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Central dogma reforms the biomedical science. Since then, biomedical researchers have

focused mostly on the relationship between DNA, RNA, and protein. To quantify their

sequence, structure, and abundance, numerous biotechnologies have been created. High-

throughput technologies, which emerged since 2000s, offer researchers a fantastic opportunity

to thoroughly grasp the mechanism of diseases and also bring many statistical challenges.

This thesis focuses on constrained clustering (Chapter 2), multi-study multi-class concordant

biomarker detection (Chapter 3), and cancer model selection (Chapter 4) in high-throughput

omics data analysis.

In Chapter 2, we proposed Constrained Gaussian Mixture Model (CGMM) by extend-

ing the Gaussian mixture model (GMM) to solve empty or small cluster issue. We also

generalized CGMM to sparse CGMM (SCGMM) using L1 penalty for gene selection. Ex-

tensive simulations and three real applications demonstrated the superior performance of

our proposed method.

In Chapter 3, we proposed a two-step framework, Multi-Study Multi-Class Concordance

(MSCC), to detect biomarkers in multi-class analysis across multiple studies from the aspect

of information theory. We first detect biomarkers with partially shared concordant patterns

across multiple studies and then identify the studies which contribute to such concordance.

The simulation and real-world data analysis showed superiority over min-MCC, the only

existing method for this problem so far.

In Chapter 4, we developed Congruence Analysis and Selection of CAncer Models (CAS-

CAM), a statistical and machine learning framework for authenticating and selecting the

most representative cancer models in pathway-specific and drug-relevant manner using tran-

scriptomics data. CASCAM provides harmonization between tumor and cancer model omics

data, interpretable machine learning for congruence quantification, mechanistic investigation,

and pathway-based topological visualization to determine the most appropriate cancer model
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selection. The workflow is presented using invasive lobular breast carcinoma (ILC) subtype,

credentialing highly relevant models for ILC research. Our novel method is generalizable to

any cancer subtype and will be impactful for furthering research in precision medicine.

Contribution to public health: The proposed clustering, biomarker and cancer model

selection methods using omics data are crucial for disease mechanistic understanding that

can lead to translational and clinical research. The related researches unravel knowledge

towards precision medicine and benefit public health.
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1.0 Introduction

Central dogma, first proposed by Francis Crick in 1958, reforms the biomedical science

[24]. Since then, the relationship between DNA, RNA, and protein has drawn the most at-

tention of biomedical scientists. Numerous biotechnologies have been developed to measure

their sequence, structure, and abundance. High-throughput technologies, arising from the

2000s, provide an excellent opportunity for researchers to comprehensively understand the

mechanism of diseases [45] and bring multiple statistical challenges simultaneously. This

chapter will introduce the high-throughput omics data (Section 1.1) and three related sta-

tistical modeling and learning issues (Sections 1.2, 1.3, and 1.4).

1.1 High-throughput omics data

Omics data analysis seeks to collectively characterize and quantify biological molecules

(such as DNA, RNA, and proteins) to understand the structure, function, and dynamics

of organisms, and the study subjects for these domains, such as genomics, proteomics, or

metabolomics, are denoted by the suffix “-omics”. By parallelizing the sequencing process,

high-throughput technologies generate thousands or millions of sequences at once, giving

researchers the excellent opportunity to conduct omics analysis on a larger scale. In this

section, we introduce two commonly used omics data – genomics and transcriptomics, and

the statistical challenges that accompany them.

1.1.1 Genomics

The entirety of an organism’s DNA, including all of its genes and their interrelations and

influence on the organism, is known as its genome. The human genome is the whole collection

of nucleic acid sequences for humans, encoded as DNA in the 23 pairs of chromosomes found

in cell nuclei and in small DNA molecules located in each mitochondria. It was originally
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made public in February 2001. Both different non-coding DNA sequences and DNA that

codes for proteins are present in the human genome.

Mutation detection is one of the main goals in genomics analysis [87]. The causality

between some mutations and diseases has been constructed. For example, the cumulative

breast cancer risk to age 80 years was 72% for BRCA1 and 69% for BRCA2 carriers [56].

Nowadays, several multigene panel testings were developed based on mutation detection

research and widely implemented in medical practice [58].

Single nucleotide polymorphisms (SNPs) is another prevalent type of genetic variation

that is utilized to link with diseases. Genome-wide association study (GWAS) is therefore

proposed to find SNPs associated with clinical phenotypes [54]. Association differs from

causality, though. The researchers are motivated to create more statistical methods as

a result of the GWAS limitations [14]. For example, expression quantitative trait locus

(eQTL) links the SNPs analysis with the gene expression under assumption that the SNPs

with high correlation with gene expression are more likely to be functional, and methylation

quantitative trait locus (mQTL) links SNPs with methylation level.

In addition to the previous two, copy number variation (CNV), defined as amplification

or deletion of genetic materials [110], detected in DNA sequencing data is a useful tool for

comprehending genetic variation [103], particularly in oncology. Different CNV status have

been ensured to be correlated with cancer occurrences [63].

1.1.2 Transcriptomics

The study of all of the RNA transcripts, such as message RNA (mRNA) and micro

RNA (miRNA), produced by the genome is known as transcriptomics. The abundance of

mRNA shows the gene expression level related to the the level of activity of certain biological

functions, since the mRNA is translated into peptide chains, which can then be folded to

form proteins. DNA microarray and RNA sequencing (RNA-seq) are two main techniques

to measure the transcriptomics.

DNA microarray measures the abundance of RNA based on known gene sequences.

mRNA is first extracted from a control sample and an experimental sample, the latter of

2



which is typically representative of the disease. The target RNA is transformed into cDNA

to boost stability and labeled with two fluorophores (red and green typically). A laser is used

to scan the microarray after the cDNA has been dispersed across its surface and hybridized

with oligonucleotides. We could then detect which of the samples exhibits higher amounts

of mRNA based on the color of the fluorophores. The fluorescence intensity on each place

of the microarray correlates to the degree of gene expression [41].

RNA sequencing (RNA-seq), the next-generation sequencing technology, allows for both

qualitative and quantitative analysis of RNA transcripts with only a tiny amount of RNA and

no prior knowledge of the genomes [47], which are gradually replacing the use of microarray.

RNA samples are first extracted, transformed into cDNA libraries, sequenced, aligned to

a reference, and quantified for further research. Single cell RNA sequencing (scRNA-seq)

has recently opened up possibilities for the simultaneous measurement of gene expression in

hundreds to thousands of individual cells, and it is now widely applied in multiple research

areas such as understanding the heterogeneity of tumor samples [51].

1.1.3 Statistical modeling and learning issues in omics data analysis

The accumulation of omics data brings new statistical challenges and opportunities. This

dissertation focuses on three issues: 1) The imbalanced group labels in real omics applica-

tions are not well handled by current clustering algorithms, which might even lead to empty

cluster issues (i.e., one cluster is assigned no observations). 2) The biomarkers showing

concordant expression patterns across multiple studies are believed to be valid disease indi-

cations. However, the statistical methods to identify these biomarkers are seldomly proposed.

3) The continuing increase in the number of cancer models, such as cell lines, patient-derived

xenografts (PDX), and organoids (PDO), has led to an increasingly urgent need for statisti-

cal methods which could select the most appropriate ones for the specific research interest.

However, such methods have not been developed yet.

In the following sections of this chapter, we will introduce the imbalance issues in clus-

tering analysis (Section 1.2), the multi-study multi-class concordant biomarker detection

(Section 1.3), and congruence and selection of representative cancer models (Section 1.4).
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1.2 Constrained clustering

1.2.1 Overview of clustering algorithm

Clustering analysis is a set of practical data mining techniques widely applied in many

fields to find groups of objects with similar patterns. It is a crucial tool for unsupervised

machine learning and is widely applied in biomedical research, especially omics data explo-

ration. Two major categories of clustering methods are distance-based and model-based

methods.

Distance-based methods define pair-wise distances between observations at first, and the

observations with modest distances are typically assigned to a single cluster. K-means, for

example, is the most representative algorithm under this category. Given a set of observations

(x1,x2, ...,xN), K-means aims to partition the N observations into K (≤ N) sets S =

{S1,S2, ...,Sk} so as to minimize the within-cluster sum of squares (WCSS):

argminS

K∑
k=1

1

|Sk|
∑

x,y∈SK

dist(x,y)

where dist(x,y) represents the distance between x and y, which we usually use the Eucle-

adean distance.

Compared with distance-based methods, model-based clustering, considering the obser-

vations created from a finite combination of distributions, stands out for its precise inference,

enhanced interpretation, and adaptability. Gaussian mixture model is a representative ex-

ample of model-based approach (Section 2.2.1).

1.2.2 Constrained clustering

Constrained clustering is a series of methods extending the clustering by incorporating

the prior knowledge into the unsupervised process for better results. Instance-level and

cluster-level are two categories of constrained clustering. The prior one, which is commonly

discussed, is about setting constraints on the objects such as must-link and cannot-link by

the partially known labels or the expertise (semi-supervised learning). In contrast, the latter
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focuses on the clusters themselves, such as cluster size and number, which is relatively less

mentioned [37].

Most cluster size constrained methods are extended fromK-means. In order to guarantee

the lowest size of each cluster, Bradley et al. [15, 28] incorporate a linear transportation solver

into the K-means cluster assignment stage. Pakhira [83] suggests modifying K-means to take

the determined cluster center as an observation for the center calculation in the each iteration.

The balancedK-means suggested by Malinen and Fränti [70] once more alters the assignment

stage to pre-allocate the slots with an equal number of objects around the centroids and

allocates the item to the slots rather than the centroids to ensure a balanced assignment.

The initial and assignment steps are modified suggested by Ganganath et al. [38]. In

the assignment step, a predetermined upper bound for the cluster size is predetermined by

sorting the distance in ascending order. The updated beginning step still requires at least one

object with a known group label for each cluster group. Another assignment step revision

of K-means is called eXploratory K-Means with empty-cluster-reassignment (EXK-Means),

which was developed by Hua et al. [46]. In order to replace the empty clusters, it finds the

items that are the furthest from the centroids in each iteration and reassigns them as the

new centroids.

A few other techniques fall within the aforementioned task in addition to the K-means

based approaches. For instance, Zhu et al [136] seek to locate the clustering assignments

that, when considered in the context of the size constraints, has the maximum degree of

agreement with the known clustering assignment.

1.2.3 Problems in model-based clustering

Model-based clustering has the following three drawbacks: 1) one may have empty cluster

issues when cluster sizes are uneven. 2) it would lose clustering accuracy owing to vulnera-

bility to a local optimum. 3) it could fail to achieve the clustering objective when cluster size

constraints are mandatory. All of three drawbacks can be solved by cluster size constrained

clustering through narrowing down the searching space.

To our knowledge, no constrained model-based clustering method exists, and none of the
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methods discussed above take into account the issue of feature selection, which is critical

with high-dimensional data such as omics data. In Chapter 2, we proposed CGMM – a novel

algorithm for constrained model-based clustering to bridge this gap.

1.3 Multi-study multi-class concordant biomarker detection

Biomarker detection is a critical component of biomedical research. Study integration

is a typical strategy for enhancing the accuracy and potency of biomarker identification. If

a gene exhibits consistent expression patterns in various studies, we could assume it is a

reliable candidate for disease indication.

Two approaches to study integration include combining p-values and combining effect

sizes. The former has received a lot of attention. In Fisher’s approach, for instance, the log-

transformed p-values are added up, and each p-value is presumptively distributed uniformly

under the null hypothesis. The latter strategy splits the observed treatment effects of each

study into two components: the actual effect size and the study-specific noise [31]. The

effect size combination, on the other hand, is only available in the two-class scenario, and

the p-value combination just considers the significance level without taking into account the

gene expression pattern. The effect size combination is no longer valid when there are more

than two categories, and the p-value combination cannot accurately identify the multi-class

pattern.

To the best of our knowledge, min-MCC [68] is the sole strategy for identifying biomarkers

with consistent multi-class patterns across several studies that makes use of the minimal

correlation value for all study pairs. However, it is too strict to detect the biomarkers with

consistent patterns in partial studies. In this thesis, we revisit this problem from the aspect

of information theory, and re-design a new framework for biomarker detection in Chapter 3.
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1.4 Selection of representative cancer model

1.4.1 Cancer models

Numerous cancer models, such as cell lines, patient-derived organoids (PDO), and xenografts

(PDX), are created as a result of the growth of biotechnology. Cell lines originate from multi-

cellular organisms and are immortalized and maintained in vitro. It is believed that cell lines

retain the stability of specific phenotypes and functions. PDOs are created from isolated

organ progenitors or pluripotent stem cells, which can develop into an organ-like tissue with

a variety of cell types. PDOs have the ability to self-renew and self-organize, maintaining the

physiological structure and function of their source tumor [130]. Surgery is used to remove

tumor pieces from cancer patients, which are then transplanted directly into immunodeficient

mice to create PDXs [131].

1.4.2 Current selection methods

It is necessary to evaluate and select appropriate cancer models prior to experiment.

Cell lines could be mislabeled [133] and the genomic/epigenomic alterations or even con-

tamination [39, 125, 8] may accumulate across passages in the culture. Similarly, PDO and

PDX may also evolve due to the different microenvironment during time (Section 4.2). In

practice, cancer models are typically chosen based on a select few important mutations or

traits without thorough research. [32]

Congruence (correlation-based) analysis and authentication (machine-learning-based)

analysis are the two main tool categories employed in current assessment research, which are

typically focused on pan-cancer investigation. In the former congruence analysis, correla-

tion/association metrics are typically used to evaluate the degree of genome-wide similarity

between a cancer model and the target tumor cohort [125, 4, 64, 124, 5, 99]. In contrast, the

later authentication analysis creates machine learning models for cancer model assignment to

human cancer types, including suitability score [32], random forest [86, 133], ridge regression

[98], and nearest template prediction [132].

However, four limitations exist in current approaches. 1) High prediction accuracy is
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the goal of machine learning-based authentication approaches, but they are not intended to

promote candidate cancer models that most closely resemble the target tumor cohort. 2)

Correlation-based congruence approaches frequently yield poorer prediction accuracy though

they are more suitable for prioritizing cancer models. 3) Current congruence or authenti-

cation methods are generally used at the genome-wide level and are unable to identify the

pathways or molecular mechanisms that a cancer model most closely or least closely resem-

bles, which is crucial for the development of precision medicine. 4) The current literature has

not thoroughly studied and analyzed the data compatibility and harmonization between can-

cer model and tumor data, which is a crucial step to obtain high accuracy and prevent false

mechanistic conclusions. In this thesis, we review the cancer model selection problem and

provide a complete framework to select the appropriate cancer models using transcriptomics

data.

1.5 Overview of this dissertation

This thesis focuses on the statistical concerns and challenges associated with omics data.

In Chapter 1, we introduce the omics and three statistical issues (Section 1.2, 1.3, and 1.4).

In Chapter 2, we propose Constrained Gaussian Mixture Model (CGMM) by extend-

ing the Gaussian mixture model (GMM). We also generalize CGMM to sparse CGMM

(SCGMM) using L1 penalty in high-dimensional data. Extensive simulations and three real

applications demonstrate the superior performance of our proposed method.

In Chapter 3, we propose a two-step framework, Multi-Study multi-Class Concordance

(MSCC), to detect the biomarkers in multi-class analysis across multiple studies from the

aspect of information theory. We first detect the biomarkers with concordant patterns par-

tially or entirely across multiple studies and then identify the studies which contribute to

such concordance. The simulation and real-world data analysis demonstrated superiority

over min-MCC [68], the only applicable method for this problem so far.

In Chapter 4, we develop Congruence Analysis and Selection of CAncer Models (CAS-

CAM), a statistical and machine learning framework for authenticating and selecting the
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most representative cancer models in pathway-specific and drug-relevant manner using tran-

scriptomic data. CASCAM provides harmonization between tumor and cancer model omics

data, interpretable machine learning for congruence quantification, mechanistic investigation,

and pathway-based topological visualization to determine the most appropriate cancer model

selection. The workflow is presented using invasive lobular breast carcinoma (ILC) subtype,

credentialing highly relevant models, while questioning congruence of some frequently used

models such as MDA-MB-134VI for ILC research. Our novel method is generalizable to any

cancer subtype and will be impactful for furthering research in precision medicine.
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2.0 CGMM: a novel algorithm for constrained model-based clustering

The contents of this Chapter are prepared and ready to be submitted to journalKnowledge-

Based Systems. This work was awarded the 2022 Mihaela Serban Award for Best Poster

Presentation from the ASA Pittsburgh Chapter.

2.1 Introduction

Clustering analysis, an essential tool for unsupervised machine learning, is a set of prac-

tical data mining techniques to identify groups of objects with similar patterns and has been

widely used in many areas. For example, in biomedical applications, clustering patients into

different subgroups is usually the first step to understanding the underlying mechanism of

complex disease, followed by the development of precision medicine. Model-based clustering

stands out among many clustering methods for its rigorous inference, better interpretation

and extensibility. Recently, to address the rising challenges about “large p, small n” prob-

lem, many clustering methods constructed from conventional model-based clustering are also

proposed for clustering objects and selecting features simultaneously, such as penalized Gaus-

sian mixture model [84], sparse Poisson mixture model [129], and sparse negative binomial

mixture model [62].

However, it encounters new challenges in modern data science. Unlike the conventional

datasets, the group sizes in some particular datasets (such as omics data) are usually im-

balanced (e.g., the rare subtypes of some diseases), and the sample sizes are moderate.

Therefore, the small clusters are likely to be overlooked or ultimately merged into the larger

groups, especially when the number of groups is significant. More specifically, one clustering

group could have small probabilities among all the objects when applying the model-based

clustering methods. This group would then “disappear” in the hard assignments. Besides

the imbalanced and empty cluster issue, there are also needs to pre-specify the boundary

of cluster size in practice, such as the job scheduling problem (similar jobs are clustered for
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the same worker while the maximum number of jobs per worker is pre-specified) and the

customer segmentation problem [136].

Clustering with size constraints, as a category of constrained clustering [37], is the ap-

proach to solve this issue. Most of the methods under this goal are extended from K-means.

Bradley et al. [15, 28] implements a linear transportation solver into the cluster assign-

ment step of K-means to ensure the minimal size of each cluster. Pakhira [83] proposes the

modified K-means, focusing on the cluster updating step instead, to assume the calculated

cluster center as an observation for the center calculation in the next iteration. The bal-

anced k-means proposed by Malinen and Fränti [70] again modifies the assignment step to

pre-allocate the slots with an equal number of objects around the centroids and assigns the

object to the slots, rather than the centroids, to ensure a balanced assignment. Another

K-means based approach proposed by Ganganath et al. [38] changes the initial step and

assignment step. The modified initial step requires at least one object with a known group

label for each cluster group; in the assignment step, an upper bound for the cluster size

is pre-determined by sorting the distance in ascending order. eXploratory K-Means with

empty-cluster-reassignment (EXK-Means) by Hua et al. [46] is also an assignment step revi-

sion of K-means. It works by detecting the most marginal objects (according to the distance

toward the centroids) in every iteration and re-assigning them as the new centroids to re-

place the empty clusters. Besides the approaches based on K-means, a few other methods

are also under the task mentioned above. For example, size constraints, developed by Zhu

et al. [136], directly works on the clustering assignment and aims at identifying the cluster-

ing partition under the cluster size constraints with the highest agreement with the known

clustering assignment.

However, to the best of our knowledge, none of them consider feature selection. The

model-based clustering with cluster size constraints and details about when and how cluster

size constraints work are still unsolved. In order to solve these problems, we introduce

the cluster size constraints to the model-based clustering inspired by the idea of solving

linear transportation problems from Bradley et al. [15, 28] and develop a new framework

named Constrained Gaussian Mixture Model (CGMM), allowing the pre-determination of

cluster size boundary. Our framework is a generalization of the Gaussian mixture model with
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Expectation-Maximization algorithm [29]. We update the E-step by introducing a checkpoint

to examine the constraint criteria for each iteration. If not met, a linear transportation solver

is then implemented to re-arrange the assignment to ensure the minimal cluster size. We also

extend CGMM to SCGMM (Sparse CGMM) using lasso penalty to allow feature selection

in high-dimensional data, which adopts the model proposed by Pan and Shen [84].

The article is structured as follows. In Section 2.2, we showcase the conventional GMM

and our proposed CGMM and SCGMM framework with their working mechanisms. We

further illustrate the mechanism in high-dimensional and one-dimensional data simulation

in Section 2.3. Section 2.4 includes the real applications under three different scenarios using

our framework. Finally, the discussion and conclusion about this method and the following

possible extensions are in section 2.5.

2.2 Methodology

We first introduce the model based clustering under the Gaussian assumption. Then we

introduce our proposed cluster constrained framework and its extension for “large p, small

n” scenario. The methods for parameter selection and results benchmark are included at

last.

2.2.1 GMM and penalized GMM

We annotate Xn×p as the standardized data matrix for clustering with n observations

and p features. It is assumed that every observation Xi is generated from a Gaussian mixture

distribution with K components f(Xi; Θ) =
∑K

k=1 πkϕk(Xi;µk,Σ). As for the unknown pa-

rameters, πk represents the prior probability with
∑K

k=1 πk = 1 and 0 ≤ πk ≤ 1, µk represents

the p-dimensional vector of mean parameters for component k, and Σ = diag(σ2
1, ..., σ

2
p) rep-

resents the co-variance matrix shared across K components with the feature independence
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assumption in our study. The observed log-likelihood is

logL(Θ) =
n∑

i=1

log f(Xi; Θ) =
n∑

i=1

log
K∑
k=1

πkϕk(Xi;µk,Σ) (1)

Since it is difficult to directly maximize the observed log-likelihood, a latent variable as

the group label indicator Zn×K is introduced with zi,k = 1 if Xi comes from group k and

zi,k = 0 if not. The complete log-likelihood including the Zn×K is

logLc(Θ) =
n∑

i=1

K∑
k=1

zi,k log[πkϕ(Xi;µk,Σ)] (2)

The Expectation-Maximization (EM) algorithm [29] is then applied to obtain the maximized

likelihood estimator (MLE). In every iteration, the expectation of Zn×K is updated in E-

step and the estimator for Θ is updated in M-step. We denote ∆n×K = {δi,k}i∈1:n,k∈1:K as

the expectation of the latent variable Zn×K which is also the soft group assignments for the

data matrix, and map(∆n×K) is the function of mapping the soft assignment matrix to the

hard assignment vector indicating the assigned label of each object.

To address the “large p, small n” issue, Pan and Shen [84] propose a penalized GMM

(PGMM) and regularize the log-likelihood by a L1 penalty term. The observed and complete

log-likelihood become

logLP (Θ) =
n∑

i=1

log
K∑
k=1

πkϕk(Xi;µk,Σ)− λ
K∑
k=1

p∑
j=1

|µkj| (3)

logLc,P (Θ) =
n∑

i=1

K∑
k=1

zi,k log[πkϕ(Xi;µk,Σ)]− λ

K∑
k=1

p∑
j=1

|µkj| (4)

Under this setting, µkj is shrunken towards 0. If the estimated µkj = 0 for all k, the j-

th feature does not contribute to the clustering results and realizes the feature selection.

Detailed derivations can be referred to [84].

2.2.2 CGMM framework

In the CGMM framework, besides the parameters in GMM, we introduce a new pa-

rameter τ requiring the minimal cluster size (i.e. each cluster should contain at least τ
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observations). The framework is similar if the upper bound of cluster size needed.

At first, GMM (with random or k-means assignment as the initial) is performed until

convergence, and we start the CGMM EM iterations if
∑n

i=1(map(∆) == k) < τ, ∃k ∈

{1, 2, ..., K}. Otherwise, we directly report the GMM results since the cluster size has already

satisfied the constraints.

For the E-step, the cluster size is checked every time. In iterationm, if
∑n

i=1(map(∆) ==

k) ≥ τ ∀k ∈ {1, 2, ..., K}, ∆ is updated in the usual way. For i-th observation in k-th group,

δ
(m)
i,k =

π
(m−1)
k ϕ(Xi;µ

(m−1)
k ,Σ(m−1))∑K

k=1 π
(m−1)
k ϕ(Xi;µ

(m−1)
k ,Σ(m−1))

(5)

Otherwise, we obtain the ∆ by maximizing the object function h(∆(m))

h(∆(m)) =
n∑

i=1

K∑
k=1

δ
(m)
i,k log[π

(m−1)
k ϕ(Xi;µ

(m−1)
k ,Σ(m−1))] (6)

with the constraints satisfied,

n∑
i=1

δ
(m)
i,k ≥ τ, k = 1, ..., K

K∑
k=1

δ
(m)
i,k = 1, i = 1, ..., n

δ
(m)
i,k ∈ {0, 1}, i = 1, ..., n; k = 1, ..., K

(7)

If the constraints are applied, the goal of calculating the latent variable expectation is

switched to maximizing the complete log-likelihood in the constrained searching space. The

soft assignments then become hard assignments, which is similar to the idea of K-means.

Though the continuity is sacrificed when the constraints are activated, the local optimum

with unwanted small cluster size is avoided at the same time.

When the constraints are activated, it is equivalent to solving a linear transportation

problem since the goal of maximizing the complete log-likelihood h(∆(m)) is equivalent to

minimizing −h(∆(m)). A common example of a linear transportation problem is transporting

goods from multiple factories to multiple warehouses. The goal is to minimize the transporta-

tion fee while satisfying the minimum number of goods requested by different warehouses.

In our case, every observation can be seen as a factory with one piece of goods, and each
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cluster can be seen as a warehouse. The cost of transporting observation Xi to cluster k

is − log[πkϕ(Xi;µk,Σ)], and the goal is to minimizing the total cost (maximizing the com-

plete log-likelihood) while requiring each cluster contains at least τ observations. Therefore,

the optimized transportation plan is the hard assignment results in every iteration. we use

lpSolve R package [11] to solve it.

For the M-step in iteration m, the parameters are updated as usual [84],

µ
(m)
k =

∑n
i=1 δ

(m)
i,k Xi∑n

i=1 z
(m)
i,k

σ2,(m)
p =

K∑
k=1

n∑
i=1

δ
(m)
i,k (Xi,p − µ

(m)
k,p )

2

n

π
(m)
k =

∑n
i=1 δ

(m)
i,k

n

(8)

2.2.3 SCGMM framework

In order to solve the “large p, small n” issues in the high dimensional data with sparsity

and realize the feature selection, we extend our method to SCGMM using the model proposed

by Pan and Shen [84]. The included penalty term shrinks the group centers towards 0, and

the less informative features are excluded for clustering assignment. The only difference lies

in updating µk in M-step. A further calculation is needed,

µ̃
(m)
k = sgn(µ

(m)
k )(|µ(m)

k | − λ∑n
i=1 δ

(m)
i,k

Σ(m)1)+ (9)

where 1 is a vector of 1s, sgn(x) is the sign function. (x)+ = x if x > 0, and (x)+ = 0

otherwise. SCGMM becomes CGMM when λ = 0. Detailed derivations can be referred to

[84]. Pseudo code is shown in Algorithm 1.

2.2.4 Parameter selection and methods for benchmarking

A modified version of Bayes Information Criterion (BIC) [84] is used in this study for λ

selection in the Section 2.3, and it is defined as BIC = −2 logL(Θ̂) + log(n)de, where Θ̂ is

the maximized penalized likelihood estimators (MPLE), and de = K + p+Kp− 1− q with
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q for the number of MPLE mean components which are shrunken to 0. Comparing with

the original BIC, de represents the degree of freedom for the penalized model through the

introduction of q [115].

Adjusted Mutual Information (AMI), a measure of clustering results consistency ad-

justing for chance, is adopted for comparing the clustering results with the ground truth.

AMI ranges in [0, 1], and the larger value means better consistency. Compared with Ad-

justed Rand Index (ARI), another commonly used statistics, AMI emphasizes more on the

imbalanced clustering results [96], which is more appropriate in our scenarios.

When the ground truth is not applicable in Section 2.4.1, we use the average silhouette

method with Euclidean distance for the results evaluation [97]. It measures the cohesion of

a data point to its cluster compared to the others and ranges from -1 to +1 with the larger

value indicating better performance.

Furthermore, we reallocate the clustering labels by by maximizing consistency between

the clustering results and the ground truth through the Hungarian method [42]. Confusion

matrix, averaged confusion matrix across simulated replicates, and the cluster size table are

used for results evaluation.

2.3 Simulation

This section demonstrates the performance of CGMM/SCGMM compared with GMM/PGMM

under different scenarios. In simulation 1, we showcase the performance of SCGMM in high

dimensions with sparsity, and the performance of CGMM in one dimension is shown in

simulation 2. A random assignment is used as the initial if not specified.

2.3.1 Simulation 1: high dimension with sparsity

In simulation 1, we simulate 4 clusters with (40 - S, S, S, 40 - S) ·N observations

respectively, and the data are generated from D dimensional standard normal distribution

centering at (-2, -1, 1, 2) ·E for each group in the first 20% of the features and centering at
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(0, 0, 0, 0) in the remaining features. Features are mutually independent. S, N , D, and E

are variables changed to simulate different scenarios and evaluate the impact of imbalance,

sample size, dimensionality and effect sizes respectively. Under each scenario, 100 datasets

are generated. Details for each setting are outlined below:

• Simulation 1A: S = 10, N = 1, D = (50, 100, 200, 500, 1000), and E = 1.

• Simulation 1B: S = (5, 10, 15, 20), N = 1, D = 500, and E = 1.

• Simulation 1C: S = 10, N = (1, 2, 5, 10), D = 500, and E = 1.

• Simulation 1D: S = 10, N = 1, D = 500, and E = (0.8, 0.9, 1 , 1.2, 1.4, 1.8, 2, 50, 100).

• Simulation 1E: Same setting with 1A, but use 100 random initials and 1 K-means initial

with modified BIC for initial selection.

We first demonstrate the impact of dimensionality in simulation 1A. In Figure 1A, we can

observe the increasing trend of AMI and the difference in AMI between PGMM and SCGMM

at the same time as the number of dimensions with signals increases. The averaged AMI of

SCGMM is 0.93, while the average AMI of PGMM is 0.69 when D = 1000. This difference

is caused by the group merging issue. Among 100 simulated datasets, there are 86 of them

containing the empty cluster, which is concordant with the averaged confusion matrix (Table

1A), where PGMM tends to merge the small clusters and SCGMM can avoid these situations

as such assignments are not in its searching space.

The effect of imbalance is then evaluated in simulation 1B. As the degree of imbalance

decreases, the difference between SCGMM and PGMM decreases (Figure 1B). Table 1B

shows the averaged confusion matrix when S = 5, and the small groups are nearly merged

by the large groups.

We then evaluate the impact of sample size in simulation 1C. Not surprisingly, as the

sample size becomes larger, AMI of SCGMM and PGMM increase simultaneously and the

difference of them gets smaller (Figure 1C). Finally, both of them reach the perfect clustering

results when N = 10.

The impact of effect sizes is also investigated. As the effect size increases, AMI of

PGMM and SCGMM increases at the same time (Figure 1D). We can also see the AMI

of PGMM bounces up and down at 0.9 even when the effect size is large enough, which is
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because of the empty cluster in some simulated datasets. For group l as an instance, since

µ̃l = sgn(µl)(|µl|− λ∑n
i=1 δi,l

Σ1)+, which shrinks to 0, it is possible that µ̃l = 0 (i.e., µlj = 0,

∀j ∈ {1, ..., p}) and πl · ϕ(Xi;0,Σ) < πk · ϕ(Xi;µk,Σ), ∀k ̸= l and i ∈ {1, ..., n}. Therefore,

we see group l completely “disappears” under PGMM framework.

Figure 1E shows the impact of multiple initials including K-means to ensure a good

initial is selected for every dataset. Compared with simulation 1A, the increasing number

of initials can improve PGMM performance at the cost of a heavier computation burden.

However, it still can not guarantee avoiding the empty cluster issue. For example, when

D = 100, we still observe 12 empty cluster issues for GMM among 100 simulated datasets

and the averaged confusion matrix table 1E also shows that large groups tend to merge

the small groups in PGMM while SCGMM rescue this tendency, indicating the necessity of

cluster size constraints.

To summarize, SCGMM works by limiting the searching space to avoid local optimum

and the empty cluster issue. As a result, it has better performance for imbalanced datasets,

small sample sizes, and small effect sizes. Multiple initials can improve the performance of

PGMM, but they can not avoid empty cluster issues.

2.3.2 Simulation 2: one dimension

In this section, we focus on the performance of CGMM under the impact of different

effect sizes, different sample sizes, and the different number of initials. Under the following

scenarios, there are 4 groups, and data are generated from a standard normal distribution

centered at (-2, -1, 1, 2) ·E with (30, 10, 10, 30) ·N observations, respectively. 100 ·I random

assignment initials are used, and the one with the largest log-likelihood is selected. Details

for each setting are outlined below:

• Simulation 2A: E = (0.5, 1, 2, 3, 5), N = 10, and I = 1.

• Simulation 2B: E = 1, N = (1, 5, 10, 50, 100), and I = 1.

• Simulation 2C: E = 1, N = 1, and I = (1, 2, 5, 10, 20).

• Simulation 2D: Same setting with Simulation 2A and 2B but using K-means clustering

results as the initials.
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Figure 2A shows that, in simulation 2A, as effect size increases, AMI of CGMM and

GMM increase while the difference between them increases simultaneously. This difference

is caused by the soft assignment property of GMM when the initial centers are not separable

enough, and CGMM avoids the drawbacks by introducing the hard assignment. We can

observe this case in Table 2 when E = 5.

Figure 2B demonstrates the simulation 2B for different sample sizes. As the sample size

increases, the 100 random initials are less likely to include a good initial to have the centers

separate enough. However, we could find that CGMM is more robust to these initials.

We also explore the effects of different number of initials in simulation 2C. As the number

of initials increases, the AMI of GMM increases with better initials (Figure 2C).

However, the worse performance of GMM mentioned above is mainly caused by the

random initials, which are not separative enough. If we perform the simulation 2A and 2B

with K-means clustering results as the initials, the difference between GMM and CGMM

diminishes (Figure 2D1-2).

2.4 Real application

In this section, we demonstrate the application of the (S)CGMMmethod in three different

scenarios: 1) when the cluster size is pre-specified; 2) when the empty cluster issue exists;

3) when the rare group exists in different areas (business and biology). We clearly show

that our proposed method can ensure the cluster size boundary while the normal (P)GMM

cannot. Besides that, we show the superiority of our method to solve the empty cluster and

rare group issues.

2.4.1 Real application 1: when the cluster size is pre-specified

Peer grouping is a tool about organizational learning, usually aiming to cluster similar

peers within an organization for peer mentoring and communication. In order to design

policy for differentiated groups and ensure a similar group size for better management, there
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are always cluster size requirements for such tasks. In this section, we use the dataset from a

case study [49] about clustering outlets within a large organization, and the variables include

different measures of client demographics and organizational characteristics. The data have

already been pre-processed with the 11 covariates carefully selected and de-identified. There

are 200 outlets for clustering, 100 is the maximum cluster size pre-specified, and 3 clusters

are recommended in the study. The true clustering labels are not available in the dataset. In

the analysis, K-means is used as initials, and the constraint term in Equation 7 is modified

to
∑n

i=1 z
(m)
i,k ≤ τ for accommodating the maximum cluster size constraint.

The cluster sizes for each group obtained by GMM are 117, 65, and 18, respectively,

violating the cluster size requirements. In contrast, the cluster sizes obtained by CGMM

are 100, 82, and 18. t-SNE [122], a tool based on stochastic neighbor embedding for high

dimensional data visualization, is used for showing the clustering results in Figure 3. We

can observe that CGMM changes the labeling of 17 data points from group 1 to group 2,

and the rearrangement is reasonable according to the t-SNE figure. The average silhouette

is 0.24 for GMM and 0.22 for CGMM. We can find that constrained clustering can help

with better assignments under the pre-specified requirement by sacrificing a little clustering

performance in this task.

2.4.2 Real application 2: when the empty cluster issue exists

Empty cluster issue, which refers to the one or multiple clusters containing no data point

after hard assignment, happens especially in the high dimensional data with many clusters.

This section showcases the empty cluster issue and how SCGMM can help. Genotype-Tissue

Expression (GTEx) project [66] is a public resource for tissue-specific gene expression and

regulation, and we use the brain tissue gene expression (RNA-Seq) in 13 different brain

tissue types as the example. The gene read counts and the sample annotations in GTEx

Analysis v6p are downloaded on 12/15/2021 and filtered to contain brain tissues only. The

dataset contains 56,238 genes and 1,259 tissue samples. It is preprocessed in two steps: 1)

transforming the data to the log2 scaled normalized values; 2) selecting 2,000 genes with the

highest interquartile ranges.
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In the analysis, τ is set to be 60, the rounded number to the nearest tens of the smallest

cluster size. λ is explored, ranging from 0 to 300, and loess regression with 95% confidence

interval is fitted to show the trend of AMI with different λs in Figure 4. We find that

SCGMM generally has better clustering results and is more robust to different λ.

We go further to analyze the detailed assignments when λ = 200, which is the turning

point in Figure 4. When λ = 200, AMI(GMM) = 0.57 and AMI(CGMM) = 0.63. t-SNE

figure (Figure 5) and the cluster size table (Table 3) show the details of clustering assignments

after the class label reallocation. PGMM identifies only 6 regions compared to 13 regions

detected by SCGMM, and we see that the results of SCGMM have better consistent with

true labels according to Figure 5. For example, caudate nucleus, putamen, and nucleus

accumbens are 3 important components of basal ganglia, and they are gathered together in

Figure 5 annotated by actual labeling. We find that SCGMM successfully detects them, but

PGMM fails to differentiate them and the groups of putamen and nucleus accumbens are

completely merged into the group of caudate nucleus.

2.4.3 Real application 3: when the rare group exists

Data imbalance is a common issue in classification problems. Over-sampling and down-

sampling are two possible solutions. However, we cannot take these approaches in the clus-

tering problem as the group labels are unknown. Constrained clustering can help with this

scenario. By introducing the constraints, the rare groups can be identified for further in-

vestigation. In this section, we use the single-cell gene expression data (scRNA-Seq) for

illustration. zhengmix4uneq data, which is originally from [135] and pre-processed in [35],

is used for analysis. The dataset consists of 4 pre-sorted cell types (B cells, naive cytotoxic

T cells, CD14 monocytes, and regulatory T cells) from the human. There are 1,644 gene

features and 3,830 cell samples. In order to have the imbalance and rare groups, the dataset

is subsampled to have 2 groups (CD14 monocytes and regulatory T-cells) with 100 samples

each and 2 groups (B-cells and naive cytotoxic T-cells) with 20 samples each.

We first do the subsampling 50 times to see the general performance of PGMM and

SCGMM under this scenario. Then, for each subsampled dataset, the analysis is performed
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among different λs ranging from 0 to 60, τ is set to be 20, and the one with the largest AMI

(best performer) is selected for SCGMM and PGMM separately. The boxplot (Figure 6A)

clearly shows that SCGMM outperforms PGMM in all 50 simulated datasets.

One subsampled dataset is then analyzed in detail. In general, we find SCGMM has

better performance compared to PGMM in Figure 6B, and the larger likelihood does not

indicate better clustering results due to the limited sample size (Figure 6C). When λ = 24,

where SCGMM reaches the largest AMI (AMI(PGMM) = 0.61 and AMI(CGMM) = 0.78),

GMM fails to identify the B cells due to its small sample size and B cells are nearly absorbed

by the CD14 monocytes group, while SCGMM successfully detects them (Table 4 and Figure

7).

Since neither SCGMM nor PGMM finds cytotoxic T cells correctly as they mix with

regulatory T cells according to the actual labeling in the t-SNE plot (7), we further perform

another analysis by merging the cytotoxic T cells and regulatory T cells groups into one

group and subsample 50 B cells, 200 T cells, and 200 CD14 monocytes 50 times. Similarly,

SCGMM is not inferior to PGMM among 50 subsampled data (Figure 6D). In one simulated

dataset, when λ ranges from 0 to 60, SCGMM has better clustering performance and does

not guarantee a better log-likelihood (Figure 6E-F). When λ = 29, where SCGMM achieves

the best AMI, We can see that B cells are merged with CD14 monocytes in PGMM (only 1

B cell identified), while SCGMM successfully identifies B cells (51 B cells identified) (Table

5 and Figure 8).

2.5 Discussion and conclusions

This study proposes CGMM and SCGMM to perform the model-based clustering with

cluster size constraints. To the best of our knowledge, this is the first cluster size constrained

method in model-based clustering, and the first study thoroughly analyzes the scenarios

where constrained clustering is needed.

The application of cluster size constrained clustering mainly lies in two scenarios – when

the cluster size boundary is required and when the data structure is exceptional. There are
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several tasks in the real world that require the pre-determination of cluster size boundary,

such as the job scheduling problem, the customer segmentation problem, and peer grouping

mentioned in section 2.1 and section 2.4.1. Under these cases, the cluster size constraints

are mandatory. However, we have not seen any algorithm solution based on model-based

clustering except ours. As for the latter scenario, we demonstrate that (S)CGMM has better

performance on clustering assignments and can avoid empty cluster problems for datasets

with severe imbalance, small sample sizes, and small effect sizes in the simulations, especially

when the data are high dimensional and sparse. Two real-world examples also showcase

the performance of SCGMM when the empty cluster issues exist and when the dataset is

imbalanced. We find that similar to the results in the simulation, SCGMM successfully

identifies the ignored groups and achieves even more consistent clustering assignments with

the actual labels.

Briefly, (S)CGMM works by limiting the searching space to avoid local optimum and

guaranteeing a cluster size boundary. This method can be extended to all the possible

distributional assumptions such as negative binomial and Poisson. The cluster size boundary

can also be generalized to be different for each group. One potential limitation is that the

cluster size boundary has to be pre-determined according to prior knowledge. There is no

method available to decide the boundary automatically, which sometimes leads to cases when

the cluster size equals the pre-specified τ .
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Algorithm 1 Pseudo code for (S)CGMM

Perform conventional (P)GMM to obtain initial parameters µ
(0)
k , Z(0), Σ(0), π(0), and

l(X;µ
(0)
k ,Σ(0),π(0)) (observed log likelihood). If

∑n
i=1(map(Zn×p) == k) ≥ τ, ∀k ∈

{1, 2, ..., K}, stop the algorithm and directly report the initialization results. Otherwise,

activate (S)CGMM. m = 1 and δ = 100.

while m ≤ 100 and δ > 10−7 do

// E Step

if min cluster size from Z(0) < τ then

Z(m) := argmaxZ(m)(
∑n

i=1

∑K
k=1 z

(m)
i,k log[π

(m−1)
k ϕ(Xi;µ

(m−1)
k ,Σ(m−1))])

subject to: 

n∑
i=1

z
(m)
i,k ≥ τ, k = 1, ..., K

K∑
k=1

z
(m)
i,k = 1, i = 1, ..., n

z
(m)
i,k ∈ {0, 1}, i = 1, ..., n; k = 1, ..., K

else if min cluster size from Z(0) ≥ τ then

z
(m)
i,h :=

π
(m−1)
k ϕk(Xi;µ

(m−1)
k ,Σ(m−1))∑K

k=1 π
(m−1)
k ϕk(Xi;µ

(m−1)
k ,Σ(m−1))

end if

// M Step

µ
(m)
k :=

∑n
i=1 z

(m)
i,k Xi∑n

i=1 z
(m)
i,k

σ
2,(m)
p :=

∑K
k=1

∑n
i=1

z
(m)
i,k (Xi,p−µ

(m)
k,p )2

n

π
(m)
k :=

∑n
i=1 z

(m)
i,k

n

µ
(m)
k := sgn(µ

(m)
k )(|µ(m)

k | − λ∑n
i=1 z

(m)
i,k

Σ(m)1)+ ▷ λ = 0 for CGMM

δ := l(X;µ
(m)
k ,Σ(m),π(m))− l(X;µ

(m−1)
k ,Σ(m−1),π(m−1))

m := m+ 1

end while
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Figure 1: Trend of AMI in high dimension with sparsity.
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Figure 2: Trend of AMI in high dimension with sparsity.
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Figure 3: t-SNE for peer grouping data clustering with or without cluster size constraint.
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Figure 4: Trend of AMI for gene expression data in GTEx brain regions for different λs.
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Figure 5: t-SNE plot for clustering assignments by actual labeling, PGMM assignments and SCGMM
assignments in GTEx brain regions data.
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Figure 6: Trend of AMI in the 4-group and 3-group subsampled Zheng4uneq single cell gene expression
data.
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Figure 7: t-SNE plot for clustering assignments by actual labeling, PGMM and SCGMM in subsampled
4-group zhengmix4uneq single cell data.
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Figure 8: t-SNE plot for clustering assignments by actual labeling, PGMM and SCGMM in subsampled
3-group zhengmix4uneq single cell data.
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Table 1: Averaged confusion matrix when the difference of AMI reaches the maximum in each scenario of
simulation 1. A: when D = 1000 in simulation 1A; B: when S = 5 in simulation 1B; C: when N = 1 in
simulation 1C; D: when E = 1 in simulation 1D; E: when D = 100 in simulation 1E.

PGMM SCGMM

A-1 A-2
Actual Actual

P
re
d
ic
te
d

1 2 3 4

P
re
d
ic
te
d

1 2 3 4
1 30 6.71 0 0 1 30 0.97 0 0
2 0 3.29 0 0 2 0 8.69 0.34 0
3 0 0 2.7 0 3 0 0.34 8.67 0
4 0 0 7.3 30 4 0 0 0.99 30

B-1 B-2
Actual Actual

P
re
d
ic
te
d

1 2 3 4

P
re
d
ic
te
d

1 2 3 4
1 35 4.39 0 0 1 35 0 0 0
2 0 0.5 0.08 0 2 0 4.12 0.88 0
3 0 0.11 0.44 0 3 0 0.88 4.12 0
4 0 0 4.48 35 4 0 0 0 35

C-1 C-2
Actual Actual

P
re
d
ic
te
d

1 2 3 4

P
re
d
ic
te
d

1 2 3 4
1 30 7.24 0 0 1 30 2.35 0 0
2 0 2.74 0.01 0 2 0 6.97 0.64 0
3 0 0.02 1.88 0 3 0 0.68 6.65 0
4 0 0 8.11 30 4 0 0 2.71 30

D-1 D-2
Actual Actual

P
re
d
ic
te
d

1 2 3 4

P
re
d
ic
te
d

1 2 3 4
1 30 8.08 0 0 1 30 1.9 0 0
2 0 1.91 0 0 2 0 7.54 0.49 0
3 0 0.01 2.56 0 3 0 0.56 7.36 0
4 0 0 7.44 30 4 0 0 2.15 30

E-1 E-2
Actual Actual

P
re
d
ic
te
d

1 2 3 4

P
re
d
ic
te
d

1 2 3 4
1 30 8.62 0 0 1 30 5.05 0 0
2 0 1.08 0.34 0 2 0 3.44 1.72 0
3 0 0.3 1.47 0 3 0 1.51 3.61 0
4 0 0 8.19 30 4 0 0 4.67 30
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Table 2: Averaged confusion matrix when the difference of AMI reaches the maximum in each scenario of
simulation 2. A: when E = 5 in simulation 2A; B: when N = 100 in simulation 2B; C: when I = 1 in
simulation 2C; D1: when E = 5 in simulation 2D-1; D2: when N = 1 in simulation 2D-2.

GMM CGMM

A1 A2
Actual Actual

1 2 3 4 1 2 3 4

P
re
d
ic
te
d

1 298.19 91.93 1.58 0

P
re
d
ic
te
d

1 299.09 1.32 0 0
2 1.81 7.92 0.22 0 2 0.91 98.68 0 0
3 0 0 6.9 0.43 3 0 0 99.01 0.87
4 0 0.15 91.3 299.57 4 0 0 0.99 299.13

B1 B2
Actual Actual

1 2 3 4 1 2 3 4

P
re
d
ic
te
d

1 2868.49 763.57 66.45 25.47

P
re
d
ic
te
d

1 2990.3 11.51 0 0
2 84.67 166.45 24.45 5.96 2 9.71 988.49 0 0
3 7.6 19.91 152.12 33.63 3 0 0 988.75 10.48
4 39.24 50.07 756.98 2934.94 4 0 0 11.22 2989.5

C1 C2
Actual Actual

1 2 3 4 1 2 3 4

P
re
d
ic
te
d

1 299.94 93.08 1.57 0

P
re
d
ic
te
d

1 299.1 1.29 0 0
2 0.06 6.92 0 0 2 0.9 98.71 0 0
3 0 0 6.89 0.07 3 0 0 98.84 0.95
4 0 0 91.54 299.93 4 0 0 1.16 299.05

D1-1 D1-2
Actual Actual

1 2 3 4 1 2 3 4

P
re
d
ic
te
d

1 298.43 32.64 0 0

P
re
d
ic
te
d

1 291.82 32.07 0 0
2 0.59 67.35 0.02 0 2 0.56 60.6 6.9 8.61
3 0.98 0.01 68.66 0.55 3 7.62 7.33 62.69 0.51
4 0 0 31.32 299.45 4 0 0 30.41 290.88

D2-1 D2-2
Actual Actual

1 2 3 4 1 2 3 4

P
re
d
ic
te
d

1 29.94 3.68 0 0

P
re
d
ic
te
d

1 28.49 3.52 0 0
2 0.06 6.31 0 0 2 0.06 6.12 0.72 0.83
3 0 0.01 5.74 0.07 3 1.45 0.36 5.52 0.06
4 0 0 4.26 29.93 4 0 0 3.76 29.11
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Table 3: Cluster assignment in GTEx Brain Region (the numbers of correctly selected are shown in the
parentheses).

PGMM SCGMM Actual
Hypothalamus 590 (90) 60 96
Cerebellum 227 (123) 225 125
Frontal Cortex (BA9) 217 (77) 192 108
Nucleus accumbens (basal ganglia) 189 (74) 178 113
Cortex 36 (9) 60 114
Caudate (basal ganglia) 60 117
Hippocampus 60 94
Spinal cord (cervical c-1) 124 71
Amygdala 60 72
Anterior cingulate cortex (BA24) 60 84
Cerebellar Hemisphere 60 105
Putamen (basal ganglia) 60 97
Substantia nigra 60 63

Table 4: Cluster assignments in 4 group subsampled Zhengmix4uneq single cell gene expression data (the
numbers of correctly selected are shown in the parentheses).

PGMM SCGMM Actual

B cells 1 (0) 20 (20) 20
CD14 monocytes 120 (100) 69 (69) 100
naive cytotoxic T cells 1 (0) 31 (0) 20
regulatory T cells 118 (98) 120 (100) 100

Table 5: Cluster assignments in 3 group subsampled Zhengmix4uneq single cell gene expression data (the
numbers of correctly selected are shown in the parentheses).

PGMM SCGMM Actual

B cells 1 (0) 51 (50) 50
CD14 monocytes 244 (198) 197 (197) 200
T cells 205 (199) 202 (200) 200
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3.0 Mutual information for multi-study multi-class concordant biomarker

detection

3.1 Introduction

Biomarker detection, which provides accurate biological information for early disease

diagnosis, is a critical element in biomedical research [65]. Study integration is a common

approach to improve the reliability and power of biomarker detection. If a biomarker shows

similar patterns across multiple studies, we could assume that it is a robust choice for disease

indication.

Combining p-values and combing effect sizes are two leading solutions for study inte-

gration. The first has been widely discussed. For example, Fisher’s method sums up the

log-transformed p-values, and each p-value is assumed to follow standard uniform distri-

bution under the null hypothesis. Besides Fisher’s method, the Stouffer’s method [109],

the minimum p-value method [116], the higher criticism method [33], and the Berk-Jones

method [10] are all constructed under this category and are widely used in the omics study

integration, such as GWAS [6], transcriptomics [118], and methylation [107]. Random effects

models [31] are an example of the latter approach, which decompose the observed treatment

effects of each study into two parts: the actual effect size and the study-specific noise.

These methods have their limitations. The p-value combination focuses only on the

significance level without considering the data pattern, and the effect size combination is

only available in the two-class scenario (usually the disease vs. normal). When there are

more than two categories, the effect size combination is no longer applicable, while the

p-value combination cannot precisely decipher the multi-class pattern.

The min-MCC [68] is the only known method to detect the biomarkers with concordant

multi-class patterns across multiple studies. It uses the minimum value of the correlations for

all pairs of studies. The hypothesis test HSA for min-MCC is H0: ∃ ρij ≤ 0 vs.HA: ∀ ρij > 0,

where ρij represents the measurement of concordance in the multi-class pattern between

study i and j. However, it has two drawbacks. First, it ignores the partially shared strong
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signal due to its strict requirement that all the studies should contain a consistent pattern

simultaneously. Second, a significant min-MCC does not imply a high degree of concordance

between each study pair, because only the minimum pairwise concordance across multiple

studies is considered. In other words, none of the study pairs need to have high concordance

for the min-MCC to be significantly large.

Based on the previous two drawbacks, we revisited this problem from the perspective of

information theory. We proposed a new method called Multi-Study multi-Class Concordance

(MSCC), a two-step method for informative biomarker identification. Multi-Study multi-

Class Association (MSCA) is the first step based on the concept of total correlation with the

corresponding hypothesis HSB: H0: ∀ ρij ≤ 0 vs. HA: ∃ ρij > 0, which solves the above

two drawbacks. To identify the studies which share the concordant expression pattern, a

post-hoc Multi-Class Mutual Information (MCMI) is then computed in the second step.

In this article, we focused on the gene expression data and aimed to identify the informa-

tive genes that showed concordant expression patterns across studies. A visual illustration

is provided in Fig. 1 using toy examples (see simulation settings in Supplement Table 9).

MSCA first identified Gene 1-3 as those with concordant expression patterns (p-value = 0

for all three genes, enclosed by red triangle). Pairwise MCMI then determined the studies

(p-values = 0, enclosed by yellow triangle) that contribute to such concordance for the genes

identified in the first step.

The article is organized as follows. In Section 3.2, we started from the problem statement

and reviewed MCC and min-MCC [68], followed by a problem reappraisal from an informa-

tion theory perspective, where we demonstrated the better properties and extensions of

MSCC framework. A simulation study and three real-world data applications (Section 3.3)

were conducted to compare min-MCC and MSCC.

3.2 Methods

We assume that there are S studies, G genes, and K classes (K ≥ 2). xg
ski represents the

gene expression for gene g (1 ≤ g ≤ G), study s (1 ≤ s ≤ S), class k (1 ≤ k ≤ K), and
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sample i (1 ≤ i ≤ nsk).

3.2.1 A brief introduction of MCC and min-MCC

For simplicity, we start from the scenario of two studies (S = 2), X and Y , for one

gene. For study X, the observed gene expression xkj from sample j class k is assumed to

be obtained from Xk ∼ N(µXk
, σ2

Xk
), where Xk ⊥⊥ X ′

k (∀ k ̸= k′). Therefore, X can be

naturally defined as a mixture distribution of Xk (k = 1 : K), where

fX(x) =
K∑
k=1

wkfXk
(x)

E(X) = µX =
K∑
k=1

wkµXk

V ar(X) = σ2
X = =

K∑
k=1

wk(σ
2
Xk

+ µ2
Xk

)− µ2
X

Study Y is similarly defined, and Yk is independent with Xk. wk represents the class

weight, which is assumed to be 1/K in the previous study [68]. To gain the flexibility, we

allow it to be estimated from the data. Besides that, the above-mentioned parameters can

all be directly estimated from the data.

ŵk = (nXk
+ nYk

)/n

µ̂Xk
=

nXk∑
j=1

xkj/nXk

σ̂2
Xk

=

nXk∑
j=1

(xkj − µ̂Xk
)2/nXk

Multi-class correlation (MCC) is therefore defined as

MCC = ρ =
E(XY )− EX · EY√
V ar(X) · V ar(Y )

=
(
∑K

k=1wkµXk
µYk

− µX · µY )

σX · σY

For multiple S studies, min-MCC is then defined as the minimum value of MCC statistics
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across all the pair-wise study combinations:

min−MCC = min1≤u<v≤S(MCC(u),(v))

3.2.2 MCMI and MSCA

We revisit this problem from the aspect of information theory. We assumed X and Y to

be jointly bivariate normal and annotate Z and Z⊥⊥ as the bivariate random variables when

X and Y are correlated or not respectively.

Z ∼ N

µX

µY

 ,

 σ2
X ρσXσY

ρσXσY σ2
Y


Z⊥⊥ ∼ N

µX

µY

 ,

σ2
X 0

0 σ2
Y


Therefore, we can define the mutual information between X and Y as

MI = DKL(Z||Z⊥⊥) = −1

2
log
(
1− ρ2

)
DKL means the Kullback-Leibler divergence, and ρ is exactly the MCC between X and

Y . To be consistent with MCC and limits to the positive correlation, we define multi-class

mutual information (MCMI) as

MCMI = −1

2
(1− ρ2+)

where

ρ+ =

ρ if ρ > 0

0 if ρ ≤ 0

In this case, we can find that MCMI same with MCC, but it has better potential to be

generalized to multiple studies. For S studies, we have Z ∼ N(µ,Σ) and Z⊥⊥ ∼ N(µ,Σ⊥⊥),
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where

µ = (µ1, µ2, ..., µS)
T

Σ =


σ2
1 · · · ρ1,S+

...
. . .

...

ρ1,S+ · · · σ2
S


Therefore, we can define the measurement for multiple studies, which is a generalized

form of mutual information and known as total correlation [126].

MSCA = DKL(Z||Z⊥⊥) = −1

2
log

(
|Σ|
|Σ⊥⊥|

)
= −1

2

(
log |Σ| −

S∑
s=1

log σ2
s

)

3.2.3 Permutation test for the four statistics

Permutation test is designed to obtain the significance levels for the above four statistics

(MCC, min-MCC, MSCA, MCMI) since the analytical solution is not available. We use θ

to denote them, and permutation steps are as follows.

1. Compute statistics θg for gene g.

2. Permutate the group label B times and calculate the permutated statistics θ
(b)
g , where

1 ≤ b ≤ B.

3. Calculate the p-value of θg,

p(θg) =

∑B
b=1

∑G
g′=1 I(θ

(b)
g′ ≥ θg)

G ·B

4. Obtain the p-values p(θg) for each gene where 1 ≤ g ≤ G, and estimate q-values for G

genes using Benjamin-Hochberg procedure. (p(i) is ordered i-th p-value)

q(i) = min{minj≥i{
Gp(j)
j

}, 1}
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3.3 Results

In this section, we applied the methods to the simulated datasets and three real-world

scenarios, mouse metabolism [68](Lu et al., 2010), Estro-Gene (https://estrogene.org/), and

three leukemia datasets [62].

3.3.1 Simulation

We performed the same simulation with the MCC study [68] to identify the genes showing

concordant patterns for three classes among three studies. 2,000 genes from four expression

patterns were simulated for each study. Among 2,000 genes, 300 genes (category I) have

concordant expression across three studies, 100 genes (category II) have discordant expression

across three studies, 100 genes (category III) have concordant expression in study 1 and 2

only, and the remaining 1500 genes (category Null) contain no signals (Supplement Table 10).

A gene with a q − value < 0.05 is considered as informative in the concordant expression

pattern. The number of detected genes is shown in Table 6.

The category Null is used for quality control, and both methods show the expected

results. The false discovery rates (FDR) are 0.59%, 0.76%, and 0.83% for min-MCC and

0.75%, 0.95% and 1.04% for MSCA in three different effect sizes respectively. MSCA provides

higher FDR due to its less stringent null hypothesis.

Categories I and II represent the scenarios when all three studies share the same ex-

pression pattern or not simultaneously. Similarly, compared with min-MCC, MSCA shows

less stringent results with more genes detected. In category I, with all genes concordant,

both methods can successfully detect concordant genes with the false negative rate (FNR) of

30.42% for min-MCC and 21.13% for MSCA when the effect size is 0.5, and the false negative

rates decrease when the effect size increases. In contrast, in category II, where genes are

discordant across all the studies, both methods fail to detect the concordant genes with a

false discovery rate of 0.01% for min-MCC and 13.26% for MSCA when effect size is 0.7.

The main difference between min-MCC and MSCA lies in category III, where Study 1

and Study 2 have the same pattern, while Study 3 contains noise. MSCA tends to identify
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the biomarkers as informative ones (detection rate is 81.90% when effect size is 0.7), while

min-MCC tends not to (detection rate is 22.06% when effect size is 0.7). In real-world data,

it usually happens that only part of the datasets contains the signals, while the others do

not due to poor data quality or limited sample size. Therefore, it is more reasonable to

detect the genes with concordant expression patterns in the subset of studies and identify

which dataset exhibits such consistency, rather than directly detecting the genes with the

concordant pattern in all the datasets.

3.3.2 Mouse metabolism data analysis

In this section, we applied MSCC to the study analyzed in the min-MCC paper [68].

A dataset with samples from three genotypes of mice (wild-type, LCAD knock-out, and

VLCAD knock-out) was analyzed. LCAD deficiency is associated with impaired fatty acid

oxidation, and VLCAD deficiency is associated with energy metabolism disorders in children.

Microarray experiments were conducted on tissues from 12 mice (four mice per genotype)

including brown fat, liver, heart, and skeletal. The expression changes across genotypes

were studied, and genes with little information content were filtered out to have 4288 genes

remaining for downstream analysis. Four arrays were identified with quality defects and

excluded from further analysis.

A total of 1,394 concordant genes were identified through MSCA analysis (q − value <

0.05). To gain further insights of these concordant genes, we implemented QIAGEN Inge-

nuity Pathway Analysis (IPA) [55] on the MSCA q-values (Supplement Table 11). The top

three pathways associated with the MSCA results were mito-chondrial dysfunction, Sirtuin

signaling pathway, and oxidative phos-phorylation (p − values < 0.01), which have been

shown to correlate with LCAD and VLCAD knock-outs [134, 82]. These findings confirm

the roles of LCAD and VLCAD and validate the efficacy of MSCA.

Compared to MSCA, min-MCC only detected 393 concordant genes, suggesting tissue

heterogeneity. To assess the necessity of MSCA, we classified genes into three subsets: genes

identified by min-MCC only (V), genes detected by min-MCC and MSCA simultaneously

(M1), and genes identified only by MSCA (M2-M11). In subset 3, we classified genes into 10
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categories based on post-hoc MCMI results and clustered genes within same category using k-

means. The number of clusters was determined using the NbClust R package [19]. Figure 10

displays the expression patterns for each gene category. Ambiguous expression patterns

were observed for genes in V. Genes in M1 were divided into three clusters and showed

high concordance across all four tissues. Partial concordance was observed in categories M2-

M11, which were not detected by the min-MCC method and are highlighted in red panels.

Supplement Figure 19 further illustrates the expression patterns for each gene category using

boxplots.

It is crucial to identify the genes with concordant expressions in partial tissues. For ex-

ample, Blvrb showed the largest MSCA statistic (stat = 2.323, q-value = 0), while min-MCC

failed to detect it (stat = -0.711, q-value = 1) (Supplement Figure 20). Blvrb demonstrated

lower expression in LCAD knock-out samples in brown fat, heart, and skeletal tissues, but

higher expression in the liver. Despite lacking the reported direct relation with LCAD and

VLCAD, Blvrb is related to metabolism and converts biliverdin to bilirubin in the liver

[1]. Notably, Blvrb exhibits the highest gene expression in the liver among multiple tissues,

according to the Human Protein Atlas (proteinatlas.org), in the GTEx database [66, 120],

suggesting unique liver-specific functions compared to the other three tissues.

3.3.3 EstroGene data analysis

The EstroGene project (related paper submitted for publication) focuses on improving

the understanding of the estrogen receptor and its role in the development of breast cancer.

It aims to document and integrate the publicly available estrogen-related datasets, including

RNA-seq, microarray, ChIP-seq, ATAC-seq, DNase-seq, ChIA-PET, Hi-C, GRO-seq and

others, to establish a comprehensive database that allows for customized data search and

visualization.

In this section, we only considered studies that included gene expression data (microarray

and RNA-seq) and limited our analysis to the samples with estrogen receptor positive (ER+)

treated with estradiol (E2) doses greater than 1nM for varying duration. We first combined

the samples by cell line and sequencing technology. To further analyze the data, we then
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classified the treatment duration into three categories: short (< 6 hours), medium (≥ 6

hours and ≤ 24 hours), and long (> 24 hours). Finally, we normalized the data for the

newly pooled studies using trimmed mean of M values (TMM) [16] followed by ComBat [48]

with the study indication as a batch covariate. These steps resulted in three pooled studies:

MCF7 microarray (25 samples in short treatment, 34 in medium treatment, and 7 in long

treatment), MCF7 RNA-seq (49 in short treatment, 62 in medium treatment, and 10 in

long treatment), and T47D RNA-seq (3 in short treatment, 22 in medium treatment, and 11

in long treatment). 1,983 genes were intersected across multiple platforms for downstream

analysis.

We first validated the two well-established benchmark genes, GREB1 and IL1R1, which

have been widely reported as E2 activated and repressed genes [21, 89, 102, 60]. Figure 11

revealed the up- and downregulation of GREB1 and IL1R1 in MCF7 microarray and MCF7

RNA-seq studies. However, these trends were not observed in the T47D RNA-seq study,

which may be due to the limited sample size. As a result, MSCA identified both genes

as concordant with q-values of 0.03 and 0, while the min-MCC failed to detect them with

q-values of 0.07 and 0.11, respectively.

In addition to validation, we are also able to detect novel biomarkers. For example,

MECOM was the only gene identified by MSCA and min-MCC with q-values = 0 simul-

taneously (Figure 11). Prior to our study, MECOM was not recognized as a biomarker

for E2 treatment. Our analysis revealed that MECOM is a gene that is repressed by E2,

indicating lower E2 response responsiveness and potentially poorer response to endocrine

treatment. Therefore, we could hypothesize a worse survival outcome if a patient has higher

MECOM gene expression.

We tested our hypothesis using the Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) database [26] and extracted 1,459 patients with ER+ breast

cancer for the analysis. We normalized the microarray gene expression data using TMM and

analyzed the overall survival (OS) and relapse free survival (RFS) outcomes. By fitting Cox

proportional hazards regression models [2], we observed that higher MECOM gene expression

was associated with worse hazard ration (HR) in terms of OS (HR = 2.27, p-value = 0.048)

and RFS (HR = 3.34, p-value = 0.015). The potential mechanism of the clinical prognosis
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could partially be explained by the regulation of estrogen receptor, as we observed several

consistent ER binding sites at transcription start sites (TSS) proximity from ChIP-seq data

in EstroGene web, and MECOM may also play a role in immune suppression [72] which

could not be reflected in these cell culture experiments. Future investigation is still needed.

In total, MSCA identified concordant 281 genes (q − value < 0.05). To gain a deeper

understanding of the upstream transcription factors associated with these genes, we applied

LISA, an algorithm that uses chromatin profile and H3K27ac ChIP-seq data to determine

the transcrip-tion factors (TF) and chromatin regulators related to a given gene set [88].

Among the top-ranked TFs (Supplement Table 11), ESR1 and FOXA1 are the TFs that

have previously been reported to be associated with E2 [20, 114]. In addition, the presence

of SMC1A and CTCF among the top 3 candidates suggests a potential role of topologically

associating domain (TAD) in the regulation of these gene [95, 27]. These findings revealed

that the E2 response may involve gene regulation through chromatin looping mechanisms.

Further experimental studies are needed to fully elucidate the underlying mechanisms.

3.3.4 Three leukemia datasets analysis

Following Li [62], we analyzed three leukemia transcriptomic studies with 3 pre-detected

chromosome translocation subtypes: inv(16), t(15;17), and t(8;21). The microarray datasets

were directly obtained from NCBI GEO with GSE6891 [123], GSE17855 [3], and GSE13159

[52]. We preprocessed the data by removing probesets with missing values and selecting

probesets with the largest interquartile range if multiple probes were mapped to the same

gene. The remaining 20,192 genes were used in the analysis.

We identified 9,889 concordant genes by MSCA and compared the results from min-

MCC, which identified 5,834 genes. Similar to section 3.3.1, we divided the genes into three

subsets: genes identified by both MSCA and min-MCC (M1), genes identified exclusively by

MSCA (M2-M4), and genes identified only by min-MCC (V). We used K-means to cluster

the genes within each category (Figure 12). Although the three studies were conducted

similarly, we observed 2,838 genes that are only concordant in partial studies (M3-M5).

We also prepared boxplots of averaged gene expressions to visualize the features of each
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category (Supplement Figure 24). Weak signals were observed in V, suggesting that min-

MCC compromises signaling strength when requiring the same expression across studies.

3.4 Discussion and conclusions

Meta-analysis is an efficient tool for biomarker detection by increasing the statistical

power [25, 117]. To date, min-MCC is the only available method to detect the biomarkers

with concordant multi-study multi-class expression patterns [68]. However, since min-MCC

cannot identify the partially concordant biomarkers and is insensitive to the pairwise high

concordance, we revisited this problem from the aspect of information theory. We pro-

posed a two-step framework MSCC (multi-study multi-class concordance), including MSCA

(multi-study multi-class association) and pairwise MCMI (multi-class mutual information).

Both the simulation and real application results disclose the superiority of the MSCC frame-

work in selecting more informative biomarkers and detecting the datasets that exhibit such

concordance.

Through the simulation, we aimed to investigate the differences between MSCA and

min-MCC. Our results showed that MSCA tends to select more biomarkers than min-MCC

due to different hypothesis testing. Specifically, in category III of the simulation, where

gene expressions are concordant in a subset of studies, 81.90% of the genes are identified as

informative by MSCA, and it is 22.06% for min-MCC when the effect size is 0.7, suggesting

that MSCA can detect the partially shared signals while min-MCC cannot.

In the analysis of mouse metabolic data, 1,394 concordant genes were identified by MSCA,

while min-MCC detected only 393 genes, indicating tissue heterogeneity. Genes were clas-

sified into multiple categories based on the results of both methods, and 371 genes were

concordant in only a subset of tissues. It is crucial to identify such genes as they may

have unique tissue-specific functions. One such example is Blvrb, which was downregulated

in brown fat, heart and skeletal tissues in LCAD knock-out samples but upregulated in

liver. Blvrb is related to metabolism and has the highest expression in liver compared to

other tissues, suggesting possible unique liver-specific functions compared to the other three
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tissues.

The EstroGene data analysis also provides a compelling illustration of the efficacy of

MSCC. The detection of GREB1 and IL1R1 highlighted the utility of MSCC for biomarkers

identification, even when some studies fail to provide useful information due to limited sample

size or poor data quality. In addition, the identification of MECOM provided a potential

biomarker to predict the clinical prognosis of E2 treatment. Finally, using the 281 MSCC

identified genes in LISA, we found the involvement of ESR1, FOXA1 and chromatin looping

mechanisms in E2 response.

Similarly, in the analysis of three leukemia datasets, we observed 2,838 genes that are

concordant only in partial studies (M2-M4), and weak signals were found in the genes unique

to min-MCC (V), indicating that min-MCC compromises signal strength when requiring the

same expression across studies.

There are two possible extensions to our method. First, a non-parametric approach could

be achieved by changing the definition of pairwise correlation (ρi,j) to a rank-based formula.

Second, we assume gene-wise independence in this study, which could be generalized to the

dependency structure considering the possible relationship among different genes.
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Figure 9: The illustration of MSCC framework. The Gene 1-3 that show concordant patterns across
studies are first identified by MSCA (enclosed by red triangle). The studies which share the concordance
for each gene are later detected by MCMI (enclosed by yellow triangle).

48



Figure 10: The heatmap of the gene expression patterns of different gene categories across four tissues in
mouse metabolism data analysis. The rows represent for the genes and the columns represents for the
samples. V includes genes detected by min-MCC only, while M1 includes genes detected by min-MCC and
MSCA at the same time. The genes in M2-M11 were identified by MSCA alone and categorized by the
contributing studies using MCMI post-hoc analysis. Studies that contributed to the concordance are shown
in red panel, while those that did not are shown in gray. More stringent threshold (q-value < 0.01) for
concordant gene identification was applied for visualization.
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Figure 11: The expression patterns of GREB1, IL1R1, and MECOM across three data sources. GREB1
and IL1R1 are widely reported as E2 activated and repressed genes and were detected by MSCA while
failed to be identified by min-MCC. MECOM was the only gene detected by MSCA and min-MCC
simultaneously.
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Figure 12: Heatmap of the gene expression pattern of different gene categories across three studies in
leukemia data analysis. V includes the genes identified by min-MCC alone, and M1 includes the genes
identified by min-MCC and MSCA together. Genes in M2-M4 were detected by MSCA alone and
categorized by contributing studies using MCMI post-hoc analysis. Studies that contributed to the
concordance are shown in red and those that did not are shown in gray. A stricter threshold (q-value
< 0.01) for concordant gene identification was used for visualization.
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Table 6: The average number of detected genes which show the concordant expression pattern. MSCA is
less stringent and detects more genes, especially when the signals are only present in part of the datasets.

Effect size Methods I (300) II (100) III (100) Null (1500)

0.5 min- MCC 209.48 0.18 12.94 10.08

MC-TC 237.48 7.02 38.22 13.12

0.6 min- MCC 266.96 0.10 18.14 12.14

MC-TC 284.36 10.92 61.72 16.00

0.7 min- MCC 290.58 0.04 22.28 13.62

MC-TC 297.50 13.74 81.24 17.24
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4.0 Transcriptomic congruence and selection of representative cancer models

towards precision medicine

The contents of this Chapter are prepared and ready for submission.

4.1 Introduction

Cancer models, inheriting genetic properties of the tumors of origin, are essential tools

in cancer research for exploring carcinogenesis and developing drugs in basic, translational

and clinical studies. For a given cancer subtype, a wide selection of models, such as cell

lines, patient-derived xenografts (PDX), patient-derived organoids (PDO), and genetically

modified murine models, are often available to researchers. Specifically, patient-derived

cancer models, such as PDO, are increasingly available with molecular profiling and are

expected to play a heightened role in disease understanding, drug response prediction and

precision medicine [50, 127]. For example, the NCI-funded PDCM Finder (Patient Derived

Cancer Model Finder) provides an open catalog of patient-derived cancer models with an

established “minimal information standard” for researchers to upload new cancer models

[74], which currently includes 4,661 xenograft models, 1547 cell lines and 108 PDO as of

10/20/2022.

Despite advances in technology and reduced cost, cancer models can be mislabeled [133]

and genomic/epigenomic alterations may accumulate across passages in culture. Many can-

cer models may be potentially mis-annotated from their origins or the quality of congruence

may vary or decay over time [125, 133, 8]. Due to increasing availability of new cancer models

and associated comprehensive omics data, evaluation and comparison of cancer models with

human tumors using transcriptomic and multi-omics data have drawn increasing attention

in recent years [125, 86, 78, 98, 133, 4, 64, 132, 94, 124, 5, 32, 100, 99]. However, existing

evaluation tools mostly belong to two major categories, congruence (correlation-based) anal-

ysis and authentication (machine-learning-based) analysis, and do not sufficiently serve the
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purpose of identifying appropriate models for precision medicine. In congruence analysis,

correlation/association measures are usually applied to quantify similarity of a cancer model

to the target tumor cohort in a genome-wide scale [125, 4, 64, 124, 5, 99]. In contrast, authen-

tication analysis develops machine learning models, such as suitability score [32], random

forest, ridge regression and nearest template prediction, for accurate assignment of cancer

models to human cancer types. Appendix B.1 outlines features and shortcomings of the

existing methods. Overall, these tools have significant limitations in the following four areas:

(1) Machine-learning-based authentication methods focus on predication accuracy but are

not designed to prioritize candidate cancer models that best mimic the target tumor cohort;

(2) On the other hand, correlation-based congruence methods can prioritize cancer models

but they often produce lower prediction accuracy; (3) Current congruence or authentica-

tion methods cannot characterize pathways or molecular mechanisms that are most or least

mimicked by a cancer model, which is essential in precision medicine development; (4) Data

compatibility and harmonization between cancer model and human tumor data have not

been systematically considered and evaluated in the current literature, which is a critical

step to achieve high accuracy and avoid misleading mechanistic conclusions.

To this end, we developed CASCAM with three modules to overcome the aforemen-

tioned shortcomings of existing methods (see Figure 13). In the first “data harmonization”

module, we applied the recently developed Celligner method to correct for batch effects and

obvious variations between cancer models and tumors that prevent analysis of congruence.

In the second “interpretable machine learning pre-selection” module, we developed an in-

terpretable machine learning approach, integrating prediction assignment probability from

sparse linear discriminant analysis (SDA) and deviance score derived from the SDA pro-

jected space. The integrative framework combines advantages of high classification accuracy

by machine-learning-based authentication analysis and prioritization by correlation-based

congruence analysis to pre-select, say, the top 10 promising cancer models from up to hun-

dreds of initial candidates. The pre-selected cancer models then enter the final “pathway

and mechanistic-based selection” module. By integrating pathway and regulatory network

information, multiple bioinformatic and visualization tools, including differential expression,

pathway enrichment analysis, heatmaps, violin plots and topological network plots, itera-
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tively investigate disease-relevant biological mechanisms that are best or least mimicked by

each cancer model. We note that the two-stage selection by global (genome-wide congruence)

pre-selection in Module 2 and then targeted (pathway- and gene-based congruence) evalua-

tion in Module 3 is an essential and innovative aspect of CASCAM. We demonstrate that

the highest genome-wide congruent cancer models selected from Module 2 may not harbor

critical pathways and genes relevant to the target tumor subtype and thus show a lower score

in essential pathways. On the other hand, pre-selection in Module 2 is necessary to reduce

the number of cancer model candidates for allowing detailed mechanistic investigation in

Module 3.

For demonstration purposes, both case studies in this paper focused on invasive lobular

breast carcinoma (ILC), a histological subtype containing 10-15% of all breast cancers and

with a hallmark genomic feature consisting of CDH1 gene (E-cadherin) mutation and subse-

quent loss of cell-cell adherent junctions. There is a compelling need to develop and identify

representative cancer models for ILC since previous breast cancer models mostly focus on the

more prevalent (∼80%) invasive ductal carcinoma (IDC) subtype (also known as no special

type (NST)). Indeed, there are very few ILC annotated cell lines publicly available; however,

a previous study identified numerous breast cancer (BC) cell lines which lack ILC annotation

but harbor CDH1 mutations – they were named ‘ILC-like’ and these potentially could serve

as representative models of human-ILC disease [75]. Beyond ILC, we note that CASCAM

is applicable in general cancer research by quantifying congruence and identifying the most

appropriate cancer model for any given tumor (sub)type.
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4.2 Results

4.2.1 Case study 1: Selection of cell line for ILC

4.2.1.1 Data harmonization between cancer model and tumor transcriptomic

data

The critical first step for quantifying congruence and selection of cancer model(s) is to

ensure omics data harmonization between cancer models and human tumors. This is impor-

tant as cell lines do not contain many genes expressed in the tumor microenvironment. We

accessed bulk transcriptomic data of 9,264 pan-cancer tumor samples across 24 cancer types

from TCGA (960 samples are breast cancer, BC), and 1,257 pan-cancer cell lines from CCLE

and ICLE (65 annotated as BC cell lines) (see Section 4.4). We then evaluated performance

of normalization using five approaches – A) no normalization; B) quantile normalization [13]

to normalize BC tumors and BC cell lines ; C) ComBat [48] to normalize BC tumors and BC

cell lines; D) Celligner to normalize BC tumors and BC cell lines; E) Celligner to normalize

pan-cancer tumors and pan-cancer cell lines. Figure 14 shows UMAP [73] plots of BC tumors

and BC cell lines when different normalization approaches were applied. Biased separation

of tumors and cell lines was clearly found when no normalization or conventional quantile

normalization were implemented. Combat and Celligner using BC tumors and BC cell lines

(approaches C and D) produced improved normalization although systematic bias was still

observed from small clusters of cell lines, showing insufficient quality of data harmonization.

In contrast, Celligner using pan-cancer tumors and pan-cancer cell lines (approach E) best

eliminated batch effects between BC tumors and BC cell lines.

To further examine the quality of Celligner normalization in approach E, we investigated

eight cell lines each with three experimental replicates from different sources (see Section 4.4)

and confirmed their high reproducibility in the UMAP plot (Figure 15A). From breast cancer

subtype annotation [85] , we confirmed that TCGA tumors in the lower-right cluster were

mostly annotated as basal-like (118 out of 160) (Figure 15B). Reassuringly, 26 of 28 CCLE

cell lines in that cluster were also annotated as basal-like. As a result, we performed Approach

E Celligner normalization before all down-stream analyses in this paper.
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4.2.1.2 Interpretable machine learning pre-selection

We next extended and applied an interpretable machine learning (ML) method, namely

sparse discriminant analysis (SDA), and combined with a deviance score (DS) derived from

SDA to pre-select from up to hundreds of candidate cancer models and narrow down to < 10

of the most promising cancer models. The machine learning (ML) setting here was similar

to existing literature, where a prediction model was constructed using human tumor data

(e.g., TCGA) as the training set and then was used to classify cancer models to the targeted

group (ILC) versus comparison group (IDC). To justify application of SDA, Table 7 shows

performance of 16 popular machine learning methods, six of which were used to classify

cancer models according to TCGA cancer types in the literature. Detailed description of

these machine learning methods can be found in B.1 and Method section. In existing

publications, machine learning analyses aimed to classify cancer models into major cancer

types, such as the 24 cancer types in TCGA. We note that since the two subtypes we focus

on (ILC and IDC) are two histological subtypes within breast cancer, the differences are

more subtle. The machine learning and congruence analysis tasks are expected to be more

difficult but biologically more impactful.

Table 7 shows evaluation result of the 16 machine learning methods in BC machine

learning tasks from three different aspects (tumor type, histological subtype, and molecu-

lar subtype). Convolutional neural network (CNN) is a category of deep learning methods

commonly designed for classification problems [81, 76, 91]. In this study, we included three

CNN models initially optimized for pan-cancer classification [76]. Columns 2-4 contain pre-

diction accuracy results: 5-fold cross validation of ILC versus IDC using TCGA BC data,

ER+ versus ER- classification using TCGA as training data and CCLE as test data, and BC

versus other cancer types using TCGA as training data and CCLE as test data. The result

shows SDA and elastic net to have the highest average accuracy, followed by 2D-Hybrid-

CNN and ridge regression methods. Specifically, SDA achieved 91% accuracy for ILC vs

IDC cross-validated tumor classification, 91% for ER+ vs ER- cell line prediction and 86%

for BRCA vs other cancers in cell line prediction. The CNN methods produced reasonably

high accuracy in the three tasks but not among the best, possibly due to limited sample
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size. 2D-Hybrid-CNN was proposed to benefit from having two-dimensional inputs with

simple one-dimensional convolution operations and had better performance than 1D-CNN

and 2D-Vanilla-CNN, consistent with previous results in the cancer subtype classification

[76].

In addition to binary prediction accuracy performance, Table 7 lists three machine-

learning relevant properties that are critical for evaluation and selection towards precision

medicine: feature (gene) selection, prediction assignment probability and deviance measure.

Explicit gene selection identifies gene signatures involved in the prediction model and pro-

vides interpretable machine learning. Assignment (prediction) probability reports prediction

confidence and ranking for cancer models predicted into the target tumor subtype. Finally,

deviance measure (e.g., dissimilarity measure or lack-of-association measure) provides sup-

plemental information to prediction assignment probability for cancer model suitability. Of

the 16 methods in Table 7, only SDA and a robust variant, RSDA, can be extended for all

three interpretable machine learning properties. Taken together, SDA was among the most

accurate machine learning methods and provided three essential properties of gene selection,

assignment probability (denoted as PSDA) and deviance score (denoted as DSSDA); it was

chosen to be the core machine learning method in CASCAM. Particularly, we defined de-

viance score DSSDA as the (signed) standardized distance between a cell line to the center

of the target tumor cohort on the SDA projected space. Bootstrap analysis was then per-

formed in the tumor data to calculate the confidence interval and two-sided p-value, denoted

as pval(DSSDA) (see Section 4.4 for details).

Since nearly all ILC cases are luminal ER-positive (i.e. basal negative or non-basal [93]),

we focused on the large luminal non-basal cluster in Fig. 2B, which contains 798 BC tumors

and 37 BC cell lines. DU4475 [59] was manually included to explore the performance of

a basal positive cell line. Of the 38 cell lines, we pre-selected 14 candidate cell lines using

Module 2 by high prediction assignment probability (PSDA > 0.5) and small deviance score

such that the corresponding p-value is not statistically significant (i.e., pval(DSSDA) > 0.05)

(Supplement Table 13). There were the 153 genes selected by SDA for constructing machine

learning model. The pathognomonic feature of ILC is mutation of CDH1 and a subsequent

reduction CDH1 mRNA expression. Thus, as expected the weight for CDH1 was -10.428

58



and was at least 5-10 fold greater than all the other predictive genes.

The necessity of using PSDA andDSSDA simultaneously can be seen in the SDA projected

scatter plot of the 38 cell lines in Figure 16A. If we only used PSDA information (marked by

red color), cell lines such as UACC812 and ZR751 were predicted to be ILC with PSDA =

100%, disregarding the fact that these cell lines’ expression patterns were highly dissimilar

to the averaged expression pattern (center) of ILC tumor cohort on SDA projection (large

DSSDA = 2.991 and 2.970 to ILC, respectively) (Supplement Table 13). In contrast, if we

only used DSSDA (marked by round shape), cell lines such as OCUBM and UACC893 had a

relatively small deviance score to ILC (DSSDA = 1.597 and 1.667 to ILC, respectively), but

they were also close to the center of IDC tumor cohort. By applying the combined criteria

of DSSDA and PSDA, 14 of the 38 cell lines were identified as well-resemblance to the ILC

subtype (PSDA = 54.8− 100% and DSSDA = 0.024–1.892). Specifically, CASCAM identified

SUM44PE (DSSDA = 0.024 and PSDA = 98.7%) and DU4475 (DSSDA = 0.188 and PSDA =

99.2%) as the two most genome-wide representative cell lines for ILC. UACC3133 was ranked

the third with small deviance DSSDA = 0.452 but had a wide 95% confidence interval [0.067,

3.040]. The congruent finding of SUM44PE is consistent with literature, as it has been

reported to have anchorage-independence and limited migration and invasion ability, which

are unique properties to the ILC-like cell lines [113] and are widely studied in ILC [92, 77].

To avoid the ambiguous assignment probabilities, we further restricted the selection criteria

to PSDA > 0.8 (enclosed by green dashed rectangle) and pval(DSSDA) > 0.1 (enclosed by

orange dashed rectangle). ZR7530 (PSDA = 0.764), MDAMB453 (PSDA = 0.670), SKBR3

(DSSDA = 2.615, p-value = 0.052) and AU565 (DSSDA = 2.405, p-value = 0.062) were

filtered out, and the 9 cell lines that met the criteria were used for further investigation. We

note that MDA-MB-134VI (PSDA = 0.548) was manually included for further evaluation as

it is widely used in ILC research [105, 108]. In Figure 16B, the 9 unbiased-selected and 1

manually-included cell lines were ranked by DSSDA with 95% confidence interval provided.

59



4.2.1.3 Pathway and mechanistic-based selection of cancer model(s)

Next, we applied Module 3 with pathway-specific and gene-specific evaluation for further

prioritization of the 10 pre-selected breast cancer cell lines. Using a similar definition of

DSSDA, we calculated gene- and pathway-specific deviance scores, DSgene and DSpath, for

characterizing congruence of each candidate cell line. Differential expression analysis on 769

IDC versus 191 ILC samples in TCGA identified 3,065 DE genes. For pathway investigation,

236 pathways in Hallmark and KEGG from MSigDB [111] were first identified, and 53

pathways with more than 20 DE genes were used for GSEA pathway analysis [53].

Supplement Figure 22 shows pathway-specific deviance scores (DSpath) for the 53 selected

pathways (rows) and 10 selected cell lines (columns) in the heatmap. The side-bar on the top

shows genome-wide congruence DSSDA for each cell line and the side-bar on the left margin

shows size and normalized enrichment score (NES) for each pathway. In general, genome-

wide resemblance does not guarantee similar performance in specific pathways. SUM44PE,

for example, was the most congruent ILC cell line with the smallest DSSDA . However, it was

second to worst congruent cell line in Hallmark heme metabolism, where heme is an iron-

containing porphyrin with multifaceted roles in cancer (DSPath = 1.029). When users have

prior knowledge of known relevant pathways, the most congruent cell line can be selected by

the smallest averaged DSpath of the pre-selected pathways. If no prior biological knowledge

is used, we recommend using pathways with adequate pathway size (e.g., 30 < size < 200)

and enrichment (e.g., |NES| > 1.5) for final cell line decision. This criterion selected 14

pathways and the heatmap of their pathway-specific deviance score was shown in Figure 17A

(detailed values available in Supplement Table 14). Among the 14 pathways, the majority

of pathways were cancer related (marked star in Figure 17A). For example, Hallmark E2F

Targets (Supplement Figure 23) has the most significant NES (NES = -2.18, adjusted p-value

< 0.0001, 79 DE genes), which includes genes encoding cell cycle related targets of E2F

transcription factors. Related to the loss of E-cadherin, E2F was reported to show difference

in ILC compared with IDC [92, 34]. KEGG PPAR Signaling Pathway, including genes related

to peroxisome proliferator-activated receptors (PPARs) signaling, is significantly enriched

(NES = 1.55, adjusted p-value = 0.048, 22 DE genes, Supplement Figure 23), and is also
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widely reported for its upregulation in ILC tumors in multi-omics studies [112, 106].

Given that loss of CDH1 [22] and subsequent dysfunction of cell-cell adhesion [128]

is the hallmark of ILC we manually included “KEGG Cell Adhesion Molecules” pathway

for analyses shown in Figure 17 and Supplement Table 14, in addition to the 14 unbiased

selected pathways. The pathway was not selected because its |NES| = 0.854 did not meet

the prespecified criterion. The second to the last row in Figure 17A shows average DSpath

of the 14 pathways for each cell line, in which CAMA1 had the smallest average deviation.

CAMA1 was also congruent to ILC in the “KEGG Cell Adhesion Molecules” pathway (22

DE genes, DSpath = 0.468, p-value = 0.634). Although SUM44PE, DU4475 and UACC3133

outperformed CAMA1 in the genome-wide SDA-based deviance score (Figure 16), each of

them did not mimic well in at least part of the 14 pathways (one circle: p < 0.1; two

concentric circles: p < 0.05; three concentric circles: p < 0.01, showing non-congruence)

while CAMA1 had uniformly high congruence. For example, DU4475 did not mimic ILC in

several important cancer and ILC-related pathways, such as “Hallmark TNFA Signaling Via

NFKB”, “Hallmark glycolysis”, “Hallmark MTORC1 Signaling”, etc.

For a pathway of interest, CASCAM further generated a gene-specific deviance score

(DSgene) heatmap. Figure 17B shows DSgene heatmap of 22 DE genes in the “KEGG Cell

Adhesion Molecules” pathway, giving gene-level resolution of congruence information. BCK4

appeared to be the least congruent cell line in this pathway with 10 genes having large de-

viance scores (|DSgene| > 2; Figure 17B). Next, we utilized KEGG topological regulatory

network information [69] to investigate gene-specific congruence to ILC in KEGG Cell Ad-

hesion Molecules for selected cell lines. The well-known ILC hallmark gene CDH1 only

showed congruence in CAMA1 and DU4475 (CDH1 highlighted in Figure 17B). Although

the MDA-MB-134VI cell line has been widely used in ILC research, Figure 17A and Sup-

plement Table 13 (PSDA to ILC = 0.548) show that it has similar congruence to both ILC

and IDC. Furthermore, although MDA-MB-134VI was congruent to ILC in many of the 14

pathways, it was not congruent in the “KEGG Cell Adhesion Molecules” pathway and many

ILC-relevant genes in this pathway (Figure 17A and B). Among the 10 cell lines, the BCK4

cell line (DSpath = 1.323, p-value = 0.005) had the largest DSpath, indicating worst genome-

wide congruence (Figure 17B and Supplement Figure 24). Figure 17C shows part of KEGG
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PathView plot of BCK4 in the Cell Adhesion Molecules pathway. BCK4 had many discor-

dant genes to ILC: 2 genes highly up-regulated to ILC (DSgene > 2; CLDN11 andNRCAM)

and 8 genes highly down-regulated to ILC (DSgene < −2; CADM1, CDH1, PV R, L1CAM ,

CLDN1, CLDN16, CDH4, and JAM2). Of these genes, cadherin genes (CDH1, CDH4

and CDH15) were cell adhesion molecules that are critical in the formation of adhesion

junctions for cells to adhere to each other [43]. Similarly, claudin genes (CLDN1, CLDN11

and CLDN16) are proteins essential for the formation of tight junctions in epithelial and

endothelial cells [119].

As shown in this ILC representative cell line selection example, CASCAM provided mul-

tiple visualization tools and interactive software functions, including violin plot (Supplement

Figure 24), pathway-specific congruence heatmap (DSpath; Figure 17A), gene-specific con-

gruence heatmap (DSgene; Figure 17B), and KEGG topological network plot (Figure 17C),

to allow researchers to iteratively investigate concordance and discordance of cell lines with

the target tumor cohort. In conclusion, 5 of the 10 cell lines are determined as ILC-like in

the “KEGG Cell Adhesion” pathway (pval(DSpath) > 0.05), and we recommend them as ap-

propriate ILC cell lines in the order of average DSpath of the 14 selected pathways: CAMA1

(DSpath = 0.505), UACC3133 (DSpath = 0.667), SUM44PE (DSpath = 0.689), HCC2218

(DSpath = 0.748), IPH926 (DSpath = 0.754).

4.2.2 Case study 2: selection of PDO and PDX for ILC

To extend the algorithm to PDO and PDX, we applied CASCAM to 11 PDO and 136

PDX breast cancer models from the PDMR [79] database to select congruent cancer models

for ILC versus IDC. These 147 cancer models were first normalized by the data harmonization

module with the 9,264 TCGA pan-cancer tumor samples, and 960 TCGA BC samples were

used for further investigation after normalization. UMAP in Supplement Figure 25A showed

three distinct clusters. Except for the basal and non-basal group observed before (Figure 14),

there was a small third cluster with 15 samples (2 PDOmodels, 12 PDX models, and 1 TCGA

sample) from four patients. All four samples were annotated with triple-negative IDC, and

two patients from PDMR have a metaplastic squamous cell carcinoma diagnosis. Due to the
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rare and unique subtype features of these tumors, we excluded these samples from further

analysis and reproduced UMAP in Supplement Figure 25B. Similarly, we also excluded the

samples in basal cluster, and 4 PDO and 25 PDX models were then kept for downstream

analysis. The normalization result demonstrated excellent performance of Celligner for PDO

and PDX.

We next applied the criteria (PSDA > 0.5 and pval(DSSDA) > 0.05) in the “interpretable

machine learning pre-selection” module and identified four candidate cancer models (3 PDX

and 1 PDO) to represent ILC tumors (Supplement Table 15). Cross-referencing with the

PDMR database revealed that all four cancer models originated from the same patient

(PRMR ID:171881-019-R). Table 8 showed 5 PDX and 1 PDO (denoted as PDO.1) originate

from this patient. The 5 PDX samples contained one sample with passage 0 (denoted as

PDX.0), two samples with passage 1 (denoted as PDX.1A and PDX.1B), and two samples

with passage 2 (denoted as PDX.2A and PDX.2B). Intriguingly, the three highly congruent

ILC PDX models were of passage 0 and 1 (PDX.0, PDX.1A and PDX.1B) while two PDX

models with passage 2 (PDX.2A and PDX.2B) were not selected. Figure 18A showed a

clear pattern that PDX.0 has almost perfect DSSDA congruence to represent ILC but the

deviance score increased with increasing passage numbers (also see Table 15 Column 5),

indicating that the xenografts may evolve and be affected by the microenvironments in mice

and deviate from the original tumor over time. When we investigated information of this

patient, the specific histological subtype was not annotated but insertion frameshift mutation

(p.T115Nfs*53) for CDH1 was detected. Since loss of CDH1 is a key determinant of ILC, it

suggests that the original cancer is likely ILC, and cancer models derived from this patient’s

tumor are representative of the ILC tumor cohort.

We then applied the default pathway selection criteria, adequate size (30 < size < 200)

and |NES| > 1.5 and selected 14 pathways as in the first cell line case study. As rationalized

before, we again manually included the KEGG Cell Adhesion Molecules in addition to the

14 pathways. The pathway-specific congruence heatmap revealed performance of the six

cancer models originating from the same patient (171881-019-R) (Figure 18B). Variations

in performances were seen in the models even though they were developed from the same

patient. Of the four pre-selected cancer models, PDO.1 had the largest pathway deviance
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score (DSpath = 0.455) while PDX.1B has the smallest (DSpath = 0.294) in “KEGG Cell

Adhesion Molecules” pathway (Figure 18B) although none of them was statistically signifi-

cant in lack of congruence. We next investigated KEGG topological network plot (Supple-

ment Figure 27) for the “KEGG Cell Adhesion Molecules” pathway comparing PDO.1 and

PDX.1B. Supplement Figure 27B showed that expression of CADM1, CADM3, CDH2 was

down-regulated (DSgene < −1.5) while expression of three other genes (CDH15, NRXN2,

L1CAM) was up-regulated (DSgene > 1.5) in PDO.1 compared with average expression of

ILC tumor, while we observed better congruence in PDX.1B (Supplement Figure 27A). Vi-

olin plot (Figure 18C) further elucidated the comparison between PDX.1B and PDO with

the gene expression distribution in IDC and ILC tumors as reference.

4.3 Discussion

Cancer models play a crucial role in cancer research for understanding carcinogenesis

and drug development. However, how to best select the most congruent cancer model to

faithfully represent a specific tumor subtype remains mostly unsolved, which is an urgent

gap to fill given the increasing number of cell lines and PDOs being generated. In contrast to

pure machine-learning-based methods in the literature, we developed a pipeline, CASCAM,

to progressively select the most representative cancer model(s) by genome-wide pre-selection

and pathway-specific mechanistic investigation using transcriptomics data. First, tumor and

cancer model data are harmonized by Celligner (Module 1). The congruence evaluation

combines merits of both machine learning and correlation-based approaches to pre-select

cancer models (Module 2). In-depth bioinformatic tools provide iterative exploration of the

most and least mimicked biological mechanisms of selected cancer models (Module 3).

The first example of this framework used ILC breast cancer data to select the most repre-

sentative cell line(s), and it is demonstrated that CASCAM is suitable either in a supervised

manner with prior knowledge of disease mechanism (e.g., cell adhesion pathway in ILC) or

drug targeted pathways, or in an unsupervised manner when no prior knowledge is given.

14 cell lines were credentialed as ILC cell lines on the genome-wide evaluation by Module
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2, and 10 of them (including user-specified MDA-MB-134VI) were used for pathway-specific

analysis in Module 3. Though widely used in ILC research [105, 108], MDA-MB-134VI

was not congruent with ILC tumors on the genome wide and in the “KEGG cell adhesion

molecules” pathway. All results combined together indicated that CAMA1, UACC3133,

SUM44PE, HCC2218, and IPH926 were recommended in order as appropriate cell lines for

ILC research.

DU4475 is an example of the necessity of pathway-specific analysis (Module 3). As this

cell line is E-cadherin positive, estrogen receptor positive [121], and without CDH1 mutation

detected [40], DU4475 does not exhibit features of the classic ILC subtype. However, as

epithelial-mesenchymal transition (EMT) preferentially occurs in basal cell lines [101], it

often accounts for reduced CDH1 and CDH2 expression, which is also the key features of

ILC tumors. Therefore, DU4475 was genome-wide classified as ILC. Importantly, pathway-

specific analysis provided higher resolution to differentiate IDC and ILC, with DU4475 being

dissimilar to ILC on average of the 14 selected pathways (DSpath = 0.734, p-value = 0.093)

and in the “KEGG cell adhesion molecules” pathway (DSpath = 0.917, p-value = 0.026) and

finally was not selected as a representative ILC cell line by CASCAM.

In practice, researchers tend to credential cell lines according to the annotation of their

origin or pre-specified mutations (e.g., CDH1 for ILC) if available. However, the origins

might be mislabeled, and the cell line evolution in culture has uncovered the possibility of

genetic diversification, weakening the credibility of the original annotation. On the other

hand, selected mutations cannot guarantee eligibility for a cell line. In our study; for example,

we observed large genomic differences between SUM44PE (PSDA = 0.987, DSSDA = 0.024)

and 600MPE (PSDA = 0.125, DSSDA = 2.013) although both have CDH1 mutation and

are ER+, which are essential features of ILC. Therefore, the proposed CASCAM captures

systems information in pathways, topological networks and genes and provides a thorough

congruent investigation of the cell lines.

We also extended our framework to examine congruence of PDO and PDX cancer models

to ILC tumors in the second case study. Of 11 PDOs and 136 PDXs in the PDMR database,

only four from the same patient were credentialed as ILC in Module 2 evaluation. Strikingly,

this tumor and model while not annotated as ILC has a CDH1 mutation, suggesting that
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CASCAM authenticated a new model of ILC. Aside from offering a “yes” or “no” answer,

CASCAM can score the cancer models according to how similar they are to the targeted

tumor cohort. We therefore observed a progressive deviation trend for PDX samples over

passages, which is consistent with recent reports that PDX often undergo murine-specific

tumor evolution and congruence decays over passages [7, 104]. In fact, due to discrepancies

in drug response for late-passage PDXs, recent studies have suggested design to use early-

passage PDX models [80]. In addition, we found that PDO is not guaranteed to be better

than PDX, although PDO is widely believed to be a highly conserved cancer model promising

for precision medicine development and superior to PDX [86, 71]. Its discordance in the six

coding genes related to cell adhesion gives a cautious sign of using it to represent ILC.

The current CASCAM has limitations and multiple directions of development are on-

going. The methodologies are now developed for transcriptomic data evaluation. As multi-

level omics data (e.g., mutation, copy number variation, methylation and miRNA expression)

are becoming affordable and prevalent, an extended congruence framework for evaluating

cancer models with multi-omics data will provide deeper insight. Secondly, congruence anal-

ysis using single cell RNA-seq or single cell multi-omics data will provide a high-resolution

understanding of clonal and micro-environment information for selecting the most represen-

tative cancer model, which is also an on-going work. Thirdly, the current framework is built

upon binary contrast (i.e., ILC versus IDC). An extension to evaluating multi-class (i.e.,

three or more tumor subtypes) scenario is also a future direction. Currently, the molecular

congruence we focus is on transcriptomic resemblance in genome-wide, pathway or gene level.

The method can be extended to incorporate additional information, such as drug response,

when available. Finally, the goal of CASCAM is to identify the most congruent cancer model

from a long list of candidates to represent a target tumor cohort. For precision medicine,

one may be interested in quantifying congruence of a PDO compared to the tumor from the

patient origin. CASCAM can be easily extended for that purpose.

Collectively, we demonstrated CASCAM as a comprehensive and effective congruence

evaluation tool for selecting the most representative cancer model for investigating cancer

pathways and ultimately for precision medicine. CASCAM provides harmonization between

human tumor and cancer model omics data, interpretable machine learning for congru-
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ence quantification, mechanistic investigation, and pathway-based topological visualization

to determine the most appropriate cancer model selection. The workflow is presented using

invasive lobular breast carcinoma (ILC) subtype, credentialing highly relevant models, and

suggesting CAMA1 followed by UACC3133 as the most representative cell lines for ILC re-

search. Our novel method is generalizable to any cancer subtype and will be impactful for

furthering research in precision medicine. An R package, CASCAM, with an interactive app

is publicly available (https://github.com/jianzou75/CASCAM.) to facilitate the use of our

proposed framework.

4.4 Method

4.4.1 Gene expression data

Gene expression matrices in raw read count and transcripts per million (TPM) ver-

sions for 9,264 The Cancer Genome Atlas (TCGA) pan-cancer tumor samples were down-

loaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo) with query ID

GSM1536837 [90], and there were 960 breast cancer primary tumor samples with histol-

ogy annotated as IDC or ILC. Log2-TPM gene expression data for 1,248 Cancer Cell

Line Encyclopedia (CCLE) pan-cancer cell line samples were taken from DepMap Pub-

lic 19Q4 file [30] (https://depmap.org/portal/ccle), and there were 65 breast cancer cell

lines. Due to the limited representation of ILC cell lines in the CCLE project, we further

included seventeen cell lines from an ongoing project (R01CA252378), namely Invasive Lob-

ular Cancer Cell Line Encyclopedia (ICLE). The following eight cell lines were overlapping

in ICLE and CCLE datasets: CAMA1, HCC1187, HCC2218, MDA-MB-134, MDA-MB-453,

MDA-MB-468, SKBR3, and ZR7530. Those from ICLE were annotated as I, those from

CCLE (sequencing data from Sequence Read Archive (SRA) under accession number PR-

JNA523380) were annotated as C, and the processed CCLE data directly from DepMap

were not annotated. Gene expression data of the breast cancer PDO and PDX models

in TPM were obtained from NCI Patient-Derived Models Repository (PDMR) database
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(https://pdmr.cancer.gov/), and was log transformed for downstream evaluation. The ge-

netic variants (e.g. mutations) in PDMR was extracted from whole genome sequence and

annotated through oncoKB annotation pipeline version 1.1.0 [18].

4.4.2 Gene expression normalization between tumor and cell lines

The gene expression matrices from tumors and cell lines are not directly comparable. We

evaluated three different approaches for normalization. Quantile normalization is a widely

used method to achieve equal quantiles across all the samples (“normalize.quantiles” function

in preprocessCore [12] package). ComBat [48] is method for batch effect correction under

empirical Bayes frameworks, where we treated tumor and cell lines as two different batches

(“ComBat” function in sva [61] package). Celligner is a two-step machine learning method

specifically developed for tumor and cell line normalization. The first step is to remove

systemic differences, such as normal cell contamination, between tumor and cell lines using

contrastive principal component analysis (cPCA). The second step is to perform further

normalization using mutual nearest neighbors (MNN) [44]. We used the default parameters

in Celligner implementation (celligner package), using either 960 breast cancer tumor samples

or all 9,264 pan-cancer samples to harmonize the datasets.

4.4.3 Differential expression analysis and gene set enrichment analysis

We applied DESeq2 [67] R package using TCGA tumor read count data for differential

expression analysis (IDC vs. ILC). A gene with absolute fold change > 1.5 and two-sided

Benjamini-Hochberg adjusted p-value [9] < 0.05 was defined as “differentially expressed

(DE)”. For gene set enrichment analysis, we used fgsea R package. Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Hallmark gene sets in the Molecular Signatures Database

(MSigDB) were analyzed, and log2 fold changes from the differential expression analysis were

used for gene ranking.
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4.4.4 Machine learning methods

We compared 16 machine learning methods, including sparse discriminant analysis (SDA),

random forest on pre-filtered transformed data* (CancerCellNet), robust sparse discriminant

analysis (RSDA), logistic regression with elastic net (ElasticNet), logistic regression with

ridge penalty* (RidgeRegress), K nearest neighbors (KNN), majority voting according to 25

highest Pearson correlated tumor samples* (Pearson25), linear discriminant analysis (LDA),

random forest* (RandomForest), nearest template prediction* (NTP), subtype assignment

according to the median of within subtype Spearman correlations* (SpearmanMed), subtype

assignment according to the median of within subtype Pearson correlations* (PearsonMed),

logistic regression (Logistic), and three convolutional neural networks which were originally

optimized on pan-cancer datasets (1D-CNN, 2D-Vanilla-CNN, and 2D-Hybrid-CNN) [76].

Six of these methods (marked with asterisk in Table 7) have been extended and used in

publications for cancer model prediction analysis. The following three prediction evalua-

tions were performed: (1) Five-fold cross-validation on breast cancer histology (769 IDC vs.

191 ILC) using 960 TCGA BC samples. (2) Construction of prediction model on Celligner

aligned TCGA BC samples (training set, 712 ER+ and 205 ER-) and validated on Celligner

aligned CCLE BC cell line samples (testing set, 19 ER+ and 37 ER- cell lines). (3) Con-

struction of prediction model on Celligner normalized TCGA pan-cancer samples (training

set, 960 BC and 960 non-BC) and validated on Celligner normalized CCLE cell line samples

(testing set, 56 BC and 56 non-BC cell lines). To avoid accuracy calculation issue of im-

balanced sample sizes, 960 TCGA non-BC tumor samples and 56 CCLE non-BC cell lines

were randomly subsampled from 8,304 TCGA pan-cancer non-BC samples and 1,192 CCLE

pan-cancer non-BC cell lines.

4.4.5 SDA projected deviance score

The SDA projected deviance score, DSSDA, was designed based on the sparse discrim-

inant analysis (SDA) method [23] to quantify genome-wide dissimilarity between a cancer

model and the targeted tumor subtype. We denote the tumor gene expression N × G ma-

trix as X with N samples and G DE genes, the N × 2 class indicator matrix as Y with
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Yik = 1(i∈Ck) for tumor sample i belonging to targeted tumor subtype, and the cancer model

gene expression as C. SDA extends linear discriminant analysis with elastic net to identify

(θ, β) by

minimizeβ,θ
{
∥Y θ −Xβ∥2 + γβTIβ + λ ∥β∥1

}
subject to

1

n
θTY TY θ = 1

where θ is the optimal scores, β is the sparse discriminant vector, I is the identity

matrix, γ and λ are nonnegative tuning parameters selected by cross-validation. An iterative

algorithm is applied to solve the pair (θ, β). The tumor and cancer model gene expressions

are then projected to the direction of estimated β–Xβ and Cβ. The assignment probability,

PSDA, was calculated from the standard LDA on the reduced data matrix Xβ and Cβ in

selected gene features.

To simplify annotation, we use ci to denote the projected value for cancer model i and

tk to denote the projected tumor sample vector for subtype k. The SDA projected deviance

score for cancer model i in class k, is defined asDS
(i,k)
SDA = |ci−µ̂k|/ŝ where µ̂k = mediank(tk),

ŝ = madk(tk−µ̂k), andmad is abbreviation for scaled median absolute deviation. Intuitively,

µ̂k and ŝ are robust forms of mean and standard deviation, and DSSDA can be seen as a

robust form of absolute t-statistics as the standardized distance of the cancer model to the

center of tumor cohort on the SDA projected space. Smaller deviance score indicates higher

congruence of the cancer model to the desired tumor subtype cohort. By setting the null

hypothesis as ci = µk, the p-value of DS
(i,k)
SDA, denoted as pval(DS

(i,k)
SDA), is obtained from the

distribution of tumor tk ∼ N(µk, σ), where (µk, σ) are estimeated by (µ̂k, σ̂). The ordinary

bootstrap [36] with 1,000 times on the tumor projected data is performed to obtain the 95%

confidence interval of DS
(i,k)
SDA on the log2 scale. The implementation of this method is based

on sparseLDA [23], caret [57] and boot [17] R package.
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4.4.6 Gene and pathway specific deviance score

We denoted the Celligner aligned gene expression for cancer model i and gene g as cg,i

and for tumor samples in subtype k and gene g as tg,k.Similar to SDA-projected deviance

score, we defined the gene specific deviance score (DSGene) for model i and subtype k in

gene g as DS
(g,i,k)
Gene = (cg,i− m̂ug,k/σ̂g, where µ̂g,k = mediank(tg,k) and σ̂g = madk(tg,k). The

pathway specific deviance score (DSpath) for pathway p, cancer model i, and tumor subtype

k is then defined, based on the DSGene, as DS
(p,i,k)
path = geometric meang∈P (DE)(|DS

(g,i,k)
gene |),

where P (DE) is the set of DE genes in pathway p. The geometric mean is proposed to

reduce the effects of outliers. The significance levels of DSpath (one-sided p-values) were

defined similar to pval(DSSDA), which were obtained from the null distribution empirically

constructed by DSpath of the tumor samples.
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Figure 13: Flowchart of CASCAM for congruence quantification and selection. Tumor and cancer model
gene expression data are first harmonized (Module 1). Interpretable machine learning by sparse
discriminant analysis (SDA) is applied by combining predication accuracy and SDA-based deviance score
for pre-selecting candidate cancer models (Module 2). Pathway-specific mechanistic explorations are
iteratively investigated to conclude the final representative cancer model (Module 3). Blue frames represent
input data, orange frames for essential output results, parallelogram frames for intermediate results,
rectangular frames for analysis process, bullet-shaped frames for visualization, and rhombus frames for
decision making.
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Figure 14: UMAP for comparison of multiple data harmonization approaches. UMAP for normalized BC
tumors (n=960) and BC cell lines (n=65) to compare five normalization approaches: (A) no correction and
(B) quantile normalization (C) ComBat and (D) Celligner utilizing BC tumors and BC cell lines (E)
Celligner utilizing pan-cancer tumors and pan-cancer cell lines. The final approach best eliminates batch
effects by mixing well the BC tumors and BC cell lines.
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Figure 15: UMAP after data harmonization with replicates and basal subtype information. (A) Three
replicates (cell line; cell line C; cell line I) for each of the eight cell lines are highly reproducible. (B) The
lower-right cluster contains dominantly tumors and cell lines annotated as basal-like (118/160 tumors and
26/28 cell lines).
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Figure 16: Genome-wide cell line congruence and pre-selection. (A) SDA projected scatter plot. y-axis
represents the projected values for 38 cell lines, the red and blue horizontal lines represent the median
projected value (center) of ILC and IDC tumor samples respectively. The density plots on the right shows
distributions of 769 IDC (blue) and 191 ILC (red) tumors. Red color of the dots represents SDA
classification to ILC (threshold PSDA > 50%), and the solid dots represent small SDA-based deviance
scores (threshold pval(DSSDA) > 0.05). More stringent criteria were indicated by the dashed rectangle.
Cell lines with PSDA > 0.8 were enclosed by green dashed rectangle and the ones with pval(DSSDA) > 0.1
were enclosed by orange dashed rectangle. (B) SDA projected deviance score (absolute value) with 95%
confidence interval. 9 unbiased-selected and 1 manually-included (marked with asterisk) cell lines are
ranked based on |DSSDA|, and 95% confidence intervals are obtained by bootstrap analysis on log-scale.
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Figure 17: Pathway- and gene-specific analysis for selection of representative cell line(s). (A) Heatmap of
pathway-specific deviance scores (DSpath) with 14 unbiased-selected and 1 manually-included pathways
(30 < size < 200, |NES| > 1.5; shown on the rows) and 9 unbiased-selected and 1 manually-included cell
lines (columns). The genome-wide SDA projected deviance score (DSSDA) is shown on the top side-bar
and the pathway size and normalized enrichment score (NES) are on the left. Positive (negative) NES
indicates up-regulation (down-regulation) in ILC compared to IDC. Average of the 14 pathways and the
pre-selected “KEGG Cell Adhesion Molecules” pathway are shown at the bottom. The p-values of DSpath

are annotated in the heatmap (one circle: p− value < 0.1; two concentric circles: p− value < 0.05; three
concentric circles: p− value < 0.01), and smaller p-values indicate worse congruence. (B) Gene-specific
heatmap shows DSgene for the 10 selected cell lines and 22 DE genes in “KEGG Cell Adhesion Molecules”
pathway. (C) Part of KEGG PathView topological networks for BCK4 (DSpath = 1.323) for the “KEGG
Cell Adhesion Molecules” pathway. The result shows discordance of 10 genes in BCK4 (orange stars
showing up-regulation compared to ILC tumors and blue start showing down-regulation).
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Figure 18: Selecting representative PDO/PDX for ILC. (A) SDA projected positions for PDO and PDX
models from PDMR. Four models (three PDXs and one PDO; red circles) from the same patient
(171881-019-R) were identified as candidate ILC models. Six models from this patient are labeled with the
sample ID. High consistency was observed between SDA deviance scores and passages among PDX models.
(B) Six models originated from the same patient were used for pathway-specific analysis. Six models show
high congruence in the majority of 14 pathways and the Cell Adhesion pathway. (C) Violin plot shows the
position of PDO.1 and PDX.1B on the six genes on which PDO.1 is discordant with.
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Table 7: Evaluation and properties of 13 popular machine learning methods. Six methods applied for cancer model prediction in previous papers are
highlighted (*). Prediction accuracies are shown in three machine learning evaluation examples. Parentheses in the second column are standard
deviations of accuracies in five repeats of five-fold cross-validation.

Machine learning evaluation Machine learning relevant properties

ILC vs IDC ER+ vs ER- BRCA vs other cancers
Gene selection Assignment probability Deviance score

TCGA;
5-fold CV

Training data: TCGA;
Test data: CCLE

Training data: TCGA;
Test data: CCLE

SDA 0.91 (0.02) 0.91 0.86 Yes Yes Yes
ElasticNet 0.90 (0.03) 0.93 0.85 Yes Yes No

2D-Hybrid-CNN 0.87 (0.03) 0.93 0.86 No No No
RidgeRegress* 0.88 (0.02) 0.91 0.84 Yes Yes No
Pearson25* 0.86 (0.01) 0.86 0.9 No No No

KNN 0.85 (0.03) 0.86 0.91 No Yes No
2D-Vanilla-CNN 0.86 (0.04) 0.88 0.85 No No No

1D-CNN 0.86 (0.03) 0.86 0.86 No No No
RandomForest* 0.85 (0.01) 0.91 0.82 Yes Yes No

RSLDA 0.81 (0.11) 0.77 0.86 Yes Yes Yes
CancerCellNet* 0.79 (0.03) 0.82 0.79 Yes Yes No

LDA 0.80 (0.03) 0.68 0.82 No Yes Yes
NTP 0.61 (0.03) 0.86 0.82 No No Yes

SpearmanMed* 0.40 (0.03) 0.84 0.61 No No Yes
PearsonMed* 0.38 (0.04) 0.84 0.62 No No Yes

Logistic 0.52 (0.04) 0.43 0.65 No Yes No



Table 8: SDA-based genome-wide congruence summary for six models from patient 171881-019-R. Later
passages of PDX models have worse congruence (i.e., larger deviance scores).

Sample ID Label name Model type Passage DS
(ILC)
SDA P

(ILC)
SDA Identified as ILC

APW-DS2 PDX.0 PDX 0 0.12 1.00 Yes

APYF68 PDX.1A PDX 1 0.56 0.99 Yes

APWG05 PDX.1B PDX 1 1.15 0.90 Yes

APWG05PF7 PDX.2A PDX 2 1.93 0.34 No

APVG40 RG-G15 PDX.2B PDX 2 3.56 0.00 No

V1-organoid PDO PDO 1.73 0.51 Yes
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Appendix A Chapter 3

A.1 Supplement tables and figures

Table 9: Simulation settings for the toy example. Gene 1: the gene has concordant expression across all 4
studies; Gene 2: the gene has concordant expression in study 1, 2, and 3; Gene 3: The gene has concordant
expression between study 1 and 2 and between 3 and 4; Gene 4: gene without any concordant signals.

Study 1 Study 2 Study 3 Study 4

(n11, n12, n13) = (n21, n22, n23) = (n31, n32, n33) = (n41, n42, n43) =

(20, 20, 20) (20, 20, 20) (20, 20, 20) (20, 20, 20)

(µ11, µ12, µ13) , σ1 (µ21, µ22, µ23) , σ2 (µ31, µ32, µ33) , σ3 (µ41, µ42, µ43) , σ4

Gene 1 (1, 3, 5), 1 (1, 3, 5), 1 (1, 3, 5), 1 (1, 3, 5), 1

Gene 2 (5, 3, 1), 1 (5, 3, 1), 1 (5, 3, 1), 1 (1, 7, 1), 1

Gene 3 (1, 3, 5), 1 (1, 3, 5), 1 (1, 7, 1), 1 (1, 7, 1), 1

Gene 4 (0, 0, 0), 1 (0, 0, 0), 1 (0, 0, 0), 1 (0, 0, 0), 1
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Table 10: Simulation settings for different effect sizes. Category I: genes with concordant expression
patterns across three studies; Category II: genes with discordant expression patterns across three studies;
Category III: genes with concordant expression patterns between study 1 and 2 only; Category Null: genes
without any signals.

Effect size Study 1 Study 2 Study 3

(n11, n12, n13) = (n21, n22, n23) = (n31, n32, n33) =

(10, 5, 8) (5, 8, 10) (8, 10, 5)

(µ11, µ12, µ13) , σ1 (µ21, µ22, µ23) , σ2 (µ31, µ32, µ33) , σ3

0.5 I (n = 300) (1, 3, 5), 3.5 (2, 4, 6), 3.1 (1, 4, 7), 4.4

II (n = 100) (1, 3, 5), 3.5 (6, 4, 2), 3.1 (1, 7, 1), 5.9

III (n = 100) (1, 3, 5), 3.5 (2, 4, 6), 3.1 (0, 0, 0), 4.4

Null (n = 1500) (0, 0, 0), 3.5 (0, 0, 0), 3.1 (0, 0, 0), 4.4

0.6 I (n = 300) (1, 3, 5), 2.9 (2, 4, 6), 2.6 (1, 4, 7), 3.7

II (n = 100) (1, 3, 5), 2.9 (6, 4, 2), 2.6 (1, 7, 1), 4.8

III (n = 100) (1, 3, 5), 2.9 (2, 4, 6), 2.6 (0, 0, 0), 3.7

Null (n = 1500) (0, 0, 0), 2.9 (0, 0, 0), 2.6 (0, 0, 0), 3.7

0.6 I (n = 300) (1, 3, 5), 2.5 (2, 4, 6), 2.2 (1, 4, 7), 3.2

II (n = 100) (1, 3, 5), 2.5 (6, 4, 2), 2.2 (1, 7, 1), 4.3

III (n = 100) (1, 3, 5), 2.5 (2, 4, 6), 2.2 (0, 0, 0), 3.2

Null (n = 1500) (0, 0, 0), 2.5 (0, 0, 0), 2.2 (0, 0, 0), 3.2
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Table 11: IPA canonical pathway analysis using the q-values from the MSCA analysis on the mouse
metabolism data. Top 50 pathways (sorted by the p-value) are listed.

Pathway -log(p-value) Ratio

Mitochondrial Dysfunction 43.2 0.493

Sirtuin Signaling Pathway 42.9 0.522

Oxidative Phosphorylation 35.7 0.712

Estrogen Receptor Signaling 24.1 0.381

NRF2-mediated Oxidative Stress Response 18.2 0.414

Acute Phase Response Signaling 15.8 0.427

Integrin Signaling 15.5 0.406

Neutrophil Extracellular Trap Signaling Pathway 15.2 0.332

Granzyme A Signaling 14.5 0.573

Unfolded protein response 14.4 0.533

ILK Signaling 13.9 0.398

Huntington’s Disease Signaling 13.2 0.353

CLEAR Signaling Pathway 13 0.351

FXR/RXR Activation 12.9 0.452

Protein Kinase A Signaling 12.7 0.316

Glucocorticoid Receptor Signaling 12.3 0.289

PPARα/RXRα Activation 12.2 0.385

Actin Cytoskeleton Signaling 11.8 0.357

LXR/RXR Activation 11.6 0.439

Protein Ubiquitination Pathway 11.3 0.341

Ferroptosis Signaling Pathway 11.3 0.424

Valine Degradation I 11 0.857

Epithelial Adherens Junction Signaling 10.8 0.395

Fatty Acid β-oxidation I 10.7 0.686

Insulin Receptor Signaling 10.6 0.407

Germ Cell-Sertoli Cell Junction Signaling 10.5 0.382

Necroptosis Signaling Pathway 10.4 0.391

Superpathway of Cholesterol Biosynthesis 10.1 0.515
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Table 12: LISA results for top 30 ranked transcription factors. The ranking is obtained by combining
Peak-RP method, H3K27ac, DNase-seq in silico deletion of TF ChIP-seq peaks.

Transcription Factor p-value Transcription Factor p-value Transcription Factor p-value

SMC1A 3.25E-67 MYC 1.13E-22 TCF7L1 4.45E-20

DPF1 7.35E-64 TERC 1.22E-21 E2F1 4.55E-20

CTCF 3.90E-56 EGR3 2.05E-21 MAX 5.50E-20

ZMYM3 4.50E-54 ERG 4.75E-21 KDM5B 5.65E-20

NFIA 1.01E-51 SP1 5.87E-21 SP2 6.73E-20

ESR1 1.27E-48 SP140 8.85E-21 NRF1 8.23E-20

BATF3 6.89E-44 HIF1A 9.49E-21 YY1 1.44E-19

MED1 2.46E-43 NR2F2 1.20E-20 RUNX1 1.83E-19

T 1.80E-31 TFAP2C 3.20E-20 ZNF143 4.87E-19

FOXA1 5.99E-23 TFAP2A 3.71E-20 TAF1 9.18E-19
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Figure 19: The boxplots for the averaged gene expression patterns of all the different gene categories across
four tissues in the mouse metabolism study. V consists of genes detected by min-MCC only, while M1
represents the intersection of genes detected by both min-MCC and MSCA. M2-M11 represent gene
categories with concordance shared between different tissue pairs: M2 in brown fat and liver, M3 in brown
fat and heart, M4 in brown fat and skeletal, M5 in liver and heart, M6 in liver and skeletal, M7 in heart
and skeletal, M8 in brown fat, liver, and heart, M9 in brown fat, liver, and skeletal, M10 in brown fat,
heart, and skeletal, and M11 in liver, heart, and skeletal. More stringent threshold (q − value < 0.01) for
concordant gene identification was applied for visualization.
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Figure 20: The boxplot for the gene expression patterns of Blvrb. Concordance gene expression is in brown
fat, heart and skeletal tissues.
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Figure 21: The boxplots for the averaged gene expression patterns of all the different gene categories across
three leukemia studies. The gene categories include the genes identified by min-MCC alone (V), the
intersected genes identified by min-MCC and MSCA (M1), genes identified only by MSCA and the partial
shared concordance detected in GSE6891 and GSE17855 (M2), concordance between GSE6891 and
GSE13159 (M3), and concordance between GSE17855 and GSE13159 (M4). More stringent threshold
(q − value < 0.01) for concordant gene identification was applied for visualization.
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Appendix B Chapter 4

B.1 Literature review

Evaluating the transcriptional fidelity of cancer models, Genome Medicine, April

2021

Dataset: TCGA, CCLE, ICGC, etc.

Method Evaluation:

1. Identify upregulated, downregulated, and invariant genes in each tumor type by template

vector and Pearson correlation

2. Select the most discriminative gene pairs for each tumor type from the above identified

genes

3. Train the random forest model using above selected gene pairs

4. Evaluate the cancer models on the 22 tumor types and 36 sub-types

5. Evaluate the similarity in cancer cell lines, xenografts, mouse models, and tumoroids

Pros:

1. The method is platform- and species - agnostic because of ranked-based design

2. Many cancer models are studied

Cons:

1. Cannot measure absolute distance between cell line and tumor

2. The comparability between models and tumors is not considered

Global computational alignment of tumor and cell line transcriptional profiles,

Nature Communications, 04 January 2021

Dataset: Treehouse, CCLE

Method Evaluation: Propose a method to perform an unsupervised global alignment of

tumor and cell line gene expressions, allowing for direct comparisons of their transcriptional

profiles.
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1. Calculate the Pearson correlation between aligned tumor and cell line

2. Cell lines are classified by identifying the most frequently occurring tumor type within

each cell line’s 25 highest correlated tumors

3. Show the information transformation between cell and tumor

4. Validate the method using known truth

Pros:

1. New method to make the cell line and tumor data comparable

Cons:

1. The classification method does not provide enough information

CCLA: an accurate method and web server for cancer cell line authentication

using gene expression profiles, Briefings in Bioinformatics, 08 June 2020

Dataset: CCLE, GDSC, CHCC

Method Evaluation:

1. Apply single sample gene set enrichment analysis to the reference set for obtaining the

reference score matrix

2. Cluster the reference score matrix into 3 groups by t-SNE

3. Apply random forest using the above group label

4. Obtain the group label for the new sample, and calculate the Pearson correlation with

the reference samples within that group

5. Use independent data source

6. Compare the distribution of expressed signature genes in the query samples and resulting

reference

Pros:

1. User-friendly web sever

2. Gene signatures for each cell line are carefully selected

Cons:

1. Not consider the tumor
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Matching cell lines with cancer type and subtype of origin via mutational, epige-

nomic, and transcriptomic patterns, Science Advances, 01 Jul 2020

Dataset: CCLE, TCGA

Method Evaluation:

1. Construct the one vs. rest ridge regression model for each cancer type using TCGA

methylation and gene expression data respectively

2. Select the cell lines which have high precision score in both models but reported from

the other origin

3. Construct the one (origin) vs. one (suspected) model for the above selected cell lines

4. Verify the misclassification using other mutant data

5. Validate the misclassification using cancer type-specific drugs and specific mutation sig-

natures

6. Use UV-linked signature 7 and sensitivity (IC50) for mutant target drugs to evaluate the

6 cell lines which are consistently reassigned to skin cancer

7. Subtype the cell lines and validate the results using breast cancer cell line subtyping

labels

8. Perform association study using different set of cell lines on drug sensitivity and gene

dependency screenings

Pros:

1. Apply multi-omics data, especially drug sensitivity data

2. Classification model works well

Cons:

1. Cannot measure absolute distance between cell line and tumor

Evaluating cell lines as tumor models by comparison of genomic profiles, Nature

Communications, 09 July 2013

Dataset: CCLE, TCGA

Method Evaluation: Suitability Score: S = A+B–2× C–D/7
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1. A: Correlation with mean CNA of HGSOC tumors

2. B: 1 or 0, TP53 mutation

3. C: 1 or 0, hypermutated

4. D: number of genes mutated among 7 ’non-HGSOC’ genes

Pros:

1. Design a new score including the important factors

Cons:

1. The score is specific for this one case, and how this score designed (the weights) is not

fully illustrated

Integrated analyses of murine breast cancer models reveal critical parallels with

human disease, Nature Communications, 22 July 2019

Dataset: Lab data

Method Evaluation:

1. Filter the resulting genes based on human data and cluster on gene expression

2. Identify genes highly altered in human, and analyzing CNV in mouse

Pros:

1. The evaluation of mouse model is based on human information

Cons:

1. The correlation between human and mouse model is not fully compared

Comprehensive transcriptomic analysis of cell lines as models of primary tumors

across 22 tumor types, Nature Communications, 08 August 2019

Dataset: TCGA, CCLE

Method Evaluation:

1. Correlation analysis (remove the tumor purity genes) and gene set enrichment analysis

2. Nearest Template Prediction for subtype prediction of cell lines
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Pros:

1. Remove the tumor purity genes to make cell lines and tumors more comparable

2. Generate subtype templates using specific genes for NTP

Cons:

1. Cannot measure absolute distance between cell line and tumor

Evaluating cell lines as models for metastatic breast cancer through integrative

analysis of genomic data, Nature Communications, 15 May 2019

Dataset: MET500, CCLE

Method Evaluation:

1. Compare genomic profiles (Genes highly mutated in metastatic breast cancer & differ-

entially mutated between metastatic and primary breast cancer)

2. Spearman correlation across 1,000 most-varied genes

Pros:

1. Focus on metastasis instead of primary tumor

2. Important gene selection part is thought-provoking

Cons:

1. Cannot measure absolute distance between cell line and tumor

Analysis of Transcriptomic Similarity between Osteosarcoma Cell Lines and Pri-

mary Tumors, Oncology, 23 Jul 2020; Assessing alveolar rhabdomyosarcoma cell

lines as tumor models by comparison of mRNA expression profiles, Gene, 15

November 2020

Dataset: TCGA, CCLE, GEO

Method Evaluation:

1. Calculate spearman correlation using 5,000 top genes (by IQR) from primary tumor

2. Differential expression analysis for tumor versus cell lines with purity score and sequenc-

ing platform as covariate
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3. Gene ontology enrichment analysis based on DEA results

Pros:

1. It is interesting to use DEA to identify genes that are differentially expressed between

cell lines and primary tumors

Cons:

1. Cannot measure absolute distance between cell line and tumor

2. Cannot perform the cell line selection

Investigating the utility of human melanoma cell lines as tumour models, Onco-

target, 7 Feb 2017

Dataset: TCGA, GEO

Method Evaluation:

1. PCA on cell lines and tumors by top 5,000 genes

2. DEA on cell lines versus tumors

3. Calculate the Pearson association between RNA-seq of cell lines and single cells

4. Subtype the cell lines by clustering using 2 gene sets identified in tumors

5. Detect the UV-induced mutational signatures

6. Prepare a panel for selection based on average properties and genetic events from tumor

study

Pros:

1. Use PCA to evaluate the performance of batch correction method

2. A relatively complete analysis

3. Use important signatures for validation

4. Use a panel to summarize the results

Cons:

1. The correlation calculation is too simple

2. The resulting panel cannot directly provide a selection suggestion
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B.2 Supplement tables and figures

Table 13: Summary table of the 38 candidate BC cell lines.

Projected Position P ILC
SDA DSILC

SDA Classification

SUM44PE -0.977 0.987 0.024 ILC

DU4475 -1.036 0.992 0.188 ILC

UACC3133 -1.132 0.996 0.452 ILC

CAMA1 -0.771 0.929 0.541 ILC

HCC2218 -0.666 0.845 0.828 ILC

ZR7530 -0.604 0.764 0.999 No ILC

WCRC25 -1.333 0.999 1.002 ILC

MDAMB453 -0.549 0.67 1.15 No ILC

MDAMB134VI -0.488 0.548 1.318 No ILC

BCK4 -1.544 1 1.583 ILC

OCUBM -0.386 0.339 1.597 No ILC

IPH926 -1.551 1 1.601 ILC

UACC893 -0.361 0.293 1.667 No ILC

MDAMB175VII -0.326 0.236 1.762 No ILC

HCC2185 -1.657 1 1.892 ILC

T47D -0.264 0.155 1.934 No ILC

MPE600 -0.235 0.125 2.013 No ILC

HCC1428 -0.222 0.114 2.05 No ILC

CAL148 -0.2 0.097 2.108 No ILC

SUM185PE -0.193 0.091 2.129 No ILC

HCC1419 -0.179 0.082 2.166 No ILC

AU565 -1.844 1 2.405 No ILC

SUM52PE -0.044 0.028 2.538 No ILC
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SKBR3 -1.92 1 2.615 No ILC

BT483 0.083 0.01 2.885 No ILC

MDAMB415 0.088 0.009 2.899 No ILC

MM330 0.103 0.008 2.942 No ILC

ZR751 -2.05 1 2.97 No ILC

UACC812 -2.057 1 2.991 No ILC

HCC1500 0.254 0.002 3.356 No ILC

MFM223 0.334 0.001 3.577 No ILC

MDAMB361 0.479 0 3.974 No ILC

HCC202 0.512 0 4.066 No ILC

KPL1 0.543 0 4.15 No ILC

EFM19 0.649 0 4.439 No ILC

MCF7 0.745 0 4.705 No ILC

EFM192A 0.8 0 4.856 No ILC

BT474 1.627 0 7.127 No ILC
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Table 14: Summary table of the pathway specific analysis (DSpath) for 9 unbiased-selected + 1 manually-included cell lines and 14 unbiased-selected
+ 1 manually-included pathways.

SUM44PE DU4475 UACC3133 CAMA1 HCC2218 WCRC25 BCK4 IPH926 HCC2185
KEGG PPAR SIGNALING PATHWAY 0.405 0.572 0.42 0.493 0.349 0.358 0.72 0.615 0.395

HALLMARK TNFA SIGNALING VIA NFKB 0.589 0.984 0.877 0.369 0.644 0.635 0.875 0.599 0.932
HALLMARK KRAS SIGNALING DN 0.73 0.667 0.558 0.456 0.572 0.645 0.813 0.553 0.863

HALLMARK GLYCOLYSIS 0.958 0.97 0.816 0.591 0.8 0.99 1.009 0.791 0.861
KEGG STARCH AND SUCROSE METABOLISM 0.868 0.581 0.62 0.425 0.623 0.915 0.785 1.284 0.669

HALLMARK SPERMATOGENESIS 0.43 0.875 0.513 0.465 0.904 0.535 0.507 0.624 0.438
HALLMARK MYC TARGETS V1 0.525 0.849 0.497 0.488 0.991 0.456 0.529 0.551 0.556

KEGG CELL CYCLE 0.572 0.755 0.363 0.579 0.992 0.548 0.45 0.655 0.582
KEGG METABOLISM OF XENOBIOTICS BY CYTOCHROME P450 0.822 0.543 1.05 0.528 0.508 0.837 0.911 0.972 0.638

KEGG RETINOL METABOLISM 1.051 0.54 0.806 0.453 0.541 0.981 0.932 1.062 0.997
HALLMARK MTORC1 SIGNALING 0.88 1.04 0.689 0.619 0.778 0.768 0.898 0.951 0.715

KEGG DRUG METABOLISM CYTOCHROME P450 0.768 0.499 1.035 0.498 0.482 0.823 0.832 0.991 0.611
HALLMARK G2M CHECKPOINT 0.478 0.609 0.458 0.525 1.138 0.451 0.376 0.391 0.425

HALLMARK E2F TARGETS 0.569 0.799 0.629 0.576 1.156 0.389 0.44 0.52 0.47
AVERAGE OF 14 PATHWAYS 0.689 0.734 0.667 0.505 0.748 0.666 0.72 0.754 0.654

KEGG CELL ADHESION MOLECULES 0.726 0.917 0.796 0.468 0.264 1.155 1.323 0.795 0.869



Table 15: Summary table of the 11 PDO and 136 PDX BC models.

Patient ID Specimen ID Sample ID Projected Position P ILC
SDA DSILC

SDA Classification
171881 019-R APW-DS2 1.072 0.998 0.117 ILC
171881 019-R APYF68 0.915 0.987 0.562 ILC
171881 019-R APWG05 0.706 0.898 1.154 ILC
171881 019-R V1-organoid 0.501 0.508 1.733 ILC
171881 019-R APWG05PF7 0.432 0.335 1.928 No ILC
337426 197-R AL-F5Y AL-A80 0.036 0.008 3.05 No ILC
755229 096-R AL-VNC AL-C53 AL-J67 0.004 0.006 3.141 No ILC
755229 096-R AL-VNC AL-C53 AL-J67 AL-Q60 -0.026 0.004 3.227 No ILC
337426 197-R AL-F5Y -0.039 0.004 3.261 No ILC
397859 316-R P0POOL OT-Q25 -0.044 0.003 3.275 No ILC
337426 197-R AL-F5W AL-A70 -0.067 0.003 3.34 No ILC
755229 096-R AL-VNC AL-C54 AL-Q07 -0.068 0.003 3.343 No ILC
397859 316-R P0POOL OT-Q25 RG-NP9 -0.116 0.002 3.48 No ILC
337426 197-R AL-F5Y AL-A81 AL-C56 AL-E24 AL-F39 -0.13 0.001 3.521 No ILC
171881 019-R APVG40 RG-G15 -0.145 0.001 3.562 No ILC
755229 096-R AL-VNC AL-C55 -0.186 0.001 3.68 No ILC
755229 096-R AL-VNC -0.191 0.001 3.691 No ILC
397859 316-R P0POOL OT-Q23N59 -0.223 0.001 3.783 No ILC
755229 096-R V1-organoid -0.25 0 3.861 No ILC
337426 197-R V2-organoid -0.274 0 3.929 No ILC
913291 066-R V1-organoid -0.316 0 4.047 No ILC
397859 316-R P0POOL OT-Q23 -0.331 0 4.09 No ILC
913291 066-R UJH -0.338 0 4.109 No ILC
913291 066-R UJHG08 -0.391 0 4.259 No ILC
913291 066-R UJHG07K01 -0.393 0 4.266 No ILC
913291 066-R UJHG08J25 -0.412 0 4.319 No ILC
397859 316-R P0POOL OT-Q23N60KY7W19 -0.517 0 4.617 No ILC
913291 066-R UJF -0.631 0 4.939 No ILC
913291 066-R UJHG08J26 AL-KX9 -0.728 0 5.214 No ILC
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Figure 22: Heatmap of pathway-specific deviance scores (DSpath) with 53 pathways (rows) and 9
genome-wide pre-selected cell lines + 1 manually selected cell line (MDA-MB-134VI) (columns). The
genome-wide SDA projected deviance score (DSSDA) is shown on the top sidebar and the pathway size
and normalized enrichment score (NES) are on the left.
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Figure 23: Enrichment plots for Hallmark E2F Targets and KEGG PPAR Signaling Pathway.
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Figure 24: Violin plots for CAMA1 and BCK4 in KEGG Cell Adhesion Molecules.

CADM1

CADM3

CDH1

CDH15

CDH2

CDH3

CDH4

CLDN1

CLDN11

CLDN15

CLDN16

-0.1 0.0 0.1

CLDN19

CLDN5

CLDN6

CLDN9

CNTNAP2

JAM2

L1CAM

NRCAM

NRXN2

PVR

SELP

-0.1 0.0 0.1 0.2 0.3

Cell line

CAMA1
BCK4

Expression

G
en

e

99



Figure 25: UMAP of Celligner alignment between tumors and PDX/PDO models. (A) Three distinct
clusters were observed. The small cluster on the left consists of a seemingly rare breast cancer subtype, the
upper-right cluster includes mostly non-basal samples, and the lower-right cluster includes mostly basal
samples. (B) UMAP is redrawn when the small cluster in (A) is removed.

-10

-5

0

5

-10 -5 0 5

(A)

-10

-5

0

5

-5.0 -2.5 0.0 2.5 5.0

(B)

PDO PDX Tumor

100



Figure 26: Violin plots for PDO.1 and PDX.1B in KEGG Cell Adhesion Molecules.
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Figure 27: Topological plots for APWG05PF7 (PDX.1B) and V1-organoid (PDO) from the same patient
(171881-09-R) in KEGG Cell Adhesion Molecules. (A) APWG05 (PDX.1B). (B) V1-organoid (PDO.1).

102



Bibliography

[1] Uniprot: the universal protein knowledgebase. Nucleic Acids Research, 45(D1):D158–
D169, 2017.

[2] Per Kragh Andersen and Richard D Gill. Cox’s regression model for counting pro-
cesses: a large sample study. The Annals of Statistics, pages 1100–1120, 1982.

[3] Brian Balgobind, Marry van den Heuvel-Eibrink, Renee de Menezes, Dirk Reinhardt,
Iris Hollink, Susan Arentsen-Peters, Elisabeth van Wering, Gertjan Kaspers, Jacque-
line Cloos, Eveline de Bont, et al. Evaluation of gene expression signatures predictive
of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haema-
tologica, 96(2):221–230, 2011.

[4] Sai Batchu and Justin Lee Gold. Analysis of transcriptomic similarity between os-
teosarcoma cell lines and primary tumors. Oncology, 98(11):814–816, 2020.

[5] Sai Batchu, Alec S Kellish, and Abraham A Hakim. Assessing alveolar rhabdomyosar-
coma cell lines as tumor models by comparison of mrna expression profiles. Gene,
760:145025, 2020.

[6] Ferdouse Begum, Debashis Ghosh, George C Tseng, and Eleanor Feingold. Compre-
hensive literature review and statistical considerations for gwas meta-analysis. Nucleic
Acids Research, 40(9):3777–3784, 2012.

[7] Uri Ben-David, Gavin Ha, Yuen-Yi Tseng, Noah F Greenwald, Coyin Oh, Juliann
Shih, James M McFarland, Bang Wong, Jesse S Boehm, Rameen Beroukhim, et al.
Patient-derived xenografts undergo mouse-specific tumor evolution. Nature Genetics,
49(11):1567–1575, 2017.

[8] Uri Ben-David, Benjamin Siranosian, Gavin Ha, Helen Tang, Yaara Oren, Kunihiko
Hinohara, Craig A Strathdee, Joshua Dempster, Nicholas J Lyons, Robert Burns,
et al. Genetic and transcriptional evolution alters cancer cell line drug response.
Nature, 560(7718):325–330, 2018.

[9] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society:
Series B (Methodological), 57(1):289–300, 1995.

[10] Robert H Berk and Douglas H Jones. Goodness-of-fit test statistics that dominate
the kolmogorov statistics. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte
Gebiete, 47(1):47–59, 1979.

[11] Michel Berkelaar et al. lpSolve: Interface to ’Lp solve’ v. 5.5 to Solve Linear/Integer
Programs, 2020. R package version 5.6.15.

103



[12] Ben Bolstad. preprocesscore: A collection of pre-processing functions, 2021.

[13] Benjamin M Bolstad, Rafael A Irizarry, Magnus Åstrand, and Terence P. Speed.
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[55] Andreas Krämer, Jeff Green, Jack Pollard Jr, and Stuart Tugendreich. Causal analysis
approaches in ingenuity pathway analysis. Bioinformatics, 30(4):523–530, 2014.

[56] Karoline B Kuchenbaecker, John L Hopper, Daniel R Barnes, Kelly-Anne Phillips,
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