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Abstract 

Artifact of detecting biomarkers associated with sequencing depth in RNA-Seq 

 

RuoFei Yin, MS 

 

University of Pittsburgh, 2023 

 

 

 

 

RNA-Seq is a highly sensitive and accurate sequencing technique that uses next-generation 

sequencing (NGS) technology to reveal the presence and quantity of RNA in a biological sample 

at a given moment, which is useful for studying the behavior of genes under different biological 

conditions.[1,2] An essential step in an RNA-Seq study is normalization, in which raw data are 

adjusted to account for systematic technical biases such as library size and transcript length.[3] 

Multiple popular normalization methods have been proposed and widely used, including counts 

per million (CPM), transcripts per million (TPM) and reads per kilobase million (RPKM). 

Although systematic experimental bias and technical variation are expected to be eliminated after 

normalization, we surprisingly found a large proportion of genes associated with library size in 

human post-mortem striatum normalized RNA-seq data. In this thesis, we confirmed the universal 

existence of this problem by systematically examining 159 Gene Expression Omnibus (GEO) 

datasets and 24 of The Cancer Genome Atlas (TCGA) datasets. We conducted a simulation study 

to rule out potential causes from count data quantification and examined a potential solution to 

correct the artifact based on a Poisson model with variable rates for different nucleotide patterns 

from a previous publication. We reproduced the results of this paper and applied this published 

model to these data to see if the library size affected the regression. We performed linear regression 

analysis on the model coefficients and library size, which did not show evidence of an association. 

Thus, for a future direction, we plan to replace this Poisson model with a negative binomial model 

which may improve the model fitting and develop as a solution to correct the artifact. If successful, 
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the new normalization will improve association analysis and biomarker detection in basic and 

clinical studies of diseases. 

Public health significance: Limited amount of research has been focused on the artifact of 

the biomarkers associated with sequencing depth in normalized RNA-Seq datasets, which should 

be corrected to improve accuracy in downstream translation research. This paper tries to figure 

out this artifact. 
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1.0 Introduction 

RNA-Seq has become a widely used technology for transcriptome analysis and has 

gradually replaced traditional microarray, due to its low cost and the ability to provide a 

comprehensive and quantitative view of gene expression.[2] In a typical RNA-seq experiment, 

mRNA samples are prepared, fragmented, and reverse transcribed to cDNA, which is then 

sequenced using high-throughput sequencing technologies. The resulting reads are mapped to a 

reference genome or transcriptome to provide a quantitative measure of gene expression levels. 

This powerful tool for studying gene expression offers a higher dynamic range than microarrays, 

making it suitable for the detection of low-abundance transcripts. [4,5] Furthermore, RNA-seq 

does not depend on genome annotation for prior probe selection, so non-model or novel organisms 

can also be sequenced without having a reference genome.[6] These advantages have contributed 

to the growing popularity of RNA-seq and have led to a reduction in its overall cost, making it an 

increasingly attractive option over microarrays.  

RNA-seq data can be affected by several sources of technical variability, such as 

sequencing depth (i.e., library size) and transcript length. Inappropriate handling of those 

variabilities could lead to potential biases that can impact downstream analysis. Thus, an essential 

step in an RNA-Seq study is normalization, in which raw count data are adjusted to account for 

factors that prevent direct comparison of expression measures.[7] Several normalization methods 

have been developed to mitigate these technical biases and to enable accurate comparisons of gene 

expression levels across samples. Counts per million (CPM) is a simple method for normalizing 

gene expression data by accounting for differences in sequencing depth (library size) under the 

assumption that total mRNA is consistent across samples.[8] It scales the read counts for each gene 
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by the total number of reads in the sample, and then multiplies by a million to enable comparisons 

across samples. There are also several more advanced normalization methods such as transcripts 

per million (TPM), reads per kilobase million (RPKM) and trimmed mean of M-values (TMM). 

TPM accounts for differences in both library size and gene length. First, it divides the read counts 

by the length of each gene in kilobases to obtain the reads per kilobase (RPK) values, and then the 

“per million” scaling factor is calculated by summing up all the RPK values in a sample and 

dividing this number by a million. Finally, we calculate TPM by dividing the RPK values by the 

“per million” scaling factor. RPKM is very similar to TPM, the only difference is the order of 

operations. TMM uses a weighted trimmed mean of the log expression ratios between samples, 

which is a method for normalizing gene expression data that accounts for differences in library 

size and RNA composition. The above are common normalization methods, allowing for more 

accurate comparisons of gene expression levels between samples. Thus, we assume that after 

normalization, the unwanted technical effect will be eliminated from the RNA-seq data.  

However, we found the library size effect on the gene expression is not completely 

removed after CPM normalization in most datasets we verified. This problem first came to light 

from analysis of multiple in-house postmortem brain tissue data and cancer datasets, where we 

performed gene-by-gene association analysis with clinical and technical variables after CPM 

normalization and surprisingly found through linear regression that thousands of biomarkers 

remained significantly correlated with library size.  To investigate further, we expanded our 

analysis to publicly available datasets, including 159 Gene Expression Omnibus (GEO) and 24 

The Cancer Genome Atlas (TCGA) datasets and systematically confirmed the universal existence 

of this problem. One hypothesized reason for this problem is that CPM assumes most genes are 

not differentially expressed between samples, which is not proper for some datasets. So, we further 
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investigated other advanced normalization methods, such as TPM, RPKM and TMM, which take 

into account the distribution of expression levels across genes and adjust for differences in library 

size and other sources of variation simultaneously. However, this problem existed with all these 

normalization methods. Thus, we conclude that this problem is universal no matter what datasets 

and what normalization methods we use. The paper is structured as follows. In Section 2.1, we 

will briefly describe our initial finding of this problem from a motivating dataset, followed by the 

empirical evaluation among publicly available datasets, including 159 GEO and 24 TCGA datasets 

in Section 2.2. Section 3 presents simulation studies to examine a potential cause using count data 

quantification, which lets us exclude this as a potential cause. Section 4 evaluates and applies a 

Poisson model in RNA-seq to seek potential solutions to correct the artifact as well as its 

applications. A conclusion and future directions are included in Section 5. Although the current 

Poisson model does not provide a solution to correct the artifact, we discuss a future direction of 

negative binomial modeling to possibly correct for the bias. 
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2.0 Empirical Evaluation of the Artifact  

In this section we describe the dataset that motivated us to investigate the problem. In 

addition, we also verify the universal existence of this problem among publicly available RNA-

seq datasets. 

2.1 Initial Finding: A Motivating Dataset 

We first encourtered this problem in a homo sapiens post-mortem striatum RNA-seq 

dataset, which contains 3 brain regions: caudate, putamen, and nucleus accumbens (NAc). After a 

standard preprocessing pipeline (fastQC-Hisat2-HTSeq), we obtained a count matrix of 30338 

genes and 116 samples in each brain region. We then normalized the count to log2 continuous 

counts per million (CPM), where the effect of library size should have been normalized. However, 

unexpectedly, we found that library sizes were still significantly correlated with normalized gene 

expression with 13,925 genes (45.9%) having q-value < 0.05. This motivated us to investigate if 

any other of our in-house datasets had similar issues, and we found that in 8 out of 12 in-house 

postmortem brain tissue and cancer datasets from collaborators, the proportion of genes 

significantly related to library size exceeded 20%, as shown in Table 1. Q-value was calculated by 

Benjamini-Hochberg correction. 
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Table 1. Significant Gene Results of 12 Datasets from Collaborators.  

Dataset Sample 

size 

Number of 

significant genes (q 

value < 0.01) 

Number of 

significant genes (q 

value < 0.05) 

Biomarkers 

proportions (q-

value < 0.05) 

NAc_mouse(Darius) 53 3619 6921 30.04% 

Human_OUD 80 5938 10091 33.26% 

Jian_BRCA 54 4 45 0.10% 

Kyle_Caudate 114 12141 15343 50.57% 

Kyle_NAc 113 4559 7825 25.79% 

Kyle_Putamen 114 10056 13869 45.71% 

Lauren_D1D2 96 16313 17724 76.93% 

Lauren_STAR 96 16092 17521 76.67% 

Lauren_PFC_NAc 53 240 579 2.51% 

Mouse_FCG_NAc 48 0 0 0.00% 

Mouse_FCG_PFC 48 0 0 0.00% 

Mouse_morphine 62 4224 6292 27.31% 

2.2 Large-Scale Empirical Evaluation of Public Datasets 

In order to systematically confirm whether this issue also exists pervasively in publicly 

available RNA-seq datasets, we checked GEO and TCGA datasets. 

For GEO, we established specific inclusion criteria to select GEO datasets whose samples 

were from “homo sapiens” (organism), “expression profiling by high throughput sequencing” 

(type), “Illumina” (platform), and with the number of samples ranging from 100 to 300. In Step 1, 

we searched datasets on the National Library of Medicine Gene Expression Omnibus website 
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(https://www.ncbi.nlm.nih.gov/geo/) and conducted preliminary screening by activating the 

following filters existed on the website: “Homo sapiens”, “Expression profiling by high throughput 

sequencing”, “Illumina”, and sample count from 100 to 300. Through this screening step, we 

obtained 1,286 GEO datasets. We, however, found that not all of them perfectly meet our criteria. 

In Step 2, we performed a further screening to remove series that had more than one organism type 

and for which the type was expression profiling by array; we removed these datasets from 

consideration, retaining a total of 549 series. In Step 3, we conducted the final filtering manually. 

Out of these 549 GEO series, we found 198 of them only provided normalized datasets instead of 

raw count datasets, 141 had decimals in their raw count data, 38 did not provide sufficient 

supplementary data files, and 13 datasets where raw count data was obtained from multiple 

platforms. After filtering out these datasets, we finally narrowed down to 159 datasets for our 

empirical evaluation. Out of these datasets, 97 of them detected more than 20% genes with 

significant association with library size under q-value<0.05. 

With regards to TCGA, we obtained the raw gene count dataset for 24 cancer types from 

GSM1536837, with a total of 9,264 tumor samples. We excluded 4 datasets with a sample size 

less than 100, leaving 20 cancer remaining. Of these 20 datasets, 14 of them detected more than 

20% of biomarkers with significant association with library size (q-value<0.05). To investigate 

why some of the studies did not have many significant associations with library size, we examined 

the genome-wide correlation of expression levels of every pair of samples within each study. Box 

plots of the pairwise correlations for each TCGA cancer type (y-axis) are shown in Figure 1 and 

cancer types are ordered by the percent of significantly associated genes. The top 10 cancer types 

are ordered by the percent of associated genes (55-65%; labeled in red) also had the highest 

pairwise correlation. In contrast, the other 10 cancer types had significantly lower pairwise 

https://www.ncbi.nlm.nih.gov/geo/


 7 

correlation among samples (p-value=0.000173), showing larger heterogeneity (biological 

variation) that may have reduced the power to detect association with library size. In conclusion, 

after examining RNA-seq datasets in these public repositories, we were able to confirm the 

universal existence of the problem. 

 

 

Figure 1. Genome-Wide Correlation Across TCGA Cancer Dataset. 

Red: the cancer types with the highest percent of associated genes; Green: the cancer types with the lowest 

percent of associated genes. 
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3.0 Using Simulation to Examine Potential Causes from Count Data Quantification 

In this section, we design a simulation from real TCGA data and describe its rationale, 

simulation settings and results. 

3.1 Rationale and Settings of Simulation 

One possible source of the observed artifact of biomarkers being associated with library 

size is the expression quantification of count data. Literature has shown that the quantification 

process from count data to a continuous measurement can lose data information, especially for low 

expression genes.[9] As each sample may have different genome-wide expression distribution in 

read data, we randomly simulated a count data matrix for samples based on the expression 

distribution of one selected sample (i.e., the one with the highest or the lowest library size). If the 

artifact association did not exist in the simulated data, we could conclude that this problem is not 

caused by count data quantification. 

To perform the simulation, we followed these steps: 

1) For each cancer type, choose the 2 samples that have the largest and the smallest library 

sizes. 

2) Calculate the proportions of expression counts of each gene (i.e., raw count of a given gene 

divided by the total counts of all genes in a sample). 

3) Using the vector of proportions, simulate a vector of counts for genes in a sample by 

multinomial distribution (using bootstrapping to resample the original library size). Repeat 
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this to simulate 100 samples with the same distribution (perfect sequencing) but varying 

the library size. 

4) Perform simple linear regression between the simulated counts and their library sizes to 

identify the artifact (genes associated with library size) in the simulated datasets. 

3.2 Results 

For all 20 of the TCGA cancer datasets, the proportion of genes that was significantly 

associated with library size was less than 0.5%. The simulation result shows that the artifact 

association is unlikely to be caused by count data quantification. Thus, we next explore the 

possibility that the sequencing bias associated with library size is caused by the sequence content 

of each gene. 
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4.0 Poisson Model to Correct the Artifact 

In this section, we reproduce the results of a reference paper that attempted to reduce the 

biases in gene expression estimates due to the non-uniformity of read rates by building Poisson 

model to produce the sequencing preference parameters. Then, we applied this Poisson model to 

the in-house datasets to see if the coefficients of the models varied based on library size and 

identified potential methods to correct the problem. 

4.1 Reproduce Poisson Model in a Reference Paper 

Each position/nucleotide j in gene i has a count, which is the sum of the reads in which 

mapping starts at that nucleotide. These counts are obtained by summing the reads in which 

mapping starts at that specific nucleotide. However, to make efficient use of this data, it is essential 

to have a suitable model in statistics that accurately reflects the underlying biological processes. 

Previous analysis methods have relied on a Poisson model with constant rate, which assumption 

is that counts from a particular isoform are sampled independently from a Poisson distribution 

with a rate that is proportional to gene expression level. This assumption may not hold in all cases, 

and a more sophisticated statistical model may be necessary to fully capture the complexity of the 

underlying biological processes. [10,11] 

However, Li et al. (2010) found that this model was inadequate in fitting real data, They 

developed a more sophisticated model that considers a Poisson model with variable rates to 

improve the modeling of the counts; that is, the Poisson model with different rate(mean value) 



 11 

models the counts from an isoform.[12] And they also found that the rate of Poisson not only 

depends on the gene expression level, but also the nucleotide of the read by examining the 

similarities among counts of different tissues. Hence, they designed the model which rate is the 

product of gene expression level and the ‘sequencing preference’ of reads that start at that position. 

This sequencing preference is a factor that indicates the likelihood for a read being generated at a 

particular position. We took inspiration from this Poisson model in this paper and tried to apply 

this model to our in-house data to see if the library size of each sample will affect the coefficients 

of this Poisson model intuitively. Thus, we first reproduced the results of this paper and figured 

out the whole pipeline. 

4.1.1 Datasets and Overdispersion 

This paper refers to three datasets. Table 2 lists the basic information of these datasets. 

Each dataset includes sub-datasets, and there are 8 sub-datasets in total: three (tissues) for Wold 

data, three (groups) for Burge data, and two (cell lines) for Grimmond data. In this paper, the sub-

datasets mentioned above were analyzed separately. 

 

Table 2. Basic Information of the Datasets. 

Dataset Tissues/cell lines Data Sources Organism Platform 

Wold 

Brain(w1) 

SRA001030 mouse 

Illumina’s 

Solexa 

Liver(w2) 

Skeletal muscle(w3) 

Burge 

adipose, brain, and breast(b1) 

GSE12946 human 

Illumina’s 

Solexa Colon, heart, and liver(b2) 
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Lymph node, skeletal muscle, and 

testes(b3) 

Grimmond 

Embryoid bodies (g1) 

GSE10518 mouse 

ABI’s 

SOLiD Embryoid stem (g2) 

 

First, the count data was obtained from the original datasets. We downloaded the 

annotation and sequences of RefSeq genes (mouse mm9 and human hg38) from the UCSC genome 

browser website. We got the sequence and the exact position for each gene based on the gene gtf 

file and whole genome Fasta file. Then, we mapped the nucleotide reads to every position of every 

gene and counted the number of reads whose mapping starts at each position of genes, allowing 2 

mismatches. In addition, this model only involved the top 100 genes exhibiting the highest 

expression levels, which all other genes are not considered. These counts of the selected gene were 

exclusively employed when building the model. Because a significant proportion can be accounted 

for by the selected genes, they can provide ample information for determining sequencing 

preferences. We used the Wold liver data as an example. In the top 100 genes, the average 

sequencing depth is 44, that is, each position has 44 reads whose mappings start with it. We also 

randomly sampled the reads so that the sequencing depth becomes 20, 10, 5, 1 or 0.1, and then 

applied the Poisson model to them to evaluate the impact of sequencing depth. Figure 2 shows that 

while the 𝑅2 increases as the sequencing becomes deeper, it changes little when sequencing depth 

is over 10. Thus, the high 𝑅2 in the top 100 genes shows that the information in the top 100 genes 

is enough to train a good model, and we do not need to include more genes, which would lengthen 

the computational time. 
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Figure 2. R2 Corresponds to Different Sequencing Depths. 

 

There are two clear indications that the counts do not adhere to the constant-rate Poisson 

model. Firstly, the data exhibits a significant degree of over-dispersion. Table 3 presents the 

relevant values of the variance-to-mean ratios in the top 100 genes of each sub-dataset, which 

should equal 1 if there is no overdispersion. Second, the count pattern of counts are consistent 

across various sub-datasets within the same datasets. Figure 3(A) shows the counts in the gene 

APOE of all three tissues of the Wold data, which is the original result in the paper, Figure 3(B) 

shows the count in the gene FTH1 which was reproduced by us. This observation also applies to 

other genes in the Wold dataset as well as the genes in the other 2 main datasets. Hence, this 

provides compelling evidence that the counts for different positions within the same gene are not 

sampled from an identical distribution.  
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Figure 3. The Wold Data Includes Read Counts along a Gene in Various Tissues.  

 (Left panel) APOE gene (Right panel) FTH1 gene. The count of reads starting at each position is represented 

by every vertical line . Nt: nucleotides. 

 

Table 3. Variance-to-Mean Ratios in Different Datasets. 

The values in the parentheses are the results we reproduced, and the values in front of them are the original 

values in the paper. 

Dataset 
Sub-dataset 

Variance-to-mean ratios 

Maximum Median Minimum 

Wold 

w1 248(224) 36(33) 21(34) 

w2 1503(1633) 48(54) 19(32) 

w3 2088(2064) 34(33) 18(15) 

Burge 

b1 835(789) 78(60) 14(14) 

b2 1187(1233) 102(140) 28(20) 

b3 1593(1542) 112(134) 20(24) 

Grimmond 

g1 24385(24384) 806(800) 47(58) 

g2 9162(9162) 355(345) 22(21) 
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4.1.2 Poisson Linear Model and Performance 

This paper developed a model for the distribution of the count of reads initiating at 

nucleotide j of gene I (treated as 𝑛𝑖𝑗), which is dependent on the expression (treated as 𝜇𝑖) and the 

nucleotide sequence around a particular nucleotide (with a length of K) is indicated as 

𝑏𝑖𝑗1, 𝑏𝑖𝑗2, … , 𝑏𝑖𝑗𝐾) . We assume 𝑛𝑖𝑗 ~Poisson (𝜇𝑖𝑗), where 𝜇𝑖𝑗  is the mean(rate) of the Poisson 

distribution, and 𝜇𝑖𝑗 =𝜔𝑖𝑗𝜇𝑖 , where 𝜔𝑖𝑗  is the sequencing preference. This dependency on the 

neighboring sequence may help mitigate the bias in gene expression caused by the non-uniformity 

of the counts: 

log(𝜇𝑖𝑗) = 𝑣𝑖 + 𝛼 + ∑ ∑ 𝛽𝑘ℎ𝐼(𝑏𝑖𝑗𝑘 = ℎ)

ℎ∈{𝐴,𝐶,𝐺}

𝐾

𝑘=1
 

where 𝑣𝑖= log(𝜇𝑖), 𝛼 is a constant term, I(𝑏𝑖𝑗𝐾=h) equals 1 if the 𝑘𝑡ℎ nucleotide of the neighboring 

sequence is h, and 0 otherwise, and the coefficient of the impact of occurrence of the letter h in the 

𝑘𝑡ℎ position, denoted as 𝛽𝑘ℎ. We incorporated the 40 nucleotides preceding the first nucleotide of 

the reads, as well as the 40 nucleotides following them. Thus, this model uses 3*80=240 

parameters (𝛽𝑘ℎ) to model the sequencing preferences (3 represents base A, C, and G; base T was 

treated as the reference). We followed these steps to build the model: 

1) Initialize 𝑣�̂� = log [∑ 𝑛𝑖𝑗/𝐿𝑖
𝐿𝑖
𝑗=1 ], where 𝐿𝑖 is the length of gene i. 

 

2) Assuming the offsets 𝑣𝑖  = 𝑣�̂� are known, the Poisson model can be fitted to get �̂� and 𝛽𝑘ℎ̂. 

 

3) Update 𝑣�̂� =log [ ∑ 𝑛𝑖𝑗/𝑊𝑖
𝐿𝑖
𝑗=1 ], where 𝑊𝑖  is the sum of sequencing preferences of all 

nucleotides of gene i, that is, 𝑊𝑖=∑ exp [�̂� + ∑ ∑ 𝛽𝑘ℎ𝐼(𝑏𝑖𝑗𝑘 = ℎ)ℎ∈{𝐴,𝐶,𝐺}
𝐾
𝑘=1

𝐿𝑖
𝑗=1 ]. 

 

4) Repeat steps 2-3 until the deviance decreases by less than 1%. 
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We applied this model to each of the 8 sub-datasets and use R2 to measure the goodness-

of-fit. We define: 

𝑹𝟐=1-d / 𝒅𝟎 

Here, d represents the deviance of the Poisson model, while 𝑑0 represents the deviance of the 

null model, which is the original naïve model assuming identical sequencing preference. In the 

Poisson model, deviance is used as a measure of the goodness-of-fit of the model, rather than 

the variance. This is because the Poisson distribution assumes that variance-to-mean ratio is 1, 

and the deviance takes this into account. The deviance here is a measure of the difference 

between the observed data and the fitted model. It is calculated as the difference between the 

log-likelihood of the fitted model and the log-likelihood of the saturated model which is a 

model that perfectly fits the data. The final 𝑅2  values we achieved are listed in Table 4. 

Approximately 40 to 50% of the variance can be accounted for by this linear model, in broad 

terms. 

 

Table 4. Goodness-of-Fit of the Poisson Model Across Different Datasets. 

aThe lengths of the surrounding sequences we consider; The values in the parentheses are the results we 

reproduced, and the values in front of them are the original values in the paper. 

Dataset 
Sub-dataset 𝑅2(80 nucleotidesa) 

Wold 

w1 0.52(0.46) 

w2 0.51(0.49) 

w3 0.48(0.54) 

Burge 

b1 0.43(0.32) 

b2 0.37(0.32) 
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b3 0.45(0.39) 

Grimmond 

g1 0.47(0.46) 

g2 0.45(0.45) 

 

Figure 4 shows all original results of coefficients in the Poisson linear model in the 

reference paper. Figure 5 shows the results we reproduced. Each sub-dataset is plotted 

separately to aid in visualization. In general, the coefficients located in the central part possess 

larger absolute values compared to those on either side, where they tend towards zero. This 

demonstrates that the nucleotides in the vicinity of the first position of a read have a more 

substantial impact on the sequencing preference. We provide an example of how to interpret 

these coefficients. For instance, in the Wold brain data, the coefficient for C at the first position 

(represented by the blue rectangle at position 0 in panel a) is 0.81. This indicates that replacing 

the nucleotide T with C would increase the sequencing preference by a factor of e0.81 is 2.25. 

The coefficients exhibit remarkable similarity across each sub-dataset. This Poisson 

linear model shows that 32 to 54% of the non-uniformity can be explained by the sequence 

difference, which can give better estimators for the downstream analysis of RNA-Seq data. 
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Figure 4. Coefficients of Poisson Linear Models in Different Datasets.  

Color: red, T; green, A; blue, C; black, G. (a) Coefficients in the Wold data. (b) Coefficients in the Burge 

data. (c) Coefficients in the Grimmond data. Nt: nucleotides. 
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Figure 5. Reproduced Coefficients of the Poisson Models in Different Sub-Datasets. 

4.2 Extended Poisson Model for Better Normalization 

We reproduced the results of the paper and applied this model to our own data to see if the 

library size of each sample will affect the coefficients of this Poisson model intuitively. 

We chose 40 bam files of mouse provided by Colleen A McClung (the 20 with the largest 

library size and 20 with the smallest library size), GTF file and FASTA file of mouse provided by 
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UCSC to get the count for each position in the top 100 genes with the highest gene expression 

level. Finally, we got 40 datasets for 40 samples. Each dataset has 4 columns with names: index, 

tag, seq and count. “index” is an index for the gene from where this count comes. “tag” is an integer 

value, 0 means to consider this count. In our datasets, -2 means the UTR part, and -1 means the 

further 100 bp. “seq” is the nucleotide of this position and it must be capital T or A or C or G. 

“count” is the count of reads starting at this position. After getting the datasets, we used these 

datasets to build 40 Poisson models and for each model, there are 3*80=240 coefficients such as 

pM40A, pM40C, pM40G, pM39A, ……, p0A, p0C, p0G, ……, p40A, p40C, p40G, where p 

means position, M means minus.  Figure 6 shows the coefficients of the Poisson linear models 

across different samples. 

 

 

Figure 6. Coefficients of Poisson Models in 40 Datasets for Base A, C and G. 

 Color coding for 2 groups separated by library size: green, 20 samples with largest library size; red, 20 

samples with smallest library sizes. 
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We can not tell if the coefficients are related to the library size directly from this figure 

directly. Thus, we performed the linear regression on these coefficients to see if it is affected by 

different sample library sizes. For base A, we have 40 coefficients for 40 samples in each position, 

so we constructed 80 simple linear regression models for the 80 positions. Table 5 shows the results 

of these linear regression models for bases A, C, and G separately (T was treated as the reference 

base). 

Therefore, we can conclude that the coefficients are not related to the library size 

significantly (p value > 0.05) and we need to read more reference papers to find other potential 

solutions. 

 

Table 5. The Results of Linear Regression Model. 

Base 

Number(proportions) of models which p 

value of library size < 0.05 

Mean of p 

value 

Variance of p 

value 

Median of p 

value 

A 3(3.75%) 0.34 0.07 0.40 

C 1(1.25%) 0.49 0.11 0.56 

G 0(0.00%) 0.51 0.06 0.42 
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5.0 Conclusions and Future Direction 

In this paper, we found a problem that thousands of biomarkers remained significantly 

correlatied (q value < 0.05) with library size through linear regression models after normalization 

in our collaboration datasets. Then we verified the universal existence of this problem among the 

publicly available RNA-seq datasets such as GEO and TCGA datasets. We present simulation 

studies to examine cause from quantification, and then, we found a reference paper which designed 

a Poisson model to consider the sequencing preference parameters, that is, a factor showing how 

likely it is for a read to be generated at the position. In order to apply this model in our own dataset 

while considering the library size effect, we reproduced the results of this paper and cleared the 

pipeline, which obtained similar results to the reference paper. At the end, we used our own 

datasets to fit this Poisson model but found that the coefficients in the fitted model were not related 

to the library size. 

In view of this, for the future direction, we will evaluate how much dispersion will be 

reduced by the fit residual after fitting the non-constant Poisson model. If over-dispersion still 

exists in this Poisson model, that is, the variance-to-mean ratio of fit residual much larger than 1, 

then we will consider replacing the Poisson model by negative binomial model, which can 

accommodate overdispersion by introducing an additional parameter that allows for more 

variability in the data. 
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