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Deep Learning for Investigating Causal Effects with High-Dimensional Data: Analytic Tools
and Applications to Educational Interventions

Alberto Guzman-Alvarez, PhD

University of Pittsburgh, 2023

Recent developments in machine learning have the potential to revolutionize quantitative education
research. However, realizing this potential requires bridging the worlds of educational research and computer
science. In my dissertation, I merged advances in deep learning and causal inference to enable researchers

to assess program impacts using quasi-experimental methods with high-dimensional data.

My first dissertation paper proposes a new analytical procedure that incorporates deep neural networks
to estimate propensity scores, which flexibly accommodate high-dimensional data and complex relationships
between treatment selection and observable characteristics using propensity score weighting. In my analysis,
I find that while logistic regression leads to low bias and small standard errors in the estimated average
treatment effect in a low-dimensional data setting, machine learning approaches, particularly my deep neural

network approach and bagged-CART, perform better in the high-dimensional settings.

In addition to the methodological contributions, my dissertation makes substantive contributions
to the applied literature. In my second dissertation study, I evaluate a large-scale A.I. chatbot college
access intervention that offered critical supports to historically and economically marginalized high school
students to ease their transition into college during the COVID-19 pandemic. The study sheds light on the

intervention’s effectiveness and its potential for improving educational outcomes during the pandemic.

Overall, this dissertation advances the field by demonstrating the potential of machine learning and
causal inference methods to advance quantitative education research. It provides a new approach for esti-
mating propensity scores that can be used in high-dimensional settings, thereby improving the accuracy and
reliability of impact assessments. The findings from the evaluation of the college access intervention offer
important insights into how such programs can support students during challenging times and improve their

educational outcomes, particularly for those who face systemic barriers.
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1.0 Introduction

Over the last two decades, causal inference has played a central role in education research by providing
tools and analytic strategies for generating evidence on the effectiveness of educational interventions and
policies. The demand for rigorous evaluations by policymakers and funding agencies has driven this shift
(Murnane & Willett, 2010; Rosenbaum, 2010), which has also seen an increase in sophisticated machine-
learning approaches and access to high-dimensional administrative data (Einav & Levin, 2014; Song &
Coleman, 2020). These advances have created a need to develop analytic techniques that can effectively
handle the complexities of high-dimensional data, which is especially important for social science researchers
that have access to observational data containing hundreds of covariates of student characteristics and are

using causal inference methods to evaluate the effectiveness of educational interventions.

However, as more data on students become available, existing causal inference methods, many of which
rely on parametric models, face challenges when applied to high-dimensional data, such as overfitting and
variable selection (Collier et al., 2021; Hill et al., 2011; Keller et al., 2015; Song & Coleman, 2020). Overfitting
occurs when a model is fit to noise rather than the actual relationship between covariates, resulting in
inaccurate coefficient estimates (Kuhn et al., 2013). Variable selection is also challenging, given that it is
hard to determine the most important variables in a large dataset, resulting in biased estimates (Buhlmann
& Geer, 2011). Additionally, processing high-dimensional data requires significant computing power, making
it challenging to fit models and perform analyses efficiently (Efron, 2014; Hill et al., 2011; Reardon & Stuart,

2019).

Deep neural networks (DNN5s) are artificial intelligence algorithms inspired by the human brain’s neural
architecture; they represent a potential solution to the above challenges, thanks to advances in computing
and software (Farrell et al., 2021; LeCun et al., 2015; Pang et al., 2019). DNNs are widely used in various
industries for complex prediction and classification tasks and have proven effective in modeling complex
high-dimensional data. However, there has been little application of DNNs to causal inference, particularly

in social science research.



Randomized Control Trials (RCTs) have been the traditional approach to address questions of causal-
ity. In RCTs, students are randomly assigned to either a treatment or control group (Rosenbaum, 2010).
The randomization process ensures that, on average, both groups are balanced in terms of both observable
and unobservable characteristics, ruling out the possibility that any intervention impact is due to differences
in group composition (Rosenbaum, 2010). However, conducting RCTs may not always be feasible for ethical,
financial, or practical reasons. In such cases, researchers must rely on observational or non-experimental
studies in which students either self-select or are placed in an intervention. To estimate unbiased treat-
ment effects using observational data, researchers use quasi-experimental methods to balance observable

characteristics between treatment groups.

Propensity score analysis is the most widely used quasi-experimental method in education research
that balances observed characteristics between treated and untreated students by conditioning on what
Rosenbaum and Rubin call a propensity score (Rosenbaum, 1987; Rosenbaum & Rubin, 1981, 1984). The
propensity score represents the probability that a student would have been exposed to treatment, conditional

on observable student characteristics (Rosenbaum, 1987; Rosenbaum & Rubin, 1981, 1984).

However, certain strict assumptions must be met to estimate unbiased treatment effects correctly

using propensity score analysis. For example, the propensity score model must:
(1) Capture all the covariates related to the selection into treatment (Rosenbaum, 2010).

(2) Correctly model the association between the student’s characteristics and treatment selection, meaning

that all proper interactions and non-linear terms should be specified (Rosenbaum, 2010).

The literature suggests a “kitchen sink” approach for variable selection to meet the first condition
best since penalties are high if a potential confounder is not included in the propensity score model (Karim
et al., 2018; Webster-Clark et al., 2021). For the second condition, the literature suggests iterating through
various model specifications. Each iteration adds interactions or non-linear terms until a balance is achieved
among the observed characteristics between treated and untreated students (Rosenbaum, 2010). If these
assumptions are unmet, the consequences are steep, leading to biased treatment effect estimates (Rosenbaum,

1987; Rosenbaum & Rubin, 1981, 1984).



The literature provides few methods for the critical step of estimating the propensity score in a
high-dimensional setting (Wyss et al., 2018). The available research base suggests that the most widely
used models for estimating the propensity score in education, logistic regression models, lead to biased
treatment effect estimates when incorrectly specified (Lee et al., 2010; Lee, 2023; Lee & Little, 2017; Stuart,
2010). When modeling high-dimensional data, logistic models tend to overfit the data or cause issues with
perfect separation, such that the logistic regression returns fitted probabilities that are either 0 or 1 (Hill
et al., 2011). Therefore, an open question is whether DNNs represent a viable and worthy alternative for

estimating propensity scores.

DNNs have already been shown to outperform logistic models and machine learning algorithms in
simulation studies outside of propensity score analyses (Farrell et al., 2021; LeCun et al., 2015; Pang et al.,
2019). DNNs represent an essential tool for researchers in estimating the correct propensity score model, in
general, and mainly when dealing with large datasets that include hundreds of variables on students and
when those variables have complex associations. Therefore, the fundamental question that motivates my

dissertation is:

How can we improve propensity score estimation in large observational datasets with modern

DNN techniques?

My dissertation includes two studies: a methodological and a substantive application. In my first study,
I developed and assessed a DNN-based approach for propensity score estimation against the traditional
logistic model and other machine learning methods with high-dimensional data, using propensity score
weighting. In my second study, I use propensity score matching to evaluate a large-scale text message
campaign focused on helping students navigate college-going tasks during the COVID-19 pandemic. I did
not use my DNN-based approach to evaluate this intervention for two reasons: (1) This evaluation is a rare
case where the treatment assignment mechanism is known; specifically, students in the intervention had to
be first-generation and qualified for a fee waiver. (2) Although we had access to a rich set of covariates
after data cleaning, we only deemed 22 covariates appropriate for estimating the propensity score, negating

the use of the DNN-based approach. This raises the important point that DNN-based approaches are not



necessarily needed in every application. Therefore, in my first paper, I aim to inform questions regarding
the conditions under which DNN methods outperform more traditional approaches. What follows is a brief

overview of my dissertation papers.

Paper 1: Evaluating modern propensity score estimation methods with high-dimensional

data

Estimating the propensity score is a crucial step in propensity score analysis. Incorrect specifications
of the propensity score model can result in biased treatment effect estimates (Murnane & Willett, 2010;
Rosenbaum, 2010). Therefore, in this simulation study, I introduce DNNs into the field of education research
and show that their unique properties, such as flexibility and lax model assumptions, are suitable and

appropriate for propensity score estimation, particularly in the context of high-dimensional data.

In my first study, I assess the performance of the traditional logistic model and other machine learning
methods with high-dimensional data using propensity score weighting. In addition, I overcome the limitations
of existing methods by proposing a novel DNN-based approach to the estimation of propensity scores and
illustrating a novel framework for generating multi-type, correlated high-dimensional data replicating the

high-dimensional administrative data that is becoming available to education researchers.

Paper 2: When in-person support is not possible, can virtual outreach help? Evaluating
the impact of an artificially intelligent conversational chatbot to promote college enrollment

during the COVID-19 pandemic

The pandemic increased uncertainty for the class of 2020 in what ordinarily would be their timely
transition to college. In response to this challenge, the Common Application (Common App), in partnership
with Mainstay and the College Advising Corps (CAC), acted quickly to provide students with proactive out-
reach and guidance about college-going tasks via an innovative large-scale texting campaign. This outreach
specifically targeted US high school students who were the first in their families to go to college and had low
family income. For up to 38 weeks, a Mainstay AI chatbot named Oli sent scripted messages to students on
various topics related to the college search, application, and matriculation processes. To better target the

information, Oli solicited information directly from students about the types of resources they needed and



pressing questions they had. Student questions that Oli could not answer were forwarded to CAC advisers,

who would follow up directly with individual students.

Using a propensity score matching approach, I investigate whether college application rates and enroll-
ment rates were higher among students targeted for this chatbot outreach compared to their observationally
similar peers who were not. In addition, I examine treatment heterogeneity based on students’ application

behavior, racial/ethnic identity, and the level of chatbot engagement.



2.0 Paper 1: Evaluating Modern Propensity Score Estimation Methods with

High-Dimensional Data

2.1 Introduction

Traditionally, questions of causality have been addressed through RCTs, in which individuals are
randomly assigned to either a treatment group that receives an intervention or a control group (Murnane &
Willett, 2010; Rosenbaum, 2010). Randomization ensures that, on average, both groups are balanced on all
observable and unobservable characteristics, eliminating the possibility that an intervention’s effect is due
to differences in group characteristics (Rosenbaum, 2010). However, ethical, financial, or practical barriers
can prevent a researcher from conducting a randomized experiment in education and broader social science
research. Instead, researchers must rely on non-experimental or observational studies in which students

self-select or are placed in an intervention without randomization.

Observational studies complicate causal inference because, in the absence of randomization, an imbal-
ance in the distribution of student characteristics (i.e., covariates) between treated and untreated students
could lead us to incorrectly attribute a change in the outcome to the intervention or policy, as opposed to
differences in group composition (Rosenbaum, 2010). A vast body of methodological literature has centered
on developing quasi-experimental methods that attempt to address the internal validity issues associated
with observational data by balancing the observed characteristics of those who received treatment and those
who did not. One popular approach is propensity score analysis (Lee et al., 2010; Lee, 2023; Lee & Little,

2017; Stuart, 2010).

Propensity score analysis is a widely used quasi-experimental method in education research (Fan &
Nowell, 2011; Stuart, 2010; Stuart, 2023); it aims to balance observed characteristics between treated and
untreated students, similar to how randomization balances observable characteristics between treatment
and control groups. The propensity score represents the probability that a student would have received

treatment based on their observed covariates (Rosenbaum, 1987; Rosenbaum & Rubin, 1981, 1984). There



are several ways to use propensity scores to balance student covariates, including matching, in which treated
and untreated students with similar propensity scores are paired to form matched sets; weighting, in which
treatment groups are re-weighted so that observed covariates are balanced between groups, and stratification,
in which the propensity score is used to group students into unique strata with similar scores, to balance

observed covariates within each stratum (Pan & Bai, 2018).

However, certain strict assumptions must be met to estimate unbiased treatment effects correctly

using propensity score analysis. For example, the propensity score model must:
(1) Capture all the covariates related to selection into treatment (Rosenbaum, 2010).

(2) Correctly model the association between the student’s characteristics and treatment selection, meaning

that all proper interactions and non-linear terms should be specified (Rosenbaum, 2010).

The literature suggests a “kitchen sink” approach for variable selection to have the best chance of meet-
ing the first condition since the penalties are high if a potential confounder is not included in the propensity
score model (Karim et al., 2018; Webster-Clark et al., 2021). To account for unmeasured confounders, sen-
sitivity analysis has been proposed to understand how excluding such confounders could introduce bias into
the treatment effect estimation (L. Li et al.; 2011). The literature suggests iterating through various model
specifications to meet the second condition. Each iteration adds interactions or non-linear terms until a bal-
ance is achieved among the observed characteristics between treated and untreated students (Stuart, 2010).

If these assumptions are not met, it will lead to biased treatment effect estimates (Rosenbaum, 2010).

At first glance, high-dimensional data (i.e., big data) should be an asset to propensity score analysis,
as conventional practices stress the importance of including all available covariates in the propensity score
model to increase the chances of capturing all relevant confounders. Nevertheless, this is not the case. The
performance of the traditional logistic model for estimating propensity scores tends to decrease as more

variables are included in the estimation step (Hill et al., 2011).

When modeling high-dimensional data, logistic regression may overfit the data or experience issues
with perfect separation, resulting in fitted probabilities that are either 0 or 1 (Hill et al., 2011). This

rigidity can lead to propensity scores with little to no variability. Additionally, as the number of covariates



available to estimate the propensity score increases, it becomes increasingly challenging to iteratively model

all appropriate interactions and non-linearities using a logistic model (Dorie et al., 2019; Hill et al., 2011).

With the rapid advancement of sophisticated machine learning algorithms, there are growing opportu-
nities to develop and apply new methods for estimating propensity scores, particularly with high-dimensional
data (Herndndez-Blanco et al., 2019). These machine learning algorithms offer an automatic, data-driven
way to capture non-linearities and non-additivity in the propensity score estimation model, potentially lead-
ing to a more balanced covariate distribution without manual iteration. Previous propensity score simulation
research has focused on low-dimensional datasets (Cannas & Arpino, 2019; Lee et al., 2010; McCaflrey et al.,
2004; Setoguchi et al., 2008; Stuart, 2010). To date, limited research has evaluated the performance of these
machine-learning methods when applied to high-dimensional data, particularly considering complexities in

both the propensity and outcome model.

Additionally, recent advances in computing and software have generated a novel machine-learning
algorithm architectures that could be used to estimate propensity scores, DNNs (Hernandez-Blanco et al.,
2019; LeCun et al., 2015; Pang et al., 2019). DNNs are artificial intelligence algorithms modeled after the
architecture of the human brain (LeCun et al., 2015; Pang et al., 2019); they are widely used across various
industries for complex prediction and classification tasks and effectively model complex high-dimensional
data. The flexibility of DNNs enables them to capture complex interactions and non-linearities and perform
automatic variable selection (Hernandez-Blanco et al., 2019; LeCun et al., 2015; Pang et al., 2019). However,

there has been limited application of DNNs to causal inference, particularly in social science research.

In this study, I compare the performance of the traditional logistic regression to various machine
learning methods with high-dimensional data using propensity score weighting. In addition, I overcome
the limitations of existing methods by proposing a novel DNN-based approach to the estimation of propen-
sity scores and illustrating a novel framework for generating multi-type, correlated high-dimensional data

replicating the high-dimensional administrative data that is becoming available to education researchers.

The remainder of this document is structured as follows: First, I will review the relevant literature

for this study. Then, I will describe my simulation approach and present my results. Finally, I will conclude

10



with a discussion section that focuses on the contributions of my study.
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2.2 Literature Review

In this section, I will review the literature on causal inference and propensity score analysis, focusing
specifically on machine-learning approaches for estimating propensity scores. Additionally, I will draw from
the literature on neural network approaches, including deep neural networks, to motivate the development

of my DNN-based method for estimating propensity scores.

2.2.1 Neyman—Holland—Rubin Model for Causal Inference

The Neyman—Holland—Rubin model, also known as the Rubin causal model, forms the basis of my
approach to causal inference (Holland, 1986; Neyman, 1923; Rubin, 1976, 2005). A core tenet of the
Rubin causal model states that a treatment effect is the difference between two potential outcomes for an
individual (Rubin, 2005). Consider a dichotomous treatment variable (Z), where Z, = 1 represents the ith
student being in the treatment group—such as a college access program—and Z, = 0 represents the student
not being in the treatment group. Let Y, be a potential outcome for student ¢ depending on treatment
assignment Z, such that an individual student has two potential outcomes. Y}; is the potential outcome had
student ¢ participated in the college access program, and Y is the potential outcome had that same student
not participated. Note, the potential outcomes framework is based on the stable unit value assumption
(SUTVA), which states there is only one version of the treatment condition and that the potential outcomes
of an individual are not influenced by the treatment assignment of any other individual (Rosenbaum, 2010).
Therefore, the treatment effect of the program for student ¢ would be the difference in their two potential

outcomes:

However, in the real world, we do not simultaneously observe both potential outcomes for the same
student. We can only observe student i’s potential outcomes in the college access program if they participated;
this is why the fundamental problem of causal inference is a missing data problem (Holland, 1986). Although

we cannot directly observe these potential outcomes, under certain assumptions, we can estimate the average
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treatment effect (ATE) as the population average of all individual treatment effects, defined as:

ATE = E(Y;; —Yy) = E(Y;) — E(Yy) (2.2)

where E(Y;) is the expected value of all students in the treatment group and E(Y},) is the expected
value of all students in the control group. In the context of a true experiment in which students are
randomly assigned to treatment conditions, we can straightforwardly estimate the ATE since, with a large
enough sample size, both treated and control students will be balanced on all observable and unobservable

characteristics. A randomized experiment ensures that Y; and Y|, are independent of treatment assignment

(Z), and therefore, the treatment effect can be regarded as causal (Rosenbaum, 2010).

In addition, we may also be interested in estimating the ATE among those who received the treatment.
In this case, we may be interested in the average treatment effect on the treated (ATT) (Rosenbaum, 2010),

which is defined as:

ATT = (Y}, —YjlZ; =1) = E(Yy[Z; = 1) —E(Yj|Z; = 1) (2.3)

2.2.2 Observational Studies

In behavioral and social science research, conducting a randomized experiment may not always be
possible due to ethical, financial, or practical limitations (Bai, 2011; Pan & Bai, 2018). Such limitations
lead researchers to rely on non-experimental or observational data, where students either self-select or are
assigned to an intervention without randomization. This reliance creates a challenge for causal inference; an
imbalance in the distribution of student characteristics (i.e., covariates) between the treated and untreated
students could lead to incorrect attributions of changes in the outcome to the intervention rather than

differences in group composition (Austin, 2011).

For example, consider our earlier example of the college access program. The underlying treatment

assignment would be unknown if students were not randomized into treatment or control groups but instead
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self-selected into the program. It could be that students who self-select into the program are generally more
interested in going to college than those who did not sign up. Given this imbalance in college interest,
we may incorrectly attribute higher rates of college going to the treatment instead of differences in college
interest between treated and untreated students. In other words, without randomization, observational
studies cannot ensure that a student’s outcome is independent of treatment assignment (Z) (Rosenbaum,

2010).

In order to overcome the challenges posed by observational data, various statistical methods have been
developed to estimate unbiased treatment effects. These methods include instrumental variable approaches,
regression discontinuity, synthetic control, and propensity score analysis (Rosenbaum, 2010). For this disser-
tation, I focus on propensity score analysis, a quasi-experimental method that attempts to balance observed

group differences using a balancing score derived from student-level covariates.
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2.2.3 Propensity Scores

Rosenbaum and Rubin first introduced the concept of propensity scores to enhance the accuracy of
capturing unbiased treatment effects in observational studies (Rosenbaum, 1987; Rosenbaum & Rubin, 1981,
1984). Propensity score analysis has become one of social and behavioral researchers’ most widely used

quasi-experimental methods, particularly in applied educational research (Lee et al., 2010; Stuart, 2010).

Rosenbaum and Rubin define a propensity score, e(z), as the probability of assignment to treatment

conditional on observed pre-treatment covariates, defined as:

e(z) = Pr(Z = 1|X) (2.4)

Propensity scores are typically estimated as predicted probabilities from a logistic regression model.
The binary outcome variable indicates whether a student received treatment and is being predicted based on
individual student characteristics (X). The estimated propensity scores range from 0 to 1, with values closer
to 1 indicating that an individual is more likely to be assigned to treatment. According to Rosenbaum and
Rubin, if the propensity scores are balanced between the treatment and control groups, the distribution of
observed covariates between the two groups will also be balanced (Rosenbaum, 1987; Rosenbaum & Rubin,
1981, 1984). This prediction means that, in theory, two students with similar propensity scores should have

a similar distribution of observed covariates.

Researchers can adjust for the imbalance in the joint covariate distribution between the treatment
and control groups by conditioning on the propensity score using various techniques, including matching,
stratification, and weighting. Matching involves pairing treated students with control students based on the
proximity of their propensity scores, while stratification involves grouping students into unique strata based
on their propensity scores (Bai, 2011). Weighting involves reweighing students in the sample so that the
distribution of propensity scores in the control group is similar to that of the treated group (Pan & Bai,
2018). These methods aim to approximate true randomization conditions by using the propensity score to

eliminate bias in the treatment effect due to observed confounding and approximate the true causal effect
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(Pan & Bai, 2018). However, for this to be achieved, certain assumptions must hold.

2.2.3.1 Assumptions for Identification and Estimation of Causal Effects

Several assumptions must be met to identify and estimate an unbiased treatment effect using propen-
sity scores. These include SUTVA, the strong ignorability assumption, and the region of common support
(Rubin, 2005). It is important to note that, while necessary, these assumptions are insufficient for unbiased
causal inference using propensity scores. Furthermore, it can be challenging to assess the validity of these

assumptions in practice, which can impact the validity of the estimated treatment effects (Bai, 2011).

The first assumption, SUTVA, states that there is only one version of the treatment condition and that
the potential outcome of an individual is not influenced by the treatment assignment of any other individual
(Pan & Bai, 2018; Rosenbaum, 2010). Thus, the outcome of a student is independent of whether another

student is assigned to the treatment or control group.

The strong ignorability assumption states that the potential outcome of an individual is conditionally
independent of treatment assignment if we successfully conditioned on all covariates related to treatment,
Y1, Y, L Z|X. Randomization satisfies, in theory, this assumption in experimental studies, which ensures
that treatment assignment is independent of an individual’s outcome (Rosenbaum, 2010). However, this
assumption holds in observational studies only if all covariates related to both treatment assignment and
outcome are included in the propensity score model (Rosenbaum, 1987; Rosenbaum & Rubin, 1981, 1984).
In practice, it is unlikely that all such covariates are included, and sensitivity analysis is necessary to assess

the influence of unmeasured confounding (L. Li et al., 2011).

Finally, the region of common support (i.e., positivity) assumption states that there must be sufficient
overlap in the estimated propensity score distribution between the treatment and control groups (Rosenbaum,
2010). This overlap is crucial to ensure that suitable comparisons can be found for treated individuals. The
adequacy of common support can be assessed by plotting the distribution of the propensity scores in both

the treatment and control groups and evaluating if there is sufficient overlap between the two distributions.

Estimating causal effects from observational data is possible if these assumptions are satisfied. How-
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ever, some of these assumptions are untestable (Rubin, 2004; Rubin, 2005). For instance, in observational
data, the underlying mechanism of treatment assignment is usually unknown, making it difficult to deter-
mine if all covariates related to treatment assignment have been included in the propensity score model. As
a result, propensity score analysis should be viewed as a method to reduce, but not eliminate, the bias in
estimated treatment effects in observational studies. It is crucial to carefully consider which covariates are
included in the propensity score model and to conduct sensitivity analysis to assess the impact of unmeasured

confounding.

2.2.3.2 Covariate Selection

The selection of covariates in propensity score analysis should be based on variables that are theo-
retically grounded and related to both treatment assignment and the outcome, also known as confounders
(Brookhart et al., 2006; Buhlmann & Geer, 2011). However, there is a debate in the literature about which
covariates should be included (Austin, 2011; Karim et al., 2018). Some simulation studies have found that
including confounders or covariates that only affect the outcome leads to more precise estimates of treat-
ment effects (Austin et al., 2007). While, including only covariates that affect treatment assignment leads

to increased variance in the estimated treatment effect with no reduction in bias (Brookhart et al., 2006).

In practice, determining which covariates are confounders or related to the treatment or the outcome
can be challenging. To reduce the risk of excluding potential confounders, the literature suggests using a
“kitchen sink” approach to variable selection, where all available covariates are included in the estimation of
the propensity scores (Karim et al., 2018; Webster-Clark et al., 2021). Additionally, it is crucial to ensure
that the propensity score model captures the correct functional form of the covariates, including all relevant
interactions and non-linear terms (Pan & Bai, 2018; Rosenbaum, 2010). If the propensity score model is

misspecified, it will result in biased treatment effect estimates (Guo et al., 2014, 2020).

To balance the observed characteristics between treated and untreated students, iterating through
various model specifications that include interactions and non-linear terms among the covariates is recom-
mended (Rosenbaum, 2010). However, this iterative process can become challenging and time-consuming

as the number of available covariates increases, especially when conducting propensity score analysis with
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high-dimensional data.
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2.2.4 Estimating Propensity Scores

Estimating the propensity score (e(z)) is a crucial step in propensity score analysis, as a misspecified
propensity score model can result in propensity scores with little variability or extreme scores that lead to
biased treatment effect estimates (Hill et al., 2011). Propensity scores can be estimated using parametric
or non-parametric models as long as the model outputs a probability that is bounded between 0 and 1.
Logistic regression is a widely used parametric model for estimating propensity scores, particularly in applied

educational research (Stuart, 2023).

2.2.4.1 Logistic Regression

Logistic regression is the most common parametric model used to estimate propensity scores in the
social science literature due to its ease of interpretation and familiarity with many applied researchers and
its ability to accommodate continuous and categorical covariates (Keller et al., 2015). The logistic model is

defined as follows:

Pr(Z = 1|X)
1— Pr(Z = 1|X)

logit(Z = 11X) = log ( ) =By + 5 Xy + -+ 8,X, (2.5)

where Z is a binary indicator equal to 1 if a student is in the treatment group and 0 otherwise,
regressed on X a vector of observed covariates. The logistic regression outputs predicted probabilities that

are continuous and bounded between 0 and 1 (i.e., propensity scores).

Although logistic regression is the most commonly used method for estimating propensity scores, it
may not always be the best option for inference (Lee et al., 2010; Lee, 2023). Several simulation studies
have found that using logistic regression for propensity score modeling can result in biased treatment effect
estimates when the model is misspecified, especially in complex data where non-linear and non-additive
terms are not included in the propensity score model (Cannas & Arpino, 2019; Lee et al., 2010; McCaffrey
et al., 2004; Setoguchi et al., 2008). This situational bias occurs because parametric models, such as logistic
regression, require assumptions about covariates’ functional form and distribution (Hill et al., 2011). When

estimating propensity scores with many covariates, this problem can be particularly pronounced (Hill et al.,
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2011). In high-dimensional settings, the logistic model may produce propensity scores outside the desired
range [0,1] (Hill et al., 2011). However, non-parametric machine learning algorithms have been proposed as
alternatives for estimating the propensity score (Cannas & Arpino, 2019; Lee et al., 2010; McCalffrey et al.,

2004; Setoguchi et al., 2008).

2.2.4.2 Machine Learning Approaches

Machine learning algorithms have recently gained popularity in the causal inference and propensity
score literature due to these algorithms being highly flexible and able to model complex functional forms
iteratively without explicit manipulation from the researcher (Athey, 2015; Cui et al., 2020; Grimmer, 2015).
By making a simple modification, such as applying a logistic activation function to the output layer of a
neural network, these algorithms can output bounded probabilities that can be utilized as propensity scores.
Given the success of machine learning algorithms for prediction tasks, it is reasonable to think they are
worthy candidates for the propensity score estimation problem, which is a prediction problem. Broadly,
machine learning algorithms used in propensity score estimation can be classified into tree-based, ensemble

methods, and—the focus of my dissertation—neural network-based approaches.

2.2.4.3 Tree-Based Methods

One popular machine learning approach to estimating propensity score is classification and regression
trees (CART) (Denison et al., 1998). This algorithm recursively divides data into subsets based on individual
covariates to predict the probability of membership assignment of a given individual. To generate propensity
scores, the outcome is set to a binary indicator of treatment assignment (Z). This algorithm splits covariates
by level of importance, with the first split being the covariate that can produce the most distinctive split.
For example, if a student’s age is related to the treatment assignment, the first split would divide the data
into students with age > 15 and age < 15. The algorithm continues by splitting the data by the next most
influential covariate, creating a tree-like structure (see Figure 2.1). Splitting stops when the data are binned
into unique “branches,” that minimize the prediction error such that an additional split would not improve

the prediction of treatment assignment. The final “branches” of the model represent the individual groups
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of students with similar propensity scores (Denison et al., 1998). The output of CART is the predicted
probabilities, which can be used as propensity scores. Like logistic regression, the CART algorithm can
handle continuous and categorical covariates. However, unlike logistic regression, CART is insensitive to
outliers and can automatically model interactions and higher-order terms (Westreich et al., 2010; Wyss et
al., 2014). Through a simulation study, Lee et al. (2010) found that CART outperformed logistic regression

in reducing bias and balancing covariates when the data-generating mechanism had complex associations.
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Figure 2.1: Simple Decision Tree Predicting Students GPA Based on Gender and Homework Grade

However, a well-known issue with CART is its tendency to overfit the data (Lee et al., 2010). A
modified version of CART was developed to address this issue; it prunes back branches that do not contribute
to reducing prediction error, referred to as pruned-CART (Westreich et al., 2010). Although pruning can
alleviate some of the changes in overfitting, a significant drawback of CART is its reliance on a single tree,

which may be weak in predicting the propensity score.

2.2.4.4 Ensemble Methods

Ensemble methods are a family of algorithms that generate multiple trees to predict treatment as-

signment (Lee et al., 2010; Stuart, 2010; Stuart, 2023). By combining the predictions from multiple trees,
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ensemble methods can improve the accuracy of predictions since many weak trees together can create a better
prediction than any single tree (Lee et al., 2010). A popular ensemble method is bootstrapped aggregated
CART, referred to as bagged-CART, which fits multiple CARTs on bootstrapped data samples (Lee et al.,
2010). Growing trees on bootstrapped samples reduce the chances of overfitting the data. Each tree will
generate a probability that an individual will be assigned to treatment. The final probability of membership
is based on aggregating the probabilities of assignment across all trees (i.e., forest). A more robust ensemble
method is random forest (Suk et al., 2021). Compared to CART and Bagging, the random forest algorithm
grows trees by randomly selecting covariates and individuals to grow individual trees. With each new tree,
the algorithm “learns” the best combination of covariates to generate a final probabilistic prediction based
on the “forest” it has created. These random forest techniques have shown significant promise in predicting
propensity scores in complex data associations (Cannas & Arpino, 2019; Lee et al., 2010). However, with
the recent advances in computing power, non-tree-based methods, such as neural networks, have increased
in popularity (Collier et al., 2021; Collier & Leite, 2021; Dreiseitl & Ohno-Machado, 2002; Keller et al., 2015;

Westreich et al., 2010).
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2.2.5 Artificial Neural Network Architectures

2.2.5.1 Artificial Neuron

The building block for artificial neural networks was initially developed by psychologist Frank Rosen-
blatt (1958) with their idea of a perceptron or artificial neuron, see Figure 2.2. An artificial neuron is a
simplified mathematical model of neurons in our brain (LeCun et al., 2015). Neurons are biological switches
that take input signals from other neurons that cause the neuron to fire. Neurons can be thought of as
simple processing units. In our brain, these individual neurons are connected into vast networks of billions
of neurons, where the outputs of one neuron become inputs of another, allowing for the transmission of

complex information (LeCun et al., 2015).
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Figure 2.2: Structure of a Perceptron - Artificial Neuron

The artificial neuron receives a set of inputs X, = (Xl,X2,...,Xp) with corresponding weights

w; = (wy,Ws,...,w,) that represent the strength of each input variable. The inputs are multiplied by
their corresponding weights and then summed with a bias term [, to create a linear transformation of the
inputs. The weight and bias terms are similar to the slope and intercept in linear regression. The linear
transformation is then passed through an activation function g(z) to generate an output (g) that is either a

1 or 0, or a value between 0 and 1 if the activation function is set to be linear, such as the logistic function

(also refered to as the sigmoid function).

The artificial neuron in Equation 2.6 can be used to solve a binary classification problem. In our

case, we are interested in classifying each student in our sample as belonging to the treatment or control
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condition based on observed covariates. If the activation function g(z) is set to a logistic function, the
desired propensity score will be guaranteed an output value between 0 and 1. For the neuron to make
accurate predictions for each student, it must “learn” the correct weight and bias parameter specifications,

similar to finding the correct slope and intercept in bivariate data.

y=g(2) =9(By + ZXiwi) (2.6)

This learning process starts by feeding each observation in the sample into the neuron. The first pass
initializes the weights and biases set to random numbers. The outcome variable is set to the binary indicator
of treatment assignment, so a predicted probability of treatment assignment is calculated for each student.
However, the initial pass of the data is likely to generate incorrect predictions as the weights and bias terms
are initialized to random numbers. In other words, the prediction of treatment assignment (g) will be far

from the actual treatment assignment (y), leading to a high associated loss.

It is important to note that this learning process is an optimization problem that can be solved through
various optimization algorithms such as gradient descent or stochastic gradient descent (Goodfellow et al.,

2016). The choice of optimization algorithm will impact the speed and accuracy of the learning process.

The goal of the artificial neuron and many machine learning algorithms is to correctly learn the values
of the weights and bias parameters that minimize a loss function, such as the mean squared error (MSE). The
neuron will update the bias and weight parameters iteratively for each subsequent data pass to minimize the
loss function. This update is typically done using a process known as backpropagation. After a user-defined
number of iterations, the neuron will be optimized with bias and weight terms that best predict treatment
assignment. A single neuron may be appropriate for simple classification problems with linear covariate
associations. However, as the complexities of covariate associations increase, more neurons may be needed

to learn complex functional forms.
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2.2.5.2 Single-Layer Neural Network

Following the development of the artificial neuron, researchers began to model more complex pro-
cessing units composed of interconnected artificial neurons organized in layers. This work culminated in
creating the single-layer feed-forward neural network (NN), as shown in Figure Figure 2.3. NNs are referred
to as single-layer because they have a single middle layer of interconnected artificial neurons. These NNs can
learn very complex data representations by generating various non-linear representations of the data through
multiple artificial neurons (Derry et al., 2023). These non-linear outputs are passed into a final layer that
pools the outputs of the individual neurons into a non-linear function, f(z), generating a prediction (). By
having multiple artificial neurons calculating predictions on various non-linear combinations of the input

variables, these networks can learn complex non-linear and non-additive associations between covariates.

®

ARRRL

‘/i/'\? l
O

Input Layer € R> Hidden Layer € RS Output Layer € R!

Figure 2.3: Structure of Single-Layer Neural Network
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The single-layer NN comprises a series of artificial neurons organized into three layers (Derry et al.,
2023). The first layer is the input layer of p variables, X; = (X;, X5, ..., X)), our observed covariates. These
input variables are fully connected to the second layer—a hidden layer—which comprises K hidden neurons,
A= (A, A,,..,A,). The hidden neurons are identical to the artificial neurons mentioned previously, but
the activation function is swapped out for a non-linear function. Each hidden neuron calculates its prediction
based on its unique non-linear combination of variable inputs and associated weight and bias parameters.
The last layer is the output layer, which pools the non-linear outputs of the hidden neurons and passes them
as inputs to a non-linear output function, f(x), which generates the final prediction (7). The interconnected
neurons in NN allow it to learn more complex associations between covariates and treatment assignment

than a single artificial neuron (Derry et al., 2023; Herndndez-Blanco et al., 2019).

We can express a NN generally as !:

K K P
y=[f(z)=B;+ ZBkhk(X) =B + Z Bg(wyo + Zwkz’Xi) (2.7)
k=1 k=1 i—1
where each hidden unit A,k = 1,..., K is created from a weighted linear combination of input
variables, Xy, X5, ..., X, that are applied to an activation function g(z) resulting in an “activation” for each
hidden neuron, A,:
P
Ay = hyp(X) = g(wy + ZwkiXi) (2.8)
i—1

wyo and wy,; are the bias and corresponding weights for each A, hidden neuron. We can regard these
activations as individual predictions of each hidden neuron. These predictions are then pooled and passed

to the output function (f(z)), which has its bias term, B, and produces a final prediction (g).

The learning process of a NN works similarly to that of a single neuron, but instead of learning
only one set of weights and bias terms, it learns multiple sets simultaneously. The ultimate goal of the

NN is to minimize the loss function by learning the correct weights and bias parameters. Unlike a single

IThis notation was adapted from James et al. (2013).
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artificial neuron, NN can efficiently learn complex non-linear relationships between covariates and treatment
assignments (James et al., 2013). A handful of studies have evaluated the performance of NN in estimating
propensity scores in a low-dimensional setting (Cannas & Arpino, 2019; Collier et al., 2021; Keller et al.,
2015; Setoguchi et al., 2008). These studies suggest that NNs represent a suitable method for estimating the

propensity score and generally outperform logistic regression in reducing bias and balancing covariates.

The development of NNs has led to the creation of more complex NN architectures, such as DNNs
or multilayer neural networks (LeCun et al., 2015). These networks consist of multiple hidden layers and

varying numbers of hidden neurons.

2.2.5.3 Deep Neural Networks

The DNN architecture captures even more complex relationships among covariates than a single-layer
NN (Hernandez-Blanco et al., 2019; Pang et al., 2019). This effectiveness is due to the multiple hidden layers

in the network, making it “deep”. The diagram in Figure 2.3 shows a DNN with two hidden layers (L, L,).

Input Layer € RS> Hidden Layer € RS Hidden Layer € R# Output Layer € R!

Figure 2.4: Structure of Deep Neural Network with Two Hidden Layers

The first hidden layer functions like the middle layer in an NN (as described in Equation Equation 2.8).

The first layer in a DNN can be represented as:
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P
Ag) = hgcl)(X) = g(wgo) + ngc?Xi) (2.9)
=1

Each hidden unit in the first layer, AECD, k=1,...,K is created from a weighted linear combination
of the input variables, X, Xy,...,X,,. The weighted linear combination is then applied to a non-linear

activation function g(z), resulting in output for each hidden neuron in the first layer, A?.

The second hidden layer L, takes as inputs the outputs of A;CI) of the first hidden layer and computes

a new non-linear transformation, A;f). The new activations of the second layer are calculated as follows:

Ky
2 2 2 2) (1
AP =12 (X) = glwiy) + > wip AY) (2.10)
k=1
where each hidden unit in the second layer A§2>, l=1,..., K is a function of the output of the weighted

non-linear combinations of A;€1)7 this process can be extended to additional hidden layers. As data move
from layer to layer, DNNs can approximate increasingly complex functional forms (James et al., 2013). The
complexity should inform the choice of the number of hidden layers in a DNN of the problem and the
computational resources available (James et al., 2013). While more hidden layers can allow the network to
capture increasingly complex functional forms, they also have a higher computational cost. In general, three
hidden layers are sufficient for capturing almost any functional form in problems outside of image and speech

recognition (James et al., 2013).

2.2.5.4 Deep Neural Networks in Causal Inference

The popularity of DNNs in causal inference has increased in recent years due to their ability to uncover
complex relationships in high-dimensional data with improved precision compared to traditional statistical
and machine learning methods (Herndndez-Blanco et al., 2019; Pang et al., 2019). This capability to capture
intricate relationships in large-volume data makes DNN algorithms suitable for applications in propensity
score analysis and other causal inference methods. DNNs have garnered substantial attention in industry

and academic research, making substantial advances in image recognition and natural language processing

28



(James et al., 2013). For example, ChatGPT a DNN-based learning model has recently taken the world
by storm and has permeated into the educational discourse. The recent investment by Google in software
development has made it easier to develop DNN models using high-level application programming interfaces
(APIs) such as Keras, which is a popular deep learning library for building and training neural networks

(Pang et al., 2019).

To date, DNNs have received limited attention in the broader literature on causal inference, with
most research focused on medical or genomic applications (Iglesias et al., 2021; Kale et al., 2015). DNNs
have not yet been widely adopted in social science, likely due to a limited understanding of implementing
these algorithms (Farrell et al., 2021). As high-dimensional datasets become more prevalent in social science
research, it is expected that DNNs will become more widespread and a promising area of investigation in
the future. Despite this potential, there has been limited research that incorporates DNNs into propensity

score analysis.

Only two medical peer-reviewed studies have applied DNNs for propensity score estimation (Weberpals
et al., 2021; Whata & Chimedza, 2022). Weberpals et al. (2021) used data from around 130,000 cancer
patients to construct a simulated dataset with 31 baseline covariates, where the treatment was a fictional
cancer drug, and the outcome was a binary survival indicator. Employing a specific DNN architecture with
three hidden layers, known as an “autoencoder”, they found that DNN reduced confounding bias in treatment
effect estimates compared to the traditional logistic model with manual variable selection. Conversely, Whata
& Chimedza (2022) compared the performance of logistic regression to a DNN with four hidden layers through
a simulation (with 15 covariates) and a real-world application. In their simulation, they varied the level of
complexity in the population selection model but not the outcome model. The results showed that DNN
outperformed logistic regression regarding covariate balance, classification accuracy, and absolute relative

bias.

Both studies demonstrate the growing promise in using DNNs for causal inference and suggest that
DNNs may be a valid approach for estimating the propensity score. My dissertation builds upon these

studies by comparing DNNs to traditional logistic regression and established machine learning methods
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in the propensity score simulation literature. Additionally, my study will test the complexity of both the
outcome and selection models, making it the first to examine the use of DNNs for propensity score estimation
outside of medical research and with high-dimensional data that resembles high-dimensional administrative

datasets encountered in educational research.
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2.3 Method

My first dissertation study focuses on a statistical simulation that evaluates the performance of several
modern machine learning techniques, including CART, bagged-CART, random forest, and a single-layer
neural network. These techniques will be compared to the traditional logistic regression and my proposed
DNN-based approach in estimating the propensity score to recover the ATE using propensity score weighting.
I will specifically examine the impact of different data conditions (i.e., low vs. high-dimensional context) and
the inclusion of complexities in the population treatment and outcome models on estimating the ATE and
covariate balance. The choice of these specific conditions is motivated by the need to understand how the
performance of the machine learning techniques varies across diverse data structures, which is crucial for
determining their applicability and robustness in real-world scenarios. Additionally, assessing the impact of
complexities in the treatment and outcome models will provide insights into the strengths and limitations

of each technique, guiding researchers in selecting the most appropriate method for their studies.

My study will use a Monte Carlo simulation design informed by previous propensity score estimation
studies conducted by Setoguchi et al. (2008), Lee et al. (2010), Cannas & Arpino (2019), Keller et al. (2015),
Collier et al. (2021). My simulation code was built upon Cannas & Arpino (2019) publicly available code
and will follow best practices in statistical simulation as outlined by (Morris et al., 2018). In the following
sections, I will detail the simulation design for this study, including the data generation process, estimands

of interest, specific method specifications, and performance measures.

2.3.1 Data-Generation Mechanisms

The data generation mechanism for my simulation was informed by the evaluation I conducted as part
of my second dissertation study, which involved a large-scale evaluation of an AI chatbot intervention using
high-dimensional administrative data. I based the coefficient values of the covariates and error variances
on those data. By basing my simulation on real-world data, I aim to address the limitations of statistical

simulations that may not generalize well to real datasets (Huber et al., 2013).
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2.3.1.1 Covariates

I used a programmatic approach to generate (X;, X5, X, ... ,Xp) correlated covariates. Specifically,
I simulated three covariate conditions with varying covariates generated, with p = 20,100,200. The 20
covariate conditions represented the average number of covariates used in typical propensity score analyses
in educational research (Huber et al., 2013; Powell et al., 2020). The remaining two conditions, with p = 100
and p = 200, were chosen as they represent high-dimensional datasets commonly encountered in education

research (Bird et al., 2022; Einav & Levin, 2014; Grimmer, 2015; Hill et al., 2011; Song & Coleman, 2020).

Much of the literature on propensity score simulation generates uncorrelated covariates (Cannas &
Arpino, 2019; Lee et al., 2010; Setoguchi et al., 2008). However, this does not represent the correlated
variables typically found in administrative data. To address this, all covariates were generated from random
draws from a multivariate normal distribution with 4 = 0 and ¢ = 1, with a specified correlation matrix
with correlations ranging from -0.3 to 0.3, using the mvrnorm function from the MASS package in R (Ripley
et al., 2013). Additionally, by inducing bounded correlations that straddle 0, I aim to circumvent potential

issues that may arise when correlations approach -1 or 1, such as collinearity.

In order to better mimic the actual structure of variables in administrative data sets and to preserve
the correlation structure, I used the inverse cumulative distribution function (CDF) approach (B. Li et
al., 2021) to convert the initial random pull of covariates from the multivariate normal distribution to three
distributions: a normal distribution with a mean of 0 and standard deviation of 1, a uniform distribution with
a range of 0 to 1, and a Bernoulli distribution with a probability of success set at 0.5. The purpose of this step
is to create more realistic and heterogeneous data that reflects the distribution of variables typically observed
in real-world datasets, while maintaining the same correlation structure. Although some correlations may be
slightly suppressed, they should be equal on average across the simulation. The covariates were constructed
such that half affected both treatment and outcome (i.e., confounders), a quarter affected treatment only,
and the remaining quarter affected the outcome only. This approach is in line with other propensity score

simulation studies (Cannas & Arpino, 2019; Lee et al., 2010; Setoguchi et al., 2008).
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2.3.1.2 Sample Size

I used a fixed sample size of 10,000 for all conditions. This sample size is larger than typical in
many propeunsity score simulation studies (n = 500 to 2,000). The choice of this sample size is motivated by
my goal to mimic real-world high-dimensional administrative data. Additionally, it was necessary to have
a sufficiently large sample size to obtain accurate estimates, particularly when employing computationally

intensive methods.

2.3.1.3 Population Treatment Assignment Models

I generated the population treatment assignment models using standard logistic regression. These
models can also be referred to as population propensity score models, as they generate the true probability
of being assigned to treatment. The following logistic regression model represents the general structure of

these models.

e(z) = Pr(Z = 1|X) = (1 + exp(=(By + ) _ B, X)) " (2.11)
i=1

X represents covariates and their associated coefficients (). The output, Pr(Z = 1/X) is the proba-
bility of assignment to the treatment condition (i.e., the propensity score, e(x)). The intercept, /3, was set
to 0.25, and the remaining coeflicients, [3;, were randomly assigned values between -0.4 and 0.4, which were

based on the corresponding standardized coefficient values in the Common App evaluation.

I generated two population treatment assignment models, Base(T) and Complex(T). To add complex-
ity to the complex models, I included interactions (non-additivity) and higher-order terms (non-linearity)

for the confounders and covariates related to treatment.

Base(T): includes only main effects, which assumes a linear relationship between covariates and

treatment assignment. I consider this the base model, which is expressed using the following formula:

e(z)P%¢ = (1 + exp(—(By + Z B X)) (2.12)

1=1
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X represents covariates and their associated coefficients 5. The output is the assignment probability

to the treatment condition (i.e., propensity score).

Complex(T): my simulation’s most complex population treatment assignment model. To construct
it, I incorporated quadratic terms for half of the covariates that are both confounders and related to treatment
and interactions with another half of the same group of covariates. This design aims to account for complex

relationships between covariates and treatment assignment.

J
ex)“omrIer = e(x)Pose Y [6,X7 + B XX ] (2.13)
j=1

Using the propensity scores generated from these population selection models, I generated a binary
treatment assignment variable by comparing an individual’s true propensity score to a random draw from a
uniform distribution between 0 and 1. If the propensity score of an individual was higher than the random
draw of the uniform distribution, the individual was assigned to treatment such that Z = 1, otherwise
Z = 0. This approach should approximate a probability of assignment to the treatment of 0.5, which is the

probability of assignment to a randomized experiment with binary treatment.

2.3.1.4 Population Outcome Models

In addition to the population treatment assignment models, I also generated two population outcome
models. To vary the level of complexity between the covariates and the outcome, I included interactions and
higher-order terms on covariates related to outcome and overall confounders. Adding complexities to the
outcome model is relatively novel in the propensity score literature. However, it is more representative of

the complex associations found in datasets in educational research.

The continuous outcome, Y, was generated through regression models. The values of o were based
on the Common App evaluation, such that the intercept o, equaled -0.18, and the remaining « coefficients
received a random value between -0.2 and 0.3. X, represents p covariates and their associated coefficients
(cr;). The error term e was set to have a mean of 0 and a variance of 0.17, based on the error term in the

Common App evaluation. The binary treatment variable Z was multiplied by ~, representing the population
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treatment effect, and set to 0.3. This treatment effect is consistent with the small effects typically observed

in education research, where the average effect size equals 0.28 SD (Richardson, 2011).

The general structure of the population outcome models is defined as follows:

p
Y=ay+7Z+ ) o, X, +e (2.14)
i=1

Base(Y): the base model; includes only main effects, which assumes a linear relationship between

covariates and outcomes. I consider this the base model, which is expressed using the following formula:

p
YBese = ag +7Z 4+ o, X, +e (2.15)
=1

Complex(Y): describes the complex model, which includes the linear terms in addition to non-
linearities and non-additivities, which were generated in an identical way to how they were generated in the

population treatment outcome models:

J
yComples — yBase 1N "o, X2 + o, X X, (2.16)
j=1

2.3.1.5 Propensity Score Estimation Methods

Using the simulated data, I estimate propensity scores using standard logistic regression and popular
machine learning techniques commonly used in the propensity score estimation literature. This estimation
includes a CART, bagged-CART, random forest, and a single-layer neural network. The propensity scores
are estimated using all p covariates as main effects in all cases. This scenario is unique in that all confounders
are included in the propensity score estimation, which is not typically the case in practice. However, given
my interest in evaluating the ability of these methods to recover the true unbiased treatment effect, this
approach is well-suited. Future research should examine the performance of these methods when a subset of

confounders is omitted from the propensity score estimation model.
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Here I present the specification of each method used to estimate propensity scores:

Logistic regression: standard logistic regression with only main effects, using the R glm command

(Team, 2009).

Classification and Regression Trees (CART): using the R rpart package (Therneau et al., 2015)

with default parameters and recursive partitioning.

Bagged CART: bootstrapped aggregated trees using the R ipred package (Peters et al., 2009). I
changed the default parameter to use 100 bootstrap replicates to align with the Lee et al. (2010)

simulation.

Random Forest: parallel tree generation on subsamples based on randomly selected covariates using

the R randomForest package with default parameters (Liaw et al., 2002).

Single-Layer Neural Network (NN): I used a simple three-layer NN that consisted of an input
layer, one hidden layer, and an output layer. The input layer consisted of p covariates. The hidden layer
comprised hidden neurons equal to 1/3 of the input covariates, a common practice in NN applications
(Boger & Guterman, 1997). T used a ReLU activation function in the hidden layer for computational
efficiency. The ReLU function introduces non-linearity into the network and allows it to learn more
complex relationships between input covariates and output. In the output layer, I used a sigmoid
activation function to obtain probabilities bounded between 0 and 1. The sigmoid function smoothly
maps any input value to a probability between 0 and 1, making it suitable for binary classification
tasks. The NN was trained and fit using the R Keras package (Chollet et al., 2015), which interfaces

with Python.

Deep Neural Network (DNN-2): I used a four-layer deep neural network with an input layer, two
hidden layers, and an output layer. The input layer consisted of p covariates, and each hidden layer
comprised hidden neurons equal to 1/3 of the input covariates. Similar to the NN, I used the ReLU
activation function in the hidden layers. In contrast, the output layer consisted of a single neuron with
a logistic activation function, which provides bounded probabilities between 0 and 1. I trained and fit

the DNN-2 using the R Keras package (Chollet et al., 2015).
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o Deep Neural Network (DNN-3): The last neural architecture I tested was a five-layer deep neural
network with an input layer, three hidden layers, and an output layer. A more complex DNN structure,
such as this one, can be beneficial when dealing with high-dimensional and non-linear data, as it
enables the network to learn more complex and intricate patterns, ultimately improving its predictive
performance. The output layer was a single neuron with a logistic activation function to produce
bounded probabilities between 0 and 1. The ReLU activation function was also used in the hidden
layers. The DNN-3 was also trained and fit using the R Keras package (Chollet et al., 2015), which

interfaces with Python.

2.3.1.6 Training Methodology for Neural Network Approaches (NN-1, DNN-2,
DNN-3)

A major challenge in using NN and machine learning algorithms is the need to specify values for
hyperparameters. Hyperparameters are parameter values not learned from the data but are set before
training the model and significantly impact the model’s performance (James et al., 2013). Finding the optimal
values for these hyperparameters, also known as tuning, is typically achieved through cross-validation, which
involves testing a range of values for the targeted parameters to determine the optimal parameters for the

NN (James et al., 2013). Choosing incorrect hyperparameters can result in widely varying outcomes.

Hyperparameter specification in neural networks is critical to their performance. The hyperparameters
include the number of hidden layers, the number of hidden neurons, the learning rate, and weight decay. The
learning rate determines the speed at which the weights are updated during training, while weight decay
regulates the weights to prevent overfitting. For this simulation, the number of hidden neurons and activation

and loss functions was selected based on established conventions in the field.

Various techniques for hyperparameter tuning have been developed to optimize the model’s perfor-
mance, such as k-fold cross-validation and grid search. However, in this simulation, the ADAM optimizer
was utilized (Kingma & Ba, 2014). This optimizer eliminates the need for hand-tuning the learning rate;

it is a widely used algorithm that combines the benefits of other algorithms, adapting the learning rates of
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each parameter based on historical gradient information, making it more efficient. The ADAM optimizer
uses multiple training runs of the data to determine the optimal values of the weights and bias terms in the

NN, making it a computationally efficient process without requiring researcher intervention.

The neural network approaches I tested (NN-1, DNN-2, DNN-3) were trained using a standard 80/20
split, with 80% of the sample used for training and 20% for validation. The ADAM optimizer was employed
to automatically find the optimal learning rate that minimizes the binary cross-entropy loss function, which
is a standard in binary classification problems and measures the difference between predicted and actual
probabilities. Early stopping was used to stop the training process when the loss function values did not
change after five training runs, and L2 regularization with a value of 0.001 was applied to penalize large

weights. These precautions minimized the changes that the neural networks overfit the data.

ReLU activation was used in the hidden layers for computational efficiency, and a logistic activation
function was used in the output layer to generate probabilities between 0 and 1. The training was conducted
over 100 epochs with a batch size of 64. The choice of hyperparameters was consistent across all three
methods to ensure a fair comparison of their performance. The use of the ADAM optimizer, early stopping,
and L2 regularization all contributed to the efficient training of the neural networks and optimizing their

performance.

2.3.2 Estimating Treatment Effects - Propensity Score Weighting

To estimate the causal effect of the treatment on the outcome, I used a propensity score weighting
approach, specifically the inverse probability of treatment weighting (IPTW) (Lee et al., 2010). This method
involves reweighing observations based on their estimated propensity score to achieve a covariate balance
between the treated and untreated units. The weight for each treated observation was equal to 1/e;(z), and
for untreated units, the weight was 1/(1 — e;(z)). The estimated propensity score, e,(x), was determined
for each unit i. In accordance with the different methods given above, this weighting scheme was used to

estimate the ATE.

I used the R survey package to calculate the ATE (Lumley, 2020). The outcome variable (Y') was
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predicted using only the binary treatment assignment variable, with the ATE weights included. The ATE

point estimate, as well as the robust standard error of the ATE, were saved.

2.3.2.1 Estimating Standard Error of the ATE

The proper method to estimate standard errors when using IPTW weights targeting the ATE remains
a topic of debate in the literature. While some researchers support using simple methods, such as the
standard deviation of the weighted outcome (Rosenbaum & Rubin, 1984), others argue that more advanced
methods, such as bootstrapping (Reifeis & Hudgens, 2022), are necessary to account for the bias introduced
by the weighting process. Bias in the weighting process can arise from the propensity score estimation itself,
as any inaccuracies in the estimated propensity scores can lead to incorrect weights, potentially distorting
the estimate of the treatment effect. Bootstrapping, a resampling technique that involves drawing multiple
random samples with replacement from the original data, can help alleviate this bias by providing a more ac-
curate estimate of the sampling distribution of the treatment effect, accounting for the variability introduced

by the propensity score estimation process.

Studies that have used propensity score weighting to estimate treatment effects find that the choice
of standard error estimator can significantly impact the results. For example, Stuart (2010) found that
different standard error estimators can lead to vastly different conclusions about the presence of treatment
effects. While, Calonico et al. (2015) found that using a bootstrap estimator led to more accurate confidence

intervals than using the weighted outcome’s standard deviation.

Given these debates, it is vital to choose an appropriate standard error estimator based on the specific
goals of the analysis and the trade-off between computational feasibility and statistical accuracy. Robust
standard errors are preferred in this context because they account for the potential biases and uncertainties
introduced by the propensity score estimation process, as well as any potential model misspecification. By
providing more accurate estimates of the variability in the treatment effect, robust standard errors can lead
to more reliable hypothesis testing and confidence interval estimation. To account for the uncertainty in the
estimated propensity score, I used the “robust” standard errors calculated from the R survey package, as

recommended by Robins et al. (2000).
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2.3.3 Performance Metrics

To gauge the performance of each propensity score estimation method, I used the following metrics,
which are widely used to assess model performance in the propensity score simulation literature (Cannas &

Arpino, 2019; Lee et al., 2010; Setoguchi et al., 2008):

o Bias: The difference between the estimated treatment effect and the true population treatment effect
of 0.3. Bias values show how far off the estimated ATE is from the true population treatment effect

and allow us to determine if we overestimate or underestimate the true ATE.

» Relative Bias (Bias): the difference between the estimated treatment effect and the population
treatment effect, divided by the true population treatment effect of 0.3. A low relative bias value
indicates that the estimated treatment effect is close to the true population treatment effect. In
contrast, a high relative bias value indicates that the estimated treatment effect deviates significantly

from the true ATE.

o Estimated Standard Error of the ATE: is simply the standard error associated with the estimated

ATE.

o« Mean Squared Error (MSE): the average of the squared differences between the estimated and
population treatment effects. MSE is a good representation of bias and variance and a common

performance metric in the machine learning literature (Athey, 2015).

e 95% Confidence Interval Coverage: an indicator of whether the population treatment effect of 0.3

is found within the estimated 95% confidence interval.

o Average Standardized Absolute Mean Distance (ASAM): is a measure of covariate balance.
After calculating the ATE, the absolute value of the standardized difference of means between the
treated and untreated group was calculated for each covariate and averaged across all covariates. Lower

ASAM values indicate better covariate balance.

o Power: is the probability of correctly rejecting the null hypothesis (no treatment effect) when the

alternative hypothesis (a treatment effect exists) is true. Power is typically calculated for a prede-
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termined significance level (e.g., alpha = 0.05) and is a function of the sample size, effect size, and
variability in the data. Higher power indicates a greater likelihood of detecting a true treatment effect,

if one exists.

e Weights: a known issue with PSW is that extreme weights can result in biased treatment effects.

Therefore, I examine the distribution of the estimated weights.

2.3.4 Simulation Scenarios

In total, I tested three different covariate conditions (p = 20, 100, 200) with varying levels of complexity
in the treatment and outcome models (Treatment population model = Base, Complex; Outcome population
model = Base, Complex). I evaluated seven propensity score estimation methods, including logit, CART,
BAG, forest, NN-1, DNN-2, and DNN-3. The sample size was fixed at 10,000. By fully crossing all these

conditions, I tested 84 scenarios; each simulated 1,000 times.

2.3.5 Software

The simulations were performed on the University of Pittsburgh Center for Research Computing
cluster, utilizing high-memory CPU and GPU nodes to handle the complexity and high-dimensional data
generated. Both R (version 4.1.0) and Python (version 3.7) were used, along with popular deep learning

libraries Keras and TensorFlow.
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2.4 Results

In this section, I present the results of my Monte Carlo simulation study, which compares the perfor-
mance of various methods in estimating the ATE through Propensity Score Weighting. The methods include
my DNN-based approach, traditional logistic regression, and other commonly used machine learning-based
approaches such as CART, bagged-CART, and random forest. The simulation aimed to evaluate the accu-
racy of these methods in producing a propensity score used in estimating the ATE (ATE = 0.3) with IPTW,
under different levels of covariate conditions (p = 20, 100, 200) and with varying levels of complexity in the
treatment and outcome models (Treatment population model = Base, Complex; Outcome population model

= Base, Complex).

The results are presented in four main parts. First, I assess covariate balance through the average
standardized absolute mean difference (ASAM). Second, I examine the bias in the ATE estimation. Third,
I evaluate the variability of the ATE estimation through the standard error (SE), MSE, and 95% confidence
interval coverage. Finally, I present the mean IPTW weights and discuss the results regarding statistical

power.

2.4.1 Covariate Balance

I begin by considering the performance of a commonly used and directly observable metric for deciding
which method to use, covariate balance (Lee et al., 2010). Covariate balance is assessed using the average
standardized absolute mean difference (ASAM) between treated and untreated units. Maintaining a covariate
balance reduces the risk of bias in the estimated treatment effect. In my simulation, I focused on assessing
balance through ASAM and took the average ASAM for all covariates in the propensity score estimation
model. However, in practice, each covariate should be assessed separately. A mean ASAM value of 0
indicates a perfect balance in the mean between treated and untreated units across all covariates. I consider
two commonly used thresholds for deciding whether adequate covariate balance has been achieved: the more

typical 0.2 thresholds (Imbens & Rubin, 2015) and the more stringent threshold of 0.1 (Austin, 2009).

The results of the ASAM evaluation can be found in Figure 2.5, with thicker and thinner dashed lines
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indicating an ASAM value of 0.2 and 0.1, respectively. All methods achieved adequate covariate balance
in the low-dimensional condition, with ASAM values below 0.2. However, using the more stringent cutoff
of 0.1, both CART and random forest failed to reach this standard. As the number of covariates increased,
logistic regression produced extreme imbalance (ASAM = 74.9), while the other machine learning approaches
maintained good covariate balance with ASAM values below 0.1. NN-1, DNN-1, DNN-2 and bagged-CART

achieved the best balance, with an ASAM value of 0.06.
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Figure 2.5: Average Standardized Absolute Mean Difference (ASAM) Across the Population Treatment and
Outcome Model Conditions

2.4.1.0.0.1 Base - Population Outcome and Selection Models Figure 2.6, when the outcome
and selection models only had main effects, all methods achieved good covariate balance using the 0.2
threshold across all covariate conditions. When using the more stringent 0.1 threshold, bagging, the NN-
based approaches, and logistic regression produced optimal balance. All methods appear insensitive to the

number of covariates in this base condition.

2.4.1.0.0.2 Complex - Population Outcome and Selection Models When complexities are
introduced into the treatment and outcome models, there is a slight increase in imbalance, with the exception
of logistic regression, which produces an extreme imbalance in the high-covariate condition. In the low-
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Figure 2.6: Average Standardized Absolute Mean Difference (ASAM) by Data Generating Mechanisms
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covariate condition, all methods perform well with ASAM values below 0.2. However, when using the more
stringent 0.1 threshold, CART and random forest fail to achieve covariate balance. Logistic regression
produced particularly extreme imbalances among covariates in the high-covariate condition, with an ASAM
value of 286 for 200 covariates. In contrast, my DNN-2 approach and NN-1 achieved adequate covariate
balance with an ASAM value of 0.08. With the most stringent threshold, the NN-based approaches were

the only methods that achieved covariate balance.

2.4.1.1 Deviations from the Selection and Outcome Models

When dealing with different specifications of covariate conditions and complexities in the outcome
and selection models, covariate balance is relatively robust. However, in the context of higher covariates,
specifically 100 and 200, logistic regression is sensitive to complexities in the selection models and shows an

increase in imbalance.

2.4.1.1.1 Summary In this simulation, most methods demonstrated good covariate balance with a 0.2
threshold across all covariate conditions, with the exception of logistic regression in high-dimensional cases.
However, when using the more stringent 0.1 threshold, the bagging method, NN-1, DNN-2, and DNN-3,
performed even better. In high-dimensional contexts, logistic regression produced a significant imbalance,
while the neural network-based methods, particularly DNN-2, achieved the best balance with an ASAM
value of 0.06, followed by bagged-CART. These results suggest that when considering complexities in both
the outcome and selection models, NN-based methods provide the best covariate balance among all methods

and are a reliable choice in high-dimensional cases.

2.4.2 Bias of ATE Estimation

2.4.2.1 Bias

In this section I present the evaluation of the bias in the ATE across the different population treatment
and outcome model conditions to understand the overall performance of each method. Bias is the difference

between the estimated and true ATE (set to 0.3). In other words, it measures how much, on average, a
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method tends to over- or under-estimate the true ATE. Figure 2.7 displays my results for the bias of the
ATE by method and covariate conditions (p = 20, 100, 200). The solid dots represent the mean bias, and

the extending lines are the associated Monte Carlo 95% confidence intervals.
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Figure 2.7: Bias of the ATE Across the Population Treatment and Outcome Model Conditions

In the low-dimensional condition (p = 20), all methods accurately estimate the true ATE with rela-
tively little bias and good precision, except for bagged-CART, which substantially underestimates the true
ATE. As I increase the number of covariates to 100, the magnitude of bias also increases, with logistic regres-
sion overestimating the ATE. At the same time, all other machine learning approaches estimate the ATE
with less bias; the results become more pronounced in the highest covariate condition (p = 200) compared
to the low-dimensional condition (p = 20). Logistic regression, on average, overestimates the true ATE in
addition, its point estimate is severely imprecise, as indicated by a wide Monte Carlo 95% confidence inter-
val. In contrast, the machine learning methods estimate the true ATE with significantly less bias and lower
sampling variability. Among these methods, my DNN-2 approach produces the least biased ATE estimate

compared to all other machine learning methods and exhibits lower sampling variability.
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2.4.2.2 Relative Bias

In Figure 2.8, I present the results for the relative bias for each of the methods and covariate conditions.
The relative bias is calculated as the difference between the estimated ATE and the true ATE of 0.3, divided
by the true ATE. For example, if the estimated ATE is 0.5 and the true ATE is 0.3, the relative bias would
be (0.5-0.3)/0.3 = 0.67 or 67%. This result means that the method has overestimated the true ATE by 67%.
Based on the sensitivity analysis literature, I set my tolerance level for bias at less than 10%. Studies generally
consider the ATE robust to unmeasured confounding if including an unmeasured confounder changes the

ATE by no more than 10% (L. Li et al., 2011).

In Figure 2.8, the solid dots represent the mean relative bias, and the extending lines are the associated

95% Monte Carlo confidence interval. The dashed lines indicate the +- 10% tolerance level.
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Figure 2.8: Relative Bias of the ATE Across the Population Treatment and Outcome Model Conditions
In the low-dimensional condition (p = 20), nearly all methods accurately estimated the ATE with
little bias and high precision. I found that logistic regression had the least relative bias, while all other

methods produced less than 2% relative bias. The exception was bagged-CART, which had a large amount

of bias (relative bias = -37%), meaning that it severely underestimated the true ATE by around -37% of
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the true ATE. As the number of covariates increased from 20 to 100 and 200, logistic regression became
substantially more biased compared to all other methods, with substantially more imprecision, reaching its
maximum relative bias in the 200-covariate condition, where it overestimated the true ATE by nearly 16%.
All machine learning approaches performed well in the 100-covariate condition, producing bias below 4%.
In this scenario, my DNN-2 approach and bagged-CART produced the lowest bias estimates, where as all
other methods produced estimates exceeding the 10% bias treshold. In the highest-dimensional covariate
condition (p = 200), all methods had an increase in bias, with an accompanying increase in sampling
variability. However, the machine learning approaches performed exceptionally well compared to logistic
regression. My DNN-2 approach produced the least biased results with a mean relative bias of less than 1%,
followed by NN-1 and DNN-3. The NN-based approaches produced less bias and exhibited less sampling
variability than all other methods, in addition to bagged-CART. However, none of the methods in the
200-covariate condition had 95% Monte Carlo confidence intervals within the 10% threshold. All machine
learning approaches had much narrower confidence intervals than logistic regression, which had extreme
sampling variability. These results imply that if I used a machine learning method to estimate an ATE in a
high-dimensional setting, I would increase my probability of capturing the true population ATE much more

with DNN and bagged-CART than if I used logistic regression to estimate the propensity scores.

2.4.2.2.1 Complexities in the Population Outcome and Selection Models Next, I evaluated the
performance of each method in terms of relative bias when complexities were introduced into the treatment
and outcome model. Recall that the data-generating models Base T and Base Y only included main effects
in the treatment and outcome model, while Complez T and Complez Y included non-additivity and non-

linearities in the form of quadratic and interaction terms among the covariates.

Figure 2.9 presents a faceted plot where the upper-left facet represents the condition where the pop-
ulation treatment and outcome models only include main effects (i.e., Base T & Base Y). The lower-right
facet represents the condition where the population treatment and outcome models include quadratic and
interaction terms (i.e., Complex T and Complex Y). Deviations from the diagonal facets indicate conditions

where only one of the models includes quadratic and interaction terms, while the other only includes main
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Figure 2.9: Relative Bias of the ATE by Data Generation Conditions

2.4.2.2.1.1 Base - Population Outcome and Selection Models When the treatment and
outcome models only include the main effects, nearly all methods perform well, regardless of the number
of covariates. The only exception is bagged-CART, which produced the most biased ATE estimate with 20
covariates. Logistic regression produced the least biased estimates (relative bias less than 0.001%) when the
population treatment and outcome models included only main effects, which was expected because when
estimating the propensity score using the various methods, only main effects are included in the model. This
result means that in the Base Y and Base T conditions, the population selection model is equal to the
propensity score estimation model. As the number of covariates increased, all methods continue to perform
well, with bias within the 10% threshold. This finding suggests that when covariates have simple associations
and a large sample size, all methods produce unbiased ATE with a high level of precision, regardless of the

number of covariates included, with the exception of the bagged-CART, which should not be used in a
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low-covariate condition.

2.4.2.2.1.2 Complex - Population Outcome and Selection Models In contrast to the models
where only main effects were included in the population treatment and outcome models, the lower-right
facet of Figure 2.9 displays the results when both the population treatment and outcome models include
quadratic and interaction terms. When complexities are included in the population models, much more
bias is introduced into the ATE estimate with increased sampling variability across methods and covariate
conditions. All methods performed well when only 20 covariates were included, with relative bias just within

the 10% interval, except for bagged-CART.

However, as the number of covariates increased, there was a significant increase in bias. With 100
covariates, all methods performed well, with mean relative bias well within the 10% threshold. However,
regarding sampling variability, only NN-1 bagged-CART and DNN-2 produced bias estimates with Monte
Carlo confidence intervals close to but not necessarily within the 10% threshold. In contrast, logistic regres-
sion produced very biased estimates, indicated by its large confidence interval. The differences became more
pronounced in the high-covariate condition (p = 200); specifically, logistic regression severely overestimated
the ATE by more than half of the true ATE (relative bias = 55%). The least biased estimates were produced
by the NN-1 and DNN-2 approaches (relative bias = 5% and 9%, respectively), which was far lower than the
relative bias produced by all other machine learning approaches. However, even though they produced the
least biased results, they still had fairly large sampling variability, although not as large as that produced

by logistic regression in the same condition (n = 200).

2.4.2.2.1.3 Deviations - Population Outcome and Selection Models In the lower-left facet
of Figure 2.9, I present the results when the selection model is complex, while the outcome model only
contains the main effects. In the upper-right facet, I show the results when the outcome model is complex,
but the selection model is simple, with only the main effects. Overall, the relative bias performance is
sensitive to complexities in either the outcome model or both the treatment and outcome models, especially
when the number of covariates is high. This result implies that if either the outcome model or both models

are complex, the accuracy of the ATE estimate may be affected.
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2.4.2.2.2 Summary My findings suggest variability in the bias of the estimated ATE depending on
the method and covariate conditions. In the low-dimensional condition (p=20), most methods accurately
estimated the true ATE with little bias and little sampling variability. As the number of covariates increased,
the magnitude of bias also increased, with logistic regression overestimating the true ATE, while all other
machine learning approaches produced less biased estimates. In the highest covariate condition (p=200),
logistic regression severely overestimated the true ATE, while the machine learning methods estimated the
true ATE with significantly less bias. Notably, my NN-1 and DNN-2 approaches were robust methods for
estimating the ATE in the high-dimensional covariate setting, even when complexities were included in the
population treatment and outcome model. In this condition, they produced bias estimates that were nearly

11 times lower than those produced by logistic regression in that same condition.

My findings also indicate that the presence of complexities in the population treatment assignment
and outcome models significantly affects the accuracy of the ATE estimate. When both the treatment
and outcome models include quadratic and interaction terms, there is a significant increase in bias and
increased sampling variability across methods and covariate conditions. Logistic regression tends to perform
poorly in high-dimensional, complex cases because the estimating model is still a linear model that does
not account for quadratic and interaction terms. As a result, logistic regression may struggle to capture
the true underlying relationships between the covariates and the treatment assignment, leading to biased
propensity score estimates and, consequently, biased ATE estimates. These results highlight the importance
of considering the complexities of the population treatment and outcome models when choosing a propensity
score estimation method and suggest that more flexible, non-linear methods may be better suited for handling

complex relationships in the data.

2.4.3 Variance in ATE Estimation: SE, MSE, and 95% CI Coverage

In this section, I evaluated the estimated variance in the ATE based on the SE, MSE, and 95%
confidence interval coverage rate. The optimal method should have a low bias in the estimated ATE, minimal
variability in terms of tight SE and MSE and a high 95% confidence interval coverage rate. To summarize

my findings, I used the multi-panel Figure 2.10 to compare the performance of each method in terms of SE,
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MSE, and 95% confidence interval coverage rate across different population models.
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Figure 2.10: Variability in ATE Across the Population Treatment and Outcome Model Conditions

2.4.3.1 Estimated Standard Error (SE) and Mean Squared Error (MSE)

In the first panel of Figure 2.10, I present the standard error (SE) results of the estimated ATE by
covariate condition. In the low-dimensional condition, all methods produced small standard errors. However,
as the number of covariates increased, the SE of logistic regression and NN-1 increased significantly. At the
same time, other machine learning approaches, such as CART and random forest, had smaller SEs (SE =
0.22 and 0.21, respectively). Despite the differences in the SE, all methods produced narrow 95% Monte

Carlo confidence intervals for the estimated ATE, indicating high precision in the ATE estimate.

A high SE implies a high degree of uncertainty in the estimated ATE, with a wide range of possible

values. In a true ATE of 0.3, even an SE of 0.2 (the lowest estimated SE) could be substantial. Such errors
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could lead to incorrect conclusions about the effectiveness of the treatment and reduce the reliability of
the ATE estimate. A high SE can also indicate that the model is not capturing the underlying relationship
between the treatment and outcome, making the estimated ATE unreliable. Therefore, it is crucial to choose
a method that produces a low SE given its relationship to statistical inference, in addition to low bias, to

ensure reliability of the estimated ATE.

In the second panel of Figure 2.10b, I present the results for the mean squared error (MSE) of the
estimated ATE. The MSE measures the average squared difference between the estimated and true values,
with a lower MSE indicating a better fit. This metric provides a comprehensive summary statistic that
considers both the bias and variance of the estimated ATE. Whereby an MSE > 1 indicates, on average,
more that one point difference betwee the true ATE and the estimated ATE. In the low-dimensional condition
(p=20), all methods produced low MSE values. However, as the number of covariates increased (p=200),
logistic regression produced extremely high MSE values (MSE = 29.4). At the same time, the other machine
learning approaches maintained low MSE values, with the best performance achieved by the DNN-2 and
DNN-3 approaches (both with MSE = 0.87), which were 35 times lower than the MSE produced by logistic

regression.

2.4.3.1.1 Complexities in the Population Outcome and Selection Models In Figure 2.11, I fur-
ther investigate the performance of each method by evaluating SE, MSE, and 95% confidence interval (CI)
coverage in the presence of complexities in the treatment and outcome models. The figure is divided into
three panels, each representing the SE, MSE, or 95% CI coverage rate. In the upper-left facet, I show the
results when only the main effects are included in both the population treatment and outcome models (Base
T & Base Y). In the lower-right facet, I display the results when both the population treatment and outcome
models include quadratic and interaction terms (Complex T and Complex Y). The deviations from the diag-
onal facets represent conditions where only one of the models includes quadratic and interaction terms while
the other only includes main effects. These results provide insight into how the presence of complexities in
the treatment and outcome models affects the performance of each method in terms of SE, MSE, and 95%

CI coverage rate.
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Figure 2.11: Variability in ATE by Data Generating Mechanisms
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2.4.3.1.1.1 Base - Population Outcome and Selection Models In the upper-left panels of
Figure 2.11, I present the results when only the main effects are included in both the population treatment
and outcome models. Regardless of the covariate condition, all methods performed well and produced low
values for both the SE and MSE of the estimated ATE. This result indicates that the estimated ATE is

precise and accurate when only the main effects are present in both models.

2.4.3.1.1.2 Complex - Population Outcome and Selection Models As the complexity of
the population treatment and outcome models increased, I observed a substantial increase in the SE and
MSE of the estimated ATE. In the 100-covariate condition, logistic regression had a high MSE value (MSE
= 7.51). However, when the number of covariates increased to 200, logistic regression resulted in extremely
high SE and MSE values (SE = 4.00; MSE = 115.1). In contrast, my DNN-2 and DNN-3 approaches had
significantly lower MSE values, with MSE values below 2, which were nearly 60 times lower than the MSE

value for logistic regression in the high-dimensional condition.

2.4.3.1.1.3 Deviations - Population Outcome and Selection Models As T observed with the
ATE bias evaluation results, both the SE and MSE were more sensitive to complexities in the outcome model
than when complexities were only included in the selection model. When complexities were only included in
the outcome model, I found that the CART and random forest methods produced larger MSE values than all
other methods. In the highest covariate condition, all other methods, including logistic regression, produced

MSE values well below 2.5.

2.4.3.2 95% Confidence Interval Coverage

Finally, in the third panel (Figure 2.10c), I present my findings for the 95% confidence interval (CI)
coverage rate of the ATE across different population outcome models. The dashed line indicates the desired
coverage rate of 95%. This rate assesses how well each method captures the true ATE of 0.3 within the
estimated 95% confidence interval. A good estimator has high coverage and reliably captures the true

population ATE within the interval.
The machine learning approaches appear relatively insensitive to the different covariate conditions.
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However, logistic regression seems more sensitive and shows a decrease in coverage rate as the number of
covariates increases. Overall, only logistic regression in the low-covariate condition approached the nominal
95% confidence interval. In the high-covariate conditions, all methods had relatively low coverage, with
coverage rates below 75%, while CART and random forest showed incredibly low coverage rates below 30%.
The exception was bagged-CART, which had a coverage rate of 81%, followed by logistic regression with
71%. The high coverage rate of bagged-CART is likely due to the method using multiple decision trees based
on bootstrap samples of the data, which reduces the variance of the model and improves its performance,
especially in high-dimensional data. Additionally, it is important to note that logistic regression in the
highest covariate condition also exhibited large bias and SEs. Thus, its relatively good performance in this

condition may be due to the large amount of bias and sampling variability in the ATE.

2.4.3.2.1 Complexities in the Population Outcome and Selection Models In the third panel of
Figure 2.11, I present the results of the 95% confidence interval (CI) coverage rate of the ATE by model
complexities. The results show that the coverage rates were highly influenced by the complexities in the
population selection model, with all methods having lower coverage rates than when only the main effects
were included in the population selection model. Additionally, even when both the population outcome
and selection models only had main effects, all methods other than logistic regression still had suboptimal
coverage rates. Conversely, when complexities were included in both the outcome and selection model, logistic
regression had inadequate coverage, especially in the high-covariate condition, where it had a coverage rate
below 50%. The highest coverage rate was achieved by bagged-CART, at around 77%, followed by DNN-3,
with a 56% coverage rate. A lower 95% CI coverage for the machine learning methods may indicate that they
are not accurately capturing the relationship between the treatment and outcome, resulting in an unreliable

estimate of the ATE.

2.4.3.3 Model Based versus Empirical Standard Error

A method can have low bias and low standard errors, but if the estimated confidence intervals fail
to capture the true parameter at an acceptable rate (i.e., low coverage), it can lead to unreliable estimates
of the ATE. Bias measures the systematic error in the estimate of the ATE, while accuracy refers to the
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closeness of the estimate to the true value, taking both bias and variability into account. Low bias and low
standard errors indicate a good fit between the estimated and true values, but they do not guarantee the

estimate’s accuracy.

One possible scenario that could lead to low coverage is that the estimated standard errors are biased
away from the empirical standard errors. To analyze whether my estimated standard errors are biased away
from the empirical standard errors, I computed the relative percent error in the standard errors using the

following Equation 2.17:

ModelBasedSE

Relative PercentError = 100( EmpiricalSE

~1) (2.17)

where Model Based SE is the estimated SE and Empirical SE is the empirical standard error taken as
the standard deviation of the ATE estimates. A value greater than 0 indicates that the method overestimates
the empirical SE, while a value below indicates that the method underestimates the empirical SE. Figure 2.12
presents the results of the relative percent error in SEs by method across population models and covariate
conditions. The solid black dot indicates the mean relative error, and the diverging lines indicate the

associated Monte Carlo 95% CI.

Regardless of the number of covariates, all methods underestimate the empirical SE. CART and
random forest have the worst performance, with an underestimation of the empirical SE by more than 75%.
While bagged-CART and all NN approaches (NN-1, DNN-2, DNN-3) underestimate the empirical SE by a
smaller margin, it is still not ideal. This fact likely contributes to the suboptimal 95% CI coverage rates,
especially in complex model conditions. These results may indicate that it would be beneficial to move away
from a robust sandwich estimator, which relies on the normality assumption of the data, and instead use a

bootstrapped SE that provides a more appropriate estimate of the uncertainty in the estimate of the ATE.

2.4.4 Weights Assessment

In this section, I present the propensity score weight assessment results. The assessment is an impor-

tant step in ensuring unbiased treatment effects as it helps to identify extreme weights, which can result in
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Figure 2.12: Relative % Error in the Estimated Standard Error Across the Population Treatment and
Outcome Model Conditions

bias. The IPTW method was used to estimate the ATE, and the mean IPTW weight was calculated for
each method. A considerable departure from 1 in the mean IPTW weight indicates the presence of extreme

weights.

In Figure 2.13, the mean IPTW weights are displayed. All machine learning approaches produced
weights below 2.5. In the low-dimensional case, all methods performed well with mean weights below 2.
However, logistic regression produced extreme weights in high-dimensional cases with a mean of 22,587,000.
This high value is likely due to logistic regression producing extreme propensity scores when 200 covariates

are included in the estimation step, likely due to overfitting.

2.4.4.0.1 Complexities in the Population Outcome and Selection Models When evaluating the
IPTW weights by the different complexities in the population outcome and selection models, I found that all
methods produced acceptable weights below 2 (Figure 2.14) regardless of the condition. The only exception
to this was logistic regression, which produced extreme weights whenever complexities were introduced into
the population selection model. This effect was not seen when the base selection model only included the

main effects.
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2.4.4.0.2 Summary The results from the IPTW weight analysis showed that all machine learning ap-
proaches produced acceptable weights below 2.5, except for logistic regression, which produced extreme
weights in high-dimensional cases and when complexities were introduced into the population selection model.
Overall, these results suggest that all methods, except for logistic regression, are robust to the complexities

in the population outcome and selection models in producing acceptable IPTW's.

2.4.5 Power

Finally, I evaluated the statistical power of each method. Statistical power refers to the ability to
detect a significant treatment effect at a specified alpha level, usually .05. High power indicates a low rate
of type II error, meaning that the method can accurately detect real differences in the treatment effect.
However, factors such as sample and effect size also impact statistical power. In this simulation, the sample
size was fixed at 10,000, and the treatment effect was relatively small. The results of the power assessment
are summarized below, but it is important to note that the results should not be generalized outside of the

specific ATE of 0.3 used in this simulation.

In Figure 2.15, I display the results of the statistical power assessment, which was calculated based
on a standard alpha level of 0.05. The results were averaged across the various population treatment and
outcome models. In the low-dimensional condition, all methods were able to detect a significant treatment
effect; however, as the number of covariates increased, a decrease in power was observed. This decrease was
particularly pronounced for logistic regression, while the other machine learning methods showed a less steep

drop in power.
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2.5 Discussion and Conclusion

Quasi-experimental methods have gained popularity in educational research for estimating treatment
effects without randomization (Imbens & Rubin, 2015; Rubin, 2005). One such method is propensity score
weighting, which balances observed covariates between treatment and control groups using an estimated
propensity score. However, accurately estimating the propensity score model can be challenging, especially

in high-dimensional data settings (Hill et al., 2011).

The purpose of my study was to address the limitations in the existing literature on propensity
score estimation in high-dimensional data settings. I compared the performance of a DNN approach with
traditional logistic regression and other machine learning-based methods, including CART, bagged-CART,
and random forest, to provide valuable insights into these methods’ accuracy in estimating the population
ATE. I evaluated these methods’ performance under different covariate conditions and when complexities
were introduced into the treatment selection and outcome models. This evaluation is critical given recent
simulation studies have found that the presence of confounding variables and complexities in the treatment

selection and outcome models can significantly impact the accuracy of the estimated ATE (Cannas & Arpino,
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2019).

My results suggest that the choice of method for propensity score estimation should be based on
the context and dimensionality of the data. In low-dimensional settings (p=20), I found that most methods,
including logistic regression, produced accurate ATE estimates with little to no bias. However, as the number
of covariates increased, the magnitude of bias also increased, with logistic regression overestimating the ATE.
The other machine learning methods I tested produced less biased results, including CART, bagged-CART,

random forest, and the neural network-based approaches (NN-1, DNN-2, DNN-3).

In high-dimensional settings (p=200), logistic regression severely overestimated the true ATE. On
the other hand, the machine learning methods I tested, including the DNN-2 approach, could estimate
the true ATE with significantly less bias and better covariate balance. When choosing between DNNs
and bagged-CART, applied analysts should consider factors such as data complexity, presence of non-linear
relationships, computational resources, and the desired level of interpretability. DNNs may be better suited
for cases with more complex relationships, while bagged-CART may be preferred when interpretability is

crucial and computational resources are limited.

Traditional logistic regression may not be suitable for estimating the ATE in high-dimensional co-
variate conditions, especially in the presence of non-linearity and non-additivity. Machine learning-based
approaches, particularly DNNs, are promising alternatives. My findings align with other studies and empha-
size the importance of the bias and variability of the estimated ATE when selecting the optimal estimation
method. My study extends the literature by testing various methods with more complex and higher dimen-
sional data than previous studies on propensity score estimation (Cannas & Arpino, 2019; Lee et al., 2010;

Setoguchi et al., 2008).

Like other simulation studies, my study has limitations in terms of generalizability, meaning that my
findings may not necessarily generalize outside the tested scenario. Although this simulation is based on
real-world data from the Common App evaluation, making it more generalizable than simulations based on
arbitrary data pulls, further research is still needed to evaluate the performance of the DNN-2 approach and

other machine learning methods in different settings, including real-world datasets. To address this, I plan
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to include a real-world data example in my publication, demonstrating how the DNN approach and other

methods can be used to estimate treatment effects using actual data.

Another limitation of my study relates to inference. Although the DNN approach and bagged-CART
produced unbiased estimates and outperformed the logistic model in the high-dimensional context, their
coverage rates were suboptimal. This performance is likely due to the model-based SEs underestimating the
true empirical SE. To address this, I plan to conduct a follow-up analysis using bootstrapping to estimate the
SEs. Bootstrapping does not require assumptions of normality, which may be violated in high-dimensional
and complex data, leading to poor estimation of SEs even with robust sandwich estimation (Efron & Tibshi-
rani, 1986). This fact highlights the importance of considering the bias introduced in estimating SEs in any
simulation study using propensity score estimation with high-dimensional data. The literature around vari-
ance estimation in propensity score weighting is heavily debated, and my study contributes to this ongoing

debate.

Apart from the limitations mentioned earlier, it is essential to perform sensitivity analyses to assess
the robustness of the treatment effect estimates obtained from these methods. Procedures for conducting
sensitivity analyses is an area of ongoing research, and future work should focus on providing guidance for

applied analysts on how to perform sensitivity analyses with these approaches.

In conclusion, traditional logistic regression may not be suitable for estimating the ATE in high-
dimensional covariate conditions, especially in the presence of non-linearity and non-additivity. Machine
learning-based approaches, particularly DNNs, are promising alternatives. It is essential to consider the
limitations and challenges associated with these methods, choose the one best suited for the specific data
context, and perform sensitivity analyses to assess the robustness of the treatment effect estimates. By
doing so, researchers can make more informed decisions when estimating treatment effects and contribute to

a better understanding of the effectiveness of different educational interventions.

Moving forward, several steps can be taken to ensure that these machine learning-based methods
for propensity score estimation, such as DNNs, and their guidance are more accessible to applied research

audiences. First, future research should focus on the development of user-friendly software packages and
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tutorials that enable researchers to implement these methods without extensive programming knowledge.
Second, more comprehensive guidelines for selecting the best method based on data context and research
goals should be developed, including recommendations for model selection, hyperparameter tuning, and
diagnostics. Third, as mentioned earlier, sensitivity analysis should be an integral part of this research, and
guidelines for conducting sensitivity analyses with machine learning approaches should be established. By
addressing these needs, the research community can provide applied analysts with the necessary tools and

knowledge to make better-informed decisions when estimating treatment effects through observational data.
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3.0 Paper 2: When In-Person Support Is Not Possible, Can Virtual Outreach
Help? Evaluating the Impact of an Artificially Intelligent Conversational

Chatbot to Promote College Enrollment During the COVID-19 Pandemic

3.1 Introduction

In spring 2020, schools and colleges across the US began to shut down and pivot to remote learning
to protect students and their communities from the rapid spread of the COVID-19 virus. At the same time,
high school seniors who had applied to college before the pandemic began receiving acceptance notifications,
even though the pandemic’s impact on college enrollment was unknown. On the one hand, the COVID-19
crisis hampered business-as-usual operating procedures for colleges. As a result, students, particularly those
planning to live on campus during college, may have been more likely to postpone their college enrollment.
On the other hand, higher education is a counter-cyclical industry, such that college enrollment rates tend
to be higher during economic downturns. For recent high school graduates, the impact of the pandemic on
the retail and service sectors severely limited job opportunities. By April 2020, the unemployment rate in
the United States reached 14.5% — the highest rate recorded in recent history — with the service and retail
sectors experiencing the bulk of job losses. (US Bureau of Labor Statistics, 2021). As a result, college may

have become more appealing to young adults who would otherwise enter the workforce after high school.

To address this uncertainty, the Common Application (Common App), a non-profit organization
dedicated to assisting students with college applications, partnered with Mainstay, an EdTech company
focused on using behavioral intelligence for college access, and the College Advising Corps (CAC), a non-
profit that places recent college graduates as college counselors in underserved high schools. These partnered
organizations acted quickly to provide students with proactive outreach and guidance on college-going tasks
through an innovative, large-scale chatbot campaign. This outreach targeted around 174,000 US high school
students who were the first in their families to attend college and came from low-income families. The

majority (83%) of these students were also racially marginalized. Due to various systemic barriers, this
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subset of students were disproportionately likely to have had limited access to quality health care, living,
and working conditions during the pandemic (Hernandez et al., 2022; Ornelas & Solorzano, 2004; Oromaner
& Oakes, 1986; Soria et al., 2020). Additionally, this group of students were less likely to have ready access
to personalized college-going guidance and potentially stood to benefit from additional support during their

precarious college transition.

Over 38 weeks, an artificially intelligent (AI) chatbot named Oli sent students scripted messages on
various college search, application, and enrollment-related topics. Staff developed the scripted messages at
the Common App in collaboration with CAC. They included messages reminding students about upcoming
deadlines, such as “Hey , #CollegeSigningDay is this Friday, May 1st. Have you decided what school you're
going to attend?” To better target the information, Oli solicited information directly from students about
the types of resources they needed and pressing questions they had. The chatbot “learned” how to interact
with students by first having staff at the partnered organizations seed the chatbot with frequently asked
questions and answers. As Oli interacted with students, it built an ever-increasing knowledge base for
student questions that aided the chatbot in providing more targeted and individualized real-time responses.
As the intervention rolled out, Common App and CAC staff could monitor interactions and correct and add
to Oli’s knowledge base. Student questions that Oli could not answer were forwarded to college advisers at

the CAC, who would follow up directly with individual students.

In recent years, researchers have developed an interest in understanding how insights from behavioral
economics can inform strategies to support students to and through college (Oreopoulos, 2020, 2021). Several
of these studies have involved designing and testing proactive communication strategies using text messaging
as the primary mode of communication (Page & Scott-Clayton, 2016). Recent studies have investigated text
messaging communication employing artificially intelligent chatbot capability (Nurshatayeva et al., 2021; L.
Page et al., 2020; Page & Gehlbach, 2017). These studies have demonstrated that chatbots can be effective
in assisting students to complete pre-matriculation tasks and enroll in college (Nurshatayeva et al., 2021;
L. Page et al., 2020; Page & Gehlbach, 2017). However, there are numerous open questions regarding the
scalability of these chatbot interventions. Text nudge interventions have mixed results when implemented

at scale, with many studies finding minimal to no effects on college-related outcomes (Bird et al., 2021;
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Oreopoulos, 2020).

Therefore, my second dissertation study aims to contribute to the literature on the scalability of chat-
bot interventions by evaluating the large-scale chatbot campaign implemented by the Common App, College
Advising Corps, and Mainstay aimed at low-income, first-generation students. Specifically, 1 investigate
whether the college applications and enrollment rates were higher among students targeted for this chatbot
outreach compared to their observationally similar peers who were not targeted. In addition, I examine treat-
ment heterogeneity based on students’ application behavior, racial/ethnic identity, and the level of chatbot

engagement.

The remainder of the section is structured as follows: First, I review the relevant literature for this

study. Then, I describe the data and my analytic approach. Finally, I conclude with a discussion of findings.
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3.2 Literature Review

In this section, I review the literature on college access in general as well as during the COVID-19
pandemic. In addition, I draw on literature examining how behavioral text message nudge interventions and

chatbots can assist high school students in overcoming obstacles to college access.

Before reviewing the literature, I first define how I conceptualize first-generation students — students
whose parents do not have any postsecondary education experience — and the systemic barriers they face
in college access. 1 take an anti-deficit approach to my framing of first-generation students — many of
whom also tend to be economically and racially marginalized (Harper, 2010; Hernandez et al., 2022). Anti-
deficit practices explore how marginalized students persist in the face of social and structural barriers to
reframe students’ experiences from ones of struggling to ones of resiliency (Harper, 2010). Since most deficit
approaches focus on what students lack, anti-deficit strategies focus on what students bring that leads to their
resilience and persistence. Although I take an anti-deficit stance in my review of the literature, I recognize
that the majority of the existing literature on college access, especially that focuses on economically and

racially marginalized students, is written from a deficit perspective (McLewis, 2021).

It is important to acknowledge the structural and social barriers that lead to disparate postsecondary
outcomes for first-generation students. For example, economically and racially marginalized individuals face
structural barriers to accessing quality education, housing, and employment conditions . Decades of federal
redlining in housing and the policy of using local taxes to fund schools, for instance, produce racial and
socioeconomic disparities in educational opportunities and family wealth (Hernandez et al., 2022; Ornelas
& Solorzano, 2004; Oromaner & Oakes, 1986; Soria et al., 2020). In addition, racially marginalized students
face social and systemic barriers and federal policies that have historically limited their access to high-quality
primary and secondary education (Hernandez et al., 2022; McLewis, 2021; Ornelas & Solorzano, 2004). For
example, policies that funnel racially marginalized students into underserved schools with limited access to
college prep courses, and school tracking policies that exclude racially marginalized students from gaining
access to the college prep tracks that would qualify them to apply to college (Oakes & Rogers, 2007; Ornelas

& Solorzano, 2004; Oromaner & Oakes, 1986). As a result, disparities in college access and completion based
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on parental education, as well as social and structural barriers, are significant contributors to the rising

income inequality in the US.

3.2.0.1 College access and returns to a college education

Despite increased access to higher education over the past several decades, disparities remain in
college attainment by socioeconomic status and parental education (Dynarski, Page, et al., 2022; Dynarski,
Nurshatayeva, et al., 2022). Students whose parents have a college degree are more likely to attend college
than those whose parents did not complete high school (Avery et al., 2021; Dynarski, Page, et al., 2022).
Moreover, students from higher-income backgrounds are more likely to enroll and complete postsecondary
education than students from lower-resourced families (Garriott, 2020; Ornelas & Solorzano, 2004). By age
24, roughly 13% of students from the lowest family income quartile earn a bachelor’s degree, compared to

64% of students from the highest quartile (Institute, 1956).

Despite the rising cost of higher education, the non-pecuniary and long-term economic returns to a
college education remain positive (Dynarski, Page, et al., 2022). Adults with a bachelor’s degree typically earn
and accumulate more wealth than those without a degree (Dynarski, Page, et al., 2022). Higher education
is associated with lower unemployment rates, greater civic engagement, and better health outcomes Avery
et al. (2021). Nevertheless, the rate of economic return is higher for continuing education students —
students whose parents had some postsecondary education experience — than for first-generation students
(Fry, 2021) . Given that more than half of college students identify as first-generation (56%), substantial
policy efforts have focused on helping first-generation college-bound students enroll in college (Carrell &
Sacerdote, 2017; Herbaut & Geven, 2020; Page & Scott-Clayton, 2016). However, the COVID-19 pandemic
introduced unprecedented complexity to these efforts and substantially hindered college access for first-

generation students (Hoover, 2020).

3.2.0.2 College access during the COVID-19 pandemic

The COVID-19 pandemic added uncertainty to the lives of high school seniors planning to attend

college in the fall of 2020. In the early stages of the pandemic, one in every six recent high school graduates
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reconsidered enrolling in college, and nearly two-thirds expressed reservations about attending their first
choice institution (Howell et al., 2021). The most frequently cited reason for not enrolling at their first-

choice institution was concern about their family’s ability to pay for college (Howell et al., 2021).

Now, nearly three years into the pandemic, the adverse effects of the pandemic on college enrollment
have become clear. Enrollment for first-time undergraduates fell to historic lows in fall 2020, falling nearly
10 percentage points from fall 2019, with lower immediate college enrollment rates for students from low-
income schools compared to high-income schools, where low-income schools are defined as schools where at
least 50 percent of the students are eligible for free or reduced-price lunch (Clearinghouse, 2021). Further-
more, students from low-minority schools were more likely to enroll in college right away than those from
majority-minority high schools, defined as schools where at least 40 percent of students are Black or Latinx

(Clearinghouse, 2021).

A recent report from the College Board provides additional information about the detrimental effects
of the pandemic on college enrollment. Using data from nearly 10 million US students, the College Board
calculated high-level descriptives and regression-adjusted models to determine the proportion of fall 2020
enrollment rates attributable to COVID-19 (Howell et al., 2021). As a result of the pandemic, enrollment
rates at community colleges decreased by roughly 12 percentage points. Most concerning is the decline in

enrollment rates among first-generation, low-income students (Howell et al., 2021).

The decline in college enrollment rates for first-generation students is likely a result of the pandemic’s
disproportionate impact on racially and economically marginalized communities. During the pandemic,
these communities experienced reduced access to high-quality healthcare and working conditions and lowered
expected wages (Hoover, 2020; Lee et al., 2021; Molock & Parchem, 2022). Prior to the pandemic, the average
Black and Latino household had a net worth of approximately $17,000, while the average White household
held $171,000 (Center for American Progress, 2021). As a result, Black and Latino households may have
had a more challenging time adjusting to the economic shock caused by the pandemic. These households,
on average, have fewer liquid assets and wealth to cover unexpected expenses and wage loss (Center for

American Progress, 2021). This may have resulted in first-generation students — notably racially marginalized
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students — prioritizing immediate health and economic stresses, such as supporting their families financially
or dealing with lost wages, over college enrollment. Indeed, students from higher-income households were
far more likely to enroll in college immediately after graduation (65%) than those from low-income high
schools (49%) (Clearinghouse, 2021). Furthermore, first-generation students were nearly twice as likely to
be concerned about paying for education expenses in fall 2020 than continuing education students (Soria et
al., 2020). In sum, there has been an unprecedented change in college enrollment caused by the COVID-19
pandemic, particularly for first-generation, economically, and racially marginalized students. Next, I review

the literature on well-documented challenges to college access.

3.2.0.3 Challenges in college access

First-generation students face many barriers during the college application, financing, and enrollment
processes (Avery et al., 2021; Page et al., 2019; Page et al., 2022; Page & Scott-Clayton, 2016). To apply for
college, students must complete several complex tasks, including creating a list of colleges, deciding which
colleges to apply to, and applying for financial aid via a time-consuming financial aid application (the Free
Application for Federal Student Aid - FAFSA). Students typically obtain federal, state, and grant aid — aid
that does not have to be repaid — by completing the FAFSA form, which contains over 100 questions about the
students’ and their families’ financial assets. Several behavioral nudge interventions have demonstrated that
proactive outreach to students in completing the FAFSA increases college enrollment (Castleman & Page,
2014; Page et al., 2019; Page et al., 2022; Page & Scott-Clayton, 2016). Assisting students with FAFSA
submission is only half the battle. The FAFSAs of a subset of first-generation and low-income students are
selected for additional scrutiny through a federal auditing system, leading to lower college enrollment rates
among low-income, first-generation students (Guzman-Alvarez & Page, 2021). Additional obstacles remain

once a student accepts a college admission offer, notably during the summer before college.

The summer before college enrollment is fraught with additional obstacles to college enrollment
(Castleman et al., 2012, 2014; Castleman & Page, 2015), given that students must complete a number
of pre-matriculation administrative tasks before stepping foot on campus, such as submitting high school

transcripts, determining which and how much financial aid to accept, taking placement exams, and success-
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fully enrolling in courses (Castleman et al., 2012, 2014; Castleman & Page, 2014, 2015). If students fail to
complete these steps, they may ultimately fail to enroll in college, a process termed “summer melt” (Castle-
man et al., 2014; Castleman & Page, 2014, 2015). Summer melt affects 10 to 20 percent of all college-bound
high school students, with higher rates for first-generation, racial, and economically marginalized students.
Students who, due to an array of systemic barriers, have reduced access to information and support to help

them navigate these administrative tasks (Cataldi et al., 2018; Ives & Castillo-Montoya, 2020).

3.2.0.4 Unique challenges in college access among first-generation students

For first-generation students with limited family or school-based resources that can facilitate the
college application process, navigating these pre-matriculation tasks adds an additional layer of complexity.
Moreover, these students must navigate the transition to college while balancing work and family obligations
(Barber et al., 2020; Hernandez et al., 2022). First-generation students are more likely to attend schools
with fewer college prep or Advanced Placement (AP) courses, which have been linked to higher college
enrollment (Ornelas & Solorzano, 2004). Additionally, first-generation students are more likely to attend
schools with limited or no access to college counselors, who could assist students with completing college
applications and navigating the complex financial aid process (Castleman & Page, 2014; Naughton, 2021;
Page et al., 2019). Nevertheless, even when students do have access to a college counselor, these counselors
often manage high caseloads and cannot provide individualized support to students who would benefit the
most (Naughton, 2021). Therefore, many scholars have focused on developing interventions focused on
assisting these students with pre-matriculation tasks by providing access to individualized advising from a

professional college counselor (Castleman et al., 2012, 2014; Castleman & Page, 2014, 2015).

3.2.0.5 Importance of college advising

A large body of work has been conducted to assess the efficacy of behavioral interventions designed to
assist students in meeting the key steps and deadlines required to enroll in college. One favored approach is
to deliver targeted information about the college-going process to students through “low-touch” efforts such

as proactive text-based outreach or “high-touch” face-to-face college advising (Oreopoulos, 2020). Access to
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college advising can positively affect college enrollment and persistence (Arnold et al., 2015). Castleman et
al. (2012) provide one of the earliest pieces of evidence of the positive impact of providing proactive outreach
and support around key college-going tasks to low-income students during the summer prior to college. Using
a randomized trial, Castleman et al. (2012) demonstrate that access to “college-transition” counselors during
the summer before college increases students’ immediate college enrollment by 14 percentage points. These
counselors supported students in reviewing financial aid packages, addressing gaps in the aid they were
offered, and completing required pre-matriculation paperwork. One limitation of this study was that only
“choice” schools were included in their sample. Therefore, questions remained unanswered as to whether this

support was generalizable to public schools.

A follow-up study by Castleman, Page and Schooley (2014) provided evidence of the generalizability
of counseling support in public schools. The researchers conducted two college counseling interventions with
large urban public school districts that were more nationally representative in Boston and Fulton County,
Georgia. Like Castleman et al. (2012) the study provided high school seniors with college counseling support
in the summer before college. For example, counselors helped students develop a list of personalized tasks
they needed to complete to enroll in college in the fall. Counselors communicated with students using various
modalities, including in-person, text, phone, and email. Students who received proactive college counseling in
the summer before college increased their college enrollment by 8 to 12 percentage points among low-income

students.

According to Naughton (2021), the pandemic exacerbated pre-existing “cracks” in the ability to provide
students with advising services, transforming them into “craters.” This is primarily due to high schools
shifting from in-person to virtual advising. College advisors felt ineffective in providing virtual support and
guidance once high schools transitioned to virtual advising. Advisors’ ability to contact students was severely
limited, leaving students without support to help them transition to college (Naughton, 2021). Naughton
explains that advisers in high schools with higher college enrollment rates were significantly less affected than
those in high schools with lower college enrollment rates, i.e., the students who required the most assistance.
Therefore, strategies that bring virtual proactive outreach and support around critical college-going tasks

directly to students who require it most have the potential to improve college-going outcomes for students
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in these settings.

3.2.0.6 Behavioral nudge interventions

Behavioral nudge interventions have proven to be a low-cost means of providing college students
with counseling support (Oreopoulos, 2020; Page & Scott-Clayton, 2016). These interventions condense
complex information and deadlines into brief, to-the-point messages that are delivered to students via a
familiar mode of communication — text messages (Oreopoulos, 2020). In the context of college access, these
studies have focused on preventing “summer melt” by assisting students with well-defined but complex tasks
such as submitting financial aid applications, submitting high school transcripts, and registering for classes

(Castleman et al., 2012, 2014; Castleman & Page, 2014, 2015).

Castleman and Page have conducted several randomized controlled studies utilizing informational text
nudges to remedy summer melt (Castleman et al., 2014; Castleman & Meyer, 2020; Castleman & Page, 2014,
2015; Castleman & Page, 2016). For instance, Castleman and Page (2015) use a personalized text message
campaign that reminds students about key college-related tasks required to enroll in their receiving college
institution. In addition to reminders, students were invited to request follow-up support from a counselor via
text message. The text message campaign increased college enrollment by approximately 7 percentage points
among students with limited access to college access supports. The low-cost nature of these interventions
has increased interest in their use over the past decade (Oreopoulos, 2020). Recent studies have investigated
the scalability of text nudge interventions, with findings that have been much more mixed. A recent study
by Bird et al. (2021) suggests that nudges may fail when scaled up. Bird and colleagues investigated student
nudges using multiple modalities, such as email and text messages, to encourage students to complete the
FAFSA and enroll in college. This study is unique because it targeted nearly 800,000 students across the
US who used the Common Application or the Texas admission system. No form of outreach (email or text
message) increased financial aid receipt, college enrollment, or persistence. One possible explanation for this
finding is that scaling nudge campaigns can be difficult when implemented by a large organization, such as
the Common App, because students may lack a personal connection to a large organization, as opposed to

their local high school. In order to deliver nudges to a large number of students, the authors suggest that
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the messaging may be too “generic and one-way” and lack personalization, resulting in students not taking

actionable steps to enroll in college.

In a recent working paper, Page et al. (2022) hypothesize what factors may contribute to the
(in)effectiveness of informational text-based nudges in the college access space. Omne of their primary
arguments is that students may be more receptive to text-based nudging when the messaging focuses on
tasks and processes that are time-sensitive and have real consequences if not completed, such as resolving
a registration hold. In addition, they provide more nuance to the claim made by Bird et al. (2021) that
student messaging needs to be personalized to be salient to students. The ostensible sender of the messaging
matters. Students may be more receptive to outreach and communication delivered by organizations or
individuals that students know and trust (Debnam, 2017; Page et al., 2020). Recent studies have utilized

technological advancements to help bridge this personalization gap.

3.2.0.7 Chatbots in college access

Recent efforts in the literature on behavioral nudges have focused on utilizing artificial intelligence (AI)
chatbots to provide personalized assistance to students navigating college applications and enrollment. These
conversational chatbots can provide students with personalized information about deadlines and answers to
specific questions about the college application process. These bots are trained by college staff to develop
a “database” of answers to frequently asked questions regarding college attendance. Over time, the chatbot
“learns” how to respond to a broader range of student questions. Once trained and deployed successfully,

the chatbot can assist students with answering questions about vital college-going tasks and requirements.

To date, three empirical studies have demonstrated the effectiveness of chatbots on college access
(Nurshatayeva et al., 2021; L. Page et al., 2020; Page & Gehlbach, 2017). The first of these studies was
conducted by Page and Gelbach (2017) at Georgia State University (GSU). Page and Gelbach collaborated

’ a conversational

with GSU and an ed-tech startup (Mainstay; formerly AdmitHub) to develop “Pounce,’
chatbot. Pounce assisted students accepted to GSU with navigating pre-matriculation tasks. The chatbot

outreach led to a 3.3 percentage point increase in timely enrollment at GSU and helped students with

pre-matriculation tasks like signing up for orientation.
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A follow-up study at GSU (L. Page et al., 2020) shifted the focus of the chatbot outreach from helping
students enroll at GSU to supporting them once they arrived at GSU by assisting them in completing tasks
such as resolving registration holds and seeking campus-based resources. A novel aspect of this randomized
study was its focus on the main campus of GSU-Atlanta, a four-year university, and the Perimeter campus of
GSU, a two-year college. The chatbot effectively changed student behavior regardless of institution type when
outreach addressed serious and time-sensitive administrative processes, such as resolving registration holds.
In contrast, outreach was ineffective when chatbots assisted students with “non-urgent” tasks, such as gaining
access to supplemental, academic, social, and career-related support. This study demonstrates that chatbot
interventions work best when they target discrete, time-sensitive, and well-defined tasks. These findings are
consistent with previous text-nudge interventions in which students were less responsive to nudges related
to less time-sensitive tasks such as future job prospects (Oreopoulos, 2021). It is important to note that the
previously mentioned studies occurred within the GSU system. Consequently, it was unknown whether the

positive effects of chatbot interventions could be replicated in institutions outside the GSU system.

Nurshatayeva et al. (2021) argue that the effectiveness of chatbot interventions are context-dependent.
Nushatayeva and colleagues replicate the work of Page and Gelbach (2017) using “PeeDee,” a chatbot at
East Carolina University (ECU). This study provides additional evidence of treatment heterogeneity by de-
termining for which students and under what circumstances the intervention was most effective. Researchers
were primarily interested in the use of PeeDee to improve students’ completion of pre-matriculation tasks
and their eventual enrollment at ECU. They find no overall effect of the chatbot on college enrollment but
did find an impact on loan acceptance. Students in the treatment group had an 8 percentage point increase
in accepting a student loan compared to the control group. Nushatayeva et al. attribute the null overall
results on college enrollment to ECU’s comparatively more affluent student body. The authors did find
that the chatbot increased enrollment at ECU and course enrollment by 3 percentage points, specifically for
first-generation students. This positive effect is likely a result of first-generation students receiving crucial

information regarding college enrollment tasks that they cannot obtain through familial support.

Collectively, these studies demonstrate that chatbots can help to improve student success with the

transition to college. Nevertheless, chatbot-based nudges are not effective in all contexts. These interventions
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appear most effective when chatbots assist students with time-sensitive, actionable tasks, such as clearing
registration holds, rather than “non-urgent” tasks, such as searching for on-campus resources. In addition,
the sender of the messages matter. Students appear most receptive to communication and messaging from a
source they know and trust. Text-based nudge interventions in which the ostensive messenger is well-known
to the student or affiliated with a receiving institution — such as Pounce at GSU — have relatively low opt-out
rates (5 percent). In contrast, when the messaging comes from a less well-known messenger, the opt-out
rates are significantly higher, as high as 25 percent. These findings are consistent with the results of the
more mature literature on general nudges in college access — context matters. Yet, little is known about the
scalability of these interventions, such as at the national level, where hundreds of thousands of students are

targeted.

Therefore, my second dissertation study contributes to the literature on the scalability of chatbot
interventions by evaluating the large-scale chatbot campaign implemented by the Common App, College

Advising Corps, and Mainstay aimed at low-income, first-generation students.
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3.3 Data

We leveraged several different data sources to evaluate the effectiveness of the outreach campaign.
First, we utilized administrative records from the Common App, which provided a rich data source of any
information a student provided on their Common App application, including student demographics, high
school academic achievement, and college entrance exams. Second, Mainstay provided access to the data
from the chatbot platform utilized to provide outreach to students. This platform captured rich data on
the content and timing of the chatbot communication among students, the chatbot, and CAC advisers.
Using the Mainstay data, we generated variables that captured student opt-out requests and engagement
throughout the intervention. Finally, we matched students in our analytic file to data from the National
Student Clearinghouse (NSC) to observe if and where students enrolled in college in fall 2020 and persistence

in subsequent terms.

In order to evaluate the effectiveness of the outreach campaign, our analysis relied on matching
students selected to receive outreach to similar students in the same high school who were not selected for
outreach. Common App and partners selected for outreach all students from the high school class of 2020
who had created a Common App account and met two specific criteria: 1) they would be first-generation
college students, and 2) they had a low family income, as indicated by qualifying for a Common App fee
waiver. In particular, some Common App students met one but not both criteria for inclusion in the outreach
(i.e., first-generation college student or qualified for a fee-waiver). We use these students as our key source
of comparison in the analyses. Therefore, our outreach (“treatment”) group includes students who met
both inclusion criteria (i.e., first-generation college student and qualified for a fee-waiver) while our control

students met one but not both criteria.

From the Common App we received student-level data for the entire cohort of students who had created
a Common App account and had intended to apply to college — hoping to enroll in fall 2020 — including
students who were selected for the outreach (n = 173,776) and those who were not (n = 1,229,232), for a
total of nearly 1.5 million student records. Once we cleaned the data, we reduced our analytic sample to

include students who lived in the US, had a valid cell phone number, and attended a high school where at
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least one student was targeted for outreach. Our final analytic sample included nearly half a million students
(N =406, 236), including 142,837 students who were targeted for outreach and 263,399 who were not treated

and therefore qualified as potential control students.

3.4 Method

3.4.1 Propensity Score Matching

It is important to note that the outreach team did not randomly assign the outreach for this campaign.
Randomly assigning the outreach would ensure that students who received the outreach and those who did
not would be balanced on both observable and unobservable characteristics. Given the lack of randomization,
a simple comparison of outcomes between students who received the outreach and those who did not may
— incorrectly — conclude that the outreach affected the outcome. To guard against this to the fullest extent
possible, we matched students in the outreach group to demographically similar students in the same high
school who were not treated. These matched students are then observationally similar to students in the
outreach group and, therefore, a reasonable comparison group. Analytically, we do this via propensity score

matching.

Our matching approach relies on estimating a propensity score, which is the conditional probability
that a student would have been exposed to treatment, conditional on a set of observable characteristics. We
then use this propensity score to match treated students to control students with similar estimated propensity
scores, resulting in a control group that is demographically similar to the outreach group. Propensity score
matching allows us to more accurately evaluate the impact of the outreach than a simple comparison of

outcomes between those students who received the outreach and those who did not.

Specifically, we estimate a propensity score model of the following general form Equation 3.1:

Outreach;, = By + 1 X + A\ (3.1)

Where Outreach represents a binary indicator coded as 1 for students who received the outreach and
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0 if a student did not. X is a vector of student-level characteristics. These include age, gender, English
spoken at home, dependent flag, number of high schools attended, high school GPA, SAT/ACT performance,
college credit exams count, TOEFL indicator, sibling college indicator, submitted at least one Common App

application before start of outreach, and race/ethnicity indicators.

To increase balance on our covariates, we placed additional restrictions on our matching algorithm to
exact match on specific variables. A represents a vector of covariates on which we exact matched students.
These include students’ high school, underrepresented minority indicator, an indicator for submitting at least
one Common App application before the start of outreach, and missing indicators for high school GPA and
SAT/ACT performance. Exact matching on these variables allows us to match outreach students to control
students who exactly match them on the predefined set of variables. For example, exact matching on high
school forces the matching algorithm to only find potential matches for treated students within the same
high school. This allows us to control for the fact that students across different high schools have varied

school experiences; therefore, matching within schools provides more reasonable matched control students.

Given our nearest-neighbor matching approach, one control student can be a perfect match for more
than one treatment student. Therefore, we allowed the matching algorithm to match an outreach student
to multiple control students (i.e., matching with replacement). Additionally, we restrict matches to within
.50 standard deviations of a propensity score. This allows us to guard against having treatment students

matched with control students with a large difference in propensity scores (Guo et al., 2014).

To examine how well our matching procedure balanced student characteristics, we look at the overall
distribution of the propensity score among treatment and untreated students and covariate balance before
and after matching. Figure 3.1 presents the propensity score distribution between treatment and control
students before and after matching. Overall, our matching procedure did an excellent job of matching treated
students to control students, as indicated by the overlap in the distributions on the right panel in Figure 3.1,
indicating that our matched sample has propensity scores that fall within the region of common support

(Bai, 2011).

In addition to analyzing the distributional differences in the propensity score, we also looked at baseline
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characteristics between treatment and control before and after matching. Table 3.1 compares balance of
student characteristics before and after matching. Owverall, control group students (who are either “low-
income” or “first generation” but not both) had higher GPA class rank (70.1% vs. 64.3%) and SAT scores
(794.9 vs. 671.3) than treatment group students (who are both “low-income” and “first generation”). The
treatment group also included a substantially larger percentage of minority students (28% Black and 41%
Latinx) than the control group (19% Black and 23% Latinx). We achieve excellent balance on all covariates
included in our matching approach, with no standard mean difference below 0.1 (Rosenbaum & Rubin, 2022).
Our final matched sample includes a treatment group consisting of 99,593 students and a matched control

of 61,553.

Finally, we modify our primary propensity score model to explore variation in outreach impact on
college enrollment by students’ application behavior, racial/ethnic subgroups, and level of engagement with

the chatbot. Where this is the case, we rerun our matching algorithm within our subgroup of interest.

3.4.2 Outcome Model

We ran a series of regression models to estimate the relationship between outreach and student out-
comes. Specifically, we regressed each outcome on an outreach indicator and student-level characteristics,

including matching weights.

Our regressions took the following general form Equation 3.2:

Y., = By + f1Outreach,, + X0 + X\, + ¢€;, (3.2)

Where Y, represents our outcome of interest for student ¢ in school s. Qutreach is a binary indicator
coded as 1 for students who received the outreach and 0 if a student did not. X is a vector of student-level
characteristics such as age and gender. In addition, we included high school fixed effects (), which soak up
any remaining variation in the outcome due to differences across high schools. j; is our coefficient of interest
and represents the mean controlled difference in the outcome between those who received the outreach and

those who did not. We clustered our robust standard errors at the high school level.
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Although we took a robust matching approach in constructing our control group, there could still be
differences between our outreach and control group on student-level characteristics. Therefore, by including
the same vector of student-level covariates (X) as was included in Equation 3.1, in our regressions, we
can account for any remaining imbalance between student characteristics that we observe and increase the
precision of our impact estimates. This approach is commonly referred to as a “doubly robust” approach

(Rosenbaum, 2010).

In order to account for our nearest-neighbor matching approach with replacement, we include matching
weights (w) in our regression models. Where within each matched group — which includes at least one treated
unit and at least one control unit — each treated unit gets a w = 1, and each control unit is given a preliminary
weight of w = ny;/n,; , where n,; is the number of treated units in matched group ¢ and n,; is the number
of control units in matched group . Then each control unit’s weight is added up across the groups in which

it was matched and scaled to sum to the number of uniquely matched control units.

82



3.5 Limitations

The main limitation in our analysis is our ability to attribute a causal relationship between the
outreach and the effects we estimate. Given that students were not randomly assigned to the outreach, we
cannot make causal claims about the effectiveness of the outreach. However, our robust matching approach
allows us to reduce some — but not all — the bias that could exist in explaining the relationship between
receiving outreach and outcomes. Note that we are only matching on observable characteristics. There could
be unobservable characteristics that the matching procedure cannot consider that could influence outcomes

absent the intervention.

Furthermore, important observable differences do remain between the outreach group and the com-
parison group, even after matching. Students selected for outreach were first-generation and low-income,
while control students were either first-generation or low-income. The outreach team selected students in
this manner to reach as many students as possible, specifically students who would likely benefit from this
sort of outreach. Although this was a wise approach for targeting students in need of support, it created
some analytic obstacles for our impact analysis that cannot be remedied through matching. In particular,
in any matched pair of low-income students, the treatment group student is first-generation and the control
group student is not, and similarly, in any matched pair of first-generation students, the treatment group

student is low-income and the control group student is not.

Students in the outreach group have two factors that — due to an array of systemic issues — may disad-
vantage them in terms of college enrollment. Therefore, we may expect that — even absent the intervention —
students in the outreach group likely have lower college enrollment rates than those who did not receive the
outreach. Given how the outreach groups were defined, we cannot observe college enrollment outcomes for
control students who were first-generation and low-income, which would be the natural comparison for our
outreach group. This is because, for the class of 2020, the intervention was targeted to all students who met
these two criteria. After presenting our findings, we discuss two different strategies we used to investigate
what the differences between these two groups might have been absent the chatbot outreach. Overall, we

find that students who met both factors had somewhat lower enrollment rates than those who exhibit only
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one of the two factors.
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3.6 Results

We primarily focus on college application submission and enrollment in the fall term after students
graduate high school as our primary outcome of interest. Additionally, we analyzed whether effects varied
according to student characteristics and engagement in chatbot communication. We specifically look at
impacts for racially marginalized students, students who opted out of the chatbot outreach, and students

who had a high level of engagement with the chatbot.

3.6.1 College Application Submission

Table 3.2 shows the impact of the outreach on submitting at least one college application via the
Common App. Students targeted for outreach had somewhat lower application submission rates than their
matched controls. 86.1% of the control group submitted at least one college application, while 84.7% of
outreach students did so. This differential is equal to around -1.5 percentage points and is statistically

significant.

Next, we analyzed whether impacts varied based on whether a student submitted at least one college
application before or after the start of the intervention. The outreach had no impact on submitting at least
one application prior to the start of the intervention, as expected. However, outreach students were less

likely to submit an application after the start of the intervention (-1.3 percentage point difference).

3.6.2 Overall College Enrollment

Next, we present the effects on college enrollment outcomes (Table 3.3). Students in the outreach
group had somewhat lower fall 2020 enrollment rates compared to the control group. 76.7% of students in
the outreach group enrolled in college in fall 2020, compared to 78.7% of control students, a 2 percentage

point differential. We observed effects of a similar magnitude across all other terms.

Additionally, we explored if the outreach impacted whether a student took a gap semester or year.
The outreach did not seem to impact whether students took a gap semester. However, we observed a slight

increase in outreach students taking a gap year. Oli and the CAC advisors provided no information or
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advice about taking time off before enrolling in college, so it seems unlikely that the outreach influenced

these choices given the underlying uncontrolled differences between treatment and control groups.

We further unpacked enrollment impacts by subsetting our sample to only students who had submitted
no college applications prior to the start of the intervention. Given the timing of the outreach in late spring,
these students missed most of the college application deadlines and therefore could benefit from this kind of

outreach. However, the outreach had no impact across all enrollment outcomes (Table 3.4).

3.6.3 Fall 2020 College Enrollment

The Common App and its partners were primarily interested in immediate college enrollment after
students completed high school. Therefore, we analyzed the impact of the outreach on fall 2020 enrollment by
4-year versus 2-year institutions, private versus public, and full-time enrollment (Table 3.5). The somewhat
lower enrollment we observed for outreach students compared to students who did not receive the outreach
was likely driven by students forgoing enrolling in 4-year institutions — specifically 4-year privates (-3.3
percentage point difference) — and enrolling in 2-year institutions (1.9 percentage point difference). The CAC
advisors sometimes suggested two-year colleges to students who expressed concerns about college affordability

but did not otherwise take any position on choosing between a two-year and a four-year college.

Additionally, outreach students had lower full-time enrollment rates (63.9%) than control students

(66.8%).

3.6.4 Racially Marginalized Students

Next, we examined whether the outreach had a differential impact on students who belonged to a
racially marginalized group. We defined a student as racially marginalized if a student self-identified as

non-white or bi/multi-racial.

In Table 3.6 we present the impact of the outreach on fall 2020 college enrollment outcomes. We
observed impacts of a similar scale as the entire sample. Racially marginalized students in the outreach

group had relatively lower fall 2020 enrollment. There was a modest negative difference in enrollment in
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fall 2020 of around 2.1 percentage points, specifically driven by outreach students not enrolling at 4-year
institutions by around -4.4 percentage points, but instead enrolling at 2-year institutions (2.2 percentage

point difference).

3.6.5 Outreach Participation

Using data from Mainstay regarding student engagement with the bot, and whether students decided
to opt-out of receiving outreach from Oli, we constructed high engagement and opt out measures. Specifically,
we defined high engagers as a student in the top 25th percentile of the total number of text messages sent
throughout the outreach. We created the opt-out indicator by flagging students who explicitly messaged
“STOP” to Oli at any point during the outreach or received a “goodbye” message from Oli, indicating that

the student had requested to opt-out .!

3.6.6 Opt-Out

Throughout the outreach campaign, students had the option to opt-out of receiving outreach by
directly messaging Oli. Around 16% of students requested to opt out. In Table 3.7 we examine to what
extent impacts varied among students who opted out. Across all outcomes, we see no effect on college
enrollment. This finding is not surprising, given that most of the students who opted out did so in the first

few weeks of the intervention and therefore received little to no communication from the chatbot.

3.6.7 Oli Engagement

A final question we explored was whether impacts varied for those who engaged highly with Oli, i.e.,
those in the top 25th percentile of total messages sent throughout the outreach. Due to the low engagement
throughout the intervention, a student who sent more than 9 messages was flagged as a “high” engager,

which equaled around 17% of all outreach students.

Table 3.8 presents results for students with high engagement throughout the outreach. As opposed to

our overall modest negative impacts for the whole sample, here we found a slightly positive impact on fall

IDue to data quality issues, we received text message data for 70% of the outreach group. Furthermore, engagement across
the intervention was relatively low. On average, students sent around 8 messages throughout the 38 weeks of the outreach.
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2020 enrollment for highly engaged students, around a 3 percentage point improvement over the matched
controls. Students who engaged with Oli at a high rate were, on average, more likely female, came from a
racially marginalized group, and had slightly lower SAT/ACT performance than students who didn’t have
high engagement with the chatbot. Furthermore, these students also had higher rates of college application

submission than non-highly engaged students.
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3.7 Results in Context

We want to underscore that important, observable differences remain between the outreach group and
the comparison group — even after matching. As mentioned previously, the students selected for outreach
were first-generation and low-income, while the control students were first-generation or low-income. This

presented analytic obstacles in estimating outreach impacts.

In this section, we outline two different strategies we took to investigate what differences between

these two groups might have been absent the chatbot outreach.

3.7.1 High School Longitudinal Study of 2009

First, we used the High School Longitudinal Study of 2009 (HSLS-09), a nationally representative
sample of 9th graders in 2009 who were observed through 2016. The HSLS-09 dataset includes information
on college-going. We subsetted the HSLS-09 data to a sample of students who had indicated college interest
in 9th grade and had submitted at least one college application. This allowed us to mimic — although

imperfectly — our 2020 Common App cohort of students who were college intending.

Next, we calculated enrollment differentials for first-generation and low-income students and first-
generation or low-income students. In our 2020 cohort, low-income was defined as qualifying for a Common
App fee waiver. Given the information available in the HSLS-09, we defined low-income as a student’s family

income falling below 130% of the poverty line (i.e., qualified for free or reduced lunch).

Overall, we found that students who were first-generation and low-income had lower college enrollment
rates than students with only one of those characteristics. Students who were first-generation and low-income
had a college enrollment rate of 79.1%. In comparison, students who exhibited only one of these factors had

an enrollment rate of around 84.2% (a -5.1 percentage point difference).

Drawbacks of relying on the HSLS-09 as a source for informing this differential include its age (it
observes a cohort of students who completed high school several years prior to 2020) and differences in how
we define the subsample of students, relative to the focal groups of interest in our analysis of the Common

App data.Therefore, we turn to another data source to generate an additional comparison.
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3.7.2 Common App 2021 Cohort

During the 2021 school year, Common App conducted an unrelated randomized controlled study
(RCT) with a cohort of students similar to our 2020 sample. We were able to capitalize on the sample
employed in this RCT to further investigate enrollment differentials. We worked with Common App to receive
high-level descriptives for the cohort of students who did not receive the 2021 intervention. Specifically, we
examined fall 2021 enrollment overall and disaggregated by 4-year versus 2-year institutions for students
in the 2021 study control group. These differentials allowed us to observe enrollment outcomes for first-
generation and low-income students and first-generation or low-income students from the class of 2021.
Unlike the HSLS-09 dataset, the 2021 Common App dataset allows us to define low-income similarly to our

2020 cohort (i.e., qualified for a Common App fee waiver).

Overall, we found that students who met both factors had somewhat lower enrollment rates than those
who exhibit only one of the two factors. Students who were both first-generation and low-income had a fall
2021 enrollment rate of 72%, while students who only exhibited one of these factors had a 73% enrollment

rate (a -1 percentage point difference).

Ideally, we would have matched students in our 2020 sample to demographically similar students in
the 2021 sample, allowing us to estimate the group differentials and adjust our impact estimates directly.
Unfortunately, this was not possible due to data sharing agreements. However, we were able to reduce the
2021 sample to students who attended high schools in our final matched 2020 sample. We found a similar

enrollment differential in fall 2021 of around -1 percentage point.

Based on the differentials of both these data sources, we conclude that — absent any intervention —
students who are first-generation and low-income have lower college-going rates than those who only hold
one of those identities. Therefore, we reason that absent the intervention we would expect that students in
the outreach group would have lower college enrollment rates than the comparison group, with differences on
the order of -1 to -5 percentage points. These differences suggest that to find a positive effect, the impact of
the outreach would have had to be larger than these differentials. Therefore, the modest negative enrollment

for outreach students we estimate for the entire sample (-2 percentage points) likely reflect these differentials
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— and not — detrimental effects of the chatbot outreach.
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3.8 Discussion and Conclusion

The outreach undertaken by Common App and its partners cast a wide net in hopes of helping students
through the typically challenging transition to college during the uncertainty of the COVID-19 pandemic.
As part of our investigation we investigated whether the outreach improved students’ college-going outcomes.
The core analytic approach to our analysis relied on comparisons between observationally similar students
who nevertheless differed in a critical way. Those in the treatment group were both first-generation and from

low-income households. Those in the comparison group had one but not both of these characteristics.

Historical evidence suggests that low family income and status as a first-generation college student
serve as complementary risk factors for not enrolling in college. On average, high school seniors who are
first-generation and low-income are less likely to enroll in college than those who are either first-generation

or low-income but not both.

While the design choice to provide outreach to all students in the graduating class of 2020 directed
services to the subgroup of students that were likely most at risk in the early stages of the pandemic, it also
adds an additional layer of complexity to the task of evaluating the effect of this outreach. Since students
with two risk factors all received outreach, any contemporaneous comparison group will consist of students

facing fewer barriers on average to college enrollment.

In the absence of outreach, students in any comparison group can be expected to be more likely to
enroll in college than those selected for the intervention. That is, a typical “treatment” vs. “control” group
comparison likely leads to bias and an underestimate of the effects of the outreach on college enrollment.
The large size of the intervention and the availability of Common App data for students who were not offered
outreach enabled us to estimate the difference in enrollment rates for “treatment” vs. “control” groups with
standard errors well less than 1 percentage point. Still, large sample sizes cannot compensate on their own

for underlying differences in these two groups of students.

We used propensity score matching to create an analysis sample of students who received outreach
that is best suited for comparison to a similar group of students who were not offered outreach. More

specifically, our matching procedure identified pairs of students who did and did not receive outreach where
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each pair attended the same high school and are broadly similar in terms of six demographic variables and
four academic indicators. To the degree that first-generation and low-income students face greater barriers
than first-generation or low-income students do, using these variables in the matching procedure should
help to reduce the underlying difference in college enrollment rates for treatment and control group students
expected in the absence of the intervention. Nevertheless, we still anticipated that within each matched pair,
the student who received outreach would face greater barriers to college enrollment and that a comparison

of enrollment rates for those in matched pairs would still underestimate the effect of advising.

Despite these challenging issues, it was still quite plausible that our evaluation would find statistically
significant evidence that virtual advising increased college enrollment in 2020. One recent multi-district
study estimated a 5.2 percentage point increase in four-year college enrollment as the result of text-based
FAFSA outreach and support from students’ own high school counselors (Avery et al., 2021). An effect of
that size could well have been enough to provide a positive and significant result in this study. On the other
hand, recent studies of similar outreach and support implemented at scale have found much smaller effects
of virtual advising than in-person advising designed to deliver the same kind of support (Avery et al., 2021;
Phillips & Reber, 2022). Overall and based on our empirical results, we conclude that the chatbot campaign
had no impact on the targeted class of 2020 students submitting college applications or enrolling in college.
The limited engagement of students with the bot likely explains these results. While some students were
asking the bot important questions about how to enroll in college, decipher financial aid letters, and choose
a major, most students did not message Oli in substantively meaningful ways. On average, students sent
8 text messages throughout the 38 week intervention, while 2.5% of students messaged a CAC adviser. A
sizable portion of the study population-16%-opted out of the intervention and thus did not receive all of
Oli’s guidance. However, there was evidence to suggest that the chatbot had a positive impact on college
enrollment for students who were highly engaged with the bot during the intervention. This group of highly
engaged students may warrant further investigation, as they could shed light on what types of conversations
with the bot were most helpful in supporting their postsecondary transition. However, with an intervention
that cast such a wide net and that provided relatively general guidance related to college-going processes, it

is perhaps unsurprising that the overall effects of the outreach were null.
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Taken together, we reasoned that this outreach faced an uphill battle to improve outcomes beyond the
differentials that exist absent the intervention. Even though we cannot know what the true causal impact
of the outreach was, the evidence we gathered leads us to conclude that the outreach likely neither helped

nor harmed students in applying to and enrolling in college.
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3.9 Tables and Figures
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Table 3.1: Balance of Student Characteristics

Before After
Matching Matching
Treatment Control Std.Mean.Diff Treatment Control Std.Mean.Diff

Age 17.082 17.023 0.118 17.05 17.025 0.050
Male 0.363 0.376 0.029 0.369 0.357 0.024
English 0.562 0.558 0.009 0.569 0.573 0.009
spoken at
home
Has 0.011 0.007 0.042 0.009 0.009 0.008
dependent
Attended > 0.181 0.161 0.041 0.164 0.166 0.003
1 High
School
GPA rank 0.643 0.701 0.150 0.698 0.705 0.018
Missing 0.238 0.207 0.071 0.178 0.178 0.000
GPA rank
SAT score 671.3 794.868 0.230 712.224 712.861 0.001
Missing SAT 0.376 0.317 0.122 0.347 0.347 0.000
Score
College 0.708 1.135 0.222 0.806 0.848 0.022
credit exams
TOEFL 0.000 0.001 0.093 0.000 0.000 0.009
Sibling 0.337 0.387 0.105 0.353 0.345 0.017
attended
college
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Before After

Matching Matching
Submitted 0.777 0.796 0.044 0.853 0.853 0.000
one college
application
before
outreach
American In- 0.005 0.003 0.021 0.003 0.003 0.003
dian/Alaskan
Native
Asian 0.084 0.091 0.027 0.096 0.093 0.010
Black 0.28 0.185 0.213 0.287 0.307 0.045
Latinx 0.41 0.231 0.364 0.408 0.396 0.023
Native 0.003 0.002 0.011 0.002 0.002 0.011
Hawai-
ian/Pacific
Islander
White 0.169 0.383 0.570 0.164 0.164 0.002
Multi-racial 0.044 0.051 0.031 0.036 0.031 0.025
Race 0.004 0.026 0.328 0.003 0.004 0.006
unknown
Non-resident 0.000 0.028 4.261 0.000 0.000 0.042
URM 0.826 0.563 0.694 0.833 0.833 0.000
Num.Obs 142,827 263,299 99,593 61,553
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Table 3.2: Impacts on Submitting at Least One College Application

Overall Before outreach After outreach
Application Differential -0.015%** 0.004 -0.013%**
(0.003) (0.003) (0.002)
Control Mean 0.861 0.848 0.036
Num.Obs. 161146 161146 161146
R2 0.318 0.324 0.079
FE: school id X X X

*p < 0.05, ** p < 0.01, ¥* p < 0.001 Notes: Analyses include school-level fixed effects and sampling
weights to account for our propensity score matching approach with replacement. Baseline covariates include
fee waiver indicator, first-generation status, age, gender, English spoken at home, dependent flag, attended
more than one high school, high school GPA, SAT/ACT performance, college credit exams count, TOEFL
indicator, sibling college indicator, and race/ethnicity indicators. Additionally, we included indicators of
missingness for high school GPA and SAT/ACT performance. Robust standard errors clustered at the

school level, reported in parentheses.
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Table 3.3: Impacts on College Enrollment Outcomes, by Term

Gap
Fall 2020 Spring 2021 Fall 2021 Spring 2022 semester Gap year

Enrollment -0.020%** -0.031*** -0.033%%* -0.038%** 0.003 0.004**
Differential

(0.004) (0.005) (0.005) (0.005) (0.002) (0.002)
Control 0.787 0.724 0.701 0.648 0.024 0.023
Mean
Num.Obs. 161146 161146 161146 161146 161146 161146
R2 0.155 0.177 0.179 0.194 0.073 0.079
FE: X X X X X X
school _id

*p < 0.05, ** p < 0.01, ¥* p < 0.001 Notes: Analyses include school-level fixed effects and sampling
weights to account for our propensity score matching approach with replacement.Baseline covariates include
fee waiver indicator, first-generation status,age, gender, English spoken at home, dependent flag, attended
more than one high school, high school GPA, SAT/ACT performance, college credit exams count, TOEFL
indicator,sibling college indicator, submitted at least one CommonApp application before start of interven-
tion, and race/ethnicity indicators. Additionally, we included indicators of missingness for high school GPA
and SAT/ACT performance.The gap semester outcome is a binary indicator coded as 1 if a student did not
enroll in Fall 2020 but did enroll in Spring 2021. The gap year outcome is also a binary indicator coded as
1 if a student did not enroll in Fall 2020 or Spring 2021, but did enroll in Fall 2022. Robust standard errors

clustered at the school level, reported in parentheses.
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Table 3.4: Impacts on College Enrollment Outcomes, by Term - Submitted No Application Prior to Inter-
vention

Gap
Fall 2020 Spring 2021 Fall 2021 Spring 2022 semester Gap year

Enrollment 0.008 0.030 -0.007 0.016 0.001 0.000
Differential

(0.016) (0.016) (0.016) (0.016) (0.006) (0.006)
Control 0.683 0.605 0.593 0.528 0.036 0.041
Mean
Num.Obs. 14842 14842 14842 14842 14842 14842
R2 0.311 0.338 0.337 0.344 0.224 0.248
FE: X X X X X X
school id

*p < 0.05, ** p < 0.01, ¥* p < 0.001 Notes: Analyses include school-level fixed effects and sampling
weights to account for our propensity score matching approach with replacement.Baseline covariates include
fee waiver indicator, first-generation status,age, gender, English spoken at home, dependent flag, attended
more than one high school, high school GPA, SAT/ACT performance, college credit exams count, TOEFL
indicator,sibling college indicator, submitted at least one CommonApp application before start of interven-
tion, and race/ethnicity indicators. Additionally, we included indicators of missingness for high school GPA
and SAT/ACT performance.The gap semester outcome is a binary indicator coded as 1 if a student did not
enroll in Fall 2020 but did enroll in Spring 2021. The gap year outcome is also a binary indicator coded as
1 if a student did not enroll in Fall 2020 or Spring 2021, but did enroll in Fall 2022. Robust standard errors

clustered at the school level, reported in parentheses.
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Table 3.5: Impacts on Fall 2020 College Enrollment Outcomes

4-year

Fall 2020 4-year 4-year public private 2-year Full-time
Enrollment -0.020%** -0.040%** -0.007 -0.033%%* 0.019%** -0.029***
Differential

(0.004) (0.005) (0.005) (0.004) (0.003) (0.005)

Control 0.787 0.671 0.457 0.217 0.121 0.668
Mean
Num.Obs. 161146 161146 161146 161146 161146 161146
R2 0.155 0.207 0.173 0.141 0.145 0.175
FE: X X X X X X
school _id

*p < 0.05, ** p < 0.01, ¥* p < 0.001 Notes: Analyses include school-level fixed effects and sampling
weights to account for our propensity score matching approach with replacement. Baseline covariates include
fee waiver indicator, first-generation status, age, gender, English spoken at home, dependent flag, attended
more than one high school, high school GPA, SAT/ACT performance, college credit exams count, TOEFL
indicator, sibling college indicator, submitted at least one CommonApp application before start of interven-
tion, and race/ethnicity indicators. Additionally, we included indicators of missingness for high school GPA

and SAT/ACT performance. Robust standard errors clustered at the school level, reported in parentheses.
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Table 3.6: Impacts on Fall 2020 College Enrollment Outcomes - Racially Marginalized Students

4-year

Fall 2020 4-year 4-year public private 2-year Full-time
Enrollment -0.021%** -0.044%** -0.007 -0.037#%* 0.022%** -0.034***
Differential

(0.005) (0.006) (0.007) (0.006) (0.004) (0.006)

Control 0.784 0.661 0.452 0.212 0.129 0.661
Mean
Num.Obs. 97537 97537 97537 97537 97537 97537
R2 0.160 0.213 0.181 0.144 0.152 0.180
FE: X X X X X X
school _id

*p < 0.05, ** p < 0.01, ¥* p < 0.001 Notes: Analyses include school-level fixed effects and sampling
weights to account for our propensity score matching approach with replacement. Baseline covariates include
fee waiver indicator, first-generation status, age, gender, English spoken at home, dependent flag, attended
more than one high school, high school GPA, SAT/ACT performance, college credit exams count, TOEFL
indicator, sibling college indicator, submitted at least one CommonApp application before start of interven-
tion, and race/ethnicity indicators. Additionally, we included indicators of missingness for high school GPA

and SAT/ACT performance. Robust standard errors clustered at the school level, reported in parentheses.
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Table 3.7: Impacts on College Enrollment Outcomes - Opt Out

Gap
Fall 2020 Spring 2021 Fall 2021 Spring 2022 semester Gap year

Enrollment -0.017 -0.016 -0.011 -0.011 -0.001 0.006
Differential

(0.010) (0.011) (0.011) (0.011) (0.004) (0.003)
Control 0.787 0.724 0.701 0.651 0.025 0.022
Mean
Num.Obs. 20527 20527 20527 20527 20527 20527
R2 0.282 0.295 0.303 0.315 0.212 0.222
FE: X X X X X X
school _id

*p < 0.05, ¥ p < 0.01, *** p < 0.001 Notes: Opt-out was constructed by flagging students who
explicitly messaged “STOP” to the bot at any point during the intervention and/or received a “goodbye”
message from Oli, indicating that they had requested to opt out. Due to data quality issues we only
have text message data for 70% of all treated students. Analyses include school-level fixed effects and
sampling weights to account for our propensity score matching approach with replacement.Baseline covariates
include fee waiver indicator, first-generation status,age, gender, English spoken at home, dependent flag,
attended more than one high school, high school GPA, SAT/ACT performance, college credit exams count,
TOEFL indicator,sibling college indicator, submitted at least one CommonApp application before start of
intervention, and race/ethnicity indicators. Additionally, we included indicators of missingness for high
school GPA and SAT/ACT performance.The gap semester outcome is a binary indicator coded as 1 if a
student did not enroll in Fall 2020 but did enroll in Spring 2021. The gap year outcome is also a binary
indicator coded as 1 if a student did not enroll in Fall 2020 or Spring 2021, but did enroll in Fall 2022.

Robust standard errors clustered at the school level, reported in parentheses.
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Table 3.8: Impacts of Text Message Engagement on Fall 2020 College Enrollment - High Text Engagement

4-year
Fall 2020 4-year 4-year public private 2-year Full-time

Enrollment 0.026** 0.002 0.032%* -0.032%%* 0.024%** 0.005
Differential

(0.009) (0.010) (0.011) (0.009) (0.007) (0.010)
Control 0.793 0.674 0.461 0.215 0.123 0.676
Mean
Num.Obs. 26281 26281 26281 26281 26281 26281
R2 0.256 0.304 0.279 0.253 0.251 0.272
FE: X X X X X X
school _id

*p < 0.05, ** p < 0.01, *** p < 0.001 Notes: High engagement indicator is coded as 1 for students who
are in the top 25th percentile (sent more than 9 text messages) of total number of text messages students sent
throughout the intervention. Due to data quality issues we only have text message data for 70% of all treated
students. Analyses include school-level fixed effects and sampling weights to account for our propensity
score matching approach with replacement.Baseline covariates include fee waiver indicator, first-generation
status,age, gender, English spoken at home, dependent flag, attended more than one high school, high
school GPA, SAT/ACT performance, college credit exams count, TOEFL indicator,sibling college indicator,
submitted at least one CommonApp application before start of intervention, and race/ethnicity indicators.
Additionally, we included indicators of missingness for high school GPA and SAT/ACT performance.Robust

standard errors clustered at the school level, reported in parentheses.
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Appendix A. Simulation R Code

Data Generating Function

HARBHHRBBBHIH
## WHAT DOES THIS FUNCTION DO?
# The Generate function generates simulated data based on specified conditions.
# The input is a tibble containing information about the sample size, number of
-~ covariates, and conditions for the population treatment and outcome models.
# The function first generates correlated normal variables and transforms them into
< mnormal, Bernoulli, and uniform variables. It then selects a subset of the
-~ covariates for use in the population treatment and outcome models.
# The population treatment and outcome models are generated based on the specified
- conditions
# and the selected covariates, and the treatment status is also generated.
# The function returns a simulated data tibble that includes the original
-~ covariates, treatment status, and generated outcome.

HUHRAHRHAHRHHH

Generate <- function(condition, fixed_objects = NULL) {

# Makes the tibble of sim crossed conditions accessible to the function, from

-~ SimDesign package
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Attach(condition)

# Generate a mean vector of Os

mean <- numeric(p)

# Generate a correlation matrix with correlations between -.3 to .3

cor <- matrix(runif(p~2, min = -.3, max = .3), nrow = p)

diag(cor) <- 1

# Smooth the correlation matrix to ensure it is positive definite

cor <- psych::cor.smooth(cor)

# Generate correlated normal variables

vars <- mvrnorm(n, mean, cor)

# Calculate the number of normal, Bernoulli, and uniform variables to generate

num_norm_vars <- floor(p / 2)

num_bern_vars <- floor(p / 4)

num_uniform_vars <- p - num_norm_vars - num_bern_vars

# Convert all variables to uniform variables between O and 1

vars_unif <- pnorm(vars)

# Convert the first num_norm_vars variables to normal variable with mean = 0 and

vars_normal <- gnorm(vars_unif[, 1:num_norm_vars])
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# Convert the next num_bern_vars variables to Bernoulli variables with probability
» of success = 0.5
vars_bern <- gbern(vars_unif[, (num_norm_vars + 1):(num_norm_vars +

< num_bern_vars)], 0.5)

# The remainder are left as uniform variables

vars_uniform <- vars_unif[, (num_norm_vars + num_bern_vars + 1):p]

# Combine the transformed variables

vars_transformed <- cbind(vars_normal, vars_uniform, vars_bern)

# Give the columns of vars names v1,v2,etc.

colnames (vars_transformed) <- sprintf("v%d", 1:p)

# Generate variable names and store in the master_covar list

master_covar <- dimnames(vars_transformed) [[2]]

# Create p objects with names v1, v2, etc. in working environment

for (i in 1:p) {

assign(colnames(vars_transformed) [i], vars_transformed[, i])

# Sample half of the covariates and save to covar_confound

covar_confound <- sample(master_covar, size = length(master_covar) / 2)
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# Sample a quarter of the covariates and save to covar_rel_outcome
covar_rel_outcome <- sample(setdiff(master_covar, covar_confound), size =

o length(master_covar) / 4)

# Save the remaining covariates to covar_rel_treatment
covar_rel_treatment <- setdiff(master_covar, union(covar_confound,

- covar_rel_outcome))

# Combine covar_confound and covar_rel_outcome, these are the covariates that will
-~ be used for the population outcome models

covar_for_treatment <- union(covar_confound, covar_rel_treatment)

# Combine covar_confound and covar_rel_outcome, these are the covariates that will
» be used for the population outcome models

covar_for_outcome <- union(covar_confound, covar_rel_outcome)

B 3
HAR R R AR AR AR AR AR AR AR AR
# Population treatment models

B B 3

B

# Generate b coefficients for population treatment models

# Initialize bO to 0.25

b0 <- 0.25
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# Create an empty list to store the b coefficients

beta <- vector("list", length(master_covar))

# Loop through all variables in the master covariate list
for (i in seq_len(length(master_covar))) {
# Generate a random number between -0.4 and 0.4

x <- runif (1, min = -0.4, max = 0.4)

# Assign the value to a variable named bl, b2, etc.

assign(paste0("b", i), x)

# Store the variable names in the beta list
b <- paste0O("b", i)

betal[[i]] <- b

# Extract the coefficient from the covariate name

b <= sub(".*y", "", covar_for_treatment)

# Create a new variable called element with the format "b * covar_for_treatment"

element <- pasteO("b", b, " * ", covar_for_treatment)

B
# Population treatment model - Generate base model
G

if (scenarioT == "base T") {
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# Concatenate the variables from covar_for_treatment into a single string
equation <- pasteO("(1 + exp(-(b0O + ", paste(element, collapse = " + "),

Il)))“_lll)

# Evaluate the equation and store the result in trueps
trueps <- eval(parse(text = equation))

} else

e
# Population treatment model - Complex model
e
if (scenarioT == "complex_T") {
# Sample half of the variables from covar_for_treatment

sample_vars <- sample(covar_for_treatment, length(covar_for_treatment) / 2)

# Create a list to store the terms

terms <- list()

# Iterate over the sampled variables and create the quadratic terms
for (var in sample_vars) {

b <= sub(".*xv", "", var)

quad_term <- pasteO("b", b, " * ", var, "72")

terms[[var]] <- quad_term

# Sample half of the variables again from covar_for_treatment

111



sample_vars2 <- sample(covar_for_treatment, length(covar_for_treatment) / 2)

# Create a list of all possible interactions between the variables

interactions <- combn(sample_vars2, 2, pasteO, collapse = "x")

# Iterate over the interactions and create the interaction terms
for (inter in interactions) {

b <= sub(".*xv", ""  inter)

inter_term <- pasteO("b", b, " * ", inter)

terms[[inter]] <- inter_term

# Concatenate all of the terms together and store the result in a new variable
» called equation
equation <- pasteO("(1 + exp(-(b0 + ", paste(c(unlist(terms), element), collapse

=" 4 ||), n)))*_lu)

# Evaluate the equation

trueps <- eval(parse(text = equation))

B 3

# ~~ binary treatment T

HUHRRRARAARRR R R R R RARRRRRR R R AR RRARRRRRRH

unifl <- runif(n, 0, 1)
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T <- ifelse(unifl < trueps, 1, 0)

HARARBHAAAHRAARBAARRRARRRARRRAAARRARRR AR
B 3
# Population outcome models

B 3

B

# Generate a coefficients for population outcome models
# Initialize a0 to -0.18

a0 <- -0.18

# Set ATE to 0.3

g <- 0.3

# Generate error terms for population outcome models

e <- rnorm(n, mean = 0, sd = sqrt(0.17))

alpha <- vector("list", length(master_covar))

for (i in 1:length(master_covar)) {
# Generate a random number between -0.2 and 0.3
x <- runif(1, min = -0.2, max = 0.3)
# Assign the value to al, a2, a3, etc.
assign(pasteO("a", i), x)

a <- paste0("a", i)
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alphal[i + 1]] <- a

# Extract the coefficient from the covariate name

a <- sub(".*xv", ""  covar_for_outcome)

# Create a new variable called element with the format "a * covar_for_outcome"

element <- pasteO("a", a, " * ", covar_for_outcome)

HARARBHARHBRBARBAAR R BB AR B AARRRRARBAARRHAHNH

# Population outcome model - Generate base model

RAHRARAAR AR AR AA R AR RAR AR B AR RARRRRARAAR AR

if (scenarioY == "base Y") {
equation <- pasteO("a0 + g * T", " + ", paste(element, collapse = " + "), " +
e")
Y <- eval(parse(text = equation))

} else

HAA R AR R ARG R ARG RIS
# Population outcome model - Complex model
B
if (scenarioY == "complex_Y") {
# Sample half of the variables from covar_for_outcome

sample_vars <- sample(covar_for_outcome, length(covar_for_outcome) / 2)

# Create a list to store the terms
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terms <- list()

# Iterate over the sampled variables and create the quadratic terms
for (var in sample_vars) {

a <- sub(".xy", "", var)

quad_term <- pasteO("a", a, " * ", var, ""2")

terms[[var]] <- quad_term

# Sample half of the variables again from covar_for_outcome

sample_vars2 <- sample(covar_for_outcome, length(covar_for_outcome) / 2)

# Create a list of all possible interactions between the variables

interactions <- combn(sample_vars2, 2, pasteO, collapse = "x")

# Iterate over the interactions and create the interaction terms
for (inter in interactions) {

a <- sub(".*v", "" inter)

inter_term <- pasteO("a", a, " * ", inter)

terms[[inter]] <- inter_term

equation <- paste0("a0 + g * T + ", paste(c(unlist(terms), element), collapse =
n + |l) s n + e")

Y <- eval(parse(text = equation))
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B B B B
# Form simulated data tibble

B 3

v_list <- mget(pasteO("v", 1:length(master_covar)))
dat <- as_tibble(v_1list)

dat$T <- T

dat$y <- Y

dat$trueps <- trueps

dat

Analyse Function

HARAHRRBRBBRRH

## WHAT DOES THIS FUNCTION DO?

# The Analyse function is used to estimate the average treatment effect (ATE) and
«» related metrics for a given condition.

# The function uses one of several methods, specified by the method argument, to

-~ estimate the propensity score.

# The methods used to estimate the propensity score are

# logistic regression (logit), classification and regression trees (cart), bagging
» (bag), random forest (forest),

# and three neural network models (nn-1, dnn-2, and dnn-3). Once the propensity

- score is estimated,
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# the function uses survey-weighted regression to estimate the ATE, standard error
o~ of the ATE, p-value, and 95% confidence interval of the ATE.

# The function also calculates the absolute standardized average mean (ASAM) for

< each covariate in the data.

HARHHARAAAAAH

# function to estimate the ATE and other metrics
Analyse <- function(condition, dat, fixed_objects = NULL) {

Attach(condition)

# if the method is logit, then estimate the ATE using logistic regression
if (method == "logit") {
# estimate the propensity score using logistic regression
mod <- glm(T ~ . - Y - trueps, data = dat, family = binomial(link = "logit"))
# predict on the entire dataframe to generate ps
ps <- predict(mod, newdata = dat, type = "response")
# if the method is cart, then estimate the ATE using classification and
» Tregression trees
} else if (method == "cart") {
# estimate the propensity score using classification and regression trees
mod <- rpart(T ~ . - Y - trueps, method = "class", data = dat)
# predict on the entire dataframe to generate ps
ps <- predict(mod, newdata = dat, type = "prob")[, 2]
# if the method is bag, then estimate the ATE using bagging
} else if (method == "bag") {

# estimate the propensity score using bagging
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mod <- bagging(T ~ . - Y - trueps, data = dat, nbagg = 100)
# save the propensity score to a vector

ps <- predict(mod, newdata = dat, type = "prob")

# if the method is forest, then estimate the ATE using random forest
else if (method == "forest") {

# estimate the propensity score using random forest

mod <- randomForest(factor(T) ~ . - Y - trueps, data = dat)
# save the propensity score to a vector

ps <- predict(mod, newdata = dat, type = "prob")[, 2]

else if (method == "nn-1") {

# Preprocess data

# Split the data into training and validation sets (80/20)

split <- sample(2, nrow(dat), replace = TRUE, prob = c(0.8, 0.2)) # random split

of data
train_data <- dat[split == 1, ]
validation_data <- dat[split == 2, ]

x_train <- as.matrix(train_datal, grep(""v", names(train_data))]) # select
columns that start with "v" for input features
y_train <- as.matrix(train_datal[, "T"]) # select column for treatment assignment

x_validation <- as.matrix(validation_datal, grep("~v",

names (validation_data))])
# select columns that start with "v" for input features

y_validation <- as.matrix(validation_datal, "T"]) # select column for treatment

assignment

# Define model

p <- ncol(x_train) # number of input features
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input_layer <- layer_input(shape = c(p)) # input layer
hidden_layer <- layer_dense(units = p, activation = "relu") (input_layer)
output_layer <- layer_dense(units = 1, activation = "sigmoid") (hidden_layer)

model <- keras_model(inputs = input_layer, outputs = output_layer)

# Compile model
model 7>% compile(
optimizer = "adam",
loss = "binary_crossentropy",

metrics = c("accuracy")

# Define callbacks
early_stopping <- callback_early_stopping(monitor = "val_loss", min_delta =

0.001, patience = 5)

# Fit model
history <- model %> fit(
X_train,
y_train,
epochs = 100,
batch_size = 64,
validation_data = list(x_validation, y_validation),
callbacks = list(early_stopping),

verbose = 0
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# Preprocess data
x <- as.matrix(dat[, grep(""v", names(dat))]) # select columns that start with

"v" for input features

# Predict propensity scores on entire dataset

ps <- model %>} predict(x)

ps <- ps[, 1]

else if (method == "dnn-2") {

# Preprocess data

# Split the data into training and validation sets (80/20)

split <- sample(2, nrow(dat), replace = TRUE, prob = c(0.8, 0.2)) # random split
of data

train_data <- dat[split == 1, ]

validation_data <- dat[split == 2, ]

x_train <- as.matrix(train_datal, grep("~v", names(train_data))]) # select
columns that start with "v" for input features

y_train <- as.matrix(train_datal[, "T"]) # select column for treatment assignment
x_validation <- as.matrix(validation_datal, grep("~v", names(validation_data))])
# select columns that start with "v" for input features

y_validation <- as.matrix(validation_datal[, "T"]) # select column for treatment

assignment

# Define model

p <- ncol(x_train) # number of input features

input_layer <- layer_input(shape = c(p)) # input layer
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hidden_layerl <- layer_dense(units = ceiling(2 * p / 3), activation = "relu",
kernel_regularizer = regularizer_12(1 = 0.01)) (input_layer) # first hidden layer
hidden_layer2 <- layer_dense(units = ceiling(2 * p / 3), activation = "relu",
kernel_regularizer = regularizer_12(1 = 0.01)) (hidden_layerl) # second hidden
layer

output_layer <- layer_dense(units = 1, activation = "sigmoid",
kernel_regularizer = regularizer_12(1 = 0.01)) (hidden_layer2) # output layer

model <- keras_model(inputs = input_layer, outputs = output_layer)

# Compile model
model %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",

metrics = c("accuracy")

# Define callbacks
early_stopping <- callback_early_stopping(monitor = "val_loss", min_delta =

0.001, patience = 5)

# Fit model

history <- model %> fit(
x_train,
y_train,
epochs = 100,

batch_size = 64,
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validation_data = list(x_validation, y_validation),
callbacks = list(early_stopping),

verbose = 0

# Preprocess data
x <- as.matrix(dat[, grep(""v", names(dat))]) # select columns that start with

"v" for input features

# Predict propensity scores on entire dataset

ps <- model 7>} predict(x)

ps <- ps[, 1]

else if (method == "dnn-3") {

# Preprocess data

# Split the data into training and validation sets (80/20)

split <- sample(2, nrow(dat), replace = TRUE, prob = c(0.8, 0.2)) # random split
of data

train_data <- dat[split == 1, ]

validation_data <- dat[split == 2, ]

", names(train_data))]) # select

x_train <- as.matrix(train_datal, grep("~v
columns that start with "v" for input features
y_train <- as.matrix(train_datal, "T"]) # select column for treatment assignment

x_validation <- as.matrix(validation_datal, grep("~v",

names (validation_data))])
# select columns that start with "v" for input features

y_validation <- as.matrix(validation_datal, "T"]) # select column for treatment

assignment
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# Define model
p <- ncol(x_train) # number of input features

input_layer <- layer_input(shape = c(p)) # input layer

hidden_layerl <- layer_dense(units = ceiling(2 * p / 3), activation = "relu",

kernel_regularizer = regularizer_12(1 = 0.01)) (input_layer) # first hidden layer

hidden_layer2 <- layer_dense(units = ceiling(2 * p / 3), activation = "relu",
kernel_regularizer = regularizer_12(1 = 0.01)) (hidden_layerl) # second hidden
layer

hidden_layer3 <- layer_dense(units = ceiling(2 * p / 3), activation = "relu",
kernel_regularizer = regularizer_12(1 = 0.01)) (hidden_layer2) # third hidden
layer

output_layer <- layer_dense(units = 1, activation = "sigmoid",
kernel_regularizer = regularizer_12(1 = 0.01)) (hidden_layer3) # output layer

model <- keras_model(inputs = input_layer, outputs = output_layer)

# Compile model
model 7>% compile(
optimizer = "adam",
loss = "binary_crossentropy",

metrics = c("accuracy")

# Define callbacks
early_stopping <- callback_early_stopping(monitor = "val_loss", min_delta =

0.001, patience = 5)
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# Fit model
history <- model %> fit(
x_train,
y_train,
epochs = 100,
batch_size = 64,
validation_data = list(x_validation, y_validation),
callbacks = list(early_stopping),

verbose = 0

# Preprocess data
x <- as.matrix(dat[, grep("~"v", names(dat))]) # select columns that start with

"v" for input features

# Predict propensity scores on entire dataset

ps <- model %>} predict(x)

ps <- ps[, 1]

HAAARBARRRARARBAARBRAARRAARR AR

### calculate metrics

B

dat <- dat %>%
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mutate (
ps_pred = ps,

ps_weights = case_when(T == 1~ 1/ ps, T==0~1/ (1 - ps))

true_ATE <- 0.3

# calculate standardized initial bias prior to weighting
Std_In_Bias <- ((mean(dat$Y[dat$T == 1]) - mean(dat$Y[dat$T == 0])) - true_ATE) /
- sd(dat$Y[dat$T == 1])

Prob_Treat <- mean(dat$T)

# estimate the true_ATE with the weights
d.w <- svydesign(~0, weights = dat$ps_weights, data = dat)

fit <- svyglm(Y ~ T, design = d.w)

# save the true ATE and se_true_ ATE
ATE <- unname(coef (fit) ["T"])
vcov_matrix <- vcov(fit)

ATE_se <- unname(sqrt(vcov_matrix["T", "T"]))

# extract the p-value of T

p_val <- summary(fit)$coefficients["T", "Pr(>|t|)"]

# calculate the 95% coverage

conf_interval <- confint(fit, level = 0.95)["T", ]
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lower_bound <- conf_intervall[1]

upper_bound <- conf_interval[2]

ci_95 <- ifelse(lower_bound < true_ATE && true_ATE < upper_bound, 1, 0)

# calculate the mean of weights

mean_ps_weights <- mean(dat$ps_weights)

HARBAR AR BRG]
# calculate the ASAM for covariates

HAAARBHAARBHARH

# subset the data into the treatment and comparison groups
treatment_group <- dat[dat$T == 1, ]

comparison_group <- dat[dat$T == 0, ]

# get the names of the variables that start with "v"

var_names <- names(dat) [grep("~v", names(dat))]

# initialize the ASAM_list vector

ASAM_1ist <- rep(NA, length(var_names))

# loop through each covariate
for (i in 1:length(var_names)) {
# get the covariate name

covariate <- var_names[i]
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# extract the covariate data from the treatment and comparison groups
treatment_data <- treatment_group[[covariate]]

comparison_data <- comparison_groupl[[covariate]]

# extract the weights from the treatment and comparison groups

treatment_weights <- treatment_group$ps_weights

comparison_weights <- comparison_group$ps_weights

# calculate the means of the treatment and comparison groups

treatment_mean <- weighted.mean(treatment_data, treatment_weights)

comparison_mean <- weighted.mean(comparison_data, comparison_weights)

# calculate the variances of the treatment group

treatment_var <- wtd.var(treatment_data, treatment_weights)

# calculate the standard deviations of the treatment groups

treatment_sd <- sqrt(treatment_var)

# calculate the standardized difference of means

sd_diff <- (treatment_mean - comparison_mean) / treatment_sd

# take the absolute value of the standardized difference of means

abs_sd_diff <- abs(sd_diff)

# save the absolute standardized difference of means in the ASAM_list vector
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ASAM 1ist[i] <- abs_sd_diff

# calculate the mean of the absolute standardized differences of means

ASAM <- mean(ASAM_list)

ret <- c(
Std_In_Bias = Std_In_Bias,
Prob_Treat = Prob_Treat,
ATE = ATE,
ATE_se = ATE_se,
mean_ps_weights = mean_ps_weights,
ASAM = ASAM,

p_val = p_val,

ci_95 ci_95

ret

Summarize Function

# Summarise function
Summarise <- function(condition, results, fixed_objects = NULL) {
Std_In_Bias <- mean(results$Std_In_Bias)

Prob_Treat <- mean(results$Prob_Treat)
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"bias")

Bias <- bias(results$ATE, parameter = 0.3, type
Abs_Per_Bias <- bias(results$ATE, parameter = 0.3, type = "bias", abs = T, percent

=T)

<

Abs_Per_Rel_Bias <- bias(results$ATE, parameter 0.3, type = "relative", abs =T,

- percent = T)

ATE_se <- mean(results$ATE_se)

MSE <- RMSE(results$ATE, parameter = 0.3, MSE = T)

Power <- EDR(results$p_val, alpha = 0.05)

coverage_95 <- mean(results$ci_95)

mean_ps_weights <- mean(results$mean_ps_weights)

ASAM <- mean(results$ASAM)

# Create a vector of the results

ret <- c(
Std_In_Bias = Std_In_Bias,
Prob_Treat = Prob_Treat,
Bias = Bias,
Abs_Per_Bias = Abs_Per_Bias,
Abs_Per Rel Bias = Abs_Per_ Rel Bias,
ATE _se = ATE_se,
MSE = MSE,
Power = Power,
coverage_95 = coverage_95,
mean_ps_weights = mean_ps_weights,

ASAM = ASAM

# Return the vector
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ret

Simulation Driver 1

B e e
# Load libraries and source functions

e

packages <- c(
"here",
"tidyverse",
"MASS",
"Rlab",
"Matrix",
"psych",
"Rlab",
"rpart",
"ipred",
"randomForest",
"nnet",
"survey",
"Hmisc",
"future",
"furrr",

"SimDesign",
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"keras",

"tensorflow",

"reticulate"

lapply(packages, library, character.only = TRUE)

# sets working directory to root of R project

here()

#i##H####E source functions

source (here("code", "01_data_gen_fun.R"))
source (here("code", "02_analyse_fun.R"))
source(here("code", "03_summarize_fun.R"))

# Generate sim design dataframe

e

# fully-crossed simulation experiment

Design <- createDesign(

n = c(10000),
p = c(20, 100, 200),
scenarioT = c("base_T", "complex_T"),

scenarioY = c("base_Y", "complex_Y"),

method = c("logit", "cart", "bag", "forest")
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B B B e b o B B
# Run Simulation

et

# use_virtualenv("/ihome/xqin/alg223/.virtualenvs/r-reticulate")

# use_condaenv("r-reticulate")

res <- runSimulation(
design = Design,
replications = 1000,
generate = Generate,
analyse = Analyse,

summarise = Summarise,

parallel T,

filename = "sim_results_n10000_r1000_P_e.rds",

save_results = T

Simulation Driver 2

e

# Load libraries and source functions

e i
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packages <- c(
"here",
"tidyverse",
"MASS",
"Rlab",
"Matrix",
"psych",
"Rlab",
"rpart",
"ipred",
"randomForest",
"nnet",
"survey",
"Hmisc",
"future",
"furrr",
"SimDesign",
"keras",
"tensorflow",

"reticulate"

lapply(packages, library, character.only = TRUE)

# sets working directory to root of R project

here()
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#i#######E source functions

source (here("code", "01_data_gen_fun.R"))
source (here("code", "02_analyse_fun.R"))
source(here("code", "03_summarize_fun.R"))

B
# Generate sim design dataframe

e

# fully-crossed simulation experiment

Design <- createDesign(

n = c(10000),

p = c(20, 100, 200),

scenarioT = c("base_T", "complex_T"),
scenarioY = c("base_Y", "complex_Y"),

method = c("nn-1", "dnn-2", "dnn-3")

e B B L B e B e B e 3
# Run Simulation

B

use_virtualenv("/ihome/xqin/alg223/.virtualenvs/r-reticulate")

# use_condaenv("r-reticulate")
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res <- runSimulation(
design = Design,
replications = 1000,
generate = Generate,
analyse = Analyse,

summarise = Summarise,

parallel = F,
filename = "sim_results_n10000_r1000_NP.rds",

save_results = T)

135



Bibliography

Arnold, K. en D., Chewning, A., Castleman, B., & Page, L. (2015). Advisor and Student Experiences of
Summer Support for College- intending, Low-income High School Graduates intending, Low-income High

School Graduates. Journal of College Access, 1(1). https://scholarworks.wmich.edu/jca/voll /iss1/3/

Athey, S. (2015). Machine learning and causal inference for policy evaluation. Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 5—6.

Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates between

treatment groups in propensity-score matched samples. Statistics in Medicine, 28(25), 3083-3107.

Austin, P. C. (2011). An Introduction to Propensity Score Methods for Reducing the Effects of Confounding
in Observational Studies. Multivariate Behavioral Research, 46(3), 399-424. https://doi.org/10.1080/

00273171.2011.568786

Austin, P. C., Grootendorst, P., & Anderson, G. M. (2007). A comparison of the ability of different propensity
score models to balance measured variables between treated and untreated subjects: A monte carlo study.

Statistics in Medicine, 26(4), 734-753.

Avery, C., Castleman, B. L., Hurwitz, M., Long, B. T., & Page, L. C. (2021). Digital messaging to improve
college enrollment and success. Economics of Education Review, 84, 102170. https://doi.org/10.1016/j.

econedurev.2021.102170

Bai, H. (2011). Using Propensity Score Analysis for Making Causal Claims in Research Articles. Fducational

136


https://scholarworks.wmich.edu/jca/vol1/iss1/3/
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1016/j.econedurev.2021.102170
https://doi.org/10.1016/j.econedurev.2021.102170

Psychology Review, 23(2), 273—278. https://link.springer.com/article/10.1007/s10648-011-9164-9

Barber, P. H., Hayes, T. B., Johnson, T. L., Mirquez-Magaiia, L., & signatories, 10234. (2020). Systemic

racism in higher education. Science, 369(6510), 1440.2-1441. https://doi.org/10.1126/science.abd 7140

Bird, K. A., Castleman, B. L., Denning, J. T., Goodman, J., Lamberton, C., & Rosinger, K. O. (2021).
Nudging at scale: Experimental evidence from FAFSA completion campaigns. Journal of Economic

Behavior & Organization, 183, 105-128. https://doi.org/10.1016/j.jebo.2020.12.022

Bird, K. A., Castleman, B. L., Song, Y., & Yu, R. (2022). Is Big Data Better? LMS Data and Predictive
Analytic Performance in Postsecondary Education. EdWorking Paper. https://doi.org/10.26300/8xys-

ym74

Boger, Z., & Guterman, H. (1997). Knowledge extraction from artificial neural network models. 1997 IEEE
International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation,

4, 3030-3035.

Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J., & Stiirmer, T. (2006). Variable
Selection for Propensity Score Models. American Journal of Epidemiology, 163(12), 1149-1156. https:

//doi.org/10.1093/aje/kwj149

Buhlmann, P., & Geer, S. van de. (2011). Variable selection with the lasso. In Statistics for high-dimensional

data: Methods, theory and applications (pp. 183-247). Springer.

Calonico, S., Cattaneo, M. D., & Titiunik, R. (2015). Rdrobust: An r package for robust nonparametric

inference in regression-discontinuity designs. R J., 7(1), 38.

Cannas, M., & Arpino, B. (2019). A comparison of machine learning algorithms and covariate balance
measures for propensity score matching and weighting. Biometrical Journal, 61(4), 1049-1072. https:
//doi.org/10.1002/bim;j.201800132

Carrell, S., & Sacerdote, B. (2017). Why Do College-Going Interventions Work? American Economic

137


https://link.springer.com/article/10.1007/s10648-011-9164-9
https://doi.org/10.1126/science.abd7140
https://doi.org/10.1016/j.jebo.2020.12.022
https://doi.org/10.26300/8xys-ym74
https://doi.org/10.26300/8xys-ym74
https://doi.org/10.1093/aje/kwj149
https://doi.org/10.1093/aje/kwj149
https://doi.org/10.1002/bimj.201800132
https://doi.org/10.1002/bimj.201800132

Journal: Applied Economics, 9(3), 124-151. https://doi.org/10.1257/app.20150530

Castleman, B. L., Arnold, K., & Wartman, K. L. (2012). Stemming the Tide of Summer Melt: An Experi-
mental Study of the Effects of Post-High School Summer Intervention on Low-Income Students’ College
Enrollment. Journal of Research on Educational Effectiveness, 5(1), 1-17. https://doi.org/10.1080/

19345747.2011.618214

Castleman, B. L., & Meyer, K. E. (2020). Can Text Message Nudges Improve Academic Outcomes in
College? Evidence from a West Virginia Initiative. The Review of Higher Education, 43(4), 1125-1165.

https://doi.org/10.1353/rhe.2020.0015

Castleman, B. L., & Page, L. C. (2014). A Trickle or a Torrent? Understanding the Extent of Summer
“Melt” Among College-Intending High School Graduates. Social Science Quarterly, 95(1), 202-220. https:

//doi.org/10.1111/ssqu.12032

Castleman, B. L., & Page, L. C. (2015). Summer nudging: Can personalized text messages and peer mentor
outreach increase college going among low-income high school graduates? Journal of Economic Behavior

& Organization, 115, 144-160. https://doi.org/10.1016/j.jebo.2014.12.008

Castleman, B. L., & Page, L. C. (2016). Freshman Year Financial Aid Nudges: An Experiment to Increase
FAFSA Renewal and College Persistence. Journal of Human Resources, 51(2), 389-415. https://doi.org/

10.3368/jhr.51.2.0614-6458r

Castleman, B. L., Page, L. C., & Schooley, K. (2014). The Forgotten Summer: Does the Offer of College
Counseling After High School Mitigate Summer Melt Among College-Intending, Low-Income High School
Graduates? Journal of Policy Analysis and Management, 33(2), 320-344. https://doi.org/10.1002/pam.

21743

Cataldi, E. F., Bennet, C. T., & Chen, X. (2018). First-Generation Students: College Access, Persistence,
and Postbachelor’s Outcomes. U.S. Department of Education. https://nces.ed.gov/pubs2018,/2018421.

pdf

138


https://doi.org/10.1257/app.20150530
https://doi.org/10.1080/19345747.2011.618214
https://doi.org/10.1080/19345747.2011.618214
https://doi.org/10.1353/rhe.2020.0015
https://doi.org/10.1111/ssqu.12032
https://doi.org/10.1111/ssqu.12032
https://doi.org/10.1016/j.jebo.2014.12.008
https://doi.org/10.3368/jhr.51.2.0614-6458r
https://doi.org/10.3368/jhr.51.2.0614-6458r
https://doi.org/10.1002/pam.21743
https://doi.org/10.1002/pam.21743
https://nces.ed.gov/pubs2018/2018421.pdf
https://nces.ed.gov/pubs2018/2018421.pdf

Chollet, F. et al. (2015). Keras. GitHub. https://github.com/fchollet /keras

Clearinghouse, N. S. (2021). High School Benchmarks 2021 - National College Progression Rates. https:

//nscresearchcenter.org/wp-content/uploads/2021/ HSBenchmarksCovidReport.pdf

Collier, Z. K., & Leite, W. L. (2021). A Tutorial on Artificial Neural Networks in Propensity Score Analy-
sis. The Journal of Experimental Education, 90(4), 1003-1020. https://doi.org/10.1080/00220973.2020.

1854158

Collier, Z. K., Leite, W. L., & Zhang, H. (2021). Estimating propensity scores using neural networks and
traditional methods: A comparative simulation study. Communications in Statistics-Simulation and

Computation, 1-16.

Cui, P, Shen, Z., Li, S., Yao, L., Li, Y., Chu, Z., & Gao, J. (2020). Causal inference meets machine learning.
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

3527-3528.

Denison, D. G., Mallick, B. K., & Smith, A. F. (1998). A bayesian cart algorithm. Biometrika, 85(2),

363-377.

Derry, A., Krzywinski, M., & Altman, N. (2023). Neural networks primer. Nature Methods.

Dorie, V., Hill; J., Shalit, U., Scott, M., & Cervone, D. (2019). Automated versus Do-It-Yourself Methods for
Causal Inference: Lessons Learned from a Data Analysis Competition. Statistical Science, 34(1), 43—68.

https://projecteuclid.org/euclid.ss/1555056030

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification
models: a methodology review. Journal of Biomedical Informatics, 35(5), 352—359. http://www.

sciencedirect.com/science/article/pii/S1532046403000340

Dynarski, S., Nurshatayeva, A., Page, L., & Scott-Clayton, J. (2022). Addressing Non-Financial Barriers

to College Access and Success: Evidence and Policy Implications. NBER Working Paper Series. https:

139


https://github.com/fchollet/keras
https://nscresearchcenter.org/wp-content/uploads/2021/_HSBenchmarksCovidReport.pdf
https://nscresearchcenter.org/wp-content/uploads/2021/_HSBenchmarksCovidReport.pdf
https://doi.org/10.1080/00220973.2020.1854158
https://doi.org/10.1080/00220973.2020.1854158
https://projecteuclid.org/euclid.ss/1555056030
http://www.sciencedirect.com/science/article/pii/S1532046403000340
http://www.sciencedirect.com/science/article/pii/S1532046403000340
https://doi.org/10.3386/w30054
https://doi.org/10.3386/w30054

//doi.org/10.3386 /w30054

Dynarski, S., Page, L., & Scott-Clayton, J. (2022). College Costs, Financial Aid, and Student Decisions.

National Bureau of Economic Research. https://doi.org/10.3386/w30275

Efron, B. (2014). Estimation and accuracy after model selection. Journal of the American Statistical

Association, 109(507), 991-1007.

Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other

measures of statistical accuracy. Statistical Science, 54—75.

Einav, L., & Levin, J. (2014). Economics in the age of big data. Science, 346(6210), 1243089. https:

//doi.org/10.1126 /science.1243089

Fan, X., & Nowell, D. L. (2011). Using propensity score matching in educational research. Gifted Child

Quarterly, 55(1), 74—79.

Farrell, M. H., Liang, T., & Misra, S. (2021). Deep Neural Networks for Estimation and Inference. Econo-

metrica, 89(1), 181-213. https://doi.org/10.3982/ectal6901

Garriott, P. O. (2020). A Critical Cultural Wealth Model of First-Generation and Economically Marginalized
College Students’ Academic and Career Development. Journal of Career Development, 47(1), 80-95.

https://doi.org/10.1177/0894845319826266

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Grimmer, J. (2015). We are all social scientists now: How big data, machine learning, and causal inference

work together. PS: Political Science € Politics, 48(1), 80-83.

Guo, S., Fraser, M., & Chen, Q. (2020). Propensity Score Analysis: Recent Debate and Discussion. Journal

of the Society for Social Work and Research, 11(3), 463-482. https://doi.org/10.1086/711393

Guo, S., Guo, S., & Fraser, M. W. (2014). Propensity Score Analysis: Statistical Methods and Applications

140


https://doi.org/10.3386/w30054
https://doi.org/10.3386/w30275
https://doi.org/10.1126/science.1243089
https://doi.org/10.1126/science.1243089
https://doi.org/10.3982/ecta16901
https://doi.org/10.1177/0894845319826266
https://doi.org/10.1086/711393

(Vol. 11). SAGE publications.

Guzman-Alvarez, A., & Page, L. C. (2021). Disproportionate Burden: Estimating the Cost of FAFSA
Verification for Public Colleges and Universities. Educational Evaluation and Policy Analysis, 43(3),

545-551. https://doi.org/10.3102/01623737211001420

Harper, S. R. (2010). An anti-deficit achievement framework for research on students of color in STEM. New

Directions for Institutional Research, 2010(148), 63—74. https://doi.org/10.1002/ir.362

Herbaut, E., & Geven, K. (2020). What works to reduce inequalities in higher education? A systematic re-
view of the (quasi-)experimental literature on outreach and financial aid. Research in Social Stratification

and Mobility, 65, 100442. https://doi.org/10.1016/j.rssm.2019.100442

Hernandez, R., Covarrubias, R., Radoff, S., Moya, E., & Mora, A. J. (2022). An Anti-Deficit Investigation of
Resilience Among University Students with Adverse Experiences. Journal of College Student Retention:

Research, Theory & Practice, 152102512211099. https://doi.org/10.1177/15210251221109950

Herndndez-Blanco, A., Herrera-Flores, B., Tomds, D., & Navarro-Colorado, B. (2019). A systematic review

of deep learning approaches to educational data mining. Complexity, 2019.

Hill, J., Weiss, C., & Zhai, F. (2011). Challenges With Propensity Score Strategies in a High-Dimensional
Setting and a Potential Alternative. Multivariate Behavioral Research, 46(3), 477-513. https://doi.org/

10.1080/00273171.2011.570161

Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association,

81(396), 945-960.

Hoover, E. (2020). How Is Covid-19 Changing Prospective Students’ Plans? Here’s an Early Look. How
Is Covid-19 Changing Prospective Students’ Plans? Here’s an Early Look. https://www.chronicle.com/
article/how-is-covid-19-changing-prospective-students-plans- heres-an-early-look/

Howell, J., Hurwitz, M., Ma, J., Pender, M., Perfetto, G., Wyatt, J., & Young, L. (2021). College Enrollment

141


https://doi.org/10.3102/01623737211001420
https://doi.org/10.1002/ir.362
https://doi.org/10.1016/j.rssm.2019.100442
https://doi.org/10.1177/15210251221109950
https://doi.org/10.1080/00273171.2011.570161
https://doi.org/10.1080/00273171.2011.570161
https://www.chronicle.com/article/how-is-covid-19-changing-prospective-students-plans-heres-an-early-look/
https://www.chronicle.com/article/how-is-covid-19-changing-prospective-students-plans-heres-an-early-look/

and Retention in the Era of Covid. The College Board. https://research.collegeboard.org/media/pdf/

enrollment-retention-covid2020.pdf

Huber, M., Lechner, M., & Wunsch, C. (2013). The performance of estimators based on the propensity score.

Journal of Econometrics, 175(1), 1-21.

Iglesias, L. L., Bellén, P. S., Barrio, A. P. del, Fernandez-Miranda, P. M., Gonzalez, D. R., Vega, J. A.,
Mandly, A. A. G., & Blanco, J. A. P. (2021). A primer on deep learning and convolutional neural

networks for clinicians. Insights into Imaging, 12(1), 117. https://doi.org/10.1186/s13244-021-01052-2

Imbens, G., & Rubin, D. B. (2015). Causal inference for statistics, social, and biomedical sciences. Cam-

bridge University Press.

Institute, T. P. (1956). Higher Education in the United States (pp. 1158-1158). http://pellinstitute.
org/downloads/publications-Indicators/_of/_Higher/ Education/ Equity/_ in/ the/ US/_ 2021/

_ Historical/_Trend/_Report.pdf

Tves, J., & Castillo-Montoya, M. (2020). First-Generation College Students as Academic Learners:
A Systematic Review. Review of Educational Research, 90(2), 139-178. https://doi.org/10.3102/

0034654319899707

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112).

Springer.

Kale, D. C., Che, Z., Bahadori, M. T., Li, W., Liu, Y., & Wetzel, R. (2015). Causal Phenotype Discovery

via Deep Networks. AMIA ... Annual Symposium Proceedings. AMIA Symposium, 2015, 677-686.

Karim, M. E., Pang, M., & Platt, R. W. (2018). Can We Train Machine Learning Methods to Out-
perform the High-dimensional Propensity Score Algorithm? Epidemiology, 29(2), 191—198. https://
journals.lww.com/epidem /Fulltext/2018/03000/Can/__We/_Train/_Machine/_Learning/ Methods/

_to.b.aspx?casa/_token=7ZxQul9dyu-0AAAAA:cVTWRbTk6ZM/ AukNOXHWGjq56uJLoyZm8SY/

142


https://research.collegeboard.org/media/pdf/enrollment-retention-covid2020.pdf
https://research.collegeboard.org/media/pdf/enrollment-retention-covid2020.pdf
https://doi.org/10.1186/s13244-021-01052-z
http://pellinstitute.org/downloads/publications-Indicators/_of/_Higher/_Education/_Equity/_in/_the/_US/_2021/_Historical/_Trend/_Report.pdf
http://pellinstitute.org/downloads/publications-Indicators/_of/_Higher/_Education/_Equity/_in/_the/_US/_2021/_Historical/_Trend/_Report.pdf
http://pellinstitute.org/downloads/publications-Indicators/_of/_Higher/_Education/_Equity/_in/_the/_US/_2021/_Historical/_Trend/_Report.pdf
https://doi.org/10.3102/0034654319899707
https://doi.org/10.3102/0034654319899707
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765623
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765623
https://journals.lww.com/epidem/Fulltext/2018/03000/Can/_We/_Train/_Machine/_Learning/_Methods/_to.5.aspx?casa/_token=ZxQu19dyu-0AAAAA:cVTWRbTk6ZM/_AukNOXHWGjq56uJLoyZm8SY/_bqlIXCcGB5fSG2Sv1ZeBSBPbf4LazDQqt7QGs1Oy2SYB5dZlZ1o
https://journals.lww.com/epidem/Fulltext/2018/03000/Can/_We/_Train/_Machine/_Learning/_Methods/_to.5.aspx?casa/_token=ZxQu19dyu-0AAAAA:cVTWRbTk6ZM/_AukNOXHWGjq56uJLoyZm8SY/_bqlIXCcGB5fSG2Sv1ZeBSBPbf4LazDQqt7QGs1Oy2SYB5dZlZ1o
https://journals.lww.com/epidem/Fulltext/2018/03000/Can/_We/_Train/_Machine/_Learning/_Methods/_to.5.aspx?casa/_token=ZxQu19dyu-0AAAAA:cVTWRbTk6ZM/_AukNOXHWGjq56uJLoyZm8SY/_bqlIXCcGB5fSG2Sv1ZeBSBPbf4LazDQqt7QGs1Oy2SYB5dZlZ1o
https://journals.lww.com/epidem/Fulltext/2018/03000/Can/_We/_Train/_Machine/_Learning/_Methods/_to.5.aspx?casa/_token=ZxQu19dyu-0AAAAA:cVTWRbTk6ZM/_AukNOXHWGjq56uJLoyZm8SY/_bqlIXCcGB5fSG2Sv1ZeBSBPbf4LazDQqt7QGs1Oy2SYB5dZlZ1o

_ bqlIXCeGB5{SG2Sv1ZeBSBPbf4LazDQqt 7QGs10y2SYB5dZ1Z10

Keller, B., Kim, J.-S., & Steiner, P. M. (2015). Neural networks for propensity score estimation: Simula-
tion results and recommendations. Quantitative Psychology Research: The 79th Annual Meeting of the

Psychometric Society, Madison, Wisconsin, 2014, 279-291.

Kingma, D. P, & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv Preprint

arXiv:1412.6980.

Kuhn, M., Johnson, K., Kuhn, M., & Johnson, K. (2013). Over-fitting and model tuning. Applied Predictive

Modeling, 61-92.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436—444. 10.1038/na-

turel4539

Lee, B. K. (2023). The central role of the propensity score in epidemiology. Observational Studies, 9(1),

55-57. https://doi.org/10.1353/0bs.2023.0004

Lee, B. K., Lessler, J., & Stuart, E. A. (2010). Improving propensity score weighting using machine learning.

Statistics in Medicine, 29(3), 337-346. https://doi.org/10.1002/sim.3782

Lee, J., & Little, T. D. (2017). A practical guide to propensity score analysis for applied clinical research.

Behaviour Research and Therapy, 98, 76-90. https://doi.org/10.1016/j.brat.2017.01.005

Lee, J., Solomon, M., Stead, T., Kwon, B., & Ganti, L. (2021). Impact of COVID-19 on the mental health

of US college students. BMC' Psychology, 9(1), 95. https://doi.org/10.1186/s40359-021-00598-3

Li, B., Luo, S., Qin, X., & Pan, L. (2021). Improving GAN with inverse cumulative distribution function

for tabular data synthesis. Neurocomputing, 456, 373—383.

Li, L., Shen, C., Wu, A. C., & Li, X. (2011). Propensity score-based sensitivity analysis method for uncon-

trolled confounding. American Journal of Epidemiology, 174(3), 345-353.

143


https://journals.lww.com/epidem/Fulltext/2018/03000/Can/_We/_Train/_Machine/_Learning/_Methods/_to.5.aspx?casa/_token=ZxQu19dyu-0AAAAA:cVTWRbTk6ZM/_AukNOXHWGjq56uJLoyZm8SY/_bqlIXCcGB5fSG2Sv1ZeBSBPbf4LazDQqt7QGs1Oy2SYB5dZlZ1o
https://10.1038/nature14539
https://10.1038/nature14539
https://doi.org/10.1353/obs.2023.0004
https://doi.org/10.1002/sim.3782
https://doi.org/10.1016/j.brat.2017.01.005
https://doi.org/10.1186/s40359-021-00598-3

Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomForest. R News, 2(3), 18-22.

Lumley, T. (2020). Package “survey.” Awailable at the Following Link: Https://Cran. R-Project. Org.

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With Boosted
Regression for Evaluating Causal Effects in Observational Studies. Psychological Methods, 9(4), 403-425.

https://doi.org/10.1037/1082-989x.9.4.403

McLewis, C. C. (2021). Higher Education: Handbook of Theory and Research, Volume 36. Higher Education:

Handbook of Theory and Research, 105-160. https://doi.org/10.1007/978-3-030-44007-7/_6

Molock, S. D., & Parchem, B. (2022). The impact of COVID-19 on college students from communities of color.

Journal of American College Health, 70(8), 2399-2405. https://doi.org/10.1080/07448481.2020.1865380

Morris, T. P., White, I. R., & Crowther, M. J. (2018). Using simulation studies to evaluate statistical

methods. Statistics in Medicine, 38(11), 2074-2102. https://doi.org/10.1002/sim.8086

Murnane, R. J., & Willett, J. B. (2010). Methods matter: Improving causal inference in educational and

social science research. Oxford University Press.

Naughton, M. R. (2021). Cracks to Craters: College Advising During COVID-19. AFRA Open, 7,

23328584211018715. https://doi.org/10.1177/23328584211018715

Neyman, J. (1923). On the application of probability theory to agricultural experiments. Essay on principles.

Ann. Agricultural Sciences, 1-51.

Nurshatayeva, A., Page, L. C., White, C. C., & Gehlbach, H. (2021). Are Artificially Intelligent Conversa-
tional Chatbots Uniformly Effective in Reducing Summer Melt? Evidence from a Randomized Controlled

Trial. Research in Higher Education, 62(3), 392-402. https://doi.org/10.1007/s11162-021-09633-z

Oakes, J., & Rogers, J. (2007). Radical change through radical means: learning power. Journal of Educa-

tional Change, 8(3), 193-206. https://doi.org/10.1007/s10833-007-9031-0

144


https://doi.org/10.1037/1082-989x.9.4.403
https://doi.org/10.1007/978-3-030-44007-7/_6
https://doi.org/10.1080/07448481.2020.1865380
https://doi.org/10.1002/sim.8086
https://doi.org/10.1177/23328584211018715
https://doi.org/10.1007/s11162-021-09633-z
https://doi.org/10.1007/s10833-007-9031-0

Oreopoulos, P. (2020). Promises and Limitations of Nudging in Education. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.3695419

Oreopoulos, P. (2021). What Limits College Success? A Review and Further Analysis of Holzer and Baum’s
Making College Work. Journal of Economic Literature, 59(2), 546-573. https://doi.org/10.1257/jel.

20191614

Ornelas, A., & Solorzano, D. G. (2004). A Critical Race Analysis of Latina/o and African American Advanced
Placement Enrollment in Public High Schools. The High School Journal, 87(3), 15-26. https://doi.org/

10.1353/hsj.2004.0003

Oromaner, M., & Oakes, J. (1986). Keeping Track: How Schools Structure Inequality. Contemporary

Sociology, 15(1), 93. https://doi.org/10.2307/2070941

Page, L. C., Castleman, B. L., & Meyer, K. (2019). Customized Nudging to Improve FAFSA Completion
and Income Verification. Educational Evaluation and Policy Analysis, 42(1), 3-21. https://doi.org/10.

3102/0162373719876916

Page, L. C., & Gehlbach, H. (2017). How an Artificially Intelligent Virtual Assistant Helps Students Navigate

the Road to College. AERA Open, 3(4), 2332858417749220. https://doi.org/10.1177/2332858417749220

Page, L. C., Sacerdote, B. 1., Goldrick-Rab, S.; & Castleman, B. L. (2022). Financial Aid Nudges: A
National Experiment With Informational Interventions. FEducational Evaluation and Policy Analysis,

016237372211114. https://doi.org/10.3102/01623737221111403

Page, L. C., & Scott-Clayton, J. (2016). Improving college access in the United States: Barriers and policy

responses. Economics of Education Review, 51, 4-22. https://doi.org/10.1016/j.econedurev.2016.02.009

Page, L., Lee, J., & Gehlbach, H. (2020). Conditions under which college students can be responsive to

nudging. EdWorkingPaper. https://doi.org/10.26300/vjfs-kv29

Pan, W., & Bai, H. (2018). Propensity score methods for causal inference: an overview. Behaviormetrika,

145


https://doi.org/10.2139/ssrn.3695419
https://doi.org/10.1257/jel.20191614
https://doi.org/10.1257/jel.20191614
https://doi.org/10.1353/hsj.2004.0003
https://doi.org/10.1353/hsj.2004.0003
https://doi.org/10.2307/2070941
https://doi.org/10.3102/0162373719876916
https://doi.org/10.3102/0162373719876916
https://doi.org/10.1177/2332858417749220
https://doi.org/10.3102/01623737221111403
https://doi.org/10.1016/j.econedurev.2016.02.009
https://doi.org/10.26300/vjfs-kv29

45(2), 317-334. https://doi.org/10.1007/s41237-018-0058-8

Pang, B., Nijkamp, E., & Wu, Y. N. (2019). Deep Learning With TensorFlow: A Review. Journal of

Educational and Behavioral Statistics, 45(2), 227-248. https://doi.org/10.3102/1076998619872761

Peters, A., Hothorn, T., & Hothorn, M. T. (2009). Package “ipred.” R Package, 2009.

Phillips, M., & Reber, S. (2022). Does virtual advising increase college enrollment? Evidence from a
random-assignment college access field experiment. American FEconomic Journal: FEconomic Policy,

14(3), 198-234.

Powell, M. G., Hull, D. M., & Beaujean, A. A. (2020). Propensity Score Matching for Education Data:
Worked Examples. The Journal of Ezperimental Education, 88(1), 145-164. https://doi.org/10.1080/

00220973.2018.1541850

Reardon, S. F., & Stuart, E. A. (2019). Education Research in a New Data Environment: Special Issue
Introduction. Journal of Research on Educational Effectiveness, 12(4), 567-569. https://doi.org/10.

1080,/19345747.2019.1685339

Reifeis, S. A., & Hudgens, M. G. (2022). On variance of the treatment effect in the treated when estimated

by inverse probability weighting. American Journal of Epidemiology, 191(6), 1092-1097.

Richardson, J. T. (2011). Eta squared and partial eta squared as measures of effect size in educational

research. Fducational Research Review, 6(2), 135-147.

Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., Firth, D., & Ripley, M. B. (2013). Package

“mass.” Cran r, 538, 113-120.

Robins, J. M., Hernan, M. A.; & Brumback, B. (2000). Marginal structural models and causal inference in

epidemiology. FEpidemiology, 550-560.

Rosenbaum, P. R. (1987). Model-Based Direct Adjustment. Journal of the American Statistical Association,

146


https://doi.org/10.1007/s41237-018-0058-8
https://doi.org/10.3102/1076998619872761
https://doi.org/10.1080/00220973.2018.1541850
https://doi.org/10.1080/00220973.2018.1541850
https://doi.org/10.1080/19345747.2019.1685339
https://doi.org/10.1080/19345747.2019.1685339

82(398), 387-394. https://doi.org/10.1080,/01621459.1987.10478441

Rosenbaum, P. R. (2010). Design of Observational Studies. Springer New York. https://doi.org/10.1007/

978-1-4419-1213-8

Rosenbaum, P. R., & Rubin, D. B. (1981). The Central Role of the Propensity Score in Observational

Studies for Causal Effects. Biometrika. https://doi.org/10.21236/adal14514

Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing Bias in Observational Studies Using Subclassification
on the Propensity Score. Journal of the American Statistical Association, 79(387), 516. https://doi.org/

10.2307/2288398

Rosenbaum, P. R., & Rubin, D. B. (2022). Propeunsity Scores in the Design of Observational Studies for

Causal Effects. Biometrika.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in

the brain. Psychological Review, 65(6), 386.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.

Rubin, D. B. (2004). Teaching Statistical Inference for Causal Effects in Experiments and Observational
Studies. Journal of Educational and Behavioral Statistics, 29(3), 343—367. https://doi.org/10.3102/

10769986029003343

Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the

American Statistical Association, 100(469), 322-331.

Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., & Cook, E. F. (2008). Evaluating uses of
data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiology and

Drug Safety, 17(6), 546-555. https://doi.org/10.1002/pds.1555

Song, X., & Coleman, T. S. (2020). Using Administrative Big Data to Solve Problems in Social Science.pdf.

147


https://doi.org/10.1080/01621459.1987.10478441
https://doi.org/10.1007/978-1-4419-1213-8
https://doi.org/10.1007/978-1-4419-1213-8
https://doi.org/10.21236/ada114514
https://doi.org/10.2307/2288398
https://doi.org/10.2307/2288398
https://doi.org/10.3102/10769986029003343
https://doi.org/10.3102/10769986029003343
https://doi.org/10.1002/pds.1555

University of Pennsylvania Population Center Working Paper (PSC/PARC). https://repository.upenn.

edu/psc/__publications/58/

Soria, K. M., Horgos, B., Chirikov, 1., & Jones-White, D. (2020). First-Generation Students’ Ezperiences
During the COVID-19 Pandemic. Student Experience in the Research University (SERU) Consortium.

https://conservancy.umn.edu/handle/11299,/214934

Stuart, E. A. (2010). Matching Methods for Causal Inference: A Review and a Look Forward. Statistical

Science, 25(1), 1-21. https://doi.org/10.1214/09-sts313

Stuart, E. A. (2023). What is a propensity score? Applications and extensions of balancing score methods.

Observational Studies, 9(1), 113-117. https://doi.org/10.1353/0bs.2023.0011

Suk, Y., Kang, H., & Kim, J.-S. (2021). Random Forests Approach for Causal Inference with Clustered Ob-
servational Data. Multivariate Behavioral Research, 56(6), 829-852. https://doi.org/10.1080/00273171.

2020.1808437

Team, R. D. C. (2009). A language and environment for statistical computing. Http://Www. R-Project.

Ory.

Therneau, T., Atkinson, B., Ripley, B., & Ripley, M. B. (2015). Package “rpart.” Awvailable Online: Cran.

Ma. Ic. Ac. Uk/Web/Packages/Rpart/Rpart. Pdf (Accessed on 20 April 2016).

Weberpals, J., Becker, T., Davies, J., Schmich, F., Riittinger, D., Theis, F. J., & Bauer-Mehren, A. (2021).
Deep Learning-based Propensity Scores for Confounding Control in Comparative Effectiveness Research:
A Large-scale, Real-world Data Study. FEpidemiology, 32(3), 378-388. https://doi.org/10.1097/ede.

0000000000001338

Webster-Clark, M., Stirmer, T., Wang, T., Man, K., Marinac-Dabic, D., Rothman, K. J., Ellis, A. R.,
Gokhale, M., Lunt, M., Girman, C., et al. (2021). Using propensity scores to estimate effects of treatment

initiation decisions: State of the science. Statistics in Medicine, 40(7), 1718-1735.

148


https://repository.upenn.edu/psc/_publications/58/
https://repository.upenn.edu/psc/_publications/58/
https://conservancy.umn.edu/handle/11299/214934
https://doi.org/10.1214/09-sts313
https://doi.org/10.1353/obs.2023.0011
https://doi.org/10.1080/00273171.2020.1808437
https://doi.org/10.1080/00273171.2020.1808437
https://doi.org/10.1097/ede.0000000000001338
https://doi.org/10.1097/ede.0000000000001338

Westreich, D., Lessler, J., & Funk, M. J. (2010). Propensity score estimation: neural networks, sup-
port vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

Journal of Clinical Epidemiology, 63(8), 826—833. http://www.sciencedirect.com/science/article/pii/

50895435610001022

Whata, A., & Chimedza, C. (2022). Evaluating Uses of Deep Learning Methods for Causal Inference. IEEE

Access, 10, 2813-2827. https://doi.org/10.1109/access.2021.3140189

Wyss, R., Ellis, A. R., Brookhart, M. A.; Girman, C. J., Funk, M. J., LoCasale, R., & Stiirmer, T. (2014).
The Role of Prediction Modeling in Propensity Score Estimation: An Evaluation of Logistic Regression,

bCART, and the Covariate-Balancing Propensity Score. American Journal of Epidemiology, 180(6),

645-655. https://doi.org/10.1093/aje/kwul81l

Wyss, R., Schneeweiss, S., Van Der Laan, M., Lendle, S. D., Ju, C., & Franklin, J. M. (2018). Using super

learner prediction modeling to improve high-dimensional propensity score estimation. FEpidemiology,

29(1), 96-106.

149


http://www.sciencedirect.com/science/article/pii/S0895435610001022
http://www.sciencedirect.com/science/article/pii/S0895435610001022
https://doi.org/10.1109/access.2021.3140189
https://doi.org/10.1093/aje/kwu181

	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Paper 1: Evaluating Modern Propensity Score Estimation Methods with High-Dimensional Data
	Introduction
	Literature Review
	Neyman–Holland–Rubin Model for Causal Inference
	Observational Studies
	Propensity Scores
	Assumptions for Identification and Estimation of Causal Effects
	Covariate Selection

	Estimating Propensity Scores
	Logistic Regression
	Machine Learning Approaches
	Tree-Based Methods
	Ensemble Methods

	Artificial Neural Network Architectures
	Artificial Neuron
	Single-Layer Neural Network
	Deep Neural Networks
	Deep Neural Networks in Causal Inference


	Method
	Data-Generation Mechanisms
	Covariates
	Sample Size
	Population Treatment Assignment Models
	Population Outcome Models
	Propensity Score Estimation Methods
	Training Methodology for Neural Network Approaches (NN-1, DNN-2, DNN-3)

	Estimating Treatment Effects - Propensity Score Weighting
	Estimating Standard Error of the ATE

	Performance Metrics
	Simulation Scenarios
	Software

	Results
	Covariate Balance
	Deviations from the Selection and Outcome Models
	Summary


	Bias of ATE Estimation
	Bias
	Relative Bias
	Complexities in the Population Outcome and Selection Models
	Summary


	Variance in ATE Estimation: SE, MSE, and 95% CI Coverage
	Estimated Standard Error (SE) and Mean Squared Error (MSE)
	Complexities in the Population Outcome and Selection Models

	95% Confidence Interval Coverage
	Complexities in the Population Outcome and Selection Models

	Model Based versus Empirical Standard Error

	Weights Assessment
	Complexities in the Population Outcome and Selection Models
	Summary

	Power

	Discussion and Conclusion

	Paper 2: When In-Person Support Is Not Possible, Can Virtual Outreach Help? Evaluating the Impact of an Artificially Intelligent Conversational Chatbot to Promote College Enrollment During the COVID-19 Pandemic
	Introduction
	Literature Review
	College access and returns to a college education
	College access during the COVID-19 pandemic
	Challenges in college access
	Unique challenges in college access among first-generation students
	Importance of college advising
	Behavioral nudge interventions
	Chatbots in college access

	Data
	Method
	Propensity Score Matching
	Outcome Model

	Limitations
	Results
	College Application Submission
	Overall College Enrollment
	Fall 2020 College Enrollment
	Racially Marginalized Students
	Outreach Participation
	Opt-Out
	Oli Engagement

	Results in Context
	High School Longitudinal Study of 2009
	Common App 2021 Cohort

	Discussion and Conclusion
	Tables and Figures

	Appendix A. Simulation R Code
	Bibliography

