a machine learning 

model. The second test is designed to test the resolution of the transducer by utilizing the same 

material and identifying changes in its properties –pressure. PDMS is typically a material used to 

replace the virtuous humor in the eye and is the closest replacement for a cornea model. Therefore, 

the methods that were most accurate in predicting PDMS at pressures 10mmHg-30mmHg will be 

implemented and retrained on HNSWs collected with the designed transducer on a goat cornea at 

the same pressures.  

4.4.2 Machine Learning Algorithms 

There are 5 machine learning algorithms explored in this paper: a medium tree, linear 

SVM, subspace discriminant, narrow neural network, and CNN. The model hyperparameters can 

be found in the Appendix. Specifically, the medium tree, linear SVM, subspace discriminant, and 
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the narrow neural network were chosen for their performance on the first and second classification 

tasks.  

Utilizing the MATLAB classification learner, 31 different algorithms were run on the raw 

signals and features [53]. The best performing algorithms are selected for a comparative analysis. 

The data for all classification tasks was separated into training, validation, and testing with 70%, 

20%, and 10% splits, respectively. 10-fold cross-validation was utilized due to the low percentage 

of test data. With only 100 sample HNSWs for each material, it is important to focus the large bulk 

of the HNSWs to training the network. Using a 10-fold cross validation reduces the variance in 

the training by decreasing sensitivity to how the data is partitioned.  

4.4.2.1 Medium Trees 

Decision trees are a machine learning model utilizing a branching decision style for 

classification. At each node there is a branch that leads to another decision node. The algorithm 

tries to detect patterns between the classification target and the inputs. This algorithm has proven 

to be effective in other biological applications such as detecting inflammation of the mammary 

gland in cow tissue [54]. 

4.4.2.2 Linear SVM 

Linear SVM is used in computational biology for determining splice signs in a DNA 

sequence [55]. Linear SVM works by separating classes of data with a linear hyperplane with a 

predetermined soft margin. This margin is the error above or below the hyperplane where there is 

crossover between classes. The soft margin is the main tunable hyperparameter found in this 

algorithm.  
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4.4.2.3 Subspace Discriminant  

Subspace discriminant analysis’s goal is to perform feature selection to reduce the number 

of inputs. For the raw signal, the subspace was reduced to 1000 inputs for the raw signal and 9 

from the HNSW’s extracted features. This machine learning model ranks the features by 

importance and assigns a 1, -1, or 0 to that feature where a 0 means that the feature provides no 

meaningful input towards the prediction. Like the feature extraction performed on the HNSWs, 

subspace discriminant has been used on extracted Mel-frequency cepstral coefficients (MFCC) 

from an audio signal to predict who a voice belongs to [56].  

4.4.2.4  Narrow Neural Network 

A neural network is modeled after the neural pathways within a brain. The algorithm 

utilizes interconnected nodes called neurons to send information through the model and make a 

prediction. Each input into a neuron has a weight which is adjusted after each iteration to decrease 

the cost function, typically mean squared error (MSE). In cardiovascular disease prediction, sound 

recordings of a patient's heart are used as inputs of various neural nets [57]. Exactly like the narrow 

network used in that research, the networks use one fully connected layer with a layer size of 10 

and activation function ReLU.  

4.4.2.5 Convolutional Neural Network 

Utilizing the same structure found in a narrow neural network with interconnected neurons, 

the difference in a CNN is designed for computer vision. The network uses a combination of 

pooling and convolution layers to down-sample an image for easier classification. ECG 
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spectrograms have been previously used for arrhythmia classification [58]. Our CNN uses 4 

convolution and pooling layers before flattening with 5 dense layers.  

4.4.3 Machine Learning Results 

A summary of the results can be found in Table 4 with the model's accuracy when evaluated 

with test data.  

 

Table 4 Accuracy of both tests performed.  

 
Medium Tree SVM 

Subspace 

Discriminant 

Narrow Neural 

Network 

Image 

Classification 

 Material Classification Test Accuracy (%) 

Raw Signals 100 100 100 100 NA 

Features 100 100 100 100 NA 

Spectrogram NA NA NA NA 100 

 PDMS Pressure Training Test Accuracy (%) 

Raw Signals 76 83 72 80 NA 

Features 76 82 76 64 NA 

Spectrogram NA NA NA NA 90 

 

From test 1, the HNSWs collected from the transducer have no issues in predicting which 

material is under inspection. All algorithms and inputs are accurate enough to be implemented in 

material classification.  
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To progress further towards classification of IOP, test 2 evaluates the predictive abilities 

of the pressurized PDMS. Here the spectrogram had the best predictive capabilities with 90% 

accuracy on test data. Overall, both the features and raw signals had comparable results with SVM 

having the second-best predictive capabilities.  

Further evaluating the models, Table 5 includes the time to train each model. Classification 

with an image took the longest by almost 392% compared to the next highest training time. In test 

two there was a 422% increase in test 2.  

 

Table 5 Training time of both tests performed. 

 
Medium Tree SVM 

Subspace 

Discriminant 

Narrow Neural 

Network 

Image 

Classification 

 Material Classification Training Time (s) 

Raw Signals 12.18 13.21 51.17 36.09 NA 

Features 7.95 6.28 3.78 1.41 NA 

Spectrogram NA NA NA NA 252.0 

 PDMS Pressure Training Time (s) 

Raw Signals 14.82 19.18 88.13 52.27 NA 

Features 7.94 6.28 3.78 1.42 NA 

Spectrogram NA NA NA NA 460.0 

 

Overall, the SVM classification task with both the raw signal and features performed the 

best with respect to its inputs. However, the spectrogram had the highest accuracy in test 2 with 
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an image input. In diagnosing glaucoma, the priorities lie within accuracy rather than speed. In the 

same vein, the priority is accurately predicting IOP over 17mmHg rather than below that number. 

This is the “red flag” threshold where high IOP can start to get damaging. With these two criteria, 

SVM with a raw signal and feature input and a CNN with a spectrogram input can be compared to 

each other to identify the most fit machine learning classification algorithm for this task. An 

example of the input spectrograms on the goat cornea are in Figure 18.  

 

 

Figure 18 Spectrogram of HNSWs collected on a goat cornea - (A) 10mmHg, (B) 15mmHg, (C) 20mmHg , (D) 

25mmHg, (E) 30mmHg. 

 

    The accuracy of test data and training time are presented in Table 6. The confusion 

matrix of the test data for the spectrograms (Figure 19A), SVM with features (Figure 19B), and 

SVM with the raw signal (Figure 19C) is organized by the best to worst performing.  
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Table 6 Accuracy and traning time for machine learning classification algorithms performed on a goat 

cornea.  

 SVM Image Classification 

 Goat Cornea Test Accuracy (%) 

Raw Signals 50 NA 

Features 72 NA 

Spectrogram NA 92 

 Goat Cornea Training Time (s) 

Raw Signals 25.29 NA 

Features 2.54 NA 

Spectrogram NA 569 
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Figure 19 Confusion matrix of machine learning algorithms on test data – (A) Spectrogram with CNN, (B) 

Features with SVM, and (C) Raw Signal with SVM. 

Looking at the results, the spectrogram is the best performing algorithm with a 20% higher 

accuracy on test data than the best performing SVM utilizing HNSW features. Specifically, this 

SVM had issues with higher IOPs. Due to the device's nature, the inability to predict high IOPs 

will not be enough in managing glaucoma. The spectrogram model ended with a 92% accuracy 

with .599 loss on test data. The train and validation accuracy for each epoch is found in Figure 20.  
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Figure 20 Train vs validation curves for the CNN testing on the goat cornea.  
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5.0 Conclusion 

In this paper, a wireless transducer was created to collect HNSWs from differing materials 

to see if the HNSW is suitable for IOP classifications in a goat cornea. The transducer needed to 

be miniaturized from previous iterations leading to the modification of the sensing method to a 

coil and permanent magnet. This miniaturized transducer needed to undergo testing to evaluate its 

effectiveness against commonly used wired methods for sensing HNSWs. This was accomplished 

by comparing the side-by-side HNSWs of steel and Sawbones’ on the wireless transducer and 

oscilloscope. By monitoring the ToF of the HNSWs, it needed to be determined whether the 

HNSWs came from the same population. A t-test on the 45 samples collected on steel from the 

device and oscilloscope and likewise with Sawbones predicted that they do indeed come from the 

same population with a p value of 0.6835 for steel and .2789 for Sawbones. 

Now that the device was proven to be effective for measuring HNSWs, 100 additional 

samples were taken for steel, Sawbones, PDMS, and a goat cornea where PDMS membrane and a 

goat cornea were pressurized from 10mmHg-30mmHg at 5mmHg increments. The first test aimed 

at predicting whether the HNSWs varied enough between materials by comparing the raw HNSW 

signal, extracted HNSW features, and the spectrogram of steel, Sawbones, and PDMS at 20mmHg. 

The raw HNSW and extracted features were fed into a medium tree, linear SVM, subspace 

discriminant, and narrow neural network algorithms where the spectrogram was fed into a CNN. 

It was found that each network and input combination had a 100% accuracy on test data making 

all algorithms suitable for material classification.  
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Utilizing the same inputs and machine learning algorithms, PDMS from 10mmHg-

30mmHg at 5mmHg increments was tested. The purpose of this test was to see if a similar material 

to a cornea would have distinguishable HNSWs for classification. It was found that the linear SVM 

for both raw signal and HNSW features as well as the spectrograms had the highest accuracy on 

test data with accuracies of 83%, 82%, and 90% respectively. Using these three instances, the goat 

cornea was tested which resulted in spectrograms input into a CNN being the best algorithm for 

IOP predictions with 92% accuracy despite its slowest training time of 569s.  
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6.0 Future Work 

The research presented in this paper will continue by collecting more samples from corneas 

and measuring additional characteristics of the cornea such as the corneal thickness to increase the 

predictive IOP capabilities on different eyes.  

After more data collection is done, there are three different directions the project can go. 

One of which would be modeling the characteristics of the eye to create an accurate model of 

HNSWs collected from an eye. Once accomplished, using this model is helpful not only in this 

line of research to detect IOP with a tonometer, but can be used in the greater field of 

ophthalmology because modelling of the human eye is extremely complex with scientific debate 

about the best way to model an eye.   

 Another direction is tuning the hyper parameters of the spectrogram and CNN as well as 

utilizing different machine learning algorithms to test the predictive capabilities of a HNSW. This 

may include testing already developed algorithms, or experimenting with different front and back 

ends of algorithms to develop a system that works best for this project. In addition, this direction 

would include exploring more features and feature combinations to increase prediction accuracy.  

Finally, this project could delve deep into the circuit design aspect of the project. This 

includes power system management to minimize the power consumption of the device and extend 

battery life. Included would also be focusing on the filtering of the HNSW to minimize noise while 

maintaining the integrity of the signal. Improving the filtering process of the HNSW would be 

beneficial to other groups aimed at HNSW collection as well and encourage improvement in other 

HNSW transducers.  
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Appendix A  

 

Table 7 Table of all features utilzied in machine learning classification task with its abbreviation, full name, 

and a description.  

Abbreviation Full Name Description 

ToFIP Time of Flight Incident to Primary Time in microseconds between the start 

of the ISW to the start of the PSW 

ToFIS Time of Flight Incident to 

Secondary 

Time in microseconds between the start 

of the ISW to the start of the SSW 

ToFPS Time of Flight Primary to 

Secondary 

Time in microseconds between the start 

of the PSW to the start of the SSW 

OI Oscillation of Incident Time in microseconds from the start of 

the ISW to the end of the ISW 

OP Oscillation of Primary Time in microseconds from the start of 

the PSW to the end of the PSW 

OS Oscillation of Secondary Time in microseconds from the start of 

the SSW to the end of the SSW 

FI Frequency of Incident Peak frequency content of the ISW 

FP Frequency of Primary Peak frequency content of the PSW 

FS Frequency of Secondary Peak frequency content of the SSW 

FIA Frequency of Incident Amplitude Power of peak frequency content in ISW 

FPA Frequency of Primary Amplitude Power of peak frequency content in PSW 

FSA Frequency of Secondary 

Amplitude 

Power of peak frequency content in SSW 

PE Primary Exists 1 or 0 for the existence of a PSW 

SE Secondary Exists 1 or 0 for the existence of a SSW 

RIP Ratio of Incident to Primary The peak-to-peak ratio of the PSW over 

the ISW (should be less than 1) 

RIS Ratio of Incident to Secondary The peak-to-peak ratio of the SSW over 

the ISW (should be less than 1) 

RPS Ratio of Primary to secondary The peak-to-peak ratio of the SSW over 

the PSW (should be less than 1) 
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Figure 21 SVM hyperparamaters utilized in the paper.  

 

Figure 22 Medium tree hyper paramaters utlized in this paper. 
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Figure 23 Subspace discrimenant paramaters used in this paper. The subspace dimension for the raw signals 

was 1000 where for featutres it was 9.  
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Figure 24 Neural network paramaters used in this paper.  
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Figure 25 CNN hyper paramaters used in this paper. The only node that changed for each test was the final 

dense layer 4. This output layer changed between 3 and 5 depending on how many classification tasks were 

used.  
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