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Abstract 

Integration of literature and data for context-aware model curation: a glioblastoma stem 

cell case study  

 

Emilee Holtzapple, PhD 

 

University of Pittsburgh, 2023 

 

 

 

 

Computational modeling serves many purposes in biomedical research. In addition to 

understanding mechanisms of normal healthy cell function, computational modeling also provides 

valuable insights into the mechanisms of disease. In recent years, automated tools for curating 

computational models of cell function have become more accurate and widespread. However, 

many obstacles remain for automated modeling in a personalized medicine context. First, many 

models of disease signaling are merely interaction networks, and do not encode information about 

rules for dynamic signaling behavior. Additionally, many of these models are not comprehensive 

enough to make widespread conclusions about the effect of disease control interventions. While 

automated information retrieval speeds up model curation, machine learning approaches for 

extracting signaling events from literature are not trustworthy enough to use without human 

intervention. This dissertation will attempt to address several of these obstacles through a 

glioblastoma multiforme (GBM) stem cell case study. By utilizing discrete modeling techniques, 

this GBM model is able to capture the progression of disease at multiple levels of specificity.  To 

address the inaccuracies and natural language processing results I also present a tool for using 

database results to judge machine-reading. Altogether, the GBM case study and methodology 

presented in this dissertation can serve as a guide for personalized, automated modeling of disease.  
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1.0 Introduction 

Computational modeling of interaction networks can provide valuable insight into disease 

progression and potential interventions. However, model curation can be time-consuming, rely on 

information that is unavailable or difficult to ascertain. Disease models are usually curated based 

on one specific subtype or presentation, and are not applicable to other patients or subtypes. A 

guided, data-informed approach to model curation will improve the accuracy and flexibility of 

disease models. In this dissertation, I will describe novel methods for curating literature, 

benchmarking the accuracy of machine-read interactions, and informing model parameters from 

data. I will also present a glioblastoma multiforme stem cell model curated using said 

methodology.  

1.1 Motivation 

Computational modeling of biological signaling cascades is an essential method for 

understanding the mechanisms of disease [1-3]. Trustworthy models are based on up-to-date 

literature or data and can be experimentally validated. In return, these models can quickly provide 

testable hypotheses, and reduce the number of experiments needed to elucidate mechanistic details. 

However, assembly of a believable computational model usually requires a significant amount of 

time and mostly manual work. Furthermore, many computational models are a generalization of 

multiple possible genomic profiles, and they ignore de novo or rare mutations [4]. For these 
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reasons, computational models of cellular signaling or disease are often incomplete or overly 

general.   

One such disease that would benefit from a detailed computational model is glioblastoma 

multiforme (GBM) [5]. GBM is composed of many subpopulations of tumor cells, which are 

genetically distinct [6]. These tumors are also able to draw from a pool of cancer stem cells [7]. 

No models of GBM stem cells currently exist that account for every possible cell line-specific 

difference, which would be necessary for any extrapolation to potential treatments. Using 

biological data to inform model parameters would help emphasize the real differences in cell 

signaling between GBM stem cell lines. I will use the model to provide predictions on how GBM 

stem cells will respond to certain kinase inhibitors, which are commonly proposed treatments [8]. 

The model, the parameterization approach, and the kinase inhibition predictions will enhance 

understanding of GBM stem cells and provide testable hypothesis for effective drug treatments 

that are based on genetic data. 

However, it is difficult to quickly and accurately model all the mechanisms of tumor 

growth and survival that are necessary for an individual tumor. If any computational model, 

including the GBM stem cell model, is to be applicable for newly discovered cell lines, or possibly 

for clinical use, there is a need for improved methods for information extraction and model 

assembly. While manual curation and parameterization of models of GBM stem cell line is 

possible, this process is time-consuming, and thus, not practical for any clinical use. For highly 

heterogenous tumors such as GBM, fast and accurate model curation will require addition of 

signaling events automatically, based on which genes and proteins are differentially expressed. To 

extend models without human intervention, machine reading can be used to automatically extracts 

signaling events from biomedical literature [9]. However, this process is error-prone [10], and so 
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automated model extension is not feasible with these automatically extracted interactions. The 

methodology laid out in this thesis, as well as the GBM stem cell model case study, show how 

both literature and database resources can be integrated with data to curate reliable models of cell 

signaling.    

1.2 Scope 

Figure 1 shows how novel methodology introduced in this dissertation (FLUTE, described 

in Section 3.1) and the network verification and curation tool (described in Section 3.3) are 

integrated with the DySE workflow. In addition, the new algorithms for initialization of discrete 

models can be applied to the DySE workflow as well. While there exists a number of machine 

reading engines that extract information from biomedical literature, and a number of databases 

with information about biochemical reactions in intracellular networks, the methods outlined in 

this dissertation combine the information from both sources, and therefore, enable automated 

model assembly with high confidence information. The described methods are implemented as 

part of an open source tool, which will be the first tool that not only combines the information 

from the two sources, but also provides a feedback to improve both machine reading methods and 

databases.  
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Figure 1. Novel methodology integrated with the DySE workflow. 

In this thesis, I propose a method for selecting trustworthy interactions from machine 

reading output based on manually curated biological data. Interaction databases contain evidence 

on millions of signaling events [11-13], and comparing machine reading results to these databases 

can help find trusted interactions. The methodology for selecting only trustworthy interactions 

from machine reading output will improve both understanding of where machine reading of 

biomedical literature fails, and how to put biological interaction data to use in the process. 

Automated extension of new GBM stem cells lines with minimal human intervention will help 

develop guidelines on how to tailor machine reading results to specific cell lines. It will also greatly 

reduce the time needed for extension of a model, which is the current protocol for adapting models 

to new data or information.  

To date, the model of GBM stem cell signaling will be the first to account for cell-line 

specific differences. Furthermore, this novel approach to modeling GBM stem cells will combine 

the knowledge about the system from the published literature and from experts, with the 

experimental data, to assemble models that capture the causality in cellular signaling (not only 

correlations), and that allow for studying dynamic changes of the GBM stem cells in time. Using 



 5 

gene expression or whole exome sequencing data to parameterize this model can provide 

predictions for whether a kinase inhibitor will be effective in preventing tumor growth in a specific 

GBM stem cell line. The results of each parameterized GBM stem cell model will provide novel 

mechanistic explanations for how GBM stem cells survive certain drug treatments.  
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2.0 Background 

2.1 Why use mechanistic modeling for computational systems biology? 

Understanding a disease at a mechanistic level is a complex task, requiring extensive 

knowledge of how affected genes influence disease progression. Signaling networks are studied to 

gain more comprehensive understanding of a disease, or to predict potential therapeutic targets 

[14-16]. In contrast to curating a mechanistic model of disease, training a model on data is only 

one way to make predictions about disease networks and treatment efficacy [17]. In addition to 

making predictions, curation of mechanistic signaling models can provide additional benefits [18]. 

There are still many unknowns about how signaling events are handled within cells, and how these 

responses differ between individuals [19]. While training classifiers on biomedical data has many 

applications, it cannot compensate for deficits in knowledge about the underlying system. Curating 

detailed computational models of signaling networks enhances understanding of cellular signaling 

cascades.  

Existing resources contain a wealth of knowledge that can guide automated technology, 

benchmark inferred networks, inform understanding of disease mechanisms, and improve patient-

specific outcomes. Specifically, there are many literature and data resources that are already 

curated and accessible by machine or human curators. According to FAIR data principles 

(Findability, Accessibility, Interoperability, and Reuse of digital assets), data should be 

computationally accessible whenever possible [20]. In this dissertation, I will present novel 

methodologies to increase the findability and accessibility of existing literature and data for use in 

model curation. 
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2.2 Interaction networks 

Interaction networks illustrate the set of biochemical reactions that constitute cellular 

function. This includes processes such as external signals (for example: stress, nutrient availability, 

etc.)  being conveyed internally to second messengers and eventually, to disrupt or alter gene 

transcription ([21-23]). These networks can be represented by a graph 𝐺(𝑉, 𝐸) with a set of nodes 

𝑉 and a set of edges 𝐸.  Common interaction network components, also referred to as entities, 

include proteins, genes, and biological processes. An interaction between two entities may be 

directed, where one is acting upon the other, or in undirected manner, where the effect of the 

interaction is unknown. In a directed interaction, the sign of the interaction may be positive, where 

the amount or activity of the downstream element is increased, or negative, where there is a 

corresponding decrease in the amount or activity of the downstream element. One example of a 

signaling network is shown in Figure 2, which details major signaling events that occur in basal 

cell carcinoma. The individual components interact through post-translational modifications, 

complex formation, crosstalk between canonical signaling pathways, etc.  
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Figure 2. An example of a signaling network involved in basal cell carcinoma curated by KEGG [24]. 

2.3 Information retrieval 

2.3.1 Literature queries 

The amount of published work in molecular biology, biotechnology, and biomedical 

research increases exponentially every year [25]. There is a considerable number of published 

papers on any one mainstream biomedical research topic, potentially hundreds of thousands of 

relevant articles. For many areas of study, simply reading every paper is unrealistic, or even 

physically impossible. When studying biological systems, such as intracellular signaling networks, 

this problem is apparent – accurate representation of all relevant signaling events requires 

extensive, expert knowledge acquired over many years of study.  
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To retrieve relevant papers for given topic or question, a common method is to query 

databases that contain biomedical literature. One repository for biomedical literature, MEDLINE, 

contains over 27 million papers [26], and a common method for retrieving papers from MEDLINE 

is through its associated search engine, PubMed. Querying MEDLINE through PubMed is 

particularly useful for identifying papers on a specific context such as disease or cell type. It is 

also used for identification of individual proteins, signaling pathways, and general cell processes 

in one specific context. One example of a PubMed query that targets a single pathway in a specific 

context is ‘"hippo pathway" AND "stem cells"’. This query returns 272 papers, many of which 

describe hippo pathway signaling trends in cancerous stem cells [27-32], as well as non-cancerous 

stem cells. These papers contain a wealth of information about the mechanistic causes of stemness. 

However, retrieval of these papers requires a priori knowledge that the Hippo pathway is important 

in stem cell maintenance and renewal [31-33]. Additionally, these papers describe one small facet 

of stem cell signaling, and do not contain all the information needed to understand the system as a 

whole. To widen the scope, all papers in MEDLINE that concern stem cells can be retrieved by 

querying PubMed with "stem cells". Here, there are two obstacles – this query returns over 271,000 

papers, many of which describe morphological or anatomical details, and not signaling pathways.  

State-of-the-art methods for paper retrieval rely on term lists generated by experts or users 

[34, 35], or automated information retrieval of similar papers [36, 37]. These methods have several 

disadvantages. First, paper retrieval may depend on the cooperation of one or more experts in the 

field. Even for automated techniques that locate papers through related citations [36], or semantic 

analysis [37], some level of prior knowledge is needed.  
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2.3.2 Machine reading 

The sheer number of peer-reviewed publications drives the need for automated methods 

for extracting information from text. Information extraction for modeling in systems biology can 

be greatly aided by machine reading. The state-of-the-art automated reading engines are capable 

of extracting cell signaling events from published papers [38-40]. For example, from the sentence 

“TNFa reduces BMPR-II expression in vitro and in vivo” [41], the REACH reading engine extracts 

the interaction “TNFa negatively regulates BMPR-II”. By using natural language processing 

(NLP), machine readers are capable of extracting interactions from hundreds or thousands of 

papers in a matter of hours, achieving a substantial speedup over manual information extraction 

[42-44]. For this reason, automated methods for information extraction, such as machine reading, 

are used to assemble computational models of intracellular signaling networks. 

However, current state-of-the-art methods for automation of network assembly are fraught 

with obstacles that make accurate network assembly time-consuming and labor-intensive [45-47]. 

NLP enables faster information retrieval, but at the price of reduced accuracy. Even manually 

extracted information may be inconsistent from one source to the next. Accurate representations 

of biological interactions are critical for assembling signaling networks, since even one misplaced 

interaction can have drastic consequences for understanding the true function and behavior of the 

network. In the same vein, missing interactions in an assembled signaling network can also affect 

dynamic behavior and lead to inaccurate conclusions.  



 11 

2.4 Database resources 

2.4.1 Entity databases 

Entity databases curate information on biological entity types (Table 1). For example, the 

UniProt database contains information on genes, known transcripts, as well as information on the 

gene product, if available. UniProt also provides a convenient service for mapping plain text names 

to standardized IDs – a process also known as grounding. Grounding is an important step in the 

machine reading process, as it assigns a unique ID to each extracted entity. There is currently no 

resource that aggregates data on all biological entity types - proteins, genes, small molecules, 

biological processes, and miRNAs. While GILDA [48] is capable of inferring standardized IDs 

for multiple entity types from text, the accuracy of this tool varies greatly depending on the entity 

type. Thus, finding standard IDs for these entities is reliant on individual databases.  

Entity databases can also provide valuable metadata describing the curation efforts for an 

entity. For example, each gene in the UniProt database has an assigned annotation score, which is 

an amalgamation of evidence of the gene and gene product’s existence, including cross-references 

in other databases, known aliases, experimental evidence, and more. The annotation score has an 

integer value in the interval between 1 and 5, where score of 5 indicates ample evidence of the 

protein in existing literature and databases, and score of 1 indicates little to no available 

information about the protein. For example, the TP53 gene in humans (UniProt ID P04637), a 

well-known tumor suppressor, has an annotation score of 5, while the OATL1 transcript in humans 

(UniProt ID B4DF03), which has not been observed at the protein level, has an annotation score 

of 1.  
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Table 1. Entity databases frequently used for grounding entities. 

Name Entity type Programmatic 

access? 

Size 

UniProt [49-51] Genes and proteins Yes (API) 569,213 reviewed / 

245,871,679 unreviewed 

proteins 

CHEBI [52] Chemicals and small 

molecules 

Yes (Web service) 151,344 substances / 

139,678 annotations 

GeneOntology [12, 53, 

54] 

Biological Processes Yes (API) 43,096 GO terms / 7,486,838 

annotations /1,503,185 gene 

products 

miRbase [55] mRNAs No 38,589 miRNAs 

 

2.4.2 Interaction databases 

Interaction databases curate information on known biochemical signaling events (Table 2). 

This information can be curated manually, or inferred automatically from data. One database, 

STRING, contains both of these types of curated information about predicted protein-protein 

interactions (PPIs). STRING curates several different types of data on PPIs such as physical 

interactions, homologous sequences, and co-mentions in databases. The interactions in STRING 

are drawn from pre-existing databases, or manually extracted from either whole manuscripts or 

abstracts. STRING also scores the confidence in an interaction as a numeric value from 0 (low 

confidence) to 1000 (high confidence). Furthermore, there is detailed information on association 

type available for a subset of interactions. Experimental evidence that shows physical binding 
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increases the experimental score (escore). The database score (dscore) is derived from curated data 

from other sources. The textmining score (tscore) measures the co-occurrence of the two proteins 

in abstracts. These fields are present for all protein-protein interactions in the STRING database. 

The other score types include co-expression, homology, co-occurrence, fusion, phylogeny, and 

neighborhood scores.  

Two other databases, Reactome [56] and BioGrid [57] also contain a sizeable number of 

PPIs. While both of these databases contain other interaction types, the bulk of the interaction data 

is mostly PPIs. BioGRID contains over 2 million protein-protein or protein-gene interactions, 

while containing <30,000 chemical interactions. While these databases store the same type of 

interactions as STRING, they are smaller and do not have scoring metrics. STITCH is a sister 

database to STRING and can be used in the same manner for protein-chemical interactions (PCIs). 

The escore, tscore, and dscore from STITCH are computed similarly to STRING. 

A Gene Ontology (GO) term is a functional association between a gene and a biological 

process, and the GO annotations are based upon several different evidence types and are subject 

to multiple quality control measures [54]. Biological processes are frequently included in 

interaction networks, and the GO database standardizes these entities (Table 1). However, these 

annotations can also be used to judge the quality of protein-biological process interactions.  
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Table 2. List of popular interaction and pathway databases. 

Name Curation API access? Size 

SIGNOR [58] Manual (staff curators) No 29,245 interactions 

Pathway Commons 

[59] 

Manual (from data 

providers) 

No 5,772 pathways /2,424,055 

interactions/ 22 databases 

WikiPathways [60] Manual (registered users) No >1,100 pathways 

Reactome [56, 61] Manual (staff curators) Yes 13,827 interactions / 2536 pathways 

STRING [11, 62, 63] Manual and automated Yes  >20 billion interactions 

BioGRID [57] Manual and automated No >3 million interactions 

STITCH [13] Manual and automated Yes  1.6 billion interactions 

KEGG [24] Manual (staff curators and 

data providers) 

No 59 pathways 

HPRD [64] Manual (staff curators) No >40,000 PPI, 36 pathways 

 

2.4.3 Metadatabases 

Due to the overwhelming number of interaction databases, metadatabases are gaining in 

size and popularity (Table 3). These metadatabases contain interactions from multiple sources and 

often have additional functionality such as visualization or sharing plugins. Metadatabases such as 

IntAct and OmniPath [65] aim to curate all possible interaction and pathway data in one repository. 

Other metadatabases, such as PCnet and the INDRA database use the aggregated information to 

provide a measure of confidence in the individuals interactions. 

The Parsimonious Composite Network (PCnet) [66] is a high-confidence network of 

protein-protein interactions. PCnet uses 21 different human interaction databases to inform the 

network, where each interaction must be found in at least two of the 21 networks. This composite 
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network excludes interactions that are not reproducible, and therefore, it contains only high-

confidence interactions. While PCnet interactions are highly supported, they are undirected, and 

independent of context. 

The Integrated Network and Dynamical Reasoning Assembler (INDRA) is a system that 

draws on natural language processing tools and structured databases to collect statements about 

mechanistic and causal entity interactions [45]. INDRA relies on a number of machine readers to 

extract these interactions from literature. The INDRA database stores these statements that have 

already been processed, and provides a belief score for each interaction in its database.  

 

 

Table 3. Common interaction metadatabases. 

Name Curation API? Representation format Size 

NDEx Manual (registered users) Yes CX >5,000 networks 

PCnet Manual (staff curators) No SIF 21 networks/databases 

INDRA Manual and automated Yes PySB, SBML, BEL, JSON N/A 

IntAct [67] Manual (staff curators) No PSI-MITAB 5,565,271 interactions 

OmniPath Manual (staff curators) Yes SIF 100+ networks/databases 
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2.5 Network curation 

2.5.1 Network standardization 

To increase network accessibility and usability, many efforts have been made to 

standardize representation of signaling networks. Biological Expression Language (BEL) [68], 

Systems Biology Graphical Notation (SBGN) [69], Biological Pathway Exchange (BioPAX) [70], 

and Biological system Representation for Evaluation, Curation, Interoperability, Preserving, and 

Execution (BioRECIPE) [9, 71] are a few examples of network representation formats. For 

curation of directed interactions or networks, the BioRECIPE representation format is both human- 

and machine-interpretable [9]. Any network in BioRECIPE is also executable, and is compatible 

with a number of tools and other representation formats. For example, Systems Biology Markup 

Language (SBML) [72], a machine-interpretable representation format, is compatible with 

BioRECIPE. Translation between these two formats is automated and allows for increased 

reusability with SBML and modeling of dynamic behavior with BioRECIPE. 

2.5.2 Network verification 

There is a deficit in current methods for using existing interaction databases for verification 

of signaling networks. While there are many tools that can compute network similarity, such as 

MIMO [73] or SAGA [74],  they can only do so between exactly two existing networks. VIOLIN 

(Verifying Interactions of Likely Importance to the Network) [75] evaluates the similarity between 

networks as measured by shared interactions (described in greater detail in Section 2.7.1).  
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 Other tools allow for hosting and collaborative annotation of interaction networks. With 

platforms like BioKC [76] and MINERVA [77] curators can upload networks and provide 

feedback on networks curated by other users. However, their verification process is entirely 

internal - MINERVA has quality control settings to ensure all fields for uploaded annotations are 

complete. Other tools, such as CompNet [78] and Cytoscape [79], have features for visualizing 

overlapping signaling networks. There are multiple tools for comparing networks inferred from 

co-expression data ([74]). However, these tools do not incorporate a priori knowledge from 

interaction networks or databases. Furthermore, these tools are unable to compare more than two 

networks, and often have size limits- one exception is CoDINA [80], however, this tool assumes 

that networks have been inferred from expression data. To curate comprehensive, reliable, and 

context-aware networks, there is a need for verification methods integrated with existing 

knowledgebases, that are capable of comparing three or more large networks.    
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2.5.3 Network sharing and accessibility 

Platforms for sharing and annotating model repositories influence information availability.  

With platforms like BioKC [76] and MINERVA [77] curators can upload networks and provide 

feedback on networks curated by other users. Other hosts, such as BioModels [81] or 

CellCollective [82], often do not support automated methods for network curation. 

 

Table 4. Model repositories. 

Name Programmatic 

access? 

Compatible model formats Number of models/networks 

NDEx [83] Yes (API) CX >5,000 networks 

BioModels [81] No SBML (preferred), CellML, 

matlab 

2,647 models 

CellCollective [82]  No SBML, Boolean expressions 229 models 

MINERVA [77] Yes (API) SBML 9 networks 

BioKC [76] Yes (API) SBML No public networks 

Path2Models [84] No SBML ~140,00 models 

MINT [85] Yes (API) MITAB >90 hosted models 

 

2.6 Element-based models 

Understanding the complex feedback between genes, protein, chemicals, and larger cell 

processes requires modeling methods capable of representing different scales, both in terms of size 

and time. In contrast to causal models inferred from expression or other genomic or epigenomic 

data, mechanistic models incorporate a priori knowledge about signaling events. Executable 
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mechanistic models are used to study dynamic behavior, and they rely on either ODEs [23], 

reaction rules [86], or element update rules [2, 87, 88].  However, mechanistic modeling of cellular 

processes and biochemical interactions may also rely on reaction rates and other kinetic parameters 

that are not readily available.  

Element-based modeling [2, 89-91] is capable of representing biochemical reactions 

without strictly relying on most of these parameters. In this approach, each model element 

represents a biological entity (described in Section 2.4.1), and the element state over time is 

determined by its update rules. The update function for an element may be based on Michaelis-

Menten reaction kinetics, or a discrete function. Discrete models [14, 92, 93] are an example of 

element-based models, as are Bayesian Networks [94]. 

2.7 DySE 

The Dynamic System Explanation (DySE) [89] framework is a collection of methods and 

tools for information extraction, as well as curation and analysis of element-based models. DySE 

uses interactions obtained by machine reading to automatically assemble executable models at 

different levels of abstraction. The DySE framework includes methods for automated model 

analysis to predict system behavior or guide interventions. One of these methods is the Discrete 

Stochastic Heterogeneous Simulator (DiSH) [87], which is capable of reproducing dynamic cell 

signaling behavior. DiSH takes an executable model written in the BioRECIPE format [71] (Table 

5), along with simulation parameters, and outputs trajectories (i.e., state changes in time) for all 

model elements. The simulation can be parametrized to reproduce in silico any in vitro or in vivo 

scenarios, which include information about the starting state of the system and treatments such as 
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inhibitors, knockouts, added cytokines, etc. DiSH can provide insights into all reachable steady 

states under given scenario, as well as transient state changes over a studied time interval. 

Table 5. BioRECIPE model format. Each element  

Element Name Positive Regulator Negative  Regulator Motif 

Vav2 Gab2 
 

Post-translational 

modification (activating) 

Cdc42 
 

Shp2 Post-translational 

modification (inhibiting) 

RhoA 
 

(Gab2,Shp2) Post-translational 

modifications (AND) 

Gab2_gene E2F1 
 

Transcription -gene 

Gab2_rna Gab2_gene 
 

Transcription - RNA 

Gab2 {Gab2_rna}[HER2] 
 

Translation 

 

2.7.1 VIOLIN  

Beyond finding shared interactions (corroborations), VIOLIN also indicates interactions 

that would extend the model (extensions), as well as interactions that contradict the model 

(contradictions). VIOLIN will flag interactions that cannot be judged automatically- specifically, 

interactions in a potential feed-forward, feedback loops, or self-regulations. These interactions 

must be manually reviewed to be established as corroborations, contradictions, or extensions. 
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2.8 The genomic profile of GBM 

GBM, the most common and deadly brain tumor in adults, is remarkably resistant to current 

treatments [5, 95]. Clinicians utilize radiation, surgical resection, and temozolomide (TMZ) to treat 

GBM patients. Unfortunately, patient response to TMZ is highly variable – specifically, the 

methylation of the MGMT gene determines treatment efficacy [95]. Tumor heterogeneity 

complicates the development of effective therapeutic strategies. Furthermore, these tumors are 

reliant upon a subpopulation of cancer stem cells, which can resist therapy and are thought to 

reinitiate tumor growth following chemotherapy and radiation [96]. While non-stem tumor cells 

may be susceptible to certain drug treatments, cancerous stem cells have been shown to evade 

treatment and restore tumor bulk post-treatment. 

Chemoresistance is a hallmark of GBM tumors. This is due to the large number of 

genetically distinct clones present within one individual tumor [97]. With virtually any chemical 

treatment, there is likely at least one subpopulation that has a mutation which grants resistance. 

From this subpopulation, the tumor will continue to grow. In addition to the diverse landscape of 

potential somatic mutations within a GBM cell, epigenetic changes can affect tumor growth and 

treatment response [98]. Tumors from different patients are also genetically diverse, decreasing 

the chance that one single treatment will be effective for all patients. Given the rapid progression 

of this cancer and likelihood for chemoresistance, patients are in need of individualized solutions.  
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3.0 Automated biocuration tools  

This chapter describes automated approaches for biocuration - FLUTE, MINUET, and 

data-driven literature queries. 

3.1 FiLter for Understanding True Events (FLUTE) 

This section describes the FiLter for Understanding True Events (FLUTE), a database, tool, 

and methodology to select interactions with high confidence from the set of events extracted by 

machine reading. The main contributions of the proposed work are a fast automated tool to reduce 

the vast number of cellular events extracted by machine reading and facilitate rapid model 

building, and a filtration methodology to select interactions for addition to an existing model, and 

to increase confidence in the interactions added to the model. The results highlight the influence 

of query categories and topics on the number of papers found, and on the percentage of selected 

interactions output by FLUTE, and findings are discussed in Section 3.1.4. 

3.1.1 FLUTE workflow  

Figure 3 outlines a typical FLUTE workflow. The selection of inputs for FLUTE is guided 

by user queries and can be compiled, through manual or machine reading of literature, into a set 

of extracted interactions. While FLUTE is best utilized when filtering machine reading output, it 

can be applied to manually extracted interactions as well. FLUTE outputs selected interactions, a 
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subset of extracted interactions, which can then be used to curate models and help answer the 

queries.  

 

Figure 3. Filtration process with FLUTE: Inputs to FLUTE include extracted interactions, scores of these 

interactions that are found in databases, and the user’s selection of thresholds for the scores . Outputs from 

FLUTE include selected interactions determined by their scores and thresholds. 

 

FLUTE can process any set of interactions, from any source, as long as the interactions are 

represented in either a list of edges or the BioRECIPE input format.  The IDs for both entities must 

be known, and the entity types (protein, biological process, etc.) can be inferred from the ID. While 

FLUTE does not explicitly check the effect of the interaction, or the reference listed, this 

information can be used by human curators or by downstream model assembly tools. Each 

extracted interaction also has an associated evidence statement with the text from which the event 

was extracted and could also be used for human judgement. 
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The reading engine REACH [99] was used to extract relevant information from selected 

literature. Through manual curation of machine reading output, four major types of errors in the 

extracted interactions were identified: 

  

1. ambiguous or misconstrued sentences (Omission error) 

2. interactions where one or both elements are incorrectly grounded (Grounding error) 

3., and interactions that have opposite directionality (Direction error) 

4. interactions that have opposite effect (Sign error) 

 

In the case of Omission error, the reader denotes a relationship between two elements that 

does not exist in the evidence statement, while in the Grounding error, the reader was unable to 

match the elements in the interaction to the correct IDs. As an example, for the evidence statement 

“Although Tcf3 binds GSK3, it does not inhibit the activity of GSK3 against axin.”, machine 

reading gives us the following interaction: “Tcf3 inhibits GSK3”. Due to the verbosity of the 

sentence, machines output an incorrect interaction. From the sentence “CtIP (CtBP interacting 

protein) is also critical for HR mediated DSB repair”, machine readers extract an interaction where 

HR regulates DSB, both classified as proteins. However, DSB stands for double-stranded break, 

not the protein DSB, thus leading to a grounding error. The distribution of these error types in the 

context of several queries is described in Section 3.1.6. 

3.1.2 The FLUTE database design 

To harness the advantages of both query-specific machine reading and more reliable 

databases, FLUTE uses multiple databases to determine the confidence in the interactions 
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extracted from literature by machines. The databases used are the GO, STITCH, BioGrid, 

Reactome, and STRING databases. For ease of use, interaction data is stored in a MySQL database, 

and stores the interaction information offline. The database schema is shown in Figure 4. The 

database contains six tables total, which can be classified into four categories: protein-protein 

interaction data, protein-chemical interaction data, protein-biological process data, and ID 

mapping. The aggregated FLUTE database contains more than 30 million unique interactions. This 

setup is easily utilized to select multiple interaction types from the reading, based on the level of 

support found in the literature.  

 

Figure 4. Databases and the connections between databases used by FLUTE. 

Protein-protein interaction data was imported from STRING, BioGRID, and Reactome. 

For STRING, the escore, dscore, and tscore metrics (described in greater detail in Section 2.4.2) 

were included in the database schema. These fields are present for all protein-protein interactions 

in the STRING database. The other score types include co-expression, homology, co-occurence, 

fusion, phylogeny, and neighborhood scores. However, these are less likely to have nonzero 

values, and are less likely to be indicative of a physical interaction, and as such, were not 

implemented in the FLUTE database. In contrast to STRING, Reactome and BioGRID protein-

protein interaction information does not contain a score, and therefore, it was incorporated in 
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FLUTE simply as an indication of whether an interaction is known. All protein-chemical 

interaction data is imported from STITCH. For protein-biological process interactions, the FLUTE 

database also contains list of all GO annotations. While there is no “score” for the confidence of 

these annotations, there is an annotation type that describes the curation method (e.g., 

experimentally, electronically, etc.). 

The final table included in the FLUTE database schema is a mapping for all STRING IDs 

to their UniProt IDs and the HGNC-approved gene symbol. While STRING and STITCH use 

Ensembl IDs for proteins, Reactome and GO use UniProt IDs. BioGRID uses the HGNC-approved 

gene symbol, instead of either of the previously mentioned ID types. Figure 4 shows the 

relationships between the ID table and fields that can be converted. While the ID mapping table 

contains all known data for each of the three ID types, there is no guarantee that all three fields 

will be available for every known protein. 

Executable models assembled downstream of FLUTE require the information about 

interaction direction, therefore, it is important to note that STRING does not always include a 

direction in the interactions it supports. Therefore, FLUTE obtains this information from the 

machine reading output. If there is a specific interaction, for example, phosphorylation, that is 

clearly directed in STRING. Similarly, STRING can determine if an interaction is positive or 

negative depending on whether there is evidence for the sign of interaction. However, this 

information is not always available, and so it has not been implemented in FLUTE, that is, if an 

extracted interaction matches the available data, it will be selected, even if the interaction has a 

Sign error.  
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3.1.3 FLUTE database thresholds  

When a new input from machine readers is provided to FLUTE in response to a user query, 

FLUTE matches elements within this input to the information in the ID mapping table. Once all 

IDs have been matched, FLUTE searches the relevant databases for each interaction. For example, 

the search for PPIs is conducted on the Reactome, BioGRID, and STRING databases. All 

supporting fields, such as scores, are extracted and reported for all interactions. FLUTE discards 

any unmatched interactions. Furthermore, besides guiding literature selection with queries, 

FLUTE allows users to select database thresholds, that is, interaction score thresholds that tailor 

the number and confidence of the selected interactions. For each interaction type, FLUTE can 

select only interactions that meet a certain score. For example, FLUTE can return only PPIs and 

PCIs with escore > 0, which guarantees that all selected interactions have at least one source of 

experimental data. A higher score threshold will decrease the number of selected interactions, but 

it will also increase the confidence in the selected interactions.  

To complement the selection that relies on database thresholds, FLUTE can also select 

interactions based on the year of publication and their repeated occurrence in literature. To do so, 

FLUTE uses two non-database thresholds, one threshold for the earliest allowed publication year, 

and another threshold for the least required number of papers that mention the same interaction. 

Following these thresholds, FLUTE can flag interactions from recently published papers as 

potentially novel interactions, and interactions that appear in multiple papers as between-paper 

duplicates. Besides the between-paper duplicates, there are also within-paper duplicates, that is, 

interactions repeating in the same paper. However, if interactions are repeated in one paper only, 

it was assumed that they are lower confidence interactions when compared to those that appear in 

multiple papers, and therefore, an optional flag for the within-paper duplicates was not 
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implemented. By marking interactions as potentially novel or between-paper duplicates, FLUTE 

allows the user, if desired, to find the interactions that have been recently published, or those that 

have more support in literature. For example, a user query for a well-known pathway may include 

a gene or protein with a recently discovered function. In this case, interaction databases may not 

be up-to-date, and the option to select potentially novel interactions or between-paper duplicates 

could be beneficial for modeling. Furthermore, since these interactions are flagged, the user can 

easily find them and conduct a further manual review.   

3.1.4 Influence of query choice 

To explore the influence of various topics that could be included in queries, FLUTE results 

were obtained for 28 different queries (Table 6). To ensure results were obtained for a wide range 

of possible subjects, 16 different query topic categories (e.g., “Disease and Pathway”, Q7) were 

selected. An example topic for each category (e.g., “Breast Cancer, MAPK/ERK pathway”) was 

chosen, and finally, the terms for each query topic that are combined into a machine readable query 

written as a logical expression (e.g., “breast cancer” AND ("Erk pathway" OR "MAPK pathway" 

OR "Ras pathway")). The queries were written to account for the fact that, in biological literature, 

different aliases can be used across biological papers to represent the same entity (e.g., "rsk 90" or 

RPS6KA1 or RSK-1 or S6K, in Q13a-d), and that some aliases include characters that are not 

accurately recognized by machine reading engines (e.g., ‘-‘ in Q13c).  
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Table 6. Queries: different topic categories, example query terms for each topic category, and the corresponding query 

expressions entered in PubMed. 

# Query topic category Query terms Query expression 

1 Disease  Breast cancer “breast cancer” 

2 Cellular Process DNA repair "DNA repair" 

3 Signaling Pathway MAPK/ERK pathway 
"erk pathway" or "mapk pathway" or "ras 

pathway" 

4 Protein BRCA1 BRCA1 

5 Chemical Progesterone Progesterone 

6a 
Disease and Process 

Breast cancer, DNA 

repair 
“breast cancer” and “dna repair” 

6b Autophagy, cancer  autophagy and cancer 

7

7 
Disease and Pathway 

Breast cancer, 

MAPK/ERK pathway 

“breast cancer” and ("erk pathway" or "mapk 

pathway" or "ras pathway") 

8

8 
Disease and Protein Breast cancer, BRCA1 “breast cancer” and brca1 

9

9 
Disease and Chemical 

Breast cancer , 

progesterone  
“breast cancer” and progesterone 

1

10a 
Process and Protein 

DNA repair, BRCA1 “dna repair” and brca1 

1

10b 
ADAM17, inflammation  ADAM17 and inflammation 

1

11a 
Well-Studied 

EGFR   EGFR 

1

11b 
HER2 her2 

1

12 
New Discovery copb2* copb2 

1

13a 

Multiple Aliases RSK90 

"rsk 90" 

1

13b 
RPS6KA1 

1

13c 
RSK-1 

1

13d 
S6K 

1

14a 

Non-Standard 

Characters 
Beta catenin 

CTNNB1 

1

14b 
“Beta catenin” 

1

14c 
Beta-catenin 

1

14d 
CTNNB 

1

15a 
Different Gene and  

Estrogen receptor 

"Estrogen Receptor 1" 

1

15b 
Protein Name  ESR1 
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1

15c 
  ER 

1

16a 
Same Gene and  PTEN Pten 

1

16b 
Protein Name  GRB2 GRB2 

 

The results in Figure 5, which were obtained for the list of queries in Table 6, suggest that 

the selection of a query topic, the choice of terms and characters in the query, and the terms’ 

presence in literature can all affect the number of papers retrieved from PubMed. As Figure 5 

shows, the number of papers returned by a PubMed search can vary several orders of magnitude 

(from tens to hundreds of thousands) for different queries. For example, a well-studied term (e.g., 

EGFR, Q11a) will return many papers, whereas a recent discovery (e.g., copb2*, Q12) will have 

fewer PubMed hits. Furthermore, for terms with special characters or multiple aliases, machine 

reading may have difficulty extracting all relevant interactions, as shown by examples Q13a-d, 

where searches for different aliases of RSK90 all returned a different number of papers. To get 

comprehensive results, all well-known aliases may have to be included in a query. These results 

highlight the importance of the careful choice of query terms.  
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Figure 5. Influence of query category and term choice (the legend corresponds to query numbers in Table 6) 

on the number of papers found in PubMed and on the number of interactions extracted from the top 200 papers 

(except Q12, Q13b, and Q13c, where PubMed returned less than 200 hits). Results obtained for the same query 

topic category, but different term aliases, or different example terms, are grouped together with the same 

marker shape and similar color. 

To explore the influence of query topic on the number of interactions that machine reading 

can extract, for each query term, either all the found papers were selected, or the top 200 PubMed 

hits with valid PMC IDs (when the number of PubMed hits is larger than 200). A cutoff of 200 

papers was chosen to ensure that every query would return at least a few dozen interactions. The 

results in Figure 5 suggest that the query topic and the choice of query terms could have a 

significant impact on the size of the machine reading output, as the number of extracted 

interactions does not seem to be correlated with the number of papers read. As expected, the query 

topic influences the selection of papers, while scientific texts can vary in the level at which they 

describe systems, from high level review papers, to those that focus on precise mechanistic details 

of a small number of biochemical interactions. The choice of query terms, and the characters that 
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are used in these terms can also have a strong influence, if machine readers are not trained to 

recognize most of the aliases of the same entity.  

Interestingly, the selection of a query topic and query terms did not have a noticeable 

influence on the FLUTE output. In other words, while being conservative and selecting only 8.86% 

(mean computed for the 28 queries in Table 6) of the overall number of instructions provided by 

machine reading, this percent was relatively consistent across queries (standard deviation of 

4.02%). These results suggest that FLUTE can reliably filter interactions for any query category, 

that is, it provides to model assembly only those interactions that have high confidence.  

Finally, compared to manually filtering the interaction sets from the machine reading 

output, FLUTE achieved a significant speedup. Assuming it would take a human approximately 

30 seconds to judge one interaction, the average speedup that FLUTE achieved was 2560.28, with 

a standard deviation of 482.98. That is, FLUTE can increase the rate at which interactions are 

selected from hours to seconds, or from days to minutes. 

3.1.5 Influence of interaction type  

The remainder of the experiments focused on three sets of interactions: the first two sets 

are obtained as a result of the two queries from Table 6, Q6b (Disease and Process query) and 

Q10b (Process and Protein query), and the third set (referred to as a Multiple Protein query) is 

obtained using the REACH reading engine for several individual protein queries (MEK, ERK, 

AKT, GSK3, P70RSK, S6, CDK4, 4EBP1, YB1, SRC, CHK2, MTOR, and PI3K). For queries 

Q6b and Q10b, the 200 most relevant papers were selected from PubMed, and REACH extracted 

865 and 1336 interactions from these papers, respectively. In the third case, from the papers 

returned by the REACH Explorer tool, followed by REACH (when necessary to get more papers), 
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followed by manual selection of ten relevant (all in the context of melanoma) papers for each of 

the 13 proteins. REACH read these 125 papers and extracted 6305 interactions. 

To prepare the reading output for FLUTE, the type for each interaction was determined, in 

particular, focusing on all the interactions where the interacting elements are either of protein (P), 

chemical (C), or biological process (BP) type (i.e., interactions of type PPI, PCI, PBPI, CCI, CBPI, 

and BPBPI), and all the other interactions are assigned to type Other (Figure 6(a)). The interaction 

type Other includes molecules such as mRNAs, protein families, or unknown types. Protein 

families are common, as well as complexes, however, these types are excluded from analysis in 

this work due to difficulty mapping to a standard identifier, and a lack of data on known 

interactions. 

 

Figure 6. The influence of interaction type and machine reading errors on the number of selected interactions. 

(a) Overall distribution of interaction types for the three different queries, disease and biological process query, 

biological process and protein query, and multiple protein query. (b) The comparison between FLUTE and 

manual selection; human judge decides whether interaction is correct given literature evidence, and FLUTE 
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selects the interactions that are supported by databases. (c) The distribution of errors types in machine 

extraction of PPIs, PBPIs, and PCIs for the three different queries. 

The three sets of extracted interactions obtained from machine readers were processed both 

manually and with FLUTE (Figure 6(b)). First, each interaction was manually assigned to one of 

the two groups, “correct” and “incorrect”, based on whether the evidence statement that the 

machine reader provided agreed with the extracted interaction or not. FLUTE was used to filter 

the same three sets of extracted interactions, that is, assign each interaction to either “selected” or 

“discarded” group, based on whether it was supported by the databases that FLUTE uses.  

The results shown in Figure 6(b) suggest that the accuracy of machine reading varies with 

different interaction types. From manual filtration, the PBPIs appear to be correct more often (54-

69% correct), while the PCIs are the least likely to be correct (36-45% correct). Approximately 

half of all PPIs are correct (47-52% correct). Machine reading may erroneously extract PCIs from 

papers that use a recognized chemical in the methods protocol. Grounding may also be difficult 

for chemical compounds, due to the prevalence of non-standardized names. On the other end of 

the spectrum, PBPIs may be correct more frequently since biological process names are almost 

never abbreviated. Overall, for all three interaction sets, the number of correct interactions is 

approximately half the size of all the extracted non-Other interactions. On the other hand, across 

all three sets of interactions, FLUTE selects much higher percent of PPIs, compared to the non-

PPI interaction types. The number of interactions selected by FLUTE is also smaller than the 

number of interactions manually marked as “correct”. While the number of selected PPIs is similar 

to the number of correct PPIs, FLUTE is much less likely to select PCIs and PBPIs. This is due to 

the fact that the information on both PCIs and PBPIs is found less frequently in the databases used 

by FLUTE. This results in a much smaller output from FLUTE, compared to manual filtration, as 

well as a different distribution of interaction types in the final output.  
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3.1.6 Influence of machine reading errors 

To provide further guidance for the use of FLUTE, the types of errors in the reading output 

was investigated, along with whether FLUTE is sensitive to the difference in machine reading 

error types, and also how well it can filter out the errors. Figure 6(c) shows the relative abundance 

of the four error types, Grounding, Omission, Direction, and Sign (see Section 3.1.1 for 

definitions) in the three reading sets. For the Disease and Process query (Figure 6, left) and the 

Process and Protein query (Figure 6, middle), the distribution of error types varies slightly across 

different types of interactions (PPI, PBPI, and PCI), with mostly Grounding and/or Omission 

errors across all three interaction types, while Sign errors are generally lower. For the Multiple 

Protein query (Figure 6, right), with the exception of Direction error, the other three error types 

remain consistent across interaction types. The machine reading output rarely had Direction errors 

in any query category or interaction type for the selection of manually curated interactions studied.  

The results in Figure 6(c) suggest that FLUTE could be especially useful in the case of 

papers with proteins or genes that have non-standard names, or descriptions of complicated 

signaling pathways, such as those obtained for the example Disease and Process and Process and 

Protein queries. This is due to the fact that FLUTE is capable of filtering out a significant portion 

of interactions with Grounding and Omission errors. However, FLUTE does not address 

interactions with Direction or Sign errors, as STRING and STITCH do not always contain 

information about the direction and sign of interactions. Furthermore, GO annotations do not 

provide cause and effect information, only correlations, and therefore are not suitable for 

assignment of direction or sign.  

Overall, FLUTE performed well on the interaction sets due to the relatively low occurrence 

of both Direction and Sign errors in these sets, but this may not be the case for other queries and 
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interaction sets. In general, the information about direction and sign is critical for creating models 

that are used to study system dynamics, and a number of Direction and Sign errors can often be 

identified by examining contradictions within the machine reading output.   

3.1.7 Interaction scores and thresholds  

FLUTE allows the user to choose confidence level for selected interactions, that is, for the 

three different score types, the user can choose a score threshold value for interactions. Using 

several threshold values (0, 200, 400, 600, 800) for the three STRING score types, the effect of 

score types and their values on the FLUTE output size were studied. As Figure 7 shows, the 

number of selected PPIs decreases with the increase of a threshold. While the number of selected 

interactions decreases linearly with escore and tscore thresholds, the number of selected 

interactions is affected only at very low or very high threshold value for the dscore. The escore 

and dscore metrics are stringent due to the type of evidence required: either evidence of physical 

binding, or a well-known association present in a pathway database, respectively. The tscore seems 

to be least selective, allowing more interactions to pass through the filter, while escore causes the 

largest reduction of output size. Since the tscore is calculated using abstract co-mentions, there is 

less confidence in the results using a tscore threshold than if an escore threshold had been used.  
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Figure 7. The number of selected interactions, PPIs (top) and PCIs (bottom) as a function of a score threshold 

for each score type, for the three different queries. 

For PCIs, a similar threshold-based approach using the score types from the STITCH 

database can be implemented. However, due to the scarcity of PCIs in the selected output, only 

the STITCH escore can be used as a threshold. Similar to the PPIs, the number of selected PCIs 

decreases with the increase in the score threshold. Any escore threshold larger than 0, for all three 

queries, decreases the number of selected PCIs by ~66-67%. While the escore metric appears to 

be the most stringent for all the interaction sets, those interactions that go through the filter using 

the escore have concrete evidence of physical interaction. Therefore, there is higher confidence in 

any interactions, either PPIs or PCIs, that are selected using the escore.  
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3.1.8  FLUTE precision and recall 

To validate the correctness of the PPIs selected by FLUTE, the overlap between human 

judgement and FLUTE output was compared. Precision and recall were calculated for each query, 

by finding the percent of PPIs selected by FLUTE that were also marked as correct (precision), as 

well as the total number of interactions manually judged as correct that were also selected by 

FLUTE (recall). For each score type (escore, tscore, or dscore), the precision and recall were 

calculated at scores 0-1000, with intervals of 200. Both the effect of using one subscore as a 

threshold and using a combination of all three subscore types were tested. Figure 8(a) shows the 

effect of changing one subscore threshold at a time while the other two subscores have no threshold 

constraints. In Figure 8(b), the average precision and recall was calculated for each of the 125 

different score type combinations. To get the average precision and recall, the mean for each 25 

precision and recall values were considered, where one score type is kept with a constant value. 

Figure 8(c) shows precision and recall for PCIs at one threshold, due to the small output size of 

filtered PCIs, and PBPIs supported by the GO database. Using one subscore threshold at a time 

favors higher recall, at the cost of precision, while using multiple subscore thresholds together 

results in high precision but low recall. For the Multiple Protein interaction set, increasing the 

threshold did not increase precision, however, it did for the other two queries. Recall decreased in 

response to raising the score threshold, since higher thresholds exclude more interactions. As the 

threshold is increased, FLUTE inevitably excludes more correct interactions in the selected output.  
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Figure 8. Precision and recall of FLUTE, compared to human judging, and the sensitivity of precision and 

recall to the scores, for the three different queries: (a) precision and recall when filtering PPIs with only one 

subscore at a time, (b) average precision and recall when filtering PPIs for all possible subscore combinations, 

and (c) precision and recall when filtering PBPI and PCIs. 

The increase of precision in response to more stringent score thresholds (Figure 8) indicates 

that higher STRING and STITCH scores are correlated with correct machine reading output. Any 

of the three STRING score types that were tested, or the STITCH escore, are capable of 

differentiating between correct and incorrect machine reading output. Using interaction databases 

to inform interaction selection results in a higher-confidence output. Overall, these suggest that 

FLUTE can prioritize either quality or quantity of interactions, depending on user-determined 

thresholds. Selecting a low FLUTE threshold will output a higher quantity of interactions, at the 

cost of the correctness of the individual interactions. By comparison, a high threshold will output 

less interactions, however, there will be more confidence in the results.   

Tables 7-9 show the updated precision and recall when different combinations of database 

and non-database thresholds are used, for filtering PPIs, PCIs, and PBPIs. The publication year 

threshold was chosen based on when the oldest dataset was gathered in the three interaction sets, 
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Disease and Process, Process and Protein, and Multiple Protein. The Multiple Protein interactions 

set was obtained from papers published as recently as 2016, while the other two sets were obtained 

from papers up until 2018. Therefore, for the PPIs (Table 7), interactions published after 2014 

were chosen, which would return potentially novel interactions. The duplicate threshold was set to 

either 2, 4, or 6 duplicates (interactions extracted from 2,4, or 6 papers, respectively) as anything 

beyond 6+ duplicates is extremely rare in the interaction set. For the Disease and Process PPI 

dataset, the output is small enough that there are no between-paper duplicates. The upper limit on 

number of duplicates increases as the size of the interaction set increases, so the optimal non-

database thresholds change for each interaction set. These interactions were flagged, and added to 

the PPIs filtered using the FLUTE database thresholds.  

Table 7. The effect of inclusion of between-paper duplicates or potentially novel interactions on precision and 

recall in PPIs. Red numbers besides recall indicate the number of true interactions added by using non-

database filters. 

Query 

  Any 

STRING 

score ≥0 

Any 

STRING 

score ≥0 or 

published 

after 2014 

Any 

STRING 

score ≥0 or 

2+duplicates 

Any 

STRING 

score ≥0 or 

4+duplicates 

Any 

STRING 

score ≥0 or 

6+duplicates 

Any 

STRING 

score ≥0 or 

2+duplicates 

or published 

after 2014 

Process 

and 

Protein 

Precision 0.74 0.53 0.74 0.73 0.72 0.74 

Recall 0.60 (+0) 0.91 (+74) 0.66 (+15) 0.63 (+7) 0.62 (+6) 0.92 (+76) 

Disease 

and 

Process 

Precision 0.76 0.37 -- -- -- -- 

Recall 0.37 (+0) 0.48 (+6) -- -- -- -- 

Multiple 

Protein 

Precision 0.58 0.57 0.57 0.58 0.58 0.55 

Recall 0.69 (+0) 0.75 (+38) 0.72 (+18) 0.70 (+9) 0.70 (+3) 0.77 (+50) 

 

Similarly, the PCIs (Table 8) and PBPIs (Table 9) were filtered, using the least stringent 

interaction database threshold, a 2014 publication year thresholds, or a thresholds of at least two 

between-paper duplicates. As expected, interactions selected using these non-database filters 

greatly increase the recall of FLUTE output, however, this comes at a cost to precision. These 
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results show that using flags may be useful for indicating interactions that could benefit from 

manual review, but these thresholds are not rigorous enough to warrant automatic inclusion into 

filtered output. The research topic determines the queries as well as the machine reading output 

sets, and therefore, the optimal combination of thresholds will be largely context dependent.  

Table 8. The effect of inclusion of between-paper duplicates or potentially novel interactions on precision and 

recall in PCIs. Red numbers besides recall indicate the number of true interactions added by using non-

database filters. 

Query 

  

Any STITCH 

score ≥0 

Any STITCH 

score ≥0 or 

published after 

2014 

Any STITCH 

score ≥0 or 

2+duplicates 

Process and 

Protein 

Precision 0.33 0.36 0.66 

Recall 0.02 (+0) 0.90 (+88) 0.43 (+40) 

Disease and 

Process 

Precision 0.67 0.34 0.75 

Recall 0.08 (+0) 0.40 (+8) 0.12 (+1) 

Multiple Protein 
Precision 0.54 0.43 0.48 

Recall 0.14 (+0) 0.29 (+36) 0.25 (+26) 

 

 

Table 9. The effect of inclusion of between-paper duplicates or potentially novel interactions on precision and 

recall in PBPIs. Red numbers besides recall indicate the number of true interactions added by using non-

database filters. 

Query 

  

Any GO 

annotation 

Any GO 

annotation 

or 

published 

after 2014 

Any GO 

annotation or 

2+duplicates 

Process and 

Protein 

Precision 0.74 0.68 0.76 

Recall 0.13 (+0) 0.79 (+69) 0.51 (+40) 

Disease and 

Process 

Precision 0.85 0.42 0.84 

Recall 0.18 (+0) 0.51 (+52) 0.39(+33) 

Multiple 

Protein 

Precision 0.67 0.65 0.67 

Recall 0.13 (+0) 0.38 (+59) 0.34 (+56) 
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3.1.9  FLUTE database-based expansion of interaction set 

Besides selecting high-confidence interactions using database thresholds, the FLUTE 

database can also be utilized to find interactions by their citation. In other words, to supplement 

the results of machine reading, a function in FLUTE searches the FLUTE database for additional 

interactions that cite the same papers as those read by reading engines and includes this set of 

interactions in the output. This FLUTE function allows for finding interactions in the selected 

papers that reading engines have missed. 

3.2 Selecting context-aware, targeted literature 

This section describes the use of automatically generated targeted queries in information 

extraction conducted by machine readers, followed by automated reasoning about affected 

signaling networks and biological processes. This method allows the for identification of 

differentially expressed genes (DEGs) in the context of a disease, cell line, tissue type, or other 

condition (e.g., drug treatments), and for using them to form query terms when searching literature.  

3.2.1 Identification of differentially expressed genes  

As shown in Figure 9, the first step in the query design method is to define a context for 

literature search. This approach allows a user to automatically design queries for many different 

contexts, including any biological condition that can be observed long enough to generate gene 

expression data. The user selects a data source and a relevant dataset from that source. While any 
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kind of gene expression data can be used (microarray, RNA-seq, or single cell RNA-seq), public 

databases for expression data most frequently include RNA-seq data. Public databases for RNA-

seq data include the Cancer Genome Atlas (TCGA) [100], Gene Expression Omnibus [101], and 

the Expression Atlas [102], all of which contain sufficient expression data to be used in the 

proposed query generation method. 

 

Figure 9. The automated query design process for information retrieval in biomedical research. 

Once the dataset file is selected and input by the user, the proposed query design method 

identifies genes that are differentially expressed in the context of interest (e.g., disease state, cell 

line, etc.), compared to the control. The RNA-seq technique provides insight into the 

transcriptional activity of a cell population and reveals the number of gene transcripts present at a 

single point in time. For any gene X, its differential expression was computed as the log2 fold 

change between the amount of its transcript (𝑿𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕) in two scenarios, control (𝑿𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕
𝒄𝒐𝒏𝒕𝒓𝒐𝒍 ) 

and disease state (𝑿𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕
𝒅𝒊𝒔𝒆𝒂𝒔𝒆 ), a common method for measuring changes in gene expression [103]. 

Since the magnitude of the change from the control is the relevant measurement, and not the 

direction of the change (i.e., increase or decrease), the absolute value of the change was used:  

𝒅𝑿 = |𝐥𝐨𝐠𝟐

𝑿𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕
𝒅𝒊𝒔𝒆𝒂𝒔𝒆  

𝑿𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕
𝒄𝒐𝒏𝒕𝒓𝒐𝒍 | (1) 
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After determining the 𝒅𝑿 value for all transcripts in the selected RNA-seq dataset, the 

transcripts were sorted in a descending order of their 𝒅𝑿 values (i.e., descending magnitude of 

change). A threshold for the 𝒅𝑿 value was set to ensure that all genes used as query terms are 

relevant to the dataset context. Specifically, 2.0 was set as the threshold, that is, any transcripts 

that have 𝒅𝑿 < 𝟐. 𝟎 were removed from the sorted list. The standard threshold for 𝒅𝑿 is usually 

2.0 or 1.5 [103], based on what a cell biologist would consider notable or likely due to the effect 

of the disease or altered state, and not just noise in gene expression. While 𝒅𝑿 ≥ 𝟐. 𝟎 was the 

chosen threshold for a DEG, the user can adjust this threshold to suit the research context (i.e., 

diseases or cell types with more or less DEGs than expected). The transcripts remaining in the 

sorted list were considered DEGs. As probable indicators of a disease state, these DEGs become 

candidates for query terms. To give an estimate of an expected size of the sorted DEG list, previous 

work on analyzing many RNA-seq datasets over a wide range of conditions, including disease, 

tissues, cell types, drug treatments, etc., has shown that the median number of DEGs (with 𝒅𝑿 ≥

𝟐. 𝟎) per dataset is 92 [104]. However, as many as 10,000 DEGs per dataset were also observed, 

although rarely. Reasonably, dozens to hundreds of DEGs (with 𝒅𝑿 ≥ 𝟐. 𝟎) were expected, out of 

the 20,000+ genes in an RNA-seq dataset. 

3.2.2 Selection of query terms 

Using all DEGs with 𝒅𝑿 > 𝟐. 𝟎 to formulate a query is still not practical, as there can be 

tens or hundreds of such DEGs. Instead, to determine the number of DEGs to be used as query 

terms, this method estimates the number of papers that would be retrieved from a literature 

database when using the query formed from these terms. For example, in PubMed, the “popularity” 

of genes varies widely: TP53 is a well-known oncogene with over 100,000 papers found in 
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PubMed, and therefore, any query containing “p53” will return more papers than a query using a 

novel gene.  

The UniProt annotation score (described in greater detail in Section 2.4.1) is used to 

estimate the impact of each DEG, as a possible query term, on the number of papers retrieved. The 

annotation score is one possible measure of how established a gene is in the literature. To decide 

which DEGs to include as query terms, both the annotation score and the 𝒅𝑿 value are considered. 

The combination of these two measures allows the design of queries for different objectives or 

tasks, for example, to search for literature that contains a few well-known (high annotation score) 

proteins, or many novel or unstudied (low annotation score) proteins. Furthermore, by 

incorporating the UniProt annotation score to choose terms, this method automates query design 

that will lead to a selection of a manageable number of papers. Additionally, the number of papers 

found in a literature database as a result of the query will be different for each user depending on 

the input dataset, annotation score, and the addition of new publications in the literature database, 

and so this method allows to tailor the query design process to the user’s research goals. The DEGs 

that are selected to be used in a query are referred to as query term DEGs from this point forward. 

Different research tasks, paper contexts, and datasets will require a different number of 

papers to be read. Therefore, this method allows the user to provide an additional input, 

𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕, which will influence the number of papers selected for reading. The 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕 

input can be either categorical or a discrete number greater than 0, and is used in this method to 

determine the cut-off parameter, 𝑪. The cut-off 𝑪 value is in turn used to select those DEGs that 

will be included in the query. Starting with the DEG that has the largest 𝒅𝑿 value, DEGs were 

added to the query term list, as long as the sum of their annotation scores is smaller than or equal 

to the cut-off value 𝑪.  
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There are three categories to indicate the level of automated reading needed to comprehend 

all information in the paper set. The first category, “human-readable”, results in a selection of a 

small number of papers, suitable for a human to read in a short time (e.g., hours). The second 

category, “automation suggested”, leads to a medium number of selected papers that is possible 

for a human to read (e.g., days), but more practical if processed by machine reading. The third 

category, “automation required”, results in a large number of selected papers, only practical for 

machine reading. 

Allowing for two different ways to enter the 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕 input provides additional 

flexibility. If the user knows exactly which value they want to use for the cut-off parameter, they 

can directly enter it. However, in the research process, the users may sometimes be interested in 

exploring a smaller subset of relevant papers, or doing a more comprehensive exploration of the 

topic, and the three categories listed above are useful in such cases. The values of the parameter 𝑪 

that correspond to the three categories are listed in Table 10.  

Table 10. User-input categories, the corresponding cut-off parameter C for the annotation score sum, as well 

as the expected maximum and minimum number of query term DEGs. (These values do not account for DEGs 

with no entry in the UniProt Database). 

 

While these values are set internally in the code, they could be easily changed to better suit 

different domains or research goals. For example, for a “human-readable” reading output, the cut-

off value 𝑪=15, and following the method for selecting query term DEGs given 𝑪, this could result 

in as few as 3 query term DEGs (all with annotation score 5) or as many as 15 query term DEGs 

(all with annotation score 1).  
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To this end, it is worth noting that not all DEGs are always found in UniProt, and therefore, 

the DEGs without a corresponding UniProt entry are assumed to have annotation score value of 0. 

As this is possible even for DEGs with large 𝒅𝑿 value, this could lead, in rare cases, to the actual 

number of query term DEGs exceeding the cut-off value 𝑪 (e.g., this would be 15, for the example 

above). While, in theory, the number of DEGs with 𝒅𝑿 ≥ 𝟐. 𝟎 and annotations score of 0 could 

potentially be very large, this case was not encountered. Moreover, the experiments have shown 

that allowing for DEGs with annotation score 0 to be added to the query term list does not 

significantly increase the number of selected papers, while at the same time can lead to the retrieval 

of papers with very novel disease mechanisms. Table 10 provides the 𝑪 values that were used for 

the three user-input categories, and the corresponding typical minimum and maximum number of 

query term DEGs. It is important to note that the typical minimum and maximum numbers shown 

in Table 10 are easily determined from 𝑪 values, as they take into account only those genes with 

an annotation score greater than 0, and thus the actual maximum number of DEGs could sometimes 

be even larger.  

Once the list of the query term DEGs is determined, their official gene names (e.g., TP53, 

BRCA1, EGFR) are combined with a logical OR, thus allowing any paper that includes at least 

one of the query term DEGs to be selected. The logical OR was used to retrieve the maximum 

number of relevant papers for each query, since a logical AND would make the query more 

specific, and so restrict the number of papers. Other combinations of logical AND and OR between 

the terms in the query are possible and could be informed by the user or inferred if relevant 

information is available.  
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Furthermore, since queries should be able to focus on a particular context, Context was 

added to this logical expression as a necessary condition, that is, it is combined with the other 

terms using a logical AND:  

(𝒈𝒆𝒏𝒆𝟏  𝐎𝐑 𝒈𝒆𝒏𝒆𝟐 𝐎𝐑 … 𝒈𝒆𝒏𝒆𝑵) 𝐀𝐍𝐃 𝑪𝒐𝒏𝒕𝒆𝒙𝒕 (2) 

where each 𝒈𝒆𝒏𝒆𝒊 (i=1,..,N) is the official gene name of one of the N query term DEGs. 

To extract relevant interactions, only papers that mention the context of interest were included. It 

is important to note that one context may have multiple aliases (e.g. “coronavirus”, “COVID-19”, 

and “SARS-CoV-2” are all referring to the same disease). The user can increase the scope of the 

retrieved papers by combining all possible context aliases with a logical OR.  

3.2.3 Using queries in disease explanation  

All machine reading statements from the INDRA database (described in Section 2.4.3) 

were retrieved if they were associated with at least one paper in the reading set. Although the query 

term DEGs that were selected following the method described in in the previous sections are likely 

to participate in these extracted interactions, it is important to note that the interactions output by 

readers will include many other relevant genes and proteins. Thus, these extracted interactions are 

expected to provide the information on intracellular signaling networks that is potentially critical 

for the context originally selected by the user and included as a term in the generated query 

(equation 2).  

The types of biological processes and signaling pathways these interactions are involved 

in reveal the relevance of extracted interactions. PANTHER [105] was used to calculate enriched 

GO terms in the protein-protein interactions within the interaction sets for each query. To assess 

whether enriched GO terms are similar, NaviGo was used to calculate the Resnik similarity score 
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between all GO terms (described in [106]). The signaling pathways and biological processes that 

were represented in the paper sets for each query were studied by determining highly enriched GO 

terms. 

3.2.4 Query design case studies 

To demonstrate the usefulness of the automated query design methodology, results are 

shown for four different contexts. For each context, two queries were automatically designed, one 

with an expected large number of output papers, and one with an expected small number of output 

papers. These results illustrate how DEGs can be used to formulate queries that output relevant 

papers, and how the annotation score affects the volume of papers. These results also show that 

the papers contain interactions that are closely related and are involved in the same GO biological 

processes. 

Four publicly available RNA-seq datasets were selected using the Expression Atlas [102]. 

These four datasets provide gene expression data for both control and disease state in SARS-CoV-

2 [107], ulcerative colitis [108], glioblastoma multiforme [109], and thyroid carcinoma [110]. All 

four datasets express transcription in transcripts per million (TPM) and include the 𝒅𝑿 values 

computed for the disease state with respect to the control state. The following experiments used 

the 𝒅𝑿 values that were provided with selected datasets. These case studies cover three substantial 

topics in biomedical research – autoimmune disorders, cancer, and viral infections. Using 

differential gene expression data from these diseases illustrates how biological data can provide 

valuable information for automatically designed targeted queries. 
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3.2.5 Selection of queries 

To design a query that retrieves a small reading set, as discussed in Section 3.2.2, the effect 

of the cut-off value 𝑪=15 for the annotation score sum was explored, and to design a query that 

retrieves a large reading set, the cut-off value 𝑪=60 was used (Table 10). The queries generated 

for all four contexts for these two cut-off values are listed in Table 11. Notably, the same cut-off 

value 𝑪for different datasets may result in queries with a different number of terms. This can be 

explained by the UniProt annotation score of the top (with large 𝒅𝑿) DEGs in the datasets. Due to 

differences in experiment techniques, environmental conditions, or other factors, gene expression 

datasets from different samples and labs will likely show differences in the top DEGs. Consider a 

hypothetical example where queries are formulated based on two pancreatic cancer datasets, A and 

B, and choose the cut-off 𝑪=10. For dataset A, this value is achieved after adding two DEG query 

terms, since the DEGs with highest 𝒅𝑿 values are P53 and MDM2, which are both very well-

known proteins with an annotation score of 5. For dataset B, the threshold is not passed until five 

DEG query terms are added. The top five most differentially expressed genes are small non-coding 

RNAs, which are generally poorly studied, and each has an annotation score of 2. 
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Table 11. Six automatically formulated queries for three diseases. Each disease has two associated queries, 

which are expected to retrieve different sized reading sets. 

 

3.2.6 Paper retrieval 

Papers were retrieved using PubMed as the most up-to-date and comprehensive source for 

biomedical literature, without any filters for article type, year, or journal. However, results were 

restricted to only those papers with valid PMCIDs, to ensure that all papers can be processed with 

state-of-the-art machine readers. Once queries had been formulated for each use case, they were 

used to search PubMed. Figure 10a shows the number of papers retrieved as a function of how 

many of the top DEGs are used as query terms. As expected, as the number of terms increase, so 

does the number of retrieved papers. However, many query terms, in conjunction with the context 

term, add no additional papers to the reading set. This indicates that some of these DEGs have not 

been explored much or mentioned in papers in the context of the relevant disease, and therefore, 

they may be a fruitful avenue for exploration.  



 52 

 

Figure 10. Number of papers found in PubMed, based on how many of the top DEGs were used as query terms. 

(b) Distribution of paper types by query. 

Figure 10b shows that, as the number of extracted papers in the reading output increases, 

the distribution of article types also changes. The composition of the reading set was studied by 

classifying each paper as either a research article, review, or other (books, documents, etc.). In 

large reading sets, reviews are slightly more common than in small reading sets, which is due to 

one or more query term DEGs having better representation in PubMed. Well-studied genes and 

proteins are more likely to be included in reviews than novel, relatively unknown genes. Since the 

scope of reviews and research articles differ drastically, they are expected to contribute differently 

to the number of extracted interactions. 

3.2.7 Validation of Extracted Interactions 

The statements from the INDRA database were analyzed to validate the paper sets retrieved 

from each query. Figure 11a shows the number of extracted interactions for each query. The 

number of interactions is dependent upon the number of papers, as well as the representation of 

the context and DEG query terms in PubMed. The top 10 enriched GO terms were determined for 

each query and sorted using the false discovery rate (FDR) [111]. The average Resnik similarity 
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score between the top 10 GO terms for each of the eight queries was calculated, where a higher 

score indicates more similarity between GO terms. Finally, Figure 11b shows the percent of DEG 

query terms that are present in the list of extracted interactions. These results, taken together, show 

that these queries retrieve papers that contain relevant signaling events that can be interpreted by 

machine readers, and describe highly related biological processes. In general, this method of 

increasing the cut-off value 𝑪 not only retrieves more papers, but it also increases the number of 

signaling events extracted by readers, without a sizeable cost to relevance, as assessed by GO term 

semantic similarity.     

  

Figure 11. Number of interactions extracted from INDRA for each query, as well as the average pairwise Resnik 

similarity score for the top 10 enriched GO terms (left), and the percent of DEGs used as query terms in each 

case study that are present in the set of extracted interactions. 
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3.3 Managing Interaction and Network (re-)Usability through Evaluation of 

Trustworthiness (MINUET) 

This section describes a methodology for generating complete and accurate cellular 

signaling and interaction networks, based on topological features as well as existing data on 

interactions from several databases. The network curation tool (MINUET) can be used in the 

process of automated network verification, a much-needed step for fast and accurate network 

curation. To this end, the main contributions of this work are a methodology to verify causal 

network models of cellular signaling. 

3.3.1 MINUET workflow 

 

Figure 12. MINUET workflow. 

MINUET (Managing Interaction and Network (re-)Usability through Evaluation of 

Trustworthiness) is a platform for automated network verification and curation. MINUET is 

conducts model verification that relies on both knowledge and data, the vast published literature 

and publicly available databases; it is flexible as it can conduct both context-aware and context-
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independent verification; it is versatile, allowing users to conduct in-design verification during 

model creation, post-design verification of existing models, or a comparison of models to verify 

them against each other; finally, it is fast, due to its automated steps for retrieving and comparing 

interactions. MINUET contributes to “the four r’s” in several ways: it facilitates and evaluates 

reliability and reusability of models and information; it increases the potential for reproducibility 

of predictions by identifying structural differences between models; and it assesses the 

replicability of outcomes and observations by collecting evidence from knowledge and data 

sources. 

As shown in Figure 12, the main input for MINUET is a model network, that is, a list of 

all its entities and interactions. These networks can be found in model repositories, interaction 

databases, and metadatabases (see Sections 2.4.2, 2.4.3, and 2.5.3). MINUET utilizes the 

information from several databases to confirm the network structure, by retrieving information 

about network nodes, retrieving relevant literature, and providing support for interactions. The 

INDRA database, PCnet, and FLUTE (described in greater detail in Section 3.1), are used to verify 

the network edges. Information about network coverage (how many frequently mutated, therefore 

highly important, genes are included) is supplied by TCGA.  

 The first step in the MINUET workflow is to ground entities by finding their unique 

identifiers (IDs), and this process is dependent on entity type. For genes and proteins, the network 

verification method utilizes the UniProt API to automatically determine their standard IDs. 

Specifically, gene and protein names were standardized by mapping to both the Human Genome 

Nomenclature Committee (HGNC) identifier and the HGNC-approved name. These two ID types 

are very common and allow for comparison to many online resources. The automated ID mapping 
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for genes and proteins allows for fully automated verification of gene regulatory networks, protein-

protein interaction networks, and in general, many cell-signaling networks.  

3.3.2 Automated network curation with MINUET 

The automated network curation method has two main steps, literature search in PubMed, 

followed by the use of INDRA API to retrieve all statements. To assemble a network that includes 

relevant, commonly affected pathways for a given context (e.g., disease, cell type, tissue, or a 

biological state), a query was used as an input to the network assembly method. This query has 

two parts connected with logical AND, and each part is a list of terms connected by logical OR 

operator. One list of terms leads to the retrieval of papers from the desired context, and the other 

list of terms refers to relevant signaling networks and pathways (e.g., “signaling OR network OR 

pathway OR cascade OR interaction OR regulation”). For well-studied contexts or broad queries 

that return a large number of papers (in the order of 10,000+), the most relevant papers were 

selected, as determined by the PubMed’s Best Match feature [112]. The second step of the 

automated assembly method takes as input the standardized paper identifiers for the set of context-

specific papers found in the first step and searches the INDRA database using its API to find all 

statements (i.e., interactions) in this paper set.  

The returned statements were limited to those that have only two distinct entities. This 

eliminates statements that represent an edge joining more than two nodes, such as a statement 

describing complex formation. The number of entities in a statement was restricted in order to be 

able to compare all statements to PCnet and other existing networks, which represent steps in a 

signaling pathway as one-to-one interactions. As a result, the automatically assembled network is 
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composed entirely of INDRA statements, where the entities are the nodes, and the interactions 

stored in the INDRA statement are edges.  

Several filters to the automated curation workflow, including those used in the network 

verification approach, improved the quality of this network. These filters are based on the 

information included in each INDRA statement. First, the belief score can be applied as a cut-off, 

since it is determined with respect to the amount of evidence to support the interaction; an 

interaction with a higher belief score is less likely to be a false positive (an invalid or non-existent 

relationship between two entities). To filter by belief score, the cut-off was 0.85, and all 

interactions below that score were discarded. Next, MINUET can also filter by interaction type, 

that is, direct or indirect, as stated by INDRA. For some interactions, INDRA contains evidence 

on whether an interaction is direct or indirect. Other statements do not contain any evidence on the 

interaction type. By selecting for only direct interactions or those with high belief scores, the final 

network contains fewer low-confidence interactions.  

MINUET automatically compares grounded model networks to INDRA statements. This 

step takes one input parameter, the type of network (directed or undirected). For directed networks, 

it iterates through all interactions in the network, and retrieves all statements that match the entity 

identifiers, as well as the direction and sign. For undirected networks, it retrieves statements that 

match the entity identifiers without checking direction or sign. The output of this step is INDRA 

statements that support interactions in the input network.  

Besides automatically comparing the input network with INDRA, MINUET also 

automatically compares the network to all interactions in PCnet. By comparing model interactions 

to PCnet interactions, MINUET identifies which interactions in the model have support from 

multiple curated signaling networks. While PCnet interactions are highly supported, they are 
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undirected, and independent of context. This distinguishes PCnet from INDRA, which contains 

many interactions that are directed and contextual, but have lower confidence. A local copy of 

PCnet was stored as a plain text file, which is also freely accessible and available for download 

from the Network Data Exchange (NDEx) [83].The first step in this case is a conversion of the 

directed network to an undirected one, since PCnet contains only undirected interactions. This 

method then iterates through all model interactions and compares them to all PCnet interactions. 

Finally, it outputs a list of all interactions within the signaling network that are verified by PCnet. 

PCnet can be used by itself to verify a network, or in conjunction with INDRA.   

FLUTE is capable of selecting high confidence interactions and filtering out many 

incorrectly read interactions within a reading set (see Section 3.1). FLUTE encompasses several 

types of biological entities including proteins and genes, chemicals, and biological processes, 

while PCnet is composed of only proteins. FLUTE is also able to provide a score for the interaction 

confidence, unlike PCnet. In contrast to INDRA, the FLUTE database contains interactions with 

a high level of human oversight. FLUTE provides an extra level of scrutiny over INDRA, while 

still being less restrictive than PCnet. The FLUTE tool was specifically designed for interaction 

filtering, unlike PCnet, which is a network. Table 12 summarizes the characteristics of the three 

sources, INDRA, PCnet, and FLUTE, that are used in the automated verification method. 

Table 12. Comparison between INDRA, PCnet, and FLUTE. 
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The methods used for automated network verification can also be utilized for post-design 

curation, thus providing verified interactions by construction. In cases where an existing (baseline) 

model, i.e., its underlying network, fails to capture the full detail of the studied system, an 

automated extension method retrieves new interactions (extensions) to improve network scope. 

The goal is to explore whether these methods can help identify these new important entities and 

interactions to be included in the baseline network. 
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4.0 GBM stem cell model 

This chapter describes an executable model of GBM stem cells that is a general 

representation of key kinase signaling in these cells. Besides being grounded in GBM-specific 

literature, and encompassing over a dozen critical pathways, this model is also capable of being 

parameterized based on biological data. For three GBM stem cell lines, there is available RNA-

seq, RPPA, whole exome sequencing, and in vitro kinase inhibition results. These three cell lines 

(MGG8 [113], GS11-1 [114], and GS6-22 [96]) are all patient-derived, and show different patterns 

of gene expression, protein phosphorylation, and mutations. These cell lines also exhibit 

morphological characteristics of cancer stem cells.  

4.1 Curation of the GBM signaling network 

The goal is to create a standard “baseline” model that can be parameterized for any genomic 

alteration. The interactions themselves should be based on common behavior of GBM stem cells, 

so that the baseline can be adapted to fit a wide range of genomic profiles. To create signaling 

network models, a manual assembly process outlined in Figure 13 is commonly used. The first 

step is a selection of relevant biological system components that have been shown to play a role in 

the disease of interest. These components are supplied by a number of sources, including expert 

knowledge or different publicly accessible databases. These databases may curate canonical 

signaling pathways, such as KEGG [24] or PANTHER [105], or they may collect data on 

individual interactions, such as STRING  or BioGRID.  Interaction databases provide curated, 
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often high-confidence data on signaling pathways in disease or normal cell conditions [66]. A 

disease network can be supplemented with experimental data that is cell- or patient-specific, such 

as genes or proteins that have differential expression, somatic mutations, or altered signaling 

capacity. The final list of biological molecules composes the nodes of the network. The edges are 

created between nodes based on existing data from literature and interaction databases. 

 

Figure 13. Manual network curation process. 

The network focused on pathways upstream of cell cycle or apoptosis, since these pathways 

directly affect tumor survival, and proteins within these pathways are often implicated as either 

tumor suppressors or oncogenes [115-117]. The network also incorporated several pathways 

critical for growth and development (Hippo [33, 118], Hedgehog [119], Notch [15, 98, 120], etc.). 

In order to understand and explain the response mechanisms to kinase inhibitors, the model 

includes the key signaling elements and pathways downstream of 11 kinases, CDK6, AKT, EGFR, 

ERK, GSK3B, Chk1/2, AURA/B, PKC, PI3K, PDGFR, and VEGFR.  
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A simplified view of the baseline model is shown in (Figure 14). This baseline model has 

415 elements and 531 interactions between them, and is represented in the BioRECIPE format (see 

Appendix A- GBM model rules). The model includes the following element types: protein 

(amount), protein (active), genes, chemicals, biological processes, and mutations. To accurately 

represent events such as gene transcription and protein translation, the motifs described in [121] 

were used. New motifs were developed to standardize the representation of interactions within the 

model, and these motifs are listed in Appendix B– Updated motifs.  Subcellular compartments 

such as the mitochondria and nucleus are represented to accurately model Cytochrome C release 

and gene transcription, respectively. There are several key observables, mainly proliferation, 

apoptosis, and cell cycle progression. Note that proliferation is regulated by two elements, cell 

cycle progression and apoptosis.  
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Figure 14. GBM stem cell signaling network. 
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4.2 Verification 

4.2.1 Verification with literature and database resources 

The GBM network was verified using MINUET (Section 3.3). Figure 15 shows the overlap 

between the INDRA DB, GBM network, and PCnet, the intersection between each two of them, 

as well as the intersection between all three. For these purposes, only interactions that could be 

verified by database resources were considered. Any interaction representing gene transcription or 

translation was not verified, and any non-PPIs were discarded, due to their low representation rate 

in INDRA, leaving 279 interactions.  Each of the 279 interactions in the GBM network is found in 

INDRA, confirming the existence of these interactions, as well as their direction and sign. 

Consequently, all model interactions in the GBM network that are supported by PCnet are also 

present in INDRA, and they form GBMPCnet. Thus, the set of 208 interactions in the GBMPCnet 

network confirmed by PCnet and INDRA, indicates that the majority of interactions in GBM are 

both high-confidence and have a supported mechanism.  

 

Figure 15. (a) Overlap between the GBM network, INDRA, and PCnet, (b) size of each four GBM networks.  
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4.2.2 Verification against existing models 

We compared the literature support of the GBM network versus other published GBM 

networks. We examined two networks publicly accessible from literature- Jean-Quartier et al 2020 

[122] and Tuncbag et al 2016 [123], and two networks from databases- the KEGG GBM network 

[24] and the SIGNOR GBM [58] network. Additionally, we retrieved from NDEx [83] a TCGA 

RNA-miRNA interaction network, TCGAmiRNA. It should be noted that TCGAmiRNA is not a 

mechanistic signaling network like the others; rather, it is a correlation network derived from gene 

expression data. Table 13 summarizes the characteristics of these five existing GBM disease 

networks, as well as GBMPCnet described in the previous section. 

Table 13. Characteristics of GBM networks. 

Network Node 

# 

Edge # Average 

Clustering 

Coefficient 

Connected 

Components 

Hub Nodes 

# % 

GBM 134 279 0.07 1 18 13.43 

GBMPCnet 118 207 0.06 1 11 9.09 

Jean Quartier et al 

2020 

538 911 0.24 5 26 4.83 

TCGAmiRNA 278 2287 0.00 1 207 74.46 

SIGNOR GBM 26 46 0.10 1 11 42.31 

Tuncbag et al 2016 191 242 0.043 1 8 4.29 

KEGG GBM 45 47 0.10 3 0 0.00 

 

Figure 16a-d shows the INDRA, PCnet, and the GBM network overlap with Jean Quartier 

et al 2020, Tuncbag et al 2016, KEGG GBM and SIGNOR GBM networks, respectively. We find 

that, while the GBM network outperforms existing GBM networks in terms of INDRA 

representation, PCnet representation is more comparable. JeanQuart20 has the highest percentage 

of interactions represented in PCnet. TCGAmiRNA is again, the least supported, since it is a 
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correlation network of gene-miRNA interactions, which has no presence in PCnet, and only 

infrequent mentions in INDRA.  

 

Figure 16. Overlap between INDRA, PCnet, the GBM network (purple), and (a) Jean Quartier et al 2020, (b) 

Tuncbag et al 2016, (c) the KEGG GBM pathway, and (d) the SIGNOR GBM pathway. 

 

Additionally, we compared the overlap between each pair of GBM networks in terms of 

shared interactions (Figure 17). While all five networks are intended to address the same disease 

signaling network, we find that there is very small overlap. For example, the maximum overlap is 

between the GBM network and Jean Quartier et al 2020, and even this overlap is only 28 

interactions, making it 10.04% of the GBM network and 3.07% of the Jean Quartier 2020 network. 

This disparity is most likely due to differences in represented pathways. 
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Figure 17. Overlap in number of interactions between the GBM network and four other GBM networks. 

4.2.3 Verification using graph features 

Properties independent of node and edge identity can also be used to verify the network. 

While these numbers alone cannot verify the network, they can provide a measure of how useful 

the network is, and whether it resembles a signaling network. These numbers confirm that the 

preliminary baseline network is well connected, without any disconnected nodes or isolated 

clusters. The network nodes form long paths, typical for signaling networks, instead of star-like 

clusters. Table 13 also lists the average clustering coefficient, and the number and frequency of 

hub nodes for the GBM and GBMPCnet networks. The clustering coefficient is a metric of the 

connectedness of each node within a network [124]. The clustering coefficient for both networks 

is more indicative of a network that describes a real-world phenomenon than a randomly generated 

one [125]. Cancer signaling networks depend on the existence of hub nodes, which are highly 

susceptible to chemical inhibition. A hub node is defined as a node with >7 edges, which includes 
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both incoming and outgoing edges. Both manually assembled networks show a hub node 

frequency of approximately 1 in 10 (9-13%).  

4.2.4 Verification with TCGA gene set 

MINUET uses overlap between other networks or an interaction database to validate 

networks. This approach works well if there is an established consensus network for the pathway 

or network that can be used for benchmarking. However, there are many published GBM signaling 

networks, and they differ in both the size and content of the network. In addition to MINUET, the 

network can be verified with genes that are known to be involved in GBM signaling networks by 

comparing to the Cancer Genome Atlas (TCGA) [126] . For applications in GBM signaling, we 

will also provide real examples of verified signaling pathways between benchmark genes and 

network observables. The proposed approach will show that the GBM contains many benchmark 

genes, and highly-supported interactions between these genes. 

Here, we produce a list of genes commonly indicated in GBM pathology (hereafter referred 

to as the “TCGA gene set”). TCGA-GBM will be the most comprehensive and reputable source 

for this list. We retrieved the list of all observed somatic mutations within the TCGA-GBM dataset, 

and ranked genes by likelihood of a somatic mutation. We chose the 15 genes most likely to be 

mutated as the TCGA gene set. We set the cut-off to be intentionally restrictive, to ensure that all 

genes in the TCGA gene set were commonly implicated in GBM signaling. For reference, all genes 

in this set are mutated in at least 10% of cases in TCGA-GBM. 

The results of the TCGA gene set overlap with all GBM networks can be seen in Table 14. 

We find that the GBM network contains the largest overlap with the TCGA gene set (5 nodes 

respectively). We find that the edges connected to any node in TCGA gene set is also highly likely 
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to be verified by INDRA. Finally, we also see that the average INDRA belief score for these edge 

sets are high (>>0.65).  

Table 14. Genes from the TCGA gene set and their overlap with GBM networks.  

Network PTEN TTN TP53 EGFR NF1 PIK3R1 RB1 total 

GBM network ✓  ✓ ✓ ✓  ✓ 5 

Jean Quartier et al 

2020   ✓ ✓   ✓ 3 

TCGAmiRNA        0 

SIGNOR ✓   ✓ ✓ ✓  4 

Tuncbag 2016   ✓ ✓  ✓  3 

KEGG ✓  ✓ ✓   ✓ 4 

total 3 0 4 5 2 2 3  

 

We also show the specific identities of overlapping genes in the GBM networks and the 

TCGA gene set in Table 14. We find that EGFR was the most commonly represented gene, 

followed by PTEN. TTN, which was mutated in at least 32.57% of cases, was not represented in 

any network. These genes and proteins may be involved in the canonical GBM signaling pathway 

(PTEN, EGFR, etc.) or they may be novel (TTN, NF1). These results demonstrate that even large 

networks (with hundreds of nodes and edges) may still leave out key genes and proteins implicated 

in disease.  
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4.3 Initialization 

This section describes a systematic approach for parameterizing the baseline model using 

available data to model individual GBM stem cell lines. This method of initializing elements 

produces realistic model behavior that reflects differences between samples. For this method, we 

first perform fold-change analysis for all model genes. A two-fold change was considered 

significant, and indicative of a gene that is differentially expressed in at least one sample. For 

example, in Figure 18, we show the expression of three genes across three samples, where gene 1 

is differentially expressed in cell line A. It is possible for a gene to be differentially expressed in 

all samples, as is the case with gene 2. Therefore, we set the number of activity levels for all model 

elements based on the number of samples, since the maximum number of statistically significant 

pairwise comparisons is the number of samples. We then assume that the median value is the 

default for all genes. Any gene that is over-expressed is then matched with a corresponding activity 

level >1, and the reverse for under-expressed genes.  

 

Figure 18. Cell line specific initialization method. 
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To choose starting values for genes in the model, we use RNA-seq data. Many genes show 

different expression patterns in our three cell lines, which makes this data ideal for parametrizing 

our model. Another data type we can use to parameterize the model is whole-exome sequencing 

data. The mutations that we modeled in our preliminary studies are activating PDGFR, activating 

MDM2, and an inactivating PTEN mutation for MGG8 cells, and inactivating PTEN mutation for 

GS6-22 cells. Between whole-exome sequencing and RNA-seq data, we get a different set of 

starting conditions and active mutations. 

4.4 Kinase inhibition experiment results 

The in silico knockout experiments are both accurate and cell line-specific. The model 

reveals the mechanistic cause of kinase inhibition in silico. For example, the AKT inhibition 

scenario is visualized in Figure 19. On the left, we show the ten shortest pathways between Akt 

and its inhibitor (blue diamonds) and proliferation. Note that Akt regulates both apoptosis and 

proliferation, in contradictory ways. Without dynamic modeling, it would not be possible to 

determine the effect of Akt inhibition. DiSH simulation results predict that Akt inhibition will 

decrease proliferation, which is consistent with the results of the in vitro kinase inhibition data. 

Figure 19 (right) traces the effect of Akt inhibition. The trajectories show the control (no inhibitor, 

blue) and Akt inhibitor (orange). As a sanity check, we see that Akt has high activity in the control 

throughout the course of the simulation. However, Akt quickly drops to 0 if inhibitor is present. In 

the absence of Akt, which directly inhibits pro-apoptotic Bad, Cytochrome C (CytoC) release 

increases. This leads to an increase in a Caspase (Casp9), and finally apoptosis. Once a cell dies, 
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it can no longer contribute to tumor proliferation. This results in total inhibition of GBM stem cell 

proliferation.  

 

Figure 19. The top ten shortest pathways between AKT and proliferation. AKT and its inhibitor (teal 

diamonds) indirectly regulate several major observables (yellow). (Right) Simulation trajectories for the 

control (blue) and AKT inhibition (orange) that support the mechanistic conclusions. While there are several 

possible mechanisms that AKT can influence proliferation, the simulation results reveal that inhibition of AKT 

causes upregulation of pro-apoptotic factors (CytoC, Casp9, etc.) which inhibit proliferation. 
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Beyond the simple example of AKT inhibition, simulations were conducted considering 

11 kinase inhibition scenarios for all three cell lines (33 in total), and in 27 of these scenarios the 

model accurately predicts whether kinase inhibition causes a decrease in GBM stem cell survival 

(Figure 20(a)). In other words, for the three cell lines, many in silico kinase knockout experiments 

agree with expected outcomes, and the model encapsulates many well-known pathways. The 

kinase knockout experiments are cell line specific as well (Figure 20(b)), where the model 

accurately predicts different responses to kinase inhibition across cell lines. For those few 

scenarios where the behavior is not expected (), it is often the case that the model accurately 

predicts the effect of kinase inhibition in two cell lines, but not one of them. This could be caused 

by a missing interaction in the model, or we are missing a differentially expressed gene or mutation 

that causes one cell line to react differently. However, these scenarios do indicate a potential 

avenue for further study in vitro. 

 

 

Figure 20. Kinase inhibition results for the three GBM stem cell lines. 
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5.0 Integration with DySE.  

5.1 DySE pipeline.  

This section shows how methods for model parameterization, literature selection, network 

verification, and reading filtration fit into DySE pipeline and enhance methodology for automation 

of model assembly, extension, and testing.  

5.1.1 Comparison of models with VIOLIN 

We used VIOLIN to compare the similarity between networks as measured by shared 

interactions. To show how interactions are represented differently between sources, we compare 

the GBM network to the KEGG GBM network, the SIGNOR GBM network, Tuncbag et al 2016, 

and JeanQuart20. Since TCGAmiRNA has no overlap with any network, we do not show VIOLIN 

results for this network. First, we use VIOLIN to compare with manually curated networks (Figure 

21). We find that both networks are far more likely to contain extensions than any other interaction 

type. We also find more corroborations than either contradictions or flagged interactions. These 

results indicate that The GBM network differs from other curated networks not due to errors in the 

sign or direction of the interaction, and that the difference is due to different node and edge sets. 

Next, we used VIOLIN to compare against networks that were generated using automated 

methods (Figure 21). We find similar results as the curated networks, however, VIOLIN does 

identify many flagged interactions. The flagged interactions can be attributed to the presence of 

feedback and feedforward loops in the union of the GBM model and the automatically generated 
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networks. The manually curated networks are much smaller than the automatically generated 

networks, and so VIOLIN flags many more interactions when comparing two large networks.   

 

Figure 21. Comparison of the GBM model to other networks. 
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5.1.2 Selecting initialization methodology with PIANO  

 

Figure 22. Sensitivity analysis clusters for the GBM network. Elements that are both highly influential and 

highly sensitive (light green cluster) will have initial values that are more influential and downstream elements, 

and more susceptible to upstream elements.  

 

To ascertain which nodes should be initialized algorithmically, the sensitivity and influence 

for each node was evaluated using the Pathway Importance Analyzer for Network Optimization 

(PIANO) [127]. Using linkage clustering, where the number of clusters was determined manually, 

we get well-defined clusters (Figure 22). Elements that are both highly influential and highly 

sensitive (light green cluster) are likely to have the greatest effect on model outcomes, and be 

highly dependent on the initial values of model elements. We show that sensitivity analysis in 

conjunction with linkage clustering can identify which model elements have initial values that are 
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most influential on model outcomes and that are not easily imputed from missing values. For the 

GBM model case study, we show the distribution of two graph features (betweenness centrality 

and average shortest path length) for each cluster. While average shortest path length correlates 

with influence, betweenness centrality is correlated with nodes that are highly sensitive and 

influential (top right).  
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6.0 Future work and discussion  

In Section 3.0, I presented novel methodology for integrating literature and data for model 

curation. Incorporating DEGs in literature queries improves relevancy of the resulting literature 

corpus, and controls the size of the reading sets. For frameworks that use machine reading to 

extract potential model elements and interactions from literature, a filtration method can be used 

to guarantee that only high confidence interactions are added to the model. The filtering tool, 

FLUTE, enables this selection using publicly available data. FLUTE not only decreases the 

number of interactions that need to be tested for model improvement, it also keeps only the high-

quality interactions. In conjunction with FLUTE, MINUET is capable of verifying network 

interactions. These methods reduce the amount of work needed for curating models both manually 

and automatically and ensures that any curated models rely on biologically accurate knowledge. 

In Section 4.0, I show a GBM stem cell model that is consistent with multiple high 

confidence literature and database sources. Additionally, this model is parameterizable from data, 

allowing for accurate, cell line specific predictions of kinase inhibition. In Section 5.0, I show how 

the methodology from the DySE framework can be used to improve the GBM model.  

Future work includes additional improvements to the FLUTE tool. While FLUTE is 

capable of returning high-quality interactions, it also discards accurate interactions depending on 

the threshold used. Although the optional thresholds for between-paper duplicates and for recent 

publications increase the recall of correct interactions, these thresholds are highly context-specific, 

and precision is penalized in some cases. These literature-based filters can help further reduce the 

time needed for manual review of interactions, but they do not fully eliminate the necessity for 

human intervention. To accommodate novel machine reading results that are accurate, additional 
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features that draw from natural language processing can be added, such as trigger words, or 

analyzing sentence structure. These features could help to judge the quality of the reading output 

that would complement databases with historical information, and they could provide further 

insight into the reliability of individual interactions without penalizing novel interactions.  

Future directions also include refining the query formulation methodology, as well as 

expanding the results. The relative presence of different diseases in PubMed affects the size of the 

reading set, independent of the number of gene query terms. Additionally, since this method hinges 

on a list of affected genes or proteins with quantifiable differences from a control state, other 

measures of relative changes in cell function could also be used. Data on changes in post-

translational modification of proteins, changes in epigenetic markers such as methylation, open 

chromatin, or histone modifications, or even somatic mutations could also be used, especially as 

such entities and events can be output by the state-of-the-art machine reading. Testing these 

methods on different datasets would help showcase its applicability and use for model curation.   

Finally, the GBM model can be utilized in the future to guide patient treatments. By 

acquiring genomic data for additional cell lines, the model can be automatically parameterized and 

extended using the DySE framework. The model can then be used to predict effective chemical 

treatments in vitro with minimal human intervention.  
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Appendix A - GBM model rules 
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Appendix B – Updated motifs 

 

Motif 1: Complex formation 

A_B = {A,B}[Regulator1,Regulator2, … ]  

 

Motif 2: Simplified pathway 

Pathway = A  

 

Motif 3: Chemical reaction, enzymatic reaction, and PTM 

protein_modified = (protein_unmodified, small_molecule) 

Example: 

RAS_GTP = (RAS,GTP) 

 

Figure 23. Example of an enzymatic reaction. 
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Motif 4: Markers 

biological process = positive_marker_1,…,positive_marker_N, !negative_marker_1, … ,!negative 

marker_M  

 

Example: 

Inflammation = TNFa,IL6,IL12,IL1B 

Phagocytosis = !TNFa,!IL6,!IL12,!IL1B 

 

Figure 24. Example of markers regulating a biological process. 
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Motif 5: Indirect interaction 

protein_downstream = protein_upstream  

Example: 

A = !B 

B= A 

C= A,!E 

D= A 

E= !A 

 

Figure 25. An example network with missinf information, and the subsequent infered indirect interactions. 
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