
Title Page  

Solving Container Pre-Marshalling Problem using 

Monte-Carlo Tree Search and Deep Neural Network 
 

 

 

 

 

 

 

by 

 

Jianwei Liu 

 

B.S., University of California San Diego, 2019 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

 

Swanson School of Engineering in partial fulfillment 

  

of the requirements for the degree of 

 

Master of Science in Industrial Engineering 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2023  



 ii 

Committee Membership Page  

UNIVERSITY OF PITTSBURGH 

 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Jianwei Liu 

 

 

It was defended on 

 

April 12, 2023 

 

and approved by 

 

Jayant Rajgopal, Ph.D, Professor, Department of Industrial Engineering, University of Pittsburgh 

 

Taewoo Lee, Ph.D, Assistant Professor, Department of Industrial Engineering, University of 

Pittsburgh 

 

Thesis Advisor: Bo Zeng, Ph.D, Associate Professor, Department of Industrial Engineering, 

University of Pittsburgh 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Jianwei Liu 

 

2023 

 

  



 iv 

Abstract 

Solving Container Pre-Marshalling Problem using 

Monte-Carlo Tree Search and Deep Neural Network 
 

Jianwei Liu, M.S. 

University of Pittsburgh, 2023 

 

The container pre-marshaling problem (CPMP) is a significant challenge in container terminal 

operations, aiming to optimize the relocation of containers to improve efficiency. Despite 

extensive research on exact and heuristic methods for the container relocation problem (CRP) and 

CPMP, reinforcement learning (RL) remains underexplored in the literature. This thesis proposes 

a Monte-Carlo Tree Search (MCTS) method combined with the Lowest Priority First Heuristic 

(LPFH) to solve the CPMP efficiently. 

 

The MCTS method incorporates the LPFH heuristic to achieve consistent simulation results and 

minimize the number of movements needed for container relocation. Our approach achieves near 

state-of-the-art results in several instances with acceptable inference speed. Additionally, this 

thesis introduces a machine learning-based method to estimate the number of relocations required 

for a given CPMP configuration. We train a deep learning model with both convolutional neural 

network (CNN) and multi-layer perceptron (MLP) architectures on self-generated data, identifying 

important features to achieve over 90% classification accuracy in small instances. 

 

The proposed approach has the potential to provide more efficient and effective solutions to the 

CPMP than traditional optimization methods. Overall, this thesis contributes to the CPMP 

literature by introducing novel methods for solving the problem and providing valuable insights 

into the potential of machine learning and RL for solving complex optimization problems.  
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1.0 Introduction 

The global shipping industry has experienced significant growth in recent decades, with 

container throughput reaching 798 million twenty-foot equivalent units (TEU) in 2020, a 47.5% 

increase from 2010 (UNCTAD 2022). However, delays are inevitable as the number of containers 

continues to rise, with stacking-related issues being a major contributor. Intra-terminal operations, 

such as incorrect stacking, and inter-terminal transportation both contribute to delays and 

uncertainty, leading to increased safety stock and maintenance costs for companies. Furthermore, 

unnecessary container movements can increase fuel consumption by up to 40%, as noted by 

Świeboda and Zając (2016). Therefore, reducing delays and improving logistics efficiency is 

critical for both economic and environmental reasons. 

 

This thesis focuses on delays during the storing and retrieving process, with the container 

relocation problem (CRP) and the container pre-marshaling problem (CPMP) being two major 

issues in stacking. While there are numerous studies addressing these issues, this thesis proposes 

a novel solution to CPMP and a machine learning-based approach for estimating the number of 

required relocations. 

 

The CPMP is defined as a problem of sorting containers in advance to optimize their 

efficient transfer during busy periods while minimizing the number of relocations needed for 

container relocation. This thesis introduces a new Monte-Carlo Tree Search (MCTS) method that 

incorporates the Lowest Priority First Heuristic (LPFH) to achieve consistent simulation results 
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and minimize container movements. Furthermore, we propose a machine learning model that 

combines a convolutional neural network (CNN) and a deep neural network (DNN) to estimate 

the number of required relocations for a given CPMP configuration. Experimental results 

demonstrate over 90% classification accuracy in small instances, indicating the potential of our 

approach to improve logistics efficiency while reducing costs and environmental impact. 

 

Overall, this thesis contributes to the CPMP literature by proposing novel methods for 

solving the problem and providing insights into the potential of machine learning for solving 

complex optimization problems. The proposed approaches have the potential to significantly 

improve logistics efficiency, both for economic and environmental reasons.  

 

1.1 Container Pre-Marshalling Problem 

In summary, the container pre-marshaling problem (CPMP) addresses the issue of sorting 

containers in a yard before transferring them to ships or trucks to minimize the number of 

movements required for container relocation. The terminal usually use a rail-mounted gantry crane 

(RMGC) to move containers to other locations. The delays and uncertainty in container operations 

can lead to economic and environmental costs, making it crucial to improve logistics efficiency. 

The CPMP considers re-ordering containers in the yard based on their departure times to ensure 

there are no misoverlaid containers in the current configuration. To understand the problem, 

common terminology such as stack, tier, bay, configuration, and priority are defined. 
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Stack: Containers in the maritime terminals that are stacked one over another form a stack.  The 

crane operates across different stacks and can only move the top container of the stack.  

Tier: The number of slots in a stack is called tiers. Usually there is a height restriction for a stack, 

which can be defined as the maximum number of tiers. 

Bay: As shown in Fig. 1, a bay is one row of container stacks that has multiple tiers.  

Configuration: An arrangement of items in the storage area. 

Priority: A sequence of numbers that reflect the departure times of containers. The lower the 

number, the higher the priority, meaning the container will be retrieved before the next number. 

 

Figure 1 A illustration of containers with RMGC 

In the pre-marshalling problem, the focus is on sorting the containers in a single bay in a 

maritime terminal. The bay consists of a specific number of stacks, denoted as S, and a maximum 

number of tiers, denoted as T. We define priority (s, t) as the container located in stack s at tier t. 

The objective of the pre-marshalling problem is to eliminate all misoverlays in the bay, which 

means that each stack should be sorted in descending order from bottom to top, based on the 

priority of each container. A configuration is considered sorted if priority (s, t) is greater than or 
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equal to priority (s, t+1) for all 1 ≤ s ≤ S and 1 ≤ t < T. Some assumptions are made in advance 

which was presented in Hottung and Tierney (2016): 

1. The problem is restricted to a single bay. 

2. We can only move one container at a time from the top of one stack to the top of another 

stack. We have to make sure we don’t exceed the maximum height of the configuration. 

3. The priorities of containers are known in advance of solving the CPMP. 

 

Figure 2 Example of a initial configuration and its solved state 

1.2 Research Focus 

This thesis focuses on applying MCTS and DNN to solve CPMP. The CPMP has been 

proved to be NP-hard in Caserta, Schwarze, and Voß (2011). It is computationally very 

challenging, especially on large scale instances. Our goal is to design methods that can solve 

practical-scale problems efficiently. MCTS gives us the tool to utilize powerful simulation 

methods to assist tree search process. DNN helps us estimate the number of relocations directly in 

large scale problems. 

In Section 2, we will talk about the works related to CPMP, MCTS as well as machine 

learning applications in CRP and CPMP. In Section 3, we will introduce CPMP-MCTS, our MCTS 
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method to solve CPMP. In Section 4, we will demonstrate the DNN to estimate optimal solution. 

Finally, in Section 5, we will conclude and talk about the future works. 
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2.0 Related Works 

In this section, we first give an overview of existing methods for CPMP. Then we introduce 

the basic concepts of MCTS as well as the works that inspire us. Lastly, we discuss the use of 

machine learning in CRP and CPMP. 

2.1 Container Pre-Marshalling Problem 

The Container Pre-Marshalling Problem introduced by Lee and Chao in 2009 has received 

significant attention from researchers, leading to the development of various exact and heuristic 

methods. Exact approaches include the constraint programming model in Rendl and Prandtstetter 

(2013), which models all the slots with variables to avoid network formulation.  van Brink and van 

der Zwaan (2014) introduced the branch-and-price algorithm to improve performance by using 

sub-problems. Tierney et al. (2016) demonstrated an A*/IDA* technique, using lower bound to 

help calculating the number of misoverlaid containers. Tanaka and Tierney (2018) gave an 

iterative deepening branch-and-bound algorithm to archive better performance in larger instances. 

 

On the other hand, heuristic approaches focus on generating solutions quickly and are 

applicable to real-world problems, even when dealing with a large number of stacks and tiers. 

Caserta and Voß (2009) proposed the corridor method, which creates a "corridor" within the bay 

to limit the number of possible moves, and uses a local search procedure combined with predefined 
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rules. In Exp´osito-Izquierdo et al. (2012), the lowest priority first heuristic (LPFH) was introduced 

to consider containers with a low priority as targets, and move them first. LPFH outperformed the 

corridor method. Wang et al. (2015) proposed a target-guided approach within a beam search, 

fixing the items at chosen locations to avoid further movements. Hottung and Tierney (2016) used 

a biased random-key genetic algorithm (BRKGA) with a decoder to construct a solution. Notably 

BRKGA requires less than a minute for solution generation. Jovanovic et al. (2017) extended 

LPFH with a multistart strategy and a complex set of problem-specific rules. 

 

Overall, researchers have proposed various exact and heuristic methods for solving the 

CPMP, with heuristic approaches being more applicable to real-world problems. LPFH, in 

particular, has been extensively studied and extended with additional strategies, while the BRKGA 

and beam search approaches have shown significant improvements in solution generation. 

2.2 Monte-Carlo Tree Search 

MCTS was introduced by Coulom in 2006 by combining Monte-Carlo evaluation and tree 

search. The algorithm will return the solution in the allocated iterations. Each iteration consists of 

4 steps: 

1. Selection: the algorithm searches the portion of the tree that has already been saved in the 

memory. Given a node, it will select the best child of this node. 

2. Expansion: expansion adds one new child node to the tree. 

3. Simulation: simulation performs a random simulation of the problem, and give a score 

based on the policy used. This is the “Monte Carlo” part of the algorithm.  
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4. Backpropagation: backpropagation propagates the scores, back to all nodes along the path 

from the last visited node in the tree to the root.  

 

 

Figure 3 One iteration of MCTS process 

 

2.3 Machine Learning in CRP and CPMP 

In recent years, there has been a growing interest in applying deep learning and 

reinforcement learning techniques to solve combinatorial optimization problems. One such 

problem is container scheduling, where researchers have explored the use of machine learning 

algorithms to improve solution quality and efficiency. Hottung et al. (2020) proposed the deep 

learning heuristic tree search (DLTS), which uses a deep neural network to determine the search 

space's lower bound and prune it, resulting in high-quality heuristic solutions to the pre-marshaling 

problem.  
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Jiang et al. (2021) and Wei et al. (2021) used reinforcement learning methods to train 

instances with varying dimensions, proposing various heuristic rules to minimize the number of 

container relocations required. The experimental results indicated that their approach 

outperformed conventional optimization methods. Overall, these studies demonstrate the potential 

of deep learning and reinforcement learning techniques in improving the efficiency and quality of 

container scheduling and related combinatorial optimization problems. 
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3.0 CPMP-MCTS 

3.1 Methods 

3.1.1 MCTS in CPMP Setting 

Monte Carlo Tree Search is widely used in solving many board games. For CPMP, changes 

must be made to adapt into MCTS setting. The major differences between CPMP and board games 

like Go are as follows: First, there is only one player in CPMP, which is the crane that move the 

containers around. Then it is very difficult to define a perfect reward function that fits every 

scenario in CPMP. Finally, random policy used in most of MCTS can easily lead to an infinite 

loop of actions.  

Each node of the tree represents a configuration of containers. An action performed results 

in the tree to move to next level. Thus the children of a node represent all the possible 

configurations after performing actions. The reward we use is simply the number of relocations 

required to find a feasible solution. The node stores the least number of relocations and the 

corresponding action.  

3.1.2 The Four Phases 

Below we demonstrate the four phases in CPMP-MCTS. 

Selection Strategy: The selection strategy is responsible for choosing one of the children 

of a given node. It balances the tradeoff between exploitation and exploration, where exploitation 
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prioritizes the moves that have led to the best results so far, and exploration focuses on less 

promising moves that still need to be explored due to the uncertainty of their evaluation. In the 

Monte Carlo Tree Search (MCTS) algorithm, a child must be selected at each node starting from 

the root until a leaf node is reached.  

Expansion Strategy: When a leaf node is reached, the expansion strategy determines 

which nodes are stored in memory. Coulom et al. proposed expanding one child per simulation, 

where the expanded node corresponds to the first position encountered that was not present in the 

tree. This strategy was also utilized in our implementation. 

Simulation Strategy: Simulation helps us decide which node we should choose. To 

simulate the remainder of the sequences of actions starting from a leaf node, we use random moves 

at first until a solution is found. However, the random method can’t find a feasible solution in most 

cases. To get a meaningful simulation, we choose the lowest priority first heuristic (LPFH) as our 

simulation method. 

Back-Propagation Strategy: During the back-propagation phase, the simulation result at 

the leaf node is propagated backward to the root. Various back-propagation strategies have been 

proposed in the literature, but we achieved the best results by using the best score so far. 
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3.2 Computational Results 

Table 1 Comparison to other heuristic methods on CV dataset 

   Avg. Moves Avg. Time (s) 

Group S T Opt. LPFH BRKGA DLTS-

G1 

DLTS-

G123 

CPMP-

MCTS 

LPFH BRKGA DLTS-

G1 

DLTS-

G123 

CPMP-

MCTS 

CV  

3-5 

5 5 10.15 11.98 10.33 10.35 10.40 10.875 0.01 1.19 1.06 1.03 3.11 

CV  

4-5 

5 6 17.85 22.13 18.75 17.90 18.05 20.775 0.01 5.38 12.11 10.47 8.12 

CV  

5-5 

5 7 24.95 31.78 27.88 25.10 25.10 30.77 0.01 25.23 46.32 36.73 31.01 

CV  

3-7 

7 5 12.80 15.40 12.93 12.90 13.30 14.10 0.01 1.17 42.40 0.30 5.35 

CV  

4-7 

7 6 21.82 27.88 22.73 22.07 22.30 26.3 0.01 4.41 59.84 4.04 33.21 

CV  

5-7 

7 7 31.48 41.43 33.83 31.98 32.08 41.25 0.01 20.77 59.91 42.26 47.22 

 

Comparing to state-of-the-art heuristic algorithms BRKGA and DLTS, CPMP-MCTS 

stays behind by 0.5 moves to 9 moves. In terms of average runtime, CPMP-MCTS is generally 

faster than DLTS-G1 and slower than BRKGA. Compared to LPFH, CPMP-MCTS uses less 

moves in all the testing groups. 
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4.0 Estimate Optimal Solutions with DNN 

4.1 Methods 

Previous research by Ye et al. (2022) presented a preliminary study on using machine 

learning to predict the number of container relocations required for CPMP. We extend this work 

by building a custom machine learning model that maps extracted features to the number of 

required relocations. Our approach also involves feature selection to provide more informative 

data for the model to learn from. Additionally, we extend the problem's dimension from a 3x3 grid 

to a 7x10 grid to improve its adaptability to different scales. Overall, our proposed unified model 

is designed to improve the efficiency and effectiveness of CPMP in seaport container yards. 

 

 

Figure 4 Overview of estimation DNN 
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4.1.1 Feature Extraction 

The features are divided into two parts: local features and global features. The local features 

are configuration and valid space for each container. The global features contain the height, the 

number of empty slots, the blocking count and blocking degree of each stack. The total number of 

features is 180. The detailed explanation is as follow: 

1. Features 1 to 70: the container priority and location information.  The features start from 

the bottom of the first stack, and end with the highest tier 7. The rest of the stacks follow 

the same order until we finish stack 10. In this way we can preserve the location 

information of each slot. The priority of each slot will be extracted. If there is no 

container in the current slot, we put 0 instead. 

2. Feature 71 to 140: the valid space of configuration. Since we use 0 to represent the empty 

slot, we need another feature to represent the valid workspace. The containers can only be 

moved inside the valid space. We use 1 to represent valid and 0 for invalid. 

3. Feature 141 to 150: the current height of each stack. This group provides more spatial 

information for each stack. 

4. Feature 151 to 160: the number of empty slots of each stack. Combine with the previous 

group, the model has a better understanding of the configuration. 

5. Feature 161 to 170: the blocking count of each stack. Follow the description in Wei et al. 

(2021), we can calculate the blocking count of each stack.  

6. Feature 171 to 180: the blocking degree of each stack. Similar to blocking count, 

blocking degree puts the priority into consideration. 

The following pseudo code demonstrates how to calculate the blocking count and the 

blocking degree. We follow the illustration in Wei et al. (2021): 
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define blockingDegree, blockingCount = 0, 0 

// elements in list are priorities  

Define stack = initialStack  

while (stack.elementCount > 1)  

define m = stack.MaxPriority  

// define upper stack includes m  

define upperStack = stack[m.index, end]  

if (upperStack.elementCount > 1)  

for each (x in upperStack exclude m)  

blockingCount += 1  

blockingDegree += x - m  

stack = stack[0, m.index]  

return blockingCount, blockingDegree 

 

 
Table 2 Influencing Factors of Container Relocated Operation 

Serial 
number 

Features  Notations or calculations 

1-70 The container retrieval priority 

corresponding to each slot in the initial 

state 

 𝑃𝑖𝑗 = 𝑠𝑙𝑜𝑡(𝑠𝑖, 𝑡𝑗), 
(𝑖𝜖{1,2,… ,10}, 𝑗𝜖{1,2,… ,7}) 

71-140 The valid space in the initial state  𝑉𝑖𝑗 = 𝑉𝑎𝑙𝑖𝑑(𝑠𝑖, 𝑡𝑗), 
(𝑖𝜖{1,2,… ,10}, 𝑗𝜖{1,2,… ,7}) 

141-150 Height of each stack  𝐻𝑖 , 𝑖𝜖{1,2,… ,10} 
151-160 Number of empty slots per stack  𝐸𝑖 = 𝐻𝑚𝑎𝑥 − 𝐻𝑖 , 

(𝑖 ∈ {1,2,… ,10}) 
161-170 Number of BP containers per stack  𝐵𝑃𝑖 = 𝑐𝑜𝑢𝑛𝑡𝐵𝑃(𝑆𝑖), 

(𝑖 ∈ {1,2,… ,10}) 
171-180 Number of BD containers per stack  𝐵𝐷𝑖 = 𝑐𝑜𝑢𝑛𝑡𝐵𝐷(𝑆𝑖), 

(𝑖𝜖{1,2, … ,10}) 
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4.1.2 Network Structure 

In summary, both CNNs and MLPs are types of artificial neural networks used in deep 

learning. CNNs are commonly applied to analyze visual imagery due to their shared-weight 

architecture of convolution kernels, which provide translation-equivariant responses known as 

feature maps. However, CNNs are not always invariant to translation due to the downsampling 

operation applied to the input. In contrast, MLPs are function approximators that consist of 

multiple layers of perceptrons, where each neuron accepts weighted inputs and applies an 

activation function to produce an output that is sent to the next layer. In this work, CNNs are used 

to process local features with positional information, while MLPs are used to process global 

features. Combining the strengths of CNN and MLP, we can fully utilize both local features as 

well as global features.  
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Flatten layer

2D container configuration

Input_1

Feature concat

Output:Number of 

container relocations

Activity function：ReLU 

Convolution Block

Batch Normalization

Convolution: (2×3) kernel

Fully Connected layer

Batch Normalization

Activity function：ReLU 

Input_2

Manually extracting information

Fully Connected layer

Batch Normalization

Activity function：ReLU 

Fully Connected layer

Activity function：ReLU 

Softmax layer
Output: Probability distribution of 

all categories

 

Figure 5 Network structure 

  

 

We trained two separate models for the local and global features using CNN and MLP 

architectures, respectively. For the CNN model, we used a three-layer architecture with 32, 64, 

and 128 filters and a kernel size of 2x3. We applied a ReLU activation function after each 

convolutional layer. We used a fully connected layer with 32 units after the convolutional layers 

to map the extracted features to the target number of relocations. For the MLP model, we used a 

two-layer architecture with 64 and 32 units, respectively. We applied a ReLU activation function 

after each layer to produce the predicted number of relocations. 
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4.2 Computational Experiments 

4.2.1 Data Generation 

To train an effective neural network, a significant amount of data is required. We utilized 

three initial datasets, including CV, CV-like (generated by our custom data generator), and ZSS in 

Ye et al. (2022). To ensure realism, we only considered data with container configurations that 

adhered to certain constraints, such as a maximum of 10 stacks and 7 layers. Since the CV dataset 

did not have height restrictions, we imposed a height limit of H+2. Consequently, we only used 

data in the dataset with a maximum height of 5, which was also applied to the CV-like dataset we 

created. For the ZSS dataset, H∈{2,3}, S∈{3}, N∈{5,6,7}, indicating that the maximum height of 

each configuration in the dataset is the height limit of the corresponding configuration. 

Tanaka's Branch-and-bound algorithm was utilized to obtain the optimal solution as the 

label for our neural network prediction. This algorithm is an iterative deepening branch-and-bound 

search algorithm. During the process of obtaining the optimal solution for the initial configuration, 

we were also able to determine how to proceed at each step. For instance, after each relocation 

operation, we could obtain a new configuration that had an optimal solution one less than that of 

the original configuration. On the other hand, after each removal operation, the new configuration 

that was obtained had the same optimal solution as the original configuration. To ensure that the 

highest priority of the container remained at 1 in each new configuration that was obtained, we 

subtracted 1 from the priority of all containers in the new configuration after the removal operation. 

This data augmentation operation helped us to expand our dataset significantly for the container 

tipping prediction problem. 
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4.2.2 Performance Metrics 

We designed both regression and classification models for predicting container tipping, 

and in order to better evaluate the performance of our models, we used four different metrics for 

the regression model: R-Square, MSE (Mean Squared Error), RMSE (Root Mean Squared Error), 

and MAE (Mean Absolute Error); and five different metrics for the classification model: CCE 

(categorical cross-entropy), accuracy, F1-score, recall, and precision. 

Before introducing R-Square, we first introduce the regression sum of squares (SSR) and 

the residual sum of squares (SSE). SSR refers to the sum of squared differences between the 

predicted values and the mean value of the samples after fitting the data with the regression model, 

representing the degree of influence of the independent variable on the dependent variable. Its 

formula is as follows: 

𝑺𝑺𝑹 = ∑(�̂�𝒊 − �̄�)𝟐
𝒏

𝒊=𝟏

 

(4. 1) 

Where�̂�𝑖  is the predicted value of the sample𝑖,�̄� is the mean value of all samples. The larger 

the value of SSR, the greater the influence of the independent variable on the dependent variable, 

and the better the fitting ability of the model. 

 

SSE refers to the sum of squared differences between the predicted values and the true 

values in the regression model, representing the unexplained part of the model. Its formula is as 

follows: 

 

𝑺𝑺𝑬 =∑(𝒚𝒊 − �̂�𝒊)
𝟐

𝒏

𝒊=𝟏

 

(4. 2) 
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Where𝑦𝑖  is the true value of the sample𝑖. The smaller the value of SSE, the better the 

model's ability to fit the data. 

SST refers to the sum of squared differences between all observed values and the mean 

value of the sample. It can be regarded as a measure of the overall variability of the data population. 

Its formula is as follows: 

 

𝑺𝑺𝑻 = ∑(𝒚𝒊 − �̄�)𝟐
𝒏

𝒊=𝟏

 

(4. 3) 
The relationship between the above three is: 

 

𝑺𝑺𝑻 = 𝑺𝑺𝑹 + 𝑺𝑺𝑬 

(4. 4) 

𝑅2,also known as the coefficient of determination, is a metric used to evaluate the 

performance of a regression model. It represents the degree to which the model fits the data, and 

its formula is as follows: 

 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊 − �̂�𝒊)

𝟐𝒏
𝒊=𝟏

∑ (𝒚𝒊 − �̄�)𝟐𝒏
𝒊=𝟏

 

(4. 5) 
 

𝑹𝟐 = 𝟏 −
𝑺𝑺𝑬

𝑺𝑺𝑻
 

(4. 6) 
MSE, RMSE, and MAE are common metrics used to measure the performance of 

regression models. MSE represents the average of the squared differences between the predicted 

values and the true values. RMSE is the square root of the average of the squared differences 

between predicted and true values. Similar to MSE, a smaller RMSE indicates a better predictive 

performance of the model. Unlike MSE, RMSE is more interpretable as it has the same unit as the 

original data, whereas MSE is in square units. MAE represents the average of the absolute 

differences between predicted and true values. Unlike RMSE and MSE, MAE is not affected by 
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outliers. If the data contains outliers, MAE can better reflect the predictive performance of the 

model. The formulas for these metrics are shown below: 

 

𝑴𝑺𝑬 =
∑ (𝒚𝒊 − �̂�𝒊)

𝟐𝒏
𝒊=𝟏

𝒏
 

(4. 7) 
 

𝑹𝑴𝑺𝑬 = √
∑ (𝒚𝒊 − �̂�𝒊)𝟐
𝒏
𝒊=𝟏

𝒏
 

(4. 8) 
 

𝑴𝑨𝑬 =
∑ |𝒚𝒊 − �̂�𝒊|
𝒏
𝒊=𝟏

𝒏
 

(4. 9) 
CCE is a commonly used loss function for multi-class classification problems, usually used 

to evaluate the difference between the model's predicted results and the actual results. In multi-

class classification problems, if each category is treated as a binary classification problem, each 

sample has multiple binary classification problems. For a sample, its true label can be represented 

as a one-hot encoding vector𝑦, where the element𝑖 is 1, indicating that the sample belongs to the 

𝑖th category, and the rest of the elements are 0. The model's predicted result can be represented as 

a probability distribution vector ̂ , where the 𝑖th element represents the probability that the 

model predicts the sample belongs to the𝑖 th category. Its calculation formula is as follows: 

 

𝑪𝑪𝑬 = −∑𝒚𝒊

𝑪

𝒊=𝟏

𝒍𝒐𝒈( �̂�𝒊) 

(4. 10)  

where𝐶 is the number of categories, 𝑦𝑖represents the element of the true label vector of the 

sample𝑖, and�̂�𝑖 represents the element of the model's predicted results vector. The smaller the CCE 

value, the better the model's prediction performance. Because the calculation formula of cross-

entropy includes the logarithmic function of the predicted value, when the predicted value deviates 
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further from the true value, its contribution to the loss function becomes greater, thereby reflecting 

the prediction effect of the model more sensitively. 

Accuracy represents the proportion of correctly classified samples to the total number of 

samples. Recall represents the proportion of samples correctly classified as positive examples to 

the actual number of positive samples. Precision represents the proportion of samples correctly 

classified as positive examples to the number of samples predicted as positive examples. F1-score 

is the harmonic mean of Precision and Recall. The calculation formulas are as follows: 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵
 

(4. 11) 
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑭𝑷 + 𝑻𝑷
 

(4. 12) 
 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑭𝑵 + 𝑻𝑷
 

(4. 13) 
 

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

(4. 14) 

𝑇𝑃  is the True Positive, 𝑇𝑁 is the True Negative, 𝐹𝑃 is the False Positive, 𝐹𝑁 is the False 

Negative. We use the Weighted-average method for all of the four metrics mentioned above, which 

means that different weights are assigned to different classes (the weights are determined based on 

the true distribution proportion of each class), and each class is multiplied by its weight before 

being summed up. 



 23 

4.2.3 Performance 

In this section, we separately validated the performance of regression model and 

classification model on CPMP problems. 

 

4.2.3.1 Regression Model 

For training, we used our own generated CV dataset to obtain a total of 338,538 samples 

after data augmentation. Then, we took 270,609 examples out of them in an 8:2 ratio for model 

training and used the remaining data for validation. The original CV data that was not augmented 

were used as test data to verify the generalization of the model. Figure 6 shows the change in Loss 

and R-Square during model training and validation. Table 1 shows the performance of our model 

tested on different datasets. The R-Square tested on our generated dataset exceeds 0.99, and the 

MAE is only 0.2240, which means that the average error between the predicted and actual 

relocation counts is within 0.23. The R-Square tested on the CV dataset also reaches 0.97. Based 

on the above results, we believe that our model can effectively capture the effective features of 

different configurations and predict reliable relocation counts for different configurations. 

Meanwhile, its generalization ability is also good. 
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Figure 6 Loss and Accuracy Curve for Regression Model 

 

 
Table 3 Performance Evaluation of the Regression Model on the Different Test Sets 

problem category Datasets R-Square MSE RMSE MAE 

 

CPMP 

CV-like 0.9933 0.1239 0.2719 0.2240 

CV 0.9744 0.7641 1.0382 1.0779 

 

4.2.3.2 Classification Model 

In this module, we conducted the following experiments: First, we trained and tested our 

model using the dataset we generated, and tested the model on the CV dataset. Then we trained 

and tested our model using the ZSS dataset to compare our model and features with those of the 
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model and features in Ye et al. (2022). We also trained and tested the ZSS model using our feature 

dataset. 

 

Figure 7 Loss and Accuracy Curve for Classification Model 

 

In this module, we conducted the following experiments: 1. Trained and tested our MLP-

CNN model using the same dataset used for training the regression model, and tested the model 

on the CV and ZSS datasets. 2. Trained and tested our model using the ZSS dataset to compare 

our model and the features used with those of the ZSS model and features. We also tested the ZSS 

model on our feature dataset. 
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We first trained and tested our MLP-CNN model on the same dataset used for training the 

regression model. The loss and accuracy curves during training are shown in Figure 7. We can see 

that our model achieved an accuracy of 92.49% on this dataset during testing. To validate the 

generalization ability of our model, we tested the trained model on the CV dataset. In practical 

applications, we sometimes need a highly accurate prediction of the container tipping count, while 

at other times we only need a rough estimate. Therefore, our model calculates the Top-1, Top-2, 

and Top-3 accuracy rates, and these three standards can help us better evaluate the performance of 

the model. Table 3 shows the test results of the trained model on the three datasets. The Top-1 

accuracy rate is not very high on the CV dataset, and we believe this is because the number of 

larger configurations in our dataset is relatively small, so the network cannot effectively learn their 

features. However, the Top-3 accuracy rate can reach more than 91%. 

 

 
Table 4 Performance Evaluation of the Classification Model on the Different Test Sets 

problem category Datasets Top-1 Accuracy Top-2 Accuracy Top-3 Accuracy 

 
CPMP 

CV-like 92.49% 96.84% 99.50% 

CV 58.80% 80.70% 91.34% 
 

Table 5 shows the test results of different models using different input features. MLP-CNN 

is the model we proposed, and RF, ET, SVM, and LR are the models mentioned in Ye et al. (2022). 

In the "Features" column, "New" represents the input features of our proposed model, which are 

the features mentioned in Table 1, and "Old" represents the input features used Ye et al. (2022). 

Since we did not obtain the specific parameter settings of the models in Ye et al. (2022), we 

improved and optimized these four models, and their performance using Old features was 

significantly improved compared to the data provided in Ye et al. (2022). The best accuracy 

achieved by their model for solving the UCRP problem was only 64%. Additionally, the models 
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using New features obtained slightly better performance compared to those using Old features. We 

believe this is because the features we used removed some information that could not accurately 

represent the unique characteristics of the configuration, while the new features can not only 

represent the unique information of different configurations but also have an implicit relationship 

with the relocation times. Among them, the SVM model had the highest accuracy, reaching 

88.32%, with F1-score, precision, and recall reaching 88%. For our MLP-CNN model, due to the 

limitation of the input format of the model, that is, the container configuration is input as matrix 

data, we only tested the effect of using New Features, and its accuracy was significantly improved, 

reaching 91%, and F1-score, precision, and recall also showed significant improvement. We 

believe that the reason for such a large improvement is that the CNN module in our model can 

extract the spatial implicit information of the two-dimensional container configuration well, while 

other models flatten the two-dimensional container configuration into one-dimensional 

information, which cannot extract effective spatial information. 

 

Table 5 Performance Evaluation of Different Models and Features on ZSS Sets 

problem category Models Features ACC F1 Precision Recall 

 
 
 
 
 
Unrestricted CRP 

MLP-
CNN(CPMP) 

New 0.9124 0.91 0.91 0.91 

RF New 0.8658 0.87 0.87 0.87 

Old 0.8555 0.86 0.86 0.86 

ET New 0.8627 0.86 0.86 0.86 

Old 0.8596 0.86 0.86 0.86 

SVM New 0.8832 0.88 0.88 0.88 

Old 0.8730 0.87 0.87 0.87 

LR New 0.7275 0.72 0.72 0.73 

Old 0.5758 0.57 0.57 0.58 
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5.0 Conclusion and Future Research 

In this thesis we presented CPMP-MCTS, a monte-carlo tree search method to solve 

container pre-marshalling problem. To our best knowledge, CPMP-MCTS is the first MCTS 

method ever applied in CPMP. Though the performance is slightly worse than state-of-the-art 

DLTS, CPMP-MCTS takes less time to find a solution. Moreover, CPMP-MCTS as a machine 

learning based method does not re quire training network, unlike DLTS. We also introduced MLP-

CNN, a combined deep neural network to estimate the number of moves to find optimal solutions. 

Estimation of relocations helps us understand the potential workload without going through a 

sequence of actions. It can also serve as a tool to develop new algorithms. Compared to the model 

in Ye et al., our model achieves better performance in term of classification accuracy.  

In the future, we would like to keep improving CPMP-MCTS. Since LPFH works well 

with MCTS, one obvious path is to explore other heuristic methods combined with MCTS. 

Another path is to substitute the heuristic with our MLP-CNN network. Because all we need for 

simulation is the number of relocations, MLP-CNN has the potential to further boost CPMP-

MCTS without spending time finding all the optimal actions. Lastly we can apply CPMP-MCTS 

to other routing problems. 
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