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Methods for Combining Frequent or Sparse Signals in Omics Applications

Yusi Fang, PhD

University of Pittsburgh, 2023

Combining p-values to aggregate effects has been of long-standing interest. We discuss three

types of p-value combination scenarios for omics studies in Chapters 2-4 of this dissertation.

Chapter 2 considers combining independent and non-sparse signals in a small group of p-

values, where the number of true signals in p-values and their strengths can vary with heterogeneity.

We propose the Fisher ensemble (FE) to aggregate the existing Fisher and AFp methods. The FE

achieves asymptotic Bahadur optimality and integrates the strengths of Fisher and AFp. We extend

FE to a variant with emphasized power for concordant effect size directions. A transcriptomic

meta-analysis of the AGEMAP dataset shows the advantages of the proposed methods.

Chapter 3 proposes a simple yet truly adaptive modified Fisher’s method for combining inde-

pendent, weak and sparse signals in a large group of p-values. It achieves the optimal separating

rate in a large-scale setup with sparse and heterogeneous signals. Our method is robust when the

p-values are not exact and can maintain the optimal separating rate under mild conditions. The

proposed method is applied to a neuroticism GWAS application for the pathway-based association

study.

Chapter 4 considers combining dependent, weak and sparse signals in a large group of p-values.

We study a family of p-value combination tests by heavy-tailed distribution transformations. We

derive the conditions for a method of the family to enjoy robustness against the unknown depen-

dency structure and to attain the optimal detection boundary for detecting weak and sparse signals.

Only an equivalent class of the Cauchy test can possess robustness property. By applying our theo-

retical findings, we suggest a truncated Cauchy test that belongs to the class to improve the Cauchy

test. A neuroticism GWAS application demonstrates the theoretical findings and advantages of the

truncated Cauchy method.

Contribution to Public Health:

Omics data integration is critical for contemporary biomedical research. P-value combination ap-
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proaches are widely utilized in omics studies for aggregating information from multiple sources.

This dissertation establishes a robust theoretical foundation of p-value combination and offers

practical, data-driven methodologies for omics data integration.

Keywords: p-value combination; global hypothesis testing; large-scale inference; meta-analysis.
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1.0 Introduction

This chapter introduces background knowledge and motivations behind this dissertation. An

overview of p-value combination methods is presented in Section 1.1. Section 1.2 provides a

summary of omics data, along with a brief introduction to downstream analyses relevant to this

dissertation. The statistical challenges associated with applying p-value combination methods for

the analysis of omics data are discussed in Section 1.3, where three types of p-value combination

scenarios are formulated. Finally, Section 1.4 introduces the structure of the dissertation.

1.1 Overview of P-Value Combination Methods

In statistics and applications spanning a wide range of scientific disciplines for aggregating data

from multiple sources, methods for combining p-values have long been of great interest. Suppose

we have n p-values p⃗ = (p1, p2, . . . , pn), where each pi is p-value of testing H
(i)
0 : θi ∈ Θ

(i)
0 versus

H
(i)
1 : θi ∈ Θ(i) −Θ

(i)
0 . Here θi represents the parameter of interest for the i-th hypothesis test and

Θ(i) and Θ
(i)
0 denote the corresponding total possible parameter space and null parameter space,

respectively. Under this setup, a common problem is the global union-intersection test (UIT) (Roy,

1953):

H0 : ∩1≤i≤n{θi ∈ Θ
(i)
0 } versus H1 : ∪1≤i≤n{θi ∈ Θ(i) −Θ

(i)
0 }.

By formulating a test statistic to combine the input p-values, the main objective of p-value combi-

nation is to perform an UIT test for detecting any signal in the n p-values. For example, suppose

θi = µi for N(µi, 1), Θ(i) = R and Θ
(i)
0 = {µi = 0} for a simple z-test with p-value pi. For the

UIT test H0 : ∩1≤i≤n{µi = 0} versus H1 : ∪1≤i≤n{µi ̸= 0}, one may consider Fisher’s method

TFisher =
∑n

i=1 −2 log pi (Fisher, 1992) to combine the input p-values, where TFisher follows chi-

square distribution with degrees of freedom 2n when p1, . . . , pn
i.i.d.∼ Unif(0, 1) under the null. The

null hypothesis is thought to be rejected by a large value of TFisher, which implies that there exists

at least one µi ̸= 0 for 1 ≤ i ≤ n.

Including Fisher’s method, traditional p-value combination methods (other examples include
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Stouffer’s method TStouffer =
∑K

i=1 Φ
−1(1−pi)(Stouffer et al., 1949), Edgington’s method TEdgington =∑n

i=1 pi (Edgington, 1972), as well as many other methods, see Heard and Rubin-Delanchy (2018)

for more examples) aim to combine relatively dense signals in a small group of independent p-

values. These methods can be regarded as meta-analysis approaches to aggregate multiple small

effects for improved statistical power. Besides the conventional methods, many modified Fisher’s

methods have been proposed in recent years to improve Fisher’s method when only part of p-

values contain true signals under the meta-analysis setting. Examples include rank truncated prod-

uct method and its variants (Dudbridge and Koeleman, 2003; Yu et al., 2009; Li and Tseng, 2011;

Song et al., 2016), and truncated product method and its variants (Zaykin et al., 2002; Zhang et al.,

2020b). See Chapter 2 for a more detailed discussion of the conventional methods and the modified

Fisher’s methods.

Due to the increasing needs of large-scale data analysis, detecting weak and sparse signals from

a huge group of independent p-values (may be more than 1000 input p-values) has attracted a lot

of interest. High criticism and Berk-Jones tests (Donoho and Jin, 2004; Berk and Jones, 1979; Li

and Siegmund, 2015) are the two most representative methods under this setting. The two methods

can also be thought of as one-sided goodness of fit tests for determining if the input p-values are

uniformly distributed across the [0, 1] interval, as the input p-values p1, p2, . . . , pn
i.i.d.∼ Unif(0, 1)

under the null. Following this idea, it has been demonstrated that many other goodnesses of fit

tests also enjoy comparable theoretical properties to higher criticism and Berk-Jones tests (Jager

and Wellner, 2007).

All the methods described above focus on combining independent p-values. However, many

modern data analyses generate the needs for combining dependent p-values. Brown’s method

(Brown, 1975) is an extension of Fisher’s method for combining dependent p-values. As the null

distribution of Fisher’s method is no longer a chi-square distribution when the input p-values are

dependent, Brown (1975) proposed to use a scaled chi-square distribution to approximate the null

distribution of Fisher’s method. Kost and McDermott (2002); Li et al. (2014); Zhang and Wu

(2022); Poole et al. (2016) proposed more refined approximation methods to adapt Fisher’s method

for combining dependent p-values. For combining a large group of dependent p-values, Hall and

Jin (2010); Barnett et al. (2017); Sun and Lin (2020) proposed to adapt the higher criticism and

Berk-Jones tests by taking into account the correlation structure of p-values. On the other hand,
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the harmonic mean and Cauchy combination tests were introduced by Wilson (2019a) and Liu and

Xie (2020); Liu et al. (2019) to provide robustness under unknown dependency structures when

inference is established under the independence assumption.

1.2 Overview of High-Throughput Omics Data

High-throughput technology may simultaneously quantify thousands to millions of molecular

components for biological activity at the model organism, cellular, pathway, or molecule level

using automated techniques and technologies. Numerous omics data have accumulated in public

archives due to high-throughput technology’s rapid development, necessitating the development of

novel statistical approaches to aid in biological discoveries. The term “omics data” refers to data

sets that quantify an organism’s genetic materials (genomics), epigenetic alterations (epigenomics),

RNA transcripts (transcriptomics), and proteins (proteomics). This section will introduce two

relevant omics data types, genomics and transcriptomics data, as well as the widely used statistical

techniques for the downstream analysis of the data.

1.2.1 Genomics

The study of the entire set of genetic materials of an organism, or genome, including how the

genes interact with one another and the environment, is called genomics. Utilizing high through-

out technology, genomics studies the genome of an organism, typically DNA (RNA for some

viruses). Human DNA, distributed in 22 paired chromosomes and two sex chromosomes, contains

the genetic information of humans. The human genome shares 99.9% of its components. On the

contrary, the average fraction of nucleotide differences between two randomly picked individuals

only ranges from 1/1500 to 1/1000 (Jorde and Wooding, 2004). The association between human

phenotypes and genetic differences has been a popular topic of study for a long time.

Single nucleotide polymorphism (SNP), which refers to a variation in a single nucleotide of

DNA, is the most prevalent type of genetic variation, occurring in at least 1% of the population. The

identification of SNPs associated with a disease or other phenotypic traits is typically done using
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genome-wide association studies (GWAS). Tens of thousands of genetic variants are examined

using GWAS across numerous genomes. Generalized linear mixed models (GLMM), including

mixed effects logistic regression and linear mixed models, are commonly used for the GWAS

approach to model the relationship between the genotypes and phenotypes (Uffelmann et al., 2021).

Common GWAS approaches test single SNPs individually (Manolio et al., 2009; Visscher et al.,

2012). When the effects of individual SNPs are relatively weak, the SNP-set association test,

which tests the association between the phenotypic traits and a set of SNPs in the same genetic

construct such as genes and genetic pathways, can be a powerful alternative (Visscher et al., 2012).

Insertion, deletion, and structural variation—which involves changing numerous base pairs—are

other common types of genetic variation. When a nucleotide sequence is over-represented, it is

called insertion. When a nucleotide sequence is under-represented, it is called deletion. CNV, or

copy number variation, is a type of structural variation that happens when large sections of the

genome are deleted or duplicated.

1.2.2 Transcriptomics

The study of the entire set of RNA molecules in an organism is referred to as “transcriptomics”.

Transcriptomics studies messenger RNA (mRNA) and micro RNA (miRNA) and other non-coding

RNAs in a cell using high-throughput methods. mRNA carries protein-coding information, while

miRNA is crucial in regulating gene expression. Gene expression can differ significantly between

different types of tissues and cells, as well as in relation to developmental stages and health states,

as it is regulated by a variety of transcriptional and post-transcriptional activities (e.g., alternative

splicing, miRNA binding). The identification of genetic subgroups, the discovery of biomarkers,

the diagnosis, and prognosis of disease have all benefited from the widespread use of transcrip-

tomics data in biomedical research (Yang et al., 2020; Raghavachari and Garcia-Reyero, 2018).

Currently, the two main high throughput methods for measuring gene expression levels are

microarray and RNAseq/scRNAseq. Microarrays are microscope slides (sometimes referred to as

“chips”) on which thousands of small dots, each containing a known DNA sequence or gene, are

printed at particular locations (also known as a “probe”). RNA molecules are reverse transcribed

to complementary DNA (cDNA) in a microarray experiment, where they are then mounted to
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microscope slides and hybridized with the probes. When a laser scans a sample, a continuous

fluorescence intensity score is calculated to measure the gene expression levels. RNA-seq cuts

cDNA into fragments and attaches adapters to each fragment. The adapters contain functional

elements that allow for sequencing. Using adapters, the fragments were sequenced and mapped to

the reference genome. As an expression measurement for a gene, the number of mapped transcripts

is counted.

Among all the downstream analyses of transcriptomics data, differentially expressed gene

(DEG) analysis is one of the most important. Common DEG analyses perform two-sample hy-

pothesis testing for each gene/biomarker across the genome, or other ANOVA-like tests if multiple

groups comparisons are needed (Smyth, 2005; Ritchie et al., 2015; Robinson et al., 2010; Love

et al., 2014). Multiple testing correction techniques, such as Bonfferoni correction and Benjamini-

Hochberg procedure, are used to control the family-wise error rate (FWER) and false discovery

rate (FDR) for DEG analysis in genome-wide setting (Benjamini and Hochberg, 1995; Storey and

Tibshirani, 2003). After DEG analysis, pathway enrichment analysis can be a powerful option to

help researchers gain more biological insight into the results of DEG analysis. Typical pathway

enrichment analysis approaches test pathways in a given database for enrichment in a gene list

of interest. Commonly used pathway enrichment analysis methods include gene set enrichment

analysis (GSEA) (Subramanian et al., 2005) and ingenuity pathway analysis (IPA) (Krämer et al.,

2014), see Maleki et al. (2020) for more details. Due to the rapid development of high-throughput

techniques and the steep decline in their costs, many transcriptomic datasets are being generated in

nearly all biological fields. This has led to a lot of interest in transcriptomic meta-analysis, which

are ways to combine information from different transcriptomic studies. Common transcriptomic

meta-analysis methods can be categoried into 4 categories: combining p-values (e.g, Li and Tseng

(2011)), combining effect sizes (e.g., fixed and random effects models (FEM & REM), see Nor-

mand (1999)), direct merging (e.g., Shabalin et al. (2008)), and combining ranks (e.g., Hong et al.

(2006)).
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1.3 Statistical Challenges for Analyzing High Throughput Omics Data Using P-Value

Combination Methods

Omics data analysis imposes new statistical challenges for the development of p-value combi-

nation methods. In this section, we outline 3 representative scenarios and corresponding challenges

for applying the p-value combination methods to omics data analysis.

1.3.1 Combining Independent and Relatively Frequent Signals in A Small Group of P-

Values

Common omics application examples for this scenario include transcriptomic, GWAS, CNV or

methylation meta-analyses (Tseng et al., 2012; Begum et al., 2012; Guerra and Goldstein, 2016).

The statistical setup considered here is that the number of combined studies n is fixed, while each

study’s sample size goes to infinity. Although sharing the label of “meta-analysis”, there are sub-

tle differences between the omic meta-analysis and the traditional meta-analysis scenarios when

applying the p-value combination methods. Indeed, it is common that conventional meta-analysis

scenarios assume all the studies share the same effect or at least all contain similar true effects,

while heterogeneity between studies is frequently observed in the omic meta-analysis scenarios.

More preciously, the proportions of studies that contain true signals can vary drastically, and the

directions of effects can be disconcordant. There have been many efforts to modify the conven-

tional methods for power improvement when the proportion of true signals is low. However, there

is no systematic evaluation of the asymptotic properties and finite-sample performance of the pro-

posed modified methods. In addition, there is still a lack of methods that have consistently high

performance across varying scenarios.

1.3.2 Combining Independent, Weak, and Sparse Signals in A Large Group of P-Values

SNP-set association test (Arias-Castro et al., 2011, after de-correlation or SNP pruning based

on high linkage disequilibrium) and multiple-sample based CNV calling (Song et al., 2016) are

two common omics application for this scenario, where the number of p-values that contain true

signals is assumed to be significantly smaller than n, the total number of input p-values. Due to the
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theoretical advantage of the log-transformation posed on the combined p-values, it is well-known

that Fisher’s method has optimal Bahadur efficiency in the traditional meta-analysis setting (Lit-

tell and Folks, 1973, small n and all the p-values contain signals). However, Fisher’s method is

suboptimal when signals are weak and sparse (Donoho and Jin, 2004). Many modified Fisher’s

methods have been proposed to improve the original Fisher’s method while preserving the theo-

retical benefits of log-transformation (e.g., Li and Tseng (2011); Zaykin et al. (2002); Zhang et al.

(2020b)). However, none of these methods provides a theoretical guarantee for detecting weak and

sparse signals in a large-scale setup. And most of the methods consist of tuning components that

heavily rely on prior or external biological knowledge. Furthermore, despite the widespread use

of approximation techniques such as the central limit theorem or self-normalization for calculating

p-values, the impact of such approximations in large-scale settings is rarely studied.

1.3.3 Combining Dependent, Weak, and Sparse Signals in A Large Group of P-Values

This scenario is frequently encountered in the applications of SNP-set association tests (Sun

and Lin, 2020). Many efforts have been made to adapt the higher critism and Berk & Jones tests

to account for the correlation structure of p-values (Sun and Lin, 2020; Hall and Jin, 2010; Barnett

et al., 2017). However, such attempts are not accurate for extremely small p-values and require

cumbersome and intensive computation for even moderate large n. In addition, the correlation

structure between p-values can frequently become difficult to model due to the biological com-

plexity of genetic mechanisms and limited data access to the raw GWAS data. Hence, it is of great

interest to develop methods that are accurate for small p-values with fast computation, robustness

to unknown dependency structure, and competitive power for detecting weak, sparse and correlated

signals.

1.4 Overview of this Dissertation

This dissertation consists of 5 chapters. Chapter 1 provides an overview of p-value combination

methods, omics data analysis, and challenges associated with using p-value combination methods
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for omics data analysis.

In Chapter 2, we consider the scenario of combining independent and relatively frequent sig-

nals, which is summarized in Section 1.3.1. We first provide a comprehensive examination of

commonly used p-value combination methods in terms of Bahadur efficiency and exact slope un-

der independent inputs, followed by a comprehensive evaluation of the finite-sample statistical

power of the methods. We conclude that the Fisher and the rank truncated product methods have

top performance and complementary advantages. We consequently propose an ensemble method

to combine the strengths of the two methods, with fast computation and a theoretical guarantee on

asymptotic efficiency. This work is accepted by Statistica Sinica (Fang et al., 2023b).

Chapter 3 considers the scenario of combining independent, weak, and sparse signals, which

is summarized in Section 1.3.2. In this chapter, we propose a fully adaptive modified Fisher’s

method based on weakly geometric system. We show the proposed method achieves the optimal

separating rate in a high-dimensional setting for detecting weak, sparse, and heterogeneous signals.

In terms of practical consideration, the robustness of our method when the p-values are not exact

is investigated, where we show that our method still attains optimal separating rate under mild

conditions.

In Chapter 4, we consider the scenario of combining dependent, weak, and sparse signals,

which is summarized in Section 1.3.3. In this scenario, we investigate a family of p-value com-

bination tests, which are formulated as the sum of transformed p-values with the transformations

by a broad family of heavy-tailed distributions. We explore the conditions under which a method

of the family possesses robustness to unknown dependency for type I error control and optimal

detection boundary for detecting weak and sparse signals. We show that only an equivalent class

of Cauchy and harmonic mean tests has sufficient practical resistance against dependency. As a

consequence of the theoretical results, we propose a truncated Cauchy method, which belongs to

the equivalent class of Cauchy and harmonic mean tests, to tackle the large negative penalty issue

in the Cauchy method. This work is also accepted by Statistica Sinica (Fang et al., 2023a).

Chapter 5 contains the discussion and future work.
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2.0 On P-Value Combination of Independent and Non-Sparse Signals: Asymptotic

Efficiency and Fisher Ensemble

The contents of this chapter are accepted by the journal Statistica Sinica (Fang et al., 2023b).

2.1 Introduction

Methods for combining p-values are historically of substantial interest in statistics and in appli-

cations of many scientific fields to aggregate homogeneous or possibly heterogeneous information

from multiple sources. Consider the problem of combining K p-values, p⃗ = (p1, . . . , pK), where

pi is p-value of testing H
(i)
0 : θi ∈ Θ

(i)
0 versus H

(i)
1 : θi ∈ Θ(i) − Θ

(i)
0 . Here θi denotes the pa-

rameter of interest and Θ(i) and Θ
(i)
0 denote the total possible parameter space and null parameter

space of θi, respectively. For example, θi = µi for N(µi, 1), Θ(i) = R and Θ
(i)
0 = {µi = 0}

for a simple Z-test. The global union-intersection test for detecting any signal in the K p-values

is H0 : ∩1≤i≤K{θi ∈ Θ
(i)
0 } versus H1 : ∪1≤i≤K{θi ∈ Θ(i) − Θ

(i)
0 }. A general strategy is to

combine the input p-values and form a test statistic for globally testing the existence of any sig-

nal. In the literature, three major categories of methods have been developed, depending on the

types of input data and signal. The first category considers combination of independent p-values,

where K is small and fixed (e.g., K =5-30). The sample size ni (1 ≤ i ≤ K) for deriving pi is

large and can asymptotically go to infinity. This first classical scenario is closely related to meta-

analysis applications to integrate multiple small effects for increasing statistical power. Traditional

methods include Fisher’s method TFisher =
∑K

i=1 −2 log pi(Fisher, 1992) and Stouffer’s method

TStouffer =
∑K

i=1Φ
−1(1 − pi)(Stouffer et al., 1949) as well as many other transformation selec-

tions. The second category considers combining independent, sparse, and weak signals, where a

large number of p-values are combined (K → ∞) while only a small number ℓ of the K p-values

(ℓ = Kβ with 0 < β < 1
2
) have weak signals and all remaining p-values have no signal. High

criticism (denoted by HC test hereafter; Donoho and Jin (2004)) and Berk-Jones test (denoted by

BJ test hereafter; Berk and Jones (1979); Li and Siegmund (2015)) are two representative methods
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and are shown to be asymptotically optimal in terms of detection boundary across varying levels

of signal sparsity (0 < β < 1
2
) as K → ∞. In the third category, the integration of K p-values

with unknown correlation structure and with sparse and weak signals is considered. Liu and Xie

(2020) and Wilson (2019a) proposed Cauchy test (CA) and harmonic mean test (HM), respectively.

These methods provide robustness under unknown dependency structure when inference is estab-

lished under independence assumption and they attain optimal detection boundary for detecting

highly sparse signals (with s = Kβ , 0 < β < 1
4
, but not for 1

4
< β < 1

2
) as K → ∞ (Liu and Xie,

2020; Fang et al., 2023a).

In this chapter, we revisit methods of the first category, evaluate their asymptotic efficien-

cies, assess finite-sample numerical performance, and propose an ensemble method combining

two complementary top performers for general applications. To tell the differences between the

first category and the second and third categories, we emphasize that we focus on detecting inde-

pendent and non-sparse signals inside a small and fixed number of p-values for scenarios of the first

category, where “non-sparse” signals distinguish from the “sparse” signals in the second and third

categories in the sense that the proportion of true signals varies from 1/K to 1 and is unknown,

while the proportion in the second and third categories vanishes to zero as K → ∞. Despite active

needs and method development for the second and third categories, methods for the first “meta-

analytic scenario with unknown heterogeneity” remain in high demand and present new challenges

in many applications such as transcriptomic, GWAS, CNV or methylation meta-analyses (Li and

Tseng, 2011; Tseng et al., 2012; Begum et al., 2012; Guerra and Goldstein, 2016).

Method development for the first category before the 1970-80s focuses on a class of meth-

ods aggregating transformed scores from the p-values: T =
∑K

i=1 g(pi) =
∑K

i=1 F
−1
U (pi), where

F−1
U (·) is the inverse CDF of U . For example, U is chi-squared distribution for Fisher test and stan-

dard normal distribution for Stouffer test. Littell and Folks (1973) showed that Fisher’s method

is asymptotically optimal in terms of Bahadur relative efficiency, providing theoretical justifica-

tion of the log-transformation over the other types of transformations (see Section 2.2 for more

details). Despite optimal asymptotic efficiency of Fisher test, its finite-sample performance in

terms of statistical power is often poor if only part of the K p-values have signals. In this com-

monly encountered situation with unknown heterogeneous signals, many modified Fisher meth-

ods have been developed to improve the original Fisher’s method. Dudbridge and Koeleman
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(2003) proposed the rank truncated product (RTP) method to aggregate signals only for the top

ordered (i.e., the most significant) p-values: Tm = −2
∑m

i=1 log p(i), where p(i) is the i-th or-

dered p-value and 1 ≤ m ≤ K is a user-specified truncation point on ranks of input p-values.

However, the choice of m is subjective and RTP can suffer substantial power loss with a mis-

specified m. To address this challenge, a line of works has focused on improving RTP by adap-

tively determining m from an optimization criterion. For example, Song et al. (2016) devel-

oped an adaptive Fisher procedure using partial sum optimized by z-standardization similar to

higher criticism (denoted by AFz hereafter): TAFz = max1≤j≤K
−

∑j
i=1 log p(i)−

∑n
i=1 w(j,i)√∑n

i=1 w
2(j,i)

, where

w(j, i) = min{1, j/i}. Let F̄χ2
2j
(t) = 1−Fχ2

2j
(t), where Fχ2

2j
(t) denotes the CDF of a chi-squared

random variable with degrees of freedom 2j. Li and Tseng (2011) proposed an adaptive Fisher

procedure using partial sum optimized by the corresponding pseudo/surrogate “p-values”(denoted

by AFs hereafter): TAFs = max1≤j≤K − log(h(p⃗, j)). Here h(p⃗, j) = F̄χ2
2j
(−2

∑j
i=1 log p(i)) is

the corresponding surrogate “p-value” of the partial sum, which is not a true and valid p-value

but a surrogate for fast computation by importance sampling (Huo et al., 2020). Instead of us-

ing the surrogate p-values in AFs, Yu et al. (2009) proposed the adaptive rank truncated product

(ARTP) method that is based on the exact p-values of the partial sum (denoted by AFp hereafter):

TAFp = max1≤j≤K − log(hj(p⃗, j)), where hj(p⃗, j) = 1−Gj(−2
∑j

i=1 log p(i)) with Gj(t) denotes

the CDF function of −2
∑j

i=1 log p(i) under the null. For computation, Yu et al. (2009) proposed

an algorithm that requires large storage memory to achieve manageable computing.

Another related strategy in the literature is to directly filter out p-values greater than a user-

specified threshold τ ∈ (0, 1]. For example, the truncated Fisher with hard-thresholding (denoted

by TFhard) TTFhard(τ) =
∑K

i=1− log(pi)I{pi≤τ} (Zaykin et al., 2002), where I{·} denotes the in-

dicator function. Zhang et al. (2020b) proposed truncated Fisher with soft-thresholding (TFsoft)

to improve TFhard, arguing that the continuous soft-thresholding scheme can lead to more sta-

ble performance with varying input p-values. In both TFsoft and TFhard, the choice of τ is not

straightforward. Zhang et al. (2020b) investigated the optimal choice of τ for TFhard under a the-

oretical setting of Gaussian mixture, where mixture probability and mean of the signals are known

and K → ∞. However, such prior information is generally unknown in applications. To this end,

they replaced a single user-specified τ with a user-specified set of thresholds T and proposed two

omnibus tests for TFhard and TFsoft, which alleviate the issue of choosing τ to some extent but
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the selection of T is still prespecified and ad hoc.

Another line of research in p-value combination incorporates weighting in the procedure. For

example, Xu et al. (2016) proposed an adaptive two-sample test for high-dimensional means, which

can be regarded as a weighted test. Liptak’s test (Lipták, 1958) can be considered as Stouffer’s

method with weights and is commonly referred to as the weighted z-test. Won et al. (2009) esti-

mated the best weights for Liptak’s method from a simple alternative hypothesis assuming expected

effect size. Different choices of weights for z-test are suggested by other researchers, including

Mosteller and Bush (1954) and Zaykin (2011). In addition to the weighted z-test (Liptak’s test),

many tests constructed by the sum of transformed p-values also have a weighted version. For

example, the Cauchy and harmonic mean tests were originally proposed with weights and in this

chapter we use the version of equal weights (Wilson, 2019a; Liu et al., 2019; Liu and Xie, 2020).

For another example, Chen et al. (2014) proposed a test of combining p-values based on the sum

of inverse gamma distribution, which can also be regarded as a weighted test in the sense that it

gives larger “weights” to smaller p-values. In fact, AFs and AFp can be considered as an adap-

tively weighted method using binary weights and TFsoft (Zhang et al., 2020b) can be viewed as

thresholding and weighting of the Fisher method.

Notwithstanding the active development of modified Fisher methods, there is a lack of compre-

hensive and systematic evaluation of the asymptotic properties and finite-sample numerical perfor-

mance of the methods in the first category. Our chapter sets out to fill this gap. In Section 2.2, we

examine asymptotic Bahadur optimality (ABO) of 7 methods in the first category: Fisher, Stouffer,

AFs, AFz, AFp, TFhard, and TFsoft. The two adaptive Fisher methods, AFs and AFz, provide es-

timates of the subset of p-values contributing to the signal. Therefore, we also investigate whether

the estimates in these two methods consistently select the subset of p-values containing true sig-

nals (signal selection consistency). For completeness, we also examine asymptotic efficiencies for

methods developed for sparse signals, including Cauchy, Pareto family, minimum p-value (minP),

BJ, and HC. In Section 2.3, we perform finite-sample numerical evaluations to compare statistical

power of these methods under different K, signal strength, and proportions of true signals. Results

of Sections 2.2 and 2.3 conclude complementary advantages of 2 top performers – Fisher and AFp

–, especially in varying proportions of true signals. Consequently, we develop a Fisher ensemble

(FE) method in Section 2.4 that applies a harmonic mean ensemble approach to combine Fisher
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and AFp. We prove asymptotic Bahadur optimality of FE (Section 2.4.2) and demonstrate its con-

sistently high performance in varying simulation scenarios (Section 2.4.3). Section 2.5 develops an

extension of the FE method, namely FECS, for enhanced statistical power on detecting signals with

concordant effect size directions. Section 2.6 applies FE and FECS as well as existing methods to

a transcriptomic meta-analysis on biomarker and pathway detection for aging (Zahn et al., 2007).

Section 2.7 provides final discussion and conclusion.

2.2 Asymptotic Efficiencies of Existing Methods

This section investigates the asymptotic efficiencies of existing p-value combination methods.

Since our focus is on the scenarios with independent and non-sparse signals inside a finite number

of p-values, we slightly generalize the setup proposed in Littell and Folks (1973) (differences are

discussed in Remark 2.1), which uses the criterion of exact Bahadur relative efficiency (Bahadur,

1967b). Under this setting, Fisher’s method is asymptotically Bahadur optimal (Littell and Folks,

1973) and shows theoretical advantages of log-transformation. Multiple modified Fisher’s methods

(AFs, AFp, AFz, TFhard, and TFsoft) have been developed to improve finite-sample statistical

power, but their asymptotic efficiencies have not been investigated. Section 2.2.1 introduces the

problem setting and defines the exact slope of a hypothesis test, which is a natural concept derived

from the exact Bahadur relative efficiency. Section 2.2.2 presents asymptotic Bahadur optimality

(ABO) results of the 5 modified Fisher’s methods.

2.2.1 Bahadur Relative Efficiency and Exact Slope

We first introduce the concept of exact slope of a hypothesis test (Bahadur, 1967b; Littell and

Folks, 1973). Consider (x1, x2, · · · ) an infinite sequence of independent observations of a random

variable X from probability distribution Pθ with parameter θ ∈ Θ. Let Tn be a real-valued and

continuous test statistic depending on the first n observations (x1, . . . , xn), where large values

of Tn are considered to reject the null hypothesis. Assume that the probability distribution of

Tn is the same for ∀θ ∈ Θ0, which leads to Pθ(Tn < t) = P0(Tn < t) for all θ ∈ Θ0 and
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assume 1− P0(Tn < t) is uniformly distributed on [0, 1] (Littell and Folks, 1973). Further denote

p(n) = 1− Fn(tn) as the p-value of observed Tn = tn, where Fn(t) = P0(Tn < t). We then define

the exact slope of Tn as follows.

Definition 2.1. For the test statistic Tn with p-value p(n), if there is a positive valued function c(θ),

such that for any θ ∈ Θ − Θ0, − 2
n
log p(n) → c(θ) as n → ∞ with probability one. Then c(θ) is

called the exact slope of Tn.

As a simple example, consider testing for zero mean (µ = 0) with known variance under

univariate Gaussian distribution and Tn is the conventional z-test. It is easily seen that c(µ) = µ2

is the exact slope of the z-test. For more examples, see Abrahamson (1967); Bahadur (1967a).

Exact slope of a test naturally connects to the exact Bahadur efficiency between test statistics.

Consider two sequences of test statistics {T (1)
n } and {T (2)

n } testing the same null hypothesis with

exact slopes c1(θ) and c2(θ) respectively. We define the ratio ϕ12(θ) = c1(θ)/c2(θ) as the exact

Bahadur relative efficiency of {T (1)
n } relative to {T (2)

n }, which compares the relative asymptotic

efficiency between two test statistics. Indeed, considering any significance level α > 0, for i = 1, 2,

denote N (i)(α) as the smallest sample size such that, for any n ≥ N (i)(α), the p-value of T (i)
n is

smaller than α, one can show with probability one that limα→0N
(2)(α)/N (1)(α) = ϕ12(θ), which

asymptotically characterizes the ratio of the smallest sample sizes of two test statistics required to

attain the same sufficiently small significant level α (Littell and Folks, 1973).

For θ ∈ Θ0, the p-value p(n) follows uniform distribution Unif(0, 1). Lemma 2.1 shows the

analogous “exact slope” −(2/n) log p(n) converges to zero with probability one.

Lemma 2.1. For θ ∈ Θ0, as n diverges, −(2/n) log p(n) → 0 with probability one.

The proof of Lemma 2.1 can be found in Supplement Section A.2.1. In this chapter, we extend

the definition of exact slope to the null parameter space, where c(θ) = 0 for θ ∈ Θ0.

To benchmark the asymptotic efficiency of a p-value combination method, we then introduce

the theoretical setup adopted from the framework in Littell and Folks (1973). Suppose we have

K < ∞ sequences of test statistics {T (1)
n1 }, . . . , {T

(K)
nK } for testing θi ∈ Θ

(i)
0 for 1 ≤ i ≤ K. As-

sume for all the sample sizes n1, . . . , nK , and when θi ∈ Θ
(i)
0 for 1 ≤ i ≤ K, {T (1)

n1 }, . . . , {T
(K)
nK }

are independently distributed. Denote p
(ni)
i as the p-value of the i-th test statistic T

(i)
ni . For each

1 ≤ i ≤ K, assume that the sequence {T (i)
ni } has exact slope ci(θi) as −(2/ni) log p

(ni)
i →
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ci(θi) ≥ 0 with probability one as ni → ∞. We further assume the sample sizes n1, . . . , nK

satisfy n = (1/K)
∑K

i ni and limn→∞(ni/n) = λi, where λi > 0 and
∑K

i λi = K. Under the

above setup, the goal of any p-value combination method is to test

H0 : ∩K
i=1

{
θi ∈ Θ

(i)
0

}
versus H1 : ∪K

i=1

{
θi ∈ Θ(i) −Θ

(i)
0

}
. (2.1)

For simplicity, we assume under the null

λ1c1 (θ1) ≥ λ2c2 (θ2) ≥ . . . ≥ λKcK (θK) ≥ 0,

where the first ℓ p-values have true signals (i.e., θi’s belong to Θ(i)−Θ
(i)
0 for 1 ≤ i ≤ ℓ) with exact

slopes ci(θi) > 0, while ci(θi) = 0 for the remaining θi ∈ Θ
(i)
0 , ℓ+ 1 ≤ i ≤ K.

Remark 2.1. There are 2 differences between the original setup in Littell and Folks (1973) and

ours. First, Littell and Folks (1973) assumed that all the studies have strictly positive exact slopes,

while we allow some studies to have zero-valued exact slopes. Second, Littell and Folks (1973)

considered a general parameter space Θ while we consider a product of parameter spaces Θ(1) ×

Θ(2)×· · ·×Θ(K). Although differences exist, one can still establish the results in Littell and Folks

(1973) by combining their arguments with Lemma 2.1.

Following Theorem 2 and arguments in Section 4 in Littell and Folks (1973), under the alter-

natives, the maximum attainable exact slope for any p-value combination method is
∑ℓ

i=1 λici(θi).

Hence we define the asymptotic Bahadur optimality (ABO) of a p-value combination method as

follows.

Definition 2.2. Denote θ⃗ = (θ1, . . . , θK). Under the above setup, a p-value combination test

H(p1, . . . , pK) is asymptotically Bahadur optimal (ABO) if its exact slope CH(θ⃗) satisfies CH(θ⃗) =∑ℓ
i=1 λici(θi).
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2.2.2 Asymptotic Bahadur Optimality Property of P-Value Combination Methods

Littell and Folks (1973) showed that Fisher test is ABO while Stouffer and minP tests are not.

Except for these methods, there is a lack of asymptotic efficiency analysis of the other methods.

This subsection focuses on discussing 5 modified Fisher methods: AFs, AFp, AFz, TFhard, and

TFsoft. We additionally analyze 5 methods designed for combining sparse and weak signals:

Cauchy, Pareto, BJ, and HC. As expected, the latter 4 tests do not enjoy ABO property, and the

proofs are outlined in the supplement. The theoretical results of ABO, exact slope, and signal

selection consistency (to be discussed in Theorems 2.4 and 2.5 and Remarks A3, A5, and A6)

are summarized in Table 2.1.

Table 2.1: Results of asymptotic properties of 12 p-value combination methods: Fisher, Stouffer, 5

modified Fisher (AFs, AFp, AFz, TFhard and TFsoft) and 5 methods designed for sparse and weak

signal (Cauchy, Pareto, minP, BJ and HC).

Methods ABO Exact slopes Signal selection
consistency

Proofs

Fisher Yes
∑ℓ

i=1 λici(θi) – Theorem A1

Stouffer No 1
K

[∑ℓ
i=1(λici(θi))

1
2

]2
– Theorem A1

AFs Yes
∑ℓ

i=1 λici(θi) Yes Theorems 2.1 & 2.4
AFp Yes

∑ℓ
i=1 λici(θi) Yes Theorems 2.2 & 2.5

AFz No ≤ maxj≤ℓ

√∑K
i=1 min2{1,1/i}

∑K
i=1 λici(θi)√∑K

i=1 min2{1,j/i}
No Theorem 2.3

TFhard Yes
∑ℓ

i=1 λici(θi) – Theorem 2.6
TFsoft Yes

∑ℓ
i=1 λici(θi) – Theorem 2.6

Pareto No maxi λici (θi) – Theorem A2
Cauchy No maxi λici (θi) – Theorem A3
minP No maxi λici (θi) – Littell and Folks (1973)
BJ No maxi iλici (θi) No Theorem A4
HC No – No Proposition A1

Recall that Fisher and the 5 modified Fisher methods combine p-values using the following
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test statistics:

TFisher =
K∑
i=1

−2 log p(i); TAFz = max
1≤j≤K

−
∑j

i=1 log p(i) −
∑K

i=1w(i, j)√∑K
i=1w

2(i, j)
;

TAFs = max
1≤j≤K

− log(F̄χ2
2j
(−2

j∑
i=1

log p(i))); TAFp = max
1≤j≤K

− log(hj(p⃗, j));

TTFhard(τ) =
K∑
i=1

(−2 log pi)I{pi≤τ}; TTFsoft(τ) =
K∑
i=1

(−2 log pi + 2 log τ)+.

Here w(i, j) = min{1, j/i}. In addition, τ ∈ (0, 1] is a user-specified constant for the two trun-

cated Fisher methods and (x)+ denotes max(x, 0).

All the 6 methods can be characterized in the form of H(− log p1, . . . ,− log pK) by some func-

tion H(·). With the log-transform on p-values as a key ingredient, the above methods potentially

can achieve high asymptotic efficiency. Indeed, combining with Lemma 2.1, by using almost the

same arguments in Littell and Folks (1973), one can show that Fisher test attains ABO, presented

in Theorem A1 for completeness.

Although achieving high asymptotic efficiency, the Fisher test has been shown to have poor

performance empirically when only small part of p-values contain signals (e.g., 2 out of 10 p-

values have signals); see Song et al. (2016) and Li and Tseng (2011) for more discussions. Many

modified Fisher methods have been proposed to address this problem (Zaykin et al., 2002; Yu

et al., 2009; Kuo and Zaykin, 2011; Zhang et al., 2020b; Li and Tseng, 2011; Song et al., 2016).

The idea is to filter out large p-values that are less likely to carry signals and reduce the impact of

noise, while still using the log-transformation on p-values to achieve high efficiency. Particularly,

AFs, AFp and AFz combine the first m smallest ordered p-values. All the three methods use

some optimization criterion that adaptively selects m to achieve superior finite-sample power in

varying proportions of signals. Whether AFs, AFp, and AFz retain the ABO property of Fisher is

an intriguing question and is investigated below. In fact, we will surprisingly find in the following

three theorems that AFs and AFp are ABO, but AFz is not.

Theorem 2.1 (AFs is ABO). Under the setup in Section 2.2.1, TAFs is similar to Fisher test to be

ABO with exact slope CAFs(θ⃗) =
∑ℓ

i=1 λici(θi).
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Theorem 2.2 (AFp is ABO). Under the setup in Section 2.2.1, TAFp is similar to Fisher test to be

ABO with exact slope CAFp(θ⃗) =
∑ℓ

i=1 λici(θi).

Theorem 2.3 (AFz is not ABO). Under the setup in Section 2.2.1, consider the following test

statistic TA = max1≤j≤K
−2

∑j
i=1 log p(i)−Aj

Bj
, where Bj > 0 and Aj are some finite constants only

depend on j and K. Assume there is no tie for
∑j

i=1 λici(θi)

Bj
, j=1,....,K, and Bj is monotonic increas-

ing. Then TA is not ABO with exact slope

CA(θ⃗) ≤ max
1≤j≤ℓ

(B1/Bj)

j∑
i=1

λici(θi).

The equality holds if and only if ℓ = 1 (i.e., there is only one signal inside the K p-values).

By taking Aj = 2
∑K

i=1w(j, i) and Bj = 2(
∑K

i=1w
2(j, i))

1
2 , TA reduces to TAFz, indicating

that AFz is not ABO in general (e.g., a special case that AFz is ABO is when ℓ = 1).

The better asymptotic efficiency properties of AFp and AFs compared to AFz may be due to

its attempt to estimate the subset of p-values with true signals. Consider the equivalent form of

AFs for combining independent p-values:

T ′
AFs = min

w⃗
F̄χ2

2(
∑K

i=1
wi)

(−2
K∑
i=1

wi log pi),

where w⃗ = (w1, . . . , wK) ∈ {0, 1}K is the vector of binary weights that identify the candidate

subset of p-values with true signals. Note that T ′
AFs is the original form proposed in Li and Tseng

(2011). Denote by ˆ⃗w = argminw⃗ F̄χ2

2(
∑K

i=1
wi)

(−2
∑K

i=1wi log pi) and let

w⃗∗ = {(w∗
1, · · · , w∗

K) : w
∗
k = 1 if θi ∈ Θ−Θ0 and w∗

k = 0 if θi ∈ Θ0}

be the indicators of the true signals We can show signal selection consistency of AFs in the follow-

ing theorem.

Theorem 2.4 (signal selection by AFs is consistent). Under the setup in Section 2.2.1, ˆ⃗w → w⃗∗ as

n → ∞ in probability for the AFs test.

Theorem 2.5 (signal selection by AFp is consistent). Under the setup in Section 2.2.1, AFp can

select true subset of p-values by selecting p(1), . . . , p(ĵ), where

ĵ = argmax
1≤j≤K

− log(hj(p⃗, j)).
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The following Theorem 2.6 states that for any given value of τ ∈ (0, 1], TFhard and TFsoft are

ABO:

Theorem 2.6 (TFhard and TFsoft are ABO). Under the setup in Section 2.2.1, TFhard and TFsoft

are ABO with exact slopes CTFhard(θ⃗) = CTFsoft(θ⃗) =
∑ℓ

i=1 λici(θi).

Although TFhard and TFsoft are ABO, the choice of τ may significantly impact their finite-

sample performance (Zhang et al., 2020b). To address this issue, Zhang et al. (2020b) proposed

the following omnibus tests for both methods (denoted by oTFhard and oTFsoft, respectively):

ToTFhard = min
τ∈T

1− FUTFhard(τ)(TTFhard(τ))

ToTFsoft = min
τ∈T

1− FUTFsoft(τ)(TTFsoft(τ)),

where T = {τ1, . . . , τm} is a user-specified set of the candidates of τ . Here UTFhard(τ) and

UTFsoft(τ) denote the random variables that follow the null distributions of TTFhard(τ) and TTFsoft(τ),

respectively. Although the omnibus tests alleviate the issue of sensitivity of the choice of τ for both

TFhard and TFsoft to some extent, selection of T is still user-specified and subjective. In addition,

Zhang et al. (2020b) derive the null distributions of both omnibus tests in an asymptotic sense as

K → ∞, which may not be accurate for small K with small p-value thresholds that are commonly

used in applications, such as genomics studies, to handle multiplicity.

Proofs of theorems for Fisher and modified Fisher methods in this subsection can be found in

Supplement Section A.2.1. For completeness, we also show that methods designed for combining

sparse and weak signals, such as Cauchy, Pareto, BJ and HC, are not ABO (Supplement Section

A.1) and the proofs are available in Supplement Section A.2.3. In conclusion, Fisher, AFs, AFp,

TFhard and TFsoft are the only 5 methods with ABO property. AFs, AFp, and AFz are the 3

methods to provide signal selection (i.e., subset estimation of the true signal) and AFs and AFp are

the only two methods to have consistency in the signal identification.

2.3 Power Comparison in Finite-Sample Simulations

Although Section 2.2 evaluates asymptotic efficiencies of p-value combination methods, the

finite-sample statistical power of the methods under different proportions of signals has not been
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assessed. In this section, we evaluate 7 methods that are designed for non-sparse signal setting de-

scribed in Section 2.2: Fisher, Stouffer, AFs, AFp, AFz, TFhard, and TFsoft. Additionally, we also

evaluate methods designed for combining sparse and weak signals for completeness: minimum p-

value (minP), Cauchy (CA), harmonic mean (HM), Berk & Jongs (BJ), and higher criticism (HC).

As TFhard and TFsoft are sensitive to the choice of tuning parameter τ , for a fair comparison, we

use the corresponding omnibus tests, oTFhard and oTFsoft, instead. The tuning candidate set T is

set to be {0.01, 0.05, 0.5, 1}, which is used in the original paper (Zhang et al., 2020b).

For better illustration, we first present the results of the 7 methods designed for combining non-

sparse signals in Figures 2.1 and S1. Results comparing all 12 methods can be found in Supplement

Figures A2 and A3, where modified Fisher’s methods generally dominate other methods designed

for sparse and weak signals unless the signals are indeed sparse and weak (e.g., cases of ℓ/K ≤ 0.1

in Figure A3). However, in such cases, methods such as AFp and AFz still have comparable power

with the top-performing methods such as minP.

We simulate X = (X1, . . . , XK)
D∼ N(µ⃗, IK), where µ⃗ = (µ1, µ2, . . . , µK) contains ℓ non-

zero signals µ1 = · · · = µℓ = µ0 and K − ℓ with no signal (µℓ+1 = · · · = µK = 0). We evaluate

for a wide range of K = 10, 20, 40, 80. For each K, we vary proportions of true signals ℓ/K:

ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9. We also vary µ0 = 0.5, 0.65, . . . , 6 for a broad range of signal

strength. The p-values are calculated by two-sided test pi = 2(1− Φ(|Xi|)) for i = 1, . . . , K. For

each combination of parameter values, we draw 106 Monte Carlo samples to calculate the critical

values for all the methods at a given significance level α, since the p-value calculation algorithms

for some methods, such as oTFsoft and oTFhard, are not accurate for small K.

Figure 2.1 shows the empirical power of Fisher, Stouffer, and 5 modified Fisher methods with

varying proportions of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 at significance level α = 0.01. For

a given K and proportion of signals ℓ/K, we choose the smallest µ0 such that the best method

has at least 0.5 statistical power, which allows optimized visualization and comparison of different

methods in different signal settings. We first note that AFz is inferior to the other modified Fisher

methods, consistent with our theoretical result that AFz is not ABO. We further note that AFs,

AFp, oTFhard, and oTFsoft have comparable performance across varying proportions of signals.

Fisher outperforms all other methods for detecting frequent signals (e.g., when the proportion of

true signals is greater than 0.3).
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Although the case of combining a small number of strong signals is not our primary focus,

out of curiosity and for a more comprehensive evaluation of existing methods, we simulate the

alternatives with fixed numbers of true signals ℓ = 1, 2, . . . , 6 for K = 20, 40, 80 following the

above simulation scheme. Figure A1 shows the empirical power of Fisher, Stouffer, and 5 modified

Fisher methods with varying numbers of signals ℓ = 1, 2, . . . , 6 at α = 0.05. Similarly, for

a given K and ℓ, we choose the smallest µ0 such that the best method has at least 0.9 statistical

power. Clearly, this simulation setting focuses more on the performance of combining less-frequent

but relatively strong signals. We note that AFz, AFp, and oTFsoft have comparable statistical

power across varying numbers of true signals, followed by AFs and oTFhard. While Fisher, is

significantly inferior than the modified Fisher’s methods when ℓ is much smaller than K (e.g.,

ℓ ≤ 3 for K = 20, 40, 80).

In many real applications (e.g., the transcriptomic meta-analysis in Section 2.6), the p-value

combination test is repeated many times (i.e., for each gene). It is expected that some true biomark-

ers are more homogeneous with frequent true signals and some with less-frequent signals. The

results in Figures 2.1 and S1 show the need to develop an ensemble method to integrate the advan-

tages of Fisher and one of the top-performing modified Fisher methods, which is presented in the

next section.

2.4 Fisher Ensemble to Combine Fisher and AFp

As shown in Sections 2.2 and 2.3, Fisher and 4 modified Fisher methods (AFs, AFp, TFhard,

and TFsoft) are ABO, and have complementary strength in finite-sample evaluation of varying

proportions and numbers of true signals. A natural idea is to ensemble Fisher and one of the 4

modified Fisher methods for more stable and universally competitive performance. Since oTFhard

and oTFsoft methods require an ad hoc decision of user-specified set T and their existing comput-

ing algorithms are not accurate for small K, we choose to develop an ensemble method to combine

Fisher and AFp in this section. In Section 2.4.1, we propose an ensemble approach, namely Fisher

ensemble (FE), using the harmonic mean method (Wilson, 2019a; Fang et al., 2023a) to combine

Fisher and AFp. In section 2.4.2, we provide theoretical support of FE and show that FE is ABO.
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Figure 2.1: Statistical power of Fisher, Stouffer, and 5 modified Fisher’s methods at significance

level α = 0.01 across varying frequencies of signals ℓ/K = 0.1, 0.2, . . . , 0.9 and varying numbers

of combined p-values K = 10, 20, 40, 80. The standard errors are negligible compared to the scale

of the mean power (smaller than 0.1% of the power) and hence omitted. The results of Stouffer

with power smaller than 0.25 are omitted.
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Section 2.4.3 presents simulation results similar to Section 2.3 to demonstrate the balanced and

superior performance of FE across varying proportions of true signals.

2.4.1 Fisher Ensemble by Harmonic Mean Integration

Denote by pFisher and pAFp the p-values derived from Fisher and AFp combination tests, re-

spectively. We propose to ensemble the two methods by combining their p-values using Th =

[h(pFisher) + h(pAFp)]/2 with function h. Since pFisher and pAFp can be highly dependent, one option

is to use the Cauchy combination test with h(p) = tan(π(1
2
− p)), as theorems and simulations

in Liu and Xie (2020) and Liu et al. (2019) show that the Cauchy combination test is robust to

dependency of combined p-values, and further results in a fast-computing algorithm with Cauchy

distribution under the null hypothesis (i.e., the null distribution is standard Cauchy). This Cauchy

ensemble approach is, however, problematic when either pFisher or pAFp is close to 1. In this case,

the Cauchy transformation generates a −∞ score and the power is greatly reduced. We propose to

use the harmonic mean method (Wilson, 2019a), h(p) = 1/p, in our Fisher ensemble (FE) method

by

TFE = (1/2)[1/pFisher + 1/pAFp], (2.2)

where the harmonic mean method has been shown to be approximately equivalent to Cauchy in

(Fang et al., 2023a). When p-value p follows Unif(0, 1), the reciprocal of p follows Pareto dis-

tribution Pareto(1, 1) with both the scale and shape parameters equal to 1. The purpose of using

reciprocal of p-values instead of h(p) is to avoid the large negative score issue of the transformation

by Cauchy distribution described above; also see Fang et al. (2023a) for more details. Except for

avoiding large negative score issue, ensemble by harmonic mean using the reciprocal of p-value

1/p performs almost identically to Cauchy h(p). Supplement Section A.3.7 provides numeric

results where the ensemble method using harmonic mean performs better than that using Cauchy

combination test.

In the implementation, FE is fully data-driven with fast-computing algorithms. Indeed, for

p1, . . . , pK
i.i.d.∼ Unif(0, 1), null distribution of Fisher test follows chi-squared distribution with

degrees of freedom 2K. For p-value calculation for AFp, Yu et al. (2009) proposed an empirical
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approach to avoid cumbersome two-layer permutation. Finally, Theorems 1 and 2 in Fang et al.

(2023a) have shown that the harmonic approach using the reciprocal of p-values can have robust

type I error control if we naively use the Pareto distribution Pareto(1, 1) as the null distribution (see

Supplement Section 1.2 for more details). As a result, fast p-value computation for Fisher ensemble

TFE is warranted. Table A1 in Section A.3.1 justifies the above fast-computing procedure, where

we show the type I error control for FE is accurate for α ≤ 0.05 across a broad range of 5 ≤ K ≤

100.

2.4.2 Asymptotic Efficiency of Fisher Ensemble

In this subsection, we will show that Fisher ensemble (FE) is asymptotically Bahadur optimal

(ABO). We first introduce a heavy-tailed distribution family, namely regularly-varying distribu-

tion R (Mikosch, 1999), where Cauchy and Pareto distributions are special cases of the family.

Consider an ensemble method induced by a regularly-varying distribution (e.g., Pareto(1, 1) for

1/p in our case) to combine multiple p-value combination methods (e.g., Fisher and AFp in our

case). The ensemble method will be shown to be ABO if at least one of the p-value combination

methods is ABO. Since both Fisher and AFp are ABO and Pareto(1, 1) (corresponding to 1/p) is

a regularly varying distribution, we conclude that Fisher ensemble is also ABO. Below, we outline

the definition of regularly-varying distribution and the theorem. The detailed proof is available in

Supplement Section A.2.2.

Definition 2.3. A distribution F is said to belong to the regularly-varying tailed family with index

γ (denoted by F ∈ R−γ) if limx→∞
F̄ (xy)

F̄ (x)
= y−γ for some γ > 0 and all y > 0.

We denote the whole family of regularly varying tailed distributions by R. For two positive

functions u(·) and v(·), we write u(t) ∼ v(t) if limt→∞
u(t)
v(t)

= 1. It can be shown that every

distribution F belonging to R−γ can be characterized by F̄ (t) ∼ L(t)t−γ, where F̄ (t) = 1− F (t)

and L(t) is a slowly varying function. A function L is called slowly varying if limy→∞
L(ty)
L(y)

= 1

for any t > 0. Regularly varying distribution is a wide class of heavy-tailed distributions, which

includes Cauchy, Pareto(1, 1) (harmonic mean), and general Pareto distributions.

Consider L < ∞ p-value combination test statistics T1, . . . , TL. Denote by pT1 , . . . , pTL
the

resulting p-values of T1, · · · , TL. In Fisher ensemble, we have L = 2 and (T1, T2) are Fisher and
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AFs. Under Definition 2.3, consider the following ensemble method by a regularly varying tailed

distribution:

TRV(γ) =
L∑
i=1

gγ(pTi
) =

L∑
i=1

F−1
U(γ)(1− pTi

),

where FU(γ) is CDF of U(γ) and U(γ) ∈ R−γ . Under the null hypothesis, the test statistic trans-

forms all the pTi
’s into regularly varying tailed random variables with index γ. The following

theorem suggests that under mild conditions, the ensemble method by regularly varying tailed

distribution has ABO property.

Theorem 2.7. For each i = 1, . . . , L, let Ci(θ⃗) be the exact slope of Ti and assume max1≤i≤LCi(θ⃗) >

0. Let C(γ)
RV (θ⃗) be the exact slope of TRV(γ), if one of the following two conditions holds: (C-1)

F−1
U(γ)(1−p) is bounded below: F−1

U(γ)(1−p) ≥ ν for some constant ν and ∀p ∈ [0, 1]; (C-2) All the

Ti’s have non-zero exact slopes: min1≤i≤L Ci(θ⃗) > 0. then we have C
(γ)
RV (θ⃗) = max1≤i≤L Ci(θ⃗).

Remark 2.2. As 1/p (reciprocal of p-value) is bounded below while h(p) (Cauchy) is not, using

1/p rather than h(p) can satisfy Condition (C-1) in Theorem 2.7. In general, if Condition (C-1)

is not satisfied, Condition (C-2) is a mild condition (meaning all tests Ti are at least minimally

effective and have non-zero slope) but Condition (C-2) is not always easy to check or satisfied in

practice. For example, when we aggregate methods combining left one-sided p-values and right

one-sided p-values in Section 2.4, methods only combining left one-sided p-values will produce

p-values converging to one when there exist only positive effects. See Section 2.5 and Supplement

Section A.3.7 for more details.

Theorem 2.7 suggests that TRV(γ) is ABO as long as at least one of T1, . . . , TL methods is

ABO. Consequently, Fisher ensemble is ABO since Pareto(1, 1) (corresponding to 1/p) belongs to

regularly-varying tailed distribution and both Fisher and AFp are ABO.

2.4.3 Finite-Sample Power Comparison of Fisher Ensemble

In this subsection, we evaluate the finite-sample power of FE. To illustrate that FE can take

advantages of integrated methods, we also include AFs and Fisher as the baseline methods. We

use the same simulation scheme in Section 2.3 to generate the simulated data. Figure 2.2 shows

the statistical power of FE, AFp, and Fisher with varying proportions of true signals ℓ/K =
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0.05, 0.1, 0.2, . . . , 0.9 at α = 0.01. Similar to Figure 2.1, for a given proportion of signals ℓ/K

and number of combined p-values K, we choose the smallest µ0 that allows the best method to

have power larger than 0.5 for Figure 2.2. Figure A4 shows the statistical power of FE, AFp, and

Fisher for combining K = 20, 40, 80 p-values with varying numbers of true signals ℓ = 1, 2, . . . , 6

at α = 0.05. Similar to Figure A1, for a given ℓ and K, we choose the smallest µ0 that allows

the best method to have power larger than 0.9 for Figure A4, which is supposed to focus more on

combining less-frequent but strong signals. As expected, we note that FE has a stable statistical

power that is comparable to the better of Fisher and AFp in different settings with either dense

but weak signals or less frequent but strong signals. Specifically, when the proportion of signals

is high, FE performs close to Fisher and is superior to AFp. When the number of true signals is

small, FE performs close to AFp and outperforms Fisher. In Supplement Figures A5 and A6, we

implement another Fisher ensemble method (FE2) combining Fisher, AFp, and minP. As expected,

its power for only a small number of signals is slightly improved over FE but at the expense of a

large reduction of power when signals are frequent. From the asymptotic efficiency in Section

2.4.2 and simulations above, we recommend using the Fisher ensemble method combining Fisher

and AFp for general applications.

2.5 Detection of Signals with Concordant Directions

2.5.1 Fisher Ensemble Focused on Concordant Signals (FECS)

For all methods we have discussed so far, the global hypothesis setting is designed for two-

sided tests, regardless of the directions of the effects. Recall from Equation 2.1 that the hy-

pothesis testing considered is H0 : ∩K
i=1 {θi = 0} vs H1 : ∪K

i=1 {θi ̸= 0}. Consider the alterna-

tive hypothesis that only the first ℓ p-values have true signals (i.e., θi ̸= 0 for 1 ≤ i ≤ ℓ and

θℓ+1 = · · · = θK = 0). The two-sided tests to obtain pi (1 ≤ i ≤ K) cannot guarantee signals with

concordant directions (sgn(θ1) = · · · = sgn(θℓ), denoted by sgn(·) the sign function), which is

desirable in most applications. For example, when conducting meta-analysis of K transcriptomic

studies believed to be relatively homogeneous, we are interested in identifying biomarkers con-
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Figure 2.2: Statistical power of FE, Fisher, and AFp at significance level α = 0.01 across varying

frequencies of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined p-values

K = 10, 20, 40, 80. The standard errors are negligible and hence omitted.
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cordantly up-regulated or down-regulated. For this problem, Owen (2009) revisited the Pearson

test statistic and proposed to use TPearson = min{p̃Fisher,L, p̃Fisher,R}, where p̃Fisher,L and p̃Fisher,R uses

Fisher to combine the left and right one-sided p-values respectively, and the Pearson test takes

the more significant one as the test statistic. In this subsection, we similarly extend the Fisher

ensemble method to use the harmonic mean approach to combine the two left and right one-sided

p-values of Fisher and AFs (denoted by FECS; Fisher ensemble for concordant signal):

TFECS = (1/4)[1/p̃Fisher,L + 1/p̃Fisher,R + 1/p̃AFp,L + 1/p̃AFp,R].

Remark 2.3. When combining one-sided p-values, it is common to observe p-values close to 1

and it is critical to use harmonic mean, instead of Cauchy, to avoid −∞ scores.

Remark 2.4. Let CL(θ⃗) be the maximum attainable exact slope for any p-value combination

method combining left one-sided p-values, and define CR(θ⃗) in a similar manner for right one-

sided p-values. By Theorem 2.7, the exact slope of FECS is max{CL(θ⃗), CR(θ⃗)}, indicating high

asymptotic efficiency as even if one has prior knowledge of the effect size direction, it is impos-

sible to design a p-value combination method with a larger exact slope for detecting concordant

signals.

For computation, similar to FE, one can use p-value calculation by Pareto(1, 1) to calculate

p-value for FECS. This approximation procedure is justified by simulation results in Table A1 in

Section A.3.1 for a broad range of significance levels α and numbers of input p-values K.

2.5.2 Finite-Sample Power Comparison of Fisher Ensemble for Concordant Signals

In this subsection, we evaluate the finite-sample power of FECS. To demonstrate the advantages

of FECS, we also include the regular FE and Pearson as the baseline methods. We use the same

simulation scheme in Section 2.3 to generate the simulated data. For FECS and Pearson, the one-

sided p-values are generated by p̃
(L)
i = 1− Φ(Xi) and p̃

(R)
i = Φ(Xi) (i = 1, . . . , K), respectively.

While for the regular FE, we combine the two-sided p-values pi = 2(1−Φ(|Xi|)) for i = 1, . . . , K.

Figures 2.3 and S7 show the empirical power of FECS, Pearson, and the regular FE. For Figure

2.3, we choose the smallest µ0 that allows the best method to have power larger than 0.5 for a

given proportion of signals ℓ/K and a number of combined p-values K. Both FECS and Pearson
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dominate the regular FE, indicating the former two methods perform better for the alternatives

with one-sided direction consistent effects (as µ1 = . . . = µs = µ0 > 0 under the alternatives).

In addition, FECS has a comparative performance with Pearson for ℓ/K ≥ 0.2 and outperforms

Pearson when ℓ/K < 0.2. For Figure A7, we choose the smallest µ0 that allows the best method to

have power larger than 0.9 for a given number of signals ℓ and a number of combined p-values K.

This is a setting that focuses on the less frequent and strong signals. We note that FECS outperforms

Pearson when the of signals is low (e.g., ℓ ≤ 4).

2.6 Real Application to AGEMAP Data

In this section, we apply different p-value combination methods to analyze the AGEMAP

study (Zahn et al., 2007). The dataset contains microarray expression of 8,932 genes in sixteen

tissues as well as age and sex variables of 618 mice subjects. We are interested in identifying

age-associated marker genes. Following the original paper, we fit the regression model below to

detect age-associated genes in each tissue:

Yijk = β0jk + βage,jkAgeijk + βsex,jkSexijk + εijk for i = 1, . . . ,mjk,

where Yijk is the expression level of the i-th subject for the j-th gene and k-th tissue. For each gene

j, we consider designs of both two-sided and one-sided tests when combining p-values across tis-

sues. In two-sided test design, two-sided p-values (pj1, · · · , pjK) for their corresponding βage,jk

coefficients are combined using Fisher, AFp, and FE methods. In this case, the association di-

rections (positive or negative associations) are not considered. In contrast, one-sided test design

combines left-tailed p-values (p̃Lj1, · · · , p̃LjK) or right-tailed p-values (p̃Rj1, · · · , p̃RjK) respectively

using FECS. Figure 2.4 shows the general workflows of transcriptomic meta-analysis for the j-th

gene with two-sided or one-sided designs. Compared to FE, FECS is expected to have increased

power to detect age-related biomarkers with concordant signals (all positive associated or all neg-

ative associated) across tissues while have reduced power for markers with heterogeneous signals

(i.e., positive associations in some tissues and negative associations in some others). In this appli-

cation, both concordant and heterogeneous age-related biomarkers are of interest. Heterogeneous
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Figure 2.3: Statistical power of FE, FECS, and Pearson at significance level α = 0.01 across varying

frequencies of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined p-values

K = 10, 20, 40, 80. The standard errors are negligible and hence omitted.

30



biomarkers detected by FE can have varying age-association (positive, negative or non-association)

across tissues while concordant biomarkers detected by FECS are tissue-invariant. FE and FECS will

serve as complementary tools for different biological objectives.

Figure 2.5(a) shows Fisher, AFp, and FE p-value combination results in the two-sided test de-

sign. Under q-value≤ 0.05, Fisher detects 576 genes (yellow color) and AFp detects 473 genes

(green color), where Category II (392 genes) represents overlapped detected genes by Fisher

and AFp and Categories I (184 genes) and III (81 genes) represent biomarkers uniquely de-

tected by Fisher or by AFp. The heatmap shows age-association measure defined as: Ejk =

−sign(βage,jk) log(min{p̃Ljk, p̃Rjk}) for gene j on the rows and tissue k on the columns; i.e., the

signed log-transformed (base 10) one-sided p-values. Consequently, red color of Ejk represents a

strong positive association with age while blue means a strong negative association. As expected,

FE combines the strengths of Fisher and AFs to detect 593 genes (purple color) that contain all

genes in Category II and most genes in Categories I and III. By counting the number of tissues

with p-values pjk ≤ 0.05, Supplement Figure A10 shows that category I genes (detected by Fisher

but not by AFp) are age-associated in more tissues, while Category III (detected by AFp but not by

Fisher) are age-associated in fewer tissues, which is consistent to the theoretical insight and simu-

lation result that Fisher is more powerful for detecting frequent signals and AFp is more powerful

for relatively less-frequent signals.

We next perform hierarchical clustering (using 1-correlation between tissues as dissimilarity

measure and complete linkage) for the 16 tissues based on the Ejk values in the 593 age-related

genes detected by FE, and the dendrogram is shown in Figure 2.5(a). By cutting the dendrogram,

5 clear tissue modules of similar age-association patterns are identified: (1) thymus and gonads;

(2) spleen and lung; (3) eye, kidney, and heart (4) hippocampus, adrenal glands, and muscle; (5)

cerebrum and spinal cord (also see Figure 2.5(b) for heatmap of pair-wise correlations). For the first

module, the thymus has long been regarded as an endocrine organ that is closely related to Gonads

and sexual physiology, such as sexual maturity and reproduction. (Grossman, 1985; Leposavić and

Pilipović, 2018). The spleen-lung module is consistent with the finding in Zahn et al. (2007), and

many reports suggest that spleen and lung share a similar aging pattern (e.g., Schumacher et al.

(2008)). For the third module, literature shows that kidney and eye share structural, developmental,

physiological, and pathogenic similarities and pathways. The relationships between age-related
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eye, kidney, and cardiovascular diseases have been widely reported (e.g., Farrah et al. (2020)). For

the fourth module, extensive literature have reported the relationship between adrenal glands and

hippocampal aging (e.g., Landfield et al. (1978)). For the last module, few existing studies have

investigated the aging process of the spinal cord (Knight and Nigam, 2017). But it is reasonable that

the cerebrum and spinal cord might share a similar aging pattern as they both belong to the central

nervous system. On the other hand, the liver has intriguingly negative correlations of aging effects

with muscle, adrenal glands, and several brain regions, such as the hippocampus, cerebellum, and

cerebrum (also see Figure 2.5(b)).

Next, we evaluate FECS for one-sided test design and compare it with FE. We calculate Ssign,j =∑16
k=1 sign(βage,jk)I{min{p̃Ljk,p̃

R
jk}≤0.05} to determine whether the detected concordant aging marker j

is positively associated (Ssign,j > 0) or negatively associated (Ssign,j ≤ 0) and use it to determine

whether a detected marker is dominant with the positive association or negative association. Sim-

ilar to the previous analysis, Figure 2.6 shows age-associated genes detected by FE (593 genes,

Categories II(A), II(B) and III) and FECS (398 genes, Categories I(A), I(B), II(A) and II(B)), where

Categories II(A) and II(B) are overlapped genes detected by FE and FECS, Category III are only

detected by FE and Categories I(A) and I(B) are only detected by FECS. For genes detected by

FECS, Categories I(A) and II(A) are concordant aging markers with positive association (mostly

red) and Categories I(B) and II(B) are negatively associated (mostly blue), which are visually con-

sistent with the heatmap. In contrast, genes in Category III mostly have discordant association

directions (partial red and partial blue). Supplement Figure A11 shows the distributions of Ssign,j

in the gene categories.

At significance level q ≤ 0.05, FECS identifies 184 positively associated genes (Categories I(A)

and II(A)) and 214 negatively associated genes (Categories I(B) and II(B)). We perform Ingenuity

Pathway Analysis (IPA) to these two concordant age-associated gene lists. The result identifies

11 enriched pathways from the 184 positively associated genes and 4 enriched pathways from the

214 negatively associated genes (enrichment p ≤ 0.01). Table A2 shows details of these en-

riched pathways with pathway names, enrichment p-values, and abundant supporting literature of

the pathways related to aging/early development processes (see complete references in Supple-

ment References II). The result shows the advantage of FECS to identify age-associated markers

concordant across tissues and to deliver interpretable biological insights.
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Gene j

Liver Lung Heart Spleen. . . . . .

Test 1 Test 2 Test 15 Test 16. . . . . .

H(pj1, pj2, . . . , pj16) ⇒ p(j).

(a)

Gene j

Liver Lung Heart Spleen. . . . . .

TestL 1, TestR 1 TestL 2, TestR 2 TestL 15, TestR 15 TestL 16, TestR 16. . . . . .

H(p̃Lj1, p̃
L
j2, . . . , p̃

L
j16, p̃

R
j1, p̃

R
j2, . . . , p̃

R
j16) ⇒ p(j).

(b)

Figure 2.4: Procedures of transcriptomic meta-analysis on AGEMAP dataset (two-sided design

(Figure 2.4(a)) and one-sided design (Figure 2.4(b)), where H(·) denotes a chosen p-value combi-

nation method and p(j) denotes the corresponding p-value of H with input p-values. Here pjk is the

two-sided p-value for j-th gene on k-th tissue, and p̃Ljk and p̃Rjk are the left-tailed and right-tailed

p-values for j-th gene on k-th tissue, respectively.
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Figure 2.5: (a) Heatmaps of age-association measure Ejk of significant genes (q ≤ 0.05) detected

in the two-sided test design. Category I: genes detected by Fisher but not AFp; II: genes detected

by both Fisher and AFp; III: genes detected by AFp but not Fisher. (b) Heatmap of pair-wise

correlations between tissues based on the detected genes by FE (q ≤ 0.05.) in (a).
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Figure 2.6: Heatmaps of age-association measure Ejk of genes detected by FECS or by FE (q <=

0.05). Heatmap I(A) represents up-regulated genes detected only by FECS (38 genes); heatmap

I(B) represents down-regulated genes detected only by FECS (53 genes); heatmap II(A) represents

up-regulated genes detected both by FECS and FE (146 genes); heatmap II(B) represents down-

regulated genes detected both by FECS and FE (161 genes); heatmap III represents genes detected

only by FE (286 genes), respectively.

35



2.7 Conclusion and Discussion

P-Value combination is a common and effective information synthetic tool in many scientific

applications. In this chapter, we focus on a scenario of “meta-analysis with unknown heterogene-

ity”, in which the number of combined p-values K is finite and fixed while the sample size for

generating each p-value can increase to infinity (i.e., the first category described in the Introduc-

tion Section). The goal of this category is to aggregate heterogeneous independent signals, where

the proportion of true signals is unknown and can range from 1/K to 1. We emphasize the goal

of this chapter to combine independent and “non-spare” signal and distinguish it from combin-

ing “sparse” signals in the “asymptotic rare and weak (ARW)” model when K → ∞, which is

commonly considered in the second and third categories described in the Introduction Section.

Our contribution is three-fold. Firstly, this is the first study to comprehensively evaluate p-value

combination methods for their asymptotic efficiencies in terms of asymptotic Bahadur optimality

(ABO). We investigate classical methods (Fisher and Stouffer) and modified Fisher’s methods

(AFs, AFp, AFz, TFhard, and TFsoft). The result shows that Fisher, AFs, AFp, TFhard, and TF-

soft are ABO, but Stouffer and AFz are not. We also find interesting consistency properties for the

estimation of signal contributing subset in AFs and AFp (Theorems 2.4 and 2.5). Secondly, we per-

form an extensive finite-sample power comparison and conclude that Fisher and AFp are the 2 top

performers with complementary advantages, where Fisher is more powerful with frequent signals

and AFp is more powerful in relatively sparse settings. Thirdly, we propose a Fisher ensemble (FE)

method to combine Fisher and AFp. A one-sided test modification, FECS, is further developed for

detecting concordant signals. The advantages of FE and FECS includes: (A) Both methods have

high asymptotic efficiencies (FE is ABO). (B) The harmonic mean combination avoids the −∞

score in the Cauchy. (C) We numerically demonstrate their constantly high performance across

varying proportions of signals. (D) Both methods have fast-computing procedures. Finally, an

application to AGEMAP transcriptomic data verifies theoretical conclusions, demonstrates supe-

rior performance of FE and FECS, and discovers intriguing biological findings in age-associated

biomarkers and pathways.

Modern data science faces challenges from data heterogeneity, increasingly complex data

structure, and the need for effective methods for new scientific hypotheses. The ensemble methods
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proposed in this chapter, FE and FECS, have solid theoretical and numerical support for their su-

perior performance in a wide range of signal settings. We believe the methods will find impactful

applications in many other scientific problems.
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3.0 Adaptive Fisher’s Method using Weakly Geometric Grid for Combining P-Values

3.1 Introduction

Combining p-values to aggregate information is of long-lasting interest in meta-analysis. The

strategy is to construct a global test using a group of input p-values p1, . . . , pn for detecting

the existence of signals. Classical approaches include Fisher’s method (Fisher, 1992): TFisher =∑n
i=1−2 log pi, Edgington’s method (Edgington, 1972): TEdgington =

∑n
i=1 pi, and Stouffer’s method

(Stouffer et al., 1949): TStouffer =
∑n

i=1Φ
−1(pi), where Φ is the CDF of standard normal distribu-

tion. Including the above methods, most conventional approaches can be formulated as the sum

of certain transformed p-values (see, e.g., Heard and Rubin-Delanchy (2018) for further details).

Among these approaches, Fisher’s method is asymptotically optimal in terms of Bahadur relative

efficiency for detecting frequent signals within a small number of p-values (Littell and Folks (1971,

1973)), illustrating the theoretical superiority of log-transformation of p-value.

However, modern big data analysis promotes the need for detecting sparse signals within a

large collection of p-values. One motivating example is to detect a small fraction of signals by

combining p-values of a large number of SNPs within a SNP-set (e.g., hundreds to thousands of

SNPs in a gene region or in gene regions of a pathway) in the genome-wide association studies

(GWAS) (Su et al., 2016; Hoh et al., 2001). The large-scale data analysis introduces new scenarios

where Fisher’s method is suboptimal. Indeed, Donoho and Jin (2004) showed that under a scenario

of sparse signals in the two-component Gaussian mixture model (approximately n1−β out of n p-

values represent signals, for 1/2 < β < 1), Fisher’s method suffers from substantial power loss.

By contrast, minP (Tippett et al. (1931)), an approach that simply uses the minimum p-value as the

test statistic, is powerful for detecting extremely sparse signals (3/4 < β < 1), while less powerful

for moderate sparse signals (1/2 < β ≤ 3/4).

Intuitively, Fisher’s method tends to incorporate too many noises, while only using a single

minimum p-value as test statistic leads to potentially substantial information loss. One natural

idea is to modify Fisher’s method with a strategy to filter out noises, resulting in methods that

are tailored to the scenarios of sparse signals but still enjoy the advantages of log-transformation.
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Along this line of research, Zaykin et al. (2002) and Zaykin et al. (2007) proposed the truncated

product method (TPM), in which only the p-values below a given threshold τ is taken into account:

TTPM(τ) =
∑n

i=1 −2 log (pi) I{pi≤τ}, where I{·} is the indicator function. Replacing τ by p(ℓ) for

a given ℓ, Dudbridge and Koeleman (2003); Kuo and Zaykin (2011) proposed the rank truncated

product method (RTP), where only the first ℓ-th smallest p-values are selected to form the test

statistics.

The choice of truncation point for RTP and TPM is user-specified and arbitrary, while mis-

specification of the truncation point may lead to substantial power loss. Several adaptive pro-

cedures are proposed to address the problem. For example, Yu et al. (2009) suggested that one

can separately construct multiple RTP statistics using a given collection of candidate truncation

points, and then use the minimum of p-values derived from the RTP statistics. However, the

choice of candidate truncation points set is still arbitrary. Li and Tseng (2011) proposed to cal-

culate the RTP statistics for all possible truncation points 1 ≤ i ≤ n, and choose the one lead-

ing to the minimum upper tail probability of chi-squared distributions (denoted by AFp here-

after), TAFp = min1≤i≤n P(χ2
2i ≥

∑i
j=1−2 log p(j)). However, since the tail of the null distri-

bution of RTP for each i is much heavier than chi-squared distribution, AFp tends to choose

much more than the desired number of p-values to combine. Song et al. (2016) and Heard

(2021) suggested to standardize the n RTP statistics and choose the maximum z-score (denoted

by AFz hereafter), TAFz = max1≤i≤n |(
∑i

j=1− log p(j) −
∑n

j=1w(j, i))/
√∑n

j=1 w
2(j, i)|, where

w(j, i) = min{1, i/j}. This approach searches among all the possible truncation points, leading to

a potential power loss, especially for the moderate sparse case. In addition, there is no theoretical

justification available for AFz. Zhang et al. (2020b) investigated the theoretically optimal choice of

the truncation point of TPM under a setup of two-component Gaussian mixtures with known means

and variances. They further proposed an omnibus test that aggregates multiple TPM statistics for

choosing the truncation points in the real practice (denoted by oTFhard hereafter). One variant

of oTFhard using a soft-thresholding scheme (denoted by oTFsoft hereafter) is also proposed to

improve finite-sample performance of the original omnibus test. However, their theoretical setup

is formulated with the proportion of signals and signal strength (i.e., normal mean) unchanged as n

diverges. Hence, a theoretical analysis using classical asymptotic efficiency theory can be applied.

Such a setup is not a large-scale setting that characterizes heterogeneous and sparse signals we
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consider in this chapter. Furthermore, their omnibus test relies on grid search on a prespecified

truncation point set, and there is no theoretical guarantee of its performance.

The primary goal of our chapter is to develop a fully data-driven procedure adopted from

Fisher’s method that is tailored to the scenario of sparse signals. The development of our adaptive

procedure starts from finding a suitable searching strategy of the truncation point for RTP, given

that there is n candidate truncation points in total. By contrast, the choices of the truncation

points of TPM can be uncountable many from the (0, 1) interval. To inspire the development of

our adaptive procedure, we conduct theoretical analysis on RTP and identify the optimal choice

of the truncation point under the Gaussian sequence model setup. The setup is commonly used

for characterizing the pattern of sparse and heterogeneous signals. Under the guidance of the

theoretical results of RTP, we propose our fully adaptive procedure with a searching strategy based

on the weakly geometric system. The weakly geometric system significantly reduces the number of

candidate truncation points from n to a value of order (log n)2, leading to a lighter computational

burden and less power loss than a “searching-all” strategy. Under the same setup, we show our

adaptive procedure achieves almost the same rate-optimal theoretical performance as RTP with

the oracle choice of truncation point. To the best of our knowledge, our method is the first truly

adaptive procedure with theoretical guarantees under a large-scale setting of sparse signals among

all modified Fisher’s methods. Furthermore, we also note that in practice, people tend to assume the

p-values to be exact when using the p-value combination method, although most of the p-values

are derived via some approximations of distributions like the central limit theorem. Noting that

there is little discussion on the impact of the gap, we investigate the robustness properties of our

adaptive method using Studentization-based p-values, given the widely use of original or modified

Studentized statistics in modern statistics, such as statistical genomics and genetics (Tusher et al.,

2001; Smyth, 2004; Love et al., 2014; Marees et al., 2018; Svishcheva et al., 2019). Under mild

moment conditions on the noises, we show that our adaptive method can still optimally distinguish

between the null and alternative hypotheses in the testable region when using Studentization-based

p-values. At the same time, simulations in Section 3.5.2 verify our theoretical insights.

The chapter is structured as follows. We first introduce our adaptive procedure in Section 3.2.

Section 3.3 provides the theoretical justification of our method under a large-scale setup with sparse

signals. Section 3.4 studies the robustness of our method for using Studentization-based p-values.
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Section 3.5 contains extensive simulations to evaluate the performance of our method compared to

other methods, confirming our theoretical results. A GWAS application of neuroticism is provided

in Section 3.6 to compare the performance of different methods and demonstrate the advantages of

our method. Section 3.7 contains final conclusion and discussions.

3.2 The Adaptive Testing Procedure

In this section, we introduce our adaptive testing procedure. Consider n p-values p1, . . . pn

derived from n independent hypothesis tests. Let s be the largest possible number of p-values

that represent true signals such that s ≪ n. As discussed in Section 3.1, Fisher’s method fails in

this setting with a large number of noises since it combines all the p-values and the noises impose

substantial impact on the test statistic. Hence a truncation strategy on the p-values is preferred to

eliminate the impact of noises. One way is to use the RTP:

T (ℓ) =
ℓ∑

i=1

−2 log p(i),

where ℓ is a prespecified truncation point on the rank of p-values. Intuitively, a choice of ℓ that is

much larger than s can introduce too many noises into T (ℓ). At the same time, a choice of ℓ that

is much smaller than s (e.g., 1) can lead to a potential loss of information. With this in mind, a

natural choice of ℓ would be s, which is justified in Section 3.3.

However, it is rare to have prior knowledge of s in real practice. To address this problem, we

propose our adaptive procedure, namely adaptive Fisher based on weakly geometric system (AFg).

We divide our adaptive procedure in the following 3 steps:

Step 1. Denote by ⌈·⌉ the ceiling operator. Generate the candidate set S of s: s0 = 1, s1 = ⌈log n⌉,

s2 = ⌈log n (1 + 1/ log n)⌉, s3 = ⌈log n (1 + 1/ log n)2⌉, . . . , sM = ⌈log n (1 + 1/ log n)M−1⌉,

where M is the smallest integer such that log n (1 + 1/ log n)M−1 ≥
√
n/ log n.

The novel weakly geometric system was rooted and mostly applied in nonparametric statistics to

achieve sharp adaptation, see, e.g., Goldenshluger and Tsybakov (2001); Cavalier and Tsybakov
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(2002); Tsybakov (2008). In this chapter, we assume s = O(n1−β) for 1/2 < β < 1 with the

fraction of true signals small but not vanishingly small, a subtle scenario considered in Donoho

and Jin (2004). To this end, it suffices to only consider candidate truncation points that are smaller

than
√
n/ log n. To enhance the finite-sample performance of our method for detecting extremely

sparse signals, we incorporate s0 = 1 into S as minP is powerful in this case. The intuition of

the weakly geometric system is that for a sufficiently large n, the ratio (1 + 1/ log n) between any

two si and si+1 is very close to 1. Hence s is not too far away from at least one of the candidate

truncation points as there always exists some i such that si ≤ s ≤ si+1. By our analysis in Section

3.3, the proposed design leads to almost the same performance as T (s) under the same conditions

imposed on the alternative, indicating this design introduces almost no extra cost into our adap-

tive procedure. Compared to the strategy by searching all the n possible points 1 ≤ ℓ ≤ n, the

weakly geometric design significantly reduces the number of candidate truncation points to a value

of order O((log n)2/2). Hence the new design can lead to a lighter computational burden and a

potentially more powerful test. We also try the geometric design in which all the ratios si+1/si

equal to some constant κ > 1, and find its finite-sample power is generally worse than the weakly

geometric design.

Step 2. Calculate the M + 1 RTP test statistics based on S:

T (si) =

si∑
j=1

−2 log p(j), i = 0, 1, ...,M

Let U(si) be the random variable following the same distribution of T (si) under the null, that

is, p1, . . . , pn
i.i.d.∼ Unif(0, 1), where Unif(0, 1) denotes the uniform distribution. For s0 = 1,

U(s0) is a monotonic transformation of p(1), where p(1) follows a Beta(1, n) distribution with

shape parameters 1 and n. By Proposition B1 in Section B.2, for each k = 1, . . . ,M , U(si) can

be written as the following sum of independent random variables:

U(si) = χ2
2si

+

n−si∑
i=1

Ui,

where χ2
2si

denotes the chi-squared random variable with degrees of freedom 2si, and Ui ∼

GAM(2si/(n − i + 1), 1). Here GAM(a, b) denotes the gamma distribution with shape and rate

42



parameters a and b, respectively.

Step 3. For each k = 0, . . . ,M , derive the p-value of T (si), i.e., P(U(si) > T (si)). We con-

sider the minimum of the derived p-values as our new test statistic TAFg:

TAFg = min
si∈S

P (U(si) > T (si)) . (3.1)

Calculate the critical value Cα of TAFg at a given significance level α using a selected sampling-

based method. Reject the null if TAFg < Cα.

Remark 3.1. For a commonly used significance level α (e.g., α = 0.05 or 0.01), one can derive

the critical value Cα by Monte-Carlo samples of TAFg under the null. However, in some real

applications like GWAS, p-value of TAFg is often more desired. Under such scenarios, generating

p-values of TAFg by Monte-Carlo samples is often computationally infeasible as the desired p-

values can be extremely small. For the scenarios where extremely small p-values are desired, we

develop an efficient sampling-based method to calculate the p-value of TAFg. See Section B.3 for

the details of the computational method.

Remark 3.2. TAFg is essentially an omnibus test. It is common to use omnibus tests for construct-

ing adaptive testing procedure (e.g., Shah and Bühlmann (2018); Janková et al. (2020); Zhang et al.

(2020b)).

We summarize the three steps of our adaptive procedure:

Algorithm 3.1. Pseudo algorithm for AFg.

Input n, p⃗ = (p1, . . . , pn), α

Set M the smallest integer such that log n (1 + 1/ log n)M−1 ≥
√
n/ log n

Set S = {s0, . . . , sM}, where s0 = 1, s1 = ⌈log n⌉, s2 = ⌈log n (1 + 1/ log n)⌉,

s3 = ⌈log n (1 + 1/ log n)2⌉, . . . , sM = ⌈log n (1 + 1/ log n)M−1⌉

For i = 0 to i = M

T (si) =
∑si

j=1−2 log p(j)

pT (si) = P (U(si) > T (si))

Set TAFg = minsi∈S pT (si)

Calculate critical value Cα for TAFg by a selected sampling-based method
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Output I{TAFg<Cα}

Remark 3.3. Compared to the adaptive procedure proposed by Yu et al. (2009) and Zhang et al.

(2020b), Algorithm 3.1 is a tuning-free adaptive procedure.

As Littell and Folks (1973) have shown that Fisher’s method is optimal for combining frequent

signals in terms of Bahadur efficiency, we slightly modify Algorithm 3.1 to incorporate Fisher for

better finite-sample performance when signals are frequent or moderate sparse (e.g., when β closes

to 0.5 under Setup 3.1 in Section 3.3):

Algorithm 3.2. Pseudo algorithm for AFg.

Input n, p⃗ = (p1, . . . , pn), α

Set M the smallest integer such that log n(1 + 1/ log n)M−1 ≥
√
n/ log n

Set S = {s0, . . . , sM+1}, where s0 = 1, s1 = ⌈log n⌉, s2 = ⌈log n (1 + 1/ log n)⌉,

s3 = ⌈log n (1 + 1/ log n)2⌉, . . . , sM = ⌈log n(1 + 1/ log n)M−1⌉, sM+1 = n

For i = 0 to i = M + 1

T (si) =
∑si

j=1−2 log p(j)

pT (si) = P (U(si) > T (si))

Set TAFg = minsi∈S pT (si)

Calculate critical value Cα for TAFg by some sampling-based method

Output I{TAFg<Cα}

Compared to Algorithm 3.1, we only add one more point sM+1 = n into the candidate trun-

cation point set S in Algorithm 3.2. In Sections 3.5 and 3.6, AFg stands for Algorithm 3.2 unless

further notice.

3.3 Theoretical Justification of T(s) and AFg

In this section, we provide theoretical guarantees on the performance of AFg from a minimax

point of view. Our goal is to show that AFg is able to optimally distinguish between the null and

alternative hypotheses in the testable region. Step 3 in Algorithm 3.1 is for the real practice where

a given significance level α is used to reject or not reject the null hypothesis. We note that the
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critical value Cα for each α in step 3 corresponds to a set of M + 1 critical values Ci,α so that we

reject the null once any test rejects the null, i.e., T (si) > Ci,α. To illustrate the good theoretical

properties of our proposed method, we consider the following step 3′, which is a modified version

of step 3. With a larger choice of critical value Ci = 2si(1 + 2δn) log(n/si) compared to Ci,α for

each i and any fixed α, we show that the proposed test is still powerful in the testable region with

type I error tending to 0.

Step 3′. Conduct M +1 tests using all the T (si)’s with critical values Ci = 2si(1+ 2δn) log(n/si)

(i = 0, 1, ..,M) with δn = 1/
√
log log n. Reject the null once any test rejects the null, i.e.,

T (si) > Ci.

For the whole following Section 3.3, AFg stands for the procedure based on Algorithm 3.1 us-

ing step 3′ unless further notice. We firstly present Theorems 3.1 and 3.2, which respectively show

the type I and type II errors of T (s) and AFg simultaneously tend to zero under the same mild con-

ditions imposed on the alternative. To further justify the performance of AFg, we summarize the

conditions in Theorem 3.1 and 3.2, and formulate an alternative parameter space that characterizes

sparse and heterogeneous signals. By adopting the arguments in Collier et al. (2017), we derive the

lower bound of separating rate of discriminating the alternative parameter space from the null and

show both T (s) and AFg are rate-optimal testing procedures (all the concepts are defined latter in

this section).

Consider the following Gaussian sequence model where each Yi’s is a z-score test statistic for

the i-th hypothesis test:

Model 3.1.

Yi = µi + ξi, i = 1, . . . , n, (3.2)

where θ = (µ1, . . . , µn)
′ ∈ Rn is an unknown mean vector. As one can always rescale the

test statistics, we assume ξ1, ξ2, . . . , ξn
i.i.d.∼ N(0, 1), denoted by N(0, 1) the standard normal dis-

tribution. The above model is commonly used to provide theoretical justifications for p-value

combination methods (e.g., Li and Tseng (2011); Owen (2009)). Our goal is to globally test if

there is any µi ̸= 0 using the input p-values derived by pi = 2(1− Φ(|Yi|)) for each i = 1, . . . , n.
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To characterize the signal sparsity, we assume ∥θ∥0 ≤ n1−β , where ∥x∥0 denotes the number of

non-zero entries of the vector x. A larger β leads to a higher level signal sparsity. We further use

∥θ∥2, the ℓ2 norm of θ to quantify the signal strength. The following Theorem 3.1 indicates the

type I and type II errors of T (s) simultaneously tend to zero as long as ∥θ∥22 ≥ C(0)n1−β log n

for some constant C(0). This is a weak signal strength condition since the lowest required signal

strength matches the lower bound of the separating rate to discriminate the null and alternatives

under our setup (see Corollary 3.1 for further details).

Theorem 3.1. Assume ∥θ∥0 ≤ n1−β with 1/2 < β < 1 and ∥θ∥22 ≥ C(0) · n1−β log n, where C(0)

denotes any constant that is strictly greater than 2β. Consider the RTP test statistic T (s) truncated

on s = ⌈n1−β⌉ with critical value C(n) = 2βn1−β(1 + 2/
√
log log n) log n:

T (s) =
s∑

i=1

−2 log p(i).

Denote the sum of type I and type II errors of T (s) by

RT (s) = P0(φT (s) = 1) + Pθ(φT (s) = 0),

where φT (s) = I{T (s)>C(n)}. Then we have limn→∞RT (s) = 0.

Remark 3.4. Besides from the perspective of separating rate demonstrated in Corollary 3.1, one

can show the signal strength requirement is mild from another aspect. Indeed, Proposition B1 in

the Supplement Section B.2 shows that under the null

E(T (s)) =
n∑

i=1

2min{1, s/i} = O(s log n),

which is the same order of the lower bound of ∥θ∥22 in Theorem 3.1.

Under the same setup and conditions imposed on ∥θ∥2, the following Theorem 3.2 shows the

type I and type II errors of AFg also tend to zero simultaneously, indicating there is almost no extra

cost for introducing the adaptive procedure.
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Theorem 3.2. Under Model 3.1 and the same conditions on θ in Theorem 3.1, denote the sum of

type I and type II errors of AFg by

RTAFg = P0(φAFg = 1) + Pθ(φAFg = 0),

where φAFg = I{∪M
i=0{T (si)>Ci}}. Then we have limn→∞ RTAFg = 0.

To justify the performance of T (s) and TAFg, we further include the lower bound of separating

rate for separating the null parameter space (θ = 0⃗) from the following alternative parameter space,

formulated by the conditions on θ in Model 3.1.

Setup 3.1. Consider the following alternative parameter space Θ0,β(Ln) and the null parameter

space with θ = 0⃗,

Θ0,β(Ln) = {θ ∈ B0(β) : ∥θ∥22 ≥ Ln > 0},

where B0(β) = {θ : ∥θ∥0 ≤ n1−β}, 1/2 < β < 1.

Then the hypothesis testing problem considered in Theorems 3.1 and 3.2 is reformulated as the

following hypothesis test:

H0 : θ = 0⃗

H1 : θ ∈ Θ0,β(Ln).

We consider the following minimax risk for separating the above alternative and null parameter

spaces:

R0,β(Ln) = inf
φ
{P0(φ = 1) + sup

θ∈Θ0,β(Ln)

Pθ(φ = 0)},

where φ = I{T∈R(T )} and R(T ) denotes the rejection region of any test statistic T . R0,β(Ln) is the

minimum possible sum of type I and type II errors that can be achieved by a testing procedure under

Setup 3.1. R0,β(Ln) can also be regarded as a measure of difficulty level for the testing problem

given Ln. A higher R0,β(Ln) corresponds to a more difficult testing problem. Different choices of

the order of Ln can lead to different difficulty levels for the testing problem, i.e., different levels of
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R0,β(Ln). And there is certainly a subtle choice of the order of Ln, denoted by λn, such that,

(i) For any ε ∈ (0, 1), there exists a constant Aε such that, for all Ln ≥ Aελn,

R0,β(Ln) ≤ ε. (3.3)

(ii) For any ε ∈ (0, 1), there exists a constant aε such that, for all Ln ≤ aελn,

R0,β(Ln) ≥ 1− ε. (3.4)

We define λn as the separating rate for distinguishing the alternative and the null parameter spaces.

Besides, a test statistic that satisfies (i) is called a rate-optimal test.

The following Theorem 3.3 derives the lower bound of separating rate λn for the distinguishing

Θ0,β(Ln) against the null parameter space.

Theorem 3.3. Under Setup 3.1, the separating rate of testing on Θ0,β(Ln) against the null is

λn = n1−β log n.

As demonstrated in Theorems 3.1 and 3.2, the order of the minimum signal strength (∥θ∥22 ≥

C(0) · n1−β log n) that allows the sum of type I and II errors of T (s) or AFg to tend to zero is also

λn. Hence both testing procedures are rate-optimal:

Corollary 3.1. Under Setup 3.1 with 1/2 < β < 1, T (s) and AFg are rate-optimal testing proce-

dures.

3.4 Robustness Properties of T(s) and AFg using Studentization-Based P-Values

This section conducts theoretical analyses on the robustness of T (s) and AFg using p-values

derived by the normal approximation to the Student’s t-statistics. In real practice, people tend to

assume the derivation of the p-values is based on the exact distribution of the test statistics, despite

the common applications of approximation techniques. More precisely, certain approximations of

distributions (e.g., the central limit theorem) are widely used for constructing the test statistics,

resulting in p-values valid only in an asymptotic sense. There is little discussion on the validity

of the consequent global test due to this approximation in the context of Fisher’s methods, while
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its impact may not be negligible under a large-scale setting where the total number of p-values

diverges and may be larger than the sample size in each test. Among all the approximation tech-

niques, self-normalization or Studentization (Shao et al., 2013) is probably the simplest but most

common one. For example, Studentization and its modified variants are widely used in genetics

and genomics data analysis (e.g., Smyth (2004); Love et al. (2014); Svishcheva et al. (2019)). To

better understand the behavior of our methods in a more practical sense, we investigate the impact

on T (s) and AFg for combining Studentization-based p-values. Consider the following model:

Model 3.2.

Yij = µi + ξij, i = 1, . . . , n; j = 1, . . . ,m, (3.5)

where θ = (µ1, ..., µn)
′ ∈ Rn is the unknown mean vector, and ξij’s are centered indepen-

dent and identically distributed random variables with variance σ2 and CDF function F such that

F (0) < 1. Model 3.1 and Model 3.2 are equivalent if ξij’s are standard normal. Here we consider

Model 3.2 since it is a good example where people consider t-test, as there are m samples for

each study and σ2 is unknown. With some mild moment conditions imposed on ξij’s, we adopt

arguments in Delaigle et al. (2011) to show that AFg and T (s) using Studentization-based p-values

are robust even when ξij’s are heavy-tailed distributed. More precisely, we show that the signal

strength requirement is not changed for the sum of type I and type II errors to go to zero.

Setup 3.2. Consider the following alternative parameter space Θ′
0,β(Ln) associated with Model

3.2 versus the null parameter space with θ = 0⃗,

Θ′
0,β(Ln) = {θ ∈ B0(β) : ∥θ∥22 ≥ σ2Ln/m > 0},

where B0(β) = {θ : ∥θ∥0 ≤ n1−β}, 1/2 < β < 1.

One major difference between Θ′
0,β(Ln) and Θ0,β(Ln) is that the lower bound of ∥θ∥22 is scaled

by m as there are m samples in each hypothesis test. The goal is to test

H0 : θ = 0⃗

H1 : θ ∈ Θ′
0,β (Ln) ,

with p-values pi = 2(1 − Φ(|Ti|)) derived from the normal approximation of the Studentized

statistics Ti =
√
mȲi/Li, where Ȳi = (1/m)

∑m
j=1 Yij and Li =

√
(1/m)

∑m
j=1(Yij − Ȳi)2 (i =
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1, . . . , n). Here we assume mη = n with some constant η > 0. When η > 1, m goes to infinity

as n diverges, but with a slower rate. Such a relationship between m and n is quite common in

genomics and genetics data. Theorems 3.4 and 3.5 below investigate the performance of T (s) and

AFg under some mild moment conditions, respectively.

Theorem 3.4. Under Setup 3.2 and assume E(|ξij|D) ≤ B0σ
D for i = 1, . . . , n; j = 1, . . . ,m,

where B0 is some finite constant and D = max{6η+ ε, 4} with some ε > 0, then for T (s) we have

lim
n→∞

RT (s) = 0,

as long as ∥θ∥22 =
∑

µ2
i ≥ σ2C(0)n1−β log n/m, where C(0) denotes any constant strictly greater

than 2β.

Theorem 3.5. Under Setup 3.2 and the same conditions in Theorem 3.4, then we have limn→∞RTAFg =

0, as long as ∥θ∥22 =
∑

µ2
i ≥ σ2n1−βC(0) log n/m, where C(0) denotes any constant strictly

greater than 2β.

Remark 3.5. The moment condition on ξij in Theorems 3.4 and 3.5 is slightly more stringent than

the condition in Theorem 3 of Delaigle et al. (2011) for the higher criticism test. This is due to

the fact that one has to bound the the sum of deviations of several p-values for Fisher-type test

statistics such as T (s) and AFg, while for higher criticism, only the deviation of each individual

p-value needs to be controlled at a certain level.

The above two theorems show that under some mild conditions both T (s) and AFg maintain

the same theoretical performance for separating the alternative and the null parameter space. In

addition, these mild conditions can be carefully characterized by the relationship between moment

conditions of ξij’s and the sample size requirement in each hypothesis test. This surprising result

is partially due to the good theoretical property of Studentization with a sharp moderate deviation

bound. Indeed, as Shao et al. (2013) and Delaigle et al. (2011) suggested, studentized statistics

can approximate the normal distributed random variables well under some rather mild moments

assumptions. On the other hand, the weakly geometric system in AFg only introduces a small

candidate set of truncation points, leading to little extra cost for the adaptive procedure.
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3.5 Simulations

In this section, we perform simulations to evaluate the finite-sample performance of AFg.

Section 3.5.1 studies the statistical power of AFg and other six methods across varying sparsity and

signal strength levels. Section 3.5.2 evaluates robustness of AFg under the violation of normality

assumption and verifies the theoretical results in Section 3.4.

3.5.1 Power Comparison

In this subsection, we perform power comparisons across varying sparsity levels and signal

strengths. We include methods discussed in Sections 3.1 and 3.2, including our method (AFg),

minP, AFz, AFp, oTFhard, and oTFsoft. In addition, we include the higher criticism test (denoted

by HC hereafter) proposed by Donoho and Jin (2004), which is designed for a slightly different

setting. The major difference is that we allow arbitrary alternatives, while the setup of HC imposes

a mixture of the null and a single distribution representing the alternative. To make a fair and com-

prehensive comparison, we consider an even more subtle scenario from Donoho and Jin (2004),

where the signal strength ∥θ∥22 may be below the requirement in Theorems 3.1 and 3.2. This is a

setting that supposedly favors HC.

We simulate n = 1000, X = (X1, ..., Xn)
′ ∼ Nn(µ, In×n), where µ = (µ1, . . . µn)

′, µ1, . . . µs
i.i.d.∼

N(
√

2(r +∆) log n, σ2) with s = ⌈n1−β⌉ (β = 0.55, . . . , 0.9), and µs+1, . . . , µn equal 0. We fur-

ther set r to be:

r = ρ∗(β) =

 β − 1
2
, 1

2
< β ≤ 3

4

(1−
√
1− β)2, 3

4
< β < 1.

(3.6)

For different levels of signal strength, we set ∆ = 0.05, 0.1, 0.2. p-values are calculated through

two-sided z-score test pi = 2(1− Φ(|Xi|)) for i = 1, . . . , n.

To calculate the empirical power, we first draw 105 Monte-Carlo samples to calculate the crit-

ical values for the seven methods at significance level 0.05. We then perform 104 simulations to

calculate the empirical power of each method for each combination of simulation parameters. Each

simulation setting is repeated 30 times to calculate the mean empirical power and corresponding

standard error for each method. We note that potentially one can get even better performance of
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Figure 3.1: Simulations with σ = 0.2. (A)-(C) represent mean power (significance threshold

p < 0.05) of seven p-value combination methods AFp, AFg, AFz, Higher Criticism (HC), minP,

oTFhard and oTFsoft under different levels of signal strength ∆ = 0.05, 0.1 and 0.2, across differ-

ent levels of sparsity β =0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85 and 0.9. The number of true signals

s = ⌈n1−β⌉. A larger value of β leads to more sparse signals.
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AFg by calculating M via finding the smallest integer such that log n(1+1/ log n)M−1 ≥ n/ log n

since log n may not be negligible and
√
n/ log n can be relatively small in the finite-sample case.

All the aforementioned theoretical results can be shown in a similar manner for our method after

this modification. We use this version of AFg hereafter unless further notice.

Figure 3.1 shows statistical power of the seven methods with σ = 0.2, other choices of σ

lead to similar results. The results show that most of the considered methods are only powerful

either in the cases of relatively sparse signals or cases of relatively dense signals. For example, in

Figure 3.1(A), AFz, HC and minP are powerful when β ≥ 0.8 (≤ 4 true signals out of 1000 p-

values) while powerless when β ≤ 0.7. By contrast, AFp, oTFhard, and oTFsoft are only powerful

when β ≤ 0.6 and their power decreases significantly as the sparsity level increases (β > 0.6).

On the contrary, AFg (black line) is always among the best across the whole range of β. AFg’s

performance is slightly worse than minP and HC when β = 0.9, but one can note that in this case,

there is only ⌈10000.1⌉ = 2 true signals out of 1000 p-values, which is the favorable case for minP

and HC.

One possible reason that AFg has better performance than HC and minP for the moderate

sparse signals is the use of log-transformation. Intuitively, rather than focusing on the effects of

a few extreme p-values, log-transformation favors incorporating p-values with relatively moderate

effects. With the help of a suitable selection strategy, this property of log-transformation can lead

to more balanced performance across a wide range of sparsity levels.

3.5.2 Robustness of AFg in the Finite-Sample Cases

In this subsection, we investigate the robustness of our method in the finite-sample case. We

simulate the data by generating the following random samples:

Yij = µi +Xij, i = 1, . . . , n; j = 1, . . . ,m,

where Xij = (Uij − E(Uij))/(Var Uij)
1/2. Here Uij’s are independent and identically distributed.

The choices of the distribution for Uij are standard normal distribution, Student’s t distribution with

degrees of freedom of 5, chi-squared distribution with degrees of freedom of 10, and log-normal
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distribution with zero mean and standard deviation σ = 0.1. The 4 choices of distribution corre-

spond to the cases of baseline (normal), the case of moderate deviation from normality assump-

tion (Student’s t distribution and chi-squared distribution), and the case of asymmetry and heavy-

tailed distributions (log-normal distribution), respectively. We set n = 1000, m = 500, 1000, and

µ1 = . . . = µs =
√

2(r +∆) log n with s = ⌈n1−β⌉ and µi = 0 for i = s + 1, . . . , n, where

β = 0.55, 0.6, . . ., 0.9 for varying levels of sparsity of signals and r is determined by equation

(3.6). ∆ are set to be −r for the robustness of the type I error control, 0.1 and 0.2 for the power

with different levels of signal strength under the alternatives. The p-values to be combined are

calculated by two-sided z-score tests as pi = 2(1− Φ(|Ti|)) for i = 1, . . . , n.

We perform 104 simulations using the above sampling procedure, the critical value at signif-

icance level 0.05 is calculated from a 105 Monte-Carlo sample that is sampled from the above

procedure when Uij’s follow the standard normal distribution and ∆ = −r. We repeat the whole

simulation scheme 30 times.

Figure 3.2 shows the results of the robustness of AFg under various combinations of simulation

parameters. AFg controls type I errors well for all the distributions at significance level 0.05. For

statistical power, under all the circumstances, AFg has quite similar empirical power under the

Student’s t distribution case compared to the standard normal case, slightly losing power under the

log-normal distribution and chi-squared distribution cases.

3.6 Application

In this subsection, we apply p-value combination methods to analyze the GWAS of neuroti-

cism (Okbay et al., 2016), a personality trait characterized by easily experiencing negative emo-

tions. The study investigates 6, 524, 432 genetic variants (SNPs) across 179, 811 individuals, where

p-values are calculated for all SNPs to evaluate the association between the variant and neuroti-

cism. We consider four pathways from the KEGG database (Kanehisa and Goto, 2000), hsa05012,

hsa05010, hsa05014, and hsa04730, which relate to four neurological diseases, Parkinson disease,

Alzheimer disease, amyotrophic lateral sclerosis, and long-term depression, respectively. For each

pathway, we collect SNPs within the genic or intergenic regions that belong to the pathway and
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Figure 3.2: Robustness of AFg under different distributions: standard normal distribution (refer-

ence), log-normal distribution with µ = 0 and σ = 0.1, chi-squared distribution with degrees of

freedom of 10, and Student’s t distribution with degrees of freedom 5. We evaluate the empirical

power of AFg under different distributions, various levels of signal strength ∆ = 0.1 (dotted lines)

and 0.2 (dashed lines), and different levels of sparsity of signals β = 0.55, 0.6, 0.65, 0.7, 0.75,

0.8, 0.85 and 0.9. We also evaluate the performance of type I error control of AFg under different

distributions (∆ = −r, solid lines). The significance threshold in this figure is p < 0.05.
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form a SNP set with the corresponding p-value set. To de-correlate the p-values corresponding to

the SNPs in each SNP set, we filter out SNPs by a linkage disequilibrium threshold R2 > 0.1,

which leads to a SNP set of 1603 SNPs for hsa05012, a SNP set of 2939 SNPs for hsa05010, a

SNP set of 2673 SNPs for hsa05014, and a SNP set of 1205 SNPs for hsa04730. To reduce the

signal strength for higher difficulty levels of SNP-set test with varying sparsity levels, we apply a

random filtering strategy to the SNPs with p-values smaller than 0.1 within each SNP set. More

precisely, let H and R be the numbers of SNPs with p-values ≤ 0.1 within a SNP set before and

after the filtering. For each SNP set, we randomly filter out 90%, 85%, 80% and 75% of SNPs

with p-values ≤ 0.1 (corresponding to R/H = 10%, 15%, 20%, 25%), respectively. We repeat

the above random filtering scheme 500 times. p-value combination methods are applied to the set

of p-values corresponding to each SNP set to evaluate their empirical power. Here we only apply

oTFsoft, AFg, minP, and HC, as AFp and oTFhard have generally worse performance than oTFsoft

shown in Section 3.5.1, and AFz also has generally worse performance than AFg (also see Section

3.5.1) but without fast-computing algorithm. We apply the efficient sampling-based algorithm in

Supplement Section B.3 for the fast computation of AFg. The fast-computing algorithm proposed

in Zhang et al. (2020a) is applied for HC.

Table 3.1 shows empirical power results of the four methods at significance level p < 10−3.

Similar to the simulation results in Section 3.5.1, we observe that the methods can be divided into 3

categories based on their empirical power across different sparsity levels. Indeed, for example, for

pathway hsa05012 (Parkinson’s disease), minP and HC are the most powerful with sparse signals,

with power greater than 0.38 under R/H = 10%, compared to the power of 0.192 for oTFsoft. On

the contrary, though powerless under the sparse case, oTFsoft is the most powerful for detecting

relatively dense signals, with power greater 0.99 when R/H ≥ 20%, while minP and HC only have

power below 0.75 under the same case. However, compared to the first two categories of methods,

AFg always has comparable power to the top-performer under all the sparsity levels R/H , which

is consistent with the simulation results.
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Table 3.1: Empirical power with significance threshold p < 10−3 for AFg, oTFsoft, minP and

HC across different levels of sparsity (R/H = 10%, 15%, 20%, 25% for the 4 pathways hsa05012

(Parkinson disease), hsa05010 (Alzheimer disease), and hsa05014 (amyotrophic lateral sclerosis),

hsa04730 (long-term depression) from KEGG.

Pathways Methods R/H = 10% R/H = 15% R/H = 20% R/H = 25%

AFg 0.378 0.588 0.936 1.000

hsa05012 oTFsoft 0.192 0.466 0.996 1.000

minP 0.382 0.534 0.686 0.730

HC 0.392 0.552 0.698 0.748

AFg 0.278 0.452 1.000 1.000

hsa05010 oTFsoft 0.052 0.492 1.000 1.000

minP 0.262 0.352 0.516 0.550

HC 0.270 0.364 0.520 0.552

AFg 0.086 0.842 1.000 1.000

hsa05014 oTFsoft 0.020 0.992 1.000 1.000

minP 0.118 0.142 0.180 0.304

HC 0.130 0.160 0.210 0.340

AFg 0.164 0.280 0.962 1.000

hsa04730 oTFsoft 0.040 0.296 1.000 1.000

minP 0.164 0.270 0.372 0.445

HC 0.164 0.270 0.372 0.445

3.7 Discussion

In this chapter, we revisit modified Fisher’s methods and develop a new adaptive p-value com-

bination method tailored to the scenario of detecting sparse and heterogeneous signals. Our contri-

butions are threefold. First, we propose an adaptive p-value combination procedure that improves
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Fisher’s method under the large-scale setting. Taking the advantages of the weakly geometric sys-

tem and the log-transformation on p-values, our proposed method is powerful across a variety of

sparsity levels of signals inside combined p-values. The weakly geometric system also alleviates

the computational burden of our procedure. Second, we show that our approach is rate-optimal for

separating the null parameter space and the sparse alternative parameter spaces in a classical Gaus-

sian sequence model. To the best of our knowledge, this is the first result for a fully data-driven

p-value combination procedure among all modified Fisher’s methods with an optimal separating

rate under the large-scale setup. Third, realizing the gap between the assumption that p-values are

exact and the widely use of approximation techniques (e.g., CLT) to calculate p-values, we inves-

tigate the robustness property of our method. Under mild moment conditions, we show that our

testing procedure is still rate-optimal and hence robust to p-values calculated using Studentized

test statistics. This result suggests that it is worthwhile to investigate similar robustness properties

for other existing p-value combination methods.

Modern data science faces challenges from larger data dimension, high-level data variability,

and the need for inference tailored to the subject domain. Motivated by the need to detect sparse

signals within a large number of p-values in real data analysis, in this chapter, starting from solid

theoretical analysis, we modify the classical Fisher’s method to a novel adaptive procedure tailored

to the high-dimensional scenario with sparse signals. We conclude that our method is powerful

and robust for detecting heterogeneous and sparse signals. There are several future directions

to be investigated. Firstly, it is of interest to extend our method to the scenarios of combining

dependent p-values, as complex dependency structures widely exist in modern large-scale data,

such as genomics data. Secondly, it is desired to conduct a refined theoretical analysis to precisely

quantify the minimal signal strength, including a sharp constant factor in front of the separating

rate, for our method to be powerful, as it would provide a more accurate prediction of the finite-

sample performance. Thirdly, it is interesting to assign weights to each combined p-values to

incorporate prior information (e.g., functional annotations for GWAS) or upweight some p-values

to increase power (e.g., p-values correspond to rare variants in GWAS). These topics are currently

under exploration and will be reported in the future work.
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4.0 Heavy-tailed Distribution for Combining Dependent P-Values with Asymptotic

Robustness

The contents of this chapter are accepted by the journal Statistica Sinica (Fang et al., 2023a).

4.1 Introduction

Combining p-values to aggregate information from multiple sources is popular in the so-

cial sciences and biomedical research. Classical methods focus on combining multiple inde-

pendent and frequent signals to increase the statistical power, which can be viewed as a type

of meta-analysis. Consider the combination of n independent p-values, p = (p1, ..., pn). Early

methods used T (p) =
∑n

i=1 g(pi) =
∑n

i=1 F
−1
U (1 − pi) to sum transformed p-values, where

the transformation g(p) is the inverse cumulative distribution function (CDF) of a random vari-

able U . Conventional methods in this category include Fisher’s method (Fisher, 1992) where

T =
∑n

i=1−2 log(pi) and U is a chi-squared distribution, and Stouffer’s method (Stouffer et al.,

1949) where T =
∑n

i=1 −Φ−1(pi) and U is a standard normal distribution, among others (Edg-

ington, 1972; Pearson, 1933; Mudholkar and George, 1979). These methods use a classical meta-

analysis to combine independent and relatively frequent signals, and apply a light-tailed distribu-

tion (i.e., tails thinner than an exponential function) for U . The efficiency of such methods is mostly

considered under the asymptotic framework that the number of p-values n is fixed and sample size

m used to derive each p-value goes to infinity, where p = O(e−m) in most cases. Under this set-

ting, it has been shown that only the equivalent class of Fisher’s method is asymptotically Bahadur

optimal (ABO), meaning that the efficiency of the combined p-value statistics is asymptotically

optimal under fixed n and m → ∞ (Littell and Folks, 1971).

With the advent of big data, many studies now combine p-values with large n. The seminal

paper by Donoho and Jin (2004) established a framework for combining p-values with weak and

sparse signals, and proposed the higher-criticism test with the asymptotically optimal property.

This second category of methods considers n → ∞, and only a small number s of the n p-values
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(s = nβ where 0 < β < 1
2
) have weak signals (p = O(n−r/(log n)

1
2 ) with 0 < r < 1), while

all remaining p-values have no signal (i.e., p D∼ Unif(0, 1)). Under this setting, the classical

minimum p-value method (minP) T = min1≤i≤n pi is asymptotically optimal in terms of the

detection boundary only for 0 < β < 1/4, whereas higher criticism attains an optimal detection

boundary for all possible 0 < β < 1/2. Several methods, including the Berk-Jones test (Berk

and Jones, 1979; Li and Siegmund, 2015), have subsequently been proposed to improve the finite-

sample power of higher criticism, while maintaining an optimal detection boundary.

All of the aforementioned methods were developed to combine independent p-values. How-

ever, many modern large-scale data analyses need to combine a large number of dependent p-values

that have sparse and weak signals, which we categorize as methods of the third category. A notable

application is to combine p-values of multiple correlated SNPs (there may be tens to hundreds or

thousands) in an SNP set (e.g., all SNPs in a gene region or in gene regions of a pathway) in a

genome-wide association study (GWAS). In this case, neighboring SNPs often have unknown de-

pendency structures, prompting efforts to extend existing tests to account for dependency using

permutations or other numerical simulation approaches (Liu and Xie, 2019, e.g.,). However, per-

mutation or simulation-based methods are not practical when n is large, and a precise p-value is

needed for multiple comparisons. The null hypothesis may also be difficult to simulate using a

permutation. Barnett et al. (2017) developed an analytic approximation for higher criticism that

incorporated a dependency structure. However, the method is still computationally intensive and

not sufficiently accurate for the small p-values needed for multiple comparisons. Motivated by

these needs, Liu and Xie (2020) and Wilson (2019a) independently proposed the Cauchy combi-

nation test (T =
∑n

i=1 tan{(0.5− pi)π}) and the harmonic mean combination test (T =
∑n

i=1
1
pi

),

respectively, to combine p-values under an unspecified dependency structure. Wilson (2019a) also

provided a convenient R package called harmonicmeanp (function p.mamml) to implement the

harmonic test. A remarkable property of both methods is that the null distributions and testing

procedures derived from the independence assumption are robust under a dependency structure in

an asymptotic, but practical sense; see Section 4.3.1. Motivated by this observation, we consider a

rich family of test statistics that includes the Cauchy and harmonic mean tests. More precisely, we
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consider the test statistic

T =
n∑

i=1

g(pi) =
n∑

i=1

F−1
U (1− pi),

where the transformation g(p) corresponds to U from a regularly varying distribution family, which

is a broad family of heavy-tailed distributions. We investigate the conditions required to achieve

the practical robustness to dependency of the Cauchy and harmonic mean methods. Note that se-

lections of U in classical meta-analysis settings (fixed n and m → ∞) are all from thin-tailed

distributions (e.g., chi-squared distribution for Fisher’s methods and the Gaussian distribution for

Stouffer’s method). This is reasonable, because a thin-tailed distribution produces contributions

that are more even from marginally significant p-values in meta-analyses of frequent signals. In

contrast, the Cauchy and harmonic mean methods correspond to heavy-tailed distributions of U ,

which focus on small p-values and down-weigh marginally significant p-values. Figure 4.1 shows

the transformation function of g(p) in log-scale. For Fisher’s method, the contributions of the

p-values 10−2 and 10−6 to the test statistics are 4.6 and 13.8, respectively. For heavy-tailed trans-

formation methods, the contributions become 100 and 106 for the harmonic mean, and 31.82052

and 3.18×105 for the Cauchy method. With an increased focus on small p-values, the methods are

more powerful for detecting sparse signals. Note that Vovk and Wang (2020) also considered the

sum of transformed p-values to combine p-values, and showed an upper bound of the significance

level inflation under an arbitrary dependence structure. The comparison of our results with theirs

is provided in the remark following Theorem 4.2. Wilson (2019b), Wilson (2020), and Vovk et al.

(2021) also did related work involving combining dependent p-values.

Throughout this paper, when we refer to a thin-tailed, heavy-tailed, or regularly varying method,

we mean that its corresponding U is a thin-tailed, heavy-tailed, or regularly varying distribution.

The remainder of the paper is structured as follows. We first investigate the Box-Cox transforma-

tion for g(p) in Section 4.2, which is equivalent to a Pareto distribution for U . In Section 4.2.1,

we discuss existing methods, including the minP, harmonic mean, Cauchy, and Fisher methods in

this framework. In particular, we show that the Cauchy method is approximately equivalent to the

harmonic mean method, which is a special case of the Box-Cox transformation. In Section 4.2.1,

we observe that the Cauchy method may suffer from a large negative penalty for p-values close

to one. To avoid this problem, we improve the Cauchy method by introducing a new test, called

the truncated Cauchy method, and develop a fast computing algorithm for it. In Section 4.3, we
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introduce a family of heavy-tailed distributions, namely, regularly varying distributions, and inves-

tigate the conditions in the family that provide robustness for the dependency structure, as in the

Cauchy and harmonic mean methods (Sections 4.3.1 and 4.3.2). Section 4.3.3 studies the power of

the family of methods in terms of the detection boundary under the sparse and weak alternatives

considered in Donoho and Jin (2004). Section 4.4 contains extensive simulations that demonstrate

the type-I error control and power of various methods. Here, we also verify the theoretical results

numerically. In Section 4.5, we apply the proposed method to data from a GWAS application of

neuroticism to compare the performance of the methods and demonstrate the improvement of the

truncated Cauchy method over the Cauchy method. Section 4.6 concludes the paper.

4.2 Connection between MinP, Harmonic Mean, Cauchy, and Fisher

4.2.1 Using A Pareto Distribution to Connect Four Existing Methods

As mentioned in Section 4.1, many methods of the first category combine independent and

relatively frequent signals from thin-tailed distributions for U , and many methods of the second

and third categories for combining sparse and weak signals, respectively, use heavy-tailed dis-

tributions. In this subsection, we consider a Pareto distribution for U , which is equivalent to a

Box-Cox transformation for g(p). Based on this transformation family, we connect four existing

methods: minP, harmonic mean, Cauchy, and Fisher. The insights gained from the Pareto distri-

bution also help when we introduce the regularly varying distribution as an extended richer family

in the next section. Finally, we prove the approximate equivalency of the harmonic mean and

Cauchy combination methods. Consider the following family of p-value combination methods:

T =
∑n

i=1 g(pi), where g(p) = 1
pη

, for some η > 0. We can show that g(p) = F−1
U (1 − p),

such that U D∼ Pareto( 1
η
, 1). In other words, P (U > t) = t−

1
η for t > 1, which means U is

a heavy-tailed distribution. A larger η corresponds to a heavier tail. In particular, the harmonic

mean method corresponds to η = 1 in the Pareto distribution. Note that by denoting λ = −η,

we can rewrite h(p;λ) = g(p;η)−1
λ

= pλ−1
λ

, which is the Box-Cox transformation. Proposition 4.1

shows that minP and Fisher are limiting cases in the Pareto distribution when η → +∞ and when
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η → 0, respectively. Proposition 4.2 shows that the Cauchy combination method is approximately

identical to the harmonic mean for relatively small p-values.

Proposition 4.1. For fixed n, minP is a limiting case in the Pareto distribution when η → ∞.

Similarly, Fisher’s method is a limiting case of Pareto when η → 0.

Proof. Denote Tγm =
∑n

i=1
1

pγmi
=
∑n

i=1
1

pγm
(i)

, where p(i) are ordered p-values. Note that Tγm

is equivalent to T ∗
γm =

(∑n
i=1

1
pγmi

) 1
γm

= 1
p(1)

(∑n
i=1

(
p(1)
p(i)

)γm) 1
γm . As γm → ∞, T ∗

γm → 1
p(1)

,

which is equivalent to minP.

To prove the result for Fisher’s method, note that Tγm is equivalent to T ∗∗
γm =

∑n
i=1

p−γm
i −1

−γm
. By

L’Hospital’s rule , we have limγm→0
p−γm−1
−γm

= log(p). Hence, T ∗∗
γm →

∑n
i=1 log(pi) almost surely,

and is equivalent to Fisher’s method.

Proposition 4.2. The Cauchy combination test is approximately identical to the harmonic mean

for relatively small p-values, in the sense that π·g(CA)(p)−g(HM)(p)

g(HM)(p)
= O(p2).

Proof. By Taylor’s expansion, g(CA)(p) = tan {(0.5− p)π} ≈ 1
πp

− πp
3
− (πp)3

45
+ · · · . The result

follows immediately. Chen et al. (2021) also showed a similar result.

It is somewhat surprising that even though the forms of the Cauchy and harmonic mean trans-

formations are different, they are approximately equivalent when p is small. Furthermore, the be-

havior of both when p is small is characterized by the index η = 1 of the Box-Cox transformation

(note that these two transformations behave differently when p is close to one). It is natural to ask

whether other methods exist for combining p-values in an extended rich heavy-tailed distribution

family that enjoy a similar finite-sample robustness property to that of the Cauchy and harmonic

mean methods. To answer this question, we introduce a family of regularly varying distributions,

and investigate its properties in Section 4.3.

Figure 4.1 shows a minus log-scaled p transformation g(p) versus a minus log-scaled transfor-

mation g(p) for BC0.5 (i.e., Box-Cox transformation with η = 0.5), HM (the harmonic mean

method, equivalent to BC1), CA (the Cauchy method), BC1.5, Fisher’s method and Stouffer’s

method. We find that as η increases, smaller p-values become more dominant and the effect of

marginally significant p-values rapidly diminishes, yielding stronger power for sparse signal appli-
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cations. CA and HM are approximately proportional when p is sufficiently small (roughly when

p < 10−2).

Although HM and CA are approximately equivalent when combining relatively small p-values,

when a p-value is very close to one, the contribution in the Cauchy method is close to negative

infinity, which can cause numerical issues and substantial power loss; we refer to this as the “large

negative penalty issue” in relation to the Cauchy method. A p-value close to one happens often

in tests of discrete data, in which case, the p-values under the null hypothesis may not necessarily

be Unif(0, 1). The p-values may also be close to one when n is large or when the model used

to derive the p-values is misspecified. As a simple remedy, we propose a truncated Cauchy test

(CAtr) that truncates any of the n p-values greater than 1 − δ to be 1 − δ. For example, when

δ = 0.01, we have ptr = p if p < 0.99, and ptr = 0.99 if p ≥ 0.99. We recommend using δ = 0.01.

Conceptually, δ should be sufficiently large so that it avoids the large negative penalty issue in

Cauchy. However, for computational purposes, it cannot be too large, or the approximation by our

fast-computing procedures may not be accurate. A detailed justification for choosing δ = 0.01,

with support from simulation results, is given in the Supplement Section C.2.4. The proposed

method can also be viewed as a sum of transformed p-values. Indeed, the CAtr statistic can be

written as

TCAtr =
n∑

i=1

tan(π(
1

2
− pi))1(pi < 1− δ) + tan(π(δ − 1

2
))1(pi ≥ 1− δ).

For more details on CAtr, see the Supplement Section C.2.

4.3 Asymptotic Properties of Regularly Varying Methods for P-Value Combination

4.3.1 Disbributions with Regularly Varying Tails

Before introducing the regularly varying distributions, we first define some notations. Through-

out this paper, denote by F̄ the survival function of the distribution F (i.e., F̄ (t) = 1 − F (t), for

any t). The limits and asymptotic properties are assumed to be for t → ∞, unless stated otherwise.

For two positive functions u(·) and v(·), we write u(t) ∼ v(t) if limt→∞
u(t)
v(t)

= 1. In addition,
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Figure 4.1: Comparison of transformations. We show six transformations of p-values, g(p), i.e.,

BC0.5, BC1 (HM), BC1.5, CA, Fisher, and Stouffer. The x-axis is − log(p), and the y-axis shows

log(g(p)).
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if limt→∞
u(t)
v(t)

> 1, we write u(t) ≳ v(t), and if limt→∞
u(t)
v(t)

< 1, we write u(t) ≲ v(t). A

distribution with a regularly varying tail is defined as follows:

Definition 4.1. A distribution F is said to belong to the family of distributions with regularly

varying tails with index γ (denoted by F ∈ R−γ) if

lim
x→∞

F̄ (xy)

F̄ (x)
= y−γ,

for some γ > 0 and all y > 0.

We denote the family of distributions with regularly varying tails as R. Then, we can show

that every distribution F belonging to R−γ can be characterized by

F̄ (t) ∼ L(t)t−γ,

where L(t) is a slowly varying function (Karamata, 1933). A function L is called slowly vary-

ing if limy→∞
L(ty)
L(y)

= 1, for any t > 0. Some examples of slowly varying functions L(t) are

1, ln(t)ν , and ln(ln(t)). Given the property of a slowly varying function L(t), the tail of a regularly

varying distribution converges to zero at a relatively slow rate, which leads to the heavy-tailed

property.

The family of distributions with regularly varying tails includes the Pareto distribution, Cauchy

distribution, log-gamma distribution, and inverse gamma distribution. Indeed, the survival function

of Pareto(a,b) is F̄ (t) = b
ta
, t > b, and hence U ∈ R−a. In addition, the survival function of the

Cauchy distribution is F̄ (t) ∼ 1
tπ

, and therefore U ∈ R−1.

An important property of distributions with regularly varying tails is as follows: Assume

U1, . . . , Un are independent and identically distributed (i.i.d.) random variables with distribution

function F ∈ R−γ . Then,

P (U1 + . . .+ Un > t) ∼ nP (U1 > t). (4.1)
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4.3.2 Asymptotic Tail Probability Approximation and Robustness to Dependence

The first theorem approximates the null distribution of the test statistic. Assume that the p-

values are obtained from z-scores; that is, the test statistics all follow normal distributions. Specif-

ically, let X = (X1, . . . , Xn) be the random vector (z-scores) for the n test statistics. The mean of

X is µ = (µ1, . . . , µn) and the correlation matrix is Σ. Because we can always rescale test statis-

tics, we assume each Xi has variance one. Under the null hypothesis, H0 : µi = 0, ∀i = 1, . . . , n;

hence, the p-value for the ith study is pi = 2(1 − Φ(|Xi|)), for i = 1, . . . , n. We consider the test

statistic T (X) =
∑n

i=1 g(pi) =
∑n

i=1 g(2(1−Φ(|Xi|))), which is the sum of transformed p-values.

When pi
D∼ Unif(0, 1) under the null hypothesis, g(pi) is a random variable, where we denote

g(pi)
D∼ U , which is consistent with the previously introduced relationship g(pi) = F−1

U (1 − pi)

when U is a continuous random variable. We further assume the following conditions for T (X):

(A1) ∀1 ≤ i < j ≤ n, Xi and Xj are bivariate normally distributed.

(A2) Let Ui = g(pi), for i = 1, . . . , n, with Ui
D∼ U ∈ R−γ under H0. Assume that the function

g(p) is continuous and satisfies one of two situations: (A2.1) g(p) is strictly decreasing in (0, 1);

(A2.2) g(p) is bounded below (i.e., g(p) > c′, for a certain constant c′) and is strictly decreasing in

(0, c), for some constant 0 < c < 1.

(A3) (balance condition) Under H0, let F be the CDF of U and G(t) = P (|U | > t) = t−γL(t),

where L(t) is a slowly varying function. Assume F̄ (t)
G(t)

→ p and F (−t)
G(t)

→ q as t → ∞, where

0 < p ≤ 1 and p+ q = 1.

Condition (A1) is mild and is also assumed in Liu and Xie (2020) when investigating the robust-

ness of the Cauchy method under an unspecified dependence structure. Throughout this paper, the

term “unspecified dependence structure” indicates an unspecified Gaussian correlation structure.

This condition guarantees that the tail distributions of each pair of Ui and Uj are asymptotically

tailed independent; see the precise definition of asymptotically tailed independence for a pair of

random variables in the Supplement Section C.1.

Condition (A2) includes the Box-Cox transformation (satisfying A2.1), Cauchy transformation

(satisfying A2.1), and truncated Cauchy transformation (satisfying A2.2) introduced in Section

4.2.1. Condition (A3) is called the “balance condition”, and is a common condition for random

variables with regularly varying tails (Goldie and Klüppelberg, 1998). For example, for the har-

67



monic mean method, p = 1 and q = 0, for the Cauchy method, p = q = 1/2, and for the truncated

Cauchy method, p = 1 and q = 0.

Theorem 4.1. Under conditions (A1), (A2), and (A3) and assuming ρij, for1 ≤ i < j ≤ n, the

(i, j)th element of Σ satisfies −1 < ρij < 1. Then, under H0 : µ = 0 and for any correlation

matrix Σ, we have

P (T (X) > t) ∼ nP (U > t).

Here, T (X) =
∑n

i=1 Ui is the sum of correlated random variables with regularly varying tails.

The theorem is somewhat surprising and a general result, because it applies to any regularly varying

method and any correlation structure Σ with −1 < ρij < 1, as long as no perfect correlation

exists. This theorem is related to Theorem 3.1 in Chen and Yuen (2009), i.e., Lemma S2 in the

Supplementary Material. Roughly speaking, because of the heaviness of the tail of each Ui and the

asymptotic, tailed independence between each pair of Ui and Uj , asymptotically, the correlation

structure has limited influence on the tail of T (X). Because the approximated tail probability is

independent of Σ, an immediate application is to derive the p-value of a regularly varying method

under the independence assumption (i.e., P (U1+· · ·+Un > t), with i.i.d. U1, · · · , Un; see Equation

(4.1)). The theorem is asymptotically robust to an unspecified dependence structure, as shown

for the harmonic mean and Cauchy methods (Wilson, 2019a; Liu and Xie, 2020). Alternatively,

one may approximate the tail probability by nP (U > t). However, note that the robustness to

an unspecified dependence structure is in an asymptotic sense, meaning that we may require an

extremely large t (corresponding to an extremely small test size α) for different tail heaviness in U

and correlation structures in order to guarantee a good approximation. Throughout this paper, we

approximate P (U1+· · ·+Un > t) under a dependence structure by calculating P (U1+· · ·+Un > t)

under the independence assumption using a Monte Carlo simulation.

Below, we perform a simple simulation to demonstrate and investigate Theorem 4.1. Assume

n = 3, and X = (X1, X2, X3) is multivariate normal with unit variance and common pairwise

correlation ρij = ρ (1 ≤ i < j ≤ 3). In this simulation, we set ρ = 0, 0.3, 0.6, 0.9, and 0.99.

Here, we consider seven Box-Cox tests, BC0.75, BC0.8, BC0.9, BC1, BC1.1, BC1.25, and BC1.5.

From Theorem 4.1, we calculate y(α) = nP (U>tα)
P (T (X)>tα)

from simulations, where tα is chosen so that

P (T (X) > tα) = α and α = 10−2, 10−3, 10−4, 10−5. We expect limtα→∞ log (y(α)) = 0 when
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(B) Box-Cox transformations(BC) for r=0.3
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(C)  Box-Cox transformations(BC) for r=0.6
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(D)  Box-Cox transformations(BC) for r=0.9
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(E)  Box-Cox transformations(BC) for r=0.99
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(G) Inverse gamma(IG) for r=1
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Figure 4.2: The mean log-scaled y(α) for Box-Cox transformations, inverse gamma and log-

gamma across different significance levels α. (A)-(F) represent the results of Box-Cox transfor-

mations with values of η = 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5 for correlation level ρ =0, 0.3, 0.6, 0.9,

0.99, and 1, respectively. (G) represents the results of the inverse gamma with shape parameter

one and scale parameter values 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5, for correlation level ρ = 1. (H)

represents the results of the log-gamma with rate parameter one and scale parameter values 0.75,

0.8, 0.9, 1, 1.1, 1.25, 1.5, for correlation level ρ = 1. The x-axis is the negative logarithm of

significance level α to base 10, where α is set to 10−2, 10−3, 10−4, 10−5, and the red dash line is

the reference line log(y(α)) = 0 in all sub-figures.
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−1 < ρ < 1. Figures 4.2A-4.2E show log10-scale α on the x-axis and the mean log (y(α)) on the

y-axis for different ρ =(0, 0.3, 0.6, 0.9, 0.99). Note that as ρ increases, a smaller α will be required

for a good approximation. Theorem 4.2 further characterizes what would happen if some of the

p-values have perfect correlations ρij = 1 or −1.

Theorem 4.2. Suppose conditions (A1), (A2), and (A3) in Theorem 4.1 hold. Define an arbitrary

weight vector w = (w1, · · · , wn) ∈ Rn
+, Tn,w(X) =

∑n
i=1wig(pi). Furthermore, assume ρij =

1 or − 1 for 1 ≤ i < j ≤ m, and |ρij| < 1 for i > m or j > m. Then, under the null hypothesis

H0 : µ = 0, we have

P (Tn,w (X) > t) ∼

{(
m∑
i=1

wi

)γ

+
n∑

i=m+1

wγ
i

}
P (U > t).

Note that Theorem 4.2 is a more general result, of which Theorem 4.1 is a special case. Con-

sider a special scenario w = (1, · · · , 1). An immediate consequence of Theorem 4.2 is that only

when γ = 1 (e.g., the HM, CA, or CAtr method) can satisfy {(
∑m

i=1wi)
γ +

∑n
i=m+1w

γ
i } =

mγ + (n − m) = n, which produces the asymptotic robustness of Theorem 4.1. In other words,

Figures 4.2 (A)-4.2(E) already show a hint that the convergence of Theorem 4.1 becomes increas-

ingly difficult when ρ increases to almost one. When some of the p-values have perfect cor-

relation, only index γ = 1 of the regularly varying distribution is asymptotically robust to an

unspecified dependence structure. Figure 4.2 (F) shows a simulation with ρ = 1, which satis-

fies the condition of Theorem 4.2. By assuming w1 = w2 = w3 = 1 and ρ = 1, we have

P (Tn,w (X) > t) ∼ 3γP (U > t). Figure 4.2 (F) verifies Theorem 4.2 that only BC1 can reach the

convergence limtα→∞ log (y(α)) = 0, showing robustness to perfect correlation. Although Figure

4.2 (E) (ρ = 0.99) and Figure 4.2 (F) (ρ = 1) are visually similar, all BC methods in Figure 4.2 (E)

eventually converge to zero as α → 0, by Theorem 4.1, although very slowly. On the other hand,

in Figure 4.2 (F), only BC1 converges to zero, by Theorem 4.2.

Corollary 4.1. Suppose the conditions in Theorem 4.2 hold and assume
∑n

i=1 wi = n, then we

have 
P (Tn,w(X) > t) ∼ nP (U > t) if γ = 1,

P (Tn,w(X) > t) ≳ nP (U > t) if γ > 1,

P (Tn,w(X) > t) ≲ nP (U > t) if γ < 1.
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From Corollary 4.1, note that when w1 = · · · = wn = 1 and the transformation g(p) = 1/p1/γ ,

the test statistic Tn,w corresponds to the statistic BCη, η = 1/γ. Hence, the BC tests with η <

1 (i.e., γ > 1) are anti-conservative in this situation; the higher the value of γ, the more anti-

conservative the test is. This is verified by Figure 4.2F for BC0.9, BC0.8, and BC0.75 when ρ = 1.

As η → 0 (i.e., γ → ∞), BCη is asymptotically equivalent to Fisher’s method, and is the most anti-

conservative under dependence. On the other hand, for η > 1 (i.e., γ < 1), all the corresponding

tests BCη (η > 1) are conservative under this dependence structure, which is confirmed by Figure

4.2F for BC1.1, BC1.25, and BC1.5. In particular, when η → ∞ (γ → 0), BCη becomes minP, which

hence is expected to be very conservative. Figures 4.2G and 4.2H verify that because the inverse

gamma and log-gamma are also regularly varying distributions with index γ = 1, they enjoy an

asymptotic robustness to the correlation structure, similar to that of HM (BC1) and Cauchy, even

when perfect correlation exists. Another important implication of this corollary is that among

all the tests that use transformations of regularly varying distributions, only the type-I errors of

those corresponding to γ ≤ 1 are well preserved asymptotically (i.e., tests that are at least not

anti-conservative asymptotically) under any correlation structure.

Corollary 4.2. If we further assume −1 < ρi,j < 1,∀1 ≤ i < j ≤ n (i.e., m = 0), then we have

P (Tn,w > t) ∼
n∑

i=1

wγ
i P (U > t).

Corollary 4.2 shows that the tail probability of the weighted test statistic Tn,w can be approx-

imated by
∑n

i=1 w
γ
i P (U > t). Similarly to the unweighted version in Theorem 4.1, because the

approximation in Corollary 4.2 is independent of the correlation structure, P (Tn,w(X) > t) under

the dependence structure can be approximated by calculating P (w1U1+ . . .+wnUn > t) under the

independence assumption using a Monte Carlo simulation, as long as there are no perfect correla-

tions between Ui. Furthermore, note that this formula can be considered an extension of Corollary

1.3.8 in (Mikosch, 1999), in which U1, . . . , Un are assumed to be independent regularly varying

distributed random variables.

Remark 4.1. Note that the robustness property of Theorems 4.1 and 4.2 is similar to (Liu and

Xie, 2020; Wilson, 2019a) and describes only the asymptotic behavior of the tail probability of

our proposed family. Indeed, the results of Theorems 4.1 and 4.2 guarantee only that the type-I
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errors of the corresponding tests (γ = 1, equivalent to the harmonic mean and Cauchy) can be

well controlled for a small size α, given fixed n and Σ. Intuitively, as n increases, a more stringent

cutoff corresponding to a small α is needed to ensure the robustness of type I error control. An

ideal robustness property for the type-I error should achieve a uniform upper tail bound in the sense

of P (T (X) > tα) ≤ c · α under any dependence structure Σ, where tα is the tail threshold when

a nominal α is controlled under the independence assumption, c is independent of n, and Σ is in

a reasonable magnitude (e.g., c = 1.5, meaning the inflation of the type-I error is at most 50%, in

the worst scenario). However, this uniform bound is not achievable, in general. Vovk and Wang

(2020) recently provided a remarkable uniform bound for arbitrary dependency structure (note that

ours is an unspecified dependency structure), but dependent on n for the HM method:

P (HM > t) ≤ naHM
n P (U > t) =

naHM
n

t
,where U

D∼ Pareto(1, 1),

where the adjusted factor αHM
n is between log(n) and e · log(n) (see Proposition 6 in Vovk and

Wang (2020)). However, this bound is not practical in general applications because, considering

n = 100 or 1000, the inflation bound αHM
n ≥ log(n) is at least 4.6- or 6.9-fold greater Furthermore,

the factor αHM
n is comparable with the type-I error in the case of a perfect correlation (i.e., ρ = 1),

instead of the nominal size α under independence. On this issue, Goeman et al. (2019) pointed

out an extreme case that when n = 105 and Σ has exchangeable correlation ρ = 0.2, HM has a

more than threefold type-I error inflation (true type-I error = 0.164 under nominal α = 0.05). In

Section 4.4.1, we perform extensive simulations for a wide range of n and size α to investigate the

limitation and develop practical guidance for applying the HM method.

The discussion above (Remark 4.1) indicates that with a mild normality assumption, the upper

bound for the inflation of type-I errors is much smaller than that under an arbitrary dependence

structure. This is especially useful, because using a smaller upper bound of the inflation of type

I errors to adjust the significance level increases the power of the test. Furthermore, based on

Theorem 4.2 and simulations, we can develop a practical guideline to adjust the significance level

for the HM test (η = 1), and for any test that is a sum of transformations by a distribution with a

regularly varying tail, including any BCη test.

72



4.3.3 Detection Boundary of Regularly Varying Methods

In this subsection, we investigate the power of regularly varying methods by deriving the de-

tection boundary of the test T (X) under sparse alternatives as n → ∞ (Theorem 4.3), which is a

popular measurement of power performance when detecting weak and sparse signals. Below, we

introduce the standard setup of weak and sparse signals by Donoho and Jin (2004), which we refer

to in Theorem 4.3.

Consider testing the null hypothesis H0 : µ = (µ1, · · · , µn) = 0⃗ for the bivariate normal X .

For the alternative, we consider the conventional “weak” and “sparse” signals setting in Donoho

and Jin (2004) by assuming a small number of the n signals are nonzero with |µi| =
√
2τ log(n),

for i ∈ S = {1 ≤ i ≤ n : µi ̸= 0} with |S| = s and 0 < τ < 1, and the rest µi = 0, for i ∈ Sc. In

addition, the sparsity of the signals is of order s = nβ , with 0 < β < 1
2
.

Under the above setup, for any fixed value of β, a larger value of τ makes it easier for a method

to detect the existence of signals. Indeed, for any given β ∈ (0, 1
2
), Donoho and Jin (2004) reported

a threshold effect of τ ; the sum of the type-I and type-II errors of a method tends to be zero or one

depending on whether τ exceeds the detection boundary ρ(β) or not.

For Theorem 4.3, in addition to the setup of Donoho and Jin (2004) and conditions (A2) and

(A3), we need two additional conditions:

(C1): We assume X D∼ N(µ,Σ) and that Σ is a banded correlation matrix; i.e., its (i, j)th element

ρij = 0, for any |i− j| > d0, for some positive constant d0 > 0.

(C2): There exist h ≥ 0 and t1 > 0 such that

1

tγ(ln(t))h
≤ F̄ (t) ≤ (ln(t))h

tγ
,

for all t > t1.

Condition (C2) is for the tail probability of Ui and is a mild condition because F̄ (t) = P (Ui >

t) = L(t)
tγ

(L(t) is a slowly varying function). This condition holds for all commonly used distribu-

tions with regularly varying tails with index γ. In the Supplement Section C.1 (Remark C4), we

show that the BC, Cauchy, and truncated Cauchy methods all satisfy Condition (C2).

73



Theorem 4.3. Under conditions (A2), (A3), (C1), and (C2), for any 0 < γ ≤ 1, any significance

level 0 < α < 1, and τ satisfying
√
τ +

√
β > 1, then under the alternative hypothesis, we have

lim
n→∞

P (T (X) > tα) = 1,

where tα is the p-value cutoff. That is, the detection boundary for T (X) is ρ(β) = (1−
√
β)2.

Remark 4.2. Under the same conditions of Theorem 4.3, one can show that for Tn,w =
∑n

i=1wig(pi)

with w ∈ Rn
+ and

∑n
i=1wi = n, if maxi wi ≤ (log n)η1 and miniwi ≥ 1/(log n)η2 for some fixed

constants η1, η2 > 0, the result of Theorem 4.3 still holds. See the Supplementary Material, Re-

mark S6 for more details.

Theorem 4.3 states that the power of this test T (X) converges to one for any significance level

α > 0 and 0 < γ ≤ 1, or equivalently, that the sum of the Type-I and Type-II errors goes to zero,

given the setup. Moreover, Theorem 4.3 implies that the methods with 0 < γ ≤ 1 attain the optimal

detection boundary defined in Donoho and Jin (2004) in the strong sparsity situation 0 < β < 1/4.

Liu and Xie (2020) showed a similar result for their proposed Cauchy test. As discussed in Section

4.2, the Cauchy distribution has a regularly varying tail with index γ = 1. This theorem is valid

for methods of distributions with regularly varying tails with index 0 < γ ≤ 1. Therefore, this

theorem can be considered a generalization of Theorem 4.3 in Liu and Xie (2020).

4.4 Simulations

In this section, we perform simulations to compare the robustness of different p-value combi-

nation methods under varying correlation levels between p-values in order to verify the theoretical

results presented in Sections 4.2 and 4.3. We include the seven methods discussed in Section

4.2, minP, BC1.25, CA, CAtr, HM(BC1), BC0.75, and Fisher’s method, as well as HC (Higher

criticism) and BJ (Berk-Jones test). Section 4.4.1 first evaluates the type-I error control of the

methods under independence and varying levels of correlation to verify the robustness of the HM

and Cauchy methods. Furthermore, because the robustness in Theorem 4.2 for HM and Cauchy is

an asymptotic result, we further investigate the type-I error control for HM under a wide range of
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n, ρ, and γ to ensure that the robustness of HM and Cauchy is preserved and useful in a practical

sense. Section 4.4.2 assesses the statistical power under different dependency structures and spar-

sity of signals in the alternative hypothesis. In Section 4.4.3, we evaluate the improvement of the

truncated Cauchy method over the Cauchy method in a discrete data simulation.

4.4.1 Type-I Error Control

In this subsection, we first simulate n = 100, X = (X1, · · · , Xn)
D∼ N(0,Σ), pi = 2(1 −

Φ(|Xi|)), and T =
∑n

i=1 g(pi) for the various methods. We further assume that Σ has unit variance

on the diagonal line, and is exchangeable with the common correlation ρ = cor(Xi, Xj), for

1 ≤ i ̸= j ≤ n, where ρ is evaluated at 0 (independence), 0.3, 0.6, 0.9, and 0.99. Table 4.1 shows

the type-I errors of the nine methods with different levels of correlations at α = 0.001 using 106

simulations under the null hypothesis. As expected, all methods control the type-I error perfectly

under the independence assumption (i.e., ρ = 0). When correlations exist between p-values, we

find that minP is the most conservative in terms of the type-I error control, followed by BC1.25,

as expected from the theoretical result in Corollary 4.1. CA, CAtr, and HM exhibit perfect type-I

error control in all correlation settings, showing robustness to the dependency structure. Fisher

and BJ are the most anti-conservative methods in the presence of correlation, followed by slight

anti-conservativeness for HC and BC0.75.

Note that according to Theorems 4.1 and 4.2 for regularly varying distribution transforma-

tion, the tail probability P (T (X) > t) under dependence can be asymptotically approximated

by that under independence. However, the asymptotic result guarantees only the dependence ro-

bustness for very large t (or equivalently very small α). We also expect that larger n will require

a larger t (smaller α) to ensure a good approximation. Specifically, Goeman et al. (2019) noted

that with ρ = 0.2 and n = 105, the much inflated type-I error of 0.164 is obtained for size

α = 0.05. Therefore, it is of interest to explore the robustness property of T (X) for depen-

dence in HM for varying n, α, and ρ in order to provide practical guidance in real applications.

In Table 4.2, we extend the simulation for HM with n = (25, 50, 100, 500, 1000, 2000, 10000),

α = (0.05, 0.01, 0.001, 0.0001), and ρ = (0, 0.3, 0.6, 0.9, 0.99). Given each combination of α

and n, we calculate the maximum percent of inflation (PI) across different ρ, which is defined as
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Table 4.1: Type-I errors for nine tests: Fisher, CA, CAtr (truncated Cauchy), BC0.75, BC1 (HM),

BC1.25, minP, HC, and BJ, across correlation level ρ =0, 0.3, 0.6, 0.9, 0.99.

Method/Correlation ρ=0 ρ=0.3 ρ=0.6 ρ=0.9 ρ = 0.99

Fisher 0.0010 0.1160 0.1960 0.2483 0.2610

BC0.75 0.0010 0.0016 0.0031 0.0041 0.0043

CA 0.0010 0.0011 0.0013 0.0011 0.0010

CAtr 0.0010 0.0011 0.0013 0.0011 0.0010

BC1 (HM) 0.0010 0.0011 0.0013 0.0011 0.0010

BC1.25 0.0010 0.0010 0.0009 0.0005 0.0004

minP 0.0010 0.0010 0.0007 0.0002 0.00003

HC 0.0010 0.0012 0.0047 0.0173 0.0227

BJ 0.0010 0.0850 0.1744 0.2506 0.2712

PI = (maxρ type-I error − α)/(α). The result confirms the theoretical result that a larger n gen-

erates greater type-I error inflation under dependence for a fixed α, and requires a much smaller

α to improve the type-I error inflation. For example, when α = 0.01, we have PI = 30% for

n = 25, compared with PI = 80% for n = 10, 000. On the other hand, when n = 10, 000, PI

decreases from 80% to 49% when α decreases from 0.01 to 0.0001. In general, this result shows

robust type-I error control under varying correlation levels, in a practical sense, when n ≤ 1, 000

and α ≤ 0.05 with the maximum PI = 50%, which inflates type I error from α = 0.01 to 0.015

at n = 1000 and ρ = 0.3. Even when n increases to 10,000, PI only minimally increases to 80%.

When multiple comparisons are needed, such as in GWAS applications, a small α is targeted, and

HM achieves robust type-I error control, in general, in a practical sense. However, if a single test

is performed with a very large n, we need to be careful with the type-I error inflation (e.g., type-I

error is 0.072 for α = 0.05 when n = 10, 000 and ρ = 0.3).
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Table 4.2: Type-I error control of HM evaluated for the total number of p-values n = 25, 50, 100,

500, 1000, 2000, 10000 and ρ = 0, 0.3, 0.6, 0.99 for different sizes of test α = 0.05, 0.01, 10−3,

and 10−4. We also calculate the percent of inflation (PI) to reflect the extent of inflation of the

type-I error under various cases, given n and α. PI is defined as PI = (maxρ type I error − α)/α.

n ρ α = 0.05 α = 0.01 α = 10−3 α = 10−4

ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.058 0.012 1.06× 10−3 1.01× 10−4

25 ρ = 0.6 0.061 0.013 1.19× 10−3 1.11× 10−4

ρ = 0.9 0.052 0.011 1.09× 10−3 1.08× 10−4

ρ = 0.99 0.048 0.010 1.00× 10−3 9.93× 10−5

PI 22% 30% 20% 11%
ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.057 0.012 1.08× 10−3 1.02× 10−4

50 ρ = 0.6 0.053 0.012 1.23× 10−3 1.15× 10−4

ρ = 0.9 0.041 0.010 1.08× 10−3 1.09× 10−4

ρ = 0.99 0.038 0.010 9.99× 10−4 1.01× 10−4

PI 14% 20% 23% 15%
ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.06 0.012 1.12× 10−3 1.04× 10−4

100 ρ = 0.60 0.053 0.013 1.29× 10−3 1.22× 10−4

ρ = 0.9 0.040 0.010 1.09× 10−3 1.10× 10−4

ρ = 0.99 0.037 0.010 1.00× 10−3 1.01× 10−4

PI 20% 30% 29% 22%
ρ = 0 0.05 0.010 1× 10−3 1× 10−4

ρ = 0.3 0.065 0.014 1.20× 10−3 1.07× 10−4

500 ρ = 0.6 0.052 0.013 1.39× 10−3 1.32× 10−4

ρ = 0.9 0.038 0.010 1.10× 10−3 1.11× 10−4

ρ = 0.99 0.035 0.010 9.94× 10−4 1.01× 10−4

PI 30% 40% 39% 32%
ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.068 0.015 1.26× 10−3 1.08× 10−4

1000 ρ = 0.6 0.052 0.014 1.42× 10−3 1.35× 10−4

ρ = 0.9 0.037 0.010 1.08× 10−3 1.09× 10−4

ρ = 0.99 0.034 0.010 9.94× 10−4 1.00× 10−4

PI 36% 50% 42% 35%
ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.069 0.016 1.31× 10−3 1.12× 10−4

2000 ρ = 0.6 0.051 0.018 1.46× 10−3 1.40× 10−4

ρ = 0.9 0.036 0.010 1.09× 10−3 1.11× 10−4

ρ = 0.99 0.033 0.009 9.93× 10−4 1.01× 10−4

PI 38% 80% 46% 40%
ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.072 0.018 1.48× 10−3 1.25× 10−4

10000 ρ = 0.6 0.049 0.014 1.50× 10−3 1.49× 10−4

ρ = 0.9 0.034 0.010 1.07× 10−3 1.12× 10−4

ρ = 0.99 0.031 0.009 9.79× 10−4 1.01× 10−4

PI 44% 80% 50% 49%
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4.4.2 Statistical Power

In this subsection, we follow the simulation setting in Section 4.4.1 to evaluate the statistical

power of the methods under different values of correlation ρ and strengths of the signal. Fol-

lowing the sparse and weak signal setting in Donoho and Jin (2004), we design the n signals

µ = (µ1, · · · , µn) to contain n − s with no signal (µs+1 = · · · = µn = 0), and the first s to

have nonzero signals µ1 = · · · = µs = µ0 =

√
4 log(n)

s0.1
, where s/n = (5%, 10%, 20%). We first

compare the power of the methods under varying correlations, where the rejection threshold is

obtained from the independence assumption, and is uncorrected for dependence. Furthermore, we

compare the power of the methods, where the rejection threshold is corrected with precise type-I

error control under dependency. Note that the correction applies only in simulations, and is not

accessible, in general, without applying extensive permutation tests or simulation-based methods.

4.4.2.1 Power Comparison with an Uncorrected Rejection Threshold from the Indepen-

dence Assumption

In Section 4.4.1, BJ, HC, BC0.75, and Fisher’s method are anti-conservative when using the

rejection threshold from the independence assumption. In other words, the methods lose control

of the type-I error when a dependence structure exists. As a result, we compare only HM, CA,

CAtr, BC1.25, and minP here to evaluate the power of the methods in varying levels of correlation

ρ. Table 4.3 shows the power of the five methods. As expected, the statistical power decreases as ρ

increases. HM, CA, and CAtr have almost identical power and are superior to BC1.25. minP is the

least powerful method among the five. Different proportions of signals give similar patterns and

conclusions.
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Table 4.3: Mean uncorrected power for tests CA, CAtr (truncated Cauchy), HM, BC1.25, and minP

across correlation ρ = 0, 0.3, 0.6, 0.9, 0.99 and proportion of signals s/n = 5%, 10%, 20%. The

standard error is far less than the mean power, and hence is not shown here.

s/n Methods ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.99

CA 0.749 0.629 0.518 0.392 0.347

CAtr 0.749 0.629 0.518 0.393 0.347

5% BC1(HM) 0.749 0.629 0.518 0.393 0.347

BC1.25 0.735 0.617 0.505 0.374 0.321

minP 0.712 0.596 0.482 0.339 0.256

CA 0.870 0.690 0.533 0.371 0.319

CAtr 0.870 0.690 0.533 0.371 0.318

10% BC1(HM) 0.870 0.690 0.533 0.371 0.318

BC1.25 0.850 0.670 0.512 0.342 0.282

minP 0.814 0.639 0.479 0.292 0.194

CA 0.955 0.738 0.542 0.353 0.299

CAtr 0.955 0.738 0.542 0.353 0.299

20% BC1(HM) 0.954 0.737 0.542 0.353 0.298

BC1.25 0.936 0.712 0.513 0.314 0.250

minP 0.895 0.670 0.469 0.249 0.145
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4.4.2.2 Power Comparison with a Corrected Rejection Threshold Considering the Depen-

dence Structure

Because methods other than CA, CAtr, and HM are either conservative or anti-conservative in

terms of type-I error control in the presence of correlation, the power comparison in the previous

subsection is not completely fair. Here, we evaluate the power of each method using the rejection

threshold corresponding to the accurate type-I error control in each case under each correlation

setting. Thus, we obtain the corrected rejection thresholds, considering the dependence structure,

for each ρ, and simulate 106 Monte Carlo samples for each method using the same sampling

procedure as in Section 4.4.1, with assumed correlation. Then, we calculate the empirical rejection

threshold from the Monte Carlo samples under the null hypothesis as the critical value for each

method.

Note that although this comparison is theoretically a fairer comparison, with accurate type-I

error control, it is less practical, unless we know the dependency structure or perform computa-

tionally intensive approaches to precisely control the type-I error.

Table 4.4 shows the results for all nine methods. We order the methods by the index η of

the Box-Cox transformation, as introduced in Section 4.2: minP, BC1.25, HM, CA, CAtr, BC0.75,

Fisher, and then add HC and BJ for comparison. We first observe almost identical results for CA,

CAtr, and HM, and decreasing power when ρ increases, as expected. We next compare the five

methods minP, CA/CAtr/HM, and Fisher with varying proportions of signals and ρ. When ρ = 0,

Fisher is the least powerful when s/n = 5% (power = 0.640), but becomes more powerful than

CA/CAtr/HM and minP when s/n = 10% and 20%, showing its superior performance in frequent

signals. CA/CAtr/HM consistently have good power between that of minP and Fisher. When

ρ increases, Fisher quickly drops to almost zero power, even with accurate type-I error control.

For each given s/n, minP is slightly less powerful than CA/CAtr/HM at small ρ, but becomes

much more powerful than CA/CAtr/HM when ρ is large. This is reasonable because at a very

high correlation (e.g., ρ = 0.99), all signals can be viewed as coming from one source, so taking

the smallest p-value gives sufficiently complete information. For BC0.75 and BC1.25, we observe

that, in general, the performance of BC1.25 lies between that of minP and CA/CAtr/HM, and that

of BC0.75 lies between that of CA/CAtr/HM and Fisher. We next compare HC and BJ with the
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other methods. Although these two methods lose control of the type-I error under a dependency

structure, and are not the focus of this study, we are curious about their power performance if

the correlation structure is correctly considered with type-I error control. As shown in Table 4.4,

BJ is surprisingly powerful for all three proportions of signals when ρ = 0 (e.g., power= 0.91

compared with power = 0.640 − 0.778 for the other seven methods when s/n = 5%). However,

similarly to Fisher’s method, the power of BJ drops quickly to almost zero with the existence of

dependency. The power of HC is, in general, similar to that of CA/CAtr/HM, but becomes weaker

than CA/CAtr/HM for larger ρ. Both HC and BJ lose much power when ρ increases. One possible

explanation is that both tests compare the ordered p-values p(i) with the reference value i/n, which

is not the correct reference under the null with a dependence structure (Liu and Xie, 2020).

4.4.3 Simulation for the Large Negative Penalty Issue in the Cauchy Method

As discussed in Section 4.2.1, p-values close to one lead to large negative penalties in the

Cauchy method, which can cause significant power loss. Below, we design a Fisher’s exact (hyper-

geometric) test for a 2 × 2 contingency table to illustrate the issue and evaluate the improvement

offered by the truncated Cauchy method.

We first evaluate the type-I error, similarly to Section 4.1. We randomly generate n = 20

2 × 2 contingency tables with fixed row and column margins equal to 200. The table has only

one degree of freedom, assuming the upper-left cell of each table is undetermined. Under the

null hypothesis, the rows and columns are independent, and we generate the value of the upper-

left cell from Hypergeometric(400, 200, 200). We then apply Fisher’s exact test to the simulated

data of each table, and combine the n = 20 p-values using the HM and CA methods. We repeat

the simulation 105 times, set the significance level at α = 0.05, 0.01, 0.005, 0.001, 0.0005, and

0.0001, and calculate the proportions of rejections at each α. As shown in Table 4.5 (effect size

p11 = 0), the type-I errors for HM are slightly smaller than the desired significance level under the

null hypothesis (e.g., 0.00077 versus 0.001), whereas those for CA are much lower (e.g., 0.00016

versus 0.001). The main reason for the conservativeness in both tests is that the null distribution

under the simulation setting is skewed towards one, instead of Unif(0, 1), in which case CA is

more sensitive because it imposes a greater penalty for p-values close to one. As shown in Table
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4.5, the type-I error control of CAtr under δ = 0.01 is largely improved for all α; for example, the

type I error is now 0.00077, identical to that of HM, when α = 0.001.

We next evaluate the power for HM and CA. Similarly to Section 4.4.2, we simulate 105

Monte Carlo samples. All settings are identical to the last paragraph in terms of the type-I error

control except that we now generate 2 × 2 tables with row-column correlations. We first simulate

Y from Hypergeometric(400, 200, 200) under the independence assumption. We then simulate

Z
D∼ Bin(200 − Y, p11), and take Y + Z as the value for the upper-left cell. Note that p11 = 0

corresponds to the original null hypothesis, and a larger effect size p11 means a stronger signal. We

set p11 = 0.2, and 0.3 and the power values under different α are shown in Table 4.5. As expected,

a larger p11 generates higher power for both HM and CA. CA produces much smaller power than

HM, mainly because the p-values are skewed toward one. CAtr largely alleviates the issue and

performs almost identically to HM.

4.5 Application

We apply the HM, CA, CAtr, and minP tests to analyze a GWAS of neuroticism (Okbay et al.,

2016), a personality trait characterized by easily experiencing negative emotions. The data set con-

tains 6, 524, 432 genetic variants (SNPs) across 179, 811 individuals, and the p-values are calcu-

lated for all SNPs to represent the association between the variant and neuroticism. We use genome

annotations to locate the genic or intergenic region for each variant. The total number of intergenic

and genic regions is 78, 895. Within each genic or intergenic region, we combine the p-values

of the variants using the HM, CA, CAtr, and minP methods. Figure 4.3 shows three Manhattan

plots for the combined p-values using the HM, CA, and minP methods, respectively. As shown in

Figure 4.3, the combined p-values using CA and HM are almost identical, and are slightly more

significant than those obtained from minP. The bottom-right plot in Figure 4.3 shows the numbers

of significant genic or intergenic regions, with the significance thresholds determined using the

Bonferroni procedure (controlling the family-wise error rate at 0.05) and the Benjamini–Hochberg

FDR procedure (controlling the false discovery rate at 0.05; the significant threshold is p(k), where

k is the largest integer such that p(k) ≤ 0.05k
n

), or p-value threshold at 10−4, 10−5, or 10−6. For all
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Table 4.4: Mean corrected power for tests Fisher, BC0.75, CA, CAtr(truncated Cauchy), HM,

BC1.25, minP, HC, and BJ across correlations ρ = 0, 0.3, 0.6, 0.9, 0.99 and proportions of sig-

nals s/n = 5%, 10%, 20%. The standard errors are far less than the mean power, and hence are

omitted.

s/n Methods ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.99

Fisher 0.640 0.0039 0.0021 0.0017 0.0016
BC0.75 0.778 0.615 0.437 0.308 0.269
CA 0.749 0.620 0.490 0.387 0.348

5% CAtr 0.749 0.621 0.490 0.388 0.348
BC1(HM) 0.749 0.621 0.491 0.389 0.348
BC1.25 0.735 0.618 0.509 0.438 0.402
minP 0.712 0.603 0.522 0.532 0.600
HC 0.760 0.623 0.415 0.216 0.195
BJ 0.912 0.0015 0.0001 0.001 0.001
Fisher 0.992 0.013 0.0044 0.003 0.003
BC0.75 0.908 0.689 0.461 0.301 0.258
CA 0.870 0.680 0.503 0.365 0.320

10% CAtr 0.870 0.681 0.503 0.366 0.319
BC1(HM) 0.869 0.681 0.504 0.366 0.319
BC1.25 0.850 0.672 0.517 0.407 0.361
minP 0.814 0.646 0.520 0.480 0.514
HC 0.887 0.691 0.432 0.213 0.206
BJ 0.998 0.017 0.001 0.001 0.001
Fisher 1.000 0.0745 0.017 0.009 0.008
BC0.75 0.982 0.752 0.484 0.300 0.255
CA 0.955 0.728 0.511 0.347 0.299

20% CAtr 0.955 0.729 0.512 0.348 0.299
BC1(HM) 0.955 0.729 0.512 0.349 0.299
BC1.25 0.936 0.713 0.518 0.378 0.329
minP 0.895 0.678 0.511 0.429 0.436
HC 0.973 0.749 0.451 0.227 0.231
BJ 1.000 0.202 0.016 0.008 0.013
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Table 4.5: Mean proportion of rejection of CA, HM and CAtr (truncated CA) across ρ11 =

0 (type I error), 0.2 (power), 0.3 (power). The standard errors are far less than the mean propor-

tion and hence are omitted.

ρ11 Methods/Cutoffs 0.05 0.01 0.005 0.001 5× 10−4 10−4

CA 0.00825 0.00182 0.000862 0.00016 0.0000687 0.0000100
ρ11 = 0 BC1(HM) 0.0386 0.00894 0.00417 0.00077 0.000334 0.0000487

CAtr 0.0285 0.00729 0.00417 0.00077 0.0000334 0.0000487
CA 0.333 0.202 0.146 0.0582 0.0408 0.0135

ρ11 = 0.2 BC1(HM) 0.863 0.525 0.379 0.154 0.108 0.0357
CAtr 0.848 0.522 0.377 0.154 0.108 0.0361
CA 0.431 0.428 0.420 0.355 0.310 0.190

ρ11 = 0.3 BC1(HM) 1.000 0.992 0.972 0.822 0.717 0.440
CAtr 1.000 0.991 0.971 0.822 0.716 0.440

significance thresholds, the numbers of statistically significant genes for HM and CA are almost

identical, and are larger, in general, than those from minP. In particular, HM and CA both identify

750 regions under FDR= 5%, whereas minP finds only 476 regions.

We input the 750 regions identified by HM/CA under FDR = 5% into the Ingenuity Pathway

Analysis package for pathway enrichment analysis. The top enriched pathways include NEUROD1

and NEUROG2, which are transcription factors with important functions in neurogenesis. The top

diseases and causal networks identify “neurological disease”, which is related to neuroticism. In

contrast, by applying the pathway analysis to the top 456 regions identified using minP, we do

not find enriched pathways potentially related to neuroticism. The top causal network is MKNK1,

which has not been found to play a role in neurological functions.

We next investigate two regions, SLC2A9 and PCSK6, with small combined p-values, using

HM p = 9.534 × 10−4 for SLC2A9 and p = 1.527 × 10−3 for PCSK6; q = 0.0759 for SLC2A9

and q = 0.0939 for PCSK6), but not using CA (p = 0.9999 and 0.9999 and q-values both equal

one). The SLC29A9 gene has been found to be related to Alzheimer’s disease, and PCSK6 is

related to structural asymmetry of the brain and handedness. We suspect the difference between

the results of HM and CA is because the p-values are close to one as described in Section 4.4.3.

Figure C2 shows two jitter plots of the p-values for the SNPs in genes SLC2A9 (right) and PCSK6
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(left). Both genes contain multiple SNPs with very small p-values (e.g., 17 SNPs with p < 10−4 in

SLC2A9, and eight SNPs for PCSK6), thus, the gene regions could be significant. However, both

genes also contain many SNPs with p-values close to one (five SNPs with p > 0.99 for SLC2A9,

and nine SNPs for PCSK6), CA is affected and produces larger combined p-values than those of

HM, a situation similar to that described in Section 4.4.3. Because there are more than 500 p-

values to combine for both genes, by applying CAtr at δ = 0.99 with an approximation by GCLT

(Proposition S1), the p-values improve to 9.531× 10−4 for SLC2A9 and 1.532× 10−3 for PCSK6,

which are almost identical to the p-values calculated by HM.

4.6 Discussion

We have investigated methods for combining dependent p-values using transformations corre-

sponding to regularly varying distributions, which is a rich family of heavy-tailed distributions, and

includes the Pareto distribution (Box-Cox transformation) as a special case. We first present the

aggregating of multiple p-values in three major historical scenarios: (1) a classical meta-analysis

of combining independent and frequent signals (e.g., Fisher), (2) methods for aggregating indepen-

dent weak and sparse signals (e.g., minP, higher criticism, and Berk-Jones), and (3) recent methods

for combining p-values with sparse signals and an unknown dependency structure (i.e., Cauchy

and harmonic mean). We then examine popular methods designed for these three settings under

the Pareto and regularly varying distributions to provide theoretical insight. Lastly, we present the

condition that heavy-tailed transformation methods be robust to the dependency structure.

Our results contribute to the literature in four ways. First, in Section 4.2, we use the family

of Box-Cox transformations, or equivalently, transformations by the CDF of Pareto distributions,

to connect the Fisher, CA, HM, and minP methods, which are designed to specialize in the three

scenarios. We also show that two recent methods, CA and HM, are approximately identical. Sec-

ond, in Section 4.3, we focus on the dependent p-value scenario, and investigate the condition

that p-value combination methods with regularly varying distributions be robust to the dependency

structure, where CA and HM are special cases. We show that only methods of the equivalent class

of CA and HM (i.e., index γ = 1) in the regularly varying distributions have the robustness prop-
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Figure 4.3: Mahattan plots and number of significant p-values for CA, BC1(HM), and minP. The

red dash lines are the cutoffs of the Bonferroni correction for α = 5%, and the blue dash lines are

the cutoffs of the Benjamini-Hochberg correction for FDR = 5%. The significant regions (FDR =

5%) detected by HM and CA are the same, except for two regions, DDX58 (q = 0.0499 by CA and

q = 0.0501 by HM) and POU2F3 (q = 0.0509 by CA and q = 0.0492 by HM).
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erty. Third, we demonstrate an occasional drawback of the Cauchy method when some p-values are

close to one, which contributes to the large negative penalty and causes a loss of power. We propose

a simple, yet practical solution using a truncated Cauchy method with fast and accurate computa-

tion. Finally, the simulations and a real GWAS application confirm our theoretical insights, and

provide a practical guideline for using the harmonic mean and Cauchy methods. Specifically, Ta-

ble 4.2 in Section 4.4.1 shows the degree of possible type-I error inflation of the harmonic mean

method under varying n (number of combined p-values), ρ (correlation level between p-value),

and α (test size).

Modern data science faces challenges from larger data dimensions, increased structural com-

plexity, and the need for models and inference tailored to subject domains. The three categories

of p-value combination methods have motivated the development of numerous methods, and is a

good example of how statistical theories can provide insight into method development and a guide

toward real applications. We conclude that the condition that regularly varying distributions must

be robust to the dependency structure when combining p values is satisfied by those distributions

with index γ = 1, which includes the Cauchy and harmonic mean methods. In future research,

we would like to determine whether other methods (e.g., the inverse gamma or log-gamma fam-

ilies) that satisfy this condition may enjoy robustness and obtain better statistical power in some

applications of interest.
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5.0 Future Directions

There are several directions for the three projects in Chapters 2-4. In Chapter 2, we consider

the input p-values to be independent with each other. However, dependence structure between a

small group of p-values are common in real data practice (Brown, 1975). It is of great interest to

consider dependency structure under the scenario. Similarly, it is of great interest to investigate the

performance of AFg under dependency in Chapter 3. For regularly varying methods in Chapter

4, it is of great interest to develop a fully data-driven procedure to determine the choice of index

γ. In addition, the non-asymptotic rate for approximating the tail probability of regularly varying

methods under certain dependency structures between p-values is also of great interest.
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Appendix A Supplementary Materials for Chapter 2

A.1 Supplementary Theoretical Results

A.1.1 Asymptotic Efficiencies of P-Value Combination Methods

In this subsection, we outline the asymptotic efficiencies of multiple p-value combination

methods mentioned in Section 2: Fisher, Stouffer, Pareto, Cauchy (CA), Berk-Jones (BJ) and

higher criticism (HC). All technical proofs are left to Section A.2. For Fisher test, combined with

Lemma 2.1 and by almost the same argument in Littell and Folks (1973), one can show that Fisher

test attains ABO in the modified partial signal setting. Similarly, by similar argument as above, the

exact slope of Stouffer is

CStouffer(θ⃗) =
1

K

[ ℓ∑
i=1

(λici(θi))
1
2

]2
.

Although generally CStouffer ≤
∑ℓ

i=1 λici(θi) and Stouffer is not ABO, Stouffer becomes ABO

when all the p-values contain true signals with equal effects λ1c1(θ1) = . . . = λKcK(θK) > 0.

Theorem A1 below describes the asymptotic efficiency property of Fisher and Stouffer.

Theorem A1 (extended from Littell and Folks (1973); Fisher is ABO and Stouffer is generally not

ABO). Under the setup in Section 2.1, Fisher is ABO with exact slope CFisher(θ⃗) =
∑ℓ

i=1 λici(θi).

Stouffer is generally not ABO with exact slope CStouffer(θ⃗) = 1
K

[∑ℓ
i=1(λici(θi))

1
2

]2
. Stouffer is

ABO when all signals combined have equal sample-size adjusted exact slope: λ1c1(θ1) = . . . =

λKcK(θK) > 0.

We next study two methods by heavy-tailed distribution transformation, Pareto and CA, as

follows

TPareto(η) =
K∑
i=1

1

pηi
with some η > 0, TCA =

1

K

K∑
i=1

tan(π(
1

2
− pi)).

Methods of this category are in the form of statistics T (p⃗) =
∑n

i=1 g(pi) =
∑n

i=1 F
−1
U (1 − pi) to

sum up transformed p-values, where the transformation g(p) is the inverse CDF of U . Indeed, for

Cauchy, U D∼ CAU(0, 1) (standard Cauchy), and U
D∼ Pareto( 1

η
, 1) for Pareto. Intuitively, methods

89



by light-tailed distribution transformations (e.g., Stouffer and Fisher) achieve better asymptotic

efficiency as a thin-tailed distribution generates more comparable contributions from marginally

significant p-values with frequent signals, while methods by heavy-tailed distribution focus more

on the extreme effects and downweigh the frequent small effects. For example, Stouffer test trans-

forms p-values 10−2 and 10−6 to 2.32 and 4.75 while tan(π(1/2− p)) for Cauchy test transforms

the same p-values to 31.82 and 3.82× 105, which makes the contribution from very small p-value

(10−6) dominate that from the moderate one (10−2). The following two theorems show that CA

and Pareto are generally not ABO and they are ABO if and only if there is only one true signal

among p-values.

Theorem A2. Under the setup in Section 2.1, TPareto(η) is generally not ABO with exact slope

C
(η)
Pareto(θ⃗) = max1≤i≤K λici(θi).

Theorem A3. Under the setup in Section 2.1, TCA is generally not ABO with exact slope CCA(θ⃗) =

max1≤i≤K λici(θi).

Both exact slopes of CA and Pareto are max1≤i≤K λici(θi), which is also the exact slope of

minP, shown in Littell and Folks (1973). This suggests that CA and Pareto are more powerful for

detecting sparse signals as minP.

We continue investigating the asymptotic efficiencies of BJ and HC, which can be viewed as

goodness-of-fit tests:

THC = max
1≤i≤K

√
K

i/n− p(i)√
p(i)
(
1− p(i)

)
TBJ = max

1≤i≤K
I{p(i)< i

K
}

[
i

K
log

(
i/K

p(i)

)
+

(
1− i

K

)
log

(
1− i/K

1− p(i)

)]
.

As goodness-of-fit tests, both test statistics can test whether the underlying distribution is Unif(0, 1)

given K independent observed p-values p1, . . . , pK . Both BJ and HC are mainly applied to the

scenarios of detecting weak and sparse signals (Donoho and Jin, 2004; Berk and Jones, 1979; Li

and Siegmund, 2015). The following theorem shows that BJ is generally not ABO.
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Theorem A4. Under setup in Section 2.1, TBJ is not ABO with exact slope

CBJ(θ⃗) = max
1≤i≤K

iλici(θi).

The following proposition shows that HC generally is not ABO even for combining two p-

values with equal effects.

Proposition A1. Suppose p1 and p2 are two independent p-values such that

− 2

n
log(pi) → ci(θi) as n → ∞ for i = 1, 2,

with probability one. Then for c1(θ1) = c2(θ2) = c0 > 0, THC is not ABO with exact slope

CHC(θ⃗) = c0.

A.1.2 Type I Error Control of FE and FECS

In this subsection, we provide more details on the type I error control of FE and FECS com-

putation using the Pareto(1, 1) distribution. Assume X follows Pareto(1, 1). As suggested by

Theorems 1 and 2 in Fang et al. (2023a), under the null, the upper tail of distribution of the average

of 1/p1, . . . , 1/pL with unknown dependence structure can be approximated by that of Pareto(1, 1),

in a sense that for sufficiently large t > 0 (corresponding to sufficiently small significant level α),

P
(
1
L

∑L
i=1 1/pi > t

)
P
(
X > t

) ≈ 1. (A1)

Hence for FE and FECS respectively, one can show that for sufficiently large t > 0 (corresponding

to sufficiently small α),

1− FTFE(t)

1− FPareto(1,1)(t)
≈ 1

1− FTFECS (t)

1− FPareto(1,1)(t)
≈ 1,

which justifies the type I error control procedures for FE and FECS using Pareto(1, 1), respectively.

Table A1 in Section A.3.1 numerically justifies accuracy of the above fast-computing procedure,

where we show that type I error control procedures for FE and FECS are accurate for α = 0.0001 ∼
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0.05 across a broad range of K (5 to 100). Note 1− FPareto(1,1)(t) = 1/t, combined with equation

( A1), one can show that the above procedures are equivalent to directly using

L∑L
i=1 1/pi

as p-value for statistic 1
L

∑L
i=1 1/pi, which is suggested by Wilson (2019a).

A.2 Technical Arguments

In this section, we present the technical arguments for proving the theoretical results. For any

random variable X with CDF F , the corresponding survival function is denoted by F̄ = 1−F (t).

For two positive functions u(·) and v(·), we denote by u(t) ∼ v(t) if limt→∞
u(t)
v(t)

= 1. Also,

u(t) ≳ v(t) if limt→∞
u(t)
v(t)

> 1 and u(t) ≲ v(t) if limt→∞
u(t)
v(t)

< 1.

A.2.1 Proofs of Results of Modified Fisher’s Methods: Lemma 2.1 and Theorems 2.1-2.6

In this subsection, we prove Theorems 2.1-2.6. Before proceeding to the proofs, we first prove

Lemma 2.1 and introduce Lemmas A1- A3.

Proof of Lemma 2.1. For θ ∈ Θ0, note that − log p(n) follows exponential distribution with rate

parameter 1 (denoted by EXP(1)) since the p-value pn is distributed uniformly in (0, 1). Consider

the sequence of random variables Y1, Y2, . . ., where Y1, Y2 . . . , identically follow EXP(1). Define

event An = {Yn

n
> log(n(n+1))

n
}. Then since

∑+∞
i=1 P(An) < ∞, by the Borel–Cantelli lemma, we

have P
(
lim supn→+∞ An

)
=0. Hence Yn

n
converges to zero with probability one.

Lemma A1 (Bahadur et al. (1960)). Let Fχk
(x) = P(χk ≤ x), where χk =

√
χ2
k and χ2

k follows

chi-squared distribution with degrees of freedom k. Then log(F̄χk
(x)) → −1

2
x2(1 + o(1)) as

x → ∞.

Lemma A2 (Savage (1969)). Suppose
{
T (n)

}
is a sequence of test statistics which satisfies the

following two properties:

1. There exists a function b(θ), 0 < b(θ) < ∞, such that T (n)/
√
n → b(θ) with probability one.
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2. There exists a function f(t), 0 < f(t) < ∞, which is continuous in some open set containing

the range of b(θ) such that for each t in the open set:

− 1

n
log
[
1− Fn(

√
nt)
]
→ f(t),

where Fn is the continuous CDF function of some random variable Xn.

Then

− 2

n
log
[
1− Fn(T

(n))
]
→ 2f(b(θ))

with probability one.

Remark A1. The condition 0 < f(t) < ∞ implicitly puts restrictions on the choice of Xn

(corresponding to Fn). For example, the rate of the upper tail of Xn should not be too fast. Indeed,

Xn
D∼ Unif(0, 1) leads to a too fast rate (FUnif(0,1)(

√
nt) = 0 for any

√
nt > 1), resulting in

f(t) = +∞ that clearly does not satisfy the conditions of Lemma A2.

Remark A2. When Fn is the CDF of T (n), Lemma A2 becomes Theorem 1 in Littell and Folks

(1973), which will be used in the proof of Theorem A2; We will use Lemma A2 in the proofs of

Theorems 2.1 and 2.3 to 2.6, where Fn = F for some F and all n.

Lemma A3. Under the setup in Section 2.1, define the following two index sets:

D∗ = {i : ci(θi) > 0} ; D̂ =
{
i : pi ≤ p(ℓ)

}
.

Then we have, as n → ∞, D̂ → D∗ with probability one. And if λici(θ) > λi′ci′(θ) > 0,
pi′
pi

→ +∞ with probability one.

Proof. To prove the first claim, first denote D∗c = {i : i /∈ D∗}. For any i′ ∈ D∗c, and any

i ∈ D∗, by Lemma 2.1, we have log (pi′/pi) /n → λici(θi) − 0 > 0 with probability one. Hence

pi is smaller order of pi′ as n → ∞, which completes the proof. For the second claim, simply note

for any λici(θ) > λi′ci′(θ) > 0, log (pi′/pi) /n → λici(θ) − λi′ci′(θ) > 0 with probability one.

Then the result follows.

Corollary A1. Under the alternative in Section 2.1, with probability one, we have

− 2

n

j∑
i=1

log p(i) →


∑j

i=1 λici(θi) 1 ≤ j ≤ ℓ∑ℓ
i=1 λici(θi) ℓ < j ≤ K.
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Proof. Combine the results of Lemmas 2.1 and A3, the results follow.

The proof of Theorem 2.1 below will use the second equivalent form of AFs to derive the exact

slope:

T ′
AFs = min

w⃗
F̄χ2

2(
∑K

i=1
wi)

(−2
K∑
i=1

wi log pi),

where w⃗ = (w1, . . . , wK) ∈ {0, 1}K is the vector of binary weights that identify the candidate

subset of p-values with true signals. In addition, denote

ˆ⃗w = argmin
w⃗

F̄χ2

2(
∑K

i=1
wi)

(−2
K∑
i=1

wi log pi),

and w⃗∗ = {w⃗ : wk = 1 if θi ∈ Θ0 or 0 if θi ∈ Θ0} as the weight vector identifying the true signals.

Also denote ˆ⃗w = (ŵ1, . . . , ŵK). For the original form

TAFs = max
1≤j≤K

− log(F̄χ2
2j
(−2

j∑
i=1

log p(i))),

we denote correspondingly ĵ = argmaxj − log F̄χ2
2j

(
− 2

∑j
i=1 log p(i)

)
. Since p1, . . . , pK are in-

dependent with each other, we have

−2

ĵ∑
i=1

log p(i) = −2
K∑
i=1

ŵi log pi.

Proof of Theorem 2.1. Denote

T (w⃗; p⃗) = −2
K∑
i=1

wi log pi

L(T (w⃗; p⃗)) = F̄χ2
2d(w⃗)

(T (w⃗; p⃗)),

where d(w⃗) =
∑K

i=1wi and p⃗ = (p1, . . . , pK). Essentially, T ′
AFs = minw⃗ L(T (w⃗; p⃗)). Further

denote by Lobs = min
w⃗

L(T (w⃗; p⃗obs)) the observed value of T ′
AFp.

Let P0 be the probability measure of p⃗ = (p1, . . . , pK) under the null and UAFs be the ran-

dom variable that follows the same distribution of T ′
AFs under the null. For any fixed w⃗, denote
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by U(w⃗, p⃗) the random variable follows the same distribution of F̄χ2
2d(w⃗)

(T (w⃗; p⃗)) under the null.

Further denote Ωj = {w⃗ : d(w⃗) = j} for j = 1, . . . , K. Then we have:

pAFs = FUAFs(Lobs) = 1− F̄UAFs(Lobs)

= 1− P0

( K⋂
j=1

⋂
w⃗∈Ωj

U(w⃗, p⃗) ≥ Lobs

)
. (A2)

By Bonferroni’s inequality,

(A2) ≤ 1−
[
1−

K∑
j=1

P0

( ⋃
w⃗∈Ωj

U(w⃗, p⃗) ≤ Lobs

)]

≤
K∑
j=1

∑
w⃗∈Ωj

F̄χ2
2j

(
F̄−1
χ2
2j

(
Lobs

))
=
(
2K − 1

)
Lobs, (A3)

where F̄−1
χ2
2j
(α) denotes the 1− α quantile of χ2

2j . Further note

− 2

n
log
(
Lobs

)
= − 2

n
log
(
1− Fχ2

2d( ˆ⃗w)

(
− 2

K∑
i=1

ŵi log pi
))

= − 2

n
log F̄χ

2d( ˆ⃗w)

((
−2

K∑
i=1

ŵi log pi
) 1

2
)
.

Since 1 ≤ d( ˆ⃗w) ≤ K,

− 2

n
log F̄χ2K

((
−2

K∑
i=1

ŵi log pi
) 1

2
)
≤ − 2

n
log
(
Lobs

)
≤ − 2

n
log F̄χ2

((
−2

K∑
i=1

ŵi log pi
) 1

2
)
. (A4)

Denote ĵ = argmaxj − log F̄χ2
2j

(
−2
∑j

i=1 log p(i)
)
, as p1, . . . , pK are independent with each other,

we have

−2
K∑
i=1

ŵi log pi = −2

ĵ∑
i=1

log p(i).

In the proof of Theorem 2.4 latter, we will show that ĵ ≥ ℓ with probability one (equation (

A11) in the proof of Theorem 2.4). Hence by Corollary A1, under the alternative, we have
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√
−2

∑K
i=1 ŵi log pi√
n

=

√
−2

∑ĵ
i=1 log p(i)√
n

→ (
∑ℓ

i=1 λici(θi))
1
2 with probability one. Further combined

with and Lemmas A1 and A2 and equation ( A4), we have

− 2

n
log
(
Lobs

)
→

ℓ∑
i=1

λici(θi).

Combined with ( A3), we have under the alternative

− 2

n
log pAFs ≥

ℓ∑
i=1

λici(θi)

with probability one. Then the result follows.

Proof of Theorem 2.2. Note that by Theorem A1, we have that Fisher is ABO with exact slope

CFisher(θ⃗) =
∑ℓ

i=1 λici(θi), then combine with Theorem 2.6 in Berk and Jones (1978), the result

follows.

Proof of Theorem 2.3. Case when ℓ ≥ 2:

Assume j∗ = argmaxj

∑j
i=1 λici(θi)

Bj
. We first prove that under alternative,

argmax
j

TA → j∗ (A5)

with probability one as n → ∞. Indeed, for ∀j′ ̸= j∗, suppose the following event holds:

−2
∑j′

i=1 log p(i) − Aj′

Bj′
>

−2
∑j∗

i=1 log p(i) − Aj∗

Bj∗

⇔ −2Bj∗

j′∑
i=1

log p(i) + Aj∗Bj′ > −2Bj′

j∗∑
i=1

log p(i) + Aj′Bj∗

⇔
−2Bj∗

∑j′

i=1 log p(i)/n+ Aj∗Bj′/n

−2Bj′
∑j∗

i=1 log p(i)/n+ Aj′Bj∗/n
> 1. (A6)

Here without loss of generality we assume both Aj∗Bj′ and Aj′Bj∗ in the second inequality are

positive. Otherwise one can always move the smaller term to the other side of the inequality and
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still use almost the same arguments as follows. However, under the setup in Section 2.1, note that

by Lemmas 2.1 and A3 and j∗ = argmaxj

∑j
i=1 λici(θi)

Bj
, under the alternative we have

−2Bj∗
∑j′

i=1 log p(i)/n+ Aj∗Bj′/n

−2Bj′
∑j∗

i=1 log p(i)/n+ Aj′Bj∗/n
→ Bj∗

Bj′
·
∑j′

i=1 λici(θi)∑j∗

i=1 λici(θi)
< 1

as n → ∞ with probability one, which contradicts to equation ( A6). Hence ( A5) holds. Let UA

be the random variable that follows the same distribution of TA under the null. Denote by FUA
the

CDF of the UA and F̄UA
= 1−FUA

as the corresponding survival function, respectively. Similarly,

for the following test statistic

TAj
=

−2
∑j

i=1 log p(i) − Aj

Bj

,

let UAj
be the random variable that follows the same distribution of TAj

under the null. And define

FUAj
and F̄UAj

as the CDF and survival function of UAj
, respectively. Furthermore, define the test

statistic

Tj = −2

j∑
i=1

log p(i)

and Uj as the random variable that follows the same distribution of Tj under the null and let FUj

and F̄Uj
be the CDF and survival function of Uj , respectively. Pick j = 1, then we have:

F̄UA
(TA) ≥ F̄UA1

(TA) = F̄U1(B1TA + A1),

Denote T (n) =
√
B1TA + A1, with ( A5) holds, by Lemmas 2.1 and A3, under the alternative, we

have,
T (n)

√
n

= n− 1
2 (B1TA + A1)

1
2 →

[
(B1/Bj∗)

j∗∑
i=1

λici(θi)
] 1

2

with probability one. Note for t > 0 we have

F̄χ2(
√
nt) = F̄χ2

2
(nt2) ≤ F̄U1(nt

2) ≤ F̄χ2
2K
(nt2) = F̄χ2K

(
√
nt).

Hence by Lemma A1,

− 1

n
log F̄U1(nt

2) = − 1

n
log F̄√

U1
(
√
nt) → t2

2
.
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Hence by Lemma A2, under the alternative, we have

− 2

n
log
(
F̄UA

(TA)
)
≤ − 2

n
log F̄U1

(
(T (n))2

)
= − 2

n
log F̄√

U1
(T (n))

→ B1

Bj∗

j∗∑
i=1

λici(θi) <
ℓ∑

i=1

λici(θi) (A7)

with probability one. Here the last inequality is due to ℓ ≥ 2 and Bj is a strictly increasing func-

tion. Hence TA is still not ABO.

Case when ℓ = 1:

First we prove that j∗ → 1 with probability one under the alternative. Note here we assume ℓ = 1

and Bj increases as j increases. Note that ci(θi) = 0 with probability one for all i > 1, hence

max
j

∑j
i=1 λici(θi)

Bj

→ λ1c1(θ)

B1

(A8)

with probability one. Hence j∗ → 1 with probability one. Then we have:

F̄UA
(TA) ≤

K∑
j=1

F̄UAj
(TA) =

K∑
j=1

F̄Tj
(BjTA + Aj) ≤ K · F̄χ2

2K

(
B1TA +min

j
Aj

)
.

By combining ( A8) and Lemmas 2.1 and A3, under the alternative, we have√
B1TA +minj Aj√

n
→
√
λ1c1(θ)

with probability one. And by Lemma A1

− 1

n
log
(
1− Fχ2K

(
√
nt)
)
→ 1

2
t2.

In addition,

− 2

n
log F̄UA

(TA) ≥ − 2

n

[
log F̄χ2

2K

(
B1TA +min

j
Aj

)
+ logK

]
. (A9)

Hence by Lemma A2, under alternative, (A9) → λ1c1(θ) with probability one. Then we conclude

that when ℓ = 1, TA is ABO.
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Remark A3. It can be shown that TA generally does not has signal selection consistency. Recall

that TA picks j∗ = argmaxj

∑j
i=1 λici(θi)

Bj
with probability one as shown in the proof. To give a

counter example, we consider Bj =
√∑K

i=1w(i, j) (corresponding to TAFz), where K = 2. We

assume there is only two signals, with λ1c1(θ1) = 9 and λ2c2(θ2) = 1. Then one can show

j∗ = 1 here, i.e., TA picks the wrong subset of p-values with probability one. Since Bj is a strictly

increasing function, we can easily show that j∗ ≤ ℓ always holds and j∗ < ℓ in general.

The proof of Theorem 2.4 will use the first equivalent form of AFs,

TAFs = max
1≤j≤K

− log F̄χ2
2j
(−2

j∑
i=1

log p(i)).

Proof of Theorem 2.4. The goal is to prove ˆ⃗w → w⃗∗ in probability as n → ∞ under the alterna-

tive. Recall by Corollary A1, we have, under the alternative,

− 2

n

j∑
i=1

log p(i) →


∑j

i=1 λici(θi) 1 ≤ j ≤ ℓ∑ℓ
i=1 λici(θi) ℓ < j ≤ K

(A10)

with probability one as n → +∞. Define index sets

S1 = {i : w∗
i = 1 and ŵi = 0} ; S2 = {i : w∗

i = 0 and ŵi = 1} .

Recall that we assume the first ℓ ≤ K studies are with exact slopes ci(θ) > 0. The following

arguments are based on the first equivalent form of AFs, denoted by TAFs.

We first prove S1 → ∅ in probability. Indeed, we claim a stronger result that S1 → ∅ with

probability one under the alternative. By Lemmas 2.1 and A3, as n → +∞, the first smallest ℓ

p-values converge to the first ℓ p-values with exact slopes strictly greater than 0. Hence it suffices

to prove that for

ĵ = argmax
j

− log F̄χ2
2j

(
− 2

j∑
i=1

log p(i)
)
,
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as n → +∞, we have ĵ ≥ ℓ with probability one. Indeed, for any j′ < ℓ, by Lemmas A2 and A3

and equation ( A10),

− log F̄χ2
2j′

(
− 2

∑j′

i=1 log p(i)
)

− log F̄χ2
2ℓ

(
− 2

∑ℓ
i=1 log p(i)

) =
−(1/n) log F̄χ2

2j′

(
− 2

∑j′

i=1 log p(i)
)

−(1/n) log F̄χ2
2ℓ

(
− 2

∑ℓ
i=1 log p(i)

)
=

−(1/n) log F̄χ2j′

(
(−2

∑j′

i=1 log p(i))
1
2

)
−(1/n) log F̄χ2ℓ

(
(−2

∑ℓ
i=1 log p(i))

1
2

)
→
∑j′

i=1 λici(θ)∑ℓ
i=1 λici(θ)

< 1

with probability one. Hence as n → +∞,

ĵ ≥ ℓ (A11)

with probability one, i.e., S1 → ∅ with probability one.

We then prove S2 → ∅ in probability under the alternative, which is essentially to prove ĵ ≤ ℓ

in probability. To prove this, pick arbitrary j > ℓ, and note event ĵ = j is equivalent to event

F̄χ2
2j

(
− 2

∑j
i=1 log p(i)

)
F̄χ2

2ℓ

(
− 2

∑ℓ
i=1 log p(i)

) ≤ 1. (A12)

Then we have

(A12) ⇔
j−1∑
i=0

1

i!

(
−

j∑
k=1

log p(k)
)i
exp

( j∑
k=1

log p(k)
)

≤
ℓ−1∑
i=0

1

i!

(
−

ℓ∑
k=1

log p(k)
)i
exp

( ℓ∑
k=1

log p(k)
)

(A13)

⇔ exp
{ j∑

k=ℓ+1

log p(k)
}
≤
∑ℓ−1

i=0
1
i!

(
−
∑ℓ

k=1 log p(k)
)i∑j−1

i=0
1
i!

(
−
∑j

k=1 log p(k)
)i

⇔
j∏

k=ℓ+1

p(k)︸ ︷︷ ︸
I

≤
∑ℓ−1

i=0
1
i!

(
−
∑ℓ

k=1 log p(k)
)i∑j−1

i=0
1
i!

(
−
∑j

k=1 log p(k)
)i︸ ︷︷ ︸

II

. (A14)

( A13) is due to relationship between Poisson distribution and chi-squared distribution. Note

II =

∑ℓ−1
i=0

1
i!

(
−
∑ℓ

k=1 log p(k)
)i
/
(
n
2

)ℓ−1∑j−1
i=0

1
i!

(
−
∑j

k=1 log p(k)
)i
/
(
n
2

)j−1︸ ︷︷ ︸
III

· 1(
n
2

)j−ℓ
,
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and

III → (j − 1)!

(ℓ− 1)!
· 1(∑ℓ

k=1 λici(θi)
)j−ℓ

with probability one. Hence II = O
(

1
nj−ℓ

)
with probability one. While for I , with probability

one, it is the product of the first (j − ℓ)-th smallest p-values of K − ℓ i.i.d. p-values following

Unif(0, 1) as n → +∞. Hence I = Op(1) under the alternative. Hence the probability that event (

A14) holds converges to zero as n → +∞. Then the result follows.

Let Rj = −
∑j

i=1 log p(i) =
Tj

2
, to prove Theorem 2.5, we need the following Lemma to

carefully quantify the upper tails of Rj when 1 < j < K and under the null:

Lemma A4 (Nagaraja (2006)). Let FRj
(t) and F̄Rj

(t) be the CDF and survival function of Rj

under the null, separately. For 1 < j < K, we have:

F̄Rj
(t) =

K−j∑
i=1

wi exp {−cit/cK−j+1}
1

(j − 1)!

∫ t

0

exp (diy) y
j−1dy +

j−1∑
k=0

e−t t
k

k!
,

where ci = K − i+ 1, di = ci
cK−j+1

− 1. And

wi =

K−j∏
k=1;k ̸=i

K − k + 1

i− k
.

Further calculation leads to

F̄Rj
(t) =

K−j∑
i=1

wi exp {−t} 1

(j − 1)!

{
j−1∑
m=0

(−1)mtj−1−m 1

dm+1
i

(j − 1)!

(j − 1−m)!

}

+

j−1∑
k=0

e−t t
k

k!
. (A15)

Proof of Theorem 2.5. We consider the TAFp = maxj∈S − log Ḡj(−2
∑j

i=1 log p(i)), where Ḡj =

1−Gj(t) and Gj(t) denotes the CDF function of Tj = −2
∑j

i=1 log p(i) under the null. Let

ĵ = argmax
j

− log Ḡj

(
− 2

j∑
i=1

log p(i)
)
.

By Lemma A3, it suffices to show ĵ → ℓ in probability. We First show that the choice of ĵ ≥ ℓ

with probability one as n diverges under the alternative. Indeed, by the following inequality

P(χ2
2j > t) ≤ Ḡj(t) ≤ P(χ2

2K > t), (A16)
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we have

−2 log Ḡj

(
− 2

j∑
i=1

log p(i)
)
≤ −2 log F̄χ2

2j

(
− 2

j∑
i=1

log p(i)
)

−2 log Ḡj

(
− 2

j∑
i=1

log p(i)
)
≥ −2 log F̄χ2

2K

(
− 2

j∑
i=1

log p(i)
)
.

Then by Lemma 2.1, Lemmas A1- A3, and Corollary A1, we have:

− 2

n
log Ḡj

(
− 2

j∑
i=1

log p(i)
)
→


∑j

i=1 λici(θi) j < ℓ∑ℓ
i=1 λici(θi) j ≥ ℓ

with probability one. Hence ĵ ≥ ℓ with probability one as n goes to infinity under the alternative.

Now we show ĵ ≤ ℓ in probability as n goes to infinity. Indeed, for any j > ℓ, consider the

following event:

A

B
=

Ḡj

(∑j
i=1 −2 log p(i)

)
Ḡℓ

(∑ℓ
i=1−2 log p(i)

) ≤ 1. (A17)

It suffices to show probability of the above event goes to zero under the alternative.

For the case 1 < ℓ < j < K, by Lemma A4,

A

B
≤ 1

⇔
F̄Rj

(∑j
i=1− log p(i)

)
F̄Rℓ

(∑ℓ
i=1− log p(i)

) ≤ 1

⇔
j∏

i=ℓ+1

p(i)︸ ︷︷ ︸
I

≤

∑K−ℓ
i=1 wi

1
(ℓ−1)!

{∑ℓ−1
m=0(−1)mRℓ−1−m

ℓ
1

dm+1
i

(ℓ−1)!
(ℓ−1−m)!

}
+
∑ℓ−1

k=0

Rk
ℓ

k!∑K−j
i=1 wi

1
(j−1)!

{∑j−1
m=0(−1)mRj−1−m

j
1

dm+1
i

(j−1)!
(j−1−m)!

}
+
∑j−1

k=0

Rk
j

k!︸ ︷︷ ︸
II

.

Note that

II ·
(
n
2

)j−1(
n
2

)ℓ−1
= II ·

(n
2

)j−ℓ → CK,j,ℓ

( ℓ∑
i=1

λici(θi)
)j−ℓ

with probability one, where CK,i,ℓ is some constant that depends on K, i and ℓ. Hence II → 0

with probability one as n diverges. By Lemma A3, we note I is the product of the first (j − ℓ)-th

smallest p-values of K − ℓ i.i.d. p-values following Unif(0, 1) as n → +∞. Hence I = Op(1).
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And the probability of event A/B ≤ 1 goes to 0 in probability. For the case 1 < ℓ < i = K, we

note that

A

B
≤ 1

⇔
F̄χ2

2K

(∑K
i=1− log p(i)

)
F̄Rℓ

(∑ℓ
i=1− log p(i)

) ≤ 1

⇔
K∏

i=ℓ+1

p(i)︸ ︷︷ ︸
III

≤

∑K−ℓ
i=1 wi

1
(ℓ−1)!

{∑ℓ−1
m=0(−1)mRℓ−1−m

ℓ
1

dm+1
i

(ℓ−1)!
(ℓ−1−m)!

}
+
∑ℓ−1

k=0

Rk
ℓ

k!∑K−1
i=0

1
i!

(
RK

)i︸ ︷︷ ︸
IV

.

Note that

IV ·
(
n
2

)K−1(
n
2

)ℓ−1
= IV ·

(n
2

)K−ℓ → CK,ℓ

( ℓ∑
i=1

λici(θi)
)K−ℓ

with probability one, where CK,ℓ is some constant that depends on K and ℓ. Hence IV → 0 with

probability one as n diverges. By Lemma A3, we note III is the product of K − ℓ i.i.d. p-values

following Unif(0, 1) as n → +∞. Hence III = Op(1). And the probability of event A/B ≤ 1

goes to 0 in probability.

Now we consider the case 1 = ℓ < j < K. By inequality (1 + x)K ≥ 1 +Kx for x > −1, we

have

P(A/B ≤ 1) = P
( F̄Rj

(
∑j

i=1− log p(i))

F̄R1(− log p(1))
≤ 1
)

= P
( F̄Rj

(
∑j

i=1 − log p(i))

1− (1− exp(log p(1)))K
≤ 1
)

≤ P
( F̄Rj

(
∑j

i=1− log p(i))

K exp(−R1)
≤ 1
)
.

Hence it suffices to show P
(

F̄Rj
(
∑j

i=1 − log p(i))

K exp(−R1)
≤ 1
)
→ 0 as n diverges. Note that by Lemma A4,

we have

F̄Rj
(
∑j

i=1− log p(i))

K exp(−R1)
≤ 1

⇔
j∏

i=2

p(i)︸ ︷︷ ︸
V

≤ K∑K−j
i=1 wi

1
(j−1)!

{∑j−1
m=0(−1)mRj−1−m

j
1

dm+1
i

(j−1)!
(j−1−m)!

}
+
∑j−1

k=0

Rk
j

k!︸ ︷︷ ︸
V I
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Note that

V I ·
(n
2

)K−1 → CK

(
λ1c1(θ1)

)K−1

with probability one, where CK is some constant that depends on K. Hence V I → 0 with prob-

ability one as n diverges. By Lemma A3, we note V is the product of j − 1 smallest p-values of

K − 1 i.i.d. p-values following Unif(0, 1) as n → +∞. Hence V = Op(1). And the probability

of event A/B ≤ 1 goes to 0 in probability. The arguments for the case 1 = ℓ < j = K is quite

similar, hence we omit the details. Combine the above results, we have ĵ ≤ ℓ in probability as n

diverges. Then the conclusion follows.

We prove Theorem 2.6 by proving the following test statistic in a more general form is ABO:

T (τ1, τ2) =
K∑
i=1

(−2 log (pi) + 2 log (τ2)) I{pi≤τ1} with 0 ≤ τ1, τ2 ≤ 1.

When τ1 = τ and τ2 = 1, T (τ1, τ2) = TTFhard(τ); and when τ1 = τ2 = τ , T (τ1, τ2) = TTFsoft(τ).

The proof of the Theorem 2.6 requires the following additional lemma:

Lemma A5 (Zhang et al. (2020b)). Assume p1, . . . , pK ∼ Unif(0, 1) independently and iden-

tically. Denote by U(τ1, τ2) the random variable that follows the same distribution of T (τ1, τ2)

under the null. Then

F̄U(τ1,τ2)(t) =
(
1− τ1

)KI{t≤0} +
K∑
i=1

(
K

i

)
τ i1
(
1− τ1

)K−i
F̄χ2

2i

(
t+ 2i log

(
τ1/τ2

))
(A18)

Proof of Theorem 2.6. We only prove the case of τ2 ≤ τ1 as the case of τ2 > τ1 can be proved by

similar arguments. Let FU(τ1,τ2)(t) and F̄U(τ1,τ2)(t) be the CDF and survival function of U(τ1, τ2).

Consider test statistic
√
T (τ1, τ2). Under the setup in Section 2.1 and the alternative, by Lemmas

2.1 and A3, we have

√
T (τ1, τ2)√

n
=

√∑K
i=1

(
− 2 log pi + 2 log τ2

)
I{pi≤τ1}√

n
→
( ℓ∑
i=1

λici(θi)
) 1

2 (A19)

with probability one as n → ∞. In addition, by Lemma A1, for each i = 1, . . . , K,

− 1

n
log F̄χ2

2i

(
nt2 + 2i log (τ1/τ2)

)
= − 1

n
log F̄χ2i

(√
nt2 + 2i log (τ1/τ2)

)
→ t2

2
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as n → ∞. Note by Lemma A5, for t > 0 we have

F̄√
U(τ1,τ2)

(
√
nt) = F̄U(τ1,τ2)(nt

2)

≥ F̄χ2
2

(
nt2 + 2K log(τ1/τ2)

) K∑
i=1

(
K

i

)
τ i1 (1− τ1)

K−i

F̄√
U(τ1,τ2)

(
√
nt) = F̄U(τ1,τ2)(nt

2)

≤ F̄χ2
2K

(
nt2 + 2 log (τ1/τ2)

) K∑
i=1

(
K

i

)
τ i1 (1− τ1)

K−i .

Hence

− 1

n
log F̄√

U(τ1,τ2)

(√
nt
)
→ t2

2
(A20)

with probability one as n → ∞. By combining ( A19) and ( A20) and applying Lemma A2, we

have for the exact slope of T (τ1, τ2),

CT (τ1,τ2) = − 2

n
log F̄U(τ1,τ2)

(
T (τ1, τ2)

)
= − 2

n
log F̄√

U(τ1,τ2)

(√
T (τ1, τ2)

)
→

ℓ∑
i=1

λici(θi).

Hence T (τ1, τ2) is ABO.
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A.2.2 Proof of Theorem 2.7

Proof of Theorem 2.7. Let URV(γ) be the random variable that follows the same distribution of

TRV(γ) under the null. Denote by FURV(γ)(t) and F̄URV(γ)(t) the CDF and survival function of

TRV(γ) under the null. Furthermore, under the null, let U(γ) be the random variable such that

U(γ) ∈ R−γ . Hence gγ(pTi
) = F−1

U(γ)(1 − pTi
) follows the same distribution of U(γ) under

the null. Let ti = F−1
U(γ)(1 − pTi

). Consequently, under the alternative, for i such that Ci(θ⃗) > 0,

pTi
= F̄U(γ)(ti) and F̄U(γ)(ti)/(L(ti)t

−γ
i ) → 1 with probability one. We have, under the alternative,

as n → +∞,

− 2

n
log
(
F̄U(γ)(ti)/(L(ti)t

−γ
i )
)
− 2

n
log
(
L(ti)t

−γ
i

)
= − 2

n
log(pTi

) → Ci(θ⃗)

with probability one. Hence − 2
n
log
(
L(ti)t

−γ
i

)
→ Ci(θ⃗) with probability one. By the basic prop-

erty of slowly varying function, we have L(ti) = o(tγi ) with probability one for any γ. Hence for i

such that Ci(θ⃗) > 0,

− 2

n
log(t−γ

i ) → Ci(θ⃗) (A21)

with probability one. Let t0 =
∑L

i=1 F
−1
U(γ)(1 − pTi

) =
∑L

i=1 ti, then by Bonferroni’s inequality,

we have F̄URV(γ)(t0) ≤ L · F̄U(γ)(
t0
L
) with probability one. then we have

− 2

n
log F̄URV(γ)(TRV(γ))

≥ − 2

n
log
(
LF̄U(γ)(

t0
L
)/(L(t0)L

γ+1t−γ
0 )
)
− 2

n
log(L(t0)L

γ+1t−γ
0 )

= − 2

n
log
(
F̄U(γ)(

t0
L
)/(L(t0)L

γt−γ
0 )
)︸ ︷︷ ︸

(A)

+
2γ log t0 − 2 logLγ+1L(t0)

n︸ ︷︷ ︸
(B)

.

Under the alternative, for (A), with max1≤i≤L Ci(θ⃗) > 0 and either Conditions (C1) or (C2)

holds, we have t0 → +∞ with probability one. Then we have

F̄U(γ)(
t0
L
)/(L(t0)L

γt−γ
0 ) =

[
F̄U(γ)(

t0
L
)/[L(

t0
L
)(
t0
L
)−γ]

]
·
[
L(

t0
L
)/L(t0)

]
→ 1

with probability one, where the first term converges to 1 by the regularly varying tailed distribution

definition and the second term converges to 1 by the definition of slow-varying distribution. Hence
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we have (A) → 0 with probability one. For (B), we first assume Condition (C-2) holds. Let

Ci∗(θ⃗) = max1≤i≤L Ci(θ⃗), then under the alternative, by ( A21) we have

2γ

n
log t0 =

2γ

n
log
( L∑

i=1

ti
)
≥ 2γ

n
max
1≤i≤L

{log(ti)} → Ci∗(θ⃗)

2γ

n
log t0 =

2γ

n
log
( L∑

i=1

ti
)
≤ 2γ

n
max
1≤i≤L

{log(ti)}+
2γ logL

n
→ Ci∗(θ⃗)

with probability one. Suppose Condition (C-1) holds and Condition (C-2) does not hold, it suffices

to consider the worst case that F−1
U(γ)(1− p) ≥ ν for some ν < 0 and ∀p ∈ (0, 1]. Denote by index

set B = {i : Ci(θ⃗) > 0}. Then under the alternative, with probability one we have

2γ

n
log t0 =

2γ

n
log
(∑

i∈B

ti +
∑
i∈Bc

ti
)
=

2γ

n
log
(∑

i∈B

ti
)
+

2γ

n
log
(
1 +

∑
i∈Bc ti∑
i∈B ti

)
≥ 2γ

n
log
(∑

i∈B

ti
)

︸ ︷︷ ︸
(C)

+
2γ

n
log
(
1 +

|Bc|ν∑
i∈B ti

)
︸ ︷︷ ︸

(D)

,

where |Bc| denotes the cardinality of index set Bc. For term (C), by ( A21), under the alternative

we have

2γ

n
log
(∑

i∈B

ti
)
≥ 2γmaxi∈B{log(ti)}

n
=

2γmax1≤i≤L{log(ti)}
n

→ Ci∗(θ⃗)

2γ

n
log
(∑

i∈B

ti
)
≤ 2γmaxi∈B{log(ti)}

n
+

2γ log |B|
n

=
2γmax1≤i≤L{log(ti)}

n
+

2γ log |B|
n

→ Ci∗(θ⃗)

with probability one. Here we can also show that term (D) converges to zero with probability one

as n → +∞. Hence 2γ
n
log t0 = Ci∗(θ⃗) with probability one under the alternative. Further note

L(t0) = o(tγ0) with probability one, then we have (B) = Ci∗(θ⃗) with probability one. Hence under

the alternative

− 2

n
log F̄URV(γ)(TRV(γ)) = Ci∗(θ⃗)

as n → +∞ with probability one.
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Remark A4. The result of Theorem 2.7 also holds for the weighted version of TRV(γ) by the

similar arguments in the above proof:

T ϵ
RV(γ) =

L∑
i=1

ϵigγ(pTi
) =

L∑
i=1

ϵiF
−1
U(γ)(1− pTi

)

with
∑L

i=1 ϵi = 1 and ϵi > 0 for each i = 1, . . . , L.

A.2.3 Proofs of Theorems A2- A4 and Proposition A1

Lemma A6 (Mikosch (1999)). Assume U1(γ), . . . , UK(γ) are i.i.d. random variables with distri-

bution function F ∈ R−γ . Then as t → ∞, we have

P (U1(γ) + . . .+ UK(γ) > t) /(KP (U1(γ) > t)) → 1. (A22)

proof of Theorem A2. Denote Tη =
√
(1/η) log

(∑K
i=1 1/p

η
i

)
. Let U(η) be the random variable

that follows the same distribution of Tη under the null. Denote by FU(η)(t) and F̄U(η)(t) the CDF

and the survival function of Tη under the null. Further denote by P0 the probability measure of

p⃗ = (p1, . . . , pK) under the null. First note that F̄U(η)(
√
nt) = P0

(∑K
i=1 1/p

η
i > exp(ηnt2)

)
.

Further note that 1
pηi

D∼ Pareto( 1
η
, 1) ∈ R− 1

η
under the null, where the explicit form of survival

function of Pareto distribution is F̄Pareto( 1
η
,1)(t) = t−

1
η . Hence by Lemma A6 we have

F̄U(η)(
√
nt)/(KF̄Pareto( 1

η
,1)(exp(ηnt

2))

= P0

( K∑
i=1

1/pηi > exp(ηnt2)
)
/(K(exp(ηnt2))−

1
η ) → 1,

as n → +∞. Then we have,

− 1

n
log
(
1− FU(η)(

√
nt)
)
→ t2, (A23)

as n → ∞. We further claim under the alternative,

Tη√
n
→
√

max
1≤i≤K

{λici(θi)} /2 (A24)
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with probability one. Indeed, note

max
1≤i≤K

{log(1/pηi )} ≤ log
( K∑

i=1

1/pηi
)
≤ logK + max

1≤i≤K
{log(1/pηi )} .

Hence under the alternative, we have

1

n
log
( K∑

i=1

1/pηi
)
→ η max

1≤i≤K
λici(θ)/2 (A25)

with probability one. Then we have

Tη√
n
=

√
(1/η) log

(∑K
i=1 1/p

η
i

)
√
n

→
√

max
1≤i≤K

λici(θ)/2

with probability one. Hence ( A24) holds. Combining ( A23) and ( A24) and by Lemma A2, the

result follows.

Proof of Theorem A3. Note TCA = 1
K

∑K
i=1 cot (πpi). Under the alternative, recall without loss

of generality we assume that the first ℓ p-values correspond to non-zero exact slopes ci(θi) > 0

(1 ≤ i ≤ ℓ), while the remaining p-values correspond to the zero exact slopes (pi ∼ Unif(0, 1)

for ℓ + 1 ≤ i ≤ K). For the p-values with non-zero exact slopes, by the Taylor’s expansion

x cotx− 1 = −x2

3
+ o(x2), under the alternative we have,

1

K

ℓ∑
i=1

[ 1

πpi
− 2πpi

3

]
≤ 1

K

ℓ∑
i=1

cot (πpi) ≤
1

K

ℓ∑
i=1

1

πpi

with probability one. Note 1
K

∑ℓ
i=1

[
1

πpi
− 2πpi

3

]
= 1

K

(
1 −

∑K
i=1 2πpi/3∑K
i=1 1/πpi

)∑ℓ
i=1

1
πpi

and under the

alternative, with probability one,(
1−

∑ℓ
i=1 2πpi/3∑ℓ
i=1 1/πpi

)
→ 1

1

n
log
( 1
K

ℓ∑
i=1

1/πpi
)
→ 1

2
max
1≤i≤ℓ

λici(θ), (A26)

where ( A26) is due to similar arguments for ( A25) in the proof of Theorem A2 for η = 1. Hence

we have

1

n
log
( 1
K

ℓ∑
i=1

cot (πpi)
)
→ 1

2
max
1≤i≤ℓ

λici(θ) (A27)
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with probability one.

Note that cot(πpℓ+1), . . . , cot(πpK)
i.i.d.∼ CAU(0, 1). Hence we have

1

K

K∑
i=ℓ+1

cot (πpi)
D∼ K − ℓ

K
UCAU(0,1),

where UCAU(0,1) denotes standard Cauchy random variable. Note that under the null, TCA
D∼

CAU(0, 1). Hence FCAU(0,1)(t) and F̄CAU(0,1)(t) are the CDF and survival function of TCA under

the null. Hence under the alternative, we have

F̄CAU(0,1)(TCA) = P(UCAU(0,1) >
1

K

ℓ∑
i=1

cot(πpi) +
1

K

K∑
i=ℓ+1

cot(πpi))

= P
((

1 +
K − ℓ

K

)
UCAU(0,1) >

1

K

ℓ∑
i=1

cot(πpi)
)

= P
(
UCAU(0,1) >

K

2K − ℓ
· 1

K

ℓ∑
i=1

cot(πpi)
)
. (A28)

In addition, for t > 1,

F̄CAU(0,1) (t) =
1

2
− 1

π
arctan t =

1

π
· arctan (1/t) ≤ 1

πt

F̄CAU(0,1) (t) =
1

π
arctan

1

t
≥ 1

πt
· t2

1 + t2
.

By combining the above two inequalities with ( A27) and ( A28), under the alternative we have

− 2

n
log
(
F̄CAU(0,1)(TCA)

)
→ max

1≤i≤ℓ
λici(θ) = max

1≤i≤K
λici(θ)

with probability one.
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To prove Theorem A4, we introduce the following notations adopted from Zhang et al.

(2020a). Define

fϕ
1 (x, y) = x log(

x

y
) + (1− x) log(

1− x

1− y
).

Further define
f(x, y) =

√
2Kfϕ

1 (x, y) if y ≤ x

= −
√

2Kfϕ
1 (x, y) if y > x.

Note that f(x, y) is strictly decreasing in y. When TBJ > 0, we have

√
2KTBJ = max

1≤i≤K
f(

i

K
, p(i)).

For each fixed x, define the inverse function of f(x, ·) as g(x, ·), i.e.,

g(x, ·) = f−1(x, ·).

Proof of Theorem A4 . Let i∗ = argmaxi iλici(θ) and note that by Lemma 2.1, i∗ ≤ ℓ. We first

show that under the alternative,

2KTBJ/n → i∗λi∗ci∗(θ) (A29)

with probability one. Denote

î = argmax
i

{ i

K
log
(i/K
p(i)

)
+
(
1− i

K

)
log
(1− i/K

1− p(i)

)}
I{p(i)< i

K
}.

We show that under the alternative î → i∗ with probability one. Indeed, for any i ̸= i∗ and i ≤ ℓ,

by Lemma A3, we have

(1/n)
[

i
K
log
(

i/K
p(i)

)
+
(
1− i

K

)
log
(

1−i/K
1−p(i)

)]
I{p(i)< i

K
}

(1/n)
[
i∗

K
log
(

i∗/K
p(i∗)

)
+
(
1− i∗

K

)
log
(

1−i∗/K
1−p(i∗)

)]
I{p(i∗)< i∗

K
}

→ iλici(θ)

i∗λi∗ci∗(θ)
< 1
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with probability one. For any i > ℓ, note that 1− pi still follows Unif(0, 1). Hence for any i′ > ℓ,

by Lemmas 2.1 and A3, we have − 1
n
log p(i′) → 0 and − 1

n
log(1−p(i′)) → 0 with probability one.

Hence

(1/n)
[
i′

K
log
(

i′/K
p(i′)

)
+
(
1− i′

K

)
log
(

1−i′/K
1−p(i′)

)]
I{p(i′)< i′

K
}

(1/n)
[
i∗

K
log
(

i∗/K
p(i∗)

)
+
(
1− i∗

K

)
log
(

1−i∗/K
1−p(i∗)

)]
I{p(i∗)< i∗

K
}

≤
(1/n)

[
i′

K
log
(

i′/K
p(i′)

)
+
(
1− i′

K

)
log
(

1−i′/K
1−p(i′)

)]
(1/n)

[
i∗

K
log
(

i∗/K
p(i∗)

)
+
(
1− i∗

K

)
log
(

1−i∗/K
1−p(i∗)

)]
I{p(i∗)< i∗

K
}

→ 0

with probability one. Hence under the alternative 2KTBJ/n → i∗λi∗ci∗(θi∗) with probability one.

Denote by UBJ the random variable follows the same distribution of
√
2KTBJ under the null,

and let

µi = g(
i

K
, b) = f−1(

i

K
, b), i = 1, 2, . . . , K.

Let FUBJ , F̄UBJ be the CDF and survival function of UBJ, respectively. Also let FBeta(α,β) and F̄Beta(α,β)

be the CDF and survival function of Beta(α, β), respectively. By Theorem 5.1 in Zhang et al.

(2020a), we have,

FUBJ(b) = F̄Beta(K,1)(µK)−
K−1∑
i=1

µi
i

i!
ai+1, (A30)

where

aK = K!F̄Beta(1,1)(µK)

ai =
K!

(K − i+ 1)!
F̄Beta(K−i+1,1)(µK)−

K−i∑
j=1

µj
i+j−1

j!
ai+j

for i = K − 1, K − 2, . . . , 1.

Since µi = g( i
K
, b) = f−1( i

K
, b), for sufficiently large b, we have

b =

√
2Kfϕ

1 (
i

K
, µi).

Hence
b2

2K
= fϕ

1 (
i

K
, µi) =

i

K
log

i
K

µi

+ (1− i

K
) log

1− i
K

1− µi

.
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Then

e−[ b2

2K
− i

K
log i

K
−(1− i

K
log(1− i

K
))] = µ

i
K
i (1− µi)

1− i
K . (A31)

Note f(x, y) is strictly decreasing in y, for b → ∞, µi → 0. Denote

µi = Ci,be
− b2

2i ,

where Ci,b depends on i and b. We show that there exist Ci > 0 only depending on i, such that

lim
b→∞

Ci,b = Ci. (A32)

Indeed, from equation ( A31), we have

lim
b→∞

e−[ b2

2K
− i

K
log i

K
−(1− i

K
log(1− i

K
))]

(Ci,be
− b2

2i )
i
K (1− Ci,be

− b2

2i )1−
i
K

= 1.

Hence

lim
b→∞

e
i
K

log i
K
+(1− i

K
log(1− i

K
))

C
i
K
i,b

= 1.

Hence we have limb→∞Ci,b = Ci > 0 for i = 1, . . . , K. Hence for sufficiently large b, we have

µi = (Ci + o(1))e−
b2

2i .

As limb→∞ µi = 0, for sufficiently large b, we have

ak = K!F̄Beta(1,1)(µK) = K! + o(1).

Similarly, for i = 1, . . . , K − 1 and sufficiently large b,

ai =
K!

(K − i+ 1)!
+ o(1).

For F̄UBJ = 1− FUBJ , we have

F̄UBJ(b) = FBeta(K,1)(µK)︸ ︷︷ ︸
I

+
K−1∑
i=1

µi
i

i!
ai+1︸ ︷︷ ︸

II

. (A33)
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As µi
i = Ci

i,be
− b2

2 = (Ci
i + o(1))e−

b2

2 for sufficiently large b, we have

I = FBeta(K,1)(µK) =

∫ µK

0

KxK−1dx = µK
K = (CK

K + o(1))e−
b2

2 .

Similarly,

II =
K−1∑
i=1

µi
i

i!
ai+1 =

K−1∑
i=1

(Ci
i + o(1))e−

b2

2

i!

[ K!

(K − i+ 1)!
+ o(1)

]
.

Hence for sufficiently large b,

(A33) = I + II =
[
CK

K +
K−1∑
i=1

Ci
i

i!

K!

(K − i+ 1)!
+ o(1)

]
e−

b2

2

= (C(K) + o(1))e−
b2

2 , (A34)

where C(K) only depends on K. Let b =
√
2KTBJ, combine equations ( A29) and ( A34), under

the alternative, we have

−
2 log F̄UBJ

(√
2KTBJ

)
n

→ i∗λi∗ci∗(θi∗)

with probability one.

Remark A5. It can be shown that TBJ generally does not has signal selection consistency. Recall

that TBJ picks i∗ = argmaxi iλici(θi) with probability one as shown in the proof. Consider K = 2

and there is only two signals, with λ1c1(θ1) = 9 and λ2c2(θ2) = 1. Then one can show i∗ = 1

here, i.e., TBJ picks the wrong subset of p-values with probability one.

Below we use a counter example to show that higher criticism is generally not ABO. Let UHC

be the random variable that follows the same distribution of THC under the null. Denoted by FUHC

and F̄UHC the CDF and survival function of UHC, respectively. To prove Proposition A1, we need

the following Lemma to derive the survival function F̄UHC under the finite-sample case.
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Lemma A7 (Barnett and Lin (2014)). For each k = 1, . . . , K, let

tk = Φ−1

[
1− 2(K − k + 1) + h2 − h {h2 + 4(K − k + 1)− 4(K − k + 1)2/K}1/2

4 (h2 +K)

]
.

Denote q1,a = P(S(t1) = a) for a = 0, 1, . . . , K − 1. Here S(t) =
∑K

j=1 I{(|Zj |≥t)} is the binomial

random variable with Z1, . . . , ZK
i.i.d.∼ N(0, 1). Let

qk,a =
K−k+1∑
m=0

I{a≤m}

(
m

a

){
Φ̄ (tk) /Φ̄ (tk−1)

}a
×
{
1− Φ̄ (tk) /Φ̄ (tk−1)

}m−a qk−1,m∑K−k+1
ℓ=0 qk−1,ℓ

for k = 2, . . . , K and a = 0, 1, . . . , K − k. Then we have

F̄UHC(h) = 1−
K∏
k=1

K−k∑
a=0

qk,a.

Proof of Proposition A1. We first derive the exact form of F̄UHC(h) for K = 2. By Lemma A7,

F̄UHC(h) = 1−
2∏

k=1

2−k∑
a=0

qk,a = 1− (q1,0 + q1,1)q2,0. (A35)

We note

t1 = Φ−1

[
1− 2(2− 1 + 1) + h2 − h{h2 + 8− 4 · 4/2} 1

2

4(h2 + 2)

]
= Φ−1

[
1− 4

4(h2 + 2)

]
.

And

q1,0 = P(S(t1) = 0) = [1− 2(1− Φ(t1))]
2 =

[
1− 2

h2 + 2

]2
.

Also

q1,1 = P(S(t1) = 1) =
4

h2 + 2
(1− 2

h2 + 2
).

Hence q1,1 + q1,0 =
(
1− 2

h2+2

) (
1 + 2

h2+2

)
. Further more,

t2 = Φ−1

[
1− 2 + h2 − h{h2 + 4− 4/2} 1

2

4(h2 + 2)

]
= Φ−1

[
3

4
+

h

4
√
h2 + 2

]
.
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Then we have Φ̄(t2) =
1
4
− h

4
√
h2+2

, also Φ̄(t1) =
1

h2+2
. Hence

q2,0 =
1∑

m=0

I{0≤m}

(
m

0

)[
Φ̄(t2)

Φ̄(t1)

]0 [
1− Φ̄(t2)

Φ̄(t1)

]m
· q1,m
q1,0 + q1,1

= I1 + I2,

where

I1 =
q1,0

q1,0 + q1,1
=

1− 2
h2+2

1 + 2
h2+2

I2 =

[
1− h2 + 2− h

√
h2 + 2

4

]
q1,1

q1,0 + q1,1
=

[
1

2
− h2

4
+

h
√
h2 + 2

4

]
4

h2+2

1 + 2
h2+2

.

Hence

I1 + I2 =
1 + 2

(h2+2)(
√
h2+2+h)

1 + 2
h2+2

.

By plugging in all the quantities into ( A35), we have,

F̄UHC(h) = 1−
(
1− 2

h2 + 2

)(
1 +

2

h2 + 2

) 1 + 2
(h2+2)(

√
h2+2+h)

1 + 2
h2+2

=
2

h2 + 2
− 2

(h2 + 2)(
√
h2 + 2 + h)

+
4

(h2 + 2)2(
√
h2 + 2 + h))

. (A36)

Recall

THC = max
1≤i≤2

√
2

i
2
− p(i)√

p(i)(1− p(i))
= max

1≤i≤2

i√
2p(i)(1− p(i))

−
√

p(i)
1− p(i)

.

Under the alternative, note THC/(
√
2 exp(nc0/4)) → 1 with probability one given c1(θ1) =

c2(θ2) = c0 > 0. Plugging into ( A36), we have under the alternative in Proposition A1,

− 2

n
log F̄UHC(THC) → c0

with probability one as n → ∞.

Remark A6. One can note that under the alternative of combining two p-values with c1(θ1) =

2c2(θ2) = 2c0 > 0, î = argmaxi

√
2

i
2
−p(i)√

p(i)(1−p(i))
→ 1 with probability one. Hence, HC is not

consistent for selecting the subset of p-values with true signals.
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A.3 Supplementary Simulation Results

A.3.1 Type I Error Control of FE and FECS

In this subsection, we numerically evaluate accuracy of type I error control using fast algorithm

of independent Cauchy for the two methods proposed in Sections 4 and 5, FE and FECS. We

simulate K p-values p1, . . . , pK
D∼ Unif(0, 1), and calculate the test statistics for the two methods

respectively, where 1−p1, . . . , 1−pK with the previously generated p-values are used as one-sided

p-values for FECS. We vary K = 5, 10, 20, 40, 60, 80, 100 for a wide range of numbers of combined

p-values. Table A1 shows type I error control for the two methods under different significance

levels α =0.05, 0.01, 0.001, 0.005, 0.001 using 105 times of simulations. Across wide ranges of

K and α ≤ 0.01, type I error by the fast computing has less than 10% inflation, with improved

accuracy for smaller α. As the worst case, the type I error control of FECS when α = 0.05 is

slightly anti-conservative but acceptable (in the range of 0.0539∼0.0578 for different K).

A.3.2 Statistical Power Comparison for Modified Fisher Methods in the Case of Combining

A Small Group of Strong Signals

In this subsection, we demonstrate the statistical power of Stouffer, Fisher, and 5 modified

Fisher methods for combining a small group of strong signals. We simulate the alternatives with

fixed numbers of true signals ℓ = 1, 2, . . . , 6 for K = 20, 40, 80 following the same simulation

scheme in Section 3.3. For a given K and ℓ, we choose the smallest µ0 such that the best method

has at least 0.9 statistical power at α = 0.05. The results are shown in Figure A1.

A.3.3 Statistical Power Comparison for 12 Existing P-Value Combination Methods

In this subsection, we demonstrate the statistical power of 12 p-value combination methods:

Fisher, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy (CA), and Stouffer. For Figure

A2, the signal strength µ0 is chosen the same as Figure 1 in Section 3.3 for a given proportion of

signals ℓ/K and number of combined p-values K. As expected, 4 added methods (HC, minP, HM,

CA) that are designed for sparse signals and have very weak power for frequent signals. Although
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Table A1: Accuracy of type I error control for FE and FECS

Methods K 0.05 0.01 5× 10−3 1× 10−3

5 5.02×10−2 1.02×10−2 5.23×10−3 1.07×10−3

10 5.12×10−2 9.96×10−3 5.05×10−3 1.17×10−3

20 5.12×10−2 1.02×10−2 4.90×10−3 9.40×10−4

FE 40 5.11×10−2 9.80×10−3 5.15×10−3 1.02×10−3

60 5.15×10−2 1.01×10−2 5.13×10−3 1.17×10−3

80 5.31×10−2 1.10×10−2 5.72×10−3 1.05×10−3

100 5.36×10−2 1.06×10−2 5.37×10−3 1.04×10−3

5 5.39×10−2 1.03×10−2 5.16×10−3 1.02×10−3

10 5.51×10−2 1.02×10−2 5.23×10−3 1.15×10−3

20 5.50×10−2 1.01×10−2 4.95×10−3 9.30×10−4

FECS 40 5.52×10−2 1.06×10−2 5.02×10−3 9.80×10−4

60 5.35×10−2 1.04×10−2 5.55×10−3 1.13×10−3

80 5.78×10−2 1.13×10−2 5.25×10−3 9.90×10−4

100 5.70×10−2 1.15×10−2 5.77×10−3 1.17×10−3
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BJ is also designed for sparse signal scenarios, it has relatively higher power, comparable to AFz

but much lower than Fisher and AFp. For Figure A3, the signal strength µ0 is chosen the same as

Figure A1 for a given number of signals ℓ and number of combined p-values K. 4 added methods

(HC, minP, HM, CA) that are designed for sparse signals outperform Fisher and Stouffer, but still

are comparative with modified Fisher’s methods such as AFp and AFz.

A.3.4 Statistical Power Comparison for FE in the Case of Combining A Small Group of

Strong Signals

In this subsection, we demonstrate the statistical power of Fisher, AFp, and FE for combining

a small group of strong signals. We simulate the alternatives with fixed numbers of true signals

ℓ = 1, 2, . . . , 6 for K = 20, 40, 80 following the same simulation scheme in Section 3.3. For a

given K and ℓ, we choose the smallest µ0 such that the best method has at least 0.9 statistical power

at α = 0.05. The results are shown in Figure A4.

A.3.5 Statistical Power Comparison for FE and FE2

In this subsection, we evaluate the statistical power of Fisher, AFp, FE, and the following FE2

that integrates Fisher, AFp and minP:

TFE2 = [1/pFisher + 1/pAFp + 1/pminP]/3.

The following Figures A5 and A6 present the results in settings similar to that of Figures 2 and

A4, respectively. For Figure A5, we choose the smallest µ0 that allows the best method to have

power larger than 0.5 for a given proportion of signals ℓ/K and a number of combined p-values

K. For Figure A6, we choose the smallest µ0 that allows the best method to have power larger

than 0.5 for a given proportion of signals ℓ and a number of combined p-values K. Although FE2

improves power over FE when the signal is very sparse, its power is much reduced when the signal

is frequent, which is an important scenario in most applications. As a result, FE combining Fisher

and AFp but not minP is recommended for general applications.

119



A.3.6 Statistical Power Comparison for FECS in the Case of Combining A Small Group of

Strong Signals

In this subsection, we demonstrate the statistical power of Pearson, FE, and FECS for combining

a small group of strong signals. We simulate the alternatives with fixed numbers of true signals

ℓ = 1, 2, . . . , 6 for K = 20, 40, 80 following the same simulation scheme in Section 3.3. For a

given K and ℓ, we choose the smallest µ0 such that the best method has at least 0.9 statistical power

at α = 0.05. The results are shown in Figure A7.

A.3.7 Numeric Examples where Harmonic Mean Outperforms Cauchy for Fisher Ensem-

ble

This subsection provides numeric examples that using harmonic mean is better than Cauchy in

the FE and FECS construction (Equation (2) in the manuscript). Below, we follow the simulation

scheme in Section 5.2 to generate data and the combined p-values, where we evaluate the power of

FECS (using the harmonic mean), Pearson, and FECauchy
CS (using Cauchy). Figures A8 and A9 show

the empirical power of the three methods. For figure A8, we choose the smallest µ0 that allows

the best method to have power larger than 0.5 at significance level α = 0.01 for a given proportion

of signals ℓ/K and a number of combined p-values K. For figure A9, we choose the smallest µ0

that allows the best method to have power larger than 0.9 at significance level α = 0.05 for a given

proportion of signals ℓ and a number of combined p-values K. The results show that FECS largely

outperforms the latter for ℓ/K ≥ 0.4 in Figure A8, as a consequence of the “−∞ score” issue

when using Cauchy.
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Figure A1: Statistical power of Fisher, Stouffer, and 5 modified Fisher’s methods at significance

level α = 0.05 across varying numbers of true signals ℓ = 1, 2, . . . , 6 and varying numbers of

combined p-values K = 20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the

best performer has at least 0.9 statistical power. The standard errors are negligible compared to

the scale of the mean power (smaller than 0.1% of the power) and hence omitted. The results of

Stouffer and Fisher with a power smaller than 0.55 are omitted.
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Figure A2: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ,

Cauchy (CA), and Stouffer at significance level α = 0.01 across varying proportions of signals

ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80. For

each ℓ and K, we choose the smallest µ0 such that the best performer has at least 0.5 statistical

power. The standard errors are negligible and hence omitted.
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Figure A3: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ,

Cauchy (CA), and Stouffer at significance level α = 0.05 across varying numbers of signals ℓ =

1, 2, 3, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For each ℓ and K, we

choose the smallest µ0 such that the best performer has at least 0.9 statistical power. The standard

errors are negligible and hence omitted.
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Figure A4: Statistical power of FE, Fisher, and AFp at significance level α = 0.05 across varying

numbers of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For

each ℓ and K, we choose the smallest µ0 such that the best performer has at least 0.9 statistical

power. The standard errors are negligible and hence omitted. Dots smaller than 0.55 are also

omitted.
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Figure A5: Statistical power of Fisher, AFp, FE, and FE2 at significance level α = 0.01 across

varying frequencies of signals ℓ/K = 0.05, 0.2, . . . , 0.9 and varying numbers of combined p-

values K = 10, 20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the best per-

former has at least 0.5 statistical power. The standard errors are negligible and hence omitted.
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Figure A6: Statistical power of Fisher, AFp, FE, and FE2 at significance level α = 0.05 across

varying numbers of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K =

20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the best performer has at least 0.9

statistical power. The standard errors are negligible and hence omitted. results of Fisher smaller

than 0.55 are omitted.
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Figure A7: Statistical power of FE, FECS, and Pearson at significance level α = 0.05 across

varying numbers of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K =

20, 40, 80. The standard errors are negligible and hence omitted.
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Figure A8: Statistical power of FECS, FECauchy
CS , and Pearson at significance level α = 0.01 across

varying frequencies of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined

p-values K = 10, 20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the best

performer has at least 0.5 statistical power. The standard errors are negligible and hence omitted.
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Figure A9: Statistical power of FECS, FECauchy
CS , and Pearson at significance level α = 0.05 across

varying numbers of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K =

20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the best performer has at least

0.9 statistical power. The standard errors are negligible and hence omitted.
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Figure A10: Distributions of numbers of p-values pjk ≤ 0.05 of each gene j in gene Categories I,

II, and III in Figure 2.5(a).

130



I(A)

I(B)

II(A)

II(B)

III

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

st

Set

I(A)
I(B)
II(A)
II(B)
III

Figure A11: Distributions of quantities Ssign,j =
∑16

k=1 sign(βage,jk)I{min{p̃Ljk,p̃
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each gene j in

Categories I(A), I(B), II(A), II(B), and III in Figure 2.6.
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Table A2: Up-regulated/down-regulated age-related pathways detected in one-sided design by

FECS with significance level p ≤ 0.01. The reference columns of the 2 tables list literature that

supports the relationships between the pathways and aging/early development processes.

(a): Pathways by up-regulated genes

Pathways p-values References
Phagosome Maturation 0.0005 Vieira et al. (2002)
Glutathione Redox Reactions I 0.00085 Mandal et al. (2015); Erden-İnal et al. (2002)
Tryptophan Degradation III (Eukary-
otic)

0.0006 Van der Goot and Nollen (2013)

FAT10 Cancer Signaling Pathway 0.0041 Canaan et al. (2014); Aichem and Groettrup (2016)
Isoleucine Degradation I 0.0058 Canfield and Bradshaw (2019); Salcedo et al. (2021)
Glutamine Biosynthesis I 0.0065 Meynial-Denis (2016); Canfield and Bradshaw (2019)
Histamine Biosynthesis 0.0065 Mazurkiewicz-Kwilecki and Nsonwah (1989); Terao et al. (2004)
Tumor Microenvironment Pathway 0.0060 Mori et al. (2018); Sandiford et al. (2018)
Glutaryl-CoA Degradation 0.0065 Porcellini et al. (2007)
Valine Degradation I 0.0079 Canfield and Bradshaw (2019); Salcedo et al. (2021)
Androgen Signaling 0.0047 He et al. (2018); Rey (2021); Zhou et al. (2015)

(b): Pathways by down-regulated genes

Pathways p-values References
EIF2 Signaling 0.00001 Ma et al. (2013)
Remodeling of Epithelial Adherens
Junctions

0.0019 Parrish (2017)

Tight Junction Signaling 0.00028 Parrish (2017); Ren et al. (2014)
NER (Nucleotide Excision Repair, En-
hanced Pathway)

0.0087 Maynard et al. (2009)
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Figure A12: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ,

Cauchy (CA), and Stouffer at significance level α = 0.01 across varying proportions of signals

ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80. For

each proportion ℓ/K and K, we choose the smallest µ0 such that the best performer has at least

0.9 statistical power. The standard errors are negligible and hence omitted.
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Figure A13: Statistical power of Fisher, Stouffer, and 5 modified Fisher’s methods at significance

level α = 0.05 across varying numbers of true signals ℓ = 1, 2, . . . , 6 and varying numbers of

combined p-values K = 20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the

best performer has at least 0.5 statistical power. The standard errors are negligible compared to the

scale of the mean power and hence omitted.
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Figure A14: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ,

Cauchy (CA), and Stouffer at significance level α = 0.01 across varying proportions of signals

ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of combined p-values K = 10, 20, 40, 80. For

each ℓ/K and K, we choose the smallest µ0 such that the best performer has at least 0.9 statistical

power. The standard errors are negligible and hence omitted.
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Figure A15: Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM,

BJ, Cauchy (CA), and Stouffer at significance level α = 0.05 across varying numbers of signals

ℓ = 1, 2, 3, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For each ℓ and

K, we choose the smallest µ0 such that the best performer has at least 0.5 statistical power. The

standard errors are negligible and hence omitted.

136



0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Proportions

P
ow

er

K=10

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.050.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Proportions

P
ow

er

K=20

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.050.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Proportions

P
ow

er

K=40

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.050.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Proportions

P
ow

er

K=80

Methods Fisher AFp FE

Figure A16: Statistical power of FE, Fisher, and AFp at significance level α = 0.01 across

varying proportions of signals ℓ/K = 0.05, 0.1 . . . , 0.9 and varying numbers of combined p-values

K = 10, 20, 40, 80. For each ℓ/K and K, we choose the smallest µ0 such that the best performer

has at least 0.9 statistical power. The standard errors are negligible and hence omitted.
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Figure A17: Statistical power of FE, Fisher, and AFp at significance level α = 0.05 across varying

numbers of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K = 20, 40, 80. For

each ℓ and K, we choose the smallest µ0 such that the best performer has at least 0.5 statistical

power. The standard errors are negligible and hence omitted.
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Figure A18: Statistical power of FE, FECS, and Pearson at significance level α = 0.01 across

varying proportions of signals ℓ/K = 0.05, 0.1, . . . , 0.9 and varying numbers of combined p-

values K = 10, 20, 40, 80. For each ℓ/K and K, we choose the smallest µ0 such that the best

performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted.
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Figure A19: Statistical power of FE, FECS, and Pearson at significance level α = 0.05 across

varying numbers of signals ℓ = 1, 2, . . . , 6 and varying numbers of combined p-values K =

20, 40, 80. For each ℓ and K, we choose the smallest µ0 such that the best performer has at least

0.5 statistical power. The standard errors are negligible and hence omitted.
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Appendix B Supplementary Materials for Chapter 3

B.1 Technical Arguments

B.1.1 Proof of Theorem 3.1

We need 3 lemmas to prove Theorem 3.1. Lemmas B1 and B2 build connection between

pi = 2(1− Φ(|Yi|)) and Y 2
i .

Lemma B1 (Vershynin (2018)). For all t > 0, we have:

1− Φ(t) ≤ min
{ 1√

2π

1

t
,
1

2

}
e−

t2

2 .

Lemma B2 (Birgé (2001)). Let X ∼ χ2
d(ν), then for all x > 0:

P[X ≥ (d+ ν) + 2
√

(d+ 2ν)x+ 2x] ≤ exp(−x) (B1)

P[X ≤ (d+ ν)− 2
√

(d+ 2ν)x] ≤ exp(−x). (B2)

Lemma B3 provides lower bound of − log Y(i) for i ≥ n− s+ 1.

Lemma B3. Let Y1, . . . , Yn be independent and identically distributed random variables with the

CDF F . If η = F (ϱ) < 1 for some constant ϱ > 0 and k ≤ n1−β for some 0 < β < 1, then we

have:

P(Y(n−k+1) > exp{−(log n)
1
2}) → 1 as n → +∞.
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of Lemma B3. We begin the proof by considering the CDF of Y(n−k+1) under the null and plug

in γn = exp{−(log n)
1
2} with a sufficiently large n:

FY(n−k+1)
(γn) =

n∑
j=n−k+1

(
n

j

)
F j(γn) (1− F (γn))

n−j

≤
n∑

j=n−k+1

(
n

n− j

)
F j(γn)

≤
n∑

j=n−k+1

(
n

n− j

)
F j(ϱ)

≤ ηn−k+1

k−1∑
j=0

(
n

j

)

≤ ηn−k+1

(
en

k − 1

)k−1

where the last quantity converges to zero as k = O(n1−β).

We prove Theorem 3.1 using the above 3 lemmas.

Proof of Theorem 3.1. We prove that if we pick C(n) = 2βn1−β
(
1 + 2/

√
log log n

)
log n as the

critical value, both type I and type II errors of T (s) go to zero as n diverges.

The proof of Theorem 3.1 is organized in two parts. In the first part, we prove that the prob-

ability of T (s) greater than C(n) goes to 0 as n diverges. In the second part, we show that when

∥θ∥22 ≥ n1−βC(0) log n, the probability of T (s) greater than C(n) goes to one.

For the first part, note that we can rewrite T (s) in the following form:

T (s) =
s∑

i=1

−2 log p(i) = sup
|I|=s

n∑
i=1

−2 log(pi)I{i∈I}.

Note that −2 log(pi) follows a chi-squared distribution under the null and hence
∑n

i=1−2 log(pi)I{i∈I}

follows a chi-squared distribution with degrees of freedom 2s for a given I. In the following steps
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we use Lemma B2 to bound
∑n

i=1−2 log(pi)I{i∈I} and finally provide a upper bound for T (s).

We consider the following inequalities:

P(T (s) ≥ 2s+ 2
√
2sx+ 2x) = P( sup

|I|=s

n∑
i=1

−2 log(pi)I{i∈I} ≥ 2s+ 2
√
2sx+ 2x)

≤
(
n

s

)
P(χ2

2s ≥ 2s+ 2
√
2sx+ 2x)

≤
(
n

s

)
exp(−x)

≤
(en
s

)s
exp(−x)

≤ exp(βs log n+ s− x). (B3)

The second inequality is due to ( B1) in Lemma B2 and the third is due to the Stirling’s formula.

Picking x = sβ
(
1 + 1/

√
log n

)
log n, as n goes to infinity, we have

(B3) = exp
{
s− sβ

√
log n

}
→ 0.

Note that this choice of x leads to:

2s+ 2
√
2sx+ 2x < C(n),

for sufficiently large n. This implies the probability that T (s) is greater than C(n) goes to 0, hence

the type I error converges to zero.

For the second part, without loss of generality, we assume all the non-zero entries of θ are

among the first s µi’s (i = 1, . . . , s). The following arguments show that the probability that T (s)

is smaller than C(n) goes to zero as long as ∥θ∥22 ≥ n1−βC(0) log n. Note that we have:

T (s) =
s∑

i=1

−2 log p(i) =
s∑

i=1

−2 log(2(1− Φ(|Y |(n−i+1))))

≥
s∑

i=1

|Y |2(n−i+1) + 2
s∑

i=1

log(|Y |(n−i+1))− 2s log
√
π/2

≥
s∑

i=1

Y 2
i + 2s log(|Y |(n−s+1))− 2s log

√
π/2

≥
s∑

i=1

Y 2
i + 2s log(max{Y(n−s+1), 0})− 2s log

√
π/2, (B4)
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where |Y |(n−i+1) denotes the (n−i+1)-th smallest value of |Yi|’s and Y(n−i+1) denotes the (n−i+

1)-th smallest value of Yi’s. The first inequality is due to Lemma B1. Note that
∑s

i=1 Y
2
i follows

a chi-squared distribution with degrees of freedom s and non-central parameter v =
∑s

i=1 µ
2
i ≥

n1−βC(0) log n under the alternative. Applying ( B2) in Lemma B2 and picking the corresponding

x =
√
log n, we have:

P
( s∑

i=1

Y 2
i ≤ (s+ v)− 2

√
(s+ 2v)(log n)1/4

)
≤ exp(−(log n)1/2) → 0,

Let Λ = {Ys+1, . . . , Yn} be the subset of Y1, . . . , Yn. Note that Ys+1, . . . , Yn
i.i.d.∼ N(0, 1). Let

Y ′
(n−2s+1) be the (n− 2s+ 1)-th smallest value from Λ. Applying Lemma B3, we obtain

lim
n→+∞

P
(
2s log(max{Y(n−s+1), 0}) > −2s

√
log(n− s)

)
≥ lim

n→+∞
P
(
Y ′
(n−2s+1) > exp(−

√
log(n− s))

)
= 1.

Combining the above arguments, one can show that with v =
∑s

i=1 µ
2
i ≥ n1−βC(0) log n and

C(0) > 2β

lim
n→+∞

P
( s∑

i=1

Y 2
i + 2s log(max{Y(n−s+1), 0})− 2s log

√
π/2

> (s+ v)− 2
√

(s+ 2v)(log n)1/4 − 2s(log(n− s))1/2 − 2s log
√
π/2
)
= 1,

indicating the probability that T (s) is smaller than C(n) = 2βn1−β(1 + 2/
√
log log n) log n con-

verges to zero, hence the type II error goes to zero as n diverges.
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B.1.2 Proof of Theorem 3.2

Similar to the proof of Theorem 3.1, the proof of Theorem 3.2 is structured in two parts. In

the first part we show that searching across the candidate set S will not substantially inflate type

I error of AFg. For the second part, we show that if ∥θ∥22 ≥ n1−βC(0) log n, we can always find a

candidate truncation point si, such that T (si) will be greater than Ck with probability going to one.

Proof of Theorem 3.2. For the first part of proof, denote by |S| = M + 1 the number of elements

in the candidate set S, we have

M + 1 ≤ log1+1/logn(
√
n) + 2

=
log n

2 log(1 + 1/log n)
+ 2

≤ (1/2)(log n)2 + (1/2) log n+ 2. (B5)

The order of |S| is much smaller than n, which is critical to control the type I error. Define the

event:

Ai(xsi) =
{

sup
|Ii|=si

∑
j∈Ii

−2 log(pj)I{j∈Ii} ≥ 2si + 2
√

2sixsi + 2xsi

}
.

Note that for each i = 0, . . . ,M , we have

T (si) =

si∑
j=1

−2 log p(j) = sup
|Ii|=si

∑
j∈Ii

−2 log(pj)I{j∈Ii}.

Also note that each
∑

j∈Ii −2 log (pj) I{j∈Ii} follows a chi-squared distribution with degrees of

freedom 2si under the null. Then we have

P
(
∪M

i=0 Ai(xsi)
)

≤
M∑
i=0

(
n

si

)
P
(
χ2
2si

≥ 2si + 2
√
2sixsi + 2xsi

)
≤

M∑
i=0

(
n

si

)
exp(−xsi)

≤
M∑
i=0

{en
si

}si
· exp(−xsi)

=
M∑
i=0

exp {si log(n/si) + si − xsi} , (B6)
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where we apply ( B1) to the second inequality. Picking xsi = si
(
1 + 1/

√
log log n

)
log (n/si) =

si(1 + δn) log (n/si) for i = 0, . . . ,M and combining ( B5) with ( B6), we have:

(B6) ≤ ((1/2)(log n)2 + (1/2) log n+ 2) · exp
(
1− log n/(2

√
log log n)

)
→ 0.

Note that the choice of xsi leads to:

2si + 2
√

2sixsi + 2xsi < Ci,

for each i = 0, . . . ,M when n is sufficiently large. Thus, under null we have:

P
(
∪M

i=0 {T (si) > Ci}
)
→ 0,

implying that the type I error is well controlled.

In the second part, we show that we can find at least one si such that T (si) > Ci with prob-

ability goes to one, which implies that the type II error converges to zero as n diverges. Again,

we assume all the non-zero entries of θ are among the first s µi’s (j = 1, . . . , s) without loss of

generality.

Let 0 < i∗ < log1+1/logn(n
1
2 ) for s = ⌈n1−β⌉ such that:

si∗−1 ≤ s ≤ si∗ .

Then we have:

T (si∗) =

si∗∑
j=1

−2 log p(j) ≥
s∑

j=1

−2 log p(j) ≥
s∑

j=1

−2 log pj.

By similar arguments in the second part of proof of Theorem 3.1, as long as ∥θ∥22 ≥ n1−βC(0) log n,

we have:

lim
n→∞

P(T (si∗) > n1−βC(0) log n) ≥ lim
n→∞

P
( s∑

i=1

−2 log pj > n1−βC(0) log n
)
= 1.

Meanwhile, note that for the corresponding critical values Ci∗ , we have

Ci∗ = 2si∗(1 + 2δn) log(n/si∗)

≤ 2s(1 + 1/log n)(1 + 2δn) log (n/s) .

Note that as n diverges, 2s(1+1/log n)(1+2δn) log (n/s) < n1−βC(0) log n. Hence the probability

that T (si∗) is greater than Ci∗ goes to one as long as ∥θ∥22 ≥ n1−βC(0) log n.
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B.1.3 Proof of Theorem 3.3

Proof of Theorem 3.3. In order to prove Theorem 3.3, we prove (i) and (ii) under Setup 3.1 with
1
2
< β < 1 in Section 3.3. As shown in Theorem 3.2, the sum of type I and type II errors of AFg

goes to zero as Ln ≥ C(0) · n1−β log n. Hence the proof of (i) is done.

We continue on the proof of (ii), which is essentially to find the lower bound of the following

minimax risk R0,β(Ln) and show that it is greater than 1 − ε for a properly chosen aε and all

Ln ≤ aελn.

R0,β(Ln) = inf
φ
{P0(φ = 1) + sup

θ∈Θ0,β(Ln)

Pθ(φ = 0)},

For the characterization of lower bound of R0,β(Ln), a standard scheme is to reduce it to

quantifying the “distance” between two probability measures that are respectively associated with

the null and alternative parameter spaces. This argument is firstly considered by Le Cam (LeCam,

1973). More precisely, we consider the following lemma as a special case of Le Cam’s technique

by considering the chi-squared divergence between a mixture measure associated with Θ0,β(Ln)

and P0, the probability measure associated with the null.

Lemma B4 (Tsybakov (2008)). Let µ be a probability measure on the alternative parameter space

Θ0,β(Ln), denote by Pµ the mixture probability measure:

Pµ =

∫
Θ0,β(Ln)

Pθµ(dθ).

Then we have:

R0,β(Ln) ≥ 1−
√

χ2 (Pµ,P0),

where χ2(·, ·) is the chi-squared divergence defined as follows:

χ2 (P′,P) =
∫

(dP′/dP)2 dP− 1.

Here P′ and P are two mutually absolute continuous probability measures.
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The argument in Lemma B4 is rather standard. The key is to carefully find the least favorable

prior on the union of the null and the alternative so that it is impossible to distinguish them. In our

case, one needs to properly choose the µ and derive a tight enough upper bound of χ2 (Pµ,P0). Let

µρ be the uniform distribution on the set of θ ∈ Θ0,β(Ln) such that ∥θ∥0 = s and all the nonzero

entries equal some ρ > 0. From the extensive literature on this problem (e.g., Baraud (2002)), we

consider the following result developed in Collier et al. (2017), which chooses µ = µρ and derives

the upper bound of χ2
(
Pµρ ,P0

)
. To our best knowledge, this is among the sharpest results on the

lower bound of R0,β(Ln)

Lemma B5 (Collier et al. (2017)). For all ρ > 0 and 1 ≤ s ≤ n, we have:

χ2
(
Pµρ ,P0

)
≤
(
1− s

n
+

s

n
eρ

2
)s

− 1,

where Pµρ represents the mixture probability measure defined by µρ.

We then complete the proof of Theorem 3.3 by proving (ii) using the above two lemmas. Let

s′ = ⌊n1−β⌋ with 1/2 < β < 1 and A ∈ (0, 1) be some constant, where ⌊·⌋ is the floor operator

that finds the the largest integer that smaller than ⌊x⌋. Let ρ =
√
A log n and hence Ln = As′ log n.

Note that ρ2 = A log n. By Lemma B5, we have

χ2
(
Pµρ ,P0

)
≤
(
1− s′

n
+

s′

n
nA
)s′

− 1 ≤ exp
{
(s′)2(nA − 1)/n

}
− 1

≤ exp
{
n1−2β+A

}
− 1.

Applying Lemma B4, we have

R0,β(Ln) ≥ 1−
√
exp {n1−2β+A} − 1.

For any ε ∈ (0, 1), as long as A ≤ (2β − 1) + log log(1 + ε2)/ log n, we have R0,β(Ln) ≥ 1− ε.

For a sufficiently large n, we may pick A = (2β − 1)/2 to satisfy this condition.
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B.1.4 Proof of Theorem 3.4

The idea of the proof is similar to that in the proof of Theorem 3.1. In addition, we need the

following lemma to control the deviation of Studentized statistics from a standard normal random

variable:

Lemma B6 (Delaigle et al. (2011)). Consider independent and identically distributed mean-zero

random variables X1, ..., Xm with E(|Xi|4) ≤ B,E(X2
i ) = 1 and γ = E(X3

i ) < +∞. Let B > 1

be a constant and T =
√
mX̄/LX with X̄ = (1/m)

∑m
i=1Xi and LX =

√
(1/m)

∑m
i=1(Xi − X̄)2.

Then

P (T > x)

1− Φ(x)
= exp

{
− 1

6
m−1/2

(
2x3
)
γ
}{

1 + Γ(m,x)
(
(1 + |x|)m−1/2 + (1 + |x|)4m−1

)}
,

uniformly in x satisfying 0 ≤ x ≤ Bm1/4 as m → ∞, where the function Γ is bounded in absolute

value by a finite, positive constant C1(B) (which depends on B only).

Proof of Theorem 3.4. Without loss of generality, we assume σ2 = 1. The proof is structured in

two parts similarly to the proofs of Theorems 3.1 and 3.2. For the first part, recall that we can

rewrite the test statistic as:

T (s) =
s∑

i=1

−2 log p(i) = sup
|I|=s

n∑
i=1

−2 log(pi)I{i∈I}.

Note that under null, the random variables Yij, i = 1, . . . , n, j = 1, . . . ,m are independent and

identically distributed with zero means. Denote Zi =
√
mȲi and L2

i = 1
m

∑m
j=1

(
Yij − Ȳi

)2
=

1
m

∑m
j=1 Y

2
ij − Ȳ 2

i . Then by Markov’s inequality and Marcinkiewicz–Zygmund inequality (note

that D = max{6η + ε, 4} implies D
2
≥ 2, and E|Yij|D ≤ B0 < ∞), using arguments similar to

Theorem 3 in ?, we have:

P (|Zi| > t1) ≤
C1(D,B0)

tD1
(B7)

P
(∣∣(1/m)

m∑
j=1

Y 2
ij − 1

∣∣ > t2

)
≤

C2(D,B0)E
{∣∣Y 2

ij − 1
∣∣D2 }

m
D
4 t

D
2
2

≤ C3(D,B0)

m
D
4 t

D
2
2

, (B8)

where C1(D,B0), C2(D,B0) and C3(D,B0) are some absolute constants that only depend on D

and B0.
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We consider two events, denoted by B1 = ∪i{|Zi| > m
1
6} and B2 = ∪i{| 1m

∑m
j=1 Y

2
ij − 1| >

1
logm

}. For the two events, applying inequalities ( B7) and ( B8), we have as m diverges:

P
(
B1 = ∪i

{
|Zi| > m

1
6

})
≤ nC1(D,B0)

m
D
6

=
C1(D,B0)

m
D
6
−η

→ 0

P
(
B2 = ∪i

{∣∣ 1
m

m∑
j=1

Y 2
ij − 1

∣∣ > 1

logm

})
≤ nC3(D,B0)(logm)

D
2

m
D
4

=
C3(D,B0)(logm)

D
2

m
D
4
−η

→ 0,

which imply that P (Bc
1 ∩Bc

2) → 1. Under Bc
1 ∩Bc

2, one can bound all the Ti’s simultaneously. In

addition, note that under event Bc
1, we also have

∣∣Ȳi

∣∣ < m− 1
3 and hence 1−m− 2

3 − 1
logm

≤ L2
i ≤

1 + 1
logm

. Hence under event Bc
1 ∩Bc

2, we have

|Ti| < (1 + am)m
1
6 for all i = 1, . . . , n,

where am → 0 as m diverges.

Note that each p-value pi = 2(1 − Φ(|Ti|)) (i = 1, . . . , n) is not exact as Ti does not follow

N(0, 1) under the null in general. Here we use Lemma B6 to bound the deviation of pi from the

exact p-value p̃i. Indeed, under event Bc
1 ∩Bc

2, applying Lemma B6 twice for both P(T > x) and

P(T < −x) respectively, we have:

s∑
i=1

−2 log p(i) = sup
|I|=s

n∑
i=1

−2 log(pi)I{i∈I}

≤ sup
|I|=s

n∑
i=1

{
− 2 log(p̃i)I{i∈I} +

1

3
m−1/2

∣∣2t̂i∣∣3 |γ|I{i∈I}
+ 2 log

(
1 + Γ′(m, t̂i)

{
(1 + |t̂i|)m−1/2 + (1 + |t̂i|)4m−1

})
I{i∈I}

}
(B9)

= sup
|I|=s

n∑
i=1

−2 log(p̃i)I{i∈I} + sC(γ,B), (B10)

where Γ′(m,x) is some function bounded by a finite, positive constant C ′
1(B) depending on B

only, and C(γ,B) is some constant that depends only on γ and B. By truncating |Ti|’s uniformly

above by some quantity in the order of O(m
1
6 ), we not only meet the conditions of Lemma B6,

but also bound the major deviation term 1
3
m−1/2(|2t̂i|3|γ|) in ( B9) by some constant. For the term

sup|I|=s

∑n
i=1−2 log(p̃i)I{i∈I} in ( B10), note that as p̃i is the exact p-value and follows Unif(0, 1)

under the null, we have
∑n

i=1−2 log(p̃i)I{i∈I} ∼ χ2
2s for any I with |I| = s under the null.

Replacing pi by p̃i and applying the same argument of ( B3) in the proof of Theorem 3.1, we can
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obtain that (B10) ≤ 2n1−ββ
(
1 + 2/

√
log log n

)
log n = C(n) as n and m diverge. Finally, by a

union bound argument we achieve P
(
T (s) ≤ C(n)

)
→ 1 as n and m diverge. Therefore, the type

I error is still well-controlled if we use C(n) as the critical value.

For the second part, we show the type II error is controlled by using C(n) as the critical value.

Without loss of generality, we assume all the non-zero entries of θ are among the first µi’s (i =

1, . . . , s). Then we have:

∥θ∥22 =
s∑

i=1

µ2
i ≥ n1−βC(0) log n/m. (B11)

Let |T |(n−i+1) be the (n− i + 1)-th smallest value of |Ti|’s and T(n−i+1) be the (n− i + 1)-th

smallest value of Ti’s, then we have:

T (s) =
s∑

i=1

−2 log
(
2
(
1− Φ

(
|T |(n−i+1)

)))
≥

s∑
i=1

|T |2(n−i+1) + 2
s∑

i=1

log
(
|T |(n−i+1)

)
− 2s log

√
π/2

≥
s∑

i=1

T 2
i + 2

s∑
i=1

log
(
|T |(n−i+1)

)
− 2s log

√
π/2

≥
s∑

i=1

T 2
i + 2s log(max{T(n−s+1), 0})− 2s log

√
π/2. (B12)

Inequality ( B12) is similar to inequality ( B4) in the proof of Theorem 3.1. The only difference is

that we replace all the Yi’s by Ti’s. Similar to the idea in the proof of Theorem 3.1, the following

arguments show that
∑s

i=1 T
2
i is greater than

∑s
i=1 µ

2
i and the effect of other terms in ( B12) are

negligible.

We first introduce some notations. Let Y ∗
ij = Yij − µi, then we have:

Ȳ ∗
i =

1

m

m∑
j=1

(Yij − µi) =
1

m

m∑
j=1

Y ∗
ij =

Zi√
m

− µi

L2
i =

1

m

m∑
j=1

(
Yij − µi −

(
Ȳi − µi

))2
=

1

m

m∑
j=1

(
Y ∗
ij − Ȳ ∗

i

)2
=

1

m

m∑
j=1

Y ∗2
ij − Ȳ ∗2

i . (B13)
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Consider events B∗
1 = ∪i

{
|Ȳ ∗

i | > (B/ logm)
1
2

}
and B∗

2 = ∪i

{
|(1/m)

∑
j=1 Y

∗2
ij −1| > 1/(logm)1/2

}
,

similar to the arguments for ( B7) and ( B8), by Markov’ inequality and Marcinkiewicz–Zygmund

inequality, we have:

P
(
B∗

1 = ∪i{|Ȳ ∗
i | >

( B

logm

) 1
2}) ≤ nC4(D,B0)(logm)

D
2

B
D
2 m

D
2

=
C4(D,B0)(logm)

D
2

B
D
2 m

D
2
−η

→ 0 and

P
(
B∗

2 = ∪i

{
| 1
m

m∑
j=1

Y ∗2
ij − 1| > 1

logm

})
≤ nC5(D,B0)(logm)

D
2

m
D
4

=
C5(D,B0)(logm)

D
2

m
D
4
−η

→ 0,

implying that P((B∗c
1 ∩B∗c

2 )) → 1. Here C4(D,B0) and C5(D,B0) are some absolute constants

that only depend on D and B0. Under event B∗c
1 ∩B∗c

2 , the range of all the Ȳ ∗
i ’s and 1

m

∑m
j=1 Y

∗2
ij ’s

are upper bounded simultaneously. Hence we can bound all the Li’s:

L2
i ≤ 1 +

1 +B

logm
for all i = 1, . . . , n.

We first bound the second term in ( B12) by arguments similar to the one in the proof in

Theorem 3.1. Let Λ′ = {Ts+1, . . . , Tn} be the subset of T1, . . . , Tn. Note that µi = 0 for i =

s+ 1, . . . , n, hence Ts+1, . . . , Tn are independent and identically distributed. Denote by T ′
(n−2s+1)

the (n− 2s+ 1)-th smallest value from Λ′. By Lemma B6, for sufficiently large m, there exists a

positive constant ϱ0 > 0, such that

FTi
(ϱ0) = 1− P (Ti > ϱ0) = 1− (1− Φ(ϱ0))(1− Cm(ϱ0, γ, B)) < 1,

for each Ti ∈ Λ′. Here the function Cm(ϱ0, γ, B) depends only on m, ϱ0, γ, B and decreases to

zero as m increases. Then by Lemma B3, we have:

lim
m,n→+∞

P
(
2s log(max{T(n−s+1), 0}) > −2s

√
log(n− s)

)
≥ lim

m,n→+∞
P
(
2s log(T ′

(n−2s+1)) > −2s
√
log(n− s)

)
= 1. (B14)
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Hence we are able to bound the second term in ( B12). We then consider the first term in ( B12).

Note that:

s∑
i=1

T 2
i =

s∑
i=1

(Zi −
√
mµi)

2/L2
i + 2

s∑
i=1

(Zi −
√
mµi)

√
mµi/L

2
i +m

s∑
i=1

µ2
i /L

2
i

≥
s∑

i=1

(Zi −
√
mµi)

2

1 + (1 +B)(logm)−1
+ 2

s∑
i=1

(Zi −
√
mµi)

√
mµi

1 + (1 +B)(logm)−1
+

m
∑

µ2
i

1 + (1 +B)(logm)−1

≥ 2
s∑

i=1

(Zi −
√
mµi)

√
mµi

1 + (1 +B)(logm)−1
+

m
∑

µ2
i

1 + (1 +B)(logm)−1
. (B15)

For the first term in ( B15), note that Zi−
√
mµi = (1/

√
m)
∑m

j=1 (Yij − µi) = (1/
√
m)
∑m

j=1 Y
∗
ij ,

hence we have:

s∑
i=1

(Zi −
√
mµi)

√
mµi

1 + (1 +B)(logm)−1
=

s∑
i=1

m∑
j=1

µiY
∗
ij

1 + (1 +B)(logm)−1
.

Since µiY
∗
ij’s are zero-mean independent random variables, by Chebyshev’s inequality, we have:

P
(
|

s∑
i=1

m∑
j=1

µiY
∗
ij | > t

)
≤ m

∑s
i=1 µ

2
i

t2
.

Consider event B∗
3 =

{
|
∑s

i=1

∑m
j=1 µiY

∗
ij | >

√
m
∑s

i=1 µ
2
i (log n)

1/4
}

, we have P(B∗c
3 ) → 1.

Then under event B∗c
1 ∩B∗c

2 ∩B∗c
3 , we obtain

(B15) ≥ m
∑s

i=1 µ
2
i

1 + (1 +B)(logm)−1

(
1− (log n)

1
4√

m
∑s

i=1 µ
2
i

)
. (B16)

Under event B∗c
1 ∩B∗c

2 ∩B∗c
3 , combining ( B14), ( B16) and the assumption ( B11), for sufficiently

large m and n, we have (B12) > C(n). Finally, note that P (B∗c
1 ∩B∗c

2 ∩B∗c
3 ) → 1, yielding that

the type II error is well-controlled.
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B.1.5 Proof of Theorem 3.5

We combine the arguments and ideas in the proofs of Theorems 3.2 and 3.4. The proof is

structured in two parts similar to the previous proofs.

Proof of Theorem 3.5. Type 1 error control:

Without loss of generality, we assume σ2 = 1. We still consider the events B1 and B2 defined

in the proof of Theorem 3.4. By the same arguments in the proof of Theorem 3.4, we have

P (Bc
1 ∩Bc

2) → 1. Hereafter we consider the case under event Bc
1 ∩Bc

2. Notice that in the proof of

Theorem 3.2, it is already shown that |S| = M + 1 ≤ (1/2)(log n)2 + (1/2) log n+ 2. Similar to

argument ( B10) in the proof of Theorem 3.4, under event Bc
1 ∩Bc

2, for every si we have:

T (si) ≤ sup
|Ii|=si

∑
j∈Ii

−2 log(p̃j)I{j∈Ii} + siC(γ,B), (B17)

where all the p̃j’s independently follow Unif(0, 1) and C(γ,B) are some constant depending only

on γ and B, as defined in the proof of Theorem 3.4. Therefore, to finish the proof of the first part,

it is sufficient to show that sup|Ii|=si

∑
j∈Ii −2 log(pj)I{j∈Ii} + siC(γ,B) ≤ Ci for i = 0, . . . ,M

with probability going to one. Indeed, consider similar events Ai(xsi) defined in the proof of

Theorem 3.2 except that we replace pj by the exact p-value p̃j , following the argument ( B6) in

proof of Theorem 3.2, we obtain:

P
(
∪M

i=0 Ai(xsi)
)
→ 0,

where we pick xsi = si
(
1 + 1/

√
log log n

)
log (n/si) = si (1 + δn) log (n/si) for i = 0, . . . ,M .

Then under event Bc
1 ∩Bc

2 ∩
(
∪M

i=0 Ai(xsi)
)c, for sufficiently large n, we have

sup
|Ii|=si

∑
j∈Ii

−2 log(p̃j)I{j∈Ii} + siC(γ,B) ≤ 2si + 2
√
2sixsi + 2xsi + siC(γ,B) ≤ Ci.

The first part is done, noticing that P
(
Bc

1 ∩Bc
2 ∩
(
∪M

i=0 Ai(xsi)
)c)→ 1.

For the second part, without loss of generality, we still assume all the non-zero entries of θ are

the first s µi’s (i = 1, . . . , s). Hence we have:
s∑

i=1

µ2
i ≥ n1−βC(0) log n/m.
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Denote 0 < i∗ < log1+1/logn(n
1
2 ) such that:

si∗−1 < s < si∗ . (B18)

Hence we have:

T (si∗) =

si∗∑
j=1

−2 log p(j) ≥
s∑

j=1

−2 log p(j) ≥
s∑

j=1

−2 log
(
2
(
1− Φ

(
|T |(n−j+1)

)))
.

Consider the same events B∗
1 , B∗

2 and B∗
3 in the proof of Theorem 3.4, by the same arguments we

have P (B∗c
1 ∩B∗c

2 ∩B∗c
3 ) → 1. Hence under event B∗c

1 ∩ B∗c
2 ∩ B∗c

3 , combining ( B12), ( B14),

and ( B16) in the proof of Theorem 3.4, we have

T (si∗) ≥
s∑

j=1

−2 log
(
2
(
1− Φ

(
|T |(n−j+1)

)))
(B19)

≥ m
∑s

i=1 µ
2
i

1 + (1 +B)(logm)−1

(
1− (log n)

1
4√

m
∑s

i=1 µ
2
i

)
− 2s

√
log(n− s)− 2s log

√
π/2.

Also note that for sufficiently large m and n,

Ci∗ = 2si∗(1 + 2δn) log (n/si∗)

≤ 2s (1 + 1/log n) (1 + 2δn) log (n/s)

<
m
∑s

i=1 µ
2
i

1 + (1 +B)(logm)−1

(
1− (log n)

1
4√

m
∑s

i=1 µ
2
i

)
− 2s

√
log(n− s)− 2s log

√
π/2.

Hence the result follows.
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B.2 Null Distribution of RTP Statistics

In this section we introduce two propositions that characterizing the behavior of RTP statistic

T (ℓ) under the null.

Proposition B1 (Nagaraja (2006)). For independent p-values p1, . . . , pn, Let T (ℓ) =
∑ℓ

i=1−2 log p(i)

with 1 < ℓ < n, then under the null p1, . . . , pn
i.i.d.∼ Unif(0, 1), where Unif(0, 1) denotes the uniform

distribution on the interval (0,1),

T (ℓ) ∼ U +
n−ℓ−1∑
i=0

Ui.

Here U and U1, . . . Un−ℓ−1 are independent distributed random variables such that U ∼ χ2
2ℓ and

Ui ∼ GAM (2ℓ/(n− i), 1) for i = 0, . . . , n − ℓ − 1, where GAM(a, b) denotes the gamma distri-

bution with shape and rate parameters a and b.

Although one can derive the closed form of CDF of T (ℓ) under the null (Proposition B2), it

is numerically unstable due to term (A) that involves repeated integration and catastrophic can-

cellation of alternating signed terms. Figure B1 shows the signed log10-scaled magnitude of the

smallest and the largest terms in (A), with n = 20, 30, 40, 50, and ℓ = 4, 5.

Proposition B2 (Nagaraja (2006)). Under the same conditions of Proposition B1, for RTP test

statistic T (ℓ) such that 1 < ℓ < n, we have

P (T (ℓ) > t) =
n−ℓ∑
j=1

wj exp
{
− cjt

2cn−ℓ+1

} 1

(ℓ− 1)!

∫ t/2

0

exp {ydj} yℓ−1dy︸ ︷︷ ︸
(A)

+
ℓ−1∑
j=0

exp{−t/2}
(
t
2

)j
j!

, where

cj = n− j + 1,

dj =
cj

cn−ℓ+1

− 1,

wj =
n−ℓ∏

k=1;k ̸=j

n− k + 1

j − k
.
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Figure B1: The signed log10-scaled magnitude of the smallest and largest terms in (A) in Proposi-

tion B2 with n = 20, 30, 40, 50 and ℓ = 4 and 5, and t = E(T (ℓ)). Note the scale of the magnitude

of the extreme terms is far greater than 1, while the summation of the terms in (A) falls into the

range [0, 1].
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B.3 Fast Computation for AFg and RTP

In this section, we derive the fast-computing algorithm of AFg based on the cross-entropy

method by De Boer et al. (2005). Denote by U(sk) the random variable follows the same distri-

bution of T (sk) under the null. For more stable numeric performance, we consider the following

equivalent form of AFg in the following two subsections:

TAFg = max
sk∈S

− logP (U(sk) > t(sk)) ,

where t(sk) is the observation of T (sk).

B.3.1 The Efficient Sampling Method via Cross-Entropy

In this subsection, we introduce the efficient sampling method adapted from De Boer et al.

(2005). Let TAFg = T (p1, . . . , pn) be the AFg test statistic and t̂ be the observation of the test

statistic. Let X1, X2, . . ., XN be N independent and identically distributed random vectors that

follow Nn(0, In×n). Denote Xi = (Xi1, . . . ,Xin)
′ for i = 1, . . . , n and g0 as the density function

of Nn(0, In×n). We reformulate TAFg as:

T (Xi) = T (2(1− Φ(|Xi1|)), . . . , 2(1− Φ(|Xin|))) .

Denote by U(Xi) the random variable that follows the same distribution of T (Xi) under the null.

The goal of our algorithm is to estimate the upper tail probability of U(Xi) (one-sided p-value of

T (X1)):

P = P(U(X1) > t̂).

One straightforward way is to use simple Monte Carlo:

P̂ =
1

N

N∑
i=1

I{T (Xi)≥t̂}.

However, when t̂ is extremely large, such that the event {T (Xi) > t̂} is rare, using the above

strategy requires extremely large N , which is not computationally feasible. An alternative way is
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to use importance sampling: we instead draw X1, . . . ,XN from an importance sampling density

g, and estimate P by

P̂ =
1

N

N∑
i=1

I{T (Xi)≥γ}
g0 (X i)

g (X i)
,

where g is properly chosen to allow the event {T (Xi) > t̂} to happen more frequently. One can

show the best choice of g is g∗(x) = I{T (x)≥t̂}g0(x)/P . It is impossible to obtain g∗(x) as P is

unknown in practice.

In order to pick a proper g for the real practice, De Boer et al. (2005) propose an adaptive

procedure (the cross-entropy method) to choose g from a family of densities g(·; θ) with parameter

θ, and choose the θ that optimizes the following stochastic program, which is essentially to find θ

that minimizes the empirical Kullback–Leibler divergence between g∗(·) and g(·, θ):

θ̂ = max
θ

1

N

N∑
i=1

I{T (Xi)≥t̂}W (Xi; θ
′) log g (Xi; θ) ,

where W (Xi; θ) = g0(Xi)
g(Xi;θ′)

with θ′ as any reference parameter. Here X1, . . . , XN are sampled

from g(·, θ′). The choice of the family of g is critical for a good finite-sample performance of the

cross-entropy method. Since AFg is a test statistic with heavy-tailed null distribution where a small

fraction of extreme p-values can dominate the statistic, we choose the production of the following

Gaussian mixture distributions as g(·, θ):

1

j + 1
N(0, θ) +

j

j + 1
N(0, 1) for j = 1, . . . , n.

By drawing each Xij (j = 1, . . . , n) from different normal mixture distributions, the probabil-

ity that Xij to be draw from N(0, θ) depends on j, which leads to that only a small fraction of

Xij’s can be extremely large and hence only a small fraction of p-values pij = 2 (1− Φ (|Xij|))

(j = 1, . . . , n) are extremely small. With the above choice of the family of densities g(·; θ) and cri-

teria to choose proper θ, we present the following efficient importance sampling algorithm adapted

from De Boer et al. (2005):

159



Algorithm B1. Algorithm for efficient estimation of tail probability of AFg.

Input: N , t̂ and ρ.

Step 1. Set t=1, θ0 = 1 and φ̂0 = −∞.

Step 2. Generate random sample X1,...,XN , where each Xi = (Xi1, . . . ,Xin)
′ and all the Xij’s

(j=1,. . .,n) are independently sampled from the Gaussian mixture distributions:

1

j + 1
N (0, θt−1) +

j

j + 1
N (0, 1) for j = 1, . . . , n.

Denote the density function of the product of the Gaussian mixture distributions as g (·; θt−1).

Calculate and sort Ts(Xi) for i = 1, . . ., N from the smallest to the largest, denoted as Ts(1) ≤

Ts(2) ≤ . . . ≤ Ts(N). Let φ̂t := Ts(⌈(1−ρ)N⌉), if this is less than t̂s. Otherwise set φ̂t = t̂s.

Step 3. Update θt:

θt = argmax
θ

1

N

N∑
i=1

I{T (Xi)≥φ̂t}W (Xi, θt−1) log(g(Xi; θ, λ)),

where W (Xi, θt−1) =
g0(Xi)

g(Xi;θt−1)
. Recall f is the density function of Nn(0, In×n).

Step 4. If φ̂t = t̂ then proceed to step 5, otherwise set t = t+ 1 and back to step 2.

Step 5. Resample X1, . . .XN from g(·; θT0), where T0 denotes the final number of iterations, then

P̂ =
1

N

N∑
i=1

I{T (Xi}≥t̂}W (Xi, θT0) .

Here we choose the N = 105 and ρ = 0.01 in practice. Table B1 shows Coefficients of

variation for estimating tail probability P using algorithm B1 under varying combinations of n

and t̂.

Remark B1. For AFg, there is no closed form of P (U(sk) > t(sk)) for 1 < i < n. In the follow-

ing Section B.3.2, we present another version of efficient sampling method to build the reference

library for estimating P(T (sk) > t(sk)), the tail probability of T (sk) with a given observation

t(sk).
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Table B1: Coefficients of variation for estimating tail probability P using algorithm B1 with

n = 1000, 1500, 2000, 2500 and observations t̂ = 2, 4, . . . , 10 (t̂ = 10 corresponds to P̂ around

10−4) based on 30 times repeated simulations.

t̂ =2 t̂ =4 t̂ =6 t̂ =8 t̂ =10

n = 1000 0.007 0.012 0.028 0.075 0.195

n = 1500 0.007 0.011 0.041 0.076 0.150

n = 2000 0.007 0.012 0.035 0.087 0.178

n = 2500 0.007 0.015 0.023 0.077 0.173

B.3.2 Algorithm for the Construction of the Reference Library of RTP

In this subsection, we introduce the cross-entropy method to construct the reference library for

estimating − log(P(U(sk) > t(sk))), the minus logarithm transformation of the upper tail proba-

bility of RTP statistic U(sk) with any given observation t(sk). The general idea of the algorithm is

to find a collection of points (t(1)(sk), φ
(1)
k ), . . . , (t(p)(sk), φ

(p)
k ), where t(1)(sk) <, . . . , < t(p)(sk)

is a collection of quantiles that are a broad range of the upper tail probability of U(sk), and

φkℓ’s are corresponding minus logarithm transformation of the estimated upper tail probabilities

of U(sk) given t(ℓ)(sk) for ℓ = 1, . . . , p. We then fit an increasing spline function sp(t(sk)) rep-

resenting the relationship between t(sk) and φk = − log(P(U(sk) > t(sk))) using the points

(t(ℓ)(sk), φ
(ℓ)
k )(ℓ = 1, . . . , p) to build the reference library for the upper tail probability of U(sk).

The hybrid procedure to find suitable collection of points (t(ℓ)(sk), φ
(ℓ)
k ) (ℓ = 1, . . . , p) is as the

follows.

For the points (t(ℓ)(sk), φ
(ℓ)
k ) (ℓ = 1, . . . , g) that are supposed to cover the less stringent upper

tail of U(sk) (P(U(sk) > t(sk)) > 0.01), we first prespecify the values of φ(1)
k <, . . . , < φ

(g)
k . For

example, in practice, we let g = 91 and let (φ(1)
k , . . . , φ

(91)
k )=(− log(0.95),− log(0.94), . . . ,

− log(0.1),− log(0.05),− log(0.04), . . . ,− log(0.01)). We then sample a 105 Monte Carlo sample

for U(sk) and find the corresponding quantiles t(ℓ)(sk) given φ
(ℓ)
k (ℓ = 1, . . . , g).

For the points (t(ℓ)(sk), φ
(ℓ)
k ) (ℓ = g + 1, . . . , p) that are supposed to cover the more extreme
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upper tail probability of U(sk) (P(U(sk) > t(sk)) ≤ 0.01). By Proposition B1, note that under

the null

U(sk) ∼ χ2
2sk

+

n−sk∑
i=1

sk
n− i+ 1

χ2
2,

which leads to E(U(sk)) = 2sk+
∑n−sk

i=1
2sk

n−i+1
and Var(U(sk)) = 4sk+

∑n−sk
i=1

4sk
n−i+1

. We choose

the values of t(g)(sk) and t(p)(sk) by letting t(g+1)(sk)−E(U(sk))

(Var(U(sk)))
1/2 = ηq1 and t(p)(sk)−E(U(sk))

(Var(U(sk)))
1/2 = ηq2 ,

where ηqh (h = 1, 2) are quantiles such that 1 − Φ(ηqh) = qh. Here we choose q1 = 0.01

and q2 = 10−20. Other quantiles’ values are determined by letting log t(ℓ+1)(sk) − log t(ℓ)(sk) =

log t(p)(sk)−log t(g+1)(sk)
p−g

for ℓ = g+2, . . . , p−1. We then plug the collection of quantiles t(g+1)(sk), . . . , t
(p)(sk)

into algorithm B3 based on the cross-entropy method by De Boer et al. (2005) and calculate

φ
(g+1)
k = − log P̂(U(sk) > t(g+1)(sk)), . . . , φ

(p)
k = − log P̂(U(sk) > t(p)(sk)). We summarize the

above procedure as the following Algorithm B2:

Algorithm B2. Algorithm for the construction of the reference library of RTP.

Input: φ(1)
k <, . . . , φ

(g)
k ; g, p, q1 and q2.

Step 1. Sample a 105 Monte Carlo sample for U(sk) and find the corresponding quantiles t(ℓ)(sk)

given φ
(ℓ)
k (ℓ = 1, . . . , g).

Step 2. Determine the values of t(g+1)(sk) and t(p)(sk) such that t(g+1)(sk)−E(U(sk))

(Var(U(sk)))
1/2 = ηq1 and

t(p)(sk)−E(U(sk))

(Var(U(sk)))
1/2 = ηq2 . Determine the values of the other quantiles by letting log t(sk)

(ℓ+1) −

log t(sk)
(ℓ) = log t(p)(sk)−log t(sk)

(g+1)

p−g
for ℓ = g + 2, . . . , p − 1. Calculate φ

(ℓ)
k given t(ℓ)(sk) (ℓ =

g + 1, . . . , p) using algorithm B3.

Step 3. Fit an increasing spline function sp(t(sk)) based on the collection of points (t(ℓ)(sk), φ
(ℓ)
k )

(ℓ = 1, . . . , p)

For our case, we choose g = 91, p = 391, q1 = 0.01, q2 = 10−20 and (φ
(1)
k , . . . , φ

(91)
k )

=(− log(0.95),− log(0.94), . . . ,− log(0.1),− log(0.05),− log(0.04), . . . ,− log(0.01)).

The cross-entropy method to estimate the upper tail probability of U(sk) is similar to the one

used for AFg. Again, let X1, X2, . . ., XN be N independent and identically distributed random

vectors that follow Nn(0, In×n). Denote Xi = (Xi1, . . . ,Xin)
′ for i = 1, . . . , n and g0 as the

density function of Nn(0, In×n). Then we denote Tsk(Xi) as follows:

Tsk(Xi) =

sk∑
i=1

−2 log p(j),
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where p(j) is the j-th smallest p-value among p1 = 2 (1− Φ(|Xi1|)) , . . . , pn = 2 (1− Φ(|Xin|))

(j = 1, . . . , n). we summary the algorithm that estimates P(U(sk) > f) for any f as the following

Algorithm B3:

Algorithm B3. Cross-entropy method for RTP.

Input: N , f , ρ, τ .

Step 1. Set t=1, θ0 = 1 and f̂0 = −∞.

Step 2. Generate random sample X1,...,XN , where each Xi = (Xi1, . . . ,Xin)
′ and all the Xij’s

(j = 1, . . . , n) are independently sampled from the Gaussian mixture distributions:

1

jτ + 1
N
(
0, θ

1√
log(j+2)

)
+

jτ

jτ + 1
N (0, 1) for j = 1, . . . , n.

We calculate the p-values to combine by two-sided z-score test p1 = 2(1−Φ(Xi1)), . . . , pn =

2(1− Φ(Xin)). And τ is determined by

n∑
j=1

1

jτ + 1
= sk.

Denote the density function of the product of the Gaussian mixture distributions as g (·; θt−1).

Calculate and sort Tsk(Xi) for i = 1, . . ., N from the smallest to the largest, denoted as Tsk(1) ≤

Tsk(2) ≤ . . . ≤ Tsk(N). Let f̂t := Tsk(⌈(1−ρ)N⌉), if this is less than f . Otherwise set f̂t = f .

Step 3. Update θt:

θt = argmax
θ

1

N

N∑
i=1

I{Tsk
(Xi)≥f̂t}W (Xi, θt−1) log(g(Xi; θ, λ)),

where W (Xi, θt−1) =
g0(Xi)

g(Xi;θt−1)
. Recall g0 is the density function of Nn(0, In×n).

Step 4. If f̂t = f then proceed to step 5, otherwise set t = t+ 1 and back to step 2.

Step 5. Resample X1, . . .XN from g(·; θT0), where T0 denotes the final number of iterations, then

estimate P̂ = P (U(sk) ≥ f) by:

P̂ =
1

N

N∑
i=1

I{U(sk)(Xi)≥f}W (Xi, θT0) .
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In practice, we choose N = 3× 104 and ρ = 0.01. One can note that there are two differences

between Algorithm B3 and Algorithm B1. First, For Algorithm B3, there is an extra parameter

τ to characterize the Gaussian mixture distributions for the generation of X1, . . . ,XN . The reason

is that when sk is relatively small compared to n, the total number of p-values to combine, the

null distribution of T (sk) is relatively heavy-tailed, and a small fraction of extreme p-values can

dominate the behavior of U(sk). While as sk increases, the behavior of T (sk) is more and more

similar to the behavior of Fisher’s combination test, that is, the tail of the null distribution of T (sk)

gets lighter and lighter, and hence a larger and larger proportion of extreme p-values are needed to

have an impact on the behavior of T (sk), and a smaller τ is needed. The second difference is that

the variance of the alternative component of the Gaussian mixtures decreases as j increases.

We then investigate the stability of Algorithm B3. For s1, s5, s15, s25, sM under each n =

1000, 1500, 2000, 2500, we estimate φ(1)
k = − log P̂(U(sk) > t(1)(sk)), . . . , φ

(30)
k = − log P̂(U(sk) >

t(30)(sk)), where t(1)(sk)−E(U(sk))

(Var(U(sk)))
1/2 = ηq1 with q1 = 0.01, t(30)(sk)−E(U(sk))

(Var(U(sk)))
1/2 = ηq2 with q2 = 10−15 (re-

call 1 − Φ(ηqh) = qh for h = 1, 2), and log t(ℓ+1)(sk) − log t(ℓ)(sk) = log t(30)(sk)−log t(1)(sk)
30−1

for

1 < ℓ < 30. Coefficients of variation for each φ
(ℓ)
k are calculated based on 30 times repeated

simulations. Table B2 shows the maximum coefficients of variation for s1, s5, s15, s25, sM under

each n (Here M M is the smallest integer such that log n (1 + 1/ log n)M−1 ≥ n/ log n.).

Table B2: Maximum coefficients of variation for s1, s5, s15, s25, sM under each n based on 30

times repeated simulations.

s1 s5 s15 s25 sM

n=1000 0.068 0.066 0.059 0.020 0.024

n=1500 0.073 0.072 0.071 0.035 0.031

n=2000 0.074 0.080 0.065 0.037 0.041

n=2500 0.083 0.070 0.081 0.081 0.024
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Appendix C for Chapter 4

C.1 Technical Arguments: Proof of Theorems

Before showing the technical arguments, we first define some notations and introduce the con-

cept of asymptotically tailed independence, where the latter plays a key role in the proofs of The-

orems 4.1 and 4.2.

Definition C1 (Chen and Yuen (2009)). Two nonnegative non-identically distributed random vari-

ables Y1 and Y2 with distributions F1 and F2, respectively, are said to be asymptotically tailed

independent if

lim
t→∞

P (Y1 > t, Y2 > t)

F̄1(t) + F̄2(t)
= 0, (C1)

where F̄i = 1− Fi(t) denotes the survival function of Yi for each i = 1, 2.

It suffices to show the asymptotically tailed independence by showing P (Y1 > t|Y2 > t) =

o(1) or P (Y2 > t|Y1 > t) = o(1), or equivalently, P (Y1 > t, Y2 > t) = o(P (Y1 > t)) or o(P (Y2 >

t)).

More generally, two real-valued random variables, Y1 and Y2, are said to be asymptotically in-

dependent if the relation ( C1) holds with (Y1, Y2) in the numerator being replaced by (Y +
1 , Y +

2 ),(Y +
1 , Y −

2 ),

(Y −
1 , Y +

2 ), where Y +
i = max (Yi, 0) and Y −

i = max (−Yi, 0) for i =1, 2.

In this case, one can show that to prove Y1 and Y2 are asymptotically tailed independent, it suffices

to prove that P (Y +
i > t, Y +

j > t), P (Y +
i > t, Y −

j > t), P (Y −
i > t, Y +

j > t) are all o(P (Y1 > t))

or o(P (Y2 > t)).

C.1.1 Proof of Theorem 4.1

Before proving Theorem 4.1, first we introduce two lemmas, Lemmas C1 and C2.

Lemma C1. If X1 and X2 are bivariate standard normally distributed with correlation −1 < ρ <

1, then |X1| and |X2| are asymptotically tailed independent.

Proof. Use the upper bound for upper tailed probability of the bivariate standard normal random
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variables. P (X1 > t,X2 > t) ≤ Φ(−t)Φ(−θt)(1 + ρ) for t > 0 and ρ > 0, where θ =
√

1−ρ
1+ρ

(Willink, 2005). We first assume ρ > 0. When ρ < 0, let Z2 = −X2. Then X1 and Z2 are bivariate

standard normally distributed with correlation ρ > 0 and P (|X1| > t, |X2| > t) = P (|X1| >

t, |Z2| > t). So it suffices to prove the case of ρ > 0. Now we consider the case where ρ > 0,

P (|X1| > t, |X2| > t)

≤ P (X1 > t,X2 > t) + P (−X1 > t,−X2 > t) + P (X1 > t,−X2 > t) + P (−X1 > t,X2 < t)

= I + II + III + IV.

For I , we have I = P (X1 > t,X2 > t) ≤ Φ(−t)Φ(−θt)(1 + ρ) = o(P (X1 > t)). For II , we

note II = I (X1 and X2 are bivariate standard normal random variables, so their joint pdf are

symmetric around 0). For III , first let X2 = c1X1 + c2Z, where c1 > 0 (because ρ > 0) and

c2 > 0 and Z is a standard normal random variable independent of X1. Then we have

P (X1 > t,−X2 > t) = P (X1 > t,−c1X1 − c2Z > t)

= P (X1 > t,−c2Z > t+ c1X1)

≤ P (X1 > t,−c2Z > t+ c1t)

= P (X1 > t)P (−c2Z > t+ c1t) = o(P (|X1| > t)).

We then further note IV = III since X1 and X2 are exchangeable. Combine all the results,

we have P (|X1| > t, |X2| > t) = o(P (|X1| > t)).

Remark C1. From Willink’s upper bound for the bivariate normal random variables, it is clear

that when ρ is close to 1, we can see the ”asymptotically tailed independence phenomenal” only

when t is extremely large.

Lemma C2 (Chen and Yuen (2009)). If U1, . . . , Un ∈ R−γ are asymptotically tailed independent

random variables with CDFs F1, . . . , Fn, respectively; then P (U1 + . . .+ Un > t) ∼
∑n

i=1 F̄i(t).
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Proof of Theorem 4.1. First we assume the transformation g(p) is nonnegative. Since Ui ∈

R−γ,∀i = 1, . . . , n, by Lemma C2, it suffices to prove U1, . . . , Un are pairwise asymptotically

tailed independent. Here we have

P (Ui > t|Uj > t) = P (g(pi) > t|g(pj) > t)

= P (|Xi| > t∗||Xj| > t∗) ∼ o((P (|Xi| > t∗)) = o(P (Ui > t)). (C2)

Note that t∗ → ∞ as t → ∞. The second equality is because g(p) and 2(1 − Φ(|X|)) are both

monotone decreasing and continuous. P (|Xi| > t∗||Xj| > t∗) ∼ o((P (|Xi| > t∗)) = o(P (Ui >

t)) is because of Lemma C1. Therefore, U1, . . . , Un are pairwise asymptotically tailed independent

and we complete the proof. When the transformation g(p) is not nonnegative, see Remark C2 for

detailed proof.

Remark C2. As described in the proof, we prove Theorem 4.1 by assuming the transformation

g(p) is nonnegative. In fact, it can be easily extended to real-valued transformation g(p). In

order to prove the asymptotically tailed independence for the general case, it suffices to prove

that P (U+
i > t, U+

j > t), P (U+
i > t, U−

j > t), P (U−
i > t, U+

j > t) are all o(P (Ui > t)) or

o(P (Uj > t)) as t → ∞.

First for any t > 0, P (U+
i > t, U+

j > t) = P (Ui > t, Uj > t). We can show that P (Ui >

t, Uj > t) = o(P (Ui > t)) with the same argument as in ( C2). Therefore P (U+
i > t, U+

j > t) =

o(P (Ui > t)). It remains to prove P (U+
i > t, U−

j > t) = o(P (Ui > t)) since P (U−
i > t, U+

j >

t) = o(P (Uj > t)) can be proved similarly.

First we have P (U+
i > t, U−

j > t) = P (Ui > t,−Uj > t) = P (Ui > t, Uj < −t) for

∀t > 0. It suffices to show the result hold for the condition (A2.1) in Theorem 4.1, otherwise for the

alternative condition (A2.2), since Uj is bounded below, we have P (U−
j > t) = P (Uj < −t) = 0

for large enough t, which immediately implies P (U+
i > t, U−

j > t) = 0. Now we consider the

condition (A2.1), where g(p) is continuous and strictly decreasing for 0 < p < 1. Note that for

any large fixed t, there exist a corresponding large fixed value s1 and a small fixed value s2, such

that

{Ui > t} = {|Xi| > s1}

{Uj < −t} = {|Xj| < s2} .

167



Because Xi and Xj are bivariate normal distributed with correlation |ρij| ̸= 1, we let Xi =

C1Z + C2Xj , where C1 and C2 are some constants, Z D∼ N(0, 1) and independent of Xj , and

then applying similar trick in the proof of Lemma C1:

P (U+
i > t, U−

j > t) = P (|Xi| > s1, |Xj| < s2)

≤ P (|C1Z|+ |C2Xj| > s1, |Xj| < s2)

≤ P (|C1Z| > s1 − |C2|s2, |Xj| < s2)

= P (|C1Z| > s1 − |C2|s2)P (|Xj| < s2) = o(P (|Xj| < s2)) = o(P (U−
j > t))

note P (U−
j > t) = O(P (Uj > t)) by the balance condition (A3). Hence we complete the proof.

C.1.2 Proof of Theorem 4.2

Proof of Theorem 4.2. First we prove wiUi and wjUj for ∀m+1 ≤ i < j ≤ n are asymptotically

tailed independent, where the corresponding |ρij| < 1 for ∀m + 1 ≤ i < j ≤ n. As discussed

in the Remark C2 for Theorem 4.1, without loss of generality, we can assume both Ui and Uj are

nonnegative random variables. Suppose wi ≤ wj:

P (wiUi > t|wjUj > t) =
P (wiUi > t,wjUj > t)

P (wjUj > t)

≤ P (wjUi > t,wjUj > t)

P (wjUj > t)
→ 0.

The last line is because Ui and Uj ∀m+ 1 ≤ i < j ≤ n are asymptotically tailed independent

which were already proved in Theorem 4.1.

Suppose wi > wj:

P (wiUi > t|wjUj > t) =
P (wiUi > t,wjUj > t)

P (wjUj > t)

≤ P (wiUi > t,wiUj > t)

P (wjUj > t)

=
P (wiUi > t,wiUj > t)

P (
wj

wi
wiUj > t)

∼ P (wiUi > t,wiUj > t)

(
wj

wi
)γP (wiUj > t)

→ 0
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The last line is because Ui and Uj ∀m+ 1 ≤ i < j ≤ n are asymptotically tailed independent and

also because the distribution of wiUj has a regularly varying tail with index γ.

Hence we have

P (wiUi > t,wjUj > t)

P (wiUi > t) + P (wjUj > t)
≤ P (wiUi > t|wjUj > t) → 0.

Therefore, wiUi and wjUj ∀m+ 1 ≤ i < j ≤ n are asymptotically tailed independent.

Second, we consider the case with extreme correlation |ρij| = 1. In this case, X1 = ... = Xm

with probability 1 and hence U1 = ... = Um with probability 1. Therefore, it suffice to show

that (
∑m

i=1wi)U1 and wjUj , for ∀m + 1 ≤ j ≤ n, are asymptotically tailed independent, since

ρij = 1 or − 1 for 1 ≤ i < j ≤ m.

This can be easily proved by the following inequality:

P

((
m∑
i=1

wi

)
U1 > t|wjUj > t

)
≤

m∑
i=1

P (wiU1 > t/m|wjUj > t) → 0.

Therefore,

P (Tn,w(X) > t) = P (
n∑

i=1

wiUi > t)

= P

((
m∑
i=1

wi

)
U1 +

n∑
i=m+1

wiUi > t

)

∼

(
m∑
i=1

wi

)γ

P (U1 > t) +
n∑

i=m+1

wγ
i P (Ui > t)

=

[(
m∑
i=1

wi

)γ

+
n∑

i=m+1

wγ
i

]
P (U1 > t).

The third line is because (
∑m

i=1wi)U1 and wjUj , ∀m + 1 ≤ j ≤ n, are asymptotically tailed

independent and because of Lemma C2 and the property of regularly varying tailed random vari-

ables.

169



C.1.3 Proof of Theorem 4.3

Before proving Theorem 4.3, we first introduce two lemmas for the proof. Lemma C3 is

the combination of Theorem 4.2 and Theorem 4.3 in Davis (1983). Below are the conditions for

Lemma C3:

(B1): Let U∗
1 , . . . , U

∗
n∗ , . . . stationary sequence of regularly varying random variables with index

0 < γ ≤ 1 and with common distribution function F ∗.

(B2): Let G∗(t) = P (|U∗
1 | > t). The distribution of U∗

1 satisfies the balance condition; that is,
1−F ∗(t)
G∗(t)

→ p and F ∗(−t)
G∗(t)

→ q as t → ∞, where 0 ≤ p ≤ 1. and p+ q = 1.

In addition to conditions (B1) and (B2), there are three additional conditions (D), (D′) and

(D′′) given in Davis (1983), all of which are assumptions for dependent structure of U∗
1 , . . . , U

∗
n∗ ,

and are required for Lemma C3. For the details of conditions (D), (D′) and (D′′), see Davis

(1983). We do not provide details of these conditions because they are very technical but obviously

satisfied in Theorem 4.3, as shown in the proof of Theorem 4.3.

Lemma C3 (Davis (1983)). Suppose conditions (B1), (B2), (D), (D’) and (D”) hold. For 0 < γ ≤

1 we have ∑n∗

i=1 U
∗
i − bn∗

an∗
→d S

∗
γ ,

where S∗
γ is a random variable; an∗ is a term such that n∗G∗ (an∗x) → x−γ for 0 < γ ≤ 1 as

n∗ → ∞ and x > 0; bn∗ is defined as follows

bn∗ =

0, 0 < γ < 1,

n∗ ∫ an∗

−an∗
xdF ∗(x), γ = 1.

The following lemma describes the order of an∗ and bn∗ given that some of the conditions of

Theorem 4.3 are satisfied.

Lemma C4. If G∗, F ∗ and U∗
i for i = 1, . . . , n satisfy conditions for Lemma C3 and conditions

(A3) and (C2), we have

an∗ = O((n∗)1/γLn∗) for 0 < γ ≤ 1

bn∗ = O(n∗Ln∗) for γ = 1,
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where Ln∗ is the power function of log n∗.

Proof. First, we prove an∗ = O((n∗)1/γLn∗) for 0 < γ ≤ 1. Suppose an∗ ̸= O((n∗)1/γLn∗).

Then for any k > 0, there exits an arbitrary large n∗, such that an∗ > (n∗)
1
γ (log n∗)k. Hence we

have

n∗G∗(an∗x) ≤ n∗G∗
(
(n∗)

1
γ log n∗)kx

)
≤

Cn∗
(
log
(
(n∗)

1
γ (log n∗)kx

))h
(
(n∗)

1
γ (log n∗)kx

)γ
=

C

xγ
·

(
1
γ
log(n∗) + k log log n∗ + log x

)h
(log n∗)kγ

, (C3)

where C and h are some fixed constants. The second inequality is due to conditions (A3) and

(C2). Indeed, given the two conditions, we have G∗(t)
(i)
≤ CF̄ ∗(t)

(ii)
≤ C(log(t))h

tγ
, where (i) is due to

balance condition (A3) and (ii) is due to condition (C2). By choosing k such that kγ > h, we have

( C3) → 0 for ∀x > 0, which immediately leads to contradiction since by definition of an∗ we have

n∗G∗(an∗x) → 1
xγ .

Then we prove bn∗ = O(n∗Ln∗) for γ = 1. Since conditions (A3) and (C2) hold, we can

choose a large enough constant M , such that,

F̄ ∗(t) ≤ (log(t))h

t
for ∀t > M .

F ∗(−t) ≤ cF̄ ∗(t),

where c and h are some fixed constants. By the definition of bn∗ , we have

bn∗ = n∗
∫ an∗

−an∗

xdF ∗(x)

= n∗
∫ −M

−an∗

xdF ∗(x)︸ ︷︷ ︸
I

+n∗
∫ 0

−M

xdF ∗(x)︸ ︷︷ ︸
II

+n∗
∫ M

0

xdF ∗(x)︸ ︷︷ ︸
III

+n∗
∫ an∗

M

xdF ∗(x)︸ ︷︷ ︸
IV

.
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For II and III , we have II ≤ n∗ ∫ 0

−M
MdF ∗(x) ≤ n∗M = O(n∗) and III ≤ n∗ ∫M

0
MdF ∗(x) ≤

n∗M = O(n∗). For I , we have

I = n∗
∫ −M

−an∗

xdF ∗(x) = n∗(−M)F (−M) + n∗an∗F (−an∗)︸ ︷︷ ︸
(i)

−n∗
∫ −M

−an∗

F ∗(x)dx︸ ︷︷ ︸
(ii)

,

where (i) is O (n∗Ln∗). This is because by condition (A3) we have

n∗an∗F (−an∗) ≤ an∗cn∗F̄ ∗(an∗) ≤ c1an∗n∗G∗(an∗) = O (n∗Ln∗), where the last equality is due

to the fact that n∗G∗(an∗x) → 1
x

for any x > 0 and an∗ = O(n∗Ln∗) when γ = 1. For (ii), we have

(ii) = n∗
∫ −M

−an∗

F ∗(x)dx = n∗
∫ an∗

M

F ∗(−y)dy ≤ n∗
∫ an∗

M

cF̄ ∗(y)dy

≤ n∗
∫ an∗

M

c
(log y)h

y
dy

= O
(
n∗(log(an∗))h+1

)
= O(n∗Ln∗).

Hence we have I = O(n∗Ln∗). For IV , we have

|IV | =
∣∣∣∣n∗
∫ an∗

M

xdF ∗(x)

∣∣∣∣ = ∣∣∣∣n∗
∫ an∗

M

xd(1− F̄ ∗(x))

∣∣∣∣ = ∣∣∣∣n∗
∫ an∗

M

xdF̄ ∗(x)

∣∣∣∣
=

∣∣∣∣n∗an∗F̄an∗ − n∗MF̄ ∗(M)− n∗
∫ an∗

M

F̄ ∗(x)dx

∣∣∣∣
≤
∣∣n∗an∗F̄an∗

∣∣+ ∣∣n∗MF̄ ∗(M)
∣∣+ ∣∣∣∣n∗

∫ an∗

M

F̄ ∗(x)dx

∣∣∣∣
≤
∣∣∣∣n∗
∫ an∗

M

(log(x))h

x
dx

∣∣∣∣+O(n∗Ln∗),

where the last inequality is due to the fact n∗an∗F̄ ∗(an∗) ≤ c1an∗n∗G∗(an∗) = O(n∗Ln∗) given

condition (A3) and definition of an∗ . Also note that∣∣∣n∗ ∫ an∗

M
(log(x))h

x
dx
∣∣∣ = ∣∣∣n∗ (log an∗ )h+1

h+1
− n∗ (logM)h+1

h+1

∣∣∣ = O(n∗Ln∗). Hence we have IV = O(n∗Ln∗)

and further bn∗ = O(n∗Ln∗).
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Remark C3. Lemma C3 and Lemma C4 suggest that for the regularly varying tailed random

variables U∗
1 , . . . U

∗
n∗ with index 0 < γ ≤ 1,

∑n∗

i=1 U
∗
i = O(n∗1/γLn∗). For example, for CA test,

its corresponding an∗ = 2n∗

π
and bn∗ = 0; for HM test, an∗ = n∗ and bn∗ = n∗ ln(n∗); for BCη

test (η = 1/γ, 0 < γ < 1), an∗ = (n∗)1/γ . The distribution of S∗
γ is dependent on γ and described

in detail in Theorem 4.2 and Theorem 4.3 in Davis (1983). For the purpose of this paper, we only

need to use the order of
∑n

i=1 U
∗
i ,which is Op((n

∗)1/γLn∗) (0 < γ ≤ 1).

The following Lemmas C5 and C6 are useful when characterizing the lower bound of g(p).

Lemma C5 (ratio inequality of Mill). For any x > 0,

x

ϕ(x)
≤ 1/(1− Φ(x)) ≤ x

ϕ(x)

1 + x2

x2
,

where Φ(x) and ϕ(x) are CDF and pdf of the standard normal distribution, respectively.

Lemma C6. If conditions (A2), (A3) and (C2) hold, then we have the following two inequalities

for the transformation g(p).

There exist p1 > 0, C1 > 0, k ≥ 0 such that for 0 < p < p1

g(p) ≥ C1

p1/γ| ln(p)|k
.

and there exist p2 > 0, C2 > 0, k ≥ 0 such that for p2 < p < 1

g(p) ≥ −C2| ln(1− p)|k

(1− p)1/γ
.

Proof. To prove the first statement, let t = g(p) and by condition (A2), g(p) is strictly decreasing

for small enough p, hence g−1(t) exists for large enough t and is also strictly decreasing. Note

for any large fixed t, we have F (t) = P (g(p) ≤ t) = P (p ≥ g−1(t)) = 1 − g−1(t), hence

F̄ (t) = g−1(t) for large enough t and further g(p) = F̄−1(p) for small enough p, where we have

F̄−1(F̄ (t)) = t for large enough t. We now prove the first statement by contradiction, assume for
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any k > 0, there exists an arbitrary small p such that g(p) = F̄−1(p) < 1
p1/γ | log p|k , which leads to

the following contradiction:

t = F̄−1
(
F̄ (t)

)
≤ F̄−1

(
1

tγ| log t|h

)
<

(
tγ| log t|h

) 1
γ

|log (t−γ| log t|−h)|k

=
t

| log t|−
h
γ (γ log t+ h log log t)k

< t by choosing large enough k,

where h ≥ 0 is some fixed constant. The first inequality is due to condition (C2) and that F̄−1(p)

is strictly decreasing for small enough p. The second inequality is due to our assumption g(p) =

F̄−1(p) < 1
p1/γ | log p|k for an arbitrary small p. Given this contradiction, the proof of the first

statement is completed.

We then prove the second statement. First note that when g(p) is bounded below, then the

statement is trivial. Since condition (A2) holds for g(p), we only need to prove the statement when

g(p) is strictly decreasing for 0 < p < 1, because it is trivial for the case g(p) is bounded below

and one can note −C2| ln(1−p)|k
(1−p)1/γ

→ −∞ as p goes to one.

Now we consider the case where g(p) is strictly decreasing for 0 < p < 1. In this case, by

similar arguments when we prove the first statement, we denote t = g(p) again and easily note that

g−1(t) exists and further g(p) = F̄−1(p) for 0 < p < 1, where F̄−1(F̄ (−t)) = −t.

We now prove the second statement by contradiction. Given the previously defined notations,

by assuming for any k > 0, there exists an arbitrary small p such that F̄−1(p) < −C2
| log(1−p)|k
(1−p)1/γ

,

we derive the following contradiction:

−t = F̄−1(F̄ (−t)) = F̄−1(1− F (−t))

≤ F̄−1

(
1− c3

| log t|h

tγ

)

< −C2

∣∣∣log c3 | log t|htγ

∣∣∣k(
c3

| log t|h
tγ

)1/γ
= −t× C2

| log c3 − γ log t+ h log log t|k

c3(log t)
h
γ

< −t by choosing large enough k.
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The first inequality is due to the fact that F̄−1(p) is strictly decreasing and the inequality F (−t) <

c3F̄ (t) ≤ c3
| log t|h

tγ
for large enough t and some constants c3 > 0 and h ≥ 0, which can be proved

given conditions (A3) and (C2) hold. The second inequality is due to our assumption F̄−1(p) <

−C2
| log(1−p)|k
(1−p)1/γ

. Given this contradiction, the proof of the second statement is completed.

Remark C4. One can show that some common transformations g(p) previously discussed satisfy

the inequalities above. Indeed, the Box-Cox transformation g(p) = 1
p1/γ

satisfies condition (C2).

For Cauchy’s method, since the corresponding transformation g(p) = tan{(0.5 − p)π} satisfies

limp→0
g(p)
1/p

= 1
π

and limp→1
g(p)
−1

π(1−p)

= 1, it also satisfies condition (C2). For the truncated Cauchy

method, since g(p) = tan{(0.5− p)π} when p ≤ 1− δ, again we have limp→0
g(p)
1/p

= 1
π

. Also note

when p > 1− δ, g(p) = tan{(δ − 0.5)π}, hence limp→1
g(p)
−1

(1−p)

= 0. Therefore, the transformation

for the truncated Cauchy method also satisfies condition (C2).

Proof of Theorem 4.3. For this theorem, we only consider 0 < γ ≤ 1. Since X has banded

correlation matrix (condition (C1)), we can split U1, . . . , Un into d0 + 1 groups. Because we are

only looking for the order of asymptotic distribution of
∑n

i=1 Ui, we can assume n is a multiple of

d0 + 1 and let n
d0+1

− 1 = n0. Let the divided d0 + 1 groups be

{U1, U(d0+1)+1, . . . , U(d0+1)n0+1}; {U2, U(d0+1)+2, . . . , U(d0+1)n0+2}; . . . ;

{Ud0+1, U(d0+1)+d0+1, U(d0+1)n0+d0+1}. For the ith group, the random variables

{Ui, U(d0+1)+i, . . . , U(d0+1)n0+i} are independent and identically distributed and hence are station-

ary. Also, they are random variables with regularly varying tails with index γ that satisfy conditions

(A2) and (A3). Thus conditions (B1) and (B2) hold. In addition, since they are independent,

it is obvious conditions (D), (D′) and (D′′) in Davis (1983) for dependent structure hold. Let

Si =
∑n0

j=0 Uj(d0+1)+i, i = 1, . . . , d0 + 1. Since d0 is fixed, by applying Lemmas C3 and C4, we

obtain that Si is Op(n
1/γLn). Therefore, T (X) =

∑n
i=1 Ui = S1+ . . .+Sd0+1 is also Op(n

1/γLn).

Hence now it suffices to prove that under the alternative hypothesis Ha, T (X)

n1/γLn
converges to ∞
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with probability 1. Note that,

T (X) =
n∑

i=1

g(pi) =
n∑

i=1

g(2(1− Φ(|Xi|)))

=
∑
i∈S

g(2(1− Φ(|Xi|))) +
∑
i∈Sc

g(2(1− Φ(|Xi|)))

=
∑
i∈S

g(2(1− Φ(|Xi|))) +Op(n
1/γLn)

≥ g(2(1− Φ(max
i∈S

|Xi|))) + (nβ − 1)g(2(1− Φ(min
i∈S

|Xi|))) +Op(n
1/γLn),

where S = {i : µi ̸= 0} and Sc is the complementary index set of S. The equality in the third line

is due to Lemmas C3 and C4. We claim that if the second term (nβ−1)g(2(1−Φ(min{i∈S} |Xi|)))

in the last line is negative, its magnitude is op(n1/γ).

Let ϵn > 0 and ϵn → 0 as n → ∞. We have

P (min
i∈S

|Xi| < ϵn) ≤
∑
i∈S

P (|Xi| < ϵn) = nβP (|Xi| < ϵn)

= nβ{Φ(µ0 + ϵn)− Φ(µ0 − ϵn)} ≤ 2ϕ(µ0 − ϵn)n
βϵn ≤ nβϵn.

Apply Lemma C6 we have for small value of ϵn > 0,

g(2(1− Φ(ϵn))) ≥
−C1| log(2Φ(ϵn)− 1)|k

(2Φ(ϵn)− 1)1/γ
. (C4)

Note that 2Φ(εn)− 1 = 2(Φ(εn)− Φ(0)) = 2(ϕ(0)εn + o(εn)) = εn(1 + o(1)), then we have

| log(2Φ(ϵn)− 1)|k = | log(εn(1 + o(1)))|k ≤ 2k| log εn|k

(2Φ(ϵn)− 1)
1
γ = (εn(1 + o(1)))

1
γ ≥ 2−

1
γ ε

1
γ
n .

Then for the right hand side of ( C4), we have

(C4) ≥ −2kC1| log εn|k

2−
1
γ ε

1
γ
n

= −C0 | ln(ϵn)|k

ϵ
1/γ
n

,

where C1 > 0, C0 > 0 are constants. Now we let ϵn = nβ0−1, where β < β0 < 1/2. Then we have

P (mini∈S |Xi| < ϵn) ≤ nβϵn = nβ+β0−1 = o(1) and nβg(2(1−Φ(ϵn))) ≥ −C0nβ−(β0−1)(1/γ)| ln(nβ0−1)|k.

So we prove that (nβ − 1)g(2(1− Φ(min{i∈S} |Xi|))) is op(n1/γ).
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Then it suffices to prove that g(2(1−Φ(maxi∈S |Xi|)))
n1/γLn

converges to ∞ with probability 1. Let S+ =

{i ∈ S, µi > 0}. Denote Xi = µ0 + Zi for i ∈ S+, where µ0 =
√
2τ log n and Zi

D∼ N(0, 1).

Without loss of generality we assume |S+| ≥ s/2. Under the assumption of banded correlation for

X1, . . . , Xn, it follows from Lemma 6 in Cai et al. (2014) that maxi∈S+ Zi ≥
√

2 log |S+|+ op(1).

Then we have maxi∈S |Xi| ≥ maxi∈S+ |Xi| ≥ µ0 + maxi∈S+ Zi ≥ µ0 +
√

2 log |S+| + op(1).

Hence we have

g(2(1− Φ(max |Xi|))) ≥
C1

(2(1− Φ(max |Xi|)))
1
γ | log(2(1− Φ(max |Xi|)))|k

≥ C1

(1− Φ(max |Xi|))
1
γ
−δ

+ op(1)

≥ C2max
i∈S

|Xi|
1
γ
−δ exp{( 1

γ
− δ)max

i∈S
|Xi|2/2}+ op(1)

≥ C2(
√

2 log |S+|+ µ0)
1
γ
−δ exp{( 1

γ
− δ)(log |S+|+ µ2

0/2 + µ0

√
2 log |S+|)}+ op(1)

≥ exp{( 1
γ
− δ)(log |S+|+ µ2

0/2 + µ0

√
2 log |S+|)}+ op(1)

≥ C3 exp{(
1

γ
− δ)(β log(n) + τ log(n) +

√
2τ log(n)

√
2β log(n)− 2 log(2))}+ op(1)

≥ C3 exp{(
1

γ
− δ)(β log(n) + τ log(n) +

√
2τ log(n)

√
2β log(n)−

√
2 log(2))}+ op(1)

≥ C3 exp{(
1

γ
− δ)(β log(n) + τ log(n) +

√
2τ log(n)

√
2β log(n))}+ op(exp (

1

γ
− δ)

√
2τ log(n))

≥ C3 exp{(
1

γ
− δ)(log(n)(

√
β +

√
τ)2)}+ op(exp

√
2τ log(n))

= C3n
( 1
γ
−δ)(

√
τ+

√
β)2 + op(exp

√
2τ log(n)).

Note that δ in the second line is a small positive number. The inequality in the first line is due

to Lemma C6; the inequality in the second line is because | log(p)|k is smaller than p−δ for any

positive number δ when p is small and because max |Xi| goes to infinity with probability 1; the

inequality in the third line is due to Lemma C5. Since
√
τ +

√
β > 1, we can choose δ so small

that ( 1
γ
− δ)(

√
τ +

√
β)2 > 1

γ
. Therefore, the proof is complete.

Remark C5. When γ ≤ 1 and 0 < β < 1/4 (the strong sparsity situation), the detection boundary

for test statistic T (X) is optimal.
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Remark C6. For Tn,w =
∑n

i=1wig(pi) under the conditions of Theorem 4.3 and w ∈ Rn
+

and
∑n

i=1wi = n, if maxi wi ≤ (log n)η1 and miniwi ≥ 1/(log n)η2 for some fixed constants

η1, η2 > 0, then the result of Theorem 4.3 can be easily extended to Tn,w(X). Indeed, combining

the arguments in the proof of Theorem 4.3 and conditions on the weights w, one can show that

under the null, Tn,w(X) ≤ maxi wi

∑n
i=1 g(pi) ≤ Op(n

1/γLn)(log n)
η1 = Op(n

1/γLn). Similarly,

under the alternative, one can show that Tn,w(X) ≥ miniwi

∑n
i=1 g(pi) ≥

Op(n
1
γ
(
√
τ+

√
β)2Ln)(log n)

−η2 = Op(n
1
γ
(
√
τ+

√
β)2Ln). Then the result follows.

C.2 Results Related to Truncated Cauchy Method (CAtr)

C.2.1 Truncated Cauchy: a Remedy for Large Negative Penalty Issue in Cauchy

As a simple remedy of the large negative penalty issue in Cauchy (discussed in Sections 4.2.1,

4.4.3 and 4.5), we propose the truncated Cauchy test (CAtr) that truncates any of the n p-values

greater than 1− δ to be 1− δ. Recall the statistic of CAtr can be written as:

TCAtr =
n∑

i=1

tan

(
π

(
1

2
− pi

))
1(pi < 1− δ) + tan

(
π

(
δ − 1

2

))
1(pi ≥ 1− δ).

The theorems introduced in Section 4.3 imply that CAtr enjoys almost the same advantages of

the Cauchy method in terms of type I error control and power for the detection of weak and sparse

signals. Indeed, like Cauchy’s method, Theorems 1 and 2 ensure that we can approximate the null

distribution of CAtr under dependence using its null distribution under independence assumption

of pi, i = 1, . . . , n. The test statistic of CAtr no longer follows the standard Cauchy distribution

under the null and independence assumption. To deal with the computational issue of the truncated

Cauchy method, we propose a hybrid strategy, which uses approximation by generalized central

limit theorem (GCLT) in general but switches to an efficient importance sampling procedure by

cross-entropy parameter selection when n is small (n < 25) and the targeted size is large (α ≥

5× 10−3).

Below we first show that when n is sufficiently large, we can apply generalized central limit

theorem (GCLT) from Shintani and Umeno (2018) to approximate the null distribution of TCAtr .
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Proposition C1. Assume that p1, . . . , pn independently and identically follow Unif(0, 1). Let

νδ = tan
(
π(δ − 1

2
)
)
, f1n =

∫ +∞
νδ

cos(x/n)
(1+x2)

, f2n =
∫ +∞
νδ

sin(x/n)
(1+x2)

and

θn = arctan

(
δ sin(νδ/n) + ((1− δ)/π)f2n
δ cos(νδ/n) + ((1− δ)/π)f1n

)
.

Then we have:

TCAtr − n2θn
n

d−→ S(1, 1,
1

2
, 0),

where S(α, β, γ, µ) is a stable distribution with parameters α = 1, β = 1, γ = 1
2

and µ = 0, which

is defined with its characteristic function as:

S(x;α, β, γ, µ) =
1

2π

∫ ∞

−∞
ϕ(t)e−ixt dt,

with ϕ(t) = exp {iµt− γα|t|α(1− iβ sgn(t)w(α, t))} and

w(α, t) =

 tan(πα/2) if α ̸= 1

−2/π log |t| if α = 1
.

Remark C7. Proposition C1 can be obtained by simple calculation using formula (4) in Shintani

and Umeno (2018). Table C4 examines the approximation performance of GCLT for small n

and varying size α. The result shows satisfying accuracy when α < 5 × 10−3. When α ≥

5 × 10−3, GCLT needs larger n to perform well (roughly n ≥ 25). As a result, we develop an

efficient importance sampling procedure for this scenario. Briefly, Proposition C2 below gives

narrow upper and lower bounds for the tail probability of truncated Cauchy. By applying the

framework proposed by De Boer et al. (2005) for estimating rare event probability, we develop a

cross-entropy procedure to search within the narrow bounds for a high-precision approximation for

the tail probability of the truncated Cauchy. Details of the efficient importance sampling are shown

in Section C.2.3. Table C4 further shows the accurate calculation of the importance sampling with

affordable computing when n < 25. In summary, when calculating p-values for CAtr, to balance

the computing and performance, we propose to set δ = 0.01 (discussed in Section C.2.4) and

use GCLT approximation when α < 5 × 10−3 or n ≥ 25. When α ≥ 5 × 10−3 and n < 25,

importance sampling will be used. In Section 4.4.3 and Section 4.5, we will demonstrate the

superior performance of truncated Cauchy over Cauchy using simulations and a real application.
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Specifically, it avoids the large negative penalty issue of the Cauchy method but still enjoys similar

robust properties for type I error control under dependency and power for detecting weak and

sparse signals.

Proposition C2. Assume that p1, . . . , pn independently and identically follow Unif(0, 1). Let

1 − δ be the truncation point of the truncated Cauchy test with 0 < δ < 1
2
. The upper tail

probability of the null distribution of the truncated Cauchy method satisfies:

P (X1 ≥ t) ≤ P

(
TCAtr

n
> t

)
≤ P (X1 ≥ t) (1 + δ)n ,

where t > 0 and X1 is a Cauchy distributed random variable.

C.2.2 Proof of Proposition C2

Proof. Define the following random variables,

Yi = Xi1(Xi ≥ νδ) + νδ1(Xi < νδ) i = 1, . . . , n.

Here X ′
is identically and independently follow the standard Cauchy distribution, and recall

that νδ = tan
(
π(δ − 1

2
)
)

for 0 < δ < 1
2
. Define index set I = {k : Xk < νδ} and let m = |I|,

the cardinality of I. Then under the null, we can rewrite the upper tail probability of the truncated

Cauchy method’s test statistic in the following form:

P

(
1

n

n∑
i=1

Yi ≥ t

)
=

n∑
j=0

P

(
1

n

n∑
i=1

Yi ≥ t, m = j

)
.

Given the above equivalent form, the tail probability can be divided into the two parts below, which

will be bounded in the following proof:

I = P

(
1

n

n∑
i=1

Yi ≥ t, m = 0

)
,

II =
n∑

j=1

P

(
1

n

n∑
i=1

Yi ≥ t, m = j

)
.

For I , we have

I = P

(
1

n

n∑
i=1

Yi ≥ t, X1, . . . , Xn ≥ νδ

)
≤ P

(
1

n

n∑
i=1

Xi ≥ t

)
= P (X1 ≥ t) .
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For II , note that for the terms P
(
1
n

∑n
i=1 Yi ≥ t, m = j

)
for j = 1, . . . , n− 1, we have

P

(
1

n

n∑
i=1

Yi ≥ t, m = j

)
=

(
n

j

)
P

(
1

n− j

n−j∑
i=1

Xi ≥
nt− jνδ
n− j

,m = j

)

≤
(
n

j

)
(P (Xn < νδ))

j P (X1 ≥ t) .

Since t > 0 and νδ < 0, P
(
1
n

∑n
i=1 Yi ≥ t, m = n

)
= 0. Hence by the binomial theorem,

P

(
1

n

n∑
i=1

Yi ≥ t

)
= I + II ≤ P (X1 ≥ t) +

n∑
j=1

(
n

j

)
(P (Xn < νδ))

j P (X1 ≥ t)

≤ P (X1 ≥ t) (1 + P (Xn < νδ))
n .

Notice tan
(
π(1

2
− p)

)
follows the standard Cauchy distribution under the null, hence P (Xn <

νδ) = δ, then the result follows.

C.2.3 The Cross-Entropy Method (CE) for CAtr.

This subsection introduces the cross-entropy method (CE) to build the library of the null refer-

ence distribution of the truncated Cauchy method (CAtr).

Let X1, X2, . . ., XN be N independent and identically distributed random vectors that follow

Nn(0, In×n). Denote Xi = (Xi1, . . . , Xin)
′ for i = 1, . . . , n and f as the density function of

Nn(0, In×n). We consider an equivalent version of CAtr:

SCAtr(Xi) =
1

n

n∑
j=1

tan

(
π

(
Φ(Xij)−

1

2

))
1 (δ < Φ(Xij))+tan

(
π

(
δ − 1

2

))
1 (δ ≥ Φ(Xij)) ,

where Φ is the CDF of standard normal distribution. SCAtr has the same distribution as the null

distribution of TCAtr/n, so building the null reference distribution of TCAtr is equivalent to building

that of SCAtr .

For our proposed method, we first set-up the range of the significant levels of interest, which is

denoted as [αmin, αmax]. For example, if we are interested in the significant levels α = 0.05, 0.01,

1× 10−3 and 1× 10−4, the range of the significant levels is [1× 10−4 , 0.05]. For each significance
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level α, define the corresponding quantile φα satisfying φα = P (SCAtr > φα) = α. We then

calculate the range of φα using Proposition C2, denoted as

[φmin, φmax] =
[
F−1

Cauchy (1− αmax) , F
−1
Cauchy (1− αmin/(1 + δ)n)

]
, (C5)

where F−1
Cauchy is the inverse CDF of the standard Cauchy distribution and n is the total number

of p-values to combine, which is also the dimension of Xi. That is, for any significant level α

between αmin and αmax, φmin ≤ φα ≤ φmax.

We then choose m points between φmin and φmax, such that φ1 = φmin, φm = φmax and

logφk+1−logφk =
log(φmax)−log(φmin)

m
for k = 1, . . ., m−1. For each φk, we then apply the method

adapted from De Boer et al. (2005) to estimate p̂k = P (SCAtr ≥ φk) for k = 1,. . ., m, which will

be described in Algorithm S2. We then fit an increasing spline function sp(φ) representing the

relationship between φα and − log(α) using points (φk,− log(p̂k)) for k = 1, . . . ,m to build the

reference distribution of SCAtr . Users may enter the observed test statistic value TCAtr,obs to get

the corresponding p-value exp (−sp(TCAtr,obs/n)). The reason we fit an increasing spline function

for φα and − log(α) instead of φα and α is to make the fitting procedure numerically stable.

We summarize the above steps in the following Algorithm S1:

Algorithm S1:

1. Calculate [φmin, φmax] using Proposition C2 given [αmin, αmax], the range of significant levels of

interest.

2. Choose m points between φmin and φmax, such that φ1 = φmin, φm = φmax and logφk+1 −

logφk =
log(φmax)−log(φmin)

m
for k = 1, . . ., m− 1.

3. For each φk (k=1,. . ., m), set φ = φk, let p̂ be the output of Algorithm S2 with input φ, N = 105

and ρ = 0.01. Let p̂k = p̂.

4. Fit an increasing spline function for φα and − log(α) using points (φk,− log(p̂k)), k = 1. . . .,m

to build the reference distribution of SCAtr .

We then show Algorithm S2, the method adapted from De Boer et al. (2005) to estimate p̂k =

P (SCAtr ≥ φk) for k = 1, . . ., m in step 3 in Algorithm S1:

Algorithm S2 (adapted algorithm from De Boer et al. (2005)):

Input: N , φ and ρ.
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1. Set t=1, λ0 = 1/(n+ 1), θ0 = 1 and φ̂0 = −∞.

2. Generate random samples X1,...,XN , where each Xi = (Xi1, . . . , Xin)
′ and all the Xij’s

(j=1,. . .,n) are independently sampled from the Gaussian mixture distribution:

λt−1N (0, θt−1) + (1− λt−1)N (0, 1) .

Denote the corresponding joint density function as g (·; θt−1, λt−1). Calculate and sort SCAtr(Xi)

for i = 1, . . ., n from the smallest to the largest, denoted as SCAtr(1) ≤ SCAtr(2) ≤ . . . ≤ SCAtr(N).

Let φ̂t := SCAtr(⌈(1−ρ)N⌉), if this is less than φ. Otherwise set φ̂t = φ.

3. Update θt and λt:

(θt, λt) = argmax
θ,λ

1

N

N∑
i=1

1 (SCAtr(Xi) ≥ φ̂t)W (Xi, θt−1, λt−1) log(g(Xi; θ, λ)),

where W (Xi, φt−1, λt−1) =
f(Xi)

g(Xi;θt−1,λt−1)
. Recall f is the density function of Nn(0, In×n).

4. If φ̂t = φ then proceed to step 5, otherwise set t = t+ 1 and back to step 2.

5. Resample X1, . . .XN from g(·; θT , λT ), where T denotes the final number of iterations, then

estimate p̂ = P (SCAtr ≥ φ) by:

p̂ =
1

N

N∑
i=1

1 (SCAtr (Xi) ≥ φ)W (Xi, θT , λT ) .

The key of Algorithm S2 is to choose g(·; θ, λ) in the form of a mixture of Gaussian distribu-

tions. The reason is that CAtr’s behavior is dominated by extremely small p-values, and often a

tiny fraction of extremely small p-values can lead to an extreme value of CAtr.
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C.2.4 Choice of the Value of δ

For selection of δ, conceptually δ should be large enough so that it avoids the large negative

penalty issue in Cauchy. But for computational purpose, it cannot be too large so approximation by

our fast-computing procedures is accurate. To balance the computing and performance, we recom-

mend to set δ = 0.01. The reason is as follows. Besides almost exactly empirical statistical power

of CAtr with varying δ = 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 under the same simulation

settings in Section 4.4.2 (Tables C2 and C1), as shown in Table C3, under the same simulation

setting in Section 4.4.3, with all the type I errors controlled under the size of tests, the power of

CAtr with δ = 0.01 is very close to the power of CAtr with δ = 0.05 and δ = 0.1, and much greater

than the power of CAtr with δ ≤ 0.005, indicating selection of δ ≥ 0.01 can sufficiently alleviate

the large negative penalty issue. In the meantime, also note that for n = 25 (we recommend to

use CE algorithm for CAtr when n < 25, discussed in Remark C7 and Section C.2.5), we have

(1 + 0.01)25 ≈ 1.28, while (1 + 0.05)25 − 1 ≈ 3.38 and (1 + 0.05)25 − 1 ≈ 10.83%. Hence

compared to δ = 0.05 or δ = 0.1, the choice of δ = 0.01 can lead to a much more narrower

range of φα derived from Equation ( C5) for the CE algorithm. Furthermore, by Proposition C2,

δ = 0.01 also provides more accurate approximation when one wishes to use standard Cauchy to

approximate the null distribution of CAtr. Based on all consideration above, we recommend and

set δ = 0.01 throughout the paper.

C.2.5 Performance Benchmark of GCLT and CE

We choose δ = 0.01 for the CAtr method, and sample 108 TCAtr samples by Monte-Carlo

sampling for different total numbers of p-values n =2, 3, 4, 5, 10, 15, 20, 25. For GCLT, we

obtain the asymptotic quantiles ηq of TCAtr−n2θn
n

with q =0.9, 0.95, 0.99, 0.995, 0.999, 0.9995 and

0.9999 from the stable distribution S(1, 1, 1
2
, 0) defined in Proposition C1, which correspond to

the significant levels α=0.1, 0.05, 0.01, 10−3, 5 × 10−3, 5 × 10−4 and 10−4. Note that quantities

nηq +n2θn are the corresponding asymptotic quantiles for TCAtr (definition of θn is in Proposition

C1) for each combination of q and n. Then we plug all the nηq + n2θn’s into the corresponding

Monte-Carlo samples to calculate the empirical upper tail probability.

For the CE method, for each fixed n, we set range of significant levels of interest to be
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Table C1: Mean uncorrected power for tests CA, HM and CAtr (truncated CA) with δ =

0.1, 0.05, 0.01, 0.005,0.001, 0.0005, 0.0001 across correlation ρ = 0, 0.3, 0.6,0.9, 0.99, n = 100,

and proportion of signals s/n = 5%, 10%, 20%. The standard error is far less than the mean power

and hence not shown here.

s/n Methods ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.99

CA 0.753 0.633 0.521 0.396 0.350
HM 0.753 0.633 0.522 0.397 0.349
δ =0.0001 0.753 0.633 0.521 0.396 0.350
δ =0.0005 0.753 0.633 0.521 0.397 0.350

5% δ =0.001 0.753 0.633 0.521 0.397 0.350
δ =0.005 0.753 0.633 0.522 0.397 0.350
δ =0.01 0.753 0.633 0.522 0.397 0.350
δ =0.05 0.753 0.633 0.522 0.397 0.349
δ =0.1 0.753 0.633 0.522 0.397 0.349
CA 0.873 0.693 0.536 0.374 0.322
HM 0.873 0.693 0.536 0.375 0.321
δ =0.0001 0.873 0.693 0.536 0.374 0.322
δ =0.0005 0.873 0.693 0.536 0.374 0.321

10% δ =0.001 0.873 0.693 0.536 0.375 0.321
δ =0.005 0.873 0.693 0.536 0.375 0.321
δ =0.01 0.873 0.693 0.536 0.375 0.321
δ =0.05 0.873 0.693 0.536 0.375 0.321
δ =0.1 0.873 0.693 0.536 0.375 0.321
CA 0.957 0.742 0.545 0.357 0.302
HM 0.957 0.741 0.546 0.357 0.301
δ =0.0001 0.957 0.742 0.546 0.357 0.301
δ =0.0005 0.957 0.742 0.546 0.357 0.301

20% δ =0.001 0.957 0.742 0.546 0.357 0.301
δ =0.005 0.957 0.742 0.546 0.357 0.301
δ =0.01 0.957 0.742 0.546 0.357 0.301
δ =0.05 0.957 0.742 0.546 0.357 0.301
δ =0.1 0.957 0.742 0.546 0.357 0.301
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Table C2: Mean corrected power for tests CA, HM and CAtr (truncated CA) with δ =

0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 across correlation ρ = 0, 0.3, 0.6, 0.9, 0.99, n = 100,

and proportion of signals s/n = 5%, 10%, 20%. The standard error is far less than the mean power

and hence not shown here.

s/n Methods ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.99

CA 0.753 0.615 0.495 0.387 0.347
HM 0.753 0.616 0.496 0.389 0.347
δ =0.0001 0.753 0.615 0.495 0.388 0.347
δ =0.0005 0.753 0.615 0.495 0.388 0.347

5% δ =0.001 0.753 0.615 0.495 0.388 0.347
δ =0.005 0.753 0.616 0.495 0.388 0.347
δ =0.01 0.753 0.616 0.495 0.388 0.347
δ =0.05 0.753 0.616 0.495 0.389 0.347
δ =0.1 0.753 0.616 0.496 0.389 0.347
CA 0.873 0.675 0.508 0.365 0.318
HM 0.873 0.675 0.509 0.367 0.318
δ =0.0001 0.873 0.675 0.508 0.365 0.318
δ =0.0005 0.873 0.675 0.508 0.365 0.318

10% δ =0.001 0.873 0.675 0.508 0.366 0.318
δ =0.005 0.873 0.675 0.509 0.366 0.318
δ =0.01 0.873 0.675 0.509 0.366 0.318
δ =0.05 0.873 0.675 0.509 0.366 0.318
δ =0.1 0.873 0.675 0.509 0.366 0.318
CA 0.957 0.723 0.516 0.347 0.298
HM 0.957 0.724 0.518 0.348 0.298
δ =0.0001 0.957 0.723 0.517 0.347 0.298
δ =0.0005 0.957 0.724 0.517 0.347 0.298

20% δ =0.001 0.957 0.724 0.517 0.348 0.298
δ =0.005 0.957 0.724 0.517 0.348 0.298
δ =0.01 0.957 0.724 0.517 0.348 0.298
δ =0.05 0.957 0.724 0.517 0.348 0.298
δ =0.1 0.957 0.724 0.517 0.348 0.298
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Table C3: Mean proportion of rejection of CA, HM and CAtr (truncated CA) with δ =

0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 across ρ = 0.2, 0.3, under the same simulation set-

ting in Section 4.4.3. The standard errors are far less than the mean proportion and hence omitted.

ρ11 Methods/Cutoffs 0.05 0.01 0.005 0.001 5× 10−4 10−4

CA 0.333 0.202 0.147 0.0582 0.0399 0.0135
HM 0.864 0.525 0.380 0.154 0.107 0.0355
δ = 0.0001 0.457 0.320 0.251 0.131 0.0937 0.0350
δ = 0.0005 0.606 0.422 0.328 0.148 0.106 0.0354

ρ11 =0.2 δ = 0.001 0.685 0.463 0.353 0.151 0.107 0.0355
δ = 0.005 0.821 0.516 0.375 0.154 0.107 0.0356
δ = 0.01 0.849 0.523 0.379 0.154 0.107 0.0355
δ = 0.05 0.867 0.527 0.381 0.154 0.107 0.0356
δ = 0.1 0.867 0.527 0.381 0.154 0.107 0.0355
CA 0.431 0.428 0.419 0.356 0.309 0.190
HM 1.000 0.992 0.971 0.822 0.717 0.439
δ = 0.0001 0.928 0.916 0.898 0.778 0.689 0.433
δ = 0.0005 0.989 0.977 0.955 0.813 0.711 0.438

ρ11 =0.3 δ = 0.001 0.996 0.985 0.963 0.818 0.714 0.439
δ = 0.005 1.000 0.991 0.970 0.822 0.717 0.439
δ = 0.01 1.000 0.992 0.971 0.822 0.717 0.439
δ = 0.05 1.000 0.992 0.972 0.823 0.717 0.439
δ = 0.1 1.000 0.992 0.972 0.823 0.717 0.439
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Table C4: Approximated tail probability of CAtr with δ = 0.01 by generalized central limit theory

(GCLT) and our proposed cross-entropy method (CE) evaluated at total number of studies n =2,

3, 4, 5, 10, 15, 20, 25 and 30.

α n=2 n=3 n=4 n=5 n=10 n=20 n=25 n=30
0.1 0.0870382 0.0864065 0.0886247 0.0875406 0.0891782 0.0947768 0.0954372 0.0956934
0.05 0.0451842 0.0450655 0.0457294 0.0454963 0.0461855 0.0479721 0.0482332 0.0483709
0.01 0.0096584 0.0096709 0.0097111 0.0097127 0.0097765 0.0098790 0.0098943 0.0099051

GCLT 5× 10−3 0.0049012 0.0049070 0.0049185 0.0049215 0.0049389 0.0049683 0.0049715 0.0049748
1× 10−3 0.0009948 0.0009955 0.0009963 0.0009973 0.0009977 0.0009985 0.0009980 0.0009987
5× 10−4 0.0004977 0.0004990 0.0004994 0.0004991 0.0004995 0.0004996 0.0004995 0.0004995
1× 10−4 0.0000998 0.0001001 0.0001000 0.0000999 0.0000999 0.0000999 0.0000998 0.0000999
0.1 0.0998460 0.1002799 0.0999711 0.1000699 0.1001043 0.0999127 0.1001925 0.1002092
0.05 0.0499530 0.0499556 0.0500164 0.0498986 0.0499906 0.0499466 0.0501307 0.0499883
0.01 0.0099885 0.0100282 0.0100509 0.0099742 0.0099965 0.0100538 0.0099953 0.0099947

CE 5× 10−3 0.0049928 0.0049927 0.0050023 0.0050125 0.0049725 0.0050595 0.0049952 0.0049998
1× 10−3 0.0010037 0.0009876 0.0009994 0.0009928 0.0009923 0.0010062 0.0010034 0.0009999
5× 10−4 0.0005022 0.0004936 0.0005003 0.0005042 0.0004982 0.0005030 0.0004997 0.0004943
1× 10−4 0.0001002 0.0000990 0.0000989 0.0000998 0.0000976 0.0001007 0.0001010 0.0000994

[0.01, 10−5/(1.01)n], using Algorithm S2 to build the reference library and estimate the quantiles

ηq corresponding to the significant levels α=0.1, 0.05, 0.01, 10−3, 5× 10−3, 5× 10−4 and 10−4.

Table C4 shows the mean empirical upper tail probability of the two methods for each combi-

nation of n and 1-q from 30 times repeated simulations.
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Figure C1: All the sub-figures represent the mean logarithm of ratio 3P (U>tα)
P (T3,w(X)>tα)

(y(α)) across

different significance levels α for correlation level ρ = 1 for 4 different methods, Cauchy, Trun-

cated Cauchy, Inverse Gamma and log-Gamma distributions. We set the shape parameter of the

inverse Gamma distribution and the rate parameter of log-Gamma distribution to be 1. We further

set the scale parameter of inverse Gamma and shape parameter of log-Gamma distribution to be

0.75, 0.8, 0.9, 1, 1.1, 1.25, and 1.5. The x-axis is the negative logarithm of significance level α to

base 10 where α is set to be 10−2, 10−3, 10−4, 10−5. The red dash line is the reference line y = 0.
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Figure C2: Jitter plots of p-values for SNPs in genes SLC29A9 (left) and PCS29A9 (right).

190



Bibliography

Abrahamson, I. G. (1967). Exact Bahadur efficiencies for the Kolmogorov-Smirnov and Kuiper
one-and two-sample statistics. The Annals of Mathematical Statistics, 38(5):1475–1490.

Aichem, A. and Groettrup, M. (2016). The ubiquitin-like modifier FAT10 in cancer development.
The International Journal of Biochemistry and cell biology, 79:451–461.

Arias-Castro, E., Candès, E. J., and Plan, Y. (2011). Global testing under sparse alternatives:
Anova, multiple comparisons and the higher criticism. The Annals of Statistics, 39(5):2533–
2556.

Bahadur, R. R. (1967a). An optimal property of the likelihood ratio statistic. In Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 13–26.

Bahadur, R. R. (1967b). Rates of convergence of estimates and test statistics. The Annals of
Mathematical Statistics, 38(2):303–324.

Bahadur, R. R. et al. (1960). Stochastic comparison of tests. The Annals of Mathematical Statistics,
31(2):276–295.

Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli, pages
577–606.

Barnett, I., Mukherjee, R., and Lin, X. (2017). The generalized higher criticism for testing
snp-set effects in genetic association studies. Journal of the American Statistical Association,
112(517):64–76.

Barnett, I. J. and Lin, X. (2014). Analytical p-value calculation for the higher criticism test in
finite-d problems. Biometrika, 101(4):964–970.

Begum, F., Ghosh, D., Tseng, G. C., and Feingold, E. (2012). Comprehensive literature review and
statistical considerations for GWAS meta-analysis. Nucleic acids research, 40(9):3777–3784.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal statistical society: series B (Method-
ological), 57(1):289–300.

Berk, R. H. and Jones, D. H. (1978). Relatively optimal combinations of test statistics. Scandina-
vian Journal of Statistics, pages 158–162.

Berk, R. H. and Jones, D. H. (1979). Goodness-of-fit test statistics that dominate the Kolmogorov
statistics. Probability Theory and Related Fields, 47(1):47–59.

Birgé, L. (2001). An alternative point of view on Lepski’s method. Lecture Notes-Monograph
Series, pages 113–133.

191



Brown, M. B. (1975). 400: A method for combining non-independent, one-sided tests of signifi-
cance. Biometrics, pages 987–992.

Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under de-
pendence. Journal of the Royal Statistical Society: Series B: Statistical Methodology, pages
349–372.

Canaan, A., DeFuria, J., Perelman, E., Schultz, V., Seay, M., Tuck, D., Flavell, R. A., Snyder,
M. P., Obin, M. S., and Weissman, S. M. (2014). Extended lifespan and reduced adiposity in
mice lacking the FAT10 gene. Proceedings of the National Academy of Sciences, 111(14):5313–
5318.

Canfield, C.-A. and Bradshaw, P. C. (2019). Amino acids in the regulation of aging and aging-
related diseases. Translational Medicine of Aging, 3:70–89.

Cavalier, L. and Tsybakov, A. (2002). Sharp adaptation for inverse problems with random noise.
Probability Theory and Related Fields, 123(3):323–354.

Chen, Y., Liu, P., Tan, K. S., and Wang, R. (2021). Trade-off between validity and efficiency
of merging p-values under arbitrary dependence. Statistica Sinica. Also available as “https:
//www3.stat.sinica.edu.tw/preprint/SS-2021-0071 Preprint.pdf”.

Chen, Y. and Yuen, K. C. (2009). Sums of pairwise quasi-asymptotically independent random
variables with consistent variation. Stochastic Models, 25(1):76–89.

Chen, Z., Yang, W., Liu, Q., Yang, J. Y., Li, J., and Yang, M. Q. (2014). A new statistical approach
to combining p-values using gamma distribution and its application to genome-wide association
study. BMC Bioinformatics, 15:1–7.

Collier, O., Comminges, L., Tsybakov, A. B., et al. (2017). Minimax estimation of linear and
quadratic functionals on sparsity classes. The Annals of Statistics, 45(3):923–958.

Davis, R. A. (1983). Stable limits for partial sums of dependent random variables. The Annals of
Probability, pages 262–269.

De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. (2005). A tutorial on the cross-
entropy method. Annals of Operations Research, 134(1):19–67.

Delaigle, A., Hall, P., and Jin, J. (2011). Robustness and accuracy of methods for high dimensional
data analysis based on Student’s t-statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 73(3):283–301.

Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. The
Annals of Statistics, 32(3):962–994.

Dudbridge, F. and Koeleman, B. P. (2003). Rank truncated product of p-values, with applica-
tion to genomewide association scans. Genetic Epidemiology: The Official Publication of the
International Genetic Epidemiology Society, 25(4):360–366.

192

https://www3.stat.sinica.edu.tw/preprint/SS-2021-0071_Preprint.pdf
https://www3.stat.sinica.edu.tw/preprint/SS-2021-0071_Preprint.pdf


Edgington, E. S. (1972). An additive method for combining probability values from independent
experiments. The Journal of Psychology, 80(2):351–363.
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Shah, R. D. and Bühlmann, P. (2018). Goodness-of-fit tests for high dimensional linear models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):113–135.

Shao, Q.-M., Wang, Q., et al. (2013). Self-normalized limit theorems: A survey. Probability
Surveys, 10:69–93.

Shintani, M. and Umeno, K. (2018). Super generalized central limit theorem—limit distributions
for sums of non-identical random variables with power laws. Journal of the Physical Society of
Japan, 87(4):043003.

Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential ex-
pression in microarray experiments. Statistical Applications in Genetics and Molecular Biology,
3(1).

Smyth, G. K. (2005). Limma: linear models for microarray data. In Bioinformatics and Computa-
tional Biology Solutions Using R and Bioconductor, pages 397–420. Springer.

Song, C., Min, X., and Zhang, H. (2016). The screening and ranking algorithm for change-points
detection in multiple samples. The Annals of Applied Statistics, 10(4):2102.

Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceed-
ings of the National Academy of Sciences of the United States of America, 100(16):9440–9445.

Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., and Williams Jr, R. M. (1949). The
American soldier: Adjustment during army life. Studies in Social Psychology in World War II,
5.

Su, Y.-C., Gauderman, W. J., Berhane, K., and Lewinger, J. P. (2016). Adaptive set-based methods
for association testing. Genetic Epidemiology, 40(2):113–122.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,
Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005). Gene set enrich-
ment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proceedings of the National Academy of Sciences, 102(43):15545–15550.

Sun, R. and Lin, X. (2020). Genetic variant set-based tests using the generalized berk–jones
statistic with application to a genome-wide association study of breast cancer. Journal of the
American Statistical Association, 115(531):1079–1091.

Svishcheva, G. R., Belonogova, N. M., Zorkoltseva, I. V., Kirichenko, A. V., and Axenovich,
T. I. (2019). Gene-based association tests using gwas summary statistics. Bioinformatics,
35(19):3701–3708.

Terao, A., Steininger, T. L., Morairty, S. R., and Kilduff, T. S. (2004). Age-related changes in
histamine receptor mRNA levels in the mouse brain. Neuroscience Letters, 355(1-2):81–84.

198



Tippett, L. H. C. et al. (1931). The methods of statistics. The Methods of Statistics.

Tseng, G. C., Ghosh, D., and Feingold, E. (2012). Comprehensive literature review and statistical
considerations for microarray meta-analysis. Nucleic Acids Research, 40(9):3785–3799.

Tsybakov, A. B. (2008). Introduction to nonparametric estimation. Springer Science & Business
Media.

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to
the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9):5116–
5121.

Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada, Y., Martin, A. R., Martin, H. C.,
Lappalainen, T., and Posthuma, D. (2021). Genome-wide association studies. Nature Reviews
Methods Primers, 1(1):1–21.

Van der Goot, A. T. and Nollen, E. A. (2013). Tryptophan metabolism: entering the field of aging
and age-related pathologies. Trends in Molecular Medicine, 19(6):336–344.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press.

Vieira, O. V., Botelho, R. J., and Grinstein, S. (2002). Phagosome maturation: aging gracefully.
Biochemical Journal, 366(3):689–704.

Visscher, P. M., Brown, M. A., McCarthy, M. I., and Yang, J. (2012). Five years of gwas discovery.
The American Journal of Human Genetics, 90(1):7–24.

Vovk, V., Wang, B., and Wang, R. (2021). Admissible ways of merging p-values under arbitrary
dependence. Annals of Statistics.

Vovk, V. and Wang, R. (2020). Combining p-values via averaging. Biometrika, 107(4):791–808.

Willink, R. (2005). Bounds on the bivariate normal distribution function. Communications in
Statistics-Theory and Methods, 33(10):2281–2297.

Wilson, D. J. (2019a). The harmonic mean p-value for combining dependent tests. Proceedings of
the National Academy of Sciences, 116(4):1195–1200.

Wilson, D. J. (2019b). Reply to Held: When is a harmonic mean p-value a Bayes factor? Proceed-
ings of the National Academy of Sciences, 116:5857–5858.

Wilson, D. J. (2020). Generalized mean p-values for combining dependent tests: comparison of
generalized central limit theorem and robust risk analysis. Wellcome Open Research, 5.

Won, S., Morris, N., Lu, Q., and Elston, R. C. (2009). Choosing an optimal method to combine
p-values. Statistics in Medicine, 28(11):1537–1553.

199



Xu, G., Lin, L., Wei, P., and Pan, W. (2016). An adaptive two-sample test for high-dimensional
means. Biometrika, 103(3):609–624.

Yang, X., Kui, L., Tang, M., Li, D., Wei, K., Chen, W., Miao, J., and Dong, Y. (2020). High-
throughput transcriptome profiling in drug and biomarker discovery. Frontiers in Genetics,
11:19.

Yu, K., Li, Q., Bergen, A. W., Pfeiffer, R. M., Rosenberg, P. S., Caporaso, N., Kraft, P., and Chat-
terjee, N. (2009). Pathway analysis by adaptive combination of p-values. Genetic Epidemiology:
The Official Publication of the International Genetic Epidemiology Society, 33(8):700–709.

Zahn, J. M., Poosala, S., Owen, A. B., Ingram, D. K., Lustig, A., Carter, A., Weeraratna, A. T.,
Taub, D. D., Gorospe, M., Mazan-Mamczarz, K., et al. (2007). AGEMAP: a gene expression
database for aging in mice. PLoS Genetics, 3(11):e201.

Zaykin, D. V. (2011). Optimally weighted z-test is a powerful method for combining probabilities
in meta-analysis. Journal of Evolutionary Biology, 24(8):1836–1841.

Zaykin, D. V., Zhivotovsky, L. A., Czika, W., Shao, S., and Wolfinger, R. D. (2007). Combining p-
values in large-scale genomics experiments. Pharmaceutical Statistics: The Journal of Applied
Statistics in the Pharmaceutical Industry, 6(3):217–226.

Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H., and Weir, B. S. (2002). Truncated product
method for combining p-values. Genetic Epidemiology: The Official Publication of the Interna-
tional Genetic Epidemiology Society, 22(2):170–185.

Zhang, H., Jin, J., and Wu, Z. (2020a). Distributions and power of optimal signal-detection statis-
tics in finite case. IEEE Transactions on Signal Processing, 68:1021–1033.

Zhang, H., Tong, T., Landers, J., and Wu, Z. (2020b). TFisher: A powerful truncation and weight-
ing procedure for combining p-values. The Annals of Applied Statistics, 14(1):178–201.

Zhang, H. and Wu, Z. (2022). The generalized Fisher’s combination and accurate p-value calcula-
tion under dependence. Biometrics.

Zhou, Y., Bolton, E. C., and Jones, J. O. (2015). Androgens and androgen receptor signaling in
prostate tumorigenesis. Journal of Molecular Endocrinology, 54(1):R15–R29.

200


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	2.1 Results of asymptotic properties of 12 p-value combination methods: Fisher, Stouffer, 5 modified Fisher (AFs, AFp, AFz, TFhard and TFsoft) and 5 methods designed for sparse and weak signal (Cauchy, Pareto, minP, BJ and HC).
	3.1 Empirical power with significance threshold p<10-3 for AFg, oTFsoft, minP and HC across different levels of sparsity (R/H=10%,15%,20%,25% for the 4 pathways hsa05012 (Parkinson disease), hsa05010 (Alzheimer disease), and hsa05014 (amyotrophic lateral sclerosis), hsa04730 (long-term depression) from KEGG.
	4.1 Type-I errors for nine tests: Fisher, CA, CAtr (truncated Cauchy), BC0.75, BC1 (HM), BC1.25, minP, HC, and BJ, across correlation level =0, 0.3, 0.6, 0.9, 0.99.
	4.2 Type-I error control of HM evaluated for the total number of p-values n= 25, 50, 100, 500, 1000, 2000, 10000 and = 0, 0.3, 0.6, 0.99 for different sizes of test = 0.05, 0.01, 10-3, and 10-4. We also calculate the percent of inflation (PI) to reflect the extent of inflation of the type-I error under various cases, given n and . PI is defined as PI=(type I error -)/.
	4.3 Mean uncorrected power for tests CA, CAtr (truncated Cauchy), HM, BC1.25, and minP across correlation =0,0.3,0.6,0.9, 0.99 and proportion of signals s/n=5%,10%,20%. The standard error is far less than the mean power, and hence is not shown here.
	4.4 Mean corrected power for tests Fisher, BC0.75, CA, CAtr(truncated Cauchy), HM, BC1.25, minP, HC, and BJ across correlations =0,0.3,0.6,0.9, 0.99 and proportions of signals s/n=5%,10%,20%. The standard errors are far less than the mean power, and hence are omitted.
	4.5 Mean proportion of rejection of CA, HM and CAtr (truncated CA) across 11=0 (type I error), 0.2 (power), 0.3 (power). The standard errors are far less than the mean proportion and hence are omitted.
	 A1 Accuracy of type I error control for FE and FECS
	 A2 Up-regulated/down-regulated age-related pathways detected in one-sided design by FECS with significance level p0.01. The reference columns of the 2 tables list literature that supports the relationships between the pathways and aging/early development processes. 
	 B1 Coefficients of variation for estimating tail probability P using algorithm  B1 with n=1000,1500,2000,2500 and observations =2,4,…,10 (=10 corresponds to  around 10-4) based on 30 times repeated simulations.
	 B2 Maximum coefficients of variation for s1,s5,s15,s25,sM under each n based on 30 times repeated simulations.
	 C1 Mean uncorrected power for tests CA, HM and CAtr (truncated CA) with =0.1,0.05,0.01,0.005,0.001,0.0005,0.0001 across correlation =0,0.3,0.6,0.9,0.99, n=100, and proportion of signals s/n=5%,10%,20%. The standard error is far less than the mean power and hence not shown here.
	 C2 Mean corrected power for tests CA, HM and CAtr (truncated CA) with =0.1,0.05,0.01,0.005,0.001,0.0005,0.0001 across correlation =0,0.3,0.6,0.9, 0.99, n=100, and proportion of signals s/n=5%,10%,20%. The standard error is far less than the mean power and hence not shown here.
	 C3 Mean proportion of rejection of CA, HM and CAtr (truncated CA) with =0.1,0.05,0.01,0.005,0.001,0.0005,0.0001 across =0.2,0.3, under the same simulation setting in Section 4.4.3. The standard errors are far less than the mean proportion and hence omitted.
	 C4 Approximated tail probability of CAtr with =0.01 by generalized central limit theory (GCLT) and our proposed cross-entropy method (CE) evaluated at total number of studies n=2, 3, 4, 5, 10, 15, 20, 25 and 30.

	List of Figures
	2.1 Statistical power of Fisher, Stouffer, and 5 modified Fisher's methods at significance level =0.01 across varying frequencies of signals /K=0.1,0.2,…,0.9 and varying numbers of combined p-values K=10,20,40,80. The standard errors are negligible compared to the scale of the mean power (smaller than 0.1% of the power) and hence omitted. The results of Stouffer with power smaller than 0.25 are omitted. 
	2.2 Statistical power of FE, Fisher, and AFp at significance level =0.01 across varying frequencies of signals /K=0.05,0.1,0.2,…,0.9 and varying numbers of combined p-values K=10,20,40,80. The standard errors are negligible and hence omitted. 
	2.3 Statistical power of FE, FECS, and Pearson at significance level =0.01 across varying frequencies of signals /K=0.05,0.1,0.2,…,0.9 and varying numbers of combined p-values K=10,20,40,80. The standard errors are negligible and hence omitted. 
	2.4 Procedures of transcriptomic meta-analysis on AGEMAP dataset (two-sided design (Figure 2.4(a)) and one-sided design (Figure 2.4(b)), where H() denotes a chosen p-value combination method and p(j) denotes the corresponding p-value of H with input p-values. Here pjk is the two-sided p-value for j-th gene on k-th tissue, and Ljk and Rjk are the left-tailed and right-tailed p-values for j-th gene on k-th tissue, respectively.
	2.5 (a) Heatmaps of age-association measure Ejk of significant genes (q0.05) detected in the two-sided test design. Category I: genes detected by Fisher but not AFp; II: genes detected by both Fisher and AFp; III: genes detected by AFp but not Fisher. (b) Heatmap of pair-wise correlations between tissues based on the detected genes by FE (q0.05.) in (a).
	2.6 Heatmaps of age-association measure Ejk of genes detected by FECS or by FE (q<=0.05). Heatmap I(A) represents up-regulated genes detected only by FECS (38 genes); heatmap I(B) represents down-regulated genes detected only by FECS (53 genes); heatmap II(A) represents up-regulated genes detected both by FECS and FE (146 genes); heatmap II(B) represents down-regulated genes detected both by FECS and FE (161 genes); heatmap III represents genes detected only by FE (286 genes), respectively. 
	3.1 Simulations with =0.2. (A)-(C) represent mean power (significance threshold p<0.05) of seven p-value combination methods AFp, AFg, AFz, Higher Criticism (HC), minP, oTFhard and oTFsoft under different levels of signal strength =0.05, 0.1 and 0.2, across different levels of sparsity =0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85 and 0.9. The number of true signals s =n1- . A larger value of  leads to more sparse signals. 
	3.2 Robustness of AFg under different distributions: standard normal distribution (reference), log-normal distribution with =0 and =0.1, chi-squared distribution with degrees of freedom of 10, and Student's t distribution with degrees of freedom 5. We evaluate the empirical power of AFg under different distributions, various levels of signal strength =0.1 (dotted lines) and 0.2 (dashed lines), and different levels of sparsity of signals =0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85 and 0.9. We also evaluate the performance of type I error control of AFg under different distributions (=-r, solid lines). The significance threshold in this figure is p<0.05. 
	4.1 Comparison of transformations. We show six transformations of p-values, g(p), i.e., BC0.5, BC1 (HM), BC1.5, CA, Fisher, and Stouffer. The x-axis is -(p), and the y-axis shows (g(p)). 
	4.2 The mean log-scaled y() for Box-Cox transformations, inverse gamma and log-gamma across different significance levels . (A)-(F) represent the results of Box-Cox transformations with values of = 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5 for correlation level =0, 0.3, 0.6, 0.9, 0.99, and 1, respectively. (G) represents the results of the inverse gamma with shape parameter one and scale parameter values 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5, for correlation level =1. (H) represents the results of the log-gamma with rate parameter one and scale parameter values 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5, for correlation level =1. The x-axis is the negative logarithm of significance level  to base 10, where  is set to 10-2,10-3,10-4,10-5, and the red dash line is the reference line (y())=0 in all sub-figures. 
	4.3 Mahattan plots and number of significant p-values for CA, BC1(HM), and minP. The red dash lines are the cutoffs of the Bonferroni correction for =5%, and the blue dash lines are the cutoffs of the Benjamini-Hochberg correction for FDR = 5%. The significant regions (FDR = 5%) detected by HM and CA are the same, except for two regions, DDX58 (q = 0.0499 by CA and q = 0.0501 by HM) and POU2F3 (q = 0.0509 by CA and q = 0.0492 by HM). 
	 A1 Statistical power of Fisher, Stouffer, and 5 modified Fisher's methods at significance level =0.05 across varying numbers of true signals =1,2,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible compared to the scale of the mean power (smaller than 0.1% of the power) and hence omitted. The results of Stouffer and Fisher with a power smaller than 0.55 are omitted. 
	 A2 Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy (CA), and Stouffer at significance level =0.01 across varying proportions of signals /K=0.05, 0.1,0.2,…,0.9 and varying numbers of combined p-values K=10,20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.5 statistical power. The standard errors are negligible and hence omitted. 
	 A3 Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy (CA), and Stouffer at significance level =0.05 across varying numbers of signals =1,2,3,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted. 
	 A4 Statistical power of FE, Fisher, and AFp at significance level =0.05 across varying numbers of signals =1,2,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted. Dots smaller than 0.55 are also omitted. 
	 A5 Statistical power of Fisher, AFp, FE, and FE2 at significance level =0.01 across varying frequencies of signals /K=0.05,0.2,…,0.9 and varying numbers of combined p-values K=10,20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.5 statistical power. The standard errors are negligible and hence omitted. 
	 A6 Statistical power of Fisher, AFp, FE, and FE2 at significance level =0.05 across varying numbers of signals =1,2,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted. results of Fisher smaller than 0.55 are omitted.
	 A7 Statistical power of FE, FECS, and Pearson at significance level =0.05 across varying numbers of signals =1,2,…,6 and varying numbers of combined p-values K=20,40,80. The standard errors are negligible and hence omitted. 
	 A8 Statistical power of FECS, FECSCauchy, and Pearson at significance level =0.01 across varying frequencies of signals /K=0.05,0.1,0.2,…,0.9 and varying numbers of combined p-values K=10,20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.5 statistical power. The standard errors are negligible and hence omitted. 
	 A9 Statistical power of FECS, FECSCauchy, and Pearson at significance level =0.05 across varying numbers of signals =1,2,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted. 
	 A10 Distributions of numbers of p-values pjk0.05 of each gene j in gene Categories I, II, and III in Figure 2.5(a). 
	 A11 Distributions of quantities Ssign,j=k=116sign(age,jk)I{{jkL,jkR}} each gene j in Categories I(A), I(B), II(A), II(B), and III in Figure 2.6. 
	 A12 Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy (CA), and Stouffer at significance level =0.01 across varying proportions of signals /K=0.05, 0.1,0.2,…,0.9 and varying numbers of combined p-values K=10,20,40,80. For each proportion /K and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted. 
	 A13 Statistical power of Fisher, Stouffer, and 5 modified Fisher's methods at significance level =0.05 across varying numbers of true signals =1,2,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.5 statistical power. The standard errors are negligible compared to the scale of the mean power and hence omitted. 
	 A14 Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy (CA), and Stouffer at significance level =0.01 across varying proportions of signals /K=0.05, 0.1,0.2,…,0.9 and varying numbers of combined p-values K=10,20,40,80. For each /K and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted. 
	 A15 Statistical power of Fisher, AFs, AFp, AFz, oTFsoft, oTFhard, HC, minP, HM, BJ, Cauchy (CA), and Stouffer at significance level =0.05 across varying numbers of signals =1,2,3,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.5 statistical power. The standard errors are negligible and hence omitted. 
	 A16 Statistical power of FE, Fisher, and AFp at significance level =0.01 across varying proportions of signals /K=0.05,0.1…,0.9 and varying numbers of combined p-values K=10,20,40,80. For each /K and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted. 
	 A17 Statistical power of FE, Fisher, and AFp at significance level =0.05 across varying numbers of signals =1,2,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.5 statistical power. The standard errors are negligible and hence omitted. 
	 A18 Statistical power of FE, FECS, and Pearson at significance level =0.01 across varying proportions of signals /K=0.05,0.1,…,0.9 and varying numbers of combined p-values K=10,20,40,80. For each /K and K, we choose the smallest 0 such that the best performer has at least 0.9 statistical power. The standard errors are negligible and hence omitted. 
	 A19 Statistical power of FE, FECS, and Pearson at significance level =0.05 across varying numbers of signals =1,2,…,6 and varying numbers of combined p-values K=20,40,80. For each  and K, we choose the smallest 0 such that the best performer has at least 0.5 statistical power. The standard errors are negligible and hence omitted. 
	 B1 The signed 10-scaled magnitude of the smallest and largest terms in (A) in Proposition  B2 with n=20, 30, 40,50 and =4 and 5, and t=E(T()). Note the scale of the magnitude of the extreme terms is far greater than 1, while the summation of the terms in (A) falls into the range [0,1].
	 C1 All the sub-figures represent the mean logarithm of ratio 3P(U>t)P(T3,w(X)>t) (y()) across different significance levels  for correlation level =1 for 4 different methods, Cauchy, Truncated Cauchy, Inverse Gamma and log-Gamma distributions. We set the shape parameter of the inverse Gamma distribution and the rate parameter of log-Gamma distribution to be 1. We further set the scale parameter of inverse Gamma and shape parameter of log-Gamma distribution to be 0.75, 0.8, 0.9, 1, 1.1, 1.25, and 1.5. The x-axis is the negative logarithm of significance level  to base 10 where  is set to be 10-2,10-3,10-4,10-5. The red dash line is the reference line y=0.
	 C2 Jitter plots of p-values for SNPs in genes SLC29A9 (left) and PCS29A9 (right). 

	Preface
	1.0 Introduction
	1.1 Overview of P-Value Combination Methods
	1.2 Overview of High-Throughput Omics Data
	1.2.1 Genomics
	1.2.2 Transcriptomics

	1.3 Statistical Challenges for Analyzing High Throughput Omics Data Using P-Value Combination Methods
	1.3.1 Combining Independent and Relatively Frequent Signals in A Small Group of P-Values
	1.3.2 Combining Independent, Weak, and Sparse Signals in A Large Group of P-Values
	1.3.3 Combining Dependent, Weak, and Sparse Signals in A Large Group of P-Values

	1.4 Overview of this Dissertation

	2.0 On P-Value Combination of Independent and Non-Sparse Signals: Asymptotic Efficiency and Fisher Ensemble
	2.1 Introduction
	2.2 Asymptotic Efficiencies of Existing Methods
	2.2.1 Bahadur Relative Efficiency and Exact Slope
	2.2.2 Asymptotic Bahadur Optimality Property of P-Value Combination Methods

	2.3 Power Comparison in Finite-Sample Simulations
	2.4 Fisher Ensemble to Combine Fisher and AFp 
	2.4.1 Fisher Ensemble by Harmonic Mean Integration
	2.4.2 Asymptotic Efficiency of Fisher Ensemble
	2.4.3 Finite-Sample Power Comparison of Fisher Ensemble

	2.5 Detection of Signals with Concordant Directions
	2.5.1 Fisher Ensemble Focused on Concordant Signals (FECS)
	2.5.2 Finite-Sample Power Comparison of Fisher Ensemble for Concordant Signals

	2.6 Real Application to AGEMAP Data
	2.7 Conclusion and Discussion

	3.0 Adaptive Fisher’s Method using Weakly Geometric Grid for Combining P-Values
	3.1 Introduction
	3.2 The Adaptive Testing Procedure
	3.3 Theoretical Justification of T(s) and AFg
	3.4 Robustness Properties of T(s) and AFg using Studentization-Based P-Values
	3.5 Simulations
	3.5.1 Power Comparison
	3.5.2 Robustness of AFg in the Finite-Sample Cases

	3.6 Application
	3.7 Discussion

	4.0 Heavy-tailed Distribution for Combining Dependent P-Values with Asymptotic Robustness
	4.1 Introduction
	4.2 Connection between MinP, Harmonic Mean, Cauchy, and Fisher
	4.2.1 Using A Pareto Distribution to Connect Four Existing Methods

	4.3 Asymptotic Properties of Regularly Varying Methods for P-Value Combination
	4.3.1 Disbributions with Regularly Varying Tails
	4.3.2 Asymptotic Tail Probability Approximation and Robustness to Dependence
	4.3.3 Detection Boundary of Regularly Varying Methods

	4.4 Simulations
	4.4.1 Type-I Error Control
	4.4.2 Statistical Power
	4.4.2.1 Power Comparison with an Uncorrected Rejection Threshold from the Independence Assumption
	4.4.2.2 Power Comparison with a Corrected Rejection Threshold Considering the Dependence Structure

	4.4.3 Simulation for the Large Negative Penalty Issue in the Cauchy Method

	4.5 Application
	4.6 Discussion

	5.0 Future Directions
	Appendix A. Supplementary Materials for Chapter 2
	 A.1 Supplementary Theoretical Results
	 A.1.1 Asymptotic Efficiencies of P-Value Combination Methods
	 A.1.2 Type I Error Control of FE and FECS

	 A.2 Technical Arguments
	 A.2.1 Proofs of Results of Modified Fisher's Methods: Lemma 2.1 and Theorems 2.1-2.6
	 A.2.2 Proof of Theorem 2.7
	 A.2.3 Proofs of Theorems  A2- A4 and Proposition  A1

	 A.3 Supplementary Simulation Results
	 A.3.1 Type I Error Control of FE and FECS
	 A.3.2 Statistical Power Comparison for Modified Fisher Methods in the Case of Combining A Small Group of Strong Signals
	 A.3.3 Statistical Power Comparison for 12 Existing P-Value Combination Methods
	 A.3.4 Statistical Power Comparison for FE in the Case of Combining A Small Group of Strong Signals
	 A.3.5 Statistical Power Comparison for FE and FE2
	 A.3.6 Statistical Power Comparison for FECS in the Case of Combining A Small Group of Strong Signals
	 A.3.7 Numeric Examples where Harmonic Mean Outperforms Cauchy for Fisher Ensemble


	Appendix B. Supplementary Materials for Chapter 3
	 B.1 Technical Arguments
	 B.1.1 Proof of Theorem 3.1
	 B.1.2 Proof of Theorem 3.2
	 B.1.3 Proof of Theorem 3.3
	 B.1.4 Proof of Theorem 3.4
	 B.1.5 Proof of Theorem 3.5

	 B.2 Null Distribution of RTP Statistics
	 B.3 Fast Computation for AFg and RTP
	 B.3.1 The Efficient Sampling Method via Cross-Entropy
	 B.3.2 Algorithm for the Construction of the Reference Library of RTP


	Appendix C. for Chapter 4
	 C.1 Technical Arguments: Proof of Theorems
	 C.1.1 Proof of Theorem 4.1
	 C.1.2 Proof of Theorem 4.2
	 C.1.3 Proof of Theorem 4.3

	 C.2 Results Related to Truncated Cauchy Method (CAtr)
	 C.2.1 Truncated Cauchy: a Remedy for Large Negative Penalty Issue in Cauchy 
	 C.2.2 Proof of Proposition  C2
	 C.2.3 The Cross-Entropy Method (CE) for CAtr.
	 C.2.4 Choice of the Value of 
	 C.2.5 Performance Benchmark of GCLT and CE


	Bibliography

