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The Association of VMAT2 Gene Polymorphisms With the Development of

Schizophrenia

Alexis Cenname, M.S.

University of Pittsburgh, 2023

Objective: To investigate the association between common single nucleotide polymor-

phisms (SNPs) in the vesicular monoamine transporter type 2 (VMAT2 ) gene and a diagnosis

of schizophrenia in the US population.

Methods: 968 individuals with a diagnosis of schizophrenia were ancestry-matched

to healthy controls to create a final cohort of 1,936 individuals. Diagnosis criteria was

determined from Electronic Health Records provided by the AllofUs Research Program.

Additive and dominant logistic regression analyses were done for the promoter SNPs rs363324

and rs363371. Additional stratified analyses were performed using sex and ancestry variables.

Results: No significant results were observed for rs363324 and rs363371 using the ad-

ditive model. The dominant model suggested a protective effect for rs363324 for the entire

cohort (p = 0.007; OR = 0.75[0.61, 0.92]) and within the African ancestral group (p = 0.028;

OR = 0.76[0.56, 0.97]). Stratification by sex did not give significant results for either geno-

type model, nor did stratification by ancestry+sex.

Conclusion: Premature mortality rates and the need for targeted treatments in schizophre-

nia make it an important disease to study for public health. This study found that ’GA’

and ’AA’ genotypes have an equal protective effect from the development of schizophrenia

for rs363324. Unlike previous studies, the results for rs363371 were not significant. Fu-

ture studies should use a larger sample size and include variables concerning environmental

factors.
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1.0 Introduction

Schizophrenia (SCZ) is a highly complex mental disorder that affects a relatively low

percentage of the population, yet it remains one of the top 15 causes of disability in the

world [1]. A wide range of psychological and behavioral symptoms are associated with the

disorder, like hallucinations, loss of motivation, and disorganized thought processes. If left

untreated, these symptoms usually worsen. High suicide rates in the population, along with

under-diagnosis and under-treatment of comorbidities, account for an estimated 28.5 years

of life lost to the disease [2]. To improve premature mortality rates and overall burden

on public health, it is critical to identify key risk factors involved in its development for

early diagnosis and targeted treatment. As genetic data is becoming more accessible, many

genome-wide association studies (GWAS) have been conducted to understand the biological

processes behind SCZ. This data suggests it to be highly heritable and polygenic, warranting

further analysis of its genetic underpinnings [3].

A recent review cross-examined significant single nucleotide polymorphisms (SNPs) from

previous GWAS analyses and differentially expressed (DE) genes in schizophrenic patients to

determine gene-function correlation. SLC18A2 (or VMAT2 ) was one of the nine genes with

significant loci and gene expression, indicating risk alleles within this gene may influence

regulation factors [4]. The VMAT2 gene encodes for a protein contained inside the synaptic

membrane of neurons, which transports amine neurotransmitters into synaptic vesicles for

eventual release into the body [5]. A visual representation of this process is in Figure 1. Since

VMAT2 is the only transporter that delivers cytoplasmic dopamine to central nervous system

(CNS) vesicles, it is thought to play an important role in dopamine regulation [7]. There

are several functions that dopamine performs in the brain, including memory, movement,

motivation, and pleasure. Disruption of the VMAT2 gene in this biological structure can

result in either overproduction or underproduction of dopamine, interfering with the signaling

of dopaminergic neurons [8]. An imbalance in the dopaminergic system may lead to a variety

of mental health disorders, including clinical symptoms of schizophrenia [9]. To treat these

symptoms, VMAT2 inhibitors have been used to maintain therapeutic efficacy and reduce
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Figure 1: A diagram representing the function of the VMAT2 protein as a transporter for

dopamine within the neuron. Adapted from Jankovic et al. 2017 [6].

side effects when combined with a reduced dose of anti-psychotic drugs [10].

Despite extensive research on the VMAT2 gene, little SNP analysis has been done with

it in regards to schizophrenia. Researchers from an Italian journal examined eight variants

in VMAT2 possibly relating to Parkinson’s disease (PD); only 2 SNPs in the promoter

region were significant [11]. Since schizophrenia and PD share genetic risk factors, rs363324

and rs263371 were subsequently studied in the Chinese Han population to determine their

relationship to schizophrenia. A χ2 test was conducted on the age-sex matched case and

control groups, along with an additional stratification by sex. The only significant finding

was a protective AA genotype effect for rs363371 against SCZ in the males [12]. Other

association studies conducted on the VMAT2 gene returned mixed results, and did not

focus on the promoter region, which regulates transcription factors for protein production

[13,14].

The purpose of this paper was to extend upon the Chinese Han analysis using a more

diverse population and a larger sample size. To do this, information from the AllofUs

database was used, a program that aims to collect health data on diverse populations to help
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researchers better diagnose and treat diseases. To find an association between schizophrenia

and regulatory SNPs, a logistic regression using the additive and dominant genetic models

was performed. Ancestry was stratified in addition to sex. Unlike the previous analysis, the

cases were matched to controls based on their ancestry, rather than age and sex. Section 2

gives an overview of these statistical methods and describes the data extraction and cleaning

process. Section 3 provides an explanation of the results and any significant findings. The

final section is a discussion of limitations and ways to extend this research.
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2.0 Methods

2.1 Data Source

The All of Us Research Program is a longitudinal cohort study sponsored by the National

Institutes of Health (NIH) which aims to collect data on many types of health outcomes for

a broad range of participants in the United States. Currently, the AllofUs database contains

electronic health records (EHRs), genomic data, physical measurements, and survey data

on 372,380 individuals. Access to the data is divided into three tiers: Public, Registered,

and Controlled. A training program was completed to facilitate access to the Controlled

tier, which contains the individual-level genomic data necessary for completing this study.

Eligibility for enrollment in the cohort requires participants to be 18 years or older and living

in the United States (or U.S. territory) at time of enrollment. Anyone who is imprisoned or

incapable of consent cannot enroll [15]. All statistical analyses for these data were done using

Python in the Researcher Workbench—a cloud platform that stores health data collected by

AllofUs.

2.2 Preprocessing Steps

2.2.1 Phenotype Data

Because of the vast amount of phenotypes available, the Researcher Workbench pro-

vides a tool called the CohortBuilder. This tool was used to exclude participants who did

not match the intended criteria for the case and control groups. For the entire cohort,

participants must have provided their Whole Genome Sequence (WGS) and sex at birth

assignment. This left about 99,000 participants. An additional criterion was set to estab-

lish the case group, which only included the 1,008 individuals diagnosed with schizophrenia

(SNOMED-58214004). The control group had slightly more restrictions, with an age cutoff
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of 30 years at enrollment and exclusion of all participants with a mental disorder (SNOMED-

74732009), including schizophrenia diagnoses. Following these adjustments, approximately

55,000 controls remained for selection.

Having selected the inclusion criteria, phenotypic data from the case and control groups

were loaded into Python for further analysis. Additional derived data elements provided by

AllofUs were also imported, as they contained relevant information about relatedness and

ancestry for participants. Since heritability violates the independence assumption of the

logistic regression, 2,306 people with a kinship score greater than 0.1 were removed from the

sample pool.

2.2.2 Principal Components of Ancestry

The Principal Components Analysis (PCA) for genetic ancestry was done prior to this

study by AllOfUs. PCA is a dimensionality reduction method that reduces the number

of variables in a large matrix, C. When applied to genetics, the matrix dimensions nxm

represent n individual samples and m high-quality variants. Samples can be represented as

points in an m-dimensional space, where each SNP is its own axis. The principal component

measure is a linear combination of these axes, with the first principal component representing

the largest possible variance, the second principal component representing the next largest

possible variance orthogonal to the first, and so on [16]. The C matrix can be standardized

using the Hardy-Weinberg equilibrium model, which normalizes genotype variances to 1/m.

This method was employed by for this data by using the hwe normalized pca package in Hail

[17]. This creates a new matrix, M , whose entries can be calculated by:

Mij =
Cij − 2pj√

2pj(1− pj)(m)
(1)

The value Cij is the number of alternate alleles (0, 1, 2) per variant j carried by sample

i. Half of the mean alternate allele frequency for each variant is represented by pj. Once

these entries are calculated, the matrix M is used to compute principal component measures

using singular-value decomposition (SVD):
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M = USV T (2)

P = XV = US (3)

Equation (2) is a breakdown of the standardized matrix into three separate matrices. The

columns of the nxk matrix U represent the eigenvectors of MMT . Similarly, V is a mxk

matrix of eigenvectors for MTM . The S diagonal matrix with dimensions kxk represents

the square root of the eigenvalues for MMT and MTM .[18]. k is defined by the rank of

the matrix; k = 16 for the AllofUs analysis. Once the P matrix is calculated from the SVD,

the PC measures are projected into a two-dimensional space. For classification into ancestry

groups, AllofUs used a random forest classifier [19].

2.2.2.1 Case-Control Matching

It is common in ancestry matching to find the control group members whose principal

component measures are closest to the cases. Once this is figured out, a one-to-one match is

performed. An R package called PCAmatchR is used to match controls to cases by converting

PCs into Mahalanobis distance metrics, a standardized distance between samples [20,21].

The greater the distance, the less similarity and vice versa. Due to the lack of a package for

PCA matching in Python, a simpler method was used for this analysis. Among the ancestral

categories available to each participant were European, African, Admixed American/Latino,

Middle Eastern, South Asian, and East Asian. The aggregate counts for each category in

the case cohort were calculated. Controls were separated by ancestry, and the corresponding

counts determined the number of individuals randomly selected from each group. A final

control group was formed by combining these selections. It is important to note that any

subgroups with aggregate counts less than 20 are not displayed in this paper for privacy

purposes.
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2.2.3 Genotype Data

Genotype data for the participants are available in an auxiliary file provided by Allo-

fUs. The interval regions for rs363324 and rs363371 were extracted from the WGS of every

sample. The Hg38 genome assembly was used as the reference sequence. In both variants,

the reference allele was coded as ’G’ and the alternate allele as ’A’. The control group was

subjected to data quality checks for both loci due to variant inconsistencies anticipated in the

schizophrenia diagnosis group. Minor Allele Frequency (MAF) and Allele Balance (AB) tests

were performed using thresholds of 0.05 and 0.2, respectively. Additional Hardy-Weinberg

tests were done in each ancestry category (p < 0.01). Once the genomic data was cleaned,

it was combined with case and control demographic data to develop the logistic regression

models.

2.2.4 Covariates

The covariates used in the logistic regression analysis are sex, age, and the first 3 PC

measures of ancestry. Differences in sex distribution between schizophrenia and healthy

groups were analyzed using a χ2 test (p < 0.05). A two-tailed t-test with a significance level

of 0.05 was used to determine whether the mean age distribution was similar between the

groups.

2.3 Binary Logistic Regression

Logistic regressions are one of the most widely used statistical models for categorical

outcomes. If there are only two events associated with the outcome, like the presence or

absence of a disease state, it can be described as a binary logistic regression. These models

can have one or multiple predictor variables, with additional covariates for adjustment. To

estimate the p-value, odds ratio, and 95% confidence interval, the Wald test statistic, z, is

used.
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Let pi represent the probability of the outcome occuring (Yi = 1) with predictor (Xi)

and adjusting for covariates (βZi). The logistic regression equation is as follows:

logit(pi) = ln(
pi

1− pi
) = β0 + β1Xi + βZi (4)

The variable β1 is the fit effect coefficient for the predictor. This model tests the null

hypothesis that β1 = 0. This is equivalent to assuming the odds ratio is equal to 1 when

comparing the event and non-event groups.

The predictor can have multiple categories (1,...,n), but here is a case of a simple binary

predictor. The OR can be calculated from the logistic regression equation as follows:

ÔR =

p̂i
1−p̂i

|(xi = 1)
p̂i

1−p̂i
|(xi = 0)

=
exp(β0 + β1 ∗ 1 + βZi)

exp(β0 + β1 ∗ 0 + βZi)
= exp(β1) (5)

Here, β1 represents the log-odds ratio of the outcome group comparing a predictor of

x=0 to x=1 after adjusting for covariates.

2.3.1 Genotype Coding

When testing for genetic associations, there are three models that can be used to make

the statistical power better. These are the additive, recessive, and dominant models. The

additive model assumes that the risk of disease increases linearly with the number of alternate

alleles. In this case, I assume the risk of developing schizophrenia increases linearly with

the number of ’A’ alleles. The common way to code this model is (0,1,2). The dominant

model is slightly different, and assumes the risk of developing disease in the same whether

you have one or two alternate alleles. Therefore, it is coded as (0,1,1). Finally, the recessive

model assumes only those with the homozygous alternate genotype are at increased risk of

developing the trait/disease. This is coded as (0,0,1). In this paper, I will only look at the

additive and dominant models. This follows the structure of the Brighina et al. analysis.
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2.3.2 Models for rs363324 and rs363371

To test my hypothesis, a similar structural equation was used. The presence (=1) and

absence (=0) of schizophrenia was the identified outcome. The number of alternate alleles for

each SNP was used as the predictor. The additive genotype model was used as the predictor

variable (gi = 0, 1, 2) for the first set of analyses. The same equation is used for the dominant

model, but with a differently coded predictor variable (gi = 0, 1, 1). The adjusted covariates

in the model are sex, ancestry, and age.

logit(pi) = β0 + β1gi + βZi (6)

2.4 Stratification

To eliminate potential confounding in the analysis, a cohort can be split into groups based

on phenotype. Since the cohort is diverse, it is a way to investigate patterns in subgroups. In

basic terms, a logistic regression is run within each group to find significant associations with

the predictor and disease. The data was split into groups depending on sex and ancestry.

There was a stratification of only sex, only race, and sex plus race. The covariates being used

in the stratification were omitted from the Z vector in their respective logistic regression

equations.

9



3.0 Results

3.1 Summary Statistics

A total of 1936 participants–968 cases and controls–were used in the final analysis. The

case cohort included 566 males and 402 females with an average age of 50.44 ± 13.42 years

(range 19-84 years). All ancestral groups were present in the cohort with the highest counts

being in the European, African, and American Admixed/Latino categories. Controls were

ancestry-matched and included 421 males and 547 females. The mean age of this cohort was

53.77 ± 13.24 years (range 30-103 years). Those without a mental health diagnosis were an

average of 3 years older than those diagnosed with schizophrenia; a t-test supported this as

significant (p = 4.16e − 08). This difference is likely due to the 30-year cutoff introduced

to the larger AllofUs control cohort. A χ2 test of independence was done to compare sex

distribution between groups. The results were significant, indicating that male subjects are

1.83 times more likely to be in the case group than the control group (p = 5.43e− 11). Both

SNPs passed QC checks described in Methods section.

3.2 Logistic Regressions

Individual logistic regressions were performed for each SNP using the additive and dom-

inant genotype models. These were adjusted for sex, age, and the first three principal

components of ancestry. The results of these regressions are in Table 2. For the additive

model, no associations were found for rs363324 (p = 0.056; OR = 0.87[0.76, 1.00]) and

rs363371 (p = 0.988; OR = 1.00[0.75, 1.19]). The dominant model showed significant as-

sociations for rs363324 (p = 0.007; OR = 0.75[0.61, 0.92]), but not rs363371 (p = 0.707;

OR = 0.96[0.78, 1.18]). This suggests the odds of schizophrenia development in the het-

erozygous and homozygous ’A’ allele groups is 0.75 times lower than that in the homozygous

’G’ allele group.

10



Table 1: This table gives the count and frequency of sex and genotypes for case/control

groups. Mean and standard deviation were calculated for age in cohorts. Comparisons were

performed using the χ2 test and t-test for sex and age, respectively. χ2: p-value and OR

[CI]. T-test: p-value and mean difference [CI]. ** represents an outcome where p ≤ 0.05.

3.3 Stratified Logistic Regressions

For both SNPs, stratifications on sex, ancestry, and sex+ancestry were done. The co-

variates being stratified were not adjusted in the corresponding regression models. Using

males and females as subgroups, the additive and dominant models returned insignificant

results for rs363324 and rs363371. When stratifying by ancestry, only groups with counts

greater than 20 were analyzed. Therefore, only European, African, and Latino samples were

analyzed in the logistic models. The additive model did not return any significant results

for any ancestral category. The dominant model returned significant results for those with

African ancestry (p = 0.028; OR = 0.76[0.56, 0.97]). This suggests that the ’A’ allele may

11



Table 2: This table shows the results of the individual logistic regressions and ancestry-

stratified analyses for rs363324 and rs363371. The models were adjusted for age, sex, and

ancestry (first 3 PC measures). The p-value, ORs, and corresponding 95% CIs are provided.

** represents an outcome where p ≤ 0.05.

have a protective effect on schizophrenia development for this group. Stratification analyses

for sex and ancestry were not significant. These results are given in Appendix A.
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4.0 Discussion

When observing the potential effect of VMAT2 SNPs on schizophrenia diagnosis, this

analysis only saw meaningful results for rs363324 in the unstratified dominant model and

the dominant model for the African cohort. Stratification by sex proved to be insignificant

for both variants. Both significant effects were protective, indicating lower odds for those in

the ’GA’ and ’AA’ genotype groups. The Brighina et al. analysis regarding PD performed

similar logistic regression analyses but did not find significant p-values for rs363324. They

did, however, observe protective effects for the ’A’ allele in the rs363371 dominant model

[11]. The recessive χ2 analysis performed on the Chinese Han population also suggested that

the homozygous ’AA’ genotype in rs363371 reduced the odds of schizophrenia in males [12].

Before that study, limited association analyses relating to schizophrenia development were

performed in this region and returned varied results [13,14]. Though the significant variants

differ, nearly all results suggest a protective effect of SNPs in this gene, which indicates

that genetic variability in VMAT2 may play a role in neurodegeneration. Therefore, further

studies should examine how the gene can be a potential therapeutic target for mental health

diseases, especially in certain ancestral groups.

Substance abuse is more prevalent among those with mental illnesses, so several studies

have been conducted to examine how VMAT2 affects these conditions. In mice, the chronic

use of nicotine and early withdrawal from the drug showed up-regulation of the VMAT2

protein [22]. Additional studies have found an association between variants in VMAT2 with

nicotine, alcohol, and opioid dependence [23,24,25]. Unfortunately, an attempt to include

survey responses on substance abuse in this cohort resulted in a substantially decreased sam-

ple size. Ideally, future research will use covariates in their analysis relating to substance

abuse. A variable including the history of medication may also be helpful since up to 25%

of patients receiving long-term first-generation anti-psychotic treatment are affected by Tar-

dive Dyskinesia (TD) [26]. Similar to this study, the ’AA’ genotype of rs363324 suggested

a protective effect against the movement disease. Another limitation of this study is the

introduction of participation bias through AllofUs data submitted voluntarily. The require-

13



ment for schizophrenia diagnosis in the case group may exacerbate this issue. If the disease

is severe or someone is untreated, the willingness to join a research program may decrease.

The considerable strengths of this study were the use of a diverse population and a

large sample size (n=1,936). Most studies on the VMAT2 gene analyzed small samples

of homogeneous European or East Asian populations. To current knowledge, this is the

only study examining rs363324 and rs363371 for schizophrenia development in a cohort

with diverse genetic ancestry. Even so, expanding the sample size and diversity of future

investigations would be advantageous. In addition, including a recessive model and more

SNPs in the area will also be beneficial.

In conclusion, the log-additive models did not suggest that rs363324 and rs363371 were

associated with SCZ. However, the dominant models suggested protective effects for the

’A’ allele in rs363324. These results further suggest that targeting the VMAT2 protein

may be a therapeutic target for certain neurological disorders. Future studies should include

environmental and additional genetic factors to understand how this genetic structure affects

SCZ development.
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Appendix A Additional Stratified Analyses Results

Table 3: This table shows the results of the logistic regressions when grouping by sex and

sex+ancestry for rs363324 and rs363371. The models were adjusted for age and/or ancestry

(first 3 PC measures). The p-value, ORs, and corresponding 95% CIs are provided.

15



Appendix B Python Code

Due to privacy concerns with the AllofUs Research Program, the code pre-

sented below is just a framework. The real variables are not used in certain

situations.

# import packages

import os

import pandas as pd

import matp lo t l i b . pyplot as p l t

from IPython . d i sp l ay import HTML, d i sp l ay

import ha i l as h l

import p l o t l y . g raph ob j e c t s as go

from s c ipy . s t a t s import t t e s t i n d

# remove r e l a t e d samples

r e la ted remove = hl . impor t tab l e ( r e l a t ed sample s path ,

types={” sample id ” : ” t s t r ”} ,

key=” sample id ” )

# s e l e c t i n g c on t r o l s randomly

# t h i s i s repea ted f o r each anc e s t r a l group

ht . f i l t e r ( df==” ances t ry group ” )

ht . sample ( anc prop )

# combining random s e l e c t i o n s

matched pheno = a f r d a t a s e t . union ( amr dataset ,

ea s da ta s e t ,

eu r datase t ,

16



mid dataset ,

s a s d a t a s e t )

# combine geno and pheno data f o r c on t r o l group

# t h i s i s a l s o done f o r case group and en t i r e cohor t

SNP control = SNP. s em i j o i n c o l s ( matched pheno )

SNP control = SNP control . anno ta t e c o l s (

pheno = matched pheno [ SNP control . sample id ] )

# QC checks

# AB

SNP control = SNP control . f i l t e r r o w s (

h l . i s m i s s i n g ( SNP control . f i l t e r s ) )

SNP control = hl . va r i an t qc ( SNP control )

# MAF

SNP control = SNP control . f i l t e r r o w s ( h l .min(

SNP control . va r i an t qc .AF) > 0 . 05 , keep = True )

# chi square t e s t f o r sex d i s t r i b u t i o n

hl . eval ( h l . f i s h e r e x a c t t e s t ( c1 , c2 , c3 , c4 ) )

# t t e s t f o r age d i s t r i b u t i o n

t t e s t i n d ( case age , c on t r o l a g e )

# HWE

hl . eval ( h l . ha rdy we inbe rg t e s t ( hom ref , het , hom alt ) )

# coding f o r dominant model ; the a d d i t i v e model i s the d e f a u l t

coho r t d f = coho r t d f . a nno t a t e en t r i e s (
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alt dom = coho r t d f .GT. i s h e t ( )

+ coho r t d f .GT. i s hom var ( ) )

# add i t i v e l o g i s t i c r e g r e s s i on

c ova r i a t e s = [ 1 . 0 , c oho r t d f . pheno . age ,

c oho r t d f . pheno . sex male ,

c oho r t d f . pheno . anc . p c a f e a t u r e s [ 0 ] ,

c oho r t d f . pheno . anc . p c a f e a t u r e s [ 1 ] ,

c oho r t d f . pheno . anc . p c a f e a t u r e s [ 2 ] ]

l o g r e g = hl . l o g i s t i c r e g r e s s i o n r ow s (

t e s t=’ wald ’ ,

y=coho r t d f . pheno . ha s s ch i z ,

x=coho r t d f .GT. n a l t a l l e l e s ( ) ,

c o v a r i a t e s=cova r i a t e s

)

# dominant l o g i s t i c r e g r e s s i on

dom log reg = hl . l o g i s t i c r e g r e s s i o n r ow s (

t e s t=’ wald ’ ,

y=coho r t d f . pheno . ha s s ch i z ,

x=coho r t d f . alt dom ,

c ova r i a t e s=cova r i a t e s

)

# s t r a t i f i c a t i o n s done us ing the f o l l ow i n g code

s t r a t i f i e d g r o u p = coho r t d f . f i l t e r c o l s ( )

# the l o g i s t i c r e g r e s s i on framework i s s im i l a r f o r s t r a t i f i e d ana lyses ,

# but omits the co va r i a t e t ha t i s be ing s t r a t i f i e d from vec to r
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