
Evaluation of Scalability for Distributed Data-Parallel Training of

Swin Transformer V2

by

Dillon Garrett

Bachelor of Science in Computer Engineering, University of Pittsburgh, 2021

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2023

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Dillon Garrett

It was defended on

April 27th, 2023

and approved by

Ahmed Dallal, PhD, Assistant Professor, Department of Electrical and Computer

Engineering

Samuel Dickerson, PhD, Associate Professor, Director, Department of Electrical and

Computer Engineering

Thesis Advisor: Alan D. George, PhD, Mickle Chair Professor, Electrical and Computer

Engineering

ii

Copyright © by Dillon Garrett

2023

iii

Evaluation of Scalability for Distributed Data-Parallel Training of

Swin Transformer V2

Dillon Garrett, M.S.

University of Pittsburgh, 2023

As recent research demonstrates, the trend in model size across deep learning has rapidly

increased, helping to further the state-of-the-art. Along with an increase in model size comes

increased computational demands on hardware and software computing platforms, leading to

training scalability being of interest. Following the development of transformer-based mod-

els, it has become common practice to begin training with a pre-trained model and fine-tune

it on a specific dataset to allow for wider adoption without full model retraining. While orig-

inally designed for the natural language processing field, transformers have been adapted to

many other domains. Swin Transformer V2 is a transformer model used for computer-vision

tasks that achieved state-of-the-art semantic segmentation results. This research provides

a scalability analysis for the distributed data-parallel training of Swin Transformer V2 on

the semantic segmentation vision task. The ADE20K semantic segmentation dataset is used

for training instances to fine-tune this model. A weak scalability experiment is designed,

increasing the number of GPUs for training while holding the problem size constant. To im-

plement this experiment, the sub-batch size per GPU is held constant at 8 images per GPU

per iteration and the total number of iterations is scaled down. Training time, GPU uti-

lization, and CPU utilization metrics for single- and multi-GPUs are measured on NVIDIA

A100 SXM, NVIDIA A100 PCIe, and NVIDIA V100 PCIe GPU platforms hosted by the

Center for Research Computing at the University of Pittsburgh. Training speedup and par-

allel efficiency metrics are calculated. For all computing platforms, training on 2 GPUs is

26% faster on average when compared to single GPU training. However, diminishing returns

are observed when adding additional GPUs because smaller speedup benefits are observed.

When increasing the number of GPUs from 2 to 4, the training is only 1.9% faster on aver-

iv

age on NVIDIA A100 PCIe and NVIDIA V100 PCIe nodes. For NVLINK-enabled NVIDIA

A100 nodes, training is only 2.9% faster when increasing the number of GPUs from 4 to 8.

Consequentially, distributed data-parallel training of Swin Transformer V2 scales poorly as

the number of devices is increased.

v

Table of Contents

Preface . ix

1.0 Introduction . 1

2.0 Related Work . 2

2.1 Convolutional Neural Networks . 2

2.2 Transformers . 3

2.3 Vision Transformers . 3

3.0 Background . 5

3.1 Distributed Model Training . 5

3.2 Swin Transformer V1 & V2 . 8

3.3 Semantic Segmentation . 9

4.0 Approach . 10

4.1 Computing Platforms . 10

4.2 Distributed Data-Parallel Training of Swin Transformer V2 11

5.0 Evaluation . 14

5.1 Training Time . 14

5.2 Speedup and Parallel Efficiency . 16

5.3 Device Utilization . 19

5.4 Platform Comparison . 22

6.0 Conclusion . 27

7.0 Future Research . 29

8.0 Acknowledgements . 30

Bibliography . 31

vi

List of Tables

Table 1: GPU Architecture Specifications . 6

Table 2: CRC Platform Specifications . 11

Table 3: Scalability Experiment Specifications 13

vii

List of Figures

Figure 1: Training Time vs. Number of GPUs for Swin Transformer V2 DDP

Training . 15

Figure 2: Speedup vs. Number of GPUs for Swin Transformer V2 DDP Training 17

Figure 3: Parallel Efficiency vs. Number of GPUs for Swin Transformer V2 DDP

Training . 18

Figure 4: GPU Utilization vs. Number of GPUs for Swin Transformer V2 DDP

Training . 20

Figure 5: CPU Utilization vs. Number of GPUs for Swin Transformer V2 DDP

Training . 21

Figure 6: Platform Comparison Chart for Training on CRC A100 NVLINK and

CRC A100 Nodes . 23

Figure 7: Platform Comparison Chart for Training on CRC A100 and CRC V100

Nodes . 24

Figure 8: Platform Comparison Chart for Training on CRC A100 NVLINK 80 and

40 GB Nodes . 25

viii

Preface

This work was supported by the NSF SHREC industry and agency members and by the

IUCRC Program of the National Science Foundation under Grant No. CNS-1738783.

ix

1.0 Introduction

In recent years, the transformer-based computer vision model, Vision Transformer (ViT)

[10], has achieved notability for common vision tasks as an alternative to traditional con-

volutional neural network (CNN) models. By introducing a novel image pre-processing

technique, ViT enables the use of transformers with multi-headed self-attention modules

for vision tasks. The original ViT and its successors have achieved state-of-the-art (SOTA)

accuracy on tasks such as image classification [10] and semantic segmentation [23, 22].

With the difficulty of deep-learning tasks ever growing and the significant increase in

computing power available came the trend of significantly larger model sizes. A significant

jump in model size leads to the increased complexity of training scalability, due to increased

demands on the requirements of training steps such as batch processing and backpropagation.

Small-scale distributed GPU clusters are often the only option available to academic groups

for the acceleration of deep learning training, making them of interest for this work.

In this thesis, a scalability analysis is performed for the distributed data-parallel training

of Swin Transformer V2 [22]. The computer vision task chosen to train on is semantic

segmentation, a common vision application for fine-tuning. A current Swin Transformer

V1 [23] for semantic segmentation implementation is adapted to support Swin Transformer

V2. For continuity, the ADE20K semantic segmentation dataset [39] employed in the Swin

Transformer V1 paper is used. Models are programmed using PyTorch and are trained on

single- and multi-GPU computing platforms. Training scalability is analyzed via training

time, speedup, parallel efficiency, GPU utilization, and CPU utilization.

In Chapter 2, related work in the field of deep learning is discussed. Chapter 3 reviews

more specific background information relating to this research. The next chapter covers the

approach including computing platforms and implementation details. Chapter 5 provides

an evaluation of the results. Chapters 6 and 7 consider conclusions and potential for future

work expanding upon this research.

1

2.0 Related Work

This related work chapter is split into three sections. First is an overview of convolutional

neural-network models for vision tasks. Next is an overview of popular transformer-based

models. Finally, recent transformer models for image classification and semantic segmenta-

tion are reviewed.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) have consistently dominated computer vision

tasks. Deng et al. released ImageNet, a large-scale vision dataset, in 2009 pushing researchers

to develop considerably larger and more powerful models due to the challenge of learning

1,000 classes for the image classification task [8]. Krizhevsky et al. used the ImageNet

dataset to train AlexNet, the first deep CNN model to achieve SOTA image classification

[20]. Training AlexNet’s 60M parameters required employing model parallelism 2 NVIDIA

GTX 580 GPUs. Each model-parallel training instance took 5 to 6 days of training time.

Other popular CNN architectures inspired by the work of AlexNet include GoogLeNet [33],

VGG [31], ResNet [18], and EfficientNet [34].

CNN-based models are a common choice for semantic segmentation. Long et al. intro-

duced FCN, which adapts the classification models AlexNet, VGG-16, and GoogLeNet into

segmentation models to achieve SOTA performance on segmentation [24]. Major changes

include discarding the final classification layer, replacing the rest of the fully connected lay-

ers with convolutional layers, and fine-tuning pre-trained weights for semantic segmentation.

Each model is then combined with the FCN architecture for improved performance on the

finer-grained segmentation task. Other CNNs for segmentation include U-Net [29], Mask

R-CNN [17], Fast R-CNN [15], and YOLO [28].

2

2.2 Transformers

In recent years, the race to develop deep-learning models to achieve maximal accuracy

and performance has led to the widespread use of transformers, with the popularization

of models such as GPT-3 [12]. Vaswani et al. introduced the transformer architecture

for natural language processing (NLP), offering an alternative to CNNs and other machine

translation models by utilizing the self-attention mechanism [36]. To train the original 213M

parameter transformer, 300K training steps were performed over 3.5 days on 8 NVIDIA P100

GPUs. Transformers saw SOTA results on language modeling tasks [36, 27, 9]. Radford

et al. offered a new training method for the original transformer combining generative

pre-training with discriminative fine-tuning [27]. Pre-training the model on a significantly

larger text dataset before fine-tuning it for a specific task led to a new SOTA in language

understanding tasks. Devlin et al. released BERT, integrating masked language modeling

into model pre-training to continue improvements on transformer-based architectures [9].

Along with the introduction of transformers came a significant increase in the param-

eter count of the SOTA models [37]. This trend in model size leads to significantly larger

computational demands on complex, distributed hardware computing systems and increased

complexity of software algorithms for model pre-training and fine-tuning. Larger models

require longer training instances and put more demand on device memory.

2.3 Vision Transformers

While dominant in NLP, transformers have also become ubiquitous in vision applications.

Transformer-based vision models have recently demonstrated SOTA capabilities, offering a

compelling alternative to the standard CNN vision model. Dosovitskiy et al. introduced

a novel data pre-processing technique with ViT allowing for the use of a pure transformer

for image recognition [10]. By breaking an image up into 16 x 16 patches and flattening

each one, the transformer encoder can process the input in a similar manner to any NLP

application. While this breaks the paradigm of arbitrary input sizes, this encoding scheme

3

allows the vision transformer to process image data. This encoding scheme additionally

alleviates the issue of every pixel attending to every other pixel across the image, with ViT

performing self-attention within patches. ViT has model sizes ranging from 86M to 632M

parameters. Improvements upon ViT came with other classification models including DeiT

[35], BeiT [1], DINO [38], and MAE [16].

4

3.0 Background

This chapter is separated into three sections. First, distributed model training paradigms

and distributed computing metrics are discussed. Second, an overview of the Swin Trans-

former V1 and V2 models is given. Lastly, the semantic segmentation computer vision task

and ADE20K dataset are reviewed.

3.1 Distributed Model Training

In this section, distributed GPU computing, parallel computing metrics, and distributed

model training are discussed. Distributed GPU computing is used for the acceleration of the

training for deep learning models. GPUs use a single instruction, multiple data architecture,

enabling their use for parallel programming by performing many calculations at once. They

are commonly programmed via the host-device method, with a CPU as the host computer

and a GPU as the device. For an extra level of parallelization, GPUs can be combined via

distributed computing methodologies, where work can be distributed across each GPU and

performed concurrently. Model training is a well-suited application for distributed GPU

computing due to the common use of massively parallel calculations and the upward trend

in model size.

The NVIDIA Tesla V100 PCIe [7], NVIDIA Ampere A100 40 GB PCIe [6], and NVIDIA

Ampere A100 40 and 80 GB SXM [6] GPU architectures are of interest for this research.

Architecture, memory, and interconnect specifications for these GPUs are in Table 1. It is of

note that the cores on the V100 use the NVIDIA Volta architecture, which is the predecessor

to the Ampere architecture. NVIDIA Tensor cores are designed for a specific fused multiply-

add operation commonly used in the training of neural networks. Tensor cores on Ampere

devices can provide up to 20X higher performance than Volta Tensor cores [6]. While V100

PCIe architecture has the most Tensor cores, the Volta Tensor cores are significantly out-

performed by the Tensor cores on each Ampere GPU. The GPU interconnects of interest are

5

Table 1: GPU architecture specifications of [7, 6] are listed.

GPU CUDA Cores Tensor Cores Memory (VRAM)

V100 PCIe 5,120 640 32 GB

A100 PCIe 6,912 432 40 GB

A100 SXM 40 GB 6,912 432 40 GB

A100 SXM 80 GB 6,912 432 80 GB

GPU Memory BW Memory Clock Mem. Bus Size

V100 PCIe 900 GB/s 1.75 Gbit/s 4096-bit

A100 PCIe 1,555 GB/s 2.4 Gbit/s 5120-bit

A100 SXM 40 GB 1,555 GB/s 2.4 Gbit/s 5120-bit

A100 SXM 80 GB 2,039 GB/s 3.2 Gbit/s 5120-bit

GPU Interconnect Interconnect BW GPU Microarch.

V100 PCIe PCIe 3.0 ×16 32 GB/s Volta

A100 PCIe PCIe 4.0 ×16 64 GB/s Ampere

A100 SXM 40 GB NVLINK 3.0 600 GB/s Ampere

A100 SXM 80 GB NVLINK 3.0 600 GB/s Ampere

6

PCIe [19] and NVIDIA’s NVLINK [25]. NVLINK is a GPU-to-GPU interconnect that offers

multiple paths between each GPU, all encompassed in a mesh network. PCIe can be used

for any device-to-device interconnect, but uses a more rigid bus structure by moving data

over lanes. The NVLINK interconnect enables data transfers between GPUs at significantly

faster rates than PCIe.

Data parallelism and model parallelism are two common methods for accelerating model

training. In data-parallel training, models are replicated on each device (GPU), data is split-

up and distributed to each device, and resulting weights are aggregated together during the

backward pass. In the PyTorch DistributedDataParallel package [21], weights are aggregated

through an all-reduce operation using NVIDIA NCCL, GLOO, or MPI as the backend to

communicate over the GPU interconnect. In contrast, model parallelism divides the layers

of a model over all devices and creates a pipeline of data connecting each device to perform

training. This pipeline is used to pass data from device to device during the forward pass and

send weights from device to device during the backward pass. In this work, the focus is on

the use of data parallelism for model training. For more details on data- and model-parallel

training in PyTorch, see [21].

When parallelizing an application, a change in runtime often occurs due to work being

spread across multiple processors as well as the overhead of communication. The ratio of

single-processor runtime to multi-processor (parallel) runtime is known as speedup. In this

research, the speedup of interest is single- versus multi-GPU training time. This relationship

is denoted by Equation 3.1, where Ts is the time spent training a model on a single GPU,

Tp is the time spent training the same model on multiple GPUs, and p is the number of

GPUs used. In this case, speedup gives insight into the scale at which training time changes

as the number of GPUs is increased. Parallel efficiency, shown in Equation 3.2, is the ratio

of speedup to the number of GPUs. Parallel efficiency is a crucial metric to analyze this

application’s scalability, as it denotes the extent to which the extra devices are being utilized

to improve training performance.

Speedup =
Ts

Tp
(3.1)

7

Parallel Efficiency =
Speedup

p
(3.2)

When considering speedup and parallel efficiency, it is important to acknowledge ideal

values for each metric. For a training instance on N GPUs, the ideal speedup is achieved

when the speedup is equal to the number of GPUs, N . Ideal parallel efficiency is reached in

that same case, with an ideal value of 1. The closer the speedup is to N and the closer the

parallel efficiency is to 1, the better the parallel implementation is.

In this research, device utilization is considered to be the ratio of the amount of compute

time spent for a specific device, Td, to the total compute time, Tt. This relationship is seen

in Equation 3.3. This metric is displayed as a percentage for better understanding. Device

utilization offers an internal view of the amount in which an algorithm uses each device. In

this work, device utilization is used to evaluate the extent to which the GPU(s) and CPU

are employed in each training iteration.

Device Time Utilization =
Td

Tt

(3.3)

3.2 Swin Transformer V1 & V2

With the introduction of ViT for image classification, transformer-based vision models

have been adapted for semantic segmentation. Liu et al. present Swin Transformer V1

and V2, achieving SOTA performance for both object detection and semantic segmentation

challenges [23, 22]. This model makes two key advancements on the original ViT imple-

mentation, the first being shifted-window attention. While patchwise global attention is

much faster than performing global attention across an image, it is a compute bottleneck

for ViT. Swin Transformer offers an alternative by stacking-window and shifted-window self-

attention mechanisms, reducing computational complexity from quadratic (O(n2)) to linear

(O(n)) with respect to the number of image patches. To improve performance on semantic

8

segmentation, this model introduced patch merging, a technique to create hierarchical feature

maps through merging and pooling image patches between Swin Transformer Block layers.

This convolution-like technique allows for Swin Transformer to perform well on fine-grained

prediction tasks, such as segmentation. For Swin Transformer V2 [22], changes include using

post-layer normalization and using scaled-cosine attention. For training on semantic segmen-

tation, Liu et al. used MMEngine, MMCV, and MMSegmentation, a training engine and

vision libraries developed by OpenMMLab [3, 2, 4]. These libraries utilize the distributed

data-parallel packages in PyTorch for multi-GPU training [11].

3.3 Semantic Segmentation

Semantic segmentation is the process of assigning a class label to each pixel within an

image. When compared to image classification or object detection, segmentation is a fine-

grained computer vision problem. This task is of interest due to its high compute and

memory requirements and application in fields such as autonomous vehicles, remote sensing,

and medical imaging and diagnoses [14, 30, 32]. Zhou et al. released the ADE20K semantic

segmentation dataset in [39], which consists of 25,000 images with a variety of scenes and

objects from 150 semantic categories. Images are also labeled for the classification task.

The 25,000 images are split up into 20,000 in the training set, 2,000 in the validation set,

and 3,000 in the test set. Each image is annotated pixel-by-pixel with class labels. In

total (images and labels combined), the ADE20K dataset requires about 2.3 GB of memory

for storage. The accuracy metric used for this dataset is the mean intersection-over-union

(mIoU), or the Jaccard index, which is commonly used in semantic segmentation benchmarks

[14, 5]. The mIoU is calculated as the mean of the intersection between predicted and actual

segmentation values for each pixel over the union of said values. Further details on this

metric are described in [39].

9

4.0 Approach

This approach chapter contains two sections. In the first section, an overview of the

hardware and software computing platforms is provided. In the next section, the distributed

data-parallel training of Swin Transformer V2 implementation is discussed.

4.1 Computing Platforms

With the goal of analyzing the scalability of distributed data-parallel training, there

was an interest in platforms with next-generation hardware and multi-GPU compatibility.

Compute nodes are hosted by the Center for Research Computing (CRC) at the University

of Pittsburgh. For the Swin Transformer V2 training implementation, CRC V100, A100,

and A100 NVLINK partitions were chosen. Exact specifications for each partition can be

found in Table 2.

The CRC V100 testbed consists of 1 node with 4 NVIDIA V100 32 GB GPUs, dual-socket

Intel Xeon Gold 6126 CPUs, and multi-GPU capability via a PCIe Gen 4.0 interconnect.

Each V100 GPU has 5,120 CUDA cores, 640 Tensor cores, and 32 GB of HBM2 VRAM

[7]. On the CRC A100 testbed, there are 12 nodes each with 4 NVIDIA A100 40 GB GPUs

connected by PCIe Gen 4.0 with multi-GPU capability, 2 of which have dual-socket Intel

Xeon Gold 5220R CPUs and the rest with single socket 2nd-Gen AMD EPYC 7742 CPUs.

The CRC A100 NVLINK testbed has 2 nodes each with 8 NVIDIA A100 80 GB SXM GPUs

and 3 nodes with 8 NVIDIA A100 40 GB SXM GPUs, all with multi-GPU capability and

coupled through an NVLINK switch. Each node has dual-socket 2nd-Gen AMD EPYC 7742

CPUs. There are 6912 CUDA cores, 432 Tensor cores, and either 40 GB or 80 GB of HBM2

VRAM on each A100 GPU [6].

10

Table 2: Platform specifications of compute nodes at [13] are listed.

CRC Platform Nodes GPU # GPU

V100 1 NVIDIA V100 4

A100 12 NVIDIA A100 4

A100 NVLINK 5 NVIDIA A100 SXM 8

CRC Platform GPU Mem. Mem. BW GPU Interconnect

V100 32 GB 900 GB/s PCIe 3.0

A100 40 GB 1,935 GB/s PCIe 4.0

A100 NVLINK 40 & 80 GB 1,555 & 2,039 GB/s NVLINK 3.0

CRC Platform Interconnect BW CPU Node RAM

V100 32 GB/s Intel Xeon Gold 6126 192 GB

A100 64 GB/s AMD EPYC 7742 512 GB

A100 NVLINK 600 GB/s AMD EPYC 7742 1024 GB

To ensure software compatibility, Singularity v3.9.6 is utilized alongside a Docker con-

tainer for the software environment on CRC. The PyTorch development Docker image used

has PyTorch v1.12.0, Python v3.7.13, CUDA v11.3, and cuDNN v8.2.0.53 [26]. For Open-

MMLab libraries, MMCV version 1.4.7 and MMSegmentation version 0.11.0 are used, com-

piled via GCC 7.5 for CUDA 11.3.

4.2 Distributed Data-Parallel Training of Swin Transformer V2

For the implementation of distributed data-parallel training of Swin Transformer V2, the

Swin-Transformer-Semantic-Segmentation repository from [23] was used in this research.

The training was performed on the ADE20K [39] dataset, as used in the original Swin

Transformer work [23]. At the time of writing, this repository only supported semantic

segmentation on Swin Transformer V1. To continue development on this work, support for

11

semantic segmentation on Swin Transformer V2 was developed and added to this repository.

The model specifications in PyTorch for Swin Transformer V2 released with [22] were adapted

for use in this semantic segmentation repository. Swin Transformer V2 achieved SOTA

semantic segmentation on ADE20K, increasing upon the previous Swin Transformer’s SOTA

by +6.3 mIoU [22], making it of interest for model training analysis. In this research, the

SwinV2-base model with 88M parameters was implemented.

Training is performed via the distributed data-parallel (DDP) paradigm. For this imple-

mentation, the PyTorch DistributedDataParallel package was used [21] in conjunction with

MMEngine, MMCV, and MMSegmentation [3, 2, 4]. In an instance of DDP training on N

devices, models are duplicated onto each device. For each iteration, a batch of data is loaded

on the CPU and split N-ways. Each sub-batch is then sent to its respective GPU. Training

then continues as normal with forward and backward passes on each device in parallel. To

complete each iteration, gradient losses are synchronized via an all-reduce operation and the

optimizer on each device calculates the final gradient sum for each weight. NVIDIA NCCL’s

implementation of the all-reduce operation is used in this application. For a more in-depth

explanation of the PyTorch DDP package, see [21]. With this algorithm, there is potential

for speedup resulting from the distribution of work across multiple devices. However, it

is important to note there is significant communication overhead due to data sharing and

gradient synchronization.

To investigate the scalability of model training, a weak scaling experiment is designed.

With weak scaling, problem size is held constant as the number of devices is increased.

To mimic the results from [23], the base problem size of 160K training iterations with 8

images per iteration sent to a single GPU is used. When the number of devices is increased,

the number of iterations is varied while the number of images sent to each GPU during

each iteration is held at 8. This ensures that the SwinV2-base model sees the exact same

amount of data during each training instance. Normally there are validation steps and

checkpointing steps throughout a training instance to track and save progress. Checkpointing

and validation steps are removed to ensure the work being performed is solely the work

intended for this experiment. More detailed specifications for this experiment are shown in

Table 3.

12

Table 3: Weak scalability experiment specifications.

Number of GPUs Number of Iterations Images per GPU per Iteration

1 160K 8

2 80K 8

4 40K 8

8 20K 8

The crucial metric for analyzing scalability for this experiment is the training time for

each training instance. This metric denotes the potential for scaling the number of GPUs for

improved training performance. Training time is gathered for each experiment specification

on the CRC V100, CRC A100, and CRC A100 NVLINK compute nodes. Due to the limit of

4 GPUs per node on CRC V100 and CRC A100, training time for 8 GPUs on these platforms

is not gathered. Timing metrics represent the wall clock time starting from before the first

training iteration to the end of the last iteration.

From the training time, speedup and parallel efficiency are calculated. Speedup is cal-

culated as the ratio of the training time when using a single GPU on a specific node to the

training time when using N GPUs on that same node. For parallel efficiency, the ratio of

the aforementioned speedup to the number of GPUs is calculated.

After collecting training time data, data for the GPU and CPU utilization metrics are

gathered. For this data, the PyTorch Profiler module is utilized [11]. PyTorch Profiler

offers functionality to track CPU and CUDA (GPU) time. As the profiler takes a significant

amount of time to run, only 8 iterations are run for each experiment configuration, still

holding the images per GPU per iteration at 8. To include a buffer for device warm-up time,

GPU and CPU time are measured over 8 iterations. From the CPU and GPU time over 8

iterations, CPU and GPU utilization metrics are calculated.

13

5.0 Evaluation

The evaluation chapter is comprised of four sections. First, training time metrics are

displayed and notable results are discussed. In the second section, speedup and parallel

efficiency metrics are analyzed. In the next section, device utilization metrics are shown.

Finally, platform comparison figures are presented and hardware comparisons are drawn.

Computing platform specifications are shown in Table 2 and experiment specifications details

can be found in Table 3. Due to GPUs per node constraints, training time metrics for CRC

A100 and CRC V100 are gathered only up to 4 GPUs.

5.1 Training Time

Training time benchmarks are displayed in Figure 1. This metric is the primary method

for the evaluation of training scalability. Units for training time are in hours with no training

job shorter than one day. Training is fastest on the CRC A100 NVLINK platform and slowest

on the CRC V100 platform. There is a notable difference in single GPU training time on

CRC A100 versus CRC A100 NVLINK, even with these platforms utilizing the same GPU

architecture. This difference is likely due to the communication benefits of the NVLINK

versus PCIe, as NVLINK offers significantly faster data transfer rates over its interconnect.

The CRC A100 NVLINK platform also boasts memory advancements that make memory

access significantly faster than that on CRC A100. Another key finding determined from

this metric is the leveling effect noticed as the number of GPUs is scaled from 2 to 4 for

PCIe-based platforms and from 4 to 8 for NVLINK-based platforms. For CRC A100 and

CRC V100, there is an average of 1.3% reduction in training time when scaling from 2 to 4

GPUs. As for CRC A100 NVLINK (80 GB and 40 GB), a reduction of 2.9% on average as

the number of GPUs is increased from 4 to 8 is seen. This leveling-off effect in training time

14

1 2 4 8
Number of GPUs

0

10

20

30

40

50

60

70

80

Tr
ai

ni
ng

 T
im

e
(h

rs
)

A100 NVLINK 80GB
A100 NVLINK 40GB
A100 PCIe
V100 PCIe

Figure 1: Training time versus number of GPUs used for Swin Transformer V2 distributed

data-parallel training. Notable 34% reduction in single GPU training time from CRC A100

to CRC A100 NVLINK (40 GB) due to performance gain from NVLINK. Experiment spec-

ifications for training runs are in Table 3. Error is negligible at this time scale.

15

reduction is significant when compared to the 26% reduction in training time as the number

of GPUs is scaled from 1 to 2 GPUs. With this result, the claim that training scalability on

this specific dataset with this specific model significantly drops off at higher device counts

can be made.

5.2 Speedup and Parallel Efficiency

Speedup metrics are displayed in Figure 2. A dashed line chart is used to emphasize

the trend in speedup as the number of GPUs is scaled up. Each line has three points to

show speedup at 1, 2, and 4 GPUs. Due to the limit of 4 GPUs per node on CRC A100

and CRC V100, the x-axis on this plot stops at 4 GPUs. Note the high speedup values for

CRC A100 and CRC V100 for 2 and 4 GPUs. These higher speedup values for the PCIe-

based nodes are primarily due to the significantly worse performance on single GPU training

for these nodes and can be deemed outliers. All platforms realize a significant speedup in

training time (1.4× on average) from single- to 2-GPU training, with the lowest being CRC

A100 NVLINK at a value of 1.17×. However, speedup values for each hardware platform

begin to plateau when training on 4 GPUs, showing diminishing returns as the number of

GPUs is increased. This trend is especially noticed on PCIe-based platforms. Speedup on

CRC V100 goes from 1.43× to 1.46×, and speedup on CRC A100 goes from 1.75× to 1.8×, a

mere 1% difference on average. Comparing speedup values at 4 GPUs to ideal speedup (4×)

shows that the DDP training algorithm for Swin Transformer V2 on ADE20K is significantly

underperforming when scaling up.

Parallel efficiency is another key metric for scalability analysis, displayed in Figure 3.

Again, a dashed line chart is used to demonstrate the trend in parallel efficiency as the

number of GPUs is scaled up. Each line is shown with three points to demonstrate parallel

efficiency at 1, 2, and 4 GPUs. The x-axis on this plot is halted at 4 GPUs due to the limit of

16

1 2 3 4
Number of GPUs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Sp
ee

du
p

A100 NVLINK 80GB
A100 NVLINK 40GB
A100 PCIe
V100 PCIe

Figure 2: Speedup versus number of GPUs used for Swin Transformer V2 distributed data-

parallel training. Due to significantly slower single GPU training times, CRC A100 and CRC

V100 demonstrate inflated speedup values. See Table 3 for experiment specifications.

17

1 2 3 4
Number of GPUs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pa
ra

lle
l E

ff
ic

ie
nc

y

A100 NVLINK 80GB
A100 NVLINK 40GB
A100 PCIe
V100 PCIe

Figure 3: Parallel efficiency versus number of GPUs used for Swin Transformer V2 distributed

data-parallel training. See Table 3 for experiment specifications.

18

4 GPUs per node on CRC A100 and CRC V100. It is of note that at 4 GPUs, all platforms

achieve sub-0.5 parallel efficiency. This falls well below ideal parallel efficiency. A major

takeaway from this outcome is that extra devices are significantly underutilized during DDP

training of this specific model on this dataset at higher scaling levels (4 GPUs).

To observe closer-to-ideal speedup and parallel efficiency metrics, parallel algorithms

require significant optimization. The DDP training algorithm used in this research does not

utilize the parallel programming concept of communication and computation overlap. Both

the host and device are relegated to wait until the other is finished working to continue with

training. This concept can be introduced to DDP training by overlapping work from the

CPU and GPU. For example, while the CPU is waiting for the GPU to complete forward

and backward passes during each iteration, the next batch of data could be prepared on the

CPU. The CPU could then send out to the GPU via asynchronous communication methods,

enabling the GPU to receive new data right when the previous iteration is complete.

5.3 Device Utilization

The final metrics studied are GPU and CPU utilization. GPU utilization and CPU

utilization plots are shown in Figure 4 and Figure 5, respectively. Both GPU and CPU

utilization are percentage-based metrics. The y-axis on the GPU utilization plot ranges

from 0% to 40% to further distinguish each point. Note the difference in GPU and CPU

utilization for each specific compute platform as the number of GPUs is increased. GPU

utilization has a downward trend for each platform, while CPU utilization has an upward

trend for each platform. While the GPU time slightly increases as the number of devices is

scaled up, a significant increase in CPU time is observed, causing these opposite trends for

GPU and CPU utilization. The increase in CPU time can be attributed to the extra work

demanded from data loaders on the CPU, as 8 images are sent out per iteration to each

GPU.

19

1 2 4 8
Number of GPUs

0

5

10

15

20

25

30

35

40

G
PU

 U
til

iz
at

io
n

(%
)

A100 NVLINK 80GB
A100 NVLINK 40GB
A100 PCIe
V100 PCIe

Figure 4: GPU Utilization versus number of GPUs used for Swin Transformer V2 distributed

data-parallel training. Metrics gathered via PyTorch Profiler. Error is negligible compared

to averages.

20

1 2 4 8
Number of GPUs

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

A100 NVLINK 80GB
A100 NVLINK 40GB
A100 PCIe
V100 PCIe

Figure 5: CPU Utilization versus number of GPUs used for Swin Transformer V2 distributed

data-parallel training. Metrics gathered via PyTorch Profiler. Error is negligible compared

to averages.

21

5.4 Platform Comparison

A key piece of this work is the performance and scalability comparison of the application

of Swin Transformer V2 distributed data-parallel training across multiple hardware plat-

forms. To add emphasis to this analysis, platform comparison figures are made containing

speedup, parallel efficiency, GPU utilization, and CPU utilization metrics for the platforms

of interest.

The platform comparison chart for CRC A100 NVLINK and CRC A100 nodes is shown

in Figure 6. While it may seem as if the NVIDIA A100 SXM is outperformed by the NVIDIA

A100 PCIe when looking at each metric, it is important to note that the NVIDIA A100 SXM

significantly outperforms the NVIDIA A100 PCIe for single GPU training time by 39% on

the NVIDIA A100 SXM 80 GB and 34% on the NVIDIA A100 SXM 40 GB. This difference

is of importance as it appears to inflate the speedup and parallel efficiency metrics for the

CRC A100 compute node.

For the platform comparison of CRC A100 and CRC V100 nodes, see Figure 7. This

platform comparison is used to demonstrate the impact different GPU generations have on

performance. Even with the same GPU interconnect (PCIe), CRC A100 outperforms CRC

V100 by an average of 24% in training time. A significant reduction in training time can be

contributed to the difference in platform generations from the NVIDIA V100 to the newer

NVIDIA A100. The A100 has substantially more CUDA cores, updated architecture, newer

versions of tensor cores, and interconnect and memory advancements.

Figure 8 contains the platform comparison chart for CRC A100 NVLINK for NVIDIA

A100 SXM 80 GB and 40 GB nodes. With CRC A100 NVLINK having 8 GPUs per node,

the x-axis on each plot extends to 8 GPUs. The CRC A100 NVLINK nodes with A100 SXM

80 GB GPUs outperform the nodes with A100 SXM 40 GB GPUs by an average of 4%.

While seemingly small, this difference is consequential due to the length of each training

instance. The 1.3× higher memory bandwidth and 1.35× faster memory clock on the A100

22

2 4
GPUs

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

2 4
GPUs

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l E

ff
ic

ie
nc

y

1 2 4
GPUs

0

5

10

15

20

25

30

35

40

G
PU

 U
til

iz
at

io
n

(%
)

1 2 4
GPUs

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

A100 NVLink 80GB A100 NVLink 40GB A100 PCIe

Figure 6: Platform comparison chart for training on CRC A100 NVLINK and CRC A100

nodes. Speedup, parallel efficiency, GPU utilization percentage, and CPU utilization per-

centage are shown.

23

2 4
GPUs

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

2 4
GPUs

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l E

ff
ic

ie
nc

y

1 2 4
GPUs

0

5

10

15

20

25

30

35

40

G
PU

 U
til

iz
at

io
n

(%
)

1 2 4
GPUs

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

A100 PCIe V100 PCIe

Figure 7: Platform comparison chart for training on CRC A100 and CRC V100 nodes.

Speedup, parallel efficiency, GPU utilization percentage, and CPU utilization percentage

are displayed.

24

2 4 8
GPUs

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

2 4 8
GPUs

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l E

ff
ic

ie
nc

y

1 2 4 8
GPUs

0

5

10

15

20

25

30

35

40

G
PU

 U
til

iz
at

io
n

(%
)

1 2 4 8
GPUs

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

A100 NVLink 80GB A100 NVLink 40GB

Figure 8: Platform comparison chart for training on CRC A100 NVLINK 80 and 40 GB

nodes. Speedup, parallel efficiency, GPU utilization percentage, and CPU utilization per-

centage are presented.

25

80 GB card induce faster memory transfers and faster training times overall. However,

with a significantly larger dataset that utilizes the full 40 GB of onboard memory for the

A100 SXM, one might see a more significant difference in performance between these two

platforms.

26

6.0 Conclusion

This research provides a scalability analysis of the distributed data-parallel training of

Swin Transformer V2. Swin Transformer is the first transformer-based vision model to

achieve state-of-the-art accuracy for semantic segmentation on the ADE20K dataset. This

model is chosen due to an interest in the training scalability for significantly large vision

models. To analyze the scalability of this model, a weak scaling experiment is performed by

keeping the problem size constant while increasing the number of distributed GPUs used to

accelerate training. NVIDIA V100 and NVIDIA A100 GPU nodes with PCIe and NVLINK

interconnects hosted by the Center for Research Computing at the University of Pittsburgh

are utilized for computing platforms.

The distributed data-parallel training application realizes a significant training time re-

duction at a small device count. This noteworthy drop is seen as the number of GPUs is

increased from 1 to 2, where training time reduces by 26% on average. However, diminishing

returns are observed as scaling continues. The change in training time drops to an average

of 2.9% when scaling from 4 to 8 GPUs on NVLINK nodes, and drops to an average of

1.3% on PCIe nodes when scaling from 2 to 4 GPUs. As diminishing returns are observed

at each scaling step, the claim can be made that distributed data-parallel training of Swin

Transformer V2 on ADE20K scales poorly as the number of devices is increased.

As for platform comparisons, the most notable difference in single GPU training time

among similar architectures was observed between the NVIDIA A100 PCIe and NVIDIA

A100 NVLINK nodes. Single GPU training instances were 39% faster for the NVIDIA A100

NVLINK (80 GB) platform and 34% faster for the NVIDIA A100 NVLINK (40 GB) platform

when compared to NVIDIA A100 PCIe. As the GPU interconnects are heavily utilized during

data sharing and gradient synchronization, this factor can be contributed to the differences

between the NVLINK and PCIe interconnects. Specifically, it can be contributed to the

27

significantly faster data transfer rate offered by NVLINK. For all experiment configurations,

the NVIDIA A100 PCIe node trains 24% faster on average than the NVIDIA V100 PCIe

node, demonstrating the benefits of more CUDA cores, updated GPU architecture, and a

newer tensor core generation.

28

7.0 Future Research

This research is limited by the computing platforms, the model sizes trained on, and

the data. There is potential to expand from single-node to multi-node distributed GPU

platforms for further scalability analysis. Multi-node training offers the ability to analyze

the communication overhead introduced with inter-node communication and the potential to

analyze asynchronous data-parallel training. As large-model training is of interest, training

Swin Transformer V2 models with larger parameter counts should be performed. This would

further stress the memory and compute requirements for the DDP algorithm. With at least

32 GB of on-chip memory on each GPU tested in this work, a larger model could potentially

offer the ability to train using model parallelism if a single model instance cannot fit on one

GPU. Lastly, varying the data mini-batch size (images per GPU per iteration) and training

on a larger dataset should be explored. Varying mini-batch sizes will alter the memory and

communication requirements for training, and the impact it has on training performance

would be of interest. Using a larger dataset to train on would further stress the compute

and memory requirements for this application.

29

8.0 Acknowledgements

This research was supported by the NSF Center for Space, High-performance, and

Resilient Computing (SHREC) industry and agency members and by the IUCRC Pro-

gram of the National Science Foundation under Grant No. CNS-1738783. This research

was supported in part by the University of Pittsburgh Center for Research Computing,

RRID:SCR 022735, through the resources provided. Specifically, this work used the H2P

cluster, which is supported by NSF award number OAC-2117681. I would like to thank my

fellow students within the NSF SHREC lab for their help and advice. Specifically, I would

like to thank Calvin Gealy, Luke Kljucaric, and Marika Schubert for their guidance in this

research. Finally, I would like to thank my friends and family for supporting and encouraging

my research and educational endeavors.

30

Bibliography

[1] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers.
ArXiv, abs/2106.08254, 2021.

[2] MMCV Contributors. MMCV: OpenMMLab computer vision foundation. https:

//github.com/open-mmlab/mmcv, 2018.

[3] MMEngine Contributors. MMEngine: Openmmlab foundational library for training
deep learning models. 2022.

[4] MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmenta-
tion toolbox and benchmark. https://github.com/open-mmlab/mmsegmentation,
2020.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understanding. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3213–3223, 2016.

[6] NVIDIA Corporation. Nvidia a100 tensor core gpu datasheet, 2023.

[7] NVIDIA Corporation. Nvidia v100 tensor core gpu datasheet, 2023.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. ArXiv, abs/2010.11929, 2020.

[11] Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary. pages 8024–8035. Curran Associates, Inc., 2019.

31

https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmsegmentation

[12] Tom B. Brown et al. Language models are few-shot learners, 2020.

[13] Center for Research Computing at the University of Pittsburgh. Cluster hardware
overview.

[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of Robotics Research, 32:1231
– 1237, 2013.

[15] Ross B. Girshick. Fast r-cnn. 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1440–1448, 2015.

[16] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll’ar, and Ross B. Gir-
shick. Masked autoencoders are scalable vision learners. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 15979–15988, 2021.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn, 2018.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

[19] Intel. What are pcie 4.0 and 5.0?, 2023.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Commun. ACM, 60(6):84–90, may 2017.

[21] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
Pytorch distributed: Experiences on accelerating data parallel training, 2020.

[22] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning,
Yue Cao, Zheng Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2:
Scaling up capacity and resolution. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11999–12009, 2021.

[23] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 9992–10002, 2021.

32

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation, 2015.

[25] NVIDIA. Nvlink and nvswitch for advanced multi-gpu communication, 2023.

[26] PyTorch. pytorch/pytorch on docker hub.

[27] Alec Radford and Karthik Narasimhan. Improving language understanding by gener-
ative pre-training. 2018.

[28] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection, 2016.

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation, 2015.

[30] Vivien Sainte Fare Garnot and Loic Landrieu. Panoptic segmentation of satellite
image time series with convolutional temporal attention networks. ICCV, 2021.

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition, 2015.

[32] Ph.D. Spyridon Bakas. Miccai brats - the multimodal brain tumor segmentation
challenge, 2021.

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9, 2015.

[34] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks, 2020.

[35] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Herv’e J’egou. Training data-efficient image transformers & distillation
through attention. In International Conference on Machine Learning, 2020.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

33

[37] Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson Ho, and
Marius Hobbhahn. Machine learning model sizes and the parameter gap, 2022.

[38] Hao Zhang, Feng Li, Siyi Liu, Lei Zhang, Hang Su, Jun-Juan Zhu, Lionel Ming shuan
Ni, and Heung yeung Shum. Dino: Detr with improved denoising anchor boxes for
end-to-end object detection. ArXiv, abs/2203.03605, 2022.

[39] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Tor-
ralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

34

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	Table 1: GPU Architecture Specifications
	Table 2: CRC Platform Specifications
	Table 3: Scalability Experiment Specifications

	List of Figures
	Figure 1: Training Time vs. Number of GPUs for Swin Transformer V2 DDP Training
	Figure 2: Speedup vs. Number of GPUs for Swin Transformer V2 DDP Training
	Figure 3: Parallel Efficiency vs. Number of GPUs for Swin Transformer V2 DDP Training
	Figure 4: GPU Utilization vs. Number of GPUs for Swin Transformer V2 DDP Training
	Figure 5: CPU Utilization vs. Number of GPUs for Swin Transformer V2 DDP Training
	Figure 6: Platform Comparison Chart for Training on CRC A100_NVLINK and CRC A100 Nodes
	Figure 7: Platform Comparison Chart for Training on CRC A100 and CRC V100 Nodes
	Figure 8: Platform Comparison Chart for Training on CRC A100_NVLINK 80 and 40 GB Nodes

	Preface
	1.0 Introduction
	2.0 Related Work
	2.1 Convolutional Neural Networks
	2.2 Transformers
	2.3 Vision Transformers

	3.0 Background
	3.1 Distributed Model Training
	3.2 Swin Transformer V1 & V2
	3.3 Semantic Segmentation

	4.0 Approach
	4.1 Computing Platforms
	4.2 Distributed Data-Parallel Training of Swin Transformer V2

	5.0 Evaluation
	5.1 Training Time
	5.2 Speedup and Parallel Efficiency
	5.3 Device Utilization
	5.4 Platform Comparison

	6.0 Conclusion
	7.0 Future Research
	8.0 Acknowledgements
	Bibliography

